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Summary

Data analytics is often described in three main parts - descriptive analytics, predictive ana-
lytics and prescriptive analytics (PSA). PSA, as the most advanced stage of data analytics,
aims to produce some actionable steps in the present, in the form of a prescription. This
prescription is based on predictions describing the future that come from predictive an-
alytics. Predictions are then based on processed historical data, which describe the past
and come from descriptive analytics. This workflow, referred to as the full PSA workflow
in this thesis, involves data processing, machine learning (ML) and optimisation problem-
solving steps.

There are many specialised tools in programming languages like Python or R that focus
on doing one of the steps from the full PSA workflow very well, which can be data pro-
cessing, ML, or mathematical optimisation problem (MOP) solving. However, there is
few tools that can do all of it within one ecosystem like a software, tool or library. One
can potentially implement a full PSA solution in Python using Pandas, TensorFlow and
CVXPY, but this still requires some integration efforts before the solution is up and run-
ning. Furthermore, this kind of glued-together solution is not very extensible to other PSA
problems.

This thesis introduces GPO-D (Graph-based Prescriptive Optimisation with Dataflows)
which is a Python library developed with the idea of increasing developer productivity
and user-friendliness through abstractions that can combine all the phases in PSA, thus
supporting the full PSA workflow. This is achieved with the implementation of Graph-
ProblemClass and Dataflow. The GraphProblemClass further simplifies the definition and
construction of optimisation problems by segmenting them into smaller parts called do-
main nodes. These domain nodes can extend the base implementation of the Node class or
inherit the characteristics from each other. The MOP construction that happens inside the
GraphProblemClass is then translated into the Python optimisation library, CVXPY in this
case, and solved.

The domain we are dealing with is the (electricity) energy sector. The underlying domain
node classes are based around the Harmonized Electricity Market Role Model (HEMRM)
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published by ENTSO-E, EFET and ebIX. These classes focus on easy extensibility and
standardisation. Furthermore, the GPO-D library is presented through an optimisation
problem example about microgrids, which introduces solar panels and wind turbines as
producers, households (homes) and a school as consumers and batteries to store the un-
used energy. Weather forecasts and historical production data can be used to generate
predicted production curves with PyCaret, which is an automated machine learning li-
brary. Later on, the same library is used to predict future consumption for households
based on historical usage data. This data is then fed into the optimiser through the domain
node classes to generate an optimal strategy for the microgrid example.

The core prerequisite when solving an MOP is to have accurate and relevant data. That
is what forms the basis for all decision-making. To be able to obtain such data, we need
another well-defined abstraction. That is how we come up with the so-called Dataflow.
We adopted the concept of Directed Acyclic Graph (DAG) from Apache Airflow, which is
what the Dataflow is based on. In GPO-D, two core classes are introduced to model these
dataflows - Dataflow and DataflowTask. The DataflowTask (or just task) represents a single unit
of work in the dataflow, whereas the Dataflow class manages a list of tasks. Each (domain)
Node that is part of the GraphProblemClass can be assigned a dataflow. That is the main
mechanism we use to define how each node will receive its relevant data. The execution
of dataflows is controlled by a DataflowManager, which is a helper class to manage and
coordinate all dataflows within the application.

The experiments are designed to assess the performance of GPO-D and its impact on de-
veloper productivity when implementing the microgrid problem example. Specifically, we
compare GPO-D against other libraries such as GBOML, CVXPY, and Pyomo with respect
to those two metrics. Furthermore, we evaluate the scalability of GPO-D by progressively
increasing the size of the microgrid optimisation problem to determine its performance
limits.
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Chapter 1

Introduction

In today’s data-intensive world, the ability to transform large amounts of information into
actionable decisions is crucial for competitive advantage. Descriptive and predictive an-
alytics have become widely adopted across many industries and organisations, but their
primary use is for explaining past events and forecasting future trends. This traditional
decision-making approach of relying on human intuition and static reports is proving to
be insufficient in this rapidly developing environment [1]. For that reason, Prescriptive
analytics (PSA) comes into play, as it aims to recommend or even automate the decision-
making, based on available data, constraints, and desired outcomes [2]. It represents the
latest and most advanced stage of analytics, combining both optimisation, machine learn-
ing, and real-time data processing to assist human decision-making [2, 3, 1].

Despite the popularity and potential of PSA, its adoption in analytics systems remains
scarce. A growing body of research has identified gaps in their integration, usability,
scalability, and adaptability to real-world problems [2, 1]. This raises the need for tools
that are accessible to users and domain-flexible, so that they can align with organisational
workflows [3]. This paper contributes to this growing field by presenting an extensible
graph-based solution for creating PSA workflows, highlighting how modern tools and li-
braries can be orchestrated to turn raw data into optimised decisions. Hereby, we present
GPO-D (Graph-based Prescriptive Optimisation with Dataflows) (pronounced "gee-pod"),
a Python-based library for PSA applications.

As a running example, we consider a renewable energy optimisation problem. We have
a singular household with a PV (Photovoltaic) installation and a battery. For simplicity,
properties such as battery capacity, battery charge/discharge power, battery efficiency,
and PV production capacity are left out. Furthermore, the household is connected to the
electrical grid, where produced (from the PV) and consumed (from the grid) electricity is
measured via a metering point. Figure 1.1 depicts the example. The goal in this optimi-
sation problem is to minimise the usage of the electrical grid, or conversely, maximise the
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usage of the PV installation and the battery. Let’s assume the scenario where the weather
is sunny for most of the day until 18 PM, but then becomes cloudy. Table 1.1 shows various
periods of the day, and the respective load, production, and battery state of charge at each
period. For demonstration purposes, we assume that the battery starts off empty. Early
in the morning, the solar panel will not be able to produce enough energy to satisfy the
household’s load. That forces the household to draw electricity from the electrical grid in
order to meet the load (as seen in Table 1.1 from 6 to 9 AM). From 18 PM, again the solar
panel is not able to produce enough energy to meet the load due to changing weather
conditions. But since the battery has been charged during the day due to overproduction
(higher production than load), the household will use energy from the battery instead of
the electrical grid. The actual values for the household load and the solar production for
tomorrow cannot be known, and the only other action is to try to predict them as accu-
rately as possible. Therefore, the solution to this problem requires a complex workflow
that combines data processing, machine learning, and optimisation, in order to find the
most optimal energy usage for the solar production, battery, and the grid.

Figure 1.1: Household with a PV installation and a battery example. Icons made by Freepik and Iconjam from
Flaticon.com [4, 5]
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Timestamp Load (kWh) PV Production (kWh) Battery SoC (kWh) Grid Usage (kWh)
2025/05/28 06:00 0.8 0.0 0.0 0.8
2025/05/28 09:00 1.2 2.5 1.3 0.0
2025/05/28 12:00 1.0 3.8 4.1 0.0
2025/05/28 18:00 2.5 0.5 2.1 0.0
2025/05/28 21:00 1.8 0.0 0.3 1.5
2025/05/29 00:00 ? ? ? ?

Table 1.1: Energy Usage and Production Data

We now show how this problem can be solved using GPO-D. Listing 1.1 shows a minimal
working example, illustrating the overall structure and workflow of the solution. First,
we define all the components of the problem (lines 1–5). Next, we specify how the data
processing and forecasting should occur (lines 7–10). Finally, these elements are assembled
into a problem instance, which is then solved by invoking the solve method of the problem
instance (lines 12–18). This example shows how GPO-D abstracts away low-level solvers
and domain-specific details, simplifying the integration of data processing, machine learn-
ing, and optimisation into a unified, solvable workflow.

1 problemClass = GraphProblemClass ( " running_example " , t ime_length =24)
2 household = Consumer ( . . . )
3 so lar_pane l = SolarPanel ( . . . )
4 b a t t e r y = B a t t e ry ( . . . )
5 metering_point = MeteringPoint ( . . . )
6
7 household . dataflow . task ( " predict_consumption " , . . . )
8 task1 = so lar_pane l . dataflow . task ( " g e t _ i r r a d i a t i o n _ d a t a " , . . . )
9 task2 = so lar_pane l . dataflow . task ( " g en er a t e_ s o l ar _d at a " , . . . )

10 task1 >> task2
11
12 problemClass . add_nodes ( [ household , bat tery , so lar_panel ,
13 metering_point ] )
14
15 metering_point . connect_to ( [ household , so lar_panel , b a t t e r y ] )
16
17 r e s u l t = problemClass . so lve ( s o l v e r=cp . CBC, o b j e c t i v e =" minimize " ,
18 value=" c o s t " )

Listing 1.1: Running example solved with GPO-D

In this paper, we describe the process of designing and developing GPO-D for the above



1.1. Declaration 4

and similar problems. In Chapter 2, we introduce similar papers and libraries related to
GPO-D. In Chapter 3, we introduce the prescriptive analytics workflow and the software
requirements for GPO-D. In Chapter 4, we state the goals and set a scope for this thesis. In
Chapter 5, we introduce a detailed example that builds upon the running example, which
we solve and implement with GPO-D in the next chapters. In Chapter 6, we describe the
library design process as well as implementation choices. In Chapter 7, we compare the
usability of GPO-D against other solutions, and we measure its scalability to test the limits.
Finally, we conclude our findings in Chapter 8, as well as discuss possible future work.

1.1 Declaration

Generative AI tools were used to help with summarisation of papers and note taking,
specifically ChatGPT, however, these references were cross-checked with the original ma-
terial to ensure correctness and proper attribution of credit. Furthermore, GitHub Copilot
was used to assist in the code implementation.



Chapter 2

Related Work

In this chapter, we will be looking at tools out of which we incorporate concepts and try
to build upon them in this thesis. Specifically, the tools are:

• SolveDB and SolveDB+

• GBOML

• Apache Airflow

2.1 SolveDB and SolveDB+

SolveDB, presented by Šikšnys and Pedersen [6], is an RDBMS with integrated support for
predictive (PDA) and prescriptive (PSA) analytics. The core idea with SolveDB is to unify
data management and optimisation problem solving within a single tool, i.e. a DBMS in
this particular case [6]. It does so through an SQL-based syntax with specific keywords for
optimisation problems. More specifically, here are the new SQL keywords: [6]

• SOLVESELECT - formulation clause producing output relation from input relation
with decision variables according to problem formulation in MINIMIZE/MAXI-
MIZE, SUBJECTO and USING clauses

• MINIMIZE/MAXIMIZE - specifies the objective function to minimize/maximize

• SUBJECTTO - specifies constraints applied to variables of an input relation

• USING - specifies the optimisation solver to be used for solving the objective function

1 SELECT * FROM (
2 SOLVESELECT battery_ch , bat tery_disch , soc , gr id IN (
3 SELECT ts , load , pv_prod
4 FROM energy_data

5
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5 ) as u
6 MINIMIZE (SELECT SUM( gr id ) FROM u )
7 SUBJECTTO
8 −− Load must be met by pv_prod + g r i d + b a t t e r y _ d i s c h
9 (SELECT load <= pv_prod + grid + b a t t e r y _ d i s c h FROM u ) ,

10 −− Non− n e g a t i v e b a t t e r y SoC
11 (SELECT 0 <= soc FROM u )
12 −− Non− n e g a t i v e b a t t e r y c h a r g e / d i s c h a r g e
13 (SELECT 0 <= bat tery_ch FROM u )
14 (SELECT 0 <= b a t t e r y _ d i s c h FROM u )
15 −− Non− n e g a t i v e g r i d usage
16 (SELECT 0 <= grid FROM u )
17 USING s o l v e r l p ) AS s

Listing 2.1: Running example formulated in SolveDB.

Listing 2.1 shows an example solution to the running example problem done in SolveDB.
The SOLVESELECT clause specifies battery_ch, battery_disch, soc, and grid, all of which
represent decision variables together with input SELECT * FROM energy_data and output
as u relations. Here we assume that a table energy_data exists and contains data for solar
production and load of a household. The objective is to MINIMIZE the total grid usage,
which is defined as SUM(grid) in the code. The constraints for the optimisation problem
are specified under the SUBJECTTO clause as:

• the household’s electricity demand must be met by the combination of electricity
produced by the PV, electricity taken from the grid, and electricity discharged from
the battery:
(SELECT load ≤ pv_prod + grid + battery_disch FROM u)

• the battery’s state of charge cannot go below 0 kWh. In this example, battery capacity
is left out, therefore, no upper bound constraint is specified:
(SELECT 0 ≤ soc FROM u)

• the battery can only be charged or discharged in positive amounts (or not at all).
Charging and discharging limits are left out in this example, therefore, no constraints
are specified regarding that:
(SELECT 0 ≤ battery_ch FROM u and SELECT 0 ≤ battery_disch FROM u)

• any electricity drawn from the grid must be zero or more (non-negative):
(SELECT 0 ≤ grid FROM u)

Lastly, USING keyword specifies which solver is to be used for solving our problem, which
in this case is just the default solverlp. Behind the scenes, the actual black-box (in the paper
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[6] labelled as physical) solver is automatically selected based on the suitability for the
problem at hand.

Meanwhile, SolveDB+ [7] extends the original SolveDB solution with a predictive frame-
work, shared optimisation models, and new language features, additionally improving
the support for full PSA workflow (which includes data processing, machine learning and
mathematical optimisation) as well as the overall performance. This makes SolveDB+ "the
only tool as of 2021 that can unify prediction and optimisation problem solving within a
SQL-based system." [7]

2.2 GBOML

GBOML, which stands for Graph-Based Modelling Optimisation Language, is a modelling
language for mathematical programming implemented in Python and was first introduced
in 2021 by Berger et al. paper [8]. It "enables the implementation of mixed-integer linear
programs (MILP) found in different sectors such as energy or supply chain." [9] Gen-
erally, GBOML is used for implementing problems that involve dynamic mathematical
optimisation over a finite time horizon [10]. Moreover, it is widely used for scenarios
which can be described in a hypergraph-like structure of interconnected nodes, for ex-
ample, microgrids optimisation, or transportation and logistics optimisation [9]. GBOML
"uses features of both algebraic modelling language (AML) and object-oriented modelling
language (OML)." [10]

An example solution to the running example is showcased in Listing 2.2 and Listing 2.3,
which are done by following [9] and [10].

#TIMEHORIZON
T = 2 4 ;

#NODE DEMAND
#PARAMETERS
total_demand = import " . . / . . / data/demand . csv " ;
#VARIABLES
e x t e r n a l : consumption [ T ] ;
#CONSTRAINTS
consumption [ t ] == total_demand [ t ] ;

#NODE SOLAR_PV
#PARAMETERS
max_power_output_kW = import " . . / . . / data/gen_solar . csv " ;
#VARIABLES
e x t e r n a l : e l e c t r i c i t y [ T ] ;
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#CONSTRAINTS
e l e c t r i c i t y [ t ] >= 0 ;
e l e c t r i c i t y [ t ] == c [ t ] * max_power_output_kW [ t ] ;

#NODE BATTERY
#PARAMETERS
SoC = 0 ;
#VARIABLES
i n t e r n a l : energy [ T ] ;
e x t e r n a l : charge [ T ] ;
e x t e r n a l : discharge [ T ] ;
#CONSTRAINTS
energy [ t ] >= 0 ;
charge [ t ] >= 0 ;
discharge [ t ] >= 0 ;
energy [ t +1] == energy [ t ] + charge [ t ] − discharge [ t ] ;
energy [ 0 ] == SoC ;

#NODE METERING_POINT
#VARIABLES
e x t e r n a l : power_import [ T ] ;
#CONSTRAINTS
power_import [ t ] >= 0 ;
#OBJECTIVES
min : power_import [ t ] ;

#HYPEREDGE POWER_BALANCE
#CONSTRAINTS
SOLAR_PV . e l e c t r i c i t y [ t ] + BATTERY . discharge [ t ] +
METERINGPOINT. power_import [ t ] == BATTERY . charge [ t ] + DEMAND. consumption [ t ] ;

Listing 2.2: Running example formulated in GBOML

In Listing 2.2, the running example problem is modelled in the form of nodes (e.g. SO-
LAR_PV) and hyperedges (e.g. POWER_BALANCE) which represent the elements of the
renewable energy optimisation problem. For a better overview, GBOML grammar con-
tains the following keywords [10]:

• #TIMEHORIZON - length of optimization time horizon

• #GLOBAL - global parameters that can be accessed anywhere in the model file
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• #NODE - represent optimisation subproblems with its set of parameters, variables
(internal or external), constraints and objective function.

• #HYPEREDGE - can define its set of parameters, but it primarily couples variables
belonging to multiple nodes through constraints

from gboml import GbomlGraph

gboml_model = GbomlGraph ( 2 4 )
nodes , edges , _ = gboml_model . import_all_nodes_and_edges ( " running_example . t x t " )
gboml_model . add_nodes_in_model ( * nodes )
gboml_model . add_hyperedges_in_model ( * edges )
gboml_model . build_model ( )
s o l u t i o n = gboml_model . so lve_cplex ( )

Listing 2.3: GBOML example execution in Python. The example is based on [10]

Secondly, in Listing 2.3, nodes and edges from the model are imported into Python and
added into the GbomlGraph class. Then the model is built through build_model() method.
Lastly, to the solution of the problem, a specific solver method is called, which in this
example is CPLEX. At the moment, the package provides both commercial and open-
source solvers, namely CPLEX (commercial), Cbc/Clp (open-source), DSP (experimental
open-source), Gurobi (commercial), HiGHS (open-source), and Xpress (commercial). [10]

2.3 Apache Airflow

Apache Airflow is an open source, scalable, dynamic and extensible platform to sched-
ule and monitor workflows [11]. By using Python alongside its user interface, Apache
Airflow provides more flexibility, workflow management and ease of use for creating
workflows and generating tasks for data-intensive systems [11]. Some of the use cases
implemented with Apache Airflow can be business operations, Extract Transform Load
(ETL)/Extract Load Transform (ELT), infrastructure management or Machine Learning
Operations (MLOps) with ETL/ELT being the most common with over 85% use cases in
2024 based on the Airflow Survey [12]. The core idea of the platform is the Workflow as
Code paradigm that is achieved through Directed Acyclic Graphs (DAGs) [13] as seen in
figure 2.1.
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Figure 2.1: Apache Airflow DAG example taken from Yasmin et al. study [13]

The DAGs represent an order of execution for tasks associated with it where tasks them-
selves are nodes with directed edges representing dependencies [13]. Furthermore, differ-
ent types of tasks are often implemented through "operators that encapsulate the necessary
logic." [13]

For our running example, Figure 2.2 shows an example DAG for getting a forecast for
the PV’s production. In a similar fashion, we can design a DAG for getting a forecast of
the household’s load. Both DAGs can be implemented in code as shown in Figure 2.1.

Figure 2.2: Apache Airflow DAG for running example
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2.4 Summary

As we have seen in this chapter, there are tools such as SolveDB and SolveDB+ that consol-
idate data management and PSA workflows in one ecosystem. This idea of bringing them
together also produced a positive impact on improving "usability, explainability, developer
productivity, and performance, even for new users" [7]. That was confirmed in the usabil-
ity study conducted by Laurynas Siksnys et al. and described in their SolveDB+ paper [7].
Secondly, GBOML, which focuses only on the mathematical optimisation part of the PSA
workflow, introduces a concept of using an OML together with an AML. For this project,
the object-oriented modelling concept in particular is the interesting part and one that we
use some inspiration from. This idea makes it easier to reuse a "model" (where parameters,
variables, constraints and objectives are defined) such as BATTERY or SOLAR_PV and ref-
erence it in other parts of a problem definition where needed, e.g. POWER_BALANCE
as seen in Listing 2.2. Lastly, Apache Airflow uses the DAG model for creating ETL or
MLOps workflows, which can make it easier and more flexible to abstract and unify the
data processing with the machine learning and mathematical optimisation workflows in
GPO-D.

Improvements over the listed technologies

• SolveDB and SolveDB+: These libraries are both in SQL and do not provide support
for advanced machine learning tasks in Python.

• GBOML: Provides a mathematical optimisation using a graph-based model, but does
not provide integrated support for data processing and machine learning.

• Apache Airflow: Schedules and manages workflows; it is not designed for prescrip-
tive analytics.

We address these gaps by:

• Providing a unified Python interface for the whole PSA workflow.

• Using graph-based modelling, but in Python, making it easier to use in PSA work-
flows.

• Providing modular code that the user can extend or adapt to new domains.

• Providing dataflow management, which is inspired by Airflow.

Overall, in Section Research Gap 3.2 more detailed explanation will follow about what
gaps can be bridged from the tools presented in this chapter and built upon in this project.



Chapter 3

Problem Analysis

The main purpose of this chapter is to analyse what makes up the PSA workflow, as
well as an attempt to bridge a gap in the current tools and technologies that focus on
supporting the full PSA workflow, which includes descriptive, predictive and prescriptive
analytics. Moreover, a set of software requirements is listed based on which GPO-D is
designed and developed. GPO-D should support full PSA workflow and improve on the
productivity aspects that other tools and technologies lack (such as SolveDB). Lastly, the
problem area is introduced from where the problem example (see Chapter 5) is taken and
used to showcase the capabilities of GPO-D.

3.1 PSA Workflow

PSA workflow is used to describe a superset of tasks that belong to all phases of analytics,
namely descriptive, predictive and prescriptive analytics [14]. More specifically, based on
the Figure 3.1 a prescriptive analytics application is composed of:

• data collection and consolidation referred to as data processing workflow in this
report

• creation of predictions referred to as Machine Learning (ML) or ML workflow in
this report

• and set of steps composed of:

– identification of alternative decisions and objectives

– modelling and simulation of alternative decisions

– selection of optimal decision

– process analysis

referred to as mathematical optimization (MO) or MO workflow in this report.

12
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Figure 3.1: PSA workflow from Frazzetto et. al [14]

3.1.1 Expanding on ML Workflow

As can be seen in Figure 3.1, the predictive analytics phase (or ML workflow), which
can be assumed to be a more complex chain of activities compared to data processing
or MO workflow, is expanded for this thesis. Hence, CRISP-ML(Q), which stands for
Cross-Industry Standard Process for Machine Learning with Quality assurance, has been
employed in order to get an overview of activities that fall under the ML workflow. This
development process model has been created with the idea of giving structure to ML
projects and improving development efficiency and success of such applications [15] [16].
The actual phases of CRISP-ML(Q) are [16]:

• business and data understanding

• data preparation

• model engineering

• model evaluation
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• model deployment

• model monitoring and maintenance

Furthermore, each phase has its set of tasks which will be listed in the following Section
3.1.2.

3.1.2 Adapted PSA Workflow

Based on the Figure 3.1 from Frazzetto et. al [14] paper and CRISP-ML process model
[16], an adaptation of a more detailed PSA workflow has been created for this thesis (see
Figure 3.2). The Figure 3.2 means to describe an iteration cycle (read from left to right)
of the phases seen at the top row, together with a set of tasks below each of the phases
not necessarily executed in top to bottom order with some also being optional in a PSA
application. We will be referencing this adaptation of the PSA workflow whenever we
refer to the adapted PSA workflow.

Figure 3.2: Adapted PSA workflow

For further referencing in this report, the phases with its tasks from Figure 3.2 has been
grouped into:

• data processing workflow: data understanding, data preparation

• ML workflow: ML modelling, ML evaluation



3.2. Research Gap 15

• MO workflow: optimisation, MO evaluation

and where business understanding, deployment, and maintenance phases belong to their
own categories.

3.2 Research Gap

Despite the increasing interest and research in data-driven decision support, currently
available tools fall short in supporting the full PSA workflow effectively [14]. Such so-
lutions tend to be fragmented, and often require the use of multiple different languages,
technologies, tools, etc. As mentioned in the paper from Frazzetto et. al [14], the major
limitations that have been identified are as follows:

1. Fragmented workflow support

Most current tools and libraries are only built around descriptive and predictive
analytics tasks [14, 3]. Prescriptive tasks are treated as a separate, disconnected step
of the workflow. Therefore, users are forced to stitch together multiple such tools in
order to implement the complete PSA workflow. Such ad hoc solutions have a big
impact on users’ productivity as they are now forced to context-switch between the
different tools [14, 3].

For example, systems such as BayesDB [17], GBOML [18], and SolveDB [6] are de-
signed to only support one or two parts of the PSA workflow. BayesDB is used for
predictive tasks, while GBOML and SolveDB are used for prescriptive tasks. Stitch-
ing these systems together would only lead to an ad hoc solution that is both error-
prone and hard to maintain.

Amongst the developments in the PSA area, SolveDB+ [7] has managed to rectify
this limitation by extending SolveDB with additional features that provide support
for predictive tasks on top of the existing optimisation problem-solving features.
Likewise, the goal of this project is to develop a tool that can support more than
just a single step in the PSA workflow. Ultimately, the defining feature would be the
support for building complete PSA workflows without the user having to resort to
additional out-of-scope tools.

2. Lack of unified interface

Existing solutions often require multiple programming languages for the different
stages of the PSA workflow [14]. That is tightly connected to the first limitation men-
tioned above, as there are only a few that fully support the entire workflow. That
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not only increases development complexity but also makes it harder for business an-
alysts and domain experts to learn to use it. Meanwhile, SolveDB+ manages to close
that gap by unifying the predictive and prescriptive tasks within the same SQL-based
system, such that users only have to learn the SQL language in order to do their job
[7].

The goal of this project is to develop a tool that provides high-level, user-friendly
abstractions that are based only on a single language, while still making sure that
there is support for the entire PSA workflow. The idea is to have a unified interface in
a language that is both popular and easy to learn by data scientists, e.g., Python. The
SQL language used within SolveDB and SolveDB+ may be faster and more efficient,
but it falls behind Python, for instance, in terms of flexibility, debugging capabilities,
and more advanced analytics tasks that involve ML [19].

3. Poor extensibility

Traditional analytics systems are often closed to extensions, i.e., they offer limited
support for integrating new models, solvers, or algorithms. That is not a desirable
quality because of how rapidly business environments evolve. On the other hand,
modern systems like SolveDB+ allow users to extend the system if needed.

Among the top priorities of this project is to design the tool in such a way that it
can easily be extended to optimisation problems from the selected domain, or data
source, or forecasting model, or solver, etc.

3.3 Target user-base

The target user base for this tool is the data scientist, who wants to use prescriptive analyt-
ics, but does not necessarily have the domain knowledge to implement a whole workflow,
but they are comfortable with fetching data, using Python data frame libraries, and the
predictive process, i.e. training and using machine learning models. The library should be
also extendable, to other problems. This would be done by domain experts e.g., in energy
sector.

Increasing Developer Productivity When making a workflow, like the battery-arbitrage
from last semester [20], the user/developer is required to have knowledge in multiple
fields. From the example, this includes: electrical engineering (or just battery engineering)
for describing the battery dynamics, power-trading to understand what features a predic-
tive model needs to make accurate predictions, and data-science for training the prediction
model and using the different libraries.
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We mainly focused on the Difference in Technical Knowledge like what data analysts
have and domain knowledge. We base our assumptions on Gathani et al.(2024) [21], who
conducted interviews with domain experts who lack the necessary skills to introduce data
science or advanced data analytical methods into their workflows. The paper points out
that data analysts lack this domain knowledge, too. This paper was mainly focused on
what-if analysis, which can be considered a tool within the prescriptive analytics workflow.

3.4 Software Requirements

To guide the development of the tool, we define a structured set of functional (Table 3.1)
and non-functional (Table 3.2) requirements. These requirements reflect both the features
of the solution as well as broader goals of ensuring user-friendliness, extensibility, scal-
ability, etc. They are categorised and prioritised using the MoSCoW method in order to
clearly distinguish the core functionality from the potential future improvements.

3.4.1 Functional Requirements

The core of the tool is about enabling data scientists to define, model, and solve PSA prob-
lems in a structured and user-friendly manner.

Each functional requirement is oriented towards improving developer productivity, re-
ducing manual work when defining and solving a PSA problem, and enabling extensions
to other domain use cases.

ID Requirement Notes MoSCoW
FR1 The tool should support an

abstraction through which
data scientists are able to
represent/model problem
domains that they are
working in, as well as derive
constraints and a possible
objective function for the
optimisation problem.

Using these abstractions, a
data scientist must be able to
model an MOP from the
energy sector.

Must have

FR1.1 Objective function builder. Have a function that builds
objective functions from the
domain specified. E.g.
minimise power flow
through the transmission
lines.

Must have
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ID Requirement Notes MoSCoW
FR1.2 The abstractions should be

extendable to other use-cases
from the chosen sector.

Must have

FR2 The tool should support
abstractions through which
data scientists are able to
simplify the data processing
and ML workflows.

Similar to an idea of DAGs
from Apache Airflow
mentioned in chapter 2, and
where data can be passed
from one task to another one
in the PSA workflow.

Must have

FR2.1 Partial automation of ML
workflow.

Automate prediction model
choice, feature engineering,
or data pre-processing.

Should have

FR3 The tool should be able to
store the models of the
mathematical optimisation
problems.

Similar to the idea of
object-oriented modelling of
optimisation problems in
GBOML described in
chapter 2. Store entire
graphs in a persistent
storage and be able to load
them into memory on
demand.

Should have

FR4 The tool should support the
functionality of
automatically choosing the
(best) solver (as there are
different types of solvers,
such as CPLEX, GLPK, CBC,
etc.) based on the
optimisation problem type
and then use that solver
throughout the production
cycle.

This function should only
need to be run once when
the problem implementation
is finished. There should be
a way to "remember" the
best choice of a solver for a
given problem.

Could have

FR5 The tool should support
parallel execution of tasks in
the PSA workflow.

Could have

FR6 The tool should automate
the choice of a dataframe
library based on the dataset
size.

Have a list of dataframe
libraries with some
suitability parameters such
as suitable dataset size,
supported functionality, etc.

Won’t have
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ID Requirement Notes MoSCoW
FR7 Translation functionality

from GPO-D formulation
into chosen Python
optimisation libraries such
as Pyomo, SciPy.

Won’t have

FR7.1 Complex objective functions
with weights.

Won’t have

FR8 Adding a graphical user
interface.

Drag and drop dags. Won’t have

Table 3.1: Functional requirements

3.4.2 Non-functional Requirements

Certain quality attributes have been a focus when developing the tool. It is crucial that the
tool can support different problems and use cases, and that is achieved by ensuring that it
is extendable. In addition to extensibility, the tool should still be able to handle problems
of various sizes, in order to keep up with competitor tools.

ID Requirement Notes MoSCoW
NFR1 The tool should increase

developer productivity when
working on PSA problems
compared to other tools,
such as the implementation
of the same problem in a
similar or same
environment, e.g. in Python.

Productivity is measured in
terms of effective lines of
code and number of
characters.

Must have

NFR2 Performance GPO-D should be
comparable to other tools in
terms of execution speed
and memory usage, where
the same PSA problem can
be solved.

Should have

NFR3 Scalability GPO-D should be able to
handle increasing problem
sizes without compromising
performance.

Should have

Table 3.2: Non-functional requirements
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3.5 Problem Domain

Our tool will focus on the electric energy sector. This is because of our previous experience
in the sector. We will mostly be focusing on energy flows in the grid, idealizing them to
a simple mathematical problem, while abstracting away foundational details of electrical
engineering concerns, we will only focus on balancing the production and consumption,
as an example we will ignore frequency and voltage dynamics, this is partly due to our
maximum 15 minute time resolution. Furthermore, we are not aiming for completely real-
istic problem parameters. The formulas themselves in Chapter 5 - Problem Example will
be similar to those used in solving an actual problem with real data. However, the param-
eters for those formulas will not. As an example, the daily consumption of a household
will be in the expected range, however, it might not reflect an actual consumption. This
can be done, since we assume that the mathematical optimisers provide correct solutions
to the given problems.



Chapter 4

Problem Statement

The main goal of this thesis is to develop a PSA tool in Python with developer productivity
and user-friendliness in mind within the PSA field that lacks such tools, as discussed in
Section Research Gap 3.2. Furthermore, the tool must support the full PSA workflow, as
discussed in section PSA Workflow 3.1 while trying to retain the performance aspects such
as execution speed in comparison with other Python implementations like CVXPY, Pyomo
and GBOML. The development in this paper revolves around the following main question:

How can we build the GPO-D Python library that supports the full PSA workflow (which
includes data processing, ML and math. optimisation) while trying to increase the devel-
oper productivity and user-friendliness, make the library extensible to multiple problems
from the energy sector, and also keep up with the overall execution speed when compared
to Python libraries like CVXPY, Pyomo or GBOML?

• RQ1: What abstraction(s) are needed in our tool to make the development of a full
PSA solution simpler and more oriented towards developer productivity?

• RQ2: How do we make our abstraction(s) extensible in a way that developers can
implement different PSA optimisation problems from the energy sector?

• RQ3: How does a problem example solution implemented in GPO-D compare to the
implementations in CVXPY, Pyomo and GBOML in terms of performance?

To summarise, the goal of this paper is to deliver a functional prototype of the GPO-D
Python library that implements a more complex version of the running example, which is
the microgrid example, and describe how that is done. The main focus is on the top three
requirements from the prioritised list below, although the system is designed with the rest
of the requirements in mind to allow for easier future integration.

Prioritized list of "need to have" requirements:

21
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1. FR1 - Abstractions for modelling Mathematical Optimisation Problems (MOPs)

2. FR2 - Abstractions for integrating the data processing and ML workflows

3. NFR1 - Developer productivity

4. NFR2 - Performance

5. NFR3 - Scalability



Chapter 5

Problem Example

We will now introduce an example that is implemented using the described formulas
later in this chapter. All experiments provided in this thesis will be based on this. This
example is essentially an upscaled version of the running example that was introduced in
the beginning. This example will produce a 24-hour strategy based on weather forecasts
and predicted data. This is not a replacement for a real-time control system.

5.1 Microgrid example

What is a microgrid?
The U.S. Department of Energy’s Grid Deployment Office defines microgrids as a collec-
tion of consumers, producers and energy storage devices. The components of a microgrid
are interconnected with a well-defined connection to the public grid. Thus, from the public
grid’s point of view, it acts as a single entity. The microgrid can provide resilience against
failures on the public grid by being able to separate itself and satisfy the consumer’s needs
through local production. That is called an island mode. Microgrids can even sell back
excess energy in some cases. [22]

The goal for microgrids is to avoid using electricity from the grid and try to maximise
self-consumption, which is the idea of trying to satisfy local electricity needs with local
production. We used residential microgrids as an example, since they can use different
types of producers and the consumption curves may differ per consumer, because different
households or other consumers may exhibit a specific consumption pattern. This gives us
a nice opportunity to show that our tool can handle a diverse portfolio of consumers and
producers.

23
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5.1.1 Components of our example microgrid

Generally, microgrids consist of producers, consumers, and some type of energy storage
systems. For our example, we will have:

• 50 homes with controllable solar panel installations (5 kW rated production capacity)

• a school with a controllable solar panel installation (25 kW rated production capacity)

• 1 wind turbine (1000 kW rated capacity)

• a grid connection in the DK1 grid area

• 3 battery storage systems with a capacity of 500 kWh, a round-trip efficiency of 0.9
and a charge/ discharge power of 500 kW.

The goal is to only use the public grid in situations where the locally produced energy
does not satisfy the demand. In this case, the producers in our microgrid will have a
production curve, but the production in the microgrid can be reduced if needed, this can
be necessary in the scenario when the energy can not be exported and the batteries are
charged, or in case the energy price is negative and exporting it would result in an extra
cost.

5.1.2 Controlling solar panels

We will model controllable solar panels that will have a forecasted production curve, which
will be based on the solar irradiance forecast from a meteorological source. The optimiser
will be able to select a production capacity percentage between zero and the maximum of
that curve, an example of this control can be seen in Figure 5.1. We are aware that this
type of central controllability is not typical for rooftop solar. For example, it is possible to
set up electricity export limiting at a household level [23], so we are assuming that it could
be done at a community level.
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Figure 5.1: Example irradiation curve

5.1.3 Mathematical formulation

Input data

The input data for this example will be the forecasted irradiation and wind speeds. Both of
them will be of length T, which is the number of timesteps for the problem. t = 0, 1, . . . , T
denotes the timesteps.

Producers

The energy of the producers is given by the following equation:

Et [kWh] = Pt ·
1
l

where:

• Pt [kW] is the power of the producers for time step t.

• l [h] is the length modifier for the time step. If we are working with hourly time
steps, this would be 1. If we are working with 15-minute time steps, this would be 4.

Solar panels

The power of the solar panels is given by the following:

Pt = ct · Prated · Qt

where:
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• 0 ≤ ct ≤ 1, ct ∈ R is the control variable for the optimiser, for time step t. This is a
decision variable for the optimiser.

• Prated [kW] is the rated power of the solar panels for an irradiance of 1 kW/m2. 1

• Qt [kW/m2] is the solar irradiance, for time step t.

Wind turbine

For the wind turbine, we rely on a simplified model, which can be seen in Figure 5.2 [25]:

Figure 5.2: Wind turbine power generation, depending on the wind speed, reproduced from [25]

Pt(v) =



0, vt < vcut-in

Prated

(
vt − vcut-in

vrated − vcut-in

)3

, vcut-in ≤ vt < vrated

Prated, vrated ≤ vt < vcut-out

0, vt ≥ vcut-out

where:

• Pt(v) [kW] is the produced power at time step t for a given wind speed v.

• Prated [kW] is the rated power of the wind turbine.

1This is a simplified model, we assume that the efficiencies and variables, based on installation, are already
included in this number. Generally, in photovoltaic systems, the standard test conditions are 1000W/m2.[24]
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• vcut−in [m/s] is the cut-in wind speed for the turbine. This is the minimum wind
speed, where the turbine can produce power.

• vcut−out [m/s] is the cut-out wind speed for the turbine. This is the maximum wind
speed until the turbine produces power, if the wind speed is greater than this, then
the turbine shuts off for safety reasons.

• vt [m/s] is the predicted average wind speed at time step t.

Consumers

For the consumers, we used an online available dataset for past household electricity con-
sumption [26]. We will use an automated machine learning tool to forecast future con-
sumption. Generally the consumption data will be an array Et = [−e0,−e1 · · · − eT], with
all values given in kWh. We did not find a usable dataset for the consumption of the
school. Instead, we used a scaled-up consumption curve from the household dataset. This
scaling will be termed the consumption scaling factor fc and the resulting consumption of
the school will be given by the equation Et = [− fce0,− fce1 · · · − fcet]. We are aware that
this is not a realistic consumption curve for the school.

Batteries

We modified the formulation from the battery arbitrage example from our last semester’s
report [20]. We changed the units and replaced the power values with energy values,
which is due to the changeable length of the timesteps.

Variables

• Et,c ≥ 0 [kW] be the charged energy at time t,

• Et,d ≥ 0 [kW] be the discharged energy at time t

Decision Variables

• st ≥ 0 [kWh] be the state of charge (SOC) at time t

Constraints

1. Initial and Final State of Charge

s1 = 0, sT = 0

2. State of Charge Dynamics

st,i =

{
ηEt,c − 1

η Et,d if t = 1,

st−1 + ηEt,c − 1
η Et,d if t > 1,

where:
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• η is the efficiency of the battery (0 < η ≤ 1).

3. Energy and Capacity Limits for Each Battery

0 ≤ Et,c ≤ Pmaxc ·
1
l

, 0 ≤ Et,d ≤ Pmaxd ·
1
l

, 0 ≤ st ≤ C

where:

• Pmaxc [kW] is the maximum charging power of the battery,

• Pmaxd [kW] is the maximum discharging power of the battery,

• C [kWh] is the capacity of battery.

• l [h] is the length modifier for the timestep. If we are working with hourly
timesteps, this would be 1. If we are working with 15-minute timesteps, this
would be 4.

The resulting energy into the microgrid from the battery would be defined by:

Ebattery,t = Et,d − Et,c

where:

• Et,d [kWh] is the discharged energy at timestep t.

• Et,c [kWh] is the charged energy at timestep t.

Energy flow per timestep

The resulting energy flow for each time step would be calculated by summing up all the
components’ energy flows for each timestep. This can be done since the values would
be signed and generally represent production into the grid with a positive number and
consumption from the grid with a negative number:

Et =
N

∑
d=0

Ed,t

where:

• Ed,t [kWh] is the energy produced or consumed by component d at time step t for
the system. This would include all consumers, producers and the battery.

• N is the number of components in the given microgrid.
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Objective Function

We defined two objective functions with different goals:

1. To minimise energy flow in and out of the microgrid, i.e. to minimize the usage of
the grid.

arg min
C,S

T

∑
t=0

|Et|

where

• Et [kWh] is the energy produced or consumed by the microgrid at time step t
for the system.

• T is the optimisation’s time horizon, i.e. the number of timesteps.

• C = {c0, c1, c2, . . . cT} and S = {s0, s1, s2, . . . sT} are sets for all the decision vari-
ables defined by the previous components. Both with a length of T.

2. To maximise the profit from the sold electricity, i.e. to minimise the cost of the energy.
This objective function is taken from our last semester’s project. [20]

arg max
C,S

T

∑
t=0

Et pt

• Et [kWh] is the energy produced or consumed by the microgrid at time step t
for the system.

• T is the optimisation’s time horizon, i.e. the number of timesteps.

• C = {c0, c1, c2, . . . cT} and S = {s0, s1, s2, . . . sT} are sets for all the decision vari-
ables defined by the previous components. Both with a length of T.

• pt [EUR/kWh] is the day-ahead price of the electricity at time t. 2

2Generally day-ahead prices would be given in EUR/MWh. But we assume that the conversion to
EUR/kWh would be done in the data preparation process. In this case, it would be done by dividing the
prices by 1000.



Chapter 6

Design & Implementation

This chapter will present the design of GPO-D. We first start by looking at the high-level
architecture overview of the GPO-D and how it is connected to our adapted PSA workflow.
Secondly, the technologies and libraries being used to build the tool are explained. Lastly,
two design concepts are explained, dataflows and graph modelling, which are proposed in
order to help simplify the development and modelling of full PSA problems and improve
developers’ productivity when implementing solutions to those problems.

6.1 High-Level Overview

Figure 6.1 illustrates a high-level architecture of GPO-D, which operates in three main
stages.

The first stage involves defining a specific optimisation problem by modelling it as a
graph. This is done through the implementation of domain-specific classes such as solar
panels, batteries, or consumers, which inherit from base classes provided by GPO-D. These
domain-specific classes, referred to as domain nodes (or simply nodes in most contexts), are
associated with a central structure that represents the whole optimisation problem.

In the second stage, for each node we can optionally define a workflow (referred to as
dataflow) that is responsible for collecting and processing the data needed by the nodes.
These dataflows may include data retrieval tasks (e.g., fetching weather forecasts) or ML
tasks (e.g., predicting household load/consumption).

The third stage begins when all dataflows are executed and have completed. At this point,
the tool automatically gathers constraints, decision variables, and cost functions from each
node. These are then compiled into an optimisation model and run using a selected solver.
The resulting solution to the optimisation problem is then returned to the user.

30
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6.1.1 Segmentation of workflows

This segmentation between the dataflow and (domain) nodes is done to separate the work
of domain experts and data scientists. The idea is that a dataflows are developed by a
data scientist, while the nodes and their related constraints are implemented by an energy
domain expert. And the final integration and testing of these components can be done by
any developer who is familiar with the basics of object-oriented programming.

Figure 6.1: High Level Overview of GPO-D

6.2 Adapted PSA Workflow Usage

We set out to describe the PSA workflow in section Adapted PSA Workflow 3.1.2. Figure
6.2 represents a coloured version of this workflow depicting which tasks are ignored within
the tool (grey) due to time limitations, defined by the user/developer of our tool (red),
partially automated by the tool (orange), and fully automated by the tool (green).

Since making a generic tool capable of modelling and solving any business use case is
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difficult, we are leaving the Business Understanding completely in the hands of the user.
This involves both modelling the domain, i.e., through the use of the graph representations
described in section Graph Modelling 6.5, and also defining the business objective, which
can be very specific to each optimisation problem. Furthermore, the data collection is
not the focus of this tool, thus, it can be assumed that data for our purposes is already
stored in a database or CSV file. For the most part, tasks from Data Understanding and
Data Preparation phases are mostly done by the user based on the problem at hand, due
to challenges in automating it (one of the few relatively easier automations can be done in
data cleaning).

From the ML Modelling and ML Evaluation phases, which are not the focus of GPO-D, most
tasks can be partially or fully automated such as feature engineering (e.g., creating the sine
and cosine transformations to handle cyclic variables), feature importance (e.g., trying out
different combinations of features until the best one is found, one with least error), ML
modelling technique selection or ML model tuning.

As the integration of the Optimisation part with the rest of the process is the main goal of
this tool, the definition of the business constraints, decision variables, and the formulation
of the objective function is automated to some degree. The user selects or defines the
objective function and specifies constraints and decision variables, but that can be done
through the intuitive graph concept explained in section 6.5. Then, the constraints, decision
variables and objectives will be extracted from the graph itself automatically. The selection
of the solver for the optimisation problem will also be automatically done, but we will also
give the freedom of selecting a specific one, if the user wishes to do so.
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Figure 6.2: Adapted PSA workflow coloured

6.3 Technology Stack

In this section, we outline the primary technologies and libraries used in the implementa-
tion of GPO-D. The selected stack has support for each of the steps in the PSA workflow.

6.3.1 Application Programming Language

The primary programming language used for GPO-D is Python. As the main target user
of GPO-D is the data scientist, Python is a suitable option due to being widely adopted
in the data science community, as well as having a vast ecosystem of libraries and active
community support. The flexibility and interoperability that it offers, as well as the ability
to seamlessly integrate data processing, machine learning, and optimisation components
into a single solution, further enable the development of an end-to-end PSA workflow [27].

6.3.2 Data Processing

For data processing and manipulation, we use the pandas [28] Python library. Pandas
provides data structures like DataFrames that can be used for handling structured data.
Pandas in general is extensively used for data cleaning, transformation, and data analysis.
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Furthermore, it offers high-performance data manipulation when working with small to
moderate-sized datasets. In the problem examples described in this thesis, all datasets are
of a smaller size, therefore, pandas proves sufficient in the implementation of GPO-D. [29]

6.3.3 Machine Learning

For the machine learning component of GPO-D, we use PyCaret, which is an open-source,
low-code ML Python library [30]. It is used for automating ML workflows, therefore, it is
considered as part of the AutoML [31] family of tools. It considerably simplifies the ML
process by automating steps such as data preprocessing, model comparison and selection,
model training, and "hyperparemeter" tuning [30]. It serves as an abstraction layer or a
wrapper over common ML frameworks (such as XGBoost [32], CatBoost [33], LightGBM
[34]), hence allowing for rapid prototyping and model selection, making it particularly
useful for predictive tasks in the PSA workflow. We used this library to automate the ML
workflow for GPO-D.

6.3.4 Mathematical Optimization

For the optimisation phase of the PSA workflow, we use cvxpy [35]. cvxpy is a Python-
embedded modelling language used for expressing and solving convex optimisation prob-
lems [35]. Firstly, it enables users to express MOPs in a readable way that follows the math
behind the problem itself [35]. Secondly, cvxpy supports a wide range of solvers (such
as OSQP, GUROBI, CBC, etc.) that can be used for linear and quadratic programming or
constrained optimisation problems. The simple syntax of cvxpy, and the large support
of solvers are reasons why it is a suitable choice for GPO-D. We used it as a high-level
interface for the solvers.

6.4 Dataflow

The core prerequisite when solving an MOP is access to accurate and relevant input data,
as it forms the basis for all decision-making. To reliably obtain such data, we need a
well-established and structured process, referred to as a dataflow. The dataflow defines
how the input data necessary for solving an MOP is acquired and prepared. This includes
specifying the source of the data, the component of the MOP for which the data is relevant,
and the mechanism by which the data is fetched or retrieved, and subsequently loaded into
memory or persistent storage for use during optimisation.

6.4.1 Dataflow Definition

The different node types (e.g., SolarPanel, Consumer) in the MOP graph often require dis-
tinct workflows to process and prepare the data.
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For example, if we consider solar panel production vs. household consumption. These
can use different data sources, different prediction models, and the preparational steps
can be different. Even when we consider different models of solar panels, or when oper-
ated by different companies, the data format can be different, or the source of the data can
be different, thus needing a different workflow to convert the data for the optimiser. How-
ever, solar panels, which are similar in workflow but have only parametric differences, i.e.
different locations or different rated power output, can be processed by the same process.

To alleviate this issue, we adopted the DAG concept that Apache Airflow [36] uses. Each
node type is assigned a different workflow for fetching and preparing the necessary data.
In the example in Figure 6.3, the SolarPanel nodes have an Apache-like DAG described to
fetch and process the required data. We call these DAGs - dataflows, and each step in the
dataflow (e.g., GetSolarPanelData, PreProcessData) - a task.

Figure 6.3: Dataflow definition

DataFlowTask

A DataFlowTask (in short task) represents a single unit of work in the dataflow. This can be
anything from fetching data from various sources, processing it, or running an ML model.
Each task can depend on other tasks, which form a graph-like structure (as seen in Figure
6.3).
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Listing 6.1 shows the implementation of the DataFlowTask class. Each task is initialised
with a unique name, a set of parameters (e.g., latitude and longitude for a wind turbine),
and a flag indicating whether it is the final task in the dataflow. It also maintains a list of
dependencies, i.e., other tasks that must be executed before this one.

The execution logic of a task is captured in the run method. When a task is run, it first
recursively executes all dependencies, which ensures that all prerequisite data is available.
The results from the dependencies are collected and passed to the task’s process method.
The process method contains the logic to perform the actual computation, and the results
of the computation are then stored within the task for later use by other tasks or the opti-
misation problem.

1 c l a s s DataflowTask :
2 def _ _ i n i t _ _ ( s e l f , name : s t r , parameters = { } , f i n a l = Fa l se ) :
3 s e l f . id = uuid . uuid4 ( )
4 s e l f . name = name
5 s e l f . _dependencies = [ ]
6 s e l f . _ r e s u l t s = { }
7 s e l f . _ f i n a l = f i n a l
8 s e l f . _parameters = parameters
9

10 def add_dependency ( s e l f , task ) :
11 s e l f . _dependencies . append ( task )
12
13 def run ( s e l f ) :
14 input_dfs = { }
15 for task in s e l f . _dependencies :
16 task . run ( )
17 input_dfs . update ( task . g e t _ r e s u l t s ( ) )
18 s e l f . process ( input_dfs )
19 s e l f . _ r e s u l t s = input_dfs
20
21 def process ( s e l f , dfs : Dict [ s t r , pd . DataFrame ] )
22 −> Dict [ s t r , pd . DataFrame ] :
23 r a i s e NotImplementedError ( " Subc lasses must implement t h i s method " )
24
25 def g e t _ r e s u l t s ( s e l f ) −> Dict [ s t r , pd . DataFrame ] :
26 return s e l f . _ r e s u l t s

Listing 6.1: DataFlowTask implementation
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A notable feature of DataFlowTask is the overloading of the » operator (see Listing 6.2),
which is used for chaining of tasks. When task1 » task2 is written, the overloaded method
will add task1 as a dependency of task2. This syntactic sugar is added to make the con-
struction of dataflow graphs both more readable and concise.

1 # Over load >> o p e r a t o r f o r dependency c h a i n i n g
2 def _ _ r s h i f t _ _ ( s e l f , task ) :
3 task . add_dependency ( s e l f )
4 return task

Listing 6.2: Overloaded » operator implementation

Task Types

To support different types of operations within a dataflow, GPO-D defines several spe-
cialised subclasses of DataflowTask. Some of these include:

• DataFetchingTask: An abstract base class for tasks that retrieve data from various
sources, such as files, databases, or APIs. There are concrete implementations like
DataFetchingFromFileTask and DataFetchingFromDBTask that provide the logic for re-
trieving data from specific data sources.

• DataProcessingTask: A task that applies a user-defined function to its input data.
This allows for any arbitrary data transformations to be encapsulated as tasks.

Each specialized task must implement the process method from DataFlowTask to define its
specific behaviour. For example, a DataFetchingFromFileTask reads CSV files, while DataPro-
cessingTask might merge, filter, or do other operations on dataframes, depending on what
the user-defined function is. Listing 6.3 shows the implementation of the two types of tasks.

1 c l a s s DataFetchingFromFileTask ( DataFetchingTask ) :
2 def f e t c h _ d a t a ( s e l f ) −> pd . DataFrame :
3 return pd . read_csv ( s e l f . source )
4
5 def process ( s e l f , dfs : Dict [ s t r , pd . DataFrame ] ) :
6 dfs [ s e l f . name] = s e l f . f e t c h _ d a t a ( )
7
8 c l a s s DataProcessingTask ( DataflowTask ) :
9 def _ _ i n i t _ _ ( s e l f , name , process_func , parameters = { } , f i n a l =Fa l se ) :

10 super ( ) . _ _ i n i t _ _ ( name , parameters , f i n a l )
11 s e l f . process_func = process_func
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12
13 def process ( s e l f , dfs : Dict [ s t r , pd . DataFrame ] )
14 −> Dict [ s t r , pd . DataFrame ] :
15 return s e l f . process_func ( dfs , s e l f . _parameters )

Listing 6.3: DataflowTask types examples

Building a Dataflow

A Dataflow manages a list of tasks and their dependencies for a specific node (e.g., a house-
hold, solar panel, etc.). As shown in Listing 6.4, the class provides methods to add tasks
(task method), retrieve them by name (overloaded [] operator), and execute the entire
dataflow (execute method). The Dataflow class ensures that tasks are executed both in the
correct order and also respecting all dependencies. The results are then collected and made
available for further processing or analysis.

1 c l a s s Dataflow :
2 def _ _ i n i t _ _ ( s e l f , name , object ) −> None :
3 s e l f . name = name
4 s e l f . object = object
5 s e l f . t a s k s = { }
6
7 def task ( s e l f , name , task_node_type : DataflowTask=None , * args , * * kwargs )
8 −> DataflowTask :
9 i f name in s e l f . t a s k s :

10 return s e l f . t a s k s [name]
11 e lse :
12 i f task_node_type i s None :
13 s e l f . t a s k s [name] = DataProcessingTask ( name , * args , * * kwargs )
14 e lse :
15 s e l f . t a s k s [name] = task_node_type ( name , * args , * * kwargs )
16 return s e l f . t a s k s [name]
17
18 def execute ( s e l f ) −> None :
19 f i n a l _ t a s k = s e l f . g e t _ f i n a l _ t a s k ( )
20 i f f i n a l _ t a s k i s not None :
21 f i n a l _ t a s k . run ( )
22 s e l f . r e s u l t s = f i n a l _ t a s k . g e t _ r e s u l t s ( )
23
24 # o v e r l o a d [ ] o p e r a t o r
25 def __geti tem__ ( s e l f , name : s t r ) −> DataflowTask :
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26 return s e l f . task (name)

Listing 6.4: Dataflow class implementation

Managing Dataflows

As the number of dataflows increases relative to the number of nodes, managing them
efficiently becomes cumbersome. For that reason, we introduce the DataFlowManager sin-
gleton class, which has the responsibility of managing and coordinating all dataflows within
the application. As shown in Listing 6.5, the DataFlowManager keeps track of all dataflows
for different nodes in the optimisation problem graph definition. It ensures that each node
is associated with a unique dataflow and that repeated requests for the same node return
the same dataflow instance (new_dataflow method). Furthermore, it provides methods to
execute all registered dataflows (execute method), and to retrieve results from tasks within a
node’s dataflow (get_data method).

1 c l a s s DataflowManager :
2 def _ _ i n i t _ _ ( s e l f ) −> None :
3 s e l f . dataf lows = { }
4
5 def new_dataflow ( s e l f , object , dataflow = None ) −> Dataflow :
6 i f object . name in s e l f . dataf lows :
7 return s e l f . dataf lows [ object . name]
8 i f dataflow i s None :
9 dataflow = Dataflow ( object . name , object )

10 s e l f . dataf lows [ object . name] = dataflow
11 return dataflow
12
13 def execute ( s e l f ) −> None :
14 for dataflow in s e l f . dataf lows . values ( ) :
15 dataflow . execute ( )
16
17 def get_data ( s e l f , object , task_name ) :
18 dataflow = s e l f . dataf lows [ object . name]
19 return dataflow . get_data ( task_name )

Listing 6.5: DataflowManager class implementation

The following Listing 6.6 demonstrates how dataflows are constructed and executed for
the components in the running example, specifically for a household consumer and a so-
lar panel. First, a new task named "gen_consumption" is added to the household’s dataflow.
The task is of type DataProcessingTask and uses a user-defined function for generating the
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household’s energy consumption data. Similarly, for the solar panel, two tasks are defined.
Since the second task of generating solar panel production data depends on solar irradia-
tion data from the first task, that dependency is ensured by task1 » task2 chaining operation.
Finally, the execute method of the DataflowManager is called, which triggers the execution
of all registered dataflows in the system. The results of the tasks flagged as "final", are
collected and made available for further use in the optimization process.

1 household . dataflow . task (
2 " gen_consumption " ,
3 DataProcessingTask ,
4 process_func=predict_consumer_data ,
5 parameters ={ " hours " : 24 , " model_name " : " consumer_model " } ,
6 f i n a l =True
7 )
8
9 task1 = so lar_pane l . dataflow . task (

10 " g e t _ s o l a r _ d a t a " ,
11 DataProcessingTask ,
12 process_func= g e t _ i r r a d i a t i o n _ d a t a ,
13 parameters ={ " l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 }
14 )
15 task2 = so lar_pane l . dataflow . task (
16 " gen_solar_data " ,
17 DataProcessingTask ,
18 process_func=generate_solar_panel_data ,
19 parameters ={ " rated_power " : 5 } ,
20 f i n a l =True
21 )
22 task1 >> task2
23
24 s e l f . _dataflow_manager . execute ( )

Listing 6.6: Example dataflow for household running example

6.5 Graph Modelling

The core idea behind making a graph modelling system for optimisation constraints is to
avoid using complex equations to represent connections in the electrical grid.

To make the development of prescriptive analytics workflows easier, we introduce a mod-
ular library that can model MOP using graph structures. The core of this concept revolves
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around abstracting different parts of problem domains as graph-based models, thus al-
lowing for flexible definition, manipulation, and solution of complex optimisation tasks.

The design is represented through abstractions, which include a set of core base classes.
In addition to that, there is a set of specialised classes that capture the intricacies of a MOP
domain (e.g., battery).

6.5.1 Design Principles and Considerations

When coming up with the graph modelling concept, we considered multiple design prin-
ciples and we emphasised the following:

• Separation of concerns: The idea is that each domain for a MOP has its own set of
specialised classes, all of which inherit from a shared set of generic base classes. The
generic classes handle the core optimisation logic (i.e., collecting constraints, defining
the objective, solving the problem), while domain-specific logic is delegated to the
subclasses. Inheriting from the same base class ensures consistency, as all subclasses
follow a common structure and expose a unified interface.

• Extensibility: New types of nodes and optimisation domains can be added with min-
imal changes to the existing architecture by simply extending the core base classes.

• Reusability: Code duplication and boiler-plate code are minimised through the us-
age of the generic base classes, which serve as universal building blocks for any MOP
and domain.

• User Productivity: By introducing built-in high-level abstractions, such as Energy
Storage Unit, Producer, etc., the user doesn’t have to be an expert in mathematical
modelling or know about low-level solver APIs. These domain objects hide the com-
plexity of variables, constraints, and cost functions. Furthermore, due to the modular
design of the library, users can incrementally build optimisation models by adding
nodes, without the need to redefine the entire problem again.

6.5.2 Core Abstractions

Node

The concept of a Node reflects the main building block of the library. Each node is tied to a
GraphProblemClass and contains problem-specific data such as constraints, cost functions,
and variables. The nodes are modular and can be reused by creating copies of them,
therefore allowing the user to scale up the complexity of their optimisation problem by
adding more nodes.
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GraphProblemClass

GraphProblemClass serves as a central container for the entire optimisation problem, main-
taining a list of Node objects that encapsulate individual components of the optimisation
problem, and handles the compilation and solution of the complete problem. This abstrac-
tion allows for the flexible construction of optimisation problems as undirected graphs,
where the nodes are responsible for defining constraints, decision variables and cost func-
tions. The flow of electricity will be represented by the sign of that number, a positive
sign represents production of electricity, while a negative sign represents consumption of
electricity.

Listing 6.7 shows a part of the implementation of GraphProblemClass. The class maintains a
list of nodes (line 5), and provides the add_nodes method to append new nodes (lines 9-10).
Furthermore, GraphProblemClass defines methods for collecting cost terms (collect_costs)
and constraints (collect_constraints) from each node, which enables a modular construction
of the complete optimisation problem. Lastly, the provided fetch_dataflows method ensures
that each node’s associated dataflow (if any) is added to the shared DataflowManager in-
stance. This allows those dataflows to be executed prior to constructing and solving the
optimisation problem.

1 c l a s s GraphProblemClass ( ) :
2 def _ _ i n i t _ _ ( s e l f , name , t ime_length = 2 4 ) :
3 s e l f . name = name
4 s e l f . t ime_length = time_length
5 s e l f . _nodes = [ ]
6 s e l f . _ s e l e c t o r = None
7 s e l f . _dataflow_manager = DataflowManager . g e t I n s t a n c e ( )
8
9 def add_nodes ( s e l f , nodes ) :

10 s e l f . _nodes . extend ( nodes )
11
12 def f e t ch_data f lows ( s e l f ) :
13 for node in s e l f . _nodes :
14 i f h a s a t t r ( node , " dataflow " ) and node . dataflow i s not None :
15 s e l f . _dataflow_manager . new_dataflow ( node , node . dataflow )
16
17 def c o l l e c t _ c o s t s ( s e l f ) :
18 return cp . sum ( [ node . c o s t for node in s e l f . _nodes ] )
19
20 def c o l l e c t _ c o n s t r a i n t s ( s e l f , t ) :
21 c o n s t r a i n t s = [ ]
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22 for node in s e l f . _nodes :
23 c o n s t r a i n t s . extend ( node . c o n s t r a i n t s ( t ) )
24 return c o n s t r a i n t s

Listing 6.7: GraphProblemClass implementation

Listing 6.8 presents the core function of the GraphProblemClass, namely the solve method.
This method orchestrates the entire workflow. It first registers and executes any associated
dataflows for the nodes, then builds the objective function based on the user’s specification
(e.g., minimising or maximising a cost). Afterwards, it collects all time-indexed constraints
from each node. Finally, it builds and solves the optimisation problem using a specified
solver backend (e.g., GUROBI, OSQP).

1 def solve ( s e l f , s o l v e r=cp . GUROBI, o b j e c t i v e : s t r = " minimize " ,
2 value : s t r = " c o s t " ) :
3
4 # F e t c h d a t a f l o w s from nodes and e x e c u t e them
5 s e l f . f e t ch_data f lows ( )
6 s e l f . _dataflow_manager . execute ( )
7
8 # B u i l d t h e o b j e c t i v e f u n c t i o n
9 s e l f . _ s e l e c t o r = S e l e c t o r ( s e l f . _nodes )

10 i f o b j e c t i v e == " minimize " :
11 o b j e c t i v e = cp . Minimize ( cp . sum( s e l f . _ s e l e c t o r . get ( value ) ) )
12 i f o b j e c t i v e == " maximize " :
13 o b j e c t i v e = cp . Maximize ( cp . sum( s e l f . _ s e l e c t o r . get ( value ) ) )
14
15 # C o l l e c t a l l c o n s t r a i n t s from t h e nodes
16 c o n s t r a i n t s = [ ]
17 for t in range ( s e l f . t ime_length ) :
18 c o n s t r a i n t s . extend ( s e l f . c o l l e c t _ c o n s t r a i n t s ( t ) )
19
20 # B u i l d and s o l v e t h e o p t i m i z a t i o n prob l em
21 problem = cp . Problem ( o b j e c t i v e , c o n s t r a i n t s )
22 problem . solve ( s o l v e r= s o l v e r )

Listing 6.8: GraphProblemClass solve function implementation

In Listing 6.9, we demonstrate how to define the single household running example us-
ing the GraphProblemClass. We instantiate the GraphProblemClass, define all relevant nodes
(e.g., battery, solar panel, consumer, and metering point), register any required dataflows,
and finally get the solution of the complete problem by invoking the solve function of the



6.5. Graph Modelling 44

GraphProblemClass.

1 # C r e a t e t h e prob l em i n s t a n c e
2 problem = GraphProblemClass (name=" household_energy " , t ime_length =24)
3
4 # C r e a t e and add nodes
5 b a t t e r y = B a t t e ry ( . . . )
6 pv = SolarPanel ( . . . )
7 household = Consumer ( . . . )
8 grid = MeteringPoint ( . . . )
9

10 household . dataflow . task ( . . . )
11
12 problem . add_nodes ( [ bat tery , pv , household , gr id ] )
13
14 # S o l v e t h e prob l em
15 problem . solve ( o b j e c t i v e =" minimize " , value=" c o s t " )

Listing 6.9: Composing the optimization problem using GraphProblemClass

6.5.3 Objective Function Constructor

The objective function constructor for the GraphProblemClass is designed to provide a flex-
ible interface for defining optimisation objectives across a variety of problem types. The
core idea is to allow users to specify an objective function by selecting and aggregating
relevant variables from nodes in the graph. Users can then specify whether the selected
variables should be minimised or maximised, which enables the reuse of the same logic
across different problem domains.

For example, the objective of maximising self-consumption can be formulated as min-
imising the power flow through the MeteringPoint component of our running example.
Another example could be maximising profit over the whole graph, which translates to
minimising the sum of costs over the optimiser’s time horizon.

The selection and aggregation of relevant variables from nodes is achieved by introducing
a helper class called Selector (see Listing 6.10), which supports filtering nodes in the graph
by type (using of_type), by attribute (using where), or other criteria. Once a Selector object is
initialised, it is assigned to a GraphProblemClass and it is scoped to all nodes in the graph
by default. The user can then filter this set and aggregate the selected variables to form
a single scalar objective expression using the get method. Finally, the resulting objective
expression is then used in the optimisation problem, either with a minimise or maximise
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operation, depending on the user’s initial choice.

1 c l a s s S e l e c t o r :
2 def _ _ i n i t _ _ ( s e l f , i tems ) :
3 s e l f . i tems = items
4
5 # F i l t e r s i t e m s by i n s t a n c e t y p e
6 def of_type ( s e l f , type_or_types ) :
7 . . .
8
9 # F i l t e r s i t e m s b a s e d on t h e v a l u e o f an a t t r i b u t e .

10 def where ( s e l f , a t t r , value ) :
11 . . .
12
13 # F i l t e r s l i s t o f a t t r i b u t e v a l u e s f o r e a c h i t em
14 def get ( s e l f , a t t r ) :
15 return [ item . g e t _ a t t r ( a t t r ) for item in s e l f . i tems ]

Listing 6.10: Implementation of the Selector helper class

Listing 6.11 demonstrates how the Selector can be used to build an objective. This code
example can work for the household running example, since the "cost" attribute of a Me-
teringPoint node can be defined to return an expression of the sum of energy imported
from the grid (return cp.sum(self.energy_import)) Consequently, the resulting expression can
be minimized or maximized, to form the objective.

1 GraphProblemClass :
2 s e l f . _nodes = [ ]
3 s e l f . _ s e l e c t o r = None
4 . . .
5
6 s e l f . _ s e l e c t o r = S e l e c t o r ( s e l f . _nodes )
7 o b j e c t i v e = cp . Minimize ( cp . sum( s e l f . _ s e l e c t o r . get ( " c o s t " ) ) )

Listing 6.11: Using Selector to build an objective

The motivation behind the objective function constructor is to support a broad range of
problems with some simple building blocks and with minimal user effort. The user should
be able to define the objective using simple, composable filters rather than manually ag-
gregating variables or writing hard-coded solver-specific or problem-specific code.
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6.5.4 Connection handling

Figure 6.4: Connection conversion

This modelling supports many-to-many connections between the nodes in the constraint
modelling graph. These are converted to have a logical common connection point as can
be seen in Figure 6.4. This is where we introduce a constraint, which relates to Kirchhoff’s
first law in electrical circuits. However, our implementation of this equation uses energy
Ei,t of a timestep.

N

∑
i=0

Ei,t = 0

where:

• N is the number of interconnected nodes in the many-to-many connection.

• Ei,t is the energy of node i at time step t.

Listing 6.12 shows the implementation of the ConnectingNode class. This logical abstrac-
tion is used for connecting multiple nodes within the modelling graph, which allows
us to represent many-to-many relationships. When nodes are connected via a Connect-
ingNode, a constraint is introduced to enforce Kirchhoff’s first law (lines 10-14). In this
implementation, this is achieved by ensuring that the power that flows into and out of the
ConnectingNode at each timestep is zero.

1 c l a s s ConnectingNode (Node ) :
2 s e l f . connected_nodes = [ ]
3
4 def connect ( s e l f , node ) :
5 s e l f . connected_nodes . append ( node )
6
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7 def connect_nodes ( s e l f , nodes ) :
8 s e l f . connected_nodes . extend ( nodes )
9

10 def c o n s t r a i n t s ( s e l f , t ) :
11 return [
12 cp . sum(
13 [ node . powerflow ( t ) for node in s e l f . connected_nodes ]
14 ) == 0]

Listing 6.12: ConnectingNode implementation

In Listing 6.13 we show an example usage of the ConnectingNode for the running example.
After creating all relevant domain nodes and the connecting node (lines 1–8), the connec-
tions between them are done via the connect_nodes method (line 11). Alternatively, we can
use the metering point as a connection node, which can be done by using the connect_to
method that is available to any node (line 13). Behind the scenes, the same ConnectingNode
gets created as before, so the choice of which approach to use is up to the user’s preference.
By modelling these connections, the constraint for ensuring that the household’s load is
met, is automatically introduced due to Kirchhoff’s first law (as seen in Listing 6.12). If the
sum of all powerflows from all nodes is zero, that means that there is enough production
(or drawn from the grid) to cover the household’s consumption.

1 # C r e a t e nodes
2 b a t t e r y = B a t t e ry ( . . . )
3 pv = SolarPanel ( . . . )
4 household = Consumer ( . . . )
5 metering_point = MeteringPoint ( . . . )
6
7 # C r e a t e a c o n n e c t i n g node
8 balance = ConnectingNode ( . . . )
9

10 # Connect nodes t o t h e b a l a n c e node ( Connect ingNode )
11 balance . connect_nodes ( [ bat tery , pv , household , metering_point ] )
12
13 metering_point . connect_to ( [ bat tery , pv , household ] )

Listing 6.13: Example usage of ConnectingNode



6.5. Graph Modelling 48

6.5.5 Domain-Specific Extensions

A key feature of this library is its extensibility through domain-specific subclasses. That
is done by extending the base classes of Node and GraphProblemClass, therefore allowing
support for a wide variety of real-world mathematical optimisation scenarios. In this
iteration of this thesis, the focus is on the energy sector, therefore we have implemented
built-in classes that the user can utilise to model optimisation problems within the energy
industry.

Electricity market domain

We aligned the naming for the domain-specific classes according to the Harmonised Elec-
tricity Market Role Model (HEMRM)[37]. This can be seen on the class diagram in Figure
6.6. From HEMRM, we use the following two models:

• Resource: This represents consumption assets, production assets and energy storage
assets.

• Metering Points: This represents the connection to the grid and where the produced
and consumed electricity is measured.

Divergence from HEMRM: We made a small change in the class diagram in HEMRM,
as it can be seen in Figure 6.5. The Metering Point and Resource are associated, but in our
class diagram, the Metering Point inherits from the Resource.

Figure 6.5: The connection between metering point and resource in HEMRM. The picture is taken from
HEMRM. [37]
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Figure 6.6: Class Diagram from the Node and Energy Domain classes. The diagram was generated with
PlantUML. [38]

Resources

All of these classes inherit from a common Resource class and represent the following
distinct components, which can be specialised to represent those assets’ parameters. These
classes can be seen on the class diagram in Figure 6.6.

• Energy Storage Unit is a class capable of storing electricity. It has an internal state,
which is the amount of electricity stored. The class captures operational character-
istics, like efficiency, maximum charge, and discharge power. This class can also
be extended to include characteristics that are not in the base library, like battery
degradation.

• Producer is a generic class for all production units, it captures operational character-
istics like production schedules and cost of production per electricity unit, it can be
extended to include selectable production schedules by the optimiser.
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• Consumer is a generic class representing consumers with consumption schedules.

Each of the classes above inherits from the base Resource class. For example, Listing 6.14
shows a part of the implementation of the Consumer class. Due to inheritance, the pow-
erflow method needs to be defined (lines 6-7). Furthermore, the consumption schedule of
the consumer can either be assigned during construction of a Consumer object, or once all
associated data flows are executed (assign method).

In the running example, we model the household as a Consumer. We are only interested
in the consumption schedule, therefore, the powerflow property of Consumer is sufficient
for our problem, as it returns the consumption at each time interval as a negative amount,
which we then try to offset with production.

1 c l a s s Consumer ( Resource ) :
2 def _ _ i n i t _ _ ( s e l f , name , consumption_kWh = [ ] ) :
3 super ( ) . _ _ i n i t _ _ (name)
4 s e l f . consumption_kWh = consumption_kWh
5
6 def powerflow ( s e l f , t ) :
7 return − s e l f . consumption_kWh [ t ]
8
9 def ass ign ( s e l f , t ) :

10 s e l f . consumption_kWh =
11 s e l f . dataflow . r e s u l t s [ " gen_consumption " ] [ " consumption_kWh " ] [ : t ]
12 . values

Listing 6.14: Partial implementation of Consumer class

Producer specialization

• Solar Panel is a class that represents the solar panels, which is a specialisation of
the Producer class, with a controllable output set by the optimiser, and a maximum
production schedule based on the irradiation forecasts.

• Wind Turbine is a class that represents the wind turbine, which is a specialisation of
the Producer class, it has a production schedule based on the wind forecasts.

Energy Storage Unit specialisation

The Battery class is a concrete specialisation of the EnergyStorageUnit base class. As shown
in Listing 6.15, it models the energy storage behaviour of a battery over time. The charge
and discharge schedules are determined by the optimiser, while operational constraints
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such as power and capacity limits are enforced by the class.

1 c l a s s B a t t e r y ( EnergyStorageUnit ) :
2 ( . . . )
3 def c o n s t r a i n t s ( s e l f , t ) :
4 c o n s t r a i n t s = [
5 s e l f . SoC [ t ] <= s e l f . capacity_kWh ,
6 s e l f . charge [ t ] <= s e l f . charging_power_kW ,
7 s e l f . discharge [ t ] <= s e l f . discharging_power_kW ,
8 ]
9 i f t == 0 :

10 c o n s t r a i n t s . append (
11 s e l f . SoC [ t ] == s e l f . e f f i c i e n c y *
12 s e l f . charge [ t ] − (1 / s e l f . e f f i c i e n c y ) * s e l f . discharge [ t ] )
13 e lse :
14 c o n s t r a i n t s . append (
15 s e l f . SoC [ t ] == s e l f . SoC [ t −1] + s e l f . e f f i c i e n c y * s e l f . charge [ t ] −
16 (1 / s e l f . e f f i c i e n c y ) * s e l f . discharge [ t ] )
17 return c o n s t r a i n t s
18
19 def powerflow ( s e l f , t ) :
20 return s e l f . discharge [ t ] − s e l f . charge [ t ]

Listing 6.15: Implementing the Battery class

The BatteryWithDegradation class is an extension to the Battery class by introducing a cost
term that models battery degradation. The cost accounts for the depreciation of the bat-
tery’s value as it ages with charge and discharge cycles. The degradation model is adopted
from [39]. This class is not used in the examples and experiments. It demonstrates how
the Battery implementation can be extended with additional domain-specific logic.

Listing 6.16 shows how the BatteryWithDegradation class introduces a cost function based
on a degradation model.

1 c l a s s BatteryWithDegradation ( B a t t e r y ) :
2 def _ _ i n i t _ _ ( . . . , e f f i c i e n c y = 0 . 9 , D50 = 1 . 0 , beta = 0 . 6 9 3 ) :
3 super ( ) . _ _ i n i t _ _ ( . . . )
4 s e l f . D50 = D50
5 s e l f . beta = beta
6
7 def c o s t ( s e l f ) :
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8 return s e l f . charge * s e l f . D50 *
9 np . exp ( s e l f . beta * ( ( s e l f .SOC − 50) / 5 0 ) )

Listing 6.16: Extending the Battery class with degradation.[39]



Chapter 7

Experiments

Throughout this section, we will be comparing the performance, productivity and scala-
bility aspects of our tool. For the performance comparisons, we will be looking to compare
problem implementations in CVXPY, Pyomo, GBOML with our GPO-D solution. The scal-
ability experiments will look at the limitations of our GPO-D library. Lastly, we measure
the productivity of GPO-D compared with CVXPY, Pyomo and GBOML through the num-
ber of characters and effective lines of code used, and our experiences developing with it.
The figures in this chapter were generated with the matplotlib library.

7.1 Comparisons with Other Python Implementations

This section focuses on comparing our GPO-D implementation of the microgrid example
described in chapter 5 with other Python optimisation libraries such as CVXPY, Pyomo
or GBOML. The goal here is not to outperform these libraries, but rather to keep the
performance levels similar, especially with CVXPY, which is also the library employed
in GPO-D. Furthermore, data processing and ML workflows stay the same for all the
implementations, and only optimisation problem solutions differ from library to library.

7.1.1 Performance and Memory Usage

Setup

In these experiments, we will be benchmarking execution time and memory usage of the
microgrid example implemented in GPO-D, CVXPY, Pyomo and GBOML. Specifically, the
microgrid setup for the experiments is composed of components listed in Table 7.1. The
actual microgrid implementations for each of the libraries is in appendix section A.2.1
for GPO-D, appendix section A.2.2 for CVXPY, appendix section A.2.3 for Pyomo, and
appendix section A.2.4 for GBOML solution. For more insights, the time horizon and
number of homes with solar panels will be scaled as follows:

53
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Microgrid Component Count Parameters

Time horizon T 24 in hours
Homes 50 consumption factor 1
Schools 1 consumption factor 100

Solar panels (for homes) 50 5kW rated production capacity
Solar panels (for schools) 1 25kW rated production capacity

Wind turbines 1

1000 kW rated production capacity
cut in speed of 3.5 m/s
cut out speed of 25 m/s
rated speed of 14 m/s

Batteries 3

500 kWh storage
0.9 efficiency

500 kW of charge and discharge power
initial state of charge is 0 kWh

Table 7.1: Default microgrid setup for the experiments

• time horizon scaling in figures 7.1 and 7.3

– 24x1 (1 day)

– 24x2 (2 days)

– 24x3 (3 days)

– 24x5 (5 days)

• number of homes and solar panels scaling in figures 7.2 and 7.4

– 50 homes and 50 (home) solar panels

– 100 homes and 100 (home) solar panels

– 200 homes and 200 (home) solar panels

– 500 homes and 500 (home) solar panels

– 1000 homes and 1000 (home) solar panels

The main idea of this scaling is to increase the overall number of tasks (such as solar irradi-
ation retrieval, cleanup, and calculation of max. rated production capacity for solar panels)
in data processing workflow, overall number of tasks (such as predicting consumption for
homes with pre-trained model) in ML workflow as well as increasing the complexity of
optimization problems through growing number of constraints and variables that come
with this scaling.

As for the data setup, the same prediction model is used to predict consumption over T
for homes and school with results multiplied by factors defined in table 7.1 respectively
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Tool Version

Python 3.10.8
cvxpy 1.6.0
gboml 0.1.10
pyomo 6.9.2

Table 7.2: Versions of tools used for the experiments

by 1 for homes and by 100 for school. For wind turbine and solar panels for both homes
and school, the same location (Aalborg location) is used to retrieve real-time wind speed
and solar irradiation over T period of time. Lastly, all batteries start with the initial state
of charge at 0 kWh.

These experiments are run on a laptop with Windows 11, Intel Core i5 CPU, and 16.0 GB
of RAM. They are executed in Python version 3.10.8 and its related tools are listed in table
7.2.

Results

Looking at the first set of execution time measurements wtih time horizon scaling in figure
7.1 for original 50 homes and 50 (home) solar panels, it can be noticed that overall with
scaling number of days there is a small linear increased of 1-2 seconds per added day
for our GPO-D and CVXPY solutions whereas Pyomo and GBOML results remains all
under 7 seconds of execution, not affected by time horizon scaling. Moreover, it is only the
optimisation part being impacted by the scaling, as the dataflow execution times are very
similar (around 5.8 seconds) across the whole x-axis, with GBOML slightly slower (around
6.4 seconds mark). The reason why dataflow execution doesn’t change much is because
the number of dataflow tasks remains the same, it is just the size of the datasets (from 24
to 24x5=120 rows of data for components in the microgrid) that varies, which for our small
datasets is negligible. On the other hand, the optimisation problem complexity rises by
the added day, for example, for 3 days there are 3 times more variables and constraints,
or for 5 days there are 5 times more variables and constraints, all compared to 1 day. The
actual number of variables and constraints is listed in the appendix section A.3. To sum
up, GPO-D seems to perform the worst out of the 4 solutions across the board, being
only very slightly behind the CVXPY solution. The fastest solution is Pyomo, which takes
around 6 seconds to execute across all time horizons, and the second in place is GBOML,
which is often around 0.7-1 second slower compared to Pyomo, mainly due to slightly
slower dataflow execution compared to the average.
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Figure 7.1: Execution time comparison between GPO-D, CVXPY, Pyomo and GBOML with scaling time hori-
zon

In the second set of measurements displayed in the figure 7.2, the number of homes and
the number of solar panels for homes are being scaled. Generally, a linear trend can be
seen in the results where the total execution time is for 100, 200, 500 and 1000 homes each
with 1 solar panel is 2x, 4x, 10x, and 20x slower compared to the execution times of the first
group of 50 homes and their solar panels. Once again, as observed in figure 7.1, GPO-D
and CVXPY optimization executions are keeping up very closely across the groups with
GPO-D being slightly slower whereas Pyomo and GBOML executes optimization phase
considerably faster which often takes under 1 second and not impacted by the overall
increase in number of constraints and variables (where with 1000 homes and 1000 solar
panels there is over 24000 variables and 48000 constraints as seen in appendix section A.3).
Note that GBOML fails with 500 and 1000 of homes and solar panels which it is assumed
to be due to how the optimization problem is constructed, specifically with solar panel
nodes being almost copy pasted in order to be able to create a decision variable associated
with a unique dataset (not done in our microgrids solutions but each solar panel can
have different coordinates which retrieve different values for solar irradiation and total
energy production varies for each solar panel) for the time horizon T for each of the solar
panels nodes. There is possibly a solution to fix these issues, however, due to a lack of
documentation and similar examples (examples where there is a great number of decision
variables, each dependent on a unique dataset), the actual issue or solution has not been
found. The last thing to point out is that dataflow takes up more than 80% of the execution
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time for all of the solutions across the scale. To conclude, GPO-D results are very similar
to those of CVXPY across the board, and GBOML comes in second after Pyomo, which
can execute the dataflow tasks a couple of seconds faster.

Figure 7.2: Execution time comparison between GPO-D, CVXPY, Pyomo and GBOML with scaling number of
homes and (home) solar panels
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Figure 7.3: Memory usage comparison between GPO-D, CVXPY, Pyomo and GBOML with scaling time hori-
zon

Figure 7.4: Memory usage comparison between GPO-D, CVXPY, Pyomo and GBOML with scaling number of
homes and (home) solar panels

Memory usage experiments in figures 7.3 and 7.4 are also scaled across the time horizon
and the number of homes and solar panels. Overall, across all the microgrid solutions,
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except for GBOML, similar levels of memory usage with a slight increase of around 20 MiB
across the time horizon scale in figure 7.3 for each of the respective solutions. GBOML,
however, uses the least memory (around 260 MiB to 280 MiB) during its execution and not
really affected by the scaling of time horizon or number of homes and solar panels mainly
due to storing the data inside the csv files (the data is retrieved when nodes and edges are
imported into the GBOML model) instead of keeping them in memory in a dataframe or
a numpy array throughout the execution of the solution.

7.1.2 Productivity Experiments

For the quantitative analysis, we measure effective lines of code (eLoC) and number of
characters (NoC). To compare against libraries, it needs to be pointed out that those two
metrics are not an effective way to measure developer productivity, since they do not
capture library learning complexity and usability complexity. These are both subjective
measurements and are hard to quantify in an objective manner.

Setup

For measuring eLoC and NoC, we use the same implementations as we do for performance
and memory usage, and we consider only the base scenario as described in Table 7.1.
We strip away any comments, unused variables, and imports from all implementation
files in order to get the most accurate results. Furthermore, for GPO-D, we take two
measurements - one excluding domain classes (e.g., Battery class), and another including
the domain classes. That is done because on one occasion, the built-in domain classes
can be sufficient for building the solution, while in other situations, one may need to
extend the library with additional domain classes. Similarly, for GBOML, we measure
with and without the input text file that contains all the components and parameters for
the problem. Since the input text file uses a different language than Python, we measure
LoC instead of eLoC.

For measuring eLoC, we use cloc [40], which is a universal tool for counting lines of source
code, comment lines, and blank lines [40]. For counting NoC, we simply use a shell
command that counts the number of characters excluding whitespaces.

t r −d ’ [ : space : ] ’ < /workspaces/gpod_microgrid_solution . py | wc −m

Listing 7.1: Shell command for counting NoC

Results

The results of the eLoC and NoC measurements can be seen in Figure 7.5 and Figure
7.6 respectively, and the concrete values can be found in Appendix section A.3.2. As
observed, the base implementations with GPO-D and GBOML, without including domain
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classes or input text files, are smaller than CVXPY and Pyomo in both eLoC and NoC. A
key role in this difference are the abstractions provided by GPO-D and GBOML. However,
if we take into consideration the domain classes or text files needed by GBOML, then the
difference turns into CVXPY and Pyomo’s favour. For GPO-D, this would only be the case
if additional domain classes need to be added, or an extension to another domain needs to
be implemented. For GBOML, a problem cannot be formulated or solved without creating
the input text file. The large number of LoC and NoC that can be seen in the figures is
due to the fact that GBOML doesn’t support loops as part of the language and grammar
it uses. Therefore, this requires the development of a program that can write such files by
essentially repeating the definition of a node n number of times. To conclude, solutions
implemented with GPO-D tend to be the most concise, given that all required domain
classes are already provided by GPO-D. When that is not the case, GPO-D solutions can
take more time to implement and end up larger in code size than their counterparts.

Figure 7.5: Effective lines of code comparison between GPO-D, CVXPY, Pyomo and GBOML
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Figure 7.6: Number of characters comparison between GPO-D, CVXPY, Pyomo and GBOML

7.2 Scalability Experiments

In these experiments, we will be scaling up the problem size to see how execution time
changes.

Setup

We will also be looking at the parallel execution method for the Dataflows. The microgrid
setup for the experiments is composed of components listed in Table 7.1.

The experiments were run on a laptop with Windows 11, AMD Ryzen 5 CPU and 24
GB of ram and a 1660 Ti Max-Q Nvidia GPU. They are executed in Python version 3.10.8
with a custom build of CVXPY from GitHub, which included the cuOpt solver in the cvxpy
library1.

• time horizon scaling

– 1 day

– 2 days

– 4 days

– 7 days

• number of homes and solar panels scaling

– 10

1https://github.com/cvxpy/cvxpy/pull/2820

https://github.com/cvxpy/cvxpy/pull/2820
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– 50

– 100

– 500

• changing the length modifier to simulate 15 minute timesteps. This was previously
introduced in subsection 5.1.3.

– 1

– 4

7.2.1 Optimization time

We looked at the optimisation time required to solve a problem with regard to the problem
size. This was calculated by adding up all generated Variables and Constraints, which were
returned from cvxpy. We used the CBC[41] and cuOpt solvers. cuOpt is an open-source
GPU-accelerated optimizer[42]. The results can be seen in Figure 7.7.

Figure 7.7: Optimization time for cuOpt and CBC[41] solvers

Results

Both solvers present similar scaling, however CBC offers a bit better performance, while
cuOpt has some unpredictability.



7.2. Scalability Experiments 63

7.2.2 Parallel dataflow processing

As an attempt to improve the overall performance of dataflows, we implemented a Paral-
lelDataflowManager with the same interface as the DataflowManager, but with one key dif-
ference of executing Dataflows in a ThreadPoolExecutor from the concurrent.futures Python
library. This allows us to introduce some parallelism to the Dataflow processing.

We compared the dataflow processing times with regard to the number of households
in parallel and serial processing modes. The results of this comparison can be seen in
Figure 7.8. We only compared against the different number of households and connected
solar panels, since that decides the number of dataflows that need to be processed.

Results

The parallel implementation did not improve the Dataflow processing times. It seems that
the overhead of creating and scheduling threads is more significant than the time gained
by the concurrent processing.

Figure 7.8: Serial vs Parallel comparisons
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Figure 7.9: Compilation Time measurements

Difficulties in testing the parallel processing

These parallel tests were run with a function to mock the consumption data instead of
pycaret. This was due to the incompatibility of pycaret with concurrent execution. The tests
with that library included produced indeterministic errors. These errors are likely due to
an internal global state, which can be conflicted if run concurrently.

7.2.3 Measuring CVXPY compilation time

CVXPY performs several internal steps before handing the problem over to the solver, in-
cluding symbolic expression parsing, disciplined convex programming compliance checks,
which ensure that the problems are convex, and canonicalization to a standard solver-
compatible form[43, 44]. These steps can introduce a significant overhead. To test this
assumption, we measured the compilation times of CVXPY and compared them with the
total time taken to solve the optimisation problem. These measurements can be seen in
Figure 7.9. After that, we also generated a figure for the ratio of compilation time to total
solver time, which can be seen in Figure 7.10. This experiment was performed with the
CBC solver.
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Figure 7.10: Compilation Time ratio

Results

In Figure 7.9 we scaled the problem size by increasing the number of timesteps and the
number of homes (and their solar panels) and looked at the time taken for cvxpy to compile
the problem and the total time to solve it with compilation included. From this, we could
subtract the time taken by the solver. The compilation takes significantly longer than to
actually solve the problem. To represent the ratio we plotted it in Figure 7.10. From this
figure, we can see that in the best case scenario, the compilation takes a bit less than 75%
of the time, while in the worst case scenario with bigger problem sizes, it takes up 94% of
the total solve time.

7.3 Discussion

It has to be pointed out that the amount of code does not map one-to-one to developer
productivity, because it fails to measure the difficulty of using a given tool or library. To
confirm developer productivity improvements, we would need to do user surveys, which
we do not have the time or resources to conduct.

7.3.1 Segmentation of workflows

Although we did not measure developer productivity through surveys. During our de-
velopment of the examples, we did notice the separation of workflows between the im-
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plementation of the predictions and the implementation of the microgrid optimisation
model, and we assume this would make these workflows easier to execute. We recognise
that these are still assumptions and a proper user study would need to be done in order
to support this claim.

7.3.2 CVXPY overhead

Throughout the experiments, we observed that cvxpy introduces a noticeable overhead,
which we quantified in Subsection Measuring CVXPY compilation time 7.2.3. As the
problem size increases, this overhead becomes more significant and limits the scalability
potential of GPO-D. Given this limitation, we may need to reconsider the use of cvxpy as
our main optimisation library, especially for large-scale problems.



Chapter 8

Conclusion

This thesis set out a goal of developing a library for PSA named GPO-D. The main prob-
lems solved are improving user-friendliness and developer productivity, while retaining
the support for the full PSA workflow and keeping up with performance in terms of exe-
cution speed when compared to CVXPY, Pyomo and GBOML. A small running example
together with its solution in GPO-D is introduced in Chapter 1. In Chapter 2, similar
works in the field of Prescriptive Analytics, such as SolveDB+ and GBOML, are presented
through our small running example. In Chapter 3, an analysis of the PSA workflow, what
it consists of and how it is expanded for our purpose is showcased together with research
gaps that exist in the current tools and technologies. Later on in the chapter, a set of re-
quirements for GPO-D is listed in order to bridge the aforementioned gaps. Lastly, the
main focus for the GPO-D is on problems from the energy sector, due to our experience in
it. In Chapter 4, 3 research questions are presented to guide us in the development of the
GPO-D Python library that supports the full PSA workflow with the focus on developer
productivity, user-friendliness, simplicity and similar performance compared to CVXPY,
Pyomo and GBOML. Based on that, here are the research questions and their answers:

RQ1: What abstraction(s) are needed in our tool to make the development of a full PSA
solution simpler and more oriented towards developer productivity?

Answer for RQ1: Graph modelling abstraction, which is described in section 6.5, is imple-
mented to make the definition of optimisation problems simpler, for example, collecting
decision variables, constraints and constructing an objective function through the custom
GraphProblemClass, thus abstracting away some of the implementation logic that otherwise
is necessary to be defined by the developer in libraries like CVXPY or Pyomo. Moreover,
built-in pre-defined components of the energy sector, such as Consumer, Producer, or Bat-
tery, increase the developer productivity because of how these classes are reused in other
problems from the energy sector, such as battery arbitrage, where the Battery object is used.
The experiments conducted in section 7.1.2 confirm and showcase the potential of using
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less code while achieving the same results, for instance, implementing the microgrid solu-
tion, which is presented in the chapter 5, with already built-in microgrid domain classes
in GPO-D takes less amount of code compared to CVXPY, Pyomo or GBOML implemen-
tations.

The second abstraction presented is the Dataflow, also described in section 6.4. Dataflows
that are associated with domain nodes, such as SolarPanel or WindTurbine used in the mi-
crogrid solution, provide the ability to add and execute a number of tasks from data pro-
cessing or ML workflows. These dataflows with their tasks, which are executed through
the GraphProblemClass, further simplify the overall PSA workflow as the data necessary for
the optimisation problem get to the right domain classes.

RQ2: How do we make our abstraction(s) extensible in a way that developers can imple-
ment different PSA optimisation problems from the energy sector?

Answer for RQ2: The graph modelling abstraction further includes core abstractions de-
scribed in the subsection 6.5.2 and objective function constructor described in the subsec-
tion 6.5.3. The core abstractions, which are the Node and GraphProblemClass, provide a
generic way to extend the energy domain through the inheritance of the base Node class
and build the overall optimisation problem with the GraphProblemClass. To get one level
deeper, the objective function constructor specifically helps build an objective function
that is decomposed in the domain nodes that are associated with the GraphProblemclass. To
sum up, the abstractions for optimisation problems are implemented in an object-oriented
manner, using components as classes, and to make extensibility easier. HEMRM [37] is
employed as a baseline for the naming and making the re-usability more standardised.

RQ3: How does a problem example solution implemented in GPO-D compare to the
implementations in CVXPY, Pyomo and GBOML in terms of performance?

Answer for RQ3: In this case, microgrid problem example solution (described in the
chapter 5) is implemented in GPO-D (full code in appendix section A.2.1), CVXPY (full
code in appendix section A.2.2), Pyomo (full code in appendix section A.2.3), and GBOML
(full code in appendix sections A.2.4). In the experiments subsection A.3, a comparison
in terms of execution speed and memory usage performance is conducted between GPO-
D, CVXPY, Pyomo and GBOML microgrid implementations, with execution speed being
more interesting for us. The results show that GPO-D closely keeps up with the CVXPY
in terms of execution speed, however, it is Pyomo that performs the best. On that note, as
part of the future work, it may be worth considering using Pyomo as part of our library
instead of CVXPY or possibly exploring other optimisation libraries such as SciPy to see if
they are a better fit.
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To conclude, a functional prototype of the GPO-D Python library has been developed with
graph modelling and dataflow abstractions, the CVXPY library employed for optimisation
problem definitions, and PyCaret used for predictions (currently having only one method
for predicting the consumption). Microgrid problem example has been successfully im-
plemented in GPO-D and in other implementations, namely CVXPY, Pyomo and GBOML,
and all of them return the same optimisation values based on the same datasets provided
for them.

8.1 Future Work

Improving Data Handling between Dataflow Tasks

In the current implementation of GPO-D, data between tasks in a dataflow is passed as a dic-
tionary of dataframes. Upon completion of the execution of a task, the resulting dataframe
is merged into the dictionary and then forwarded to the next task in the dependency
chain. A major drawback is that the dictionary will become increasingly larger in size as
the number of tasks grows. That can lead to memory and further performance issues. A
viable option is to look into utilising DuckDB for solving that. The dataframe from a task
would be inserted into DuckDB, and when another task starts its execution, the required
dataframes would be queried from the database.

DuckDB is an SQL OLAP database management system which is designed for fast an-
alytical query execution [45]. It can efficiently handle querying large datasets from disk or
memory, and it can integrate seamlessly with pandas, thus allowing for hybrid SQL-Python
workflows [45, 46].

Storing and Loading Optimisation Problem Graph Models

As seen in the code example for GBOML in Chapter 2, the entire optimisation problem,
which is modelled as a graph, is written in a text file that can be loaded into the GbomlGraph
class on demand. Similarly, in GPO-D, we can implement this feature by mapping the
GraphProblemClass and all related Nodes into a JSON format that can then be stored in a
DBMS like DuckDB. This would greatly improve developer productivity, as it would allow
constructing large optimisation problems with only a few lines of code needed for loading
them from a database.

Graphical User Interface

Currently, GPO-D is designed for programmatic use through Python, primarily targeting
data scientists who are comfortable with code. While this provides full control and flexibil-
ity over creating PSA workflows with GPO-D, it limits accessibility for non-technical users.
Therefore, the development of a graphical user interface (GUI) would be a great feature
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to have in GPO-D. It would significantly improve the usability by allowing users to define
optimisation problems, configure dataflows and forecasting models, view visualisations of
dataframes, and set optimisation objectives through an intuitive interface.

8.1.1 Domain Extensibility

While initially designed specifically for energy-related applications, the generic base classes
make extensions and adoptions to other prescriptive analytics domains, such as logistics,
manufacturing, inventory management, etc., suitable. For instance, the generic base classes
can easily be extended to support solving the Newsvendor [47] problem.

Newsvendor Problem

The Newsvendor class, as shown in Figure 8.1, models uncertainty in demand and ordering
decisions, which is a classic problem in inventory management [47]. The class handles
stochastic inventory problems by modelling demand scenarios, ordering costs, and po-
tential shortages of products, as well as capturing cost components such as holding and
shortage penalties. Additionally, it accounts for product expiration dates, which is rele-
vant in contexts involving perishable goods, as that leads to more realistic and efficient
inventory decisions.

This shows the flexibility of the graph-based approach that can be generalised beyond
the energy sector.

Figure 8.1: Class diagram of the specialised class for the Newsvendor problem
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Appendix

A.1 Code Repository

https://github.com/jokerofun/psa_tool

A.2 Microgrid Solutions

A.2.1 GPO-D Solution

Solution

1 def solve_microgrid_gpod ( setup : MicrogridSetup ) :
2 problemClass = GraphProblemClass ( " microgrid_problem " ,

t ime_length=setup . T )
3
4 metering_point = MeteringPoint ( " grid1 " )
5 homes = [ Consumer ( f " household_ { i +1} " ) for i in range ( setup .

no_homes ) ]
6 school = Consumer ( " school " )
7 solar_panels_homes = [ SolarPanel ( f " so lar_pane l_ { i +1} " ) for i

in range ( setup . no_homes ) ]
8 so lar_pane l_school = SolarPanel ( " so lar_pane l_school " )
9 wind_turbine = WindTurbine ( " wind_turbine " )

10 b a t t e r i e s = [ B a t t e r y ( f " b a t t e r y _ { i +1} " , setup . battery_power ,
setup . battery_power , setup . b a t t e r y _ c a p a c i t y , setup .
b a t t e r y _ e f f i c i e n c y ) for i in range ( setup . n o _ b a t t e r i e s ) ]

11
12 for home in homes :

a

https://github.com/jokerofun/psa_tool
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13 home . dataflow . task ( " gen_consumption " , DataProcessingTask ,
process_func=predict_consumer_data , parameters ={ " hours "
: setup . T , " model_name " : " consumer_model " , " f a c t o r " : 1 } ,

f i n a l =True )
14 school . dataflow . task ( " gen_consumption " , DataProcessingTask ,

process_func=predict_consumer_data , parameters ={ " hours " :
setup . T , " model_name " : " consumer_model " , " f a c t o r " : 1 0 0 } ,
f i n a l =True )

15 for so lar_pane l in solar_panels_homes :
16 task1 = so lar_pane l . dataflow . task ( " g e t _ s o l a r _ d a t a " ,

DataProcessingTask , process_func= g e t _ i r r a d i a t i o n _ d a t a ,
parameters ={ " l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )

17 task2 = so lar_pane l . dataflow . task ( " gen_solar_data " ,
DataProcessingTask , process_func=
generate_solar_panel_data , parameters ={ " rated_power " :
setup . solar_capacity_home } , f i n a l =True )

18 task1 >> task2
19 s o l a r _ s c h o o l _ t a s k 1 = so lar_pane l_school . dataflow . task ( "

g e t _ s o l a r _ d a t a " , DataProcessingTask , process_func=
g e t _ i r r a d i a t i o n _ d a t a , parameters ={ " l a t i t u d e " : 5 7 . 0 4 8 8 , "
longi tude " : 9 . 9 2 1 7 } )

20 s o l a r _ s c h o o l _ t a s k 2 = so lar_pane l_school . dataflow . task ( "
gen_solar_data " , DataProcessingTask , process_func=
generate_solar_panel_data , parameters ={ " rated_power " : setup
. s o l a r _ c a p a c i t y _ s c h o o l } , f i n a l =True )

21 s o l a r _ s c h o o l _ t a s k 1 >> s o l a r _ s c h o o l _ t a s k 2
22 wind_task1 = wind_turbine . dataflow . task ( " get_wind_data " ,

DataProcessingTask , process_func=get_wind_data , parameters
={ " l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )

23 wind_task2 = wind_turbine . dataflow . task ( " gen_wind_data " ,
DataProcessingTask , process_func=generate_wind_turbine_data
, parameters ={ " rated_power " : setup . wind_capacity , "
cut_in_speed " : 3 . 5 , " rated_speed " : 14 , " cut_out_speed " :
2 5 } , f i n a l =True )

24 wind_task1 >> wind_task2
25
26 problemClass . add_nodes ( [ * homes , * solar_panels_homes , *

b a t t e r i e s ,
27 school , so lar_panel_school ,

wind_turbine ,
28 metering_point ] )
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29
30 metering_point . connect_to ( [ * homes , * solar_panels_homes , *

b a t t e r i e s , school ,
31 so lar_panel_school , wind_turbine ] )
32
33 r e s u l t = problemClass . so lve ( s o l v e r=cp . CBC, o b j e c t i v e =" minimize

" , value=" c o s t " )
Listing A.1: GPO-D Microgrid Solution Implementation

Domain

1 c l a s s Consumer ( Resource ) :
2 def _ _ i n i t _ _ ( s e l f , name) :
3 super ( ) . _ _ i n i t _ _ (name)
4 s e l f . consumption_kWh = [ ]
5
6 def powerflow ( s e l f , t ) :
7 return − s e l f . consumption_kWh [ t ]
8
9 @property

10 def v a r i a b l e s ( s e l f ) :
11 return { s e l f . name : { " powerFlow " : − s e l f . consumption_kWh } }
12
13 def ass ign ( s e l f , t ) :
14 s e l f . consumption_kWh = s e l f . dataflow . r e s u l t s [ "

gen_consumption " ] [ " consumption_kWh " ] [ : t ]
15
16 c l a s s Producer ( Resource ) :
17 def _ _ i n i t _ _ ( s e l f , name) :
18 super ( ) . _ _ i n i t _ _ (name)
19 s e l f . max_power_output_kW = [ ]
20
21 c l a s s SolarPanel ( Producer ) :
22 def _ _ i n i t _ _ ( s e l f , name) :
23 super ( ) . _ _ i n i t _ _ (name)
24
25 def se t_ t ime_ length ( s e l f , t ) :
26 s e l f . c = cp . Var iab le ( t , nonneg=True )
27
28 def powerflow ( s e l f , t ) :
29 return s e l f . c [ t ] * s e l f . max_power_output_kW [ t ]
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30
31 def c o n s t r a i n t s ( s e l f , t ) :
32 return [ s e l f . c [ t ] <= 1]
33
34 @property
35 def v a r i a b l e s ( s e l f ) :
36 return { s e l f . name : { " production_schedule " : s e l f . c . value

* s e l f . max_power_output_kW } }
37
38 def ass ign ( s e l f , t ) :
39 s e l f . max_power_output_kW = s e l f . dataflow . r e s u l t s [ "

gen_solar_data " ] [ " energy_generated " ] [ : t ]
40
41 c l a s s WindTurbine ( Producer ) :
42 def _ _ i n i t _ _ ( s e l f , name) :
43 super ( ) . _ _ i n i t _ _ (name)
44
45 def powerflow ( s e l f , t ) :
46 return s e l f . max_power_output_kW [ t ]
47
48 @property
49 def v a r i a b l e s ( s e l f ) :
50 return { s e l f . name : { " production_schedule " : s e l f .

max_power_output_kW } }
51
52 def ass ign ( s e l f , t ) :
53 s e l f . max_power_output_kW = s e l f . dataflow . r e s u l t s [ "

gen_wind_data " ] [ " energy_generated " ] [ : t ]
54
55 c l a s s B a t t e r y ( Resource ) :
56 def _ _ i n i t _ _ ( s e l f , name , charging_power_kW ,

discharging_power_kW , capacity_kWh , e f f i c i e n c y ) :
57 super ( ) . _ _ i n i t _ _ (name)
58 s e l f . charging_power_kW = charging_power_kW
59 s e l f . discharging_power_kW = discharging_power_kW
60 s e l f . capacity_kWh = capacity_kWh
61 s e l f . e f f i c i e n c y = e f f i c i e n c y
62
63 def se t_ t ime_ length ( s e l f , t ) :
64 s e l f . charge = cp . Var iab le ( t , nonneg=True )
65 s e l f . discharge = cp . Var iab le ( t , nonneg=True )
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66 s e l f . SoC = cp . Var iab le ( shape = ( t +1) , nonneg=True )
67
68 def c o n s t _ c o n s t r a i n t s ( s e l f ) :
69 return [ s e l f . SoC [ 0 ] == 0]
70
71 def c o n s t r a i n t s ( s e l f , t ) :
72 c o n s t r a i n t s = [
73 s e l f . SoC [ t +1] <= s e l f . capacity_kWh ,
74 s e l f . charge [ t ] <= s e l f . charging_power_kW ,
75 s e l f . discharge [ t ] <= s e l f . discharging_power_kW ,
76 s e l f . SoC [ t +1] == s e l f . SoC [ t ] + s e l f . e f f i c i e n c y * s e l f .

charge [ t ] − (1 / s e l f . e f f i c i e n c y ) * s e l f . discharge [
t ]

77 ]
78 return c o n s t r a i n t s
79
80 def powerflow ( s e l f , t ) :
81 return s e l f . discharge [ t ] − s e l f . charge [ t ]
82
83 @property
84 def v a r i a b l e s ( s e l f ) :
85 return { s e l f . name : { "SOC" : s e l f . SoC . value , " powerFlow " :

s e l f . d ischarge . value − s e l f . charge . value } }
86
87 c l a s s MeteringPoint ( Resource ) :
88 def _ _ i n i t _ _ ( s e l f , name) :
89 super ( ) . _ _ i n i t _ _ (name)
90 # s e l f . c o n n e c t _ n o d e s ( [ s e l f ] )
91
92 def se t_ t ime_ length ( s e l f , t ) :
93 s e l f . energy_import = cp . Var iab le ( t , nonneg=True )
94
95 def powerflow ( s e l f , t ) :
96 return s e l f . energy_import [ t ]
97
98 @property
99 def c o s t ( s e l f ) :

100 return cp . sum( s e l f . energy_import )
101
102 @property
103 def v a r i a b l e s ( s e l f ) :



A.2. Microgrid Solutions f

104 return { s e l f . name : { " powerFlow " : s e l f . energy_import .
value } }

Listing A.2: GPO-D Microgrid Domain Implementation

A.2.2 CVXPY Solution

1 def solve_microgrid_cvxpy ( setup : MicrogridSetup ) :
2 home_demands = [ ]
3 for _ in range ( setup . no_homes ) :
4 home_demand_dict = predict_consumer_data ( dataframe = { } ,

parameters ={ " hours " : setup . T , " model_name " : "
consumer_model " , " f a c t o r " : 1 } )

5 home_demand = home_demand_dict [ " gen_consumption " ] [ "
consumption_kWh " ]

6 home_demands . append ( home_demand )
7 school_demand_dict = predict_consumer_data ( dataframe = { } ,

parameters ={ " hours " : setup . T , " model_name " : " consumer_model "
, " f a c t o r " : 1 0 0 } )

8 school_demand = school_demand_dict [ " gen_consumption " ] [ "
consumption_kWh " ]

9 total_demand = [sum( group ) for group in zip ( * home_demands ) ] +
school_demand

10
11 wind_data_dict = get_wind_data ( { } , parameters ={ " l a t i t u d e " :

5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
12 wind_prod_dict = generate_wind_turbine_data ( wind_data_dict ,

parameters ={ " rated_power " : setup . wind_capacity , "
cut_in_speed " : 3 . 5 , " rated_speed " : 14 , " cut_out_speed " :
2 5 } )

13 wind_prod = wind_prod_dict [ " gen_wind_data " ] [ " energy_generated "
]

14
15 s o l a r _ d a t a _ d i c t = g e t _ i r r a d i a t i o n _ d a t a ( { } , parameters ={ "

l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
16 so la r_ pr od _s ch oo l_d ic t = genera te_so lar_pane l_data (

s o l a r _ d a t a _ d i c t , parameters ={ " rated_power " : setup .
s o l a r _ c a p a c i t y _ s c h o o l } )

17 solar_prod_school = so la r_ pr od _s ch oo l_ d i c t [ " gen_solar_data " ] [ "
energy_generated " ]

18
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19 solar_prods = [ ]
20 for _ in range ( setup . no_solar_panels ) :
21 s o l a r _ d a t a _ d i c t = g e t _ i r r a d i a t i o n _ d a t a ( { } , parameters ={ "

l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
22 s o l a r _ p r o d _ d i c t = genera te_so lar_pane l_data (

s o l a r _ d a t a _ d i c t , parameters ={ " rated_power " : setup .
solar_capacity_home , } )

23 solar_prod = s o l a r _ p r o d _ d i c t [ " gen_solar_data " ] [ "
energy_generated " ]

24 solar_prods . append ( solar_prod )
25
26 grid_import = cp . Var iab le ( setup . T , nonneg=True )
27 bat tery_charge = [ cp . Var iab le ( setup . T , nonneg=True ) for _ in

range ( setup . n o _ b a t t e r i e s ) ]
28 b a t t e r y _ d i s c h a r g e = [ cp . Var iab le ( setup . T , nonneg=True ) for _

in range ( setup . n o _ b a t t e r i e s ) ]
29 b a t t e r y _ s o c = [ cp . Var iab le ( setup . T+1 , nonneg=True ) for _ in

range ( setup . n o _ b a t t e r i e s ) ]
30 c_homes = [ cp . Var iab le ( setup . T , nonneg=True ) for _ in range (

setup . no_homes ) ]
31 c_school = cp . Var iab le ( setup . T , nonneg=True )
32
33 c o n s t r a i n t s = [ ]
34 for i in range ( setup . n o _ b a t t e r i e s ) :
35 c o n s t r a i n t s . append ( b a t t e r y _ s o c [ i ] [ 0 ] == 0)
36 for t in range ( setup . T ) :
37 for i in range ( setup . no_homes ) :
38 c o n s t r a i n t s . append ( c_homes [ i ] [ t ] <= 1)
39 c o n s t r a i n t s . append ( c_school [ t ] <= 1)
40
41 t o t a l _ h o u r l y _ b a t t e r y _ d i s c h a r g e = sum( b a t t e r y _ d i s c h a r g e [ i ] [

t ] for i in range ( setup . n o _ b a t t e r i e s ) )
42 t o t a l _ h o u r l y _ b a t t e r y _ c h a r g e = sum( ba t tery_charge [ i ] [ t ] for

i in range ( setup . n o _ b a t t e r i e s ) )
43 total_hourly_solar_prod_homes = sum( c_homes [ i ] [ t ] *

solar_prods [ i ] [ t ] for i in range ( setup . no_solar_panels )
)

44 t o t a l_ h ou r l y_ s o l a r_ p ro d _s c ho o l = c_school [ t ] *
so lar_prod_school [ t ]

45 c o n s t r a i n t s . append (
46 grid_import [ t ] + t o t a l _ h o u r l y _ b a t t e r y _ d i s c h a r g e +
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total_hourly_solar_prod_homes +
t o t a l_ h ou r ly _ s o l a r_ p ro d _s c ho o l + wind_prod [ t ]

47 == t o t a l _ h o u r l y _ b a t t e r y _ c h a r g e + total_demand [ t ] )
48
49 for i in range ( setup . n o _ b a t t e r i e s ) :
50 c o n s t r a i n t s . append ( bat tery_charge [ i ] [ t ] <= setup .

battery_power )
51 c o n s t r a i n t s . append ( b a t t e r y _ d i s c h a r g e [ i ] [ t ] <= setup .

battery_power )
52
53 c o n s t r a i n t s . append (
54 b a t t e r y _ s o c [ i ] [ t +1] == b a t t e r y _ s o c [ i ] [ t ] +

bat tery_charge [ i ] [ t ] *
55 setup . b a t t e r y _ e f f i c i e n c y − b a t t e r y _ d i s c h a r g e [ i ] [ t ]

/ setup . b a t t e r y _ e f f i c i e n c y )
56
57 c o n s t r a i n t s . append ( b a t t e r y _ s o c [ i ] [ t +1] <= setup .

b a t t e r y _ c a p a c i t y )
58
59 o b j e c t i v e = cp . Minimize ( cp . sum( grid_import ) )
60 prob = cp . Problem ( o b j e c t i v e , c o n s t r a i n t s )
61 prob . so lve ( s o l v e r=cp . CBC, verbose=Fa l s e )

Listing A.3: CVXPY Microgrid Solution Implementation

A.2.3 Pyomo Solution

1 def solve_microgrid_pyomo ( setup : MicrogridSetup ) :
2 home_demands = [ ]
3 for _ in range ( setup . no_homes ) :
4 home_demand_dict = predict_consumer_data ( dataframe = { } ,

parameters ={ " hours " : setup . T , " model_name " : "
consumer_model " , " f a c t o r " : 1 } )

5 home_demand = home_demand_dict [ " gen_consumption " ] [ "
consumption_kWh " ]

6 home_demands . append ( home_demand )
7 school_demand_dict = predict_consumer_data ( dataframe = { } ,

parameters ={ " hours " : setup . T , " model_name " : " consumer_model "
, " f a c t o r " : 1 0 0 } )

8 school_demand = school_demand_dict [ " gen_consumption " ] [ "
consumption_kWh " ]



A.2. Microgrid Solutions i

9 total_demand = [sum( group ) for group in zip ( * home_demands ) ] +
school_demand

10
11 wind_data_dict = get_wind_data ( { } , parameters ={ " l a t i t u d e " :

5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
12 wind_prod_dict = generate_wind_turbine_data ( wind_data_dict ,

parameters ={ " rated_power " : setup . wind_capacity , "
cut_in_speed " : 3 . 5 , " rated_speed " : 14 , " cut_out_speed " :
2 5 } )

13 wind_prod = wind_prod_dict [ " gen_wind_data " ] [ " energy_generated "
]

14
15 s o l a r _ d a t a _ d i c t = g e t _ i r r a d i a t i o n _ d a t a ( { } , parameters ={ "

l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
16 so la r_ pr od _s ch oo l_d ic t = genera te_so lar_pane l_data (

s o l a r _ d a t a _ d i c t , parameters ={ " rated_power " : setup .
s o l a r _ c a p a c i t y _ s c h o o l } )

17 solar_prod_school = so la r_ pr od _s ch oo l_ d i c t [ " gen_solar_data " ] [ "
energy_generated " ]

18
19 solar_prods = [ ]
20 for _ in range ( setup . no_solar_panels ) :
21 s o l a r _ d a t a _ d i c t = g e t _ i r r a d i a t i o n _ d a t a ( { } , parameters ={ "

l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
22 s o l a r _ p r o d _ d i c t = genera te_so lar_pane l_data (

s o l a r _ d a t a _ d i c t , parameters ={ " rated_power " : setup .
solar_capacity_home , } )

23 solar_prod = s o l a r _ p r o d _ d i c t [ " gen_solar_data " ] [ "
energy_generated " ]

24 solar_prods . append ( solar_prod )
25
26 model = pyo . ConcreteModel ( )
27 model . T = pyo . RangeSet ( 0 , setup . T−1)
28 model . B = pyo . RangeSet ( 0 , setup . n o _ b a t t e r i e s −1)
29 model .H = pyo . RangeSet ( 0 , setup . no_homes −1)
30 model . S = pyo . RangeSet ( 0 , setup . no_big_solar_panels −1)
31
32 model . grid_import = pyo . Var ( model . T , domain=pyo .

NonNegativeReals )
33 model . ba t tery_charge = pyo . Var ( model . B , model . T , domain=pyo .

NonNegativeReals )
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34 model . b a t t e r y _ d i s c h a r g e = pyo . Var ( model . B , model . T , domain=pyo
. NonNegativeReals )

35 model . b a t t e r y _ s o c = pyo . Var ( model . B , range ( setup . T+1) , domain=
pyo . NonNegativeReals )

36 model . c_home = pyo . Var ( model .H, model . T , domain=pyo .
NonNegativeReals )

37 model . c_school = pyo . Var ( model . T , domain=pyo . NonNegativeReals )
38
39 def s o c _ i n i t _ r u l e (m, b ) :
40 return m. b a t t e r y _ s o c [ b , 0 ] == 0
41 model . s o c _ i n i t = pyo . Constra int ( model . B , r u l e= s o c _ i n i t _ r u l e )
42
43 def power_balance_rule (m, t ) :
44 t o t a l _ h o u r l y _ b a t t e r y _ d i s c h a r g e = sum(m. b a t t e r y _ d i s c h a r g e [ b

, t ] for b in model . B )
45 t o t a l _ h o u r l y _ b a t t e r y _ c h a r g e = sum(m. bat tery_charge [ b , t ]

for b in model . B )
46 total_hourly_solar_prod_homes = sum(m. c_home [ h , t ] *

solar_prods [ h ] [ t ] for h in model .H)
47 t o t a l_ h ou r l y_ s o l a r_ p ro d _s c ho o l = m. c_school [ t ] *

so lar_prod_school [ t ]
48 return (m. grid_import [ t ] + total_hourly_solar_prod_homes +

t o t a l_ h ou r l y_ s o l a r_ p ro d _s c ho o l + wind_prod [ t ] +
t o t a l _ h o u r l y _ b a t t e r y _ d i s c h a r g e ==

49 t o t a l _ h o u r l y _ b a t t e r y _ c h a r g e + total_demand [ t ] )
50 model . power_balance = pyo . Constra int ( model . T , r u l e=

power_balance_rule )
51
52 def b a t t e r y _ c h a r g e _ l i m i t _ r u l e (m, b , t ) :
53 return m. bat tery_charge [ b , t ] <= setup . battery_power
54 model . b a t t e r y _ c h a r g e _ l i m i t = pyo . Constra int ( model . B , model . T ,

r u l e= b a t t e r y _ c h a r g e _ l i m i t _ r u l e )
55
56 def b a t t e r y _ d i s c h a r g e _ l i m i t _ r u l e (m, b , t ) :
57 return m. b a t t e r y _ d i s c h a r g e [ b , t ] <= setup . battery_power
58 model . b a t t e r y _ d i s c h a r g e _ l i m i t = pyo . Constra int ( model . B , model .

T , r u l e= b a t t e r y _ d i s c h a r g e _ l i m i t _ r u l e )
59
60 def soc_update_rule (m, b , t ) :
61 return m. b a t t e r y _ s o c [ b , t +1] == m. b a t t e r y _ s o c [ b , t ] + m.

bat tery_charge [ b , t ] * setup . b a t t e r y _ e f f i c i e n c y − m.
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b a t t e r y _ d i s c h a r g e [ b , t ] / setup . b a t t e r y _ e f f i c i e n c y
62 model . soc_update = pyo . Constra int ( model . B , range ( setup . T ) ,

r u l e=soc_update_rule )
63
64 def soc_max_rule (m, b , t ) :
65 return m. b a t t e r y _ s o c [ b , t +1] <= setup . b a t t e r y _ c a p a c i t y
66 model . soc_max = pyo . Constra int ( model . B , range ( setup . T ) , r u l e=

soc_max_rule )
67
68 def c_home_max_rule (m, h , t ) :
69 return m. c_home [ h , t ] <= 1
70 model . c_home_max = pyo . Constra int ( model .H, range ( setup . T ) ,

r u l e=c_home_max_rule )
71
72 def c_school_max_rule (m, t ) :
73 return m. c_school [ t ] <= 1
74 model . c_school_max = pyo . Constra int ( range ( setup . T ) , r u l e=

c_school_max_rule )
75
76 model . ob j = pyo . Ob jec t ive ( expr=sum( model . grid_import [ t ] for t

in model . T ) , sense=pyo . minimize )
77
78 s o l v e r = pyo . So lverFac tory ( ’ cbc ’ , executab le=" examples/Pyomo/

cbc/bin/cbc . exe " )
79 r e s u l t = s o l v e r . so lve ( model , t e e =Fa l se )

Listing A.4: Pyomo Microgrid Solution Implementation

A.2.4 GBOML Solution

Solution

1 def solve_microgrid_gboml ( setup : MicrogridSetup ,
m i c r o g r i d _ f i l e _ p a t h =" examples/GBOML/microgrid . t x t " ) :

2 setup . T += 1
3 gboml_domain . bui ld_microgrid ( setup=setup , f i l e _ p a t h =

m i c r o g r i d _ f i l e _ p a t h )
4
5 home_demands = [ ]
6 for _ in range ( setup . no_homes ) :
7 home_demand_dict = predict_consumer_data ( dataframe = { } ,

parameters ={ " hours " : setup . T , " model_name " : "
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consumer_model " , " f a c t o r " : 1 } )
8 home_demand = home_demand_dict [ " gen_consumption " ] [ "

consumption_kWh " ]
9 home_demands . append ( home_demand )

10 school_demand_dict = predict_consumer_data ( dataframe = { } ,
parameters ={ " hours " : setup . T , " model_name " : " consumer_model "
, " f a c t o r " : 1 0 0 } )

11 school_demand = school_demand_dict [ " gen_consumption " ] [ "
consumption_kWh " ]

12 demand = [sum( group ) for group in zip ( * home_demands ) ] +
school_demand

13 np . s a v e t x t ( " data/gboml_data/demand . csv " , demand)
14
15 wind_data_dict = get_wind_data ( { } , parameters ={ " l a t i t u d e " :

5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
16 wind_prod_dict = generate_wind_turbine_data ( wind_data_dict ,

parameters ={ " rated_power " : setup . wind_capacity , "
cut_in_speed " : 3 . 5 , " rated_speed " : 14 , " cut_out_speed " :
2 5 } )

17 wind_prod = wind_prod_dict [ " gen_wind_data " ] [ " energy_generated "
]

18 np . s a v e t x t ( " data/gboml_data/gen_wind . csv " , wind_prod [ : setup . T
] )

19
20 s o l a r _ d a t a _ d i c t = g e t _ i r r a d i a t i o n _ d a t a ( { } , parameters ={ "

l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
21 so la r_ pr od _s ch oo l_d ic t = genera te_so lar_pane l_data (

s o l a r _ d a t a _ d i c t , parameters ={ " rated_power " : setup .
s o l a r _ c a p a c i t y _ s c h o o l } )

22 solar_prod_school = so la r_ pr od _s ch oo l_ d i c t [ " gen_solar_data " ] [ "
energy_generated " ]

23 np . s a v e t x t ( " data/gboml_data/gen_big_solar . csv " ,
so lar_prod_school [ : setup . T ] )

24
25 solar_prod = { }
26 for i in range ( 1 , setup . no_solar_panels + 1) :
27 s o l a r _ d a t a _ d i c t = g e t _ i r r a d i a t i o n _ d a t a ( dataframe = { } ,

parameters ={ " l a t i t u d e " : 5 7 . 0 4 8 8 , " longi tude " : 9 . 9 2 1 7 } )
28 s o l a r _ p r o d _ d i c t = genera te_so lar_pane l_data (

s o l a r _ d a t a _ d i c t , parameters ={ " rated_power " : setup .
solar_capacity_home , } )
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29 solar_prod = s o l a r _ p r o d _ d i c t [ " gen_solar_data " ] [ "
energy_generated " ]

30 np . s a v e t x t ( f " data/gboml_data/gen_solar_ { i } . csv " ,
solar_prod [ : setup . T ] )

31
32 gboml_model = GbomlGraph ( setup . T )
33 nodes , edges , global_params = gboml_model .

import_all_nodes_and_edges ( m i c r o g r i d _ f i l e _ p a t h )
34 gboml_model . add_nodes_in_model ( * nodes )
35 gboml_model . add_hyperedges_in_model ( * edges )
36 gboml_model . build_model ( )
37
38 s o l u t i o n = gboml_model . s o l v e _ c l p ( )
39 setup . T −= 1

Listing A.5: GBOML Microgrid Solution Implementation

Domain

1 #TIMEHORIZON
2 T = 24+1;
3
4 #NODE DEMAND
5 #PARAMETERS
6 total_demand = import " . . / . . / data/gboml_data/demand . csv " ;
7 #VARIABLES
8 e x t e r n a l : consumption [ T ] ;
9 #CONSTRAINTS

10 consumption [ t ] == total_demand [ t ] ;
11
12 #NODE SOLAR_PV_1
13 #PARAMETERS
14 max_power_output_kW = import " . . / . . / data/gboml_data/gen_solar_1 .

csv " ;
15 #VARIABLES
16 i n t e r n a l : c [ T ] ;
17 e x t e r n a l : e l e c t r i c i t y [ T ] ;
18 #CONSTRAINTS
19 c [ t ] >= 0 ;
20 c [ t ] <= 1 ;
21 e l e c t r i c i t y [ t ] >= 0 ;
22 e l e c t r i c i t y [ t ] == c [ t ] * max_power_output_kW [ t ] ;
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23
24 #NODE SOLAR_PV_2
25 #PARAMETERS
26 max_power_output_kW = import " . . / . . / data/gboml_data/gen_solar_2 .

csv " ;
27 #VARIABLES
28 i n t e r n a l : c [ T ] ;
29 e x t e r n a l : e l e c t r i c i t y [ T ] ;
30 #CONSTRAINTS
31 c [ t ] >= 0 ;
32 c [ t ] <= 1 ;
33 e l e c t r i c i t y [ t ] >= 0 ;
34 e l e c t r i c i t y [ t ] == c [ t ] * max_power_output_kW [ t ] ;
35
36 .
37 .
38 .
39
40 #NODE SOLAR_PV_50
41 #PARAMETERS
42 max_power_output_kW = import " . . / . . / data/gboml_data/gen_solar_50 .

csv " ;
43 #VARIABLES
44 i n t e r n a l : c [ T ] ;
45 e x t e r n a l : e l e c t r i c i t y [ T ] ;
46 #CONSTRAINTS
47 c [ t ] >= 0 ;
48 c [ t ] <= 1 ;
49 e l e c t r i c i t y [ t ] >= 0 ;
50 e l e c t r i c i t y [ t ] == c [ t ] * max_power_output_kW [ t ] ;
51
52 #NODE BIG_SOLAR_PV_1
53 #PARAMETERS
54 max_power_output_kW = import " . . / . . / data/gboml_data/gen_big_solar .

csv " ;
55 #VARIABLES
56 i n t e r n a l : c [ T ] ;
57 e x t e r n a l : e l e c t r i c i t y [ T ] ;
58 #CONSTRAINTS
59 c [ t ] >= 0 ;
60 c [ t ] <= 1 ;
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61 e l e c t r i c i t y [ t ] >= 0 ;
62 e l e c t r i c i t y [ t ] == c [ t ] * max_power_output_kW [ t ] ;
63
64 #NODE WIND_TURBINE_1
65 #PARAMETERS
66 max_power_output_kW = import " . . / . . / data/gboml_data/gen_wind . csv " ;
67 #VARIABLES
68 e x t e r n a l : e l e c t r i c i t y [ T ] ;
69 #CONSTRAINTS
70 e l e c t r i c i t y [ t ] >= 0 ;
71 e l e c t r i c i t y [ t ] == max_power_output_kW [ t ] ;
72
73 #NODE BATTERY_1
74 #PARAMETERS
75 charging_power_kW = 5 0 0 ;
76 discharging_power_kW = 5 0 0 ;
77 capacity_kWh = 5 0 0 ;
78 e f f i c i e n c y = 0 . 9 ;
79 SoC = 0 ;
80 #VARIABLES
81 i n t e r n a l : energy [ T ] ;
82 e x t e r n a l : charge [ T ] ;
83 e x t e r n a l : discharge [ T ] ;
84 #CONSTRAINTS
85 energy [ t ] >= 0 ;
86 charge [ t ] >= 0 ;
87 discharge [ t ] >= 0 ;
88 energy [ t ] <= capacity_kWh ;
89 charge [ t ] <= charging_power_kW ;
90 discharge [ t ] <= discharging_power_kW ;
91 energy [ t +1] == energy [ t ] + e f f i c i e n c y * charge [ t ] − discharge [ t ] /

e f f i c i e n c y ;
92 energy [ 0 ] == SoC ;
93
94 #NODE BATTERY_2
95 #PARAMETERS
96 charging_power_kW = 5 0 0 ;
97 discharging_power_kW = 5 0 0 ;
98 capacity_kWh = 5 0 0 ;
99 e f f i c i e n c y = 0 . 9 ;

100 SoC = 0 ;
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101 #VARIABLES
102 i n t e r n a l : energy [ T ] ;
103 e x t e r n a l : charge [ T ] ;
104 e x t e r n a l : discharge [ T ] ;
105 #CONSTRAINTS
106 energy [ t ] >= 0 ;
107 charge [ t ] >= 0 ;
108 discharge [ t ] >= 0 ;
109 energy [ t ] <= capacity_kWh ;
110 charge [ t ] <= charging_power_kW ;
111 discharge [ t ] <= discharging_power_kW ;
112 energy [ t +1] == energy [ t ] + e f f i c i e n c y * charge [ t ] − discharge [ t ] /

e f f i c i e n c y ;
113 energy [ 0 ] == SoC ;
114
115 #NODE BATTERY_3
116 #PARAMETERS
117 charging_power_kW = 5 0 0 ;
118 discharging_power_kW = 5 0 0 ;
119 capacity_kWh = 5 0 0 ;
120 e f f i c i e n c y = 0 . 9 ;
121 SoC = 0 ;
122 #VARIABLES
123 i n t e r n a l : energy [ T ] ;
124 e x t e r n a l : charge [ T ] ;
125 e x t e r n a l : discharge [ T ] ;
126 #CONSTRAINTS
127 energy [ t ] >= 0 ;
128 charge [ t ] >= 0 ;
129 discharge [ t ] >= 0 ;
130 energy [ t ] <= capacity_kWh ;
131 charge [ t ] <= charging_power_kW ;
132 discharge [ t ] <= discharging_power_kW ;
133 energy [ t +1] == energy [ t ] + e f f i c i e n c y * charge [ t ] − discharge [ t ] /

e f f i c i e n c y ;
134 energy [ 0 ] == SoC ;
135
136 #NODE METERING_POINT
137 #VARIABLES
138 e x t e r n a l : power_import [ T ] ;
139 #CONSTRAINTS
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140 power_import [ t ] >= 0 ;
141 #OBJECTIVES
142 min : power_import [ t ] ;
143
144 #HYPEREDGE POWER_BALANCE
145 #CONSTRAINTS
146 METERING_POINT . power_import [ t ] + SOLAR_PV_1 . e l e c t r i c i t y [ t ] +

SOLAR_PV_2 . e l e c t r i c i t y [ t ] + . . . + SOLAR_PV_50 . e l e c t r i c i t y [ t ] +
BIG_SOLAR_PV_1 . e l e c t r i c i t y [ t ] + WIND_TURBINE_1 . e l e c t r i c i t y [ t ] +

BATTERY_1 . discharge [ t ] + BATTERY_2 . discharge [ t ] + BATTERY_3 .
discharge [ t ] == DEMAND. consumption [ t ] + BATTERY_1 . charge [ t ] +
BATTERY_2 . charge [ t ] + BATTERY_3 . charge [ t ] ;

Listing A.6: GBOML Microgrid Domain Implementation
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A.3 Comparison Experiments Results

A.3.1 Optimization Problem Insights

Solution Variables Extra Time Horizon Homes Solar Panels Total Variables Size
GPO-D 61 3 24 50 50 1467
CVXPY 61 3 24 50 50 1467
Pyomo 61 3 24 50 50 1467

GBOML 114 3 24 50 50 2739
GPO-D 61 3 48 50 50 2931
CVXPY 61 3 48 50 50 2931
Pyomo 61 3 48 50 50 2931

GBOML 114 3 48 50 50 5475
GPO-D 61 3 72 50 50 4395
CVXPY 61 3 72 50 50 4395
Pyomo 61 3 72 50 50 4395

GBOML 114 3 72 50 50 8211
GPO-D 61 3 120 50 50 7323
CVXPY 61 3 120 50 50 7323
Pyomo 61 3 120 50 50 7323

GBOML 114 3 120 50 50 13683
GPO-D 111 3 24 100 100 2667
CVXPY 111 3 24 100 100 2667
Pyomo 111 3 24 100 100 2667

GBOML 214 3 24 100 100 5139
GPO-D 211 3 24 200 200 5067
CVXPY 211 3 24 200 200 5067
Pyomo 211 3 24 200 200 5067

GBOML 414 3 24 200 200 9939
GPO-D 511 3 24 500 500 12267
CVXPY 511 3 24 500 500 12267
Pyomo 511 3 24 500 500 12267

GBOML - - 24 500 500 -
GPO-D 1011 3 24 1000 1000 24267
CVXPY 1011 3 24 1000 1000 24267
Pyomo 1011 3 24 1000 1000 24267

GBOML - - 24 1000 1000 -

Table A.1: Number of variables for the microgrid optimization problem



A.3. Comparison Experiments Results s

Solution Constraints Extra Time Horizon Homes Solar Panels Total Constraints Size

GPO-D 125 3 24 50 50 3003
CVXPY 125 3 24 50 50 3003
Pyomo 125 3 24 50 50 3003

GBOML 230 3 24 50 50 5523
GPO-D 125 3 48 50 50 6003
CVXPY 125 3 48 50 50 6003
Pyomo 125 3 48 50 50 6003

GBOML 230 3 48 50 50 11043
GPO-D 125 3 72 50 50 9003
CVXYP 125 3 72 50 50 9003
Pyomo 125 3 72 50 50 9003

GBOML 230 3 72 50 50 16563
GPO-D 125 3 120 50 50 15003
CVXPY 125 3 120 50 50 15003
Pyomo 125 3 120 50 50 15003

GBOML 230 3 120 50 50 27603
GPO-D 225 3 24 100 100 5403
CVXPY 225 3 24 100 100 5403
Pyomo 225 3 24 100 100 5403

GBOML 430 3 24 100 100 10323
GPO-D 425 3 24 200 200 10203
CVXPY 425 3 24 200 200 10203
Pyomo 425 3 24 200 200 10203

GBOML 830 3 24 200 200 19923
GPO-D 1025 3 24 500 500 24603
CVXPY 1025 3 24 500 500 24603
Pyomo 1025 3 24 500 500 24603

GBOML - - 24 500 500 -
GPO-D 2025 3 24 1000 1000 48603
CVXPY 2025 3 24 1000 1000 48603
Pyomo 2025 3 24 1000 1000 48603

GBOML - - 24 1000 1000 -

Table A.2: Number of constraints for the microgrid optimization problem

A.3.2 Productivity Eexperiments
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Implementation Characters (with whitespaces) LOC ELOC

GPOD 2395 (2769) 32 28
GPOD (domain) 2448 (3231) 104 78
GPOD (all) 4843 (6000) 136 106
CVXPY 3125 (3721) 61 51
PYOMO 3957 (4630) 78 64
GBOML 2128 (2430) 38 33
GBOML (txt file) 15137 (17739) 765 —
GBOML (including txt file) 17265 (20169) 803 —

Table A.3: Character count, Lines of Code (LOC), and Effective Lines of Code (ELOC) for different microgrid
problem implementations.
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