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Nomenclature
Acronym Meaning

RSA Rivest-Shamir-Adleman

ECC Elliptic curve cryptography

PQC Post-quantum cryptography

NIST National Institute of Standards and Technology

KEM Key encapsulation mechanism

FFT Fast Fourier transform

AES Advanced encryption standard

LWE Learning with errors

FIPS Federal Information Processing Standards

PKE Public-key encryption

CPA Chosen plaintext attack

CCA1 Chosen ciphertext attack

CCA2 Adaptive chosen ciphertext attack

IND Indistinguishability

ML-KEM Module-lattice-based key encapsulation mechanism

MLWE Module learning with errors

FO Fujisaki-Okamoto

NTT Number-theoretic transform

QC Quasi-cyclic

QCSD Quasi-cyclic syndrome decoding

DQCSD Decisional quasi-cyclic syndrome decoding

RM Reed-Muller

RS Reed-Solomon

RMRS Reed-Muller and Reed-Solomon
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Notation Description

v Vector

A Matrix

mod Modulo operation

≡ Congruence relation

∼= Isomorphic to

Zq Ring of integers modulo q

L Lattice

∥·∥2 The Euclidean norm

R>0 Set of positive real numbers

⌈x⌉ The smallest integer greater than or equal to x

⌊x⌋ The largest integer less than or equal to x

⌈x⌋ The rounding of x to the nearest integer with ties being
rounded up

{0, 1}∗ Binary string of arbitrary finite length

{0, 1}n Binary string of length n

∥·∥∞ The ℓ∞ norm

Bη The central binomial distribution

aj The coefficient of xj of a polynomial
a = a0 + a1x+ · · ·+ fn−1x

n−1

â The NTT representation of a polynomial a

v⊺,A⊺ The transpose of a vector v or a matrix A⊕
Direct sum

0 Null vector

O Big-O

iv



Contents
1 Problem Analysis 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Fundamental Principles of Classical Cryptography . . . . . . . . . . . . . . . 1
1.3 Quantum Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Post-Quantum Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Resource-Constrained Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Problem Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 Lattices & Learning With Errors 12
2.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Lattice Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Learning With Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 ML-KEM Standard 20
3.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 K-PKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 ML-KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Number-Theoretic Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4 Quasi-Cyclic Codes & Syndrome Decoding Problems 32
4.1 Quasi-Cyclic Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2 Quasi-Cyclic Syndrome Decoding Problems . . . . . . . . . . . . . . . . . . . 34

5 Hamming Quasi-Cyclic 38
5.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.2 HQC.PKE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.3 HQC.KEM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.4 Parameter Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Comparative Complexity Analysis of ML-KEM & HQC 47
6.1 Time Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Space Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Bit Complexity Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Discussion 64

8 Conclusion 66

Bibliography 67

v



Contents

A Complexity-Analysis-Foundations 71
A.1 Big-O Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
A.2 Divide-and-Conquer Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 73

B ML-KEM Complexity Analysis 76
B.1 Time Complexity Analysis of ML-KEM . . . . . . . . . . . . . . . . . . . . . 76
B.2 Space Complexity Analysis of ML-KEM . . . . . . . . . . . . . . . . . . . . . 79
B.3 Bit Complexity Analysis of ML-KEM . . . . . . . . . . . . . . . . . . . . . . . 81

C HQC Complexity Analysis 85
C.1 Time Complexity Analysis of HQC . . . . . . . . . . . . . . . . . . . . . . . . 85
C.2 Space Complexity Analysis of HQC . . . . . . . . . . . . . . . . . . . . . . . . 88
C.3 Bit Complexity Analysis of HQC . . . . . . . . . . . . . . . . . . . . . . . . . 90

vi



1 Problem Analysis
1.1 Introduction

In modern technology, public-key cryptography serves as the foundation for securing the
global communication infrastructure. However, the rise of quantum computing threatens to
break widely used cryptographic protocols. If compromised, it could lead to widespread data
breaches, financial fraud, and vulnerabilities in essential infrastructure [1].

Recent years have brought significant breakthroughs in the field of quantum computers [2].
By leveraging the principles of superposition, entanglement, and interference, quantum com-
puters have the potential to solve problems that were once considered insurmountable [2] [3].
However, current quantum computers remain limited by factors such as qubit count and error
rates, preventing them from posing an immediate threat to classical encryption [3]. Despite
these challenges, researchers anticipate that continued progress in quantum technology will
soon lead to the development of more powerful quantum computers [3].

Post-quantum cryptography (PQC) has been introduced to address the security challenges
posed by quantum computing. The National Institute of Standards and Technology (NIST)
has been working to standardise PQC methods to ensure resilience against quantum attacks.
In 2016, NIST launched a search for candidate algorithms suitable for standardisation. After
four rounds of submissions and rigorous evaluations based on security, cost, performance, and
implementation characteristics, NIST standardised four algorithms in 2024 [4, ch. 2] [5] [6] [7].
These include one key encapsulation mechanism (KEM) and three digital signature schemes.
In 2025, NIST additionally standardised Hamming Quasi-Cyclic (HQC), a code-based KEM,
as a backup to the module-lattice-based KEM (ML-KEM) in order to provide cryptographic
diversity and resilience against potential future advances in cryptanalysis [8].

Despite their security advantages, PQC algorithms demand more computational power and
memory than traditional methods, presenting challenges for resource-constrained devices [9].
As quantum-safe cryptography becomes essential, it is crucial to develop efficient implemen-
tations that balance security, performance, and power consumption [9]. This thesis aims to
introduce and compare PQC algorithms through a complexity analysis, examining how time
and memory scale with different parameter sets. This thesis will help determine which algo-
rithm is more suited for devices with varying resource constraints, allowing for an informed
choice based on the specific needs of the device. To proceed, a foundational understanding
of classical cryptography is necessary.

1.2 Fundamental Principles of Classical Cryptography

Secure communication is essential to protect sensitive information from unauthorised access.
Cryptography is the study of securing data by transforming it into an unreadable format.
This enables two parties to communicate safely over an insecure channel while preventing
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1.2. Fundamental Principles of Classical Cryptography

access by adversaries [10, p. 15]. The process of transforming an original message, known
as plaintext, into a random string of symbols, known as ciphertext, using a key, is called
encryption. The key is a predetermined random string of numbers. The plaintext can be
any type of data with an arbitrary structure, for example, text or numerical data. The
process of turning ciphertext back into plaintext is called decryption. Keys are fundamental
to cryptosystems, which define how key generation, encryption, and decryption are performed
[10, p. 1].

Cryptography provides four fundamental security properties:

• Confidentiality prevents unauthorised access to the information, ensuring that only the
intended receiver can gain access.

• Integrity ensures that the received information has not been altered in any way from
the original.

• Authentication is the process of proving one’s identity.

• Non-repudiation prevents an entity from denying previous commitments or actions.

These properties ensure that information is kept private, unaltered, verifiable, and indis-
putable. Encryption schemes ensure confidentiality, while digital signature schemes ensure
integrity, authentication, and non-repudiation [11, p. 4] [10, p. 7].

A fundamental principle in cryptography is Kerckhoffs’ principle, which states that a cryp-
tosystem’s security should rely solely on the secrecy of a key, while all other components,
including algorithms and protocols, should be publicly known. Thus, when designing a cryp-
tosystem, it should always be assumed that the adversary knows the scheme being used [10,
p. 10]. The usage of keys differentiates cryptography into two categories: secret-key and
public-key cryptography [11, p. 15].

Secret-Key Cryptography

Secret-key cryptography, also known as symmetric cryptography, involves the use of a single
shared key for both encryption and decryption. In a typical secret-key encryption protocol,
two parties first establish a shared secret key, either in person without eavesdroppers or
over a secure channel. Once established, the sender can securely transmit plaintexts over an
insecure channel by encrypting them using the shared secret key. The recipient then decrypts
the received ciphertext using the same shared secret key to recover the plaintext [10, pp. 15–
16].

Secret-key cryptosystems use relatively short keys, which require less storage space and allow
faster data transmission. They also offer high data throughput, which means they can pro-
cess and transmit large amounts of data quickly [11, p. 31]. However, they need a secure key
exchange before communication can begin. If parties are unable to meet in secret or commu-
nicate over a secure channel, exchanging the secret key becomes a challenge [12, p. 46]. The
search for a solution to this problem gave rise to public-key cryptography.
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1.2. Fundamental Principles of Classical Cryptography

Public-Key Cryptography

Public-key cryptography, also known as asymmetric cryptography, involves the use of a key
pair: a public key and a private key. The public key is shared openly, and the private key
is kept secret. Knowing the public key reveals nothing about the private key, but only the
private key can decrypt ciphertexts encrypted with its corresponding public key [10, p. 2] [12,
p. 46]. According to Kerckhoffs’ principle, an adversary is assumed to know the public key
and the encryption algorithm but not the private key [10, p. 10]. The first example of a public-
key cryptosystem was the Rivest-Shamir-Adleman (RSA) cryptosystem. Today, public-key
cryptography includes a range of applications, such as public-key encryption (PKE), KEM,
and digital signature schemes [10, p. 3].

In PKE, the goal is to ensure confidentiality of a message. The recipient generates a key pair,
shares the public key over any unsecured channel, and keeps the private key secure. The
sender can then use the recipient’s public key to encrypt a message, producing ciphertext
that only the recipient can decrypt using their private key. Since the public key is openly
available, anyone can encrypt messages, but only the recipient, possessing the corresponding
private key, can decrypt them [11, pp. 25–26] [10, p. 185].

A KEM is a variant of PKE. Instead of encrypting the actual message directly, a random
secret key is generated and encapsulated using the recipient’s public key. The sender produces
a ciphertext and a shared secret key, which the recipient can recover by decapsulating the
ciphertext with their private key. This shared secret key is then used with a secret-key
encryption scheme to encrypt and decrypt the actual message [13, p. 495].

In a signature scheme, the sender generates a key pair, keeps the private key secure, and
publishes the public key. The sender signs the message with their private key, producing
a unique signature. The recipient can then verify the signature using the sender’s public
key. Since the public key isn’t secret, anyone can use it to verify the signature, but only the
sender, possessing the private key, could have generated it [11, p. 29].

An advantage of public-key cryptosystems is that only the private key needs to be kept
secret. Additionally, in large networks, the number of keys required may be considerably
smaller than in secret-key cryptosystems. However, public-key cryptosystems are generally
slower than secret-key cryptosystems, and public keys are typically much larger than those
used in secret-key encryption [11, pp. 31–32]. Due to their slower performance, public-key
cryptosystems are often combined with secret-key systems [10, p. 3].

Hybrid Cryptography

Hybrid cryptography combines the advantages of both secret-key and public-key cryptogra-
phy. When a sender wants to transmit a long plaintext but they do not have a shared secret
key, they can generate a random shared secret key and use it to encrypt plaintext with a
secret-key cryptosystem. The sender then encrypts the shared secret key using the recipient’s
public key and sends both the ciphertext and the encrypted secret key to the recipient. The
recipient then decrypts the shared secret key with their private key and uses it to decrypt the
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1.2. Fundamental Principles of Classical Cryptography

ciphertext and retrieve the plaintext. In this method, the slower public-key cryptosystem is
only used to encrypt the short secret key, while the much faster secret-key cryptosystem is
used to encrypt the longer plaintext. Thus, hybrid cryptography combines the efficiency of
secret-key cryptography with the secure key exchange capabilities of public-key cryptography
[10, p. 3].

Cryptanalysis

Cryptanalysis is the study of methods for breaking cryptographic systems, typically with the
goal of recovering secret keys or forging valid outputs without authorised access [12, p. 5].
There are various attack models, each specifying the information available to the adversary.
For PKE and KEMs, attacks are typically framed within the context of indistinguishability
(IND) based security models. Common attack models include:

• Ciphertext-only attack, the adversary has access only to ciphertext.

• Known plaintext attack, the adversary has access to both plaintext and its corresponding
ciphertext.

• Chosen plaintext attack (CPA), the adversary can choose a plaintext and obtain its
corresponding ciphertext [10, p. 39].

• Chosen ciphertext attack (CCA1), the adversary can choose a ciphertext and obtain its
corresponding plaintext.

• Adaptive chosen ciphertext attack (CCA2), the adversary can query a decryption oracle
for any ciphertext [13, p. 32].

IND means the adversary cannot distinguish between the encryptions of two chosen messages
of the same length. There are different levels of IND security: IND-CPA, IND-CCA1, and
IND-CCA2. IND-CCA2 is the strongest security model, and schemes secure under it are also
secure under IND-CPA and IND-CCA1 [13, p. 32].

The goal of an adversary attacking a digital signature scheme is to forge a valid signature
on a message that has not been signed by the legitimate signer. Attack models for digital
signatures differ in focus and are categorised as follows:

• Key-only attack, the adversary only knows the signer’s public key.

• Known message attack, the adversary has access to a list of valid message-signature
pairs but does not control the messages.

• Chosen message attack, the adversary can obtain signatures on arbitrary messages of
their choosing [10, p. 312].

The success of an attack is further classified by the type of forgery achieved:

• Existential forgery, the adversary produces a valid signature for at least one message.

• Selective forgery, the adversary forges a signature on a specific, pre-chosen message.
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1.3. Quantum Computing

• Universal forgery, the adversary can forge signatures for any message [10, p. 312].

Classical cryptographic schemes rely on the assumed hardness of mathematical problems,
but quantum computing threatens their security and undermines schemes considered secure
under classical assumptions. Understanding this impact is essential, as many widely used
cryptographic schemes may become vulnerable.

1.3 Quantum Computing

Quantum computers operate based on the fundamental principles of quantum mechanics [14,
p. 3]. Unlike classical computers, which utilise bits as the smallest unit of data, quantum
computers employ qubits. Qubits possess the unique ability to exist in a superposition of
states, meaning they can represent 0 and 1 simultaneously, each with a specific probability
amplitude [14, pp. 9–10]. This property enables quantum computers to perform certain com-
putations exponentially faster than their classical counterparts by simultaneously exploring
multiple computational pathways [14, p. 147].

Quantum Algorithms Threatening Classical Cryptography

Classical public-key cryptosystems, such as RSA and elliptic curve cryptography (ECC), are
widely used today to secure communication. The security of these systems relies on the
inherent difficulty of solving specific mathematical problems. In the case of RSA, security
is based on the hardness of integer factorisation, while ECC is grounded in the difficulty of
solving the discrete logarithm problem over elliptic curves [15]. One of the most significant
threats quantum computing poses to classical cryptography arises from Shor’s algorithm [16]
[1].

Shor’s algorithm is capable of efficiently factoring large integers and solving the discrete
logarithm problem [16] [3]. While classical computers require an impractically long time
to solve these problems, quantum computers can perform these calculations exponentially
faster due to their unique computational properties [1]. Despite this theoretical capability,
implementing Shor’s algorithm on a practical quantum computer capable of breaking RSA
and ECC is still a significant challenge. This is due to several challenges, including the need
to correct errors, maintain stable quantum states, and scale up to a large number of reliable
qubits [1].

Grover’s algorithm is another algorithm posing a threat to classical encryption. Grover’s
algorithm offers a quadratic speed-up on brute-force attacks on secret-key encryption schemes,
such as advanced encryption standard (AES) [17] [15]. Due to the quadratic speed-up, the
key length must be doubled to preserve the security [1].

Although no quantum computer currently exists that is capable of breaking modern crypto-
graphic schemes using Shor’s or Grover’s algorithms, it is widely regarded as only a matter of
time before such a breakthrough occurs. In 2016 NIST projected that a quantum computer
capable of breaking RSA via Shor’s algorithm could emerge in the 2030s [1].

5



1.4. Post-Quantum Cryptography

Moreover, the "harvest now, decrypt later" strategy presents an additional motivation for
the immediate implementation of PQC. Adversaries can collect and store vast amounts of
encrypted data today, intending to decrypt it once sufficiently powerful quantum computers
become available [18]. This poses a severe threat to long-term confidentiality, particularly
for sensitive information such as government communications, medical records, and classified
data.

1.4 Post-Quantum Cryptography

PQC is the field dedicated to developing cryptographic algorithms that remain secure against
both classical and quantum attacks. Furthermore, these algorithms should be compatible
with existing communication protocols to ensure a smooth transition in the event of large-
scale quantum advancements [1].

As mentioned in the previous section, doubling the key size in secret-key cryptographic
algorithms is considered sufficient to mitigate the impact of Grover’s algorithm [1]. Thus, the
primary focus of PQC is the development of quantum-resistant public-key cryptosystems, as
they are the most vulnerable to attacks from Shor’s algorithm [1]. To develop quantum-safe
algorithms, researchers must explore alternative mathematical problems that are believed to
be resistant to quantum attacks. The main categories of PQC algorithms include:

• Lattice-based cryptography is based on the hardness of the shortest vector problem and
learning with errors (LWE).

• Code-based cryptography relies on the difficulty of decoding random linear codes.

• Multivariate polynomial cryptography is based on the intractability of solving multivari-
ate quadratic polynomial equations over finite fields.

• Hash-based signatures derive security solely from cryptographic hash functions.

• Isogeny-based cryptography relies on the difficulty of finding isogenies between elliptic
curves.

It is not possible to guarantee absolute security for all PQC schemes against quantum attacks.
The only certainty is that, as of now, no efficient quantum algorithm is known to break
them [1]. However, new quantum algorithms may be discovered in the future, potentially
undermining the security of some proposed PQC schemes. An exception to this uncertainty
is hash-based signatures, which rely solely on the well-studied security of cryptographic hash
functions and are not susceptible to quantum speed-ups beyond Grover’s algorithm [1].

Post-Quantum Cryptography Standardisation Process

Current cryptographic NIST standards will not remain secure once large-scale quantum com-
puters exist [19]. To address this, NIST intends to standardise new quantum-resistant algo-
rithms that will update or replace parts of the current public-key cryptographic standards.
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1.4. Post-Quantum Cryptography

Since no direct replacement exists, transitioning to PQC will require significant effort in de-
velopment, standardisation, and deployment. Therefore, in 2016, NIST initiated a public,
competition-like process to select quantum-resistant public-key cryptographic algorithms for
digital signatures and KEMs. It is intended that these algorithms will be capable of protect-
ing sensitive information in the post-quantum era. This process is referred to as the NIST
PQC standardisation process [19].

To evaluate the candidates in NIST’s PQC Standardisation Process, evaluation criteria have
been established. These include security, cost, performance, and algorithm and implementa-
tion characteristics [19].

Security Evaluation Criteria

The security criterion is the most important factor in the evaluation of the candidates and
considers both classical and quantum attacks [19]. The criterion includes an assessment
of how secure the schemes are in applications of public-key cryptography, particularly in
internet protocols where current standards for digital signatures and KEMs are widely used.
NIST also defines three security properties: two for KEM and one for digital signatures. For
KEM schemes, the two properties ensure that a KEM scheme is IND-CCA2 and IND-CPA.
Digital signature schemes should be secure against existential forgery, even when an attacker
can adaptively choose which messages to be signed [19]. Furthermore, NIST designated five
security strength categories for classifying the complexity of attacks that violate the security
properties [19]. The security categories can be seen in Table 1.1.

Category Security Description Search Type

1 At least as hard to break as AES128 Exhaustive key search

2 At least as hard to break as SHA256 Collision search

3 At least as hard to break as AES192 Exhaustive key search

4 At least as hard to break as SHA384 Collision search

5 At least as hard to break as AES256 Exhaustive key search

Table 1.1: The five security strength categories designated by NIST.

The security strength categories are based on the computational resources required to per-
form certain brute-force attacks against AES and secure hash algorithms. A cryptosystem
meets a security category if any attack requires resources at least as high as the defined
threshold. For categories 1, 3, and 5, any attack that breaks the security properties must re-
quire computational resources comparable to or greater than those required for an exhaustive
key search on a block cipher with a 128-bit key, 192-bit key, or 256-bit key, respectively. For
categories 2 and 4, any attack that breaks the security properties must require computational
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1.4. Post-Quantum Cryptography

resources comparable to or greater than those required for collision search on a 256-bit hash
function and 384-bit hash function, respectively [19].

The categories increase in strength such that a SHA256 collision attack is feasible before an
AES192 key search. NIST prioritises categories 1, 2, and 3, as categories 4 and 5 are for very
high security. If certain parameters meet the requirements of a higher category, they will
automatically satisfy lower categories as well [19].

While security properties and strength categories address many attack scenarios, additional
properties are also assessed. These include the following:

• Perfect forward secrecy ensures past session keys remain secure even if a server’s private
key is compromised.

• Resistance to side-channel attacks refers to the ability to protect against attackers who
attempt to gain information from physical signals during cryptographic operations.

• Multi-key security ensures that compromising one key does not compromise others.
Attacking multiple keys at once provides no additional advantage.

• Misuse resistance prevents serious failures from coding errors, random number genera-
tor malfunctions, nonce reuse, and keypair reuse [19].

Additionally, a thorough understanding of the mathematical structure underlying public-key
cryptography is crucial for confidence in a cryptosystem’s security. Simple schemes tend to
be better understood than complex ones. Likewise, schemes based on well-established design
principles are more reliable than completely new schemes or those that were designed by
repeatedly patching older schemes that were shown vulnerable to cryptanalysis [19].

Cost & Performance Evaluation Criteria

Cost is identified as the second most important criterion [19]. It includes the size of public
keys, ciphertexts, and signatures, as well as the computational efficiency of key operations
and generation and decryption failures. The size of the public key, ciphertext, and signatures
may be important consideration factors for resource-constrained devices. Schemes are as-
sessed on the computational efficiency of public and private key operations both in hardware
and software. The computational efficiency of key generation is also evaluated, especially
for algorithms providing perfect forward secrecy. Furthermore, decryption failures must be
minimised, as some schemes may occasionally produce ciphertexts that cannot be decrypted
[19].

Algorithm & Implementation Characteristics Evaluation Criteria

The algorithm and implementation characteristics criterion relies on flexibility, simplicity,
and adoption. Schemes with greater flexibility are preferred, as they can accommodate a
wider range of users’ needs. Examples of flexibility may include the customisation of param-
eters to meet varying security and performance goals, secure and efficient implementation on
diverse platforms, such as resource-constrained devices, and seamless integration into existing
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1.4. Post-Quantum Cryptography

protocols with minimal changes. Furthermore, the schemes are assessed based on their design
simplicity. While it is hard to measure simplicity concretely, simpler designs are preferable
when comparing two similar schemes. Moreover, factors affecting widespread adoption of an
algorithm, such as patents, copyrights, and terms of licenses, are also considered [19].

Standardisation Finalists & Alternates

The first round of the NIST PQC standardisation process began in December 2017 with 82
submissions, 69 of which were accepted as complete and proper. Of these, 19 were digital
signature schemes, and 45 were KEM schemes. Algorithms selected for the second round,
starting in January 2019, were based on internal analysis and public feedback, with 26 can-
didates chosen. Of these, 9 were signature schemes, and 17 were KEM schemes. By the
end of the second round, 7 finalists and 8 alternates were selected for the third round. The
third round, which began in July 2020, led to the first algorithms selected for standardisa-
tion. The KEM scheme that was selected for standardisation was CRYSTALS-Kyber, and the
digital signatures were CRYSTALS-Dilithium, FALCON, and SPHINCS+, with CRYSTALS-
Dilithium being the primary signature algorithm [19]. Furthermore, four alternate candidates
were selected to advance to a fourth round for further evaluation and study. The alternate
candidates considered were the Classic McEliece, HQC, SIKE, and BIKE [19]. These candi-
dates are all KEMs but rely on different security assumptions than CRYSTALS-Kyber. SIKE
was removed early in the fourth round, as it was found to be insecure. Classic McEliece, while
considered a conservative choice, suffered from a large public-key size and slow key generation,
making it less desirable for many common applications. In March 2025, NIST announced
the selection of HQC as the fourth-round finalist, expressing a higher level of confidence in
its IND-CCA2 security over BIKE due to HQC’s more mature and stable decryption failure
rate analysis [8]. An overview of the finalists can be seen in Table 1.2.

Algorithm Name Type Basis
Security
Category

Public-Key
Size

Ciphertext/
Signature

Size

CRYSTALS-Kyber KEM Lattice 1, 3, 5 Small Small

CRYSTALS-Dilithium Signature Lattice 2, 3, 5 Medium Medium

FALCON Signature Lattice 1, 5 Small Small

SPHINCS+ Signature Hash 1, 3, 5 Small Large

HQC KEM Code 1, 3, 5 Medium Large

Table 1.2: Overview of the finalists in the NIST PQC standardisation process. All information regarding
the algorithms is sourced from [19] and [20].
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NIST plans to standardise algorithms from various PQC categories but prioritises those that
are closest to being ready for widespread adoption, rather than attempting to finalise all
standards at once [19].

1.5 Resource-Constrained Devices

The quantum-resistant cryptographic schemes selected by NIST offer security against quan-
tum attacks, but they require more memory, energy, and power than traditional methods,
which can be problematic for resource-constrained devices [21]. Resource-constrained devices
are computing systems that have limited processing power, memory, storage, and energy
resources. Such devices include Internet of Things devices, embedded systems, and smart
cards [21] [22]. Many of these devices are used in industries such as smart homes, medical de-
vices, public infrastructure, and automobiles [9]. Furthermore, resource-constrained devices
are prime targets for hackers due to their interaction with the physical environment and
sensitive data collection. Common attacks include eavesdropping, replay, node capture, and
side-channel attacks [9]. Since resource-constrained devices operate in critical infrastructures
and are preferential targets, high security is required [23] [21].

Trade-Off Between Security, Performance & Resources

Deploying cryptographic algorithms on resource-constrained devices presents several chal-
lenges. Some of these challenges include low computation power, low energy availability, and
memory constraints. Many resource-constrained devices lack the processing power needed
for computationally intensive cryptographic algorithms. Their reliance on batteries neces-
sitates energy-efficient security solutions, as high-complexity cryptographic operations can
drain battery life and reduce device longevity. Additionally, limited ROM and RAM capac-
ities make it challenging to deploy memory-intensive algorithms, especially those with large
key sizes [9].

In [21], it is stated that the current NIST PQC standards cannot be directly implemented
on low-memory devices because of large public-key and ciphertext sizes that lead to high
memory requirements. A solution could be to use smaller key sizes to improve performance
and reduce memory usage, however, this may reduce security as well. In environments where
speed is not the primary concern, cryptographic algorithms can be designed to minimise
memory usage, even if this comes at the cost of reduced performance [21]. Thus, a trade-off
between performance and resources to achieve a desired security category is required.
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1.6 Problem Statement

This thesis focuses on KEMs, rather than digital signature schemes, due to their role in key
establishment for secure communication. The performance of KEMs, particularly in terms
of their computational complexity, memory usage, and communication cost, scales with the
input parameters chosen. Understanding these scaling characteristics is crucial for those
aiming to implement these KEMs, especially in resource-constrained devices where efficiency
is essential. Among the schemes selected by NIST, CRYSTALS-Kyber and HQC are the two
KEMs, each based on distinct mathematical assumptions, MLWE and code-based decoding,
respectively. The NIST-standardised variant of CRYSTALS-Kyber is designated as ML-
KEM. The aim of this thesis is to conduct a theoretical complexity analysis of ML-KEM
and HQC, providing insights into how their time, space, and bit complexities evolve as input
parameters increase. Therefore, this master’s thesis aims to answer:

How do the time, space, and bit complexities of lattice- and code-based post-quantum key
encapsulation mechanisms scale with input parameters, and what are the implications for
their use in resource-constrained devices?

1.7 Problem Delimitations

The primary aim is to assess the time, space, and bit complexities of both schemes and
understand how they scale with different input parameters. In addition to the complexity
analysis, the thesis includes a comparative theoretical analysis of both KEMs. This analysis
involves plotting and evaluating how the complexities of these schemes change with various
parameter sets, providing insights into the trade-off between efficiency and security.

The scope of this thesis is limited in several ways. First, security proofs are not addressed.
While the underlying security assumptions for both KEMs are presented, the focus is on
understanding the complexity rather than proving their security. Second, this thesis does not
include any practical implementations of the schemes, the analysis is entirely theoretical. The
thesis also does not consider side-channel attacks or hardware-specific optimisations, focusing
purely on the theoretical computational and memory characteristics of the schemes.
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2 Lattices & Learning With Errors
The security of the ML-KEM is based on the hardness of the module LWE (MLWE) prob-
lem. The MLWE problem is rooted in the LWE problem, which is a special case of the
lattice-based problem known as bounded distance decoding [5]. Consequently, the aim of
this chapter is to present the essential mathematical definitions and theories related to lat-
tices and lattice problems, culminating in the MLWE problem, which underpins the security
of ML-KEM.

2.1 Prerequisites

Some necessary prerequisites are needed in order to define the LWE problems.

Modular Arithmetic

The congruence modulo operation partitions integers into q distinct equivalence classes based
on their remainders when divided by q. Hence, two integers belong to the same equivalence
class if they yield the same remainder [10, p. 17]. The set of equivalence classes under the
congruence relation are called the set of integers modulo q [24, pp. 8–9].

Definition 2.1 (Integers Modulo q)
The set of integers modulo q is defined as

Z/qZ = {0, 1, 2, . . . , q − 1},

equipped with the binary operations + and ·, corresponding to the operations in Z:

a+ b ≡ c (mod q), c ∈ Z/qZ
a · b ≡ d (mod q), d ∈ Z/qZ,

for all a, b ∈ Z/qZ. Each element of Z/qZ corresponds to a distinct equivalence class of
integers under the congruence relation. [25, p. 18]

It is essential to note that the elements of Z/qZ are not integers but rather equivalence
classes of integers under the congruence relation. Moreover, Z/qZ forms a field if and only
if q is prime. This is because, if q is prime, then every non-zero element in Z/qZ have a
multiplicative inverse [24, p. 10]. In the LWE problem, the space is defined by Z/qZ. Since q

is typically chosen to be prime, this space forms a field. Additionally, the set Z/qZ is a ring
of integers modulo q [12, p. 22].
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Rings

A ring is a set that has two binary operations which are linked by the distributive law [12,
pp. 94–95].

Definition 2.2 (Ring)
A ring is a set R equipped with the binary operations + and · satisfying the following sets
of axioms:

1. R is an abelian group under addition:

• a+ (b+ c) = (a+ b) + c for all a, b, c ∈ R (associative law).

• a+ b = b+ a for all a, b ∈ R (commutative law).

• There is an additive identity 0 ∈ R such that 0 + a = a+ 0 = a for every a ∈ R

(identity law).

• For every element a ∈ R, there is an additive inverse b ∈ R such that
a+ b = b+ a = 0 (inverse law).

2. Multiplication is associative:

• a · (b · c) = (a · b) · c for all a, b, c ∈ R.

3. Multiplication is distributive with respect to addition:

• a · (b+ c) = (a · b) + (a · c) for all a, b, c ∈ R (left distributivity).

• (b+ c) · a = (b · a) + (c · a) for all a, b, c ∈ R (right distributivity).

4. R has a multiplicative identity:

• There is an element 1 ∈ R such that 1 · a = a · 1 = a for every a ∈ R. [12, p. 95]

If multiplication is commutative, the ring R is commutative. Hence, a · b = b · a for all
a, b ∈ R [12, p. 95]. Understanding the structural relationships between rings is essential
in algebra. In particular, it is often useful to recognise when two rings, though defined
differently or over distinct representations, exhibit identical algebraic behaviour. This notion
is formalised through the definition of a ring isomorphism, which identifies when two rings
can be considered structurally equivalent. ML-KEM leverages such equivalences to enable
more efficient polynomial multiplication.
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Definition 2.3 (Ring Isomorphism)
Let R and S be rings. A function

ϕ : R → S

is called a ring isomorphism if it satisfies the following properties for all elements a, b ∈ R:

1. Preservation of addition:

• ϕ(a+ b) = ϕ(a) + ϕ(b).

2. Preservation of multiplication:

• ϕ(ab) = ϕ(a)ϕ(b).

3. Preservation of identities:

• ϕ(1R) = 1S .

4. One-to-one correspondence:

• The function ϕ pairs each element of R with a unique element of S, and every
element of S comes from exactly one element in R.

If such a function exists, the rings R and S are said to be isomorphic. This is written as:

R ∼= S. [24, p. 95]

Ring isomorphisms become especially useful when working with rings whose elements are
polynomials. A ring formed from the set of polynomials whose coefficients are taken from a
ring is called a polynomial ring. The set Z/qZ can be used to form a polynomial ring [12,
p. 96].

Definition 2.4 (Polynomial Ring)
Given a commutative ring R, the set

R[x] =
{
a0 + a1x+ a2x

2 + · · ·+ anx
n | ai ∈ R, n ≥ 0

}
,

forms a polynomial ring under standard polynomial addition and multiplication.
[12, p. 98]

If an ̸= 0, the polynomial is said to be of degree n, anx
n is the leading term, and an is

called the leading coefficient [24, p. 234]. The MLWE problem is defined over the ring
Rq = Zq[x]/(x

n + 1). The polynomial ring Zq[x] denotes the ring of polynomials with
coefficients from Z/qZ. The ring Rq is a quotient ring formed by taking the polynomial
ring Zq[x] modulo the ideal generated by xn + 1 [12, p. 22].
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Definition 2.5 (Ideal)
Let R be a commutative ring. An ideal of R is a non-empty subset I ⊆ R that satisfies the
following properties:

1. I is an abelian group under addition.

2. If a ∈ I and b ∈ R, then a · b ∈ I. [10, p. 539]

Given a ring R and an ideal I, a quotient ring is formed by dividing R by I.

Definition 2.6 (Quotient Ring)
Let R be a commutative ring and I ⊆ R an ideal. The quotient ring R/I is the set of
equivalence classes of elements of R under the ideal I, where two elements a, b ∈ R are
congruent modulo I if their difference a − b ∈ I. A quotient ring is equipped with the
binary operations, + and ·. [12, p. 98]

By taking the quotient of the polynomial ring Zq[x] by the ideal generated by xn + 1, the
ring Rq is formed.

Definition 2.7 (The Ring Rq)
Let q be a prime integer modulus, n a positive integer, and Zq = Z/qZ denote the ring of
integers modulo q. Then, the quotient ring

Rq = Zq[x]/(x
n + 1)

consist of polynomials with coefficients in Zq, where addition and multiplication is per-
formed modulo xn + 1. [25, p. 399]

The ring Rq can be extended to modules by replacing the polynomials by vectors of polyno-
mials. This extension is used in the MLWE problem.
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Definition 2.8 (Module)
Let R be a commutative ring. A module over R is an abelian group M under addition,
equipped with scalar multiplication, · : R ×M −→ M , that satisfies the following axioms
for every a, b ∈ R and m,n ∈ M :

1. 1 ·m = m (identity law).

2. (a · b) ·m = a · (b ·m) (associativity of scalar multiplication).

3. (a+ b) ·m = a ·m+ b ·m (distributivity over ring addition).

4. a · (m+ n) = a ·m+ a · n (distributivity over module addition). [13, p. 590]

Often M is referred to as R-module, however, for the sake of simplicity, it will be referred
to as a module [13, p. 590]. Extending the ring Rq to a module structure by considering the
set of vectors whose entries are elements of Rq leads to the definition of Rk

q , which forms a
module over Rq.

Definition 2.9 (The Module Rk
q)

Let k be a positive integer. The set of vectors of length k with entries in Rq forms a module
over Rq, denoted as

Rk
q = {v | vi ∈ Rq} .

Addition and subtraction of elements in Rk
q is component-wise. The inner product of two

vectors in Rk
q results in a polynomial in Rq. [5]

The module Rk
q is used to represent the vectors in the noisy system of equations that define

the MLWE problem. By embedding modules into real vector spaces, lattices are obtained,
which can also be viewed as modules over rings of integers.

2.2 Lattice Problems

A lattice is a subset of the vector space Rm. In a real vector space, the structure is defined
by a basis, and every element of the space can be written as a linear combination of the
basis vectors. Similarly, a lattice is defined by a basis. However, the elements of the lattice
are integer linear combinations of the basis vectors, rather than real linear combinations [13,
p. 357].
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Definition 2.10 (Lattice)
Let b1,b2, . . . ,bn ∈ Rm be a set of linearly independent vectors with n ≤ m. The lattice
generated by them is defined as

L(b1,b2, . . . ,bn) =

{
n∑

i=1

xibi | xi ∈ Z

}
,

where b1,b2, . . . ,bn are referred to as the basis vectors of the lattice. The lattice rank is
n, and the lattice dimension is m. If n = m, then the lattice is said to be a full rank lattice.

[12, p. 388]

The basis vectors bi of a lattice L(b1,b2, . . . ,bn) can be arranged as rows in an n×m matrix
B. This matrix B is referred to as a basis matrix for the lattice, where Bi,j denotes the jth
entry of the row bi. The lattice can then be expressed as

L(B) = {Bx | x ∈ Zn} .

A lattice can have more than one basis matrix [13, p. 357].

A fundamental parameter associated with a lattice is the length of its shortest non-zero
vector, commonly denoted by λ1. This length is typically measured using the Euclidean
norm [10, p. 349]. The problem of finding the shortest non-zero vector in a lattice is known
as the shortest vector problem.

Definition 2.11 (Shortest Vector Problem)
Let L = L(B) be a lattice. Find a non-zero vector v ∈ L, such that ∥v∥2 is minimised.
Such a vector v is called a shortest vector in L(B). [12, p. 395]

Note that there may be more than one shortest non-zero vector in a lattice [12, p. 395]. A
related problem is the closest vector problem, which involves finding the lattice point closest
to a given point in space.

Definition 2.12 (Closest Vector Problem)
Consider a basis matrix B for a lattice L and a vector w ∈ Rm that is not in L. Find a
vector v ∈ L such that ∥w − v∥2 is minimised. Such a vector v is called a closest vector
to w in L. [12, p. 395]

A special case of the closest vector problem is the bounded distance decoding problem, where
the vector w is sufficiently close to a lattice point, within a factor α of the shortest vector of
the lattice.
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Definition 2.13 (Bounded Distance Decoding Problem)
Let α ∈ (0, 1). Given a basis matrix B for a lattice L, let w ∈ Rm such that there exists a
lattice point v ∈ L with

∥w − v∥2 ≤ αλ1,

where λ1 is the length of the shortest non-zero vector in the lattice L. The bounded distance
decoding problem is to compute v. [13, p. 363]

Bounded distance decoding is a computationally hard problem in lattice-based cryptography
and is closely related to the LWE problem. In fact, LWE is a special case of this problem,
with reductions showing that solving bounded distance decoding is equivalent to solving LWE
in certain cases [13, pp. 415–416].

2.3 Learning With Errors

Finding solutions to a system of linear equations with n variables over Zq given a prime q,
and introducing chosen randomness, results in the LWE problem [10, p. 351].

Definition 2.14 (Learning With Errors Problem)
Let q ∈ N be a prime modulus, σ ∈ R>0 a noise parameter, and k, ℓ ∈ N with k > ℓ. Let the
secret vector s ∈ (Z/qZ)ℓ be chosen uniformly at random and the matrix A ∈ (Z/qZ)k×ℓ

have entries sampled independently and uniformly from Z/qZ. Let the error vector e ∈ Zk

have entries sampled independently from a discrete normal distribution over Z with mean
0 and standard deviation σ. The LWE instance is then given by

t ≡ As+ e (mod q),

where t ∈ (Z/qZ)k. The objective of the LWE problem is to recover the secret vector s

given (A, t). [13, pp. 414–415]

Recovering the secret vector s from an LWE instance is not always possible. Without noise,
the problem reduces to solving a linear system over Z/qZ, which can be done using standard
linear algebra. However, when noise is introduced, the problem becomes computationally
hard. The hardness critically depends on the noise parameter σ. If it is too small, the
structure of the system can still be exploited by an attacker. If it is too large, the noise can
overwhelm the signal entirely, potentially breaking correctness. Theoretical results by Regev
shows that when the noise is chosen appropriately, the LWE problem is at least as hard as
well-known worst-case lattice problems [26].

A generalisation of the LWE problem is the MLWE problem, which replaces the vector and
matrix operations with operations on modules over rings.
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Definition 2.15 (Module Learning With Errors Problem)
Let q ∈ N be a prime and n, k, ℓ ∈ N such that k ≥ ℓ. Additionally, let η1, η2 be small noise
parameters satisfying η1, η2 ≪ q/2.

An MLWE problem is defined over the ring Rq = Zq[x]/(x
n + 1). A matrix A ∈ Rk×ℓ

q

is chosen uniformly at random. A secret vector s ∈ Rℓ
q is sampled from a distribution

Sη1 , and an error vector e ∈ Rk
q is sampled from another distribution Sη2 . Here, Sη1

and Sη2 refer to distributions over polynomials in Rq whose coefficients are small integers,
sampled independently from a discrete normal distribution with standard deviation η1 and
η2, respectively. The MLWE instance is then given by the equation

t = As+ e,

where t ∈ Rk
q . The objective of the MLWE problem is to recover the secret vector s given

(A, t). [27, pp. 277–278]

Setting n = 1 gives an instance of LWE as Rq is replaced with Zq [27, pp. 277–278]. The
MLWE problem forms the hardness assumption underlying ML-KEM.
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3 ML-KEM Standard
ML-KEM employs a two-stage approach. The first stage introduces a PKE scheme called
K-PKE. However, K-PKE, in its stand-alone form, is not considered secure due to vulner-
abilities in its design [5]. Specifically, K-PKE only achieves IND-CPA security. To address
these concerns and ensure IND-CCA2, the second stage of ML-KEM strengthens K-PKE by
applying a variant of the Fujisaki-Okamoto (FO) transformation. The security of ML-KEM
relies on the computational difficulty of the MLWE problem, which is currently believed to be
quantum secure. NIST specifies three parameter sets for ML-KEM, each offering increasing
security strength.

3.1 Prerequisites

Before presenting the ML-KEM scheme, several key concepts and functions that are funda-
mental to the scheme must be introduced. This section outlines the essential prerequisites
required for a clear understanding of the scheme’s presentation later in this chapter.

Compression & Decompression

In ML-KEM, the compression and decompression functions reduce the ciphertext size by
discarding certain low-order bits while preserving sufficient information for reconstruction
[28]. Let q be a prime integer, and let a, b be polynomials in Zq[x] and Z2d [x], respectively,
where 1 ≤ d ≤ ⌊log2(q)⌋. The compression and decompression functions,

Compressq(a, d) : Zq[x] → Z2d [x] and Decompressq(b, d) : Z2d [x] → Zq[x],

are applied coefficient-wise. For each coefficient ai of a and bi of b, the functions are defined
as

Compressq(ai, d) = ⌈(2d/q) · ai⌋ mod 2d, (3.1)

Decompressq(bi, d) = ⌈(q/2d) · bi⌋ mod q, (3.2)

[28]. These functions must approximately reconstruct the original input, meaning that

a′ = Decompressq(Compressq(a, d), d),

where a′ is a close approximation of a. The approximation is bounded by the following
property

||a′ − a||∞ ≤
⌈ q

2d+1

⌋
, (3.3)

where || · ||∞ denotes the ℓ∞ norm [28].
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Central Binomial Distribution

The central binomial distribution Bη is utilised in ML-KEM to sample polynomials. Given a
parameter η, independent uniform bits (x1, y1, x2, y2, . . . , xη, yη) ∈ {0, 1}2η are sampled, and
the output is computed as

c =

η∑
i=1

(xi − yi)

[28]. The coefficient c takes values in the range [−η, η] and follows a symmetric discrete
distribution centred at zero. When a polynomial f ∈ Rq is sampled from Bη, each coefficient
is independently drawn from Bη. The central binomial distribution for η = 2 can be seen in
Figure 3.1.
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Hash Functions

In ML-KEM, cryptographic hash functions ensure one-wayness and collision resistance [5].
These functions map inputs of arbitrary length to fixed-length outputs. A one-way function
makes it computationally infeasible to recover an input from its output. Collision resistance
ensures that no two distinct inputs produce the same output. ML-KEM employs three hash
functions, G,H, and J , defined as

G : {0, 1}∗ → {0, 1}256 × {0, 1}256, (3.4)

H : {0, 1}∗ → {0, 1}256, (3.5)

J : {0, 1}∗ → {0, 1}256. (3.6)

The functions H and J both take a variable-length binary input and produce a 256-bit
output. Specifically, H is instantiated as SHA3-256, while J is instantiated using SHAKE256
with a fixed 256-bit output [5]. G takes a variable-length input and produces two 256-bit
outputs by applying SHA3-512 and interpreting the 512-bit result as a concatenation of two
256-bit values [5]. All three functions are based on members of the SHA-3 family, which
includes both fixed-output hash functions, SHA3-256, and extendable-output functions such
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as SHAKE256. These hash functions are used throughout ML-KEM to derive cryptographic
keys and generate randomness. Implementation and details of these functions are omitted in
this thesis. For further information see [29] [5].

3.2 K-PKE

The K-PKE serves as a fundamental component of ML-KEM. It consists of three algo-
rithms:

1. Key generation, which produces a public encryption key and private decryption key.

2. Encryption, which takes as input a public encryption key and a message, producing a
ciphertext.

3. Decryption, which allows the recipient to recover the original message from the cipher-
text using the private decryption key.

The scheme is parameterised by the integers n, k, q, η1, η2, du, and dv [5]. The two commu-
nicating parties will be referred to as Alice and Bob. The following subsections provide a
description of the three algorithms in K-PKE.

Key Generation

To enable encryption and decryption, Alice must generate a public encryption key and a
corresponding private decryption key. She begins by selecting a public random seed ρ ∈
{0, 1}256 and expands it using a cryptographic hash function to generate the matrix A ∈
Rk×k

q . She then constructs a secret vector s ∈ Rk
q and an error vector e ∈ Rk

q by independently
sampling each of their components from Bη with parameters η1 and η2, respectively. Alice
then computes

t = As+ e. (3.7)

Finally, Alice’s public encryption key is given by (ρ, t), while her private decryption key is
s. The addition of the noise vector e ensures that the encryption scheme maintains security
based on the MLWE. The noise makes it computationally infeasible for an attacker to recover
s given (ρ, t) [5].

Encryption

Bob aims to encrypt a message m ∈ {0, 1}n for Alice using her public encryption key. To
achieve this, Bob first obtains an authentic copy of Alice’s public encryption key (ρ, t). He
then computes the matrix A by expanding ρ using a cryptographic hash function. Next, Bob
samples a random vector r ∈ Rk

q from Bη1 , and noise terms e1 ∈ Rk
q and e2 ∈ Rq from Bη2 .

Bob computes

u = A⊺r+ e1, (3.8)

v = t⊺r+ e2 +
⌈q
2

⌋
m, (3.9)
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where the term
⌈ q
2

⌋
m is used to encode the message m into a ciphertext [5]. Bob then

compresses both u and v to ensure they fit within the bounds defined by the parameters du
and dv. Specifically, he computes

c1 = Compressq(u, du),

c2 = Compressq(v, dv),

where Compressq denotes the compression function defined in (3.1).

Finally, Bob outputs the ciphertext
c = (c1, c2).

The ciphertext can be securely sent to Alice and contains the necessary information for Alice
to decrypt the message using her private decryption key.

Decryption

To decrypt the ciphertext c, Alice follows the steps outlined below. First, Alice com-
putes

ū = Decompressq(c1, du), (3.10)

v̄ = Decompressq(c2, dv). (3.11)

The decompression function (3.2) recovers the approximations ū and v̄ by reversing the
compression applied during encryption. Next, Alice computes

m′ = Compressq(v̄ − s⊺ū, 1) (3.12)

[5]. The final result gives Alice an approximation m′ of the original message m, completing
the decryption process. The error between m′ and m is bounded by (3.3).

Example 3.1 presents a simplified version of key generation, encryption, and decryption in
K-PKE. Some steps are omitted for clarity, but the goal of the example is to provide an
intuitive understanding of the overall scheme.

Example 3.1 (Simplified K-PKE)
Let q = 79, n = 3, k = 2, and η1 = η2 = 2. Alice selects the following

A =

17 + 60x+ 34x2 2 + 71x+ 24x2

77 + 6x+ 40x2 31 + 78x+ 5x2

 , s =

2 + x− x2

−x+ 2x2

 , e =

 1 + x2

2x− x2

 .

Then she computes

t = As+ e =

22 + 42x+ 45x2

48 + 11x+ 71x2

 .
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The public encryption key (A, t) is sent to Bob.
Bob encrypts a message m = 011 → x+ x2 to Alice by first selecting

r =

1 + 2x− x2

−2 + x+ x2

 , e1 =

 2− 2x2

1 + x+ x2

 , e2 = 2 + 2x+ x2.

He then calculates

u = A⊺r+ e1 =

48 + 74x+ 59x2

39 + 49x+ 27x2


and

v = t⊺r+ e2 +
⌈q
2

⌋
m = 35 + 49x+ 65x2.

Alice then receives the ciphertext c = (u, v). To decrypt the ciphertext, she uses her private
decryption key s to compute

v − s⊺u = 74 + 45x+ 50x2.

Then by using the compression function, she obtains

Compressq(74 + 45x+ 50x2, 1) = x+ x2,

which corresponds to the encoded message m = 011.

3.3 ML-KEM

A KEM can be used to establish a shared secret key between two communicating parties
[5]. This shared secret key can then be used for secret-key cryptography. A KEM consists of
three algorithms:

1. Key generation, Alice generates a public encapsulation key ek and a private decapsu-
lation key dk.

2. Encapsulation, Bob uses Alice’s public encapsulation key ek to generate a shared secret
key K and ciphertext c, and sends c to Alice.

3. Decapsulation, Alice uses her private decapsulation key dk to recover K from the ci-
phertext c.

While K-PKE is secure under the IND-CPA model, a variant of the FO transform enhances
its security, resulting in ML-KEM, which is secure under the stronger IND-CCA2 model [28].
The FO transform incorporates a verification step during decapsulation, preventing chosen
ciphertext attacks. The details regarding the FO transform are beyond the scope of this thesis
and will therefore not be included. For details on IND-CPA and IND-CCA2 security models,
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3.3. ML-KEM

see Section 1.2. An overview of key establishment using a KEM is shown in Figure 3.2.

Alice Bob

Key
Generation

Decapsulation key

Decapsulation

Alice’s copy of the
shared secret key

K ′

Ciphertext Encapsulation

Bob’s copy of the
shared secret key

K

Encapsulation key

Figure 3.2: Representation of the algorithms and steps involved in key establishment using a KEM. The
figure is remade from [5].

The remainder of this section provides a more detailed explanation of each of the three core
algorithms in ML-KEM, beginning with key generation.

Key Generation

Alice employs the K-PKE key generation algorithm to derive a public encryption key (ρ, t)

and a private decryption key s. The public encryption key serves as the public encapsulation
key, defined as ek = (ρ, t).

To construct the private decapsulation key, an implicit rejection value z ∈ {0, 1}256 is se-
lected, which is used in case of decryption failure to prevent invalid ciphertexts from leaking
information to an adversary [28]. The private decapsulation key is then formulated as

dk = (s, ek,H(ek), z), (3.13)

where H is a hash function defined in (3.5) [5].
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Encapsulation

Given a public encapsulation key ek, Bob selects a random message representative m ∈
{0, 1}n. Afterward, the shared secret key K ∈ {0, 1}256 and randomness r ∈ {0, 1}256 are
derived as

(K, r) = G(m,H(ek)), (3.14)

where G is a hash function defined in (3.4) [5]. The randomness r serves as a seed in K-
PKE, determining the pseudorandom sampling of polynomials from the central binomial
distribution. Using ek and r, K-PKE encrypts m to produce the ciphertext c. Thus, the
encapsulation outputs the shared secret key K and ciphertext c. The ciphertext is then sent
to Alice.

Decapsulation

To recover the shared secret key K from the ciphertext c, Alice uses her private decapsulation
key dk. First, she extracts her K-PKE private decryption key s from dk and applies the
K-PKE decryption algorithm with the inputs s and c, resulting in a decrypted ciphertext
denoted m′ ∈ {0, 1}n. Next, Alice derives the shared secret key candidate K ′ ∈ {0, 1}256

and the randomness r′ ∈ {0, 1}256 by applying the cryptographic hash function G. This is
expressed as (

K ′, r′
)
= G

(
m′,H(ek)

)
,

[5]. Alice then extracts z from dk, which is used to derive an alternative shared secret key
K̄ ∈ {0, 1}256 as

K̄ = J (z, c), (3.15)

where J is a cryptographic hash function defined in (3.6) [5].

Alice re-encrypts m′ using the K-PKE encryption algorithm with the public encapsulation
key ek and the derived randomness r′, producing a new ciphertext c′. If the encryption
and decryption processes were performed correctly, c′ should match the original ciphertext c.
Alice then verifies whether the received ciphertext c matches the recomputed ciphertext c′.
If c = c′, the derived shared secret K ′ is returned. Otherwise, if c ̸= c′, indicating potential
manipulation or corruption of the ciphertext, Alice returns the alternative secret K̄, derived
from z and c [5].

3.4 Parameter Sets

In ML-KEM, various parameters can be adjusted to achieve different security categories.
NIST has standardised three parameter sets, each corresponding to a specific security cate-
gory. These parameter sets are presented in Table 3.1.

The parameter n defines the size of the message, which is fixed at 256 bits. The prime
q = 3329 is selected to facilitate efficient number-theoretic transform (NTT) multiplication
while maintaining a negligible failure probability [28]. The parameter k determines the lattice
dimension, serving as the primary mechanism for scaling security [28]. The parameters η1 and

26



3.4. Parameter Sets

η2 define the distributions used in key generation and encryption, contributing to the overall
security of the scheme. Finally, the parameters du and dv regulate compression, impacting
both ciphertext size and error resilience.

Parameter Set n q k η1 η2 du dv Security Category

ML-KEM-512 256 3329 2 3 2 10 4 1

ML-KEM-768 256 3329 3 2 2 10 4 3

ML-KEM-1024 256 3329 4 2 2 11 5 5

Table 3.1: Approved parameter sets for ML-KEM [5].

The sizes of various components in ML-KEM depend on the chosen parameter set. As shown
in Table 3.2, the parameter sets each corresponds to different key and ciphertext sizes. As the
parameter set increases, both the public encapsulation and private decapsulation key sizes
grow to enhance security, resulting in a larger ciphertext. However, the shared secret key
remains fixed at 32 bytes across all parameter sets.

Parameter Set
Public

Encapsulation
Key

Private
Decapsulation

Key

Shared Secret
Key

Ciphertext

ML-KEM-512 800 1632 32 768

ML-KEM-768 1184 2400 32 1088

ML-KEM-1024 1568 3168 32 1568

Table 3.2: Sizes in bytes of keys and ciphertext of ML-KEM [5].

In all parameter sets, a corresponding probability of decapsulation failure exists. A decap-
sulation failure occurs when K ′ ̸= K, given that all inputs are well-formed and randomness
generation is successful [5]. The decapsulation failure rates for different parameter sets are
presented in Table 3.3.

Parameter Set Decapsulation Failure Rate

ML-KEM-512 2−138.8

ML-KEM-768 2−164.8

ML-KEM-1024 2−174.8

Table 3.3: Decapsulation failure rates for different ML-KEM parameter sets, as reported in [5].
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The decapsulation process and its associated failure rates highlight the importance of efficient
computation in ML-KEM. One critical technique used to enhance efficiency in ML-KEM is
the NTT.

3.5 Number-Theoretic Transform

The NTT is a specialised variant of the discrete Fourier transform optimised for polynomial
multiplication over finite fields [5]. In the ML-KEM, it enables efficient multiplication in the
quotient ring Rq = Zq[x]/(x

n +1), where n = 256 and q = 3329. Since q is prime and xn +1

is irreducible over Zq, the quotient ring Rq is a finite field.

Definition 3.2 (Primitive nth Root of Unity)
Let Zq be the ring of integers modulo q, and let f and g be polynomials with a maximum
degree of n−1. In this ring, there exists a multiplicative identity of 1. A number ζ is called
a primitive nth root of unity in Zq if and only if it satisfies the following conditions

ζn ≡ 1 (mod q)

and
ζm ̸≡ 1 (mod q), for m = 1, 2, . . . , n− 1. [30]

In the ML-KEM, the modulus q is a prime number given by

q = 3329 = 28 · 13 + 1. (3.15)

Since 256 = 28 divides q− 1, there exist 256th primitive roots of unity modulo q [5]. Specifi-
cally, ζ = 17 ∈ Zq is a primitive 256th root of unity, meaning that

ζ128 ≡ −1 (mod q). (3.15)

Therefore, the factorisation of the polynomial x256 + 1 modulo q, splits into irreducible
quadratic polynomials, given by

x256 + 1 =
127∏
i=0

(
x2 − ζ2i+1

)
mod q (3.15)

[28]. The NTT is a ring isomorphism, see Definition 2.3, that maps the ring Rq to a trans-
formed domain Tq, such that Rq

∼= Tq. This is defined as

NTT : Rq → Tq, (3.15)

and it has the property that

NTT−1(NTT(a)) = a, for all a ∈ Rq (3.15)
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[30]. This property ensures that for any two polynomials f, g ∈ Rq, their NTT representations
f̂ , ĝ ∈ Tq allow multiplication in Rq to be computed as

f · g = NTT−1
(
f̂ · ĝ

)
, (3.15)

[5]. Since multiplication in Tq is performed component-wise on elements of lower degree,
it is significantly more computationally efficient than direct polynomial multiplication in
Rq.

The polynomial x256+1 admits a factorisation over Zq into 128 quadratic factors as expressed
in (3.5). Consequently, the transformed domain Tq can be decomposed as a direct sum of
128 smaller rings

Tq =

127⊕
i=0

Zq[x]/
(
x2 − ζ2i+1

)
[5]. Let f ∈ Rq be a polynomial, where n = 2k and q is a prime such that q − 1 is divisible
by n, but not by 2n. The NTT representation of f in the transformed domain Tq is given by
the vector

f̂ =
(
f mod x2 − ζ1, . . . , f mod x2 − ζ2(n/2−1)+1

)
.

The algebraic representation of NTT(f) = f̂ consists of n/2 polynomials of degree 1

NTT(f) = f̂ =
(
f̂0 + f̂1x, f̂2 + f̂3x, . . . , f̂n−2 + f̂n−1x

)
,

where the coefficients are computed as

f̂2i =

n/2−1∑
j=0

f2jζ
(2i+1)j mod q, (3.16)

f̂2i+1 =

n/2−1∑
j=0

f2j+1ζ
(2i+1)j mod q, (3.17)

[28]. The inverse NTT reconstructs f as

NTT−1(f̂) = f = f0 + f1x+ . . .+ fn−1x
n−1,

where the coefficients are recovered by

f2j =
1

n/2

n/2−1∑
i=0

f̂2iζ
−(2i+1)j mod q, (3.18)

f2j+1 =
1

n/2

n/2−1∑
i=0

f̂2i+1ζ
−(2i+1)j mod q. (3.19)

For further insight into the NTT, an example is provided in Example 3.3.
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Example 3.3 (NTT)
Consider the ring Rq = Z13[x]/

(
x4 + 1

)
, a primitive root of unity ζ is sought such that

ζ4 ≡ 1 (mod 13).

It is found that ζ = 5 satisfies the conditions in Definition 3.2. Let the polynomials a, b ∈ Rq

be given by
a = 3 + 5x+ 2x2 + 7x3 and b = 6 + 4x+ x2 + 3x3.

The goal is to compute the product c = a ·b mod (x4+1). This can be efficiently performed
using the NTT by computing

â = NTT(a), b̂ = NTT(b), ĉ = â · b̂ and c = NTT−1(ĉ).

To compute the NTT of a, the formulas in (3.16) and (3.17) are applied

â0 =

1∑
j=0

a2jζ
j mod 13 = 13 mod 13 = 0,

â1 =
1∑

j=0

a2j+1ζ
j mod 13 = 40 mod 13 = 1,

â2 =

1∑
j=0

a2jζ
3j mod 13 = 253 mod 13 = 6,

â3 =
1∑

j=0

a2j+1ζ
3j mod 13 = 880 mod 13 = 9.

Thus, the NTT of a is
â = NTT(a) = (x, 6 + 9x).

The NTT of b is calculated in the same manner, resulting in

b̂ = NTT(b) = (11 + 6x, 1 + 2x).

The product ĉ = â · b̂ is calculated component-wise

ĉ = (x, 6 + 9x) · (11 + 6x, 1 + 2x) = (4 + 11x, 7 + 8x),

To recover c from ĉ, the inverse NTT formulas in (3.18) and (3.19) are applied. Specifically,
for each coefficient ci, the inverse NTT is computed as follows

c0 =
1

2

1∑
i=0

ĉ2iζ
0 mod 13 =

1

2
· 11 mod 13 = 12,

c1 =
1

2

1∑
i=0

ĉ2i+1ζ
0 mod 13 =

1

2
· 19 mod 13 = 3,

c2 =
1

2

1∑
i=0

ĉ2iζ
−2i+1 mod 13 =

1

2
· 72 mod 13 = 1,

c3 =
1

2

1∑
i=0

ĉ2i+1ζ
−2i+1 mod 13 =

1

2
· 128 mod 13 = 12.
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In these calculations, the following modular inverses are used

1

2
mod 13 = 7,

1

5
mod 13 = 8 and

1

53
mod 13 = 5.

Thus, the final result for c is

c = 12 + 3x+ x2 + 12x3.

This completes the computation of the product c = a · b mod
(
x4 + 1

)
using the NTT and

its inverse.

A summary of how and where the NTT is applied across the different algorithms of ML-KEM
can be found in Table 3.4.

Algorithm Operation NTT Use

Key Generation

Expand matrix A Â = ExpandNTT(ρ)

Transform vectors ŝ = NTT(s), ê = NTT(e)

Matrix-vector product t̂ = Âŝ+ ê

Encapsulation

Transform vector r̂ = NTT(r)

Compute ciphertext u u = NTT−1
(
Â⊺r̂

)
+ e1

Compute ciphertext v v = NTT−1
(
t̂⊺r̂

)
+ e2 +

⌈ q
2

⌋
m

Decapsulation
Transform received ū ˆ̄u = NTT(ū)

Inner product v̄ −NTT−1
(
ˆ̄u⊺ŝ

)
Table 3.4: Use of the NTT across the ML-KEM algorithms [5].

The application of the NTT significantly enhances the computational efficiency of ML-KEM,
reducing the complexity of polynomial multiplications and enabling faster operations across
all algorithms.
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4 Quasi-Cyclic Codes & Syndrome
Decoding Problems
The security of the code-based HQC scheme is based on the computational hardness of the
decisional quasi-cyclic syndrome decoding (DQCSD) problem with parity and truncation.
This problem is a decisional variant of the classical syndrome decoding problem, but for
quasi-cyclic (QC) codes. QC codes are a subclass of linear error-correcting codes represented
by their block-level cyclic structure, which considerably decreases the size of the keys [31].
The aim of this chapter is to introduce the mathematical framework of QC codes and quasi-
cyclic syndrome decoding (QCSD) problems, culminating in the definition of the DQCSD
problem with parity and truncation.

4.1 Quasi-Cyclic Codes

The code in the DQCSD problem is based on a systematic QC code composed of circulant
matrices. QC codes are a generalisation of cyclic codes that are a specific class of linear codes.
A linear block code C of length n and dimension k, denoted [n, k], is a subspace of Fn

q with
qk elements. Hence, C = {c1, c2, . . . , cqk}, where the elements ci =

(
ci0, ci1, . . . , ci(n−1)

)
∈ C

are called codewords [32, pp. 3–4] [33, p. 1]. The rate or efficiency of the linear block code
is the ratio of the number of information bits relative to the total number of bits in the
codeword, defined as r = k

n . A linear block code can be represented by a generator matrix
G ∈ Fk×n

q such that C = {mG : m ∈ Fk
q}, where m is a message, and a parity-check matrix

H ∈ F(n−k)×n
q such that C = {c ∈ Fn

q | Hc⊺ = 0} [32, p. 4]. Henceforth, linear block codes
will be referred to as linear codes for simplicity. Linear codes over F2 are called binary codes.
All codes in the HQC scheme are defined over F2, thus, unless stated otherwise, all vector
spaces and definitions in this chapter are defined over F2.

A linear code C of length n and dimension k with known minimum distance d is referred to
as an [n, k, d] code. For codewords x,y ∈ C, the Hamming distance d(x,y) is defined as the
number of elements in which x and y differ. The minimum distance of the code C is defined
as the minimum Hamming distance between any two distinct codewords, denoted by

d(C) = min
x ̸=y

d(x,y).

Equivalently, the minimum distance can be defined as the minimum Hamming weight. A
Hamming weight of a codeword is the number of its elements that are non-zero, defined as
ω(x) = d(x,0) [32, pp. 7–8]. The minimum distance can be used to compute how many errors
a code can correct. In general, a linear code can correct up to t = ⌊d−1

2 ⌋ errors [31].

The specific class of linear codes called cyclic codes can now be defined.
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Definition 4.1 (Cyclic Code)
A linear code C ⊆ Fn

2 is called cyclic if for any codeword ci =
(
ci0, ci1, . . . , ci(n−1)

)
∈ C,

the codeword obtained by a cyclic shift c′i =
(
ci(n−1), ci0, ci1, . . . , ci(n−2)

)
is also a codeword

in C. [32, p. 121]

When examining cyclic codes over F2, the codewords of the cyclic code ci ∈ C can be
represented as polynomials in R of degree at most n − 1 such that the codeword ci =(
ci0, ci1, . . . , ci(n−1)

)
∈ Fn

2 for i = 1, 2, . . . , qk maps to the polynomial ci(x) = ci0 + ci1x +

· · ·+ ci(n−1)x
n−1 ∈ F2[x]. Thus, a cyclic shift corresponds to multiplication by x mod xn−1.

It follows that every cyclic code is a polynomial code [32, p. 121].

The idea of cyclic codes can be generalised to QC codes, where a code C has the property that
there exists an integer s such that the shift of a codeword by s positions is again a codeword
[32, p. 131]. These codes are based on circulant matrices. Let v = (v0, . . . , vn−1) ∈ Fn

2 . The
circulant matrix associated to v is defined as

rot(v) =



v0 v1 . . . vn−1

vn−1 v0 . . . vn−2

...
...

. . .
...

v1 v2 · · · v0


∈ Fn×n

2 , (4.1)

with each row being a single cyclic shift of the previous one. The identity matrix In is an
example of a circulant matrix [32, p. 376].

Definition 4.2 (Quasi-Cyclic Code)
Let s be a positive integer. A linear code C ⊆ Fsn

2 is called QC of index s if, for any
codeword ci =

(
ci0, ci1, . . . , ci(s−1)

)
∈ C, with every cij ∈ Fn

2 , the codeword obtained by
applying a simultaneous circular shift as in Definition 4.1 to each block cij also belongs to
C. [31, p. 12]

To specify the index s, QC codes are referred to as s-QC. Cyclic codes are QC codes with
s = 1 [32, pp. 131–132]. With s = 2, QC codes are called double circulant codes. A double
circulant code [2n, n, d] is of even length [32, p. 132]. One of the two codes used in the HQC
scheme is a double circulant code in systematic form [31].
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Definition 4.3 (Systematic Quasi-Cyclic Code)
A systematic QC code [sn, n] of index s and rate 1/s is a QC code with a parity-check
matrix of the form:

H =



In 0 · · · 0 A0

0 In A1

. . .
...

0 · · · In As−2


∈ F(sn−n)×sn

2 ,

where A0,A1, . . . ,As−2 are circulant n× n matrices. [31, p. 12]

The definitions of systematic QC codes of index s can be generalised to all rates ℓ/s for
ℓ = 1, 2, . . . , s − 1, but in the HQC scheme, only the systematic QC codes of rates 1/2 and
1/3 are used [31, p. 12].

4.2 Quasi-Cyclic Syndrome Decoding Problems

This section describes the hard problems relevant to HQC, all of which are variants of the
decoding problem, which consists of finding the closest codeword to a given vector. For linear
codes, the problem remains equivalent whether the received vector or its syndrome is given
[31]. Let C ⊆ Fn

2 be a binary code with length n and dimension k. Given a parity-check
matrix H ∈ F(n−k)×n

2 and a received codeword r ∈ Fn
2 , the syndrome of r is defined as

s = Hr⊺ ∈ Fn−k
2 [33, p. 4]. The syndrome plays an important role in the syndrome decoding

problem.

Definition 4.4 (Syndrome Decoding Problem)
Let n, k, and t be positive integers. Given a parity-check matrix H ∈ F(n−k)×n

2 and a
syndrome s ∈ Fn−k

2 , the syndrome decoding problem asks to find an error vector e ∈ Fn
2

such that

ω(e) = t,

He⊺ = s,

where ω(e) is the Hamming weight of e. [33, pp. 8–9]

The syndrome of a received codeword r = c + e is the same as the syndrome of the error
vector e, since

Hr⊺ = H(c + e)⊺ = Hc⊺ + He⊺ = 0+ He⊺ = He⊺.
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If r is a valid codeword, s = 0 [33, p. 4]. As the HQC cryptosystem uses QC codes, the
following definition describes the QCSD distribution [31, p. 13].

Definition 4.5 (Quasi-Cyclic Syndrome Decoding Distribution)
Let n, s, and t be positive integers. The QCSD distribution is the distribution over (H, s),
where a parity-check matrix H ∈ F(sn−n)×sn

2 of a systematic QC code C of index s and
rate 1/s is sampled uniformly at random, and an error vector e = (e0, e1, . . . , es−1) ∈ Fsn

2 ,
with ei ∈ Fn

2 , is sampled uniformly at random, such that

ω(ei) = t ∀i ∈ [0, s− 1],

He⊺ = s.

The distribution outputs the pair (H, s). [31, p. 13]

The QCSD distribution can be referred to as s-QCSD to specify the index s. The security in
HQC is based on the assumption that it is computationally hard to distinguish the syndrome
of a random error vector with a specific weight generated from a QC code from a uniform
random vector. The DQCSD problem is the decisional variant of the SD problem for QC
codes [31, p. 13].

Definition 4.6 (Decisional Quasi-Cyclic Syndrome Decoding Problem)
Let n, s, and t be positive integers. Given a pair (H, s) ∈ F(sn−n)×sn

2 ×Fsn−n
2 , the DQCSD

problem asks to decide with non-negligible advantage whether (H, s) came from:

1. The distribution in Definition 4.5, or

2. The uniform distribution over F(sn−n)×sn
2 × Fsn−n

2 .

[31, p. 13]

The DQCSD problem is the foundational problem on which the security of the HQC scheme
relies. In this problem, an adversary aims to distinguish whether (H, s) comes from the QCSD
or uniform distribution. The adversary’s advantage measures how much their success exceeds
random guessing. A non-negligible advantage means the adversary’s probability of success is
noticeably higher than random guessing. If the adversary can distinguish between the two
distributions, information about the error vector or ciphertext could be gained, which could
potentially lead to decrypting the secret message. The DQCSD problem is considered secure,
as it is assumed that no adversary can achieve a non-negligible advantage, thus ensuring the
confidentiality of the secret message [31].

Building on the DQCSD problem, HQC also addresses the need to prevent trivial distinguish-
ing advantages by ensuring that syndromes have controlled parity. The parity of a syndrome

35



4.2. Quasi-Cyclic Syndrome Decoding Problems

is the sum of its bits modulo 2 such that the parity is 0 when the syndrome has an even
number of 1s and 1 when it has an odd number of 1s. If the parity of the syndrome leaks or
is predictable, it could become a side-channel that lets an attacker distinguish information
[31]. Hence, for binary vectors h of length n and a parity b1 ∈ {0, 1}, the following finite set
is defined:

Fn
2,b1 = {h ∈ Fn

2 | h(1) mod 2 = b1},

where h(1) denotes the evaluation of the polynomial corresponding to h at x = 1. Similarly,
for matrices, the finite sets are defined as

Fn×2n
2,b1

=

{
H =

(
In rot(h)

)
∈ Fn×2n

2 | h ∈ Fn
2,b1

}
,

F2n×3n
2,b1,b2

=

H =

In 0 rot(h1)

0 In rot(h2)

 ∈ F2n×3n
2 | h1 ∈ Fn

2,b1 ,h2 ∈ Fn
2,b2

 ,

where In is the n×n identity matrix, b2 ∈ {0, 1} is a parity, and rot(h), rot(h1), and rot(h2)

are circulant matrices generated from h, h1, h2, respectively [31, p. 14]. The parity constraint
is essential for preventing certain side-channel or distinguishing attacks [31].

With the additional parity constraint, the DQCSD problem with s = 2 can be modi-
fied.

Definition 4.7 (2-QCSD With Parity Distribution)
Let n, t, b1 be positive integers and b2 = t + b1 · t mod 2. The 2-QCSD with parity
distribution is the distribution over (H, s), where a parity-check matrix H ∈ Fn×2n

2,b1
of a

systematic QC code C of index 2 and rate 1/2 is sampled uniformly at random, and an
error vector e = (e1, e2) ∈ F2n

2 , with e1, e2 ∈ Fn
2 , sampled uniformly at random, such that

ω(e1) = ω(e2) = t,

He⊺ = s.

The 2-QCSD with parity distribution outputs the pair (H, s). [31, p. 14]

Definition 4.8 (2-DQCSD With Parity Problem)
Let n, t, b1 be positive integers and b2 = t+b1 ·t mod 2. Given a pair (H, s) ∈ Fn×2n

2,b1
×Fn

2,b2
,

the 2-DQCSD with parity problem asks to decide with non-negligible advantage whether
(H, s) came from:

1. The distribution in Definition 4.7, or

2. The uniform distribution over Fn×2n
2,b1

× Fn
2,b2

.

[31, p. 14]
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4.2. Quasi-Cyclic Syndrome Decoding Problems

To prevent algebraic attacks, the code length n is desired to be a primitive prime number such
that xn − 1 has only two irreducible factors modulo q. However, since the encoded message
length in the HQC scheme is not prime, an ambient length n is chosen. This introduces
excess bits ℓ, which are truncated to restore the original length. The truncation operation
truncate(v, ℓ) = (v0, v1, . . . , vn−ℓ−1) for v = (v0, v1, . . . , vn−1) returns the first n − ℓ bits of
v and discards the last ℓ bits. This leads to a modified version of the DQCSD with parity
problem [31, p. 14].

Definition 4.9 (3-QCSD With Parity & Truncation Distribution)
Let n, t, b1, b2, ℓ be positive integers and b3 = t + b1 · t mod 2. The 3-QCSD with parity
and truncation distribution is the distribution over (H, s), where a parity-check matrix
H ∈ F2n×3n

2,b1,b2
of a systematic QC code C of index 3 and rate 1/3 is sampled uniformly at

random, and an error vector e = (e1, e2, e3) ∈ F3n
2 , with e1, e2, e3 ∈ Fn

2 , sampled uniformly
at random, such that

ω(e1) = ω(e2) = ω(e3) = t,

He⊺ = s,

where s = (s1, s2) ∈ F2n
2 , with s1, s2 ∈ Fn

2 .

The 3-QCSD with parity and truncation distribution outputs the pair
(H, (s1, truncate(s2, ℓ))) ∈ F2n×3n

2,b1,b2
×

(
Fn
2,b3

× Fn−ℓ
2

)
. [31, p. 14]

Definition 4.10 (3-DQCSD With Parity & Truncation Problem)
Let n, t, b1, b2, ℓ be positive integers and b3 = t + b1 · t mod 2. Given a pair
(H, (s1, truncate(s2, ℓ))), the 3-DQCSD with parity and truncation problem asks to de-
cide with non-negligible advantage whether (H, (s1, truncate(s2, ℓ))) came from:

1. The distribution in Definition 4.9, or

2. The uniform distribution over F2n×3n
2,b1,b2

×
(
Fn
2,b3

× Fn−ℓ
2

)
.

[31, p. 15]

The hardness of the 3-DQCSD with parity and truncation problem underpins the IND-CPA
security of HQC.
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5 Hamming Quasi-Cyclic
HQC was selected by NIST in March 2025 for standardisation. In approximately two years, as
of the writing of this thesis, NIST will publish the final standard version based on HQC. The
standardisation of HQC will be the second PQC KEM after ML-KEM. Structurally, HQC is
similar to LWE-based cryptosystems like ML-KEM, which was introduced in Chapter 3. It
employs two stages: a PKE scheme, called HQC.PKE, and a KEM scheme, called HQC.KEM.
Since HQC.PKE only achieves IND-CPA security, a variant of the FO transform is applied
to obtain the IND-CCA2-secure HQC.KEM scheme [8].

5.1 Prerequisites

Before presenting the HQC scheme, Reed-Muller (RM) codes, concatenated Reed-Muller and
Reed-Solomon (RMRS) codes, as well as the ring structure, codes, and hash functions used
in the scheme, are introduced.

Reed-Muller Codes

RM codes can be seen as a generalisation of Reed-Solomon (RS) codes. Often, RM codes are
binary codes. The two parameters that define an RM code are the number of variables used
in the polynomials, denoted m, and the order of the polynomials, denoted r [32, p. 34].

Definition 5.1 (Binary rth Order Reed-Muller Code)
Let m be a positive integer and r a non-negative integer with r ≤ m. The binary rth order
RM code, denoted RM(r,m), is the set of all vectors f = (f(v1), f(v2), . . . , f(v2m)) with
v1,v2, . . . ,v2m ∈ Fm

2 , where f ∈ F2[x1, x2, . . . , xm] is a polynomial of degree at most r.
The binary RM code has the following parameters:

• A code length of n = 2m.

• A dimension of k =
∑r

i=0 (
m
i ).

• A minimum distance of d = 2m−r. [34, p. 373]

In the HQC scheme, a binary first-order RM code is used. A binary first-order RM code is
a code with r = 1, denoted RM(1,m) [31].

Concatenated Reed-Muller & Reed-Solomon Codes

A concatenated RMRS code is used in the encryption and decryption process of HQC. A
concatenated code is a technique that combines two or more codes to obtain a new code with
improved properties [31].
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5.1. Prerequisites

Definition 5.2 (Concatenated Codes)
Let C1 be an external code [n1, k1, d1] over Fn1

q and let C2 be an internal code [n2, k2, d2]

over Fn2
2 , with q = 2k2 . By using a bijection between the elements of Fn1

q and the codewords
of the internal code C2, the following transformation is obtained

Fn1
q −→ Fn1n2

2 .

Thus, the external code C1 is transformed into a binary code [n1n2, k1k2,≥ d1d2], referred
to as a concatenated code. [31, p. 21]

In HQC, the external code is a shortened RS code, and the internal code is a duplicated
first-order RM code. Shortening RS codes involves reducing their block length by removing
information symbols. All the symbols which are dropped need not to be transmitted and at
the receiving end can be reinserted. The RS codes are defined over F28 , where q = 28 = 256,
and have the following parameters:

• A block length of n1 = q − 1 = 256− 1 = 255.

• A dimension of k1 = n1 − 2δ = 255− 2δ.

• A minimum distance of d1 = 2δ + 1,

where δ is the error-correcting capability of the code [31]. The specific parameter values are
outlined in Table 5.1.

RS Code n1 k1 δ

RS-1 255 225 15

RS-2 255 223 16

RS-3 255 197 29

RS-S1 46 16 15

RS-S2 56 24 16

RS-S3 90 32 29

Table 5.1: Code lengths, dimension, and error-correcting capability of original and shortened RS codes. The
abbreviation ’S’ refer to the shortening code. Information is from [31].

The shortened RS codes are obtained by subtracting 209, 199, and 165 from n1 and k1 of
RS-1, RS-2, and RS-3, respectively, while maintaining the same error-correcting capability.
Encoding and decoding of shortened RS codes can be performed by treating it as a standard
RS code. For more details on encoding and decoding of shortened RS codes, see [31, pp. 23–
25] and [33, pp. 51–53, 57–60].
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5.1. Prerequisites

The internal code used in HQC is a first-order RM code, denoted RM(1, 7). This code has
the following parameters:

• A code length of n2 = 2m = 27 = 128.

• A dimension of k2 =
∑r=1

i=0 (
m
i ) = 1 +m = 1 + 7 = 8.

• A minimum distance of d2 = 2m−r = 27−1 = 64.

To form the duplicated RM code, each codeword from RM(1, 7) is duplicated a certain
number of times [31], as specified in Table 5.2.

Scheme RM Code Multiplicity Duplicated RM Code

HQC-128 [128, 8, 64] 3 [384, 8, 192]

HQC-192 [128, 8, 64] 5 [640, 8, 320]

HQC-256 [128, 8, 64] 5 [640, 8, 320]

Table 5.2: Duplicated RM code parameters for different security categories for HQC.

For a detailed explanation of encoding and decoding of duplicated RM codes, see [31, pp. 25–
26] and [34, pp. 419–425].

Encoding a concatenated code, a message m ∈ Fk1k2
2 is first encoded using the short-

ened RS code, yielding m1 ∈ Fn1

28
. Each coordinate m1,i of m1 is then encoded us-

ing the RM(1, 7) code. This codeword is then duplicated depending on the multiplic-
ity of the RM code, producing m̃1,i ∈ Fn2

2 . Finally, the resulting encoded message is
mG = m̃ = (m̃1,0 . . . , m̃1,n1−1) ∈ Fn1n2

2 . While the concatenated code has length n1n2,
calculations are carried out in an ambient space of length n, the smallest primitive prime
greater than n1n2. The remaining ℓ = n − n1n2 bits are truncated. Decoding proceeds in
two stages, where the internal code is decoded first, then the external code. For a detailed
explanation of decoding of the concatenated RMRS codes, see [31, pp. 24–26], [33, pp. 51–53,
57–60], and [34, pp. 419–425].

The Ring Structure in HQC

In the HQC cryptosystem, several key vectors are represented as binary vectors whose ele-
ments correspond to the coefficients of a polynomial. Therefore, a brief introduction to the
underlying ring in which these polynomials are defined is provided.
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Definition 5.3 (The Ring R2)
Let n be a positive integer and F2 denote the binary finite field. Then, the quotient ring

R2 = F2[x]/(x
n − 1),

consists of polynomials with coefficients in F2, where addition and multiplication are per-
formed modulo xn − 1. [31]

Each element in R2 can be uniquely represented by a polynomial of degree at most n − 1,
corresponding to a binary vector of length n. Some of these vectors correspond to polynomials
with a fixed Hamming weight.

Definition 5.4 (The Subset Rw)
Let w be a positive integer and R2 = F2[x]/(x

n − 1). For v ∈ R2, with Hamming weight
ω(v), the subset

Rw = {v ∈ R2 | ω(v) = w},

consists of polynomials in R2 with exactly w non-zero coefficients. [31, pp. 10, 16]

The subset Rw is essential in HQC, as it defines the structure of shared secret keys and error
vectors.

Code Structure in HQC

HQC uses two types of codes:

1. An [n, k] linear code C, generated by the generator matrix G ∈ Fk×n
2 , which can correct

at least δ errors. It is assumed that there are both an efficient encoding and decoding
algorithm.

2. A random double-circulant [2n, n] code with a parity-check matrix H = (In, rot(h)),
where In is a n × n identity matrix and rot(h) is a circulant matrix as defined in
(4.1), generated from a vector h ∈ R2. Here, R2 is a polynomial ring, as defined in
Definition 5.3, for n prime such that xn − 1 has only two irreducible factors modulo 2
[8].

The first code is a concatenated RMRS code [n1n2, k1k2], generated by the generator matrix
G ∈ Fk1k2×n1n2

2 . It is assumed that the generator matrix as well as the encoding and decoding
algorithms for C are publicly known. For the second code, it is assumed that no one knows
the decoding algorithm [31].
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5.2. HQC.PKE

Hash Functions

HQC uses two hash functions, denoted as

G : {0, 1}∗ → {0, 1}512, (5.1)

K : {0, 1}∗ → {0, 1}512. (5.2)

Both are based on SHAKE256 with 512 bits output length. SHAKE256 is an extendable-
output function from the SHA-3 family, which means it can generate outputs of arbitrary
length, unlike SHA-256, which always produces a fixed 256-bit output regardless of the input
size [35]. The implementation details of these functions are beyond the scope of this thesis.
For further information, see [31].

Throughout the HQC scheme, vectors that are sampled uniformly at random are generated
using SHAKE256-based functions. One such function is used to derive seeds, which are then
used as input to another SHAKE256-based function that generates the vectors, depending on
the specific context within the HQC scheme. For further details on the SHAKE256-functions,
see [31].

5.2 HQC.PKE

The IND-CPA secure HQC.PKE scheme consists of the following algorithms:

1. Key generation, which takes the input parameters and generates the public encryption
key and private decryption key.

2. Encryption, which takes a public encryption key and a message as input and produces
a ciphertext.

3. Decryption, which takes a private decryption key and ciphertext as input and attempts
to reconstruct the original message.

The two communicating parties will be referred to as Alice and Bob. The following subsec-
tions provide a description of the algorithms in HQC.PKE.

Key Generation

For Alice and Bob to communicate securely, they need to generate public encryption and
private decryption keys. Therefore, Alice uses the input parameters to generate a public
encryption key, pk, and a corresponding private decryption key, sk. She achieves this by
first sampling h ∈ R2 uniformly at random. The parity-check element h forms a part of the
public encryption key.

Alice then generates G ∈ Fk1k2×n1n2
2 for a decodable concatenated RMRS code C, as defined

in Section 5.1. The generator matrix G is used to encode messages and enables error-
correction during decryption. To construct the private decryption key, Alice samples uni-
formly at random the secret pair (x,y) ∈ Rw ×Rw, where Rw is the set of vectors defined in
Definition 5.4 [31].
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5.3. HQC.KEM

Finally, Alice computes her public encryption and private decryption keys as

pk = (h, s = x + h · y), (5.3)

sk = (x,y).

The public encryption key is sent to Bob, while the private decryption key remains with Alice
[31].

Encryption

Bob wants to send a message m ∈ Fk1k2
2 to Alice. He does that by encrypting the message

m using Alice’s public encryption key pk. To achieve this, Bob first encodes the message
m into a codeword mG, as explained in Section 5.1. Then, he generates noise by sampling
uniformly at random the error vector e ∈ Rwe , where we denotes the Hamming weight of e,
and r = (r1, r2) ∈ Rwr ×Rwr , where r1 and r2 each have Hamming weight wr [8]. Then, Bob
computes

u = r1 + h · r2, (5.4)

v = truncate(mG + s · r2 + e, ℓ), (5.5)

where truncate(a, ℓ) is the truncation of a vector a by the number of ℓ bits. Lastly, Bob sends
the ciphertext c = (u,v) to Alice [31].

Decryption

Alice receives the ciphertext c from Bob. To decrypt the ciphertext, Alice uses her private
decryption key sk to compute v − u · y. Using the decoding algorithm for the concatenated
RMRS code C, denoted Decode, Alice can compute

m′ = Decode(v − u · y). (5.6)

If the decoding is successful, meaning the number of errors does not exceed the decoder’s
error-correction capacity δ, Alice obtains the original message m [31].

The correctness of the scheme relies on the decoding capability of the code C. Specifically,
assuming Decode correctly recovers m if v−u·y contains at most δ errors. This is guaranteed
whenever the following conditions hold [31]:

ω(s · r2 − u · y + e) ≤ δ,

ω((x + h · y) · r2 − (r1 + h · r2) · y + e) ≤ δ,

ω(x · r2 − r1 · y + e) ≤ δ.

5.3 HQC.KEM

The IND-CCA2 secure HQC.KEM scheme is constructed from HQC.PKE using a variant of
the FO transform. The HQC.KEM scheme consists of the following algorithms [31]:
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5.3. HQC.KEM

1. Key Generation, which takes the input parameters and generates the public encapsu-
lation and private decapsulation keys.

2. Encapsulation, which takes the public encapsulation key as input and generates a shared
secret key, a ciphertext, and a salt value.

3. Decapsulation, which takes the private decapsulation key, the ciphertext, and the salt
value as input and attempts to reconstruct the shared secret key.

The following subsections provide a description of the algorithms in HQC.KEM, with the
two communicating parties referred to as Alice and Bob.

Key Generation

Alice employs the HQC.PKE key generation algorithm to derive a public encryption key pk

and a private decryption key sk. The public encryption key serves as the public encapsulation
key. To construct the private decapsulation key, a uniformly random vector σ ∈ Fk1k2

2 is
sampled to enable implicit rejection during decapsulation. The private decapsulation key is
then formulated as

sk = (x,y,σ), (5.7)

where sk ∈ Rw×Rw×Fk1k2
2 [31]. Alice then sends the public encapsulation key to Bob.

Encapsulation

Given Alice’s public encapsulation key pk, Bob generates uniformly at random a message
m ∈ Fk1k2

2 that will serve as a seed to derive the shared secret key. He also samples uniformly
at random a salt, salt ∈ F128

2 , which is a non-secret value that is added to ensure uniqueness
and prevent deterministic outputs. Using m, the first 32 bytes of the public encapsulation
key pk, and the salt, he computes the randomness

θ = G(m, firstBytes(pk, 32), salt), (5.8)

where G is the hash function defined in (5.1) and firstBytes(·) extracts the first specified
number of bytes from a byte string. Using the same steps as in the HQC.PKE encryption
algorithm but with θ as the seed, Bob generates (e, r1, r2) uniformly at random with the
specified Hamming weights we and wr, such that ω(e) = we and ω(r1) = ω(r2) = wr. Then,
Bob can compute the ciphertext c = (u,v), where u and v are defined as in the HQC.PKE
encryption algorithm. Finally, Bob computes the shared secret key

K = K(m, c)

using the hash function K as defined in (5.2), and sends (c, salt) to Alice [31].
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5.4. Parameter Sets

Decapsulation

To recover the shared secret key K from the ciphertext c, Alice uses her private decapsulation
key sk. She first computes

m′ = Decrypt(sk, c),

by applying the HQC.PKE decryption algorithm. Then, she computes the randomness

θ′ = G(m′, firstBytes(pk, 32), salt), (5.9)

and re-encrypts m′ using θ′ as the seed to obtain (e′, r′1, r
′
2) such that ω(e′) = we and

ω(r′1) = ω(r′2) = wr. The reason for re-encrypting the message after the decryption is to
verify if the received ciphertext c is equal to the newly computed one c′. The shared secret
key can only be shared if the equality is verified. Therefore, Alice calculates

u′ = r′1 + h · r′2, (5.10)

v′ = truncate(m′G + s · r′2 + e′, ℓ), (5.11)

such that she gets c′ = (u′,v′). If c = c′, the shared secret key is computed as

K ′ = K(m, c).

Otherwise, if c ̸= c′, decryption failed and a random shared secret key is computed as

K̄ = K(σ, c),

using implicit rejection [31].

5.4 Parameter Sets

HQC consists of the parameters n1, n2, n, k1, k2, w, wr, we, and ℓ, with three parameter
sets in total, corresponding to a specific security category. The parameters n1 and n2 denote
the length of the RS and RM codes, respectively. Their product, n1n2, gives the length of
the concatenated RMRS code. Since n1n2 is not prime, the prime integer n is used as the
smallest primitive prime greater than n1n2. The parameters k1 and k2 denote the dimension
of the RS and RM codes, respectively. The parameter w defines the Hamming weight of the
secret vectors x and y. Similarly, wr and we specify the Hamming weights of the vectors
(r1, r2), and e, respectively. Lastly, ℓ = n− n1n2 denotes the length of the truncated part of
v in the ciphertext [31].

The parameter sets for each of the three security categories are listed in Table 5.3.
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Parameter Set n1 n2 n k1 k2 w wr = we ℓ Security Category

HQC-128 46 384 17669 16 8 66 75 5 1

HQC-192 56 640 35851 24 8 100 114 11 3

HQC-256 90 640 57637 32 8 131 149 37 5

Table 5.3: HQC parameter sets for security category 1, 3, and 5. The information is sourced from [31].

The size of keys and ciphertexts depends on the selected parameter set. Higher security
categories require longer keys and ciphertexts to strengthen security. Detailed sizes are shown
in Table 5.4. The size of the shared secret key remains constant at 64 across all parameter
sets.

Parameter Set
Public

Encapsulation
Key

Private
Decapsulation

Key

Shared
Secret
Key

Ciphertext

HQC-128 2249 56 64 4433

HQC-192 4522 64 64 8978

HQC-256 7245 72 64 14421

Table 5.4: Key and ciphertext sizes in bytes for each HQC parameter set [8]. Note that the private
decapsulation key sizes differ slightly between [8] and [31]. It should also be noted that the ciphertext sizes
listed in [31] are 64 bytes larger than the sizes computed in this thesis.

The reliability of HQC is quantified through its decapsulation failure rate. The decapsulation
failure rates for different parameter sets are presented in Table 5.5.

Parameter Set Decapsulation Failure Rate

HQC-128 < 2−128

HQC-192 < 2−192

HQC-256 < 2−256

Table 5.5: Decapsulation failure rates for different HQC parameter sets, as reported in [31].
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6 Comparative Complexity Analysis
of ML-KEM & HQC
Understanding how ML-KEM and HQC scale helps determine their suitability for real-world
applications, particularly in resource-constrained devices. Even when secure and correct, an
algorithm’s efficiency can make the difference between practicality and infeasibility. There-
fore, in this thesis, the computational complexities of ML-KEM and HQC are analysed. The
foundation for this analysis is laid in Appendix A. Detailed complexity analyses for ML-
KEM and HQC are presented in Appendix B and Appendix C, respectively. This chapter
presents a comparative analysis of the time and space complexities of ML-KEM and HQC.
The asymptotic behaviour is first examined using big-O notation, which provides upper
bounds on computational cost. This is followed by a review of the corresponding bit-level
complexities to give a more concrete and practical view of each scheme.

6.1 Time Complexity Comparison

The overall time complexities for the operations in the key generation, encapsulation, and
decapsulation algorithms for ML-KEM and HQC, along with the total time complexities for
each scheme, are summarised in Table 6.1.

Algorithm ML-KEM Time Complexity HQC Time Complexity

Key Generation O
(
k2n log2(n)

)
O(n log2(n))

Encapsulation O
(
k2n log2(n)

)
O(n log2(n))

Decapsulation O (kn log2(n)) O
(
n2
1n

2
2

)
Total Complexity O

(
k2n log2(n)

)
O
(
n2
1n

2
2

)
Table 6.1: Summary of the time complexities for each algorithm in ML-KEM and HQC.

Due to the different parameter sets used in ML-KEM and HQC, their time complexities are
plotted separately. In each plot, one parameter is varied while the others are kept fixed in
order to observe its effect on the time complexity.

For ML-KEM, the key generation and encapsulation algorithms share the same time com-
plexity of O

(
k2n log2(n)

)
. Two plots are provided to show how this time complexity grows

with respect to n and k. Figure 6.1a shows the growth as a function of n. Figure 6.1b shows
the growth as a function of k.
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6.1. Time Complexity Comparison
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(a) The time complexity growth as a function of n, for fixed values of k = 2, 3, 4, corresponding to the parameters
listed in Table 3.1. The n value corresponding to the three security categories in Table 3.1 is indicated on the
x -axis with a line at 256.
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(b) The time complexity growth as a function of k, for a fixed value of n = 256, corresponding to the value listed
in Table 3.1. The k values corresponding to the three security categories in Table 3.1 are indicated along the
x -axis by a line at 2, 3, and 4.

Figure 6.1: The time complexity growth of O
(
k2n log2(n)

)
as a function of n and k, respectively.

In Figure 6.1a, the time complexity increases more rapidly for higher values of k, with the
gap between the curves for the three values of k becoming more pronounced as n increases.
At smaller values of n, the curves are close, converging as n approaches zero. At n = 256,
each of the curves yield a time complexity of 0.8 · 104, 1.8 · 104, and 3.3 · 104, respectively.
These computational costs continue to increase as n is increased, reaching 1.8 · 104, 4 · 104,
and 7.2 · 104, respectively, at n = 500.

In Figure 6.1b, it can be observed that the time complexity grows quadratic with k. The
time complexity at the three vertical lines that indicate the k values for the three security
categories corresponds to the time complexities observed for Figure 6.1a. When k is increased
to 8, the time complexity becomes 13.1 · 104. This is almost four times the value observed at
k = 4, reflecting the quadratic growth in the time complexity. Thus, while higher k improves
security, it significantly increases the computational cost.
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The decapsulation algorithm for ML-KEM has the time complexity O(kn log2(n)). Two plots
are provided to show how this time complexity grows with respect to n and k. Figure 6.2a
shows the growth as a function of n. Figure 6.2b shows the growth as a function of k.
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(a) The time complexity growth as a function of n, for fixed values of k = 2, 3, 4, corresponding to the parameters
listed in Table 3.1. The n value corresponding to the three security categories in Table 3.1 is indicated on the
x -axis with a line at 256.
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(b) The time complexity growth as a function of k, for a fixed value of n = 256, corresponding to the value listed
in Table 3.1. The k values corresponding to the three security categories in Table 3.1 are indicated along the
x -axis by a line at 2, 3, and 4.

Figure 6.2: The time complexity growth of O (kn log2(n)) as a function of n and k, respectively.

In Figure 6.2a, the time complexity increases more rapidly for higher values of k. At smaller
values of n, the curves are close, converging as n approaches zero. At n = 256, each of
the curves yield a time complexity of 4.1 · 103, 6.2 · 103, and 8.2 · 103, respectively. These
computational costs continue to increase as n is increased, reaching 9 · 103, 13.4 · 103, and
18 · 103, respectively, at n = 500.

In Figure 6.2b, it can be observed that the time complexity grows with increasing k. The time
complexity at the three vertical lines that indicate the k values for the three security categories
corresponds to the time complexities observed for Figure 6.2a. When k is increased to 8, the
time complexity becomes 16.4 · 104. This is two times the value observed at k = 4.
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6.1. Time Complexity Comparison

For HQC, both key generation and encapsulation have the same time complexity of
O(n log2(n)). This complexity is shown in Figure 6.3, where the growth is plotted as a
function of n.
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Figure 6.3: The time complexity growth of O(n log2(n)) as a function of n. Vertical lines at 17669, 35851,
and 57637 mark the values of n corresponding to the parameter sets in Table 5.3.

In Figure 6.3, it can be observed that the time complexity grows with increasing n. At the
parameter set values for n, the time complexity is 2.5 ·105, 5.4 ·105, and 9.1 ·105, respectively.
When n is increased to 70000, the time complexity reaches 11.3 · 105.

The decapsulation for HQC have the time complexity of O
(
n2
1n

2
2

)
. Figure 6.4 presents the

growth as a function of the product n1n2.
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Figure 6.4: The time complexity growth of O
(
n2
1n

2
2

)
as a function of the product n1n2. Vertical lines at

17664, 35840, and 57600 mark the values of n1n2 corresponding to the parameter sets in Table 5.3.

In Figure 6.4, the curve exhibits a quadratic growth, as both n1 and n2 are squared in the time
complexity expression. With increasing values of n1n2, the computational cost increases as
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6.2. Space Complexity Comparison

well. At the values corresponding to the three security categories for n1 and n2, the observed
time complexities are 0.3 · 109, 1.3 · 109, and 3.3 · 109, respectively. When n1n2 are increased
to 70000, the time complexity reaches 4.9 · 109.

When comparing ML-KEM and HQC, differences in their computational costs and how their
parameters affect the time complexities are observed. For ML-KEM, the time complexities are
on the order of 103 and 104, with k having the greatest influence on computational cost. This
is observed when doubling n from the parameter set values approximately doubles the time
complexity for all three k values. However, doubling k results in almost a fourfold increase
in time complexity for the key generation and encapsulation algorithms. In comparison,
HQC exhibits higher costs, reaching time complexities in the order of 105 and 109. This is
primarily due to a dominating quadratic term in the time complexity, which leads to much
worse scaling as input size increases.

6.2 Space Complexity Comparison

The overall space complexities of the key generation, encapsulation, and decapsulation algo-
rithms for ML-KEM and HQC, along with the total space complexities for each scheme, are
summarised in Table 6.2.

Algorithm ML-KEM Space Complexity HQC Space Complexity

Key Generation O (kn) O(n)

Encapsulation O (kn) O(k1k2n1n2)

Decapsulation O (kn) O(k1k2n1n2)

Total Complexity O (kn) O(k1k2n1n2)

Table 6.2: Summary of the space complexities for each algorithm in ML-KEM and HQC.

For ML-KEM, all three algorithms share the same space complexity of O(kn). Two plots are
provided to show how this complexity grows with respect to n and k. Figure 6.5a shows the
growth as a function of n. Figure 6.5b shows the growth as a function of k.
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(a) The space complexity growth as a function of n, with k = 2, 3, 4, corresponding to the values in Table 3.1.
The n value corresponding to the three security category in Table 3.1 is indicated on the x-axis with a line at
256.
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k values corresponding to the three security categories in Table 3.1 are indicated on the x-axis by a line at 2, 3,
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Figure 6.5: The space complexity growth O(kn) as a function of n and k, respectively.

In Figure 6.5a, the graphs exhibit a linear growth, with a higher space complexity for larger
values of k. It can be observed that for small values of n, the graphs are close, converging
to zero as n approaches zero. At n = 256, each of the graphs yield a space complexity of
5.1 ·102, 7.7 ·102, and 10.2 ·102, respectively. These computational costs continue to increase
as n increases, reaching 10 · 102, 15 · 102, and 20 · 102, respectively, at n = 500.

In Figure 6.5b, the graph exhibits a linear growth. The space complexities at the three
vertical lines that indicate the k values for the three security categories correspond to the
space complexities observed for Figure 6.5a. When k is increased to 8, the space complexity
becomes 20.5 · 102. This is two times the value observed at k = 4.

For HQC, the key generation has the space complexity of O(n). Figure 6.6 presents the
growth as a function of n.
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Figure 6.6: The space complexity growth of O(n) as a function of n. The parameter values for n from
Table 5.3 are marked on the x-axis by a line at 17669, 35851, and 57637.

In Figure 6.6, the graph exhibits a linear growth, as the space complexity depends solely
on n. Consequently, the increase in space complexity directly corresponds to the increase in
n.

The encapsulation and decapsulation for HQC have the space complexity O(k1k2n1n2). Two
plots are provided to show how this complexity grows with respect to k1k2 and n1n2. Fig-
ure 6.7a shows the growth as a function of n1n2. Figure 6.7b shows the growth as a function
of k1k2.
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(b) The space complexity growth as a function of k1k2, with n1n2 = 17664, 35840, 57600,
corresponding to the values in Table 5.3. The k1k2 values for the three security categories are
shown on the x-axis by a line at 128, 192, and 256.

Figure 6.7: The space complexity growth O(k1k2n1n2) as a function of n1n2 and k1k2, respectively.

In Figure 6.7a, the graphs exhibit linear growth. At the parameter set value for n1n2 = 17664,
the space complexity reaches 2.3 · 106, 3.4 · 106, and 4.5 · 106. At n1n2 = 35840, the space
complexity reaches 4.6 · 106, 6.9 · 106, and 9.2 · 106. At n1n2 = 57600, the space complexity
reaches 7.4 · 106, 11 · 106, and 14.7 · 106. These computational costs continue to increase
linearly as n1n2 increases, reaching 9 · 106, 13.4 · 106, and 18 · 106 at n1n2 = 70000.

In Figure 6.7b, the graphs also exhibit linear growth. The space complexities at the three
vertical lines that indicate the k1k2 values for the three security categories corresponds to
the space complexities observed for Figure 6.7a. When k1k2 is increased to 500, the space
complexity becomes 8.8 · 106, 17.9 · 106, and 28.8 · 106, respectively. This is almost two times
the values observed at k1k2 = 256.

When comparing ML-KEM and HQC, differences in their memory requirements and how their
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6.3. Bit Complexity Comparison

parameters affect the space complexities are observed. For ML-KEM, the space complexities
are on the order of 102, with both k and n contributing equally and linearly to the space
complexity. In the case of HQC, the costs are higher, reaching space complexities in the order
of 104 and 106.

6.3 Bit Complexity Comparison

This section presents a comparative bit complexity analysis of ML-KEM and HQC. The first
subsection focuses on space bit complexity, which measures the size of keys and ciphertexts.
The second subsection examines time bit complexity, which estimates the number of bit
operations required by each scheme. The bit counts do not take into account hardware
and implementation specifics. However, since the bit complexities for both ML-KEM and
HQC are derived in a consistent manner, they remain valid for a comparison between the
schemes.

Space Bit Complexity Comparison

The space bit complexities for ML-KEM and HQC are summarised in Table 6.3, along with
the total space required by each scheme. Throughout this subsection, all references to bit
complexity, including in figures and plots, should be understood as referring to space bit
complexity.

Component ML-KEM Bit Complexity HQC Bit Complexity

Public encapsulation Key 12kn+ 256 bits 320 + n bits

Private decapsulation Key 24kn+ 768 bits 320 + k1k2 bits

Ciphertext kndu + ndv bits n+ n1n2 + 128 bits

Total Complexity n(36k + kdu + dv) + 1024 bits 2n+ k1k2 + n1n2 + 768 bits

Table 6.3: Summary of the bit complexities for each algorithm in ML-KEM and HQC.

For ML-KEM, the bit complexities depend on four parameters, n, k, du, and dv. The
parameters du and dv affect only the ciphertext and total bit complexity. Each bit complexity
is plotted as a function of one parameter, with the others fixed according to Table 3.1. The
results appear in four figures, one per variable. Each figure contains three subplots for the
three parameter sets. In Figure 6.8, the bit complexities in ML-KEM are shown as functions
of n.
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Figure 6.8: The bit complexity as a function of n for each component, with other parameters fixed according
to Table 3.1. The n value corresponding to the three security categories is indicated on the x-axis with a line
at 256.

The bit complexities increase linearly with n across all components. The private decapsulation
key consistently shows the highest bit complexity and steepest growth due to its larger scaling
factor. The public encapsulation key and ciphertext complexities are nearly identical, with
their values overlapping throughout the range of n. The total bit complexity combines
these components, resulting in the largest overall growth. Notably, the total bit complexity
approximately doubles when moving from the lowest to the highest security category.

In Figure 6.9, the bit complexities in ML-KEM are shown as functions of k.
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Figure 6.9: The bit complexity as a function of k for each component, with other parameters fixed according
to Table 3.1. The k values corresponding to the three security categories are indicated along the x-axis by a
line at 2, 3, and 4.

The bit complexities increase linearly with k for all components. Similar to the behaviour
with n, the private decapsulation key exhibits the highest bit complexity and steepest growth
due to its larger scaling factor. The public encapsulation key and ciphertext complexities
remain closely aligned, with overlapping values across the range of k. The total bit complexity
shows the greatest linear increase. Unlike the case with n, the bit complexity shows minimal
variation across parameter sets as k changes, indicating that k has a limited influence on the
overall bit complexity.

In Figure 6.10, the bit complexities in ML-KEM are shown as functions of du and dv.
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Figure 6.10: The bit complexity as a function of du and dv for each component, with other parameters fixed
according to Table 3.1. The du and dv values corresponding to the three security categories are indicated
along the x-axis by a line at 10 and 11 for du, and at 4 and 5 for dv.

The bit complexities vary linearly with both du and dv, but their influence is limited to the
ciphertext and total bit complexity components. Bit complexity increases more noticeably
with du than with dv, reflecting the larger coefficients associated with du in the ciphertext
expression. The ciphertext bit complexity exhibits some growth between the parameter sets.
However, the most significant increase is observed in the total bit complexity. This larger
overall growth is likely influenced more by fixed parameters within the security categories
than by variations in du and dv alone.

For HQC, the bit complexities depend on the parameters n, k1k2, and n1n2. The public
encapsulation key complexity scales linearly with n, while the private decapsulation key
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6.3. Bit Complexity Comparison

complexity depends on k1k2. The ciphertext complexity increases with both n and n1n2.
The total bit complexity aggregates these terms, reflecting linear growth with respect to
all three parameters. Each complexity measure is plotted as a function of one parameter,
holding the others fixed according to Table 5.3. The plots are organised into three figures,
one per variable, each containing subplots for the three parameter sets. In Figure 6.11, the
bit complexities are shown as functions of n.
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Figure 6.11: The bit complexity as a function of n for each component, with other parameters fixed according
to Table 5.3. The n values corresponding to the three security categories are indicated along the x-axis by a
line at 17669, 35851 and 57637.

The bit complexities in HQC increase linearly with n, as expected from their parameter
dependencies. The public encapsulation key and ciphertext complexities both grow with
n, resulting in parallel trends across the parameter sets. The total bit complexity shows
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the steepest increase, reflecting the cumulative effect of the public encapsulation key and
ciphertext components. Differences between parameter sets are visible but moderate.

In Figure 6.12, the bit complexities are shown as functions of n1n2.
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Figure 6.12: The bit complexity as a function of n1n2 for each component, with other parameters fixed
according to Table 5.3. The n1n2 values corresponding to the three security categories are indicated along
the x-axis by a line at 17664, 35840 and 57600.

The bit complexities grow linearly with n1n2, which directly influences the ciphertext and
total bit complexity. The ciphertext complexity increases proportionally with n1n2, driving
the corresponding increase in total bit complexity. The slope of the total bit complexity
is therefore dominated by the ciphertext component. Variation across parameter sets is
evident.
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In Figure 6.13, the bit complexities are shown as functions of k1k2.
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Figure 6.13: The bit complexity as a function of k1k2 for each component, with other parameters fixed
according to Table 5.3. The k1k2 values corresponding to the three security categories are indicated along
the x-axis by a line at 128, 192 and 256.

The bit complexities increase linearly with k1k2, affecting only the private decapsulation key
and total bit complexity. While the private decapsulation key complexity increases with k1k2,
the total bit complexity lies significantly above it across all parameter sets. This large gap
reflects the contribution of other fixed terms, particularly the public encapsulation key and
ciphertext, which dominate the total bit complexity. The result is a steep offset between the
total bit and private decapsulation key complexities that persists regardless of the value of
k1k2.

Comparing ML-KEM and HQC, distinct patterns emerge in how bit complexity scales with
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6.3. Bit Complexity Comparison

each scheme’s parameters. ML-KEM exhibits more tightly coupled growth across its com-
ponents due to shared dependencies on n and k, leading to consistent relative differences
between public encapsulation key, private decapsulation key, and ciphertext complexities. In
contrast, HQC’s total bit complexity is more heavily influenced by the ciphertext compo-
nent, particularly through n1n2, with less variation in key sizes across parameters. Notably,
HQC’s private decapsulation key shows a weaker contribution to the overall bit complexity
compared to ML-KEM, while ML-KEM’s public encapsulation and ciphertext complexities
are closely aligned. Overall, ML-KEM displays a more uniform and proportionate increase
in bit complexity across its components, whereas HQC’s total bit complexity is dominated
by fewer, larger contributors.

With respect to transmission, the ciphertext bit complexity serves as the primary factor. In
HQC, the ciphertext includes large contributions from both n and n1n2, resulting in a greater
transmission size compared to ML-KEM. ML-KEM’s ciphertexts are more compact and grow
more gradually as the parameters increase. As a result, the transmission cost, measured by
the size of the ciphertext, is consistently lower in ML-KEM across all parameter sets.

Time Bit Complexity Comparison

The time bit complexities for ML-KEM and HQC are presented in Table 6.4. Throughout
this subsection, all mentions of bit complexity refer specifically to time bit complexity. While
these values are not visualised in plots, they are computed to provide a concrete understanding
of the computational demands of each scheme.

Algorithm
Security
Category

ML-KEM HQC

Key Generation 1 148 736 bits 267 487 bits

3 315 136 bits 579 026 bits

5 542 976 bits 970 126 bits

Encapsulation 1 241 920 bits 2 760 782 bits

3 437 504 bits 7 967 730 bits

5 694 528 bits 16 570 625 bits

Decapsulation 1 238 336 bits 315 311 653 bits

3 332 544 bits 1 293 629 935 bits

5 432 896 bits 3 336 268 653 bits

Table 6.4: Time bit complexity comparison of ML-KEM and HQC for key generation, encapsulation, and
decapsulation across NIST security categories.
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6.3. Bit Complexity Comparison

For key generation, both schemes show a steady, linear increase in time bit complexity as
the security level rises, with HQC consistently requiring approximately 1.8 times more bits
than ML-KEM. Encapsulation further amplifies the difference between the two schemes.
Even at the lowest security level, HQC requires over 11 times the number of bits that ML-
KEM does. This difference becomes even more pronounced at higher security levels, where
HQC requires nearly 24 times more bits than ML-KEM for security category 5. The most
significant difference appears in decapsulation. While ML-KEM scales moderately with the
security category, HQC’s time bit complexity grows sharply.
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7 Discussion
In this master’s thesis, the purpose was to investigate how time, space, and bit complexities
of ML-KEM and HQC scale with their input parameters. Furthermore, it assesses what
those scaling behaviours imply for the deployment of each scheme on devices with limited
computational resources, memory, and bandwidth. Therefore, a complexity analysis was
conducted, followed by a comparative analysis of the results.

Time Complexity Analysis

The time complexity analysis revealed a significant difference between the two schemes. For
ML-KEM, the key generation and encapsulation scale with O

(
k2n log2(n)

)
on the order of

104, and the decapsulation scale with O(kn log2(n)) on the order of 103. In contrast, for HQC,
the key generation and encapsulation scale with O(n log2(n)), while the decapsulation scale
with O

(
n2
1n

2
2

)
. The quadratic term leads to a steep increase in time complexity, resulting

in a time complexity to the order of 109. HQC’s lowest parameter set then demands more
computational cost than ML-KEM’s highest.

When considering devices with limited processing capabilities, HQC’s computationally heavy
decoding step, due to the quadratic term, may pose challenges for deployment. In contrast,
ML-KEM’s lower increase in time complexity makes it more suitable for such constrained
devices. Therefore, the time complexity analysis indicates that ML-KEM is the compu-
tationally preferable choice, whereas HQC may better suit devices that can accommodate
higher computational demands.

Space Complexity Analysis

The space complexity analysis revealed a similar difference between the two schemes. For
ML-KEM, all three algorithms as well as the total space complexity have the same space
complexity of O (kn), which scales linearly with both k and n. Across all three parameter
sets, the space complexity is on the order of 102. In contrast, for HQC, the key generation
scale with O(n) on the order of 104, and the encapsulation, decapsulation, and total space
complexity scale with O(k1k2n1n2) on the order of 106. Therefore, the memory consumption
is two to four orders of magnitude greater than that of ML-KEM. This stems from HQC’s
inherently larger parameter sizes, which result in higher memory consumption even at its
lowest security category.

When considering devices with limited RAM and memory capacity, ML-KEM’s lower space
complexity offers an advantage compared to HQC.

Bit Complexity Analysis

The key point in space bit complexity lies in the size of the ciphertext, as this has an
impact on transmission efficiency and communication costs. For ML-KEM, the ciphertext
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size increases moderately with the input parameters, remaining relatively compact even at the
highest security category. In contrast, HQC’s ciphertext is mainly dominated by large terms
for all security categories. As a result, even at its lowest security category, HQC produces
ciphertexts that exceed those of ML-KEM at its highest. This leads to a higher space bit
complexity, which directly translates to increased communication costs.

In the context of bandwidth-limited devices, the impact of the ciphertext size is an impor-
tant factor. ML-KEM’s smaller and more efficient ciphertexts offer a significant advantage,
enabling faster transmission and lower communication costs. In contrast, HQC’s larger ci-
phertexts may pose a challenge in scenarios where communication efficiency is critical.

The difference between ML-KEM and HQC is further reflected in the time bit complexity.
While both schemes show a steady increase in key generation, HQC consistently requires
more bits. Specifically, in decapsulation HQC’s time bit complexity increases steeply and far
exceeds that of ML-KEM.

Summary

The comparative complexity analysis of ML-KEM and HQC across time, space, and bit pro-
vides a theoretical foundation for evaluating their suitability in resource-constrained devices.
The findings indicate that ML-KEM is more suitable for devices with limited computational
power, memory, and bandwidth. Furthermore, ML-KEM’s smaller ciphertexts and keys offer
an advantage in resource-constrained devices by reducing bit complexity and communica-
tion costs. However, it is important to note that this analysis is based on asymptotic and
theoretical complexity estimates and has not been validated through practical implementa-
tion. Therefore, one could, for instance, implement both schemes to experimentally evaluate
their time, space, and bit complexities in order to confirm and demonstrate the theoretical
findings.
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8 Conclusion
The advancement of quantum computing poses significant challenges to classical crypto-
graphic schemes, necessitating the development of quantum-resistant KEMs. This master’s
thesis presented a comparative analysis of two KEMs, ML-KEM and HQC, which are stan-
dardised or in the process of standardisation by NIST. This analysis aimed to answer the
following problem statement:

How do the time, space, and bit complexities of lattice- and code-based post-quantum key
encapsulation mechanisms scale with input parameters, and what are the implications for
their use in resource-constrained devices?

First, the foundational lattice theory and security assumptions underpinning ML-KEM were
examined, followed by a detailed description of the ML-KEM scheme. Subsequently, the
relevant coding theory and security assumptions for HQC were reviewed, followed by a com-
prehensive presentation of the HQC scheme. The asymptotic time and space complexities,
along with the bit complexities of both schemes, were derived. Lastly, these complexity
measures facilitated a comparative analysis, enabling an evaluation of the trade-offs between
security categories and parameter choices inherent to each scheme.

The comparative analysis reveals that ML-KEM exhibits a slower growth rate across time,
space, and bit complexities compared to HQC. In particular, HQC’s time complexity is
dominated by the decapsulation process, which introduces quadratic terms that significantly
increase computation cost at higher security categories. In terms of bit complexity, HQC pro-
duces significantly larger ciphertexts and requires substantially more bits across all operations
compared to ML-KEM, thus posing challenges for devices operating over limited-bandwidth
communication channels.

To conclude, ML-KEM demonstrates more predictable and moderate scaling across parameter
sets, making it more suitable for implementation in resource-constrained devices. Its balanced
performance in terms of computational efficiency and data size offers a practical advantage
over HQC in such settings.

66



Bibliography
[1] Lily Chen et al. Report on Post-Quantum Cryptography. en. Tech. rep. NIST Internal

or Interagency Report (NISTIR) 8105. National Institute of Standards and
Technology, Apr. 2016. doi: 10.6028/NIST.IR.8105. url:
https://csrc.nist.gov/pubs/ir/8105/final (visited on 02/19/2025).

[2] Sieglinde M. -L. Pfaendler, Konstantin Konson, and Franziska Greinert.
“Advancements in Quantum Computing—Viewpoint: Building Adoption and
Competency in Industry”. en. In: Datenbank-Spektrum 24.1 (Mar. 2024), pp. 5–20.
issn: 1610-1995. doi: 10.1007/s13222-024-00467-4. url:
https://doi.org/10.1007/s13222-024-00467-4 (visited on 02/14/2025).

[3] Michele Mosca. “Cybersecurity in an Era with Quantum Computers: Will We Be
Ready?” In: IEEE Security & Privacy 16.5 (Sept. 2018). Conference Name: IEEE
Security & Privacy, pp. 38–41. issn: 1558-4046. doi: 10.1109/MSP.2018.3761723.
url: https://ieeexplore.ieee.org/document/8490169 (visited on 02/18/2025).

[4] Gorjan Alagic et al. Status Report on the First Round of the NIST Post-Quantum
Cryptography Standardization Process. en. Tech. rep. NIST Internal or Interagency
Report (NISTIR) 8240. National Institute of Standards and Technology, Jan. 2019.
doi: 10.6028/NIST.IR.8240. url: https://csrc.nist.gov/pubs/ir/8240/final
(visited on 02/19/2025).

[5] National Institute of Standards and Technology. Module-Lattice-Based
Key-Encapsulation Mechanism Standard. en. Tech. rep. Federal Information
Processing Standard (FIPS) 203. U.S. Department of Commerce, Aug. 2024. doi:
10.6028/NIST.FIPS.203. url: https://csrc.nist.gov/pubs/fips/203/final
(visited on 02/13/2025).

[6] National Institute of Standards and Technology. Module-Lattice-Based Digital
Signature Standard. en. Tech. rep. Federal Information Processing Standard (FIPS)
204. U.S. Department of Commerce, Aug. 2024. doi: 10.6028/NIST.FIPS.204. url:
https://csrc.nist.gov/pubs/fips/204/final (visited on 02/19/2025).

[7] National Institute of Standards and Technology. Stateless Hash-Based Digital
Signature Standard. en. Tech. rep. Federal Information Processing Standard (FIPS)
205. U.S. Department of Commerce, Aug. 2024. doi: 10.6028/NIST.FIPS.205. url:
https://csrc.nist.gov/pubs/fips/205/final (visited on 02/19/2025).

[8] Gorjan Alagic. Status Report on the Fourth Round of the NIST Post-Quantum
Cryptography Standardization Process. en. Tech. rep. NIST IR 8545. Gaithersburg,
MD: National Institute of Standards and Technology, 2025, NIST IR 8545. doi:
10.6028/NIST.IR.8545. url:
https://nvlpubs.nist.gov/nistpubs/ir/2025/NIST.IR.8545.pdf (visited on
04/08/2025).

[9] Khwaja Mansoor et al. “Securing the future: exploring post-quantum cryptography
for authentication and user privacy in IoT devices”. en. In: Cluster Computing 28.2
(Apr. 2025). Company: Springer Distributor: Springer Institution: Springer Label:

67

https://doi.org/10.6028/NIST.IR.8105
https://csrc.nist.gov/pubs/ir/8105/final
https://doi.org/10.1007/s13222-024-00467-4
https://doi.org/10.1007/s13222-024-00467-4
https://doi.org/10.1109/MSP.2018.3761723
https://ieeexplore.ieee.org/document/8490169
https://doi.org/10.6028/NIST.IR.8240
https://csrc.nist.gov/pubs/ir/8240/final
https://doi.org/10.6028/NIST.FIPS.203
https://csrc.nist.gov/pubs/fips/203/final
https://doi.org/10.6028/NIST.FIPS.204
https://csrc.nist.gov/pubs/fips/204/final
https://doi.org/10.6028/NIST.FIPS.205
https://csrc.nist.gov/pubs/fips/205/final
https://doi.org/10.6028/NIST.IR.8545
https://nvlpubs.nist.gov/nistpubs/ir/2025/NIST.IR.8545.pdf


Bibliography

Springer Number: 2 Publisher: Springer US, pp. 1–44. issn: 1573-7543. doi:
10.1007/s10586-024-04799-4. url:
https://link.springer.com/article/10.1007/s10586-024-04799-4 (visited on
02/19/2025).

[10] Douglas Robert Stinson and Maura Paterson. Cryptography: Theory and Practice.
English. 4th edition. Boca Raton: Chapman and Hall/CRC, Sept. 2018. isbn:
978-1-138-19701-5.

[11] Alfred J. Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. English. 1st edition. Boca Raton, Fla.: CRC Press, Dec. 1996.
isbn: 978-0-8493-8523-0.

[12] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. An Introduction to
Mathematical Cryptography. en. Undergraduate Texts in Mathematics. New York, NY:
Springer, 2014. isbn: 978-1-4939-1710-5. doi: 10.1007/978-1-4939-1711-2. url:
https://link.springer.com/10.1007/978-1-4939-1711-2 (visited on 02/26/2025).

[13] Steven D. Galbraith. Mathematics of Public Key Cryptography. English. Cambridge ;
New York: Cambridge University Press, Mar. 2012. isbn: 978-1-107-01392-6.

[14] Colin P. Williams. Explorations in Quantum Computing. Texts in Computer Science.
London: Springer, 2011. isbn: 978-1-84628-886-9. doi: 10.1007/978-1-84628-887-6.
url: http://link.springer.com/10.1007/978-1-84628-887-6 (visited on
02/20/2025).

[15] Jingwen Suo et al. “Quantum algorithms for typical hard problems: a perspective of
cryptanalysis”. en. In: Quantum Information Processing 19.6 (Apr. 2020), p. 178.
issn: 1573-1332. doi: 10.1007/s11128-020-02673-x. url:
https://doi.org/10.1007/s11128-020-02673-x (visited on 02/21/2025).

[16] P.W. Shor. “Algorithms for quantum computation: discrete logarithms and factoring”.
In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Nov.
1994, pp. 124–134. doi: 10.1109/SFCS.1994.365700. url:
https://ieeexplore.ieee.org/document/365700 (visited on 02/19/2025).

[17] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In:
Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing.
STOC ’96. New York, NY, USA: Association for Computing Machinery, July 1996,
pp. 212–219. isbn: 978-0-89791-785-8. doi: 10.1145/237814.237866. url:
https://dl.acm.org/doi/10.1145/237814.237866 (visited on 02/24/2025).

[18] Dustin Moody et al. Transition to Post-Quantum Cryptography Standards. en.
Tech. rep. NIST Internal or Interagency Report (NISTIR) 8547 (Draft). National
Institute of Standards and Technology, Nov. 2024. doi: 10.6028/NIST.IR.8547.ipd.
url: https://csrc.nist.gov/pubs/ir/8547/ipd (visited on 02/24/2025).

[19] Gorjan Alagic et al. Status report on the third round of the NIST Post-Quantum
Cryptography Standardization process. en. Tech. rep. NIST IR 8413. Gaithersburg,
MD: National Institute of Standards and Technology (U.S.), July 2022, NIST IR
8413. doi: 10.6028/NIST.IR.8413. url:
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf (visited on
02/18/2025).

68

https://doi.org/10.1007/s10586-024-04799-4
https://link.springer.com/article/10.1007/s10586-024-04799-4
https://doi.org/10.1007/978-1-4939-1711-2
https://link.springer.com/10.1007/978-1-4939-1711-2
https://doi.org/10.1007/978-1-84628-887-6
http://link.springer.com/10.1007/978-1-84628-887-6
https://doi.org/10.1007/s11128-020-02673-x
https://doi.org/10.1007/s11128-020-02673-x
https://doi.org/10.1109/SFCS.1994.365700
https://ieeexplore.ieee.org/document/365700
https://doi.org/10.1145/237814.237866
https://dl.acm.org/doi/10.1145/237814.237866
https://doi.org/10.6028/NIST.IR.8547.ipd
https://csrc.nist.gov/pubs/ir/8547/ipd
https://doi.org/10.6028/NIST.IR.8413
https://nvlpubs.nist.gov/nistpubs/ir/2022/NIST.IR.8413.pdf


Bibliography

[20] Ritik Bavdekar et al. “Post Quantum Cryptography: A Review of Techniques,
Challenges and Standardizations”. In: 2023 International Conference on Information
Networking (ICOIN). ISSN: 1976-7684. Jan. 2023, pp. 146–151. doi:
10.1109/ICOIN56518.2023.10048976. url:
https://ieeexplore.ieee.org/document/10048976/?arnumber=10048976 (visited
on 03/03/2025).

[21] Apostolos P. Fournaris et al. “Running Longer To Slim Down: Post-Quantum
Cryptography on Memory-Constrained Devices”. en. In: 2023 IEEE International
Conference on Omni-layer Intelligent Systems (COINS). Berlin, Germany: IEEE, July
2023, pp. 1–6. isbn: 979-8-3503-4647-3. doi: 10.1109/COINS57856.2023.10189268.
url: https://ieeexplore.ieee.org/document/10189268/ (visited on 03/05/2025).

[22] Kerry A McKay et al. Report on lightweight cryptography. en. Tech. rep. NIST IR
8114. Gaithersburg, MD: National Institute of Standards and Technology, Mar. 2017,
NIST IR 8114. doi: 10.6028/NIST.IR.8114. url:
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf (visited on
03/05/2025).

[23] Derek Atkins. “Requirements for Post-Quantum Cryptography on Embedded Devices
in the IoT”. en. In: (). url:
https://csrc.nist.gov/presentations/2021/requirements-for-post-quantum-
cryptography-on-embe.

[24] David Dummit. Abstract Algebra. English. Englewood Cliffs, N.J: Prentice Hall
College Div, Jan. 1990. isbn: 978-0-13-004771-7.

[25] Christof Paar, Jan Pelzl, and Tim Güneysu. Understanding Cryptography: From
Established Symmetric and Asymmetric Ciphers to Post-Quantum Algorithms. en.
Berlin, Heidelberg: Springer, 2024. isbn: 978-3-662-69006-2. doi:
10.1007/978-3-662-69007-9. url:
https://link.springer.com/10.1007/978-3-662-69007-9 (visited on 02/27/2025).

[26] Oded Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: Proceedings of the thirty-seventh annual ACM symposium on
Theory of computing. STOC ’05. New York, NY, USA: Association for Computing
Machinery, 2005, pp. 84–93. isbn: 978-1-58113-960-0. doi:
10.1145/1060590.1060603. url: https://doi.org/10.1145/1060590.1060603
(visited on 05/09/2025).

[27] Qiang Tang and Vanessa Teague, eds. Public-Key Cryptography – PKC 2024: 27th
IACR International Conference on Practice and Theory of Public-Key Cryptography,
Sydney, NSW, Australia, April 15–17, 2024, Proceedings, Part II. en. Vol. 14602.
Lecture Notes in Computer Science. Cham: Springer Nature Switzerland, 2024. isbn:
978-3-031-57721-5. doi: 10.1007/978-3-031-57722-2. url:
https://link.springer.com/10.1007/978-3-031-57722-2 (visited on 03/31/2025).

[28] Roberto Avanzi et al. “Algorithm Specifications And Supporting Documentation”. en.
In: 3.02 (Aug. 2021). url: https://pq-crystals.org/kyber/data/kyber-
specification-round3-20210804.pdf (visited on 03/19/2025).

69

https://doi.org/10.1109/ICOIN56518.2023.10048976
https://ieeexplore.ieee.org/document/10048976/?arnumber=10048976
https://doi.org/10.1109/COINS57856.2023.10189268
https://ieeexplore.ieee.org/document/10189268/
https://doi.org/10.6028/NIST.IR.8114
https://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://csrc.nist.gov/presentations/2021/requirements-for-post-quantum-cryptography-on-embe
https://csrc.nist.gov/presentations/2021/requirements-for-post-quantum-cryptography-on-embe
https://doi.org/10.1007/978-3-662-69007-9
https://link.springer.com/10.1007/978-3-662-69007-9
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1007/978-3-031-57722-2
https://link.springer.com/10.1007/978-3-031-57722-2
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf
https://pq-crystals.org/kyber/data/kyber-specification-round3-20210804.pdf


Bibliography

[29] National Institute of Standards and Technology. SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions. en. Tech. rep. Federal Information Processing
Standard (FIPS) 202. U.S. Department of Commerce, Aug. 2015. doi:
10.6028/NIST.FIPS.202. url: https://csrc.nist.gov/pubs/fips/202/final
(visited on 05/12/2025).

[30] Ardianto Satriawan, Rella Mareta, and Hanho Lee. A Complete Beginner Guide to
the Number Theoretic Transform (NTT). Publication info: Published elsewhere.
Minor revision. IEEE Access. 2024. url: https://eprint.iacr.org/2024/585
(visited on 03/25/2025).

[31] Melchor, Carlos Aguilar et al. “Hamming Quasi-Cyclic (HQC) Fourth round version
Updated version 19/02/2025”. en. In: Hamming Quasi-Cyclic (HQC) (Feb. 2025),
p. 52. url: https://pqc-hqc.org/doc/hqc-specification_2025-02-19.pdf.

[32] W. Cary Huffman and Vera Pless. Fundamentals of Error-Correcting Codes.
Cambridge: Cambridge University Press, 2003. isbn: 978-0-521-13170-4. doi:
10.1017/CBO9780511807077. url:
https://www.cambridge.org/core/books/fundamentals-of-errorcorrecting-
codes/BF3AFDFB539C3C023BBD9DCBA4CDA761 (visited on 04/23/2025).

[33] Jørn Justesen and Tom Høholdt. A Course in Error-correcting Codes. en.
Google-Books-ID: y1a_AESctqQC. European Mathematical Society, 2004. isbn:
978-3-03719-001-2.

[34] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes.
Chantilly, NETHERLANDS, THE: Elsevier Science & Technology, 1977. isbn:
978-0-08-095423-3. url: http://ebookcentral.proquest.com/lib/aalborguniv-
ebooks/detail.action?docID=648815 (visited on 04/23/2025).

[35] National Institute of Standards and Technology (US). SHA-3 standard :
permutation-based hash and extendable-output functions. en. Tech. rep. error: 202.
Washington, D.C.: National Institute of Standards and Technology (U.S.), 2015,
error: 202. doi: 10.6028/NIST.FIPS.202. url:
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf (visited on
04/15/2025).

[36] Kenneth Rosen. Discrete Mathematics and Its Applications Seventh Edition. English.
7th edition. New York, NY: McGraw Hill, June 2011. isbn: 978-0-07-338309-5.

[37] Michael Sipser. Introduction to the Theory of Computation. English. 3rd edition.
Australia Brazil Japan Korea Mexiko Singapore Spain United Kingdom United
States: Cengage Learning, June 2012. isbn: 978-1-133-18779-0.

[38] Carlos Aguilar et al. Efficient Encryption from Random Quasi-Cyclic Codes.
Published: Cryptology ePrint Archive, Report 2016/1194. 2016.

[39] Hongyi Pan, Diaa Dabawi, and Ahmet Enis Cetin. Fast Walsh-Hadamard Transform
and Smooth-Thresholding Based Binary Layers in Deep Neural Networks.
arXiv:2104.07085 [cs]. Oct. 2021. doi: 10.48550/arXiv.2104.07085. url:
http://arxiv.org/abs/2104.07085 (visited on 05/14/2025).

70

https://doi.org/10.6028/NIST.FIPS.202
https://csrc.nist.gov/pubs/fips/202/final
https://eprint.iacr.org/2024/585
https://pqc-hqc.org/doc/hqc-specification_2025-02-19.pdf
https://doi.org/10.1017/CBO9780511807077
https://www.cambridge.org/core/books/fundamentals-of-errorcorrecting-codes/BF3AFDFB539C3C023BBD9DCBA4CDA761
https://www.cambridge.org/core/books/fundamentals-of-errorcorrecting-codes/BF3AFDFB539C3C023BBD9DCBA4CDA761
http://ebookcentral.proquest.com/lib/aalborguniv-ebooks/detail.action?docID=648815
http://ebookcentral.proquest.com/lib/aalborguniv-ebooks/detail.action?docID=648815
https://doi.org/10.6028/NIST.FIPS.202
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf
https://doi.org/10.48550/arXiv.2104.07085
http://arxiv.org/abs/2104.07085


A Complexity-Analysis-Foundations
The computational complexity of an algorithm refers to the resources required to solve a
problem as a function of the input size [36, pp. 218–219]. Two common measures are time
complexity, which quantifies the amount of computational time required, and space complex-
ity, which describes the amount of memory consumed during execution [36, p. 219].

A.1 Big-O Notation

Big-O notation is used in asymptotic complexity analysis to describe how the time or space
requirements of an algorithm grow as the input size increases [36, p. 205]. This method gives
an upper bound on the worst-case growth rate of a function [37, pp. 276–277].

Definition A.1 (Big-O Notation)
Let f, g : Z → R. The function f(x) is said to be big-O of g(x), denoted by f(x) = O(g(x)),
if there exists constants C > 0 and k ∈ R such that

∀x ∈ R, |x| > k ⇒ |f(x)| ≤ C|g(x)|. [36, p. 205]

Note that the equality symbol in Definition A.1 does not represent a genuine equality. Instead,
the notation indicates that an inequality holds between the functions f(x) and g(x) for
sufficiently large values of x [36, p. 207].

Many algorithms consist of multiple subproblems. The overall number of steps required is
determined by the combined cost of these components.

Theorem A.2 (Sum Rule)
Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)). Then

f1(x) + f2(x) = O (max (|g1(x)|, |g2(x)|)) . [36, p. 213]

Proof
Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)). By Definition A.1, there exists positive
constants C1, C2 and thresholds k1, k2 such that:

|f1(x)| ≤ C1|g1(x)| for all x > k1,

|f2(x)| ≤ C2|g2(x)| for all x > k2.

To estimate the growth of the sum f1(x) + f2(x), apply the triangle inequality:

|f1(x) + f2(x)| ≤ |f1(x)|+ |f2(x)|.
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When x > max(k1, k2), both bounds apply, so

|f1(x)|+ |f2(x)| ≤ C1|g1(x)|+ C2|g2(x)|.

Let g(x) = max(|g1(x)|, |g2(x)|). Then

C1|g1(x)|+ C2|g2(x)| ≤ (C1 + C2)g(x) = Cg(x),

where C = C1 + C2. Therefore,

|f1(x) + f2(x)| ≤ C|g(x)| for all x > k,

where k = max(k1, k2). This establishes that

f1(x) + f2(x) = O(g(x)),

where g(x) = max(|g1(x)|, |g2(x)|). ■

The following result is a direct consequence of the sum rule and applies in the common case
where both functions share the same big-O bound.

Corollary A.3
Let f1(x) = O(g(x)) and f2(x) = O(g(x)). Then

f1(x) + f2(x) = O(g(x)). [36, p. 213]

Proof
Suppose f1(x) = O(g(x)) and f2(x) = O(g(x)). Applying Theorem A.2 it follows that

f1(x) + f2(x) = O(max(|g(x)|, |g(x)|)) = O(g(x)). ■

The next result addresses the asymptotic growth of the product of two functions.

Theorem A.4 (Product Rule)
Let f1(x) = O(g1(x)) and f2(x) = O(g2(x)). Then

f1(x)f2(x) = O(g1(x)g2(x)). [36, p. 213]

Proof
Assume that f1(x) = O(g1(x)) and f2(x) = O(g2(x)). Let k = max(k1, k2) and C = C1C2.
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Then for all x > k:

|f1(x)f2(x)| = |f1(x)||f2(x)|
≤ C1|g1(x)|C2|g2(x)|
= C1C2|g1(x)g2(x)|
= C|g1(x)g2(x)|.

This satisfies Definition A.1, so

f1(x)f2(x) = O(g1(x)g2(x)),

which concludes the proof. ■

Both ML-KEM and HQC rely on divide-and-conquer algorithms, a key concept that plays a
crucial role in their respective complexity analyses.

A.2 Divide-and-Conquer Algorithms

Divide-and-conquer algorithms solve a problem of size n by dividing it into a subproblems of
size n

b , assuming for simplicity that n is divisible by b. The solutions to these subproblems
are then combined using g(n) operations. If f(n) denotes the total number of operations
required, the process can be described by the recurrence relation

f(n) = af
(n
b

)
+ g(n),

known as a divide-and-conquer recurrence [36, p. 527]. Solving such a recurrence yields
an asymptotic bound on the algorithm’s computational complexity, describing how the cost
scales with input size [36, p. 528].

Theorem A.5 (Master Theorem)
Let f(n) be an increasing function satisfying the recurrence

f(n) = af
(n
b

)
+ cnd (A.1)

for n = bk, where k is a positive integer, a ≥ 1, b is an integer greater than 1, and c, d ∈ R
satisfy c > 0 and d ≥ 0. Then

f(n) =


O
(
nd

)
if a < bd,

O
(
nd log(n)

)
if a = bd,

O
(
nlogb(a)

)
if a > bd.

[36, p. 532]
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Proof
Let k be a positive integer, and let a ≥ 1, b > 1, c > 0, d ≥ 0 be constants. Consider an
increasing function f(n) that satisfies the recurrence in (A.1) for inputs of the form n = bk.

To solve the recurrence, it is expanded recursively. First, the recurrence is substituted into
itself. Next, substitute f

(
n
b

)
using the same recurrence relation

f
(n
b

)
= af

( n

b2

)
+ c

(n
b

)d
. (A.2)

Inserting (A.2) into (A.1) yields

f(n) = a

(
af

( n

b2

)
+ c

(n
b

)d
)
+ cnd.

The process continues recursively, and after k steps, the following expression is obtained

f(n) = akf
( n

bk

)
+ c

k−1∑
i=0

ai
(n

bi

)d
.

At this point, f
(
n
bk

)
corresponds to the smallest subproblem, which is equal to f(1). The

expression can be rewritten as

f(n) = akf(1) + cnd
k−1∑
i=0

( a

bd

)i
. (A.3)

To analyse the behaviour of the sum in (A.3), introduce the ratio

r =
a

bd
, (A.4)

so that the summation becomes a geometric series

k−1∑
i=0

( a

bd

)i
=

k−1∑
i=0

ri.

The asymptotic behaviour of f(n) now depends on the value of the ratio in (A.4). The
remainder of the proof considers three distinct cases, determined by whether r < 1, r = 1,

or r > 1, corresponding to a < bd, a = bd, and a > bd, respectively.

Case 1: Suppose r < 1. Then, by the formula for the sum of a convergent infinite geometric
series,

k−1∑
i=0

ri ≤
∞∑
i=0

ri =
1

1− r
.

Thus, the recurrence in (A.3) simplifies to

f(n) = O
(
nlogb(a)

)
+O

(
nd

)
.
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Since a < bd ⇒ logb(a) < d, it follows that nlogb(a) grows asymptotically no faster than
nd. Therefore, the dominant term in the sum is O

(
nd

)
, and thus f(n) = O

(
nd

)
, by

Theorem A.2.

Case 2: Suppose r = 1. Then the sum

k−1∑
i=0

ri =
k−1∑
i=0

1 = k = logb(n).

Thus, the recurrence becomes

f(n) = O
(
nlogb(a)

)
+O

(
nd logb(n)

)
.

Since r = 1, it follows that a = bd, which implies logb(a) = d. Therefore, the two exponents
are equal, and nlogb(a) = nd. Thus, by Theorem A.2, the overall complexity simplifies to
f(n) = O

(
nd log(n)

)
, where the change from logb(n) to log(n) absorbs a constant factor,

as logarithms with different bases differ by a constant multiple.

Case 3: Suppose r > 1. Then the sum
∑k−1

i=0 ri is a finite geometric series with ratio r > 1,
and satisfies

k−1∑
i=0

ri =
rk − 1

r − 1
.

Since r− 1 is a positive constant and rk dominates −1 as k increases, the sum simplifies to

k−1∑
i=0

ri = O
(
rk
)
.

Thus, the recurrence becomes

f(n) = O
(
nlogb(a)

)
+O

(
ndrk

)
.

Since r = a
bd

, it follows that

rk =
( a

bd

)k
= akb−dk = alogb(n)b−d logb(n) = nlogb(a)n−d = nlogb(a)−d.

Substituting back, the recurrence simplifies to

f(n) = O
(
nlogb(a)

)
+O

(
ndnlogb(a)−d

)
= O

(
nlogb(a)

)
+O

(
nlogb(a)

)
.

Since both terms are O
(
nlogb(a)

)
, the overall complexity is f(n) = O

(
nlogb(a)

)
, by Corol-

lary A.3.

Walking through all three cases concludes the proof of the Master Theorem. ■
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B ML-KEM Complexity Analysis
This chapter presents a detailed analysis of the complexity of ML-KEM, as introduced in
Chapter 3.

B.1 Time Complexity Analysis of ML-KEM

The asymptotic time complexity of ML-KEM is influenced by the parameters n and k, where
n−1 denotes the degree of the polynomials and k is the number of polynomials in the matrix
and vectors used in the scheme.

Key Generation

In the key generation algorithm, generating the matrix A ∈ Rk×k
q involves producing all k2n

coefficients. By Theorem A.4, the time complexity of this process is

O
(
k2
)
O(n) = O

(
k2n

)
. (B.1)

Next, the secret vector s ∈ Rk
q and the error vector e ∈ Rk

q are each sampled indepen-
dently from the central binomial distribution, see Section 3.1. The total time complexity for
generating both vectors is

O(kn) +O(kn) = O(kn), (B.2)

by Corollary A.3. The computation of t ∈ Rk
q in (3.7) is carried out in the NTT domain.

The NTT follows a divide-and-conquer approach, as described in detail in Section 3.5. Us-
ing Theorem A.5, the recurrence f(n) = 2f

(
n
2

)
+ O(n) falls under case 2, where a = bd.

According to case 2, the solution to this recurrence is f(n) = O(n log2(n)). Once the data
is in the NTT domain, the multiplication of polynomials can be performed in constant time
relative to the size of the polynomial. In contrast, classical polynomial multiplication takes
O(n2) operations. Thus, the NTT-based approach provides better asymptotic performance
for polynomial multiplication, see Figure B.1.
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B.1. Time Complexity Analysis of ML-KEM
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Figure B.1: The figure compares the time complexity of multiplication in the NTT and classic domains. In
the NTT domain, the complexity is O(n log2(n)), while in the classic domain, it is O(n2).

The NTT is applied element-wise to the k polynomials in s and e, see Table 3.4. Hence, the
total cost of transforming these vectors is O(kn log2(n)). Similarly, the matrix A requires
O
(
k2n log2(n)

)
time. Combining these, the overall time complexity for all NTT operations

in the key generation algorithm is

O(kn log2(n)) +O(kn log2(n)) +O
(
k2n log2(n)

)
= O

(
k2n log2(n)

)
,

since the last term dominates for k > 1, as formalised in Theorem A.2.

After the NTT transformations, the matrix-vector multiplication in (3.7) is performed in the
NTT domain, as specified in Table 3.4. Since there are k2n such multiplications, the total
time complexity for this operation is O

(
k2n

)
, as established by Theorem A.4. The addition

of the error vector ê adds a complexity of O(kn), but it does not affect the overall complexity,
which remains O(k2n) by Theorem A.2.

Finally, constructing the decapsulation key in (3.13) involves generating a fixed-size random
value z ∈ {0, 1}256, which requires constant time O(1), and computing the hash H(ek),
which has complexity O(kn). Therefore, the overall time complexity for decapsulation key
construction is O(kn).

The total time complexity for key generation is the sum of the individual complexities:

O
(
k2n

)
+O (kn) +O

(
k2n log2 (n)

)
+O

(
k2n

)
+O(kn) = O

(
k2n log2 (n)

)
,

where the O
(
k2n log2 (n)

)
term dominates for n > 1, as confirmed by Theorem A.2.

Encapsulation

In the first step of encapsulation, a random message representative m ∈ {0, 1}n is sampled,
which requires O(n) time. The shared secret key K ∈ {0, 1}256 and encryption randomness
r ∈ {0, 1}256 are then derived according to (3.14). Computing H(ek) has a complexity of
O(kn). The hash function G is applied to the message m and H(ek), which has a fixed
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B.1. Time Complexity Analysis of ML-KEM

size, so this step contributes an additional O(n) time. The total time complexity of this
preprocessing step is

O(kn) +O(n) = O(kn).

In the subsequent encryption step, the matrix A is regenerated from the public seed ρ ∈
{0, 1}256, with the same time complexity as in key generation, see (B.1). The matrix is then
transformed into the NTT domain as Â, which requires a time complexity of O

(
k2n log2(n)

)
.

The vectors r ∈ Rk
q and e1 ∈ Rk

q , and polynomial e2 ∈ Rq are sampled analogously to the
key generation algorithm, with identical overall time complexity as given in (B.2). Next, the
NTT is applied to the vector r resulting in a time complexity of O(kn log2(n)).

The first ciphertext component u ∈ Rk
q is computed in (3.8). The matrix-vector multiplica-

tion is carried out in the NTT domain, as specified in Table 3.4. This computation involves
k2 pointwise polynomial multiplications, followed by an inverse NTT on each resulting poly-
nomial to return to the coefficient domain. Finally, the error vector e1 is added, completing
the construction of u. The time complexity of these operations is

O
(
k2n

)
+O (kn log2 (n)) +O (kn) = O (kn log2 (n)) . (B.3)

The dominant term depends on the relationship between k and log2(n). Under the typical pa-
rameter choices in ML-KEM, where k < log2(n) in every case, the second term O(kn log2(n))

dominates.

The computation of the second ciphertext component v ∈ Rq in (3.9) also takes place in
the NTT domain, as shown in Table 3.4. This step involves k polynomial multiplications,
an inverse NTT, and an addition with the terms e2 +

⌈ q
2

⌋
. The associated time complexity

is
O(kn) +O(n log2(n)) +O(n) = O(n log2(n)).

Similar to the previous case, the dominant term depends on the relationship between k and
log2(n). Under the typical parameter choices in ML-KEM, where k < log2(n) in every case,
the second term O(n log2(n)) dominates.

Finally, the ciphertext components u and v are compressed by (3.1), which operates lin-
early over the number of coefficients, contributing a complexity of O(kn). The total time
complexity for the encapsulation algorithm is then:

O(kn) +O
(
k2n log2 (n)

)
+O(kn) +O (kn log2(n)) +O (kn log2(n))

+O(n log2(n)) +O(kn) = O
(
k2n log2(n)

)
,

where the second term dominates for k > 1, as confirmed by Theorem A.2.

Decapsulation

In the decapsulation algorithm, the ciphertext components c1 and c2 are decompressed to
recover ū ∈ Rk

q and v̄ ∈ Rq, as shown in (3.10) and (3.11). The decompression function
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B.2. Space Complexity Analysis of ML-KEM

operates pointwise on the coefficients of each polynomial. The total time complexity of
decompressing c1 and c2 is

O(kn) +O(n) = O(kn).

Next, each polynomial in ū is subsequently transformed into the NTT domain. Applying
the NTT to a vector of k polynomials, each of degree n − 1, has a time complexity of
O(kn log2(n)). Following this, the inner product between the private decryption key ŝ and
the transformed ciphertext component ˆ̄u in (3.12) is computed. This entails kn pointwise
multiplications and n additions to sum the k products. The total time complexity of this
operation is therefore O(kn). The result of the inner product is a single polynomial, which is
then transformed back from the NTT domain using the inverse NTT. Since the inverse NTT
operates on one polynomial, the time complexity is O(n log2(n)).

The next step is message recovery as defined in (3.12), where the polynomial resulting from
the inner product is subtracted from v̄ and then compressed. Both the subtraction and
compression operate coefficient-wise over polynomials of degree n − 1, yielding O(n) time
complexity. After obtaining m′ ∈ 0, 1n, the hash function G from (3.4) computes the shared
secret key candidate K ′ ∈ {0, 1}256 and randomness r′ ∈ {0, 1}256 in O(kn) time, due to the
hashed input size. The implicit rejection value z from the private decapsulation key dk is
used to derive the alternative key K̄ ∈ {0, 1}256 as defined in (3.15). Since c has total size
proportional to O(kn), the hash function J defined in (3.6), runs in O(kn) time.

Using the public encryption key ek and the derived randomness r′, the message m′ is re-
encrypted to produce a ciphertext c′. As detailed in the time complexity analysis of key
encapsulation, the dominant cost in the encryption process arises from the NTT operations,
contributing to the same time complexity as shown in (B.3). Finally, the received ciphertext
c is compared to the recomputed ciphertext c′ to verify correctness. This is a component-
wise comparison of polynomials and thus takes O(kn). Summing all steps, the total time
complexity of the decapsulation algorithm is O (kn log2(n)).

B.2 Space Complexity Analysis of ML-KEM

In ML-KEM, the parameters influencing the asymptotic space complexity are k and n. Since
the time complexity was already examined in detail, demonstrating the use of big-O notation
and its underlying principles, this section adopts a more concise approach.

Although NTTs are central to ML-KEM, they are typically performed in-place and do not
contribute additional asymptotic memory. As such, they are not considered in the space
complexities presented here.

Key Generation

Table B.1 summarises the space complexities for key components in the algorithm.
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B.2. Space Complexity Analysis of ML-KEM

Component Space Complexity

Matrix A O(n)

Private decryption key s O(kn)

Error vector e O(kn)

Result t O(kn)

Encapsulation key ek O(kn)

Decapsulation key dk O(kn)

Table B.1: Space complexity of the key generation algorithm in ML-KEM.

The matrix A is not stored in full, but instead individual polynomials are deterministically
reconstructed as needed during computation, thus, requiring a space complexity of O(n) [5].
The overall space complexity for key generation is dominated by the storage of s, e, and t,
leading to a total space complexity of O(kn).

Encapsulation

A summary of the space complexities for key components is shown in Table B.2.

Component Space Complexity

Message m O(n)

Encapsulation key ek O(kn)

Matrix A O(n)

Random vector r O(kn)

Error vector e1 O(kn)

Error polynomial e2 O(n)

Ciphertext component u O(kn)

Ciphertext component v O(n)

Ciphertext c O(kn)

Table B.2: Space complexity of the encapsulation algorithm in ML-KEM.

The ciphertext components u and v occupy O(kn) and O(n) space, respectively. Their
compressed counterparts, c1 and c2, retain the same asymptotic space requirements, resulting
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B.3. Bit Complexity Analysis of ML-KEM

in an overall ciphertext space complexity of O(kn) for c. This is because compression only
reduces the bit length of each coefficient by a constant factor, without changing the number
of coefficients. As asymptotic analysis abstracts away constant factors, the overall space
complexity remains unchanged. Thus, the total space complexity is dominated by the storage
of vectors, leading to an overall complexity of O(kn).

Decapsulation

Table B.3 summarises the space usage of the relevant components.

Component Space Complexity

Decapsulation key dk O(kn)

Private decryption key s O(kn)

Decompressed ū O(kn)

Decompressed v̄ O(n)

Recovered message m′ O(n)

Encapsulation key ek O(kn)

K-PKE encryption O(kn)

Ciphertext c O(kn)

New ciphertext c′ O(kn)

Table B.3: Space complexity of the decapsulation algorithm in ML-KEM.

The dominant terms arise from the storage of vectors and the K-PKE algorithm, resulting
in total space complexity O(kn).

B.3 Bit Complexity Analysis of ML-KEM

This section provides a bit-level complexity analysis, offering a more precise view than asymp-
totic analyses. It quantifies both the number of bits needed to perform operations and to
store data. The bit complexities are expressed in terms of the algorithm parameters. The
modulus q = 3329 determines the bit-width required to represent each coefficient in the ring
Rq. The number of bits needed to represent an element modulo q is calculated as

⌊log2(3329)⌋+ 1 = 12 bits.

Thus, each coefficient in Rq is stored using 12 bits.
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B.3. Bit Complexity Analysis of ML-KEM

Time Bit Complexity Analysis

The time bit complexity analysis expands on the asymptotic results from Section B.1, pro-
viding concrete estimates of bit-level operations per step. While it excludes practical factors
such as hardware details and coding optimisations, it offers a consistent basis for comparing
ML-KEM and HQC computational costs. Table B.4 details the time bit complexity for the
main operations in the ML-KEM key generation algorithm. Similarly, Table B.5 and Ta-
ble B.6 present the time bit complexities for the encapsulation and decapsulation algorithms.
The terms αη1 and αη2 denote the number of bits required to encode coefficients sampled
from Bη1 and Bη2 , respectively. They are computed as

⌊log2(η1)⌋+ 1 = αη1 and ⌊log2(η2)⌋+ 1 = αη2 .

Operation Time Bit Complexity

Generate matrix A 12k2n bits

Sample s, e from Bη kn (αη1 + αη2) bits

NTT of A 12k2n log2(n) bits

NTT of s, e kn log2(n) (αη1 + αη2) bits

Matrix-vector multiplication + addition 12k2n+ knαη2 bits

Hash H(ek) and rejection z 12kn+ 256 bits

Table B.4: Time bit complexity of the ML-KEM key generation algorithm.
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B.3. Bit Complexity Analysis of ML-KEM

Operation Time Bit Complexity

Sample message m n bits

Shared secret key K and randomness r 512 bits

Hashes H(ek) and G(m,H(ek)) 12(n+ kn) bits

Generate matrix A 12k2n bits

NTT of A 12k2n log2(n) bits

Sample r, e1, e2 knαη1 + knαη2 + nαη2 bits

NTT of r kn log2(n)αη1 bits

Calculate u 12k2n+ 12kn log2(n) + 12kn bits

Calculate v 12kn+ 12n log2(n) + 12n bits

Compress u and v 12kn+ 12n bits

Table B.5: Time bit complexity of the ML-KEM encapsulation algorithm.

Operation Time Bit Complexity

Decompress u and v 12(kn+ n) bits

NTT on u 12kn log2(n) bits

Inner product of s and u plus inverse NTT 12kn+ 12n log2(n) bits

Subtract v and compression 24n bits

Hashes H(ek) and G(m,H(ek)) 12(n+ kn) bits

Hash J (z, c) 12kn+ 256 bits

Re-encrypt m′ Same as the last five steps in Table B.5

Comparison of c and c′ 12kn bits

Table B.6: Time bit complexity of the ML-KEM decapsulation algorithm.

Space Bit Complexity Analysis

The space bit complexity analysis is not subdivided into key generation, encapsulation, and
decapsulation, as in the previous sections. Instead, it builds directly on the space complexities
already presented in Table B.1, Table B.2 and Table B.3, by converting those results into
bit-level quantities. For instance, each entry in the matrix A, which has a space complexity
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B.3. Bit Complexity Analysis of ML-KEM

of O(n), consists of elements in Rq, where each coefficient requires 12 bits for representation.
Thus, the space bit complexity for each entry in A is 12n bits. The same reasoning applies
to all vectors with space complexity O(kn), including s, e, t, r, e1 and u, each of which
contributes a space bit complexity of

12kn bits. (B.4)

The most relevant elements in the space bit complexity analysis, however, are the sizes
of the public encapsulation key, the private decapsulation key, and the ciphertext. The
public encapsulation key is defined as ek = (ρ, t), where ρ is a 256-bit seed, and t contains
k polynomials in Rq, each with n coefficients of 12 bits. This leads to a total space bit
complexity of

12kn+ 256 bits. (B.5)

The private decapsulation key dk, as defined in (3.13), consists of s, which requires 12kn bits
as shown in (B.4), the private encapsulation key ek, which adds 12kn+ 256 bits as given in
(B.5), the hash function H(ek) of 256 bits, and the 256-bit rejection value z. Summing these
components yields a total space bit complexity for the private decapsulation key of

12kn+ 12kn+ 256 + 256 + 256 = 24kn+ 768 bits. (B.6)

The ciphertext c consists of two compressed components. The first ciphertext component
compresses the vector u, which contains k polynomials, each with n coefficients. Each coef-
ficient is compressed to du bits, resulting in a total bit size of kndu. The second ciphertext
component compresses the polynomial v, which has n coefficients, each represented using dv
bits, giving a total of ndv bits. Thus, the total space bit complexity of the ciphertext is

kndu + ndv bits. (B.7)

The shared secret key has a fixed bit length of 256 bits, as defined in [5]. This concludes
the complexity analysis of the ML-KEM algorithm. By substituting the concrete parameter
values for each ML-KEM parameter set into the formulas (B.5), (B.6), and (B.7), the resulting
bit sizes correspond to the byte values presented in Table 3.2.
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C HQC Complexity Analysis
This chapter presents a detailed analysis of the complexity of HQC, as introduced in Chap-
ter 5.

C.1 Time Complexity Analysis of HQC

The time complexity of HQC is influenced by the parameters n, n1, n2, k1, and k2, where n

is the length of the ambient space in which arithmetic operations are performed, n1n2 is the
code length of the concatenated RMRS code, and k1k2 is the dimension of the message and
seed vector as well as the dimension of the concatenated RMRS code.

Key Generation

In the key generation algorithm, h ∈ R2 is sampled uniformly at random from R2. As h is
represented as a vector of length n corresponding to the coefficients of a polynomial of degree
at most n − 1, generating h requires producing n coefficients. Hence, this results in a time
complexity of O(n).

Next, the two secret vectors (x,y) ∈ Rw × Rw are sampled uniformly at random from Rw.
Each secret vector consists of the coefficients of a sparse polynomial of degree at most n− 1

with exactly w non-zero coefficients. Sampling such vectors involves selecting w distinct
positions from {0, 1, . . . , n − 1} and setting those positions to 1. Thus, the time complexity
of a sparse vector is proportional to the number of its non-zero elements. Therefore, this
process requires a time complexity of O(w). However, according to [38], sparse vectors with
Hamming weight w typically have a time complexity of O (

√
n) to balance security and

efficiency. Therefore, the total time complexity for sampling both vectors is

O
(√

n
)
+O

(√
n
)
= O

(√
n
)
, (C.1)

by Corollary A.3. The next step is to compute s, as defined in (5.3). This involves a
multiplication between h and y, followed by an addition with x. The time complexity for
the multiplication depends on the method used. Using classical polynomial multiplication,
the time complexity is

O(n)O
(√

n
)
= O

(
n
√
n
)
,

by Theorem A.4. The subsequent addition with x is performed component-wise and has a
linear-time complexity of O(n). Thus, the total time complexity to compute s is

O(n) +O
(
n
√
n
)
= O

(
n
√
n
)
,

by Theorem A.2. Alternatively, the multiplication can be implemented using fast Fourier
transform (FFT), which transforms the input vectors into the frequency domain to enable
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C.1. Time Complexity Analysis of HQC

pointwise multiplication. Similar to the NTT, the FFT follows a divide-and-conquer ap-
proach. Using Theorem A.5, the recurrence f(n) = 2f

(
n
2

)
+O (n) falls under case 2, where

a = bd. According to case 2, the solution to this recurrence is f(n) = O(n log2(n)). Com-
pared to the classical polynomial multiplication with complexity O (n

√
n), the FFT-based

method achieves better asymptotic performance, as illustrated in Figure C.1.
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Figure C.1: Comparison of the time complexity of multiplication O (n
√
n) vs. O(n log2(n)).

Using the FFT, the overall time complexity of computing s becomes

O
(√

n
)
+O(n log2(n)) = O(n log2(n)), (C.2)

by Theorem A.2, as the last term dominates for large n.

Finally, to construct the decapsulation key, the vector σ ∈ Fk1k2
2 is sampled uniformly at

random. Generating a vector of length k1k2 requires a time complexity of O(k1k2).

The total time complexity for key generation is obtained by summing the individual com-
plexities:

O(n) +O
(√

n
)
+O(n log2(n)) +O(k1k2) = O(n log2(n)),

where the third term dominates asymptotically under the assumption that k1k2 ≪ n,
as established by Theorem A.2. This assumption holds for typical parameter choices in
HQC.

Encapsulation

In the encapsulation algorithm, a message m ∈ Fk1k2
2 is selected uniformly at random. As the

message consist of k1k2 elements, a time complexity of O(k1k2) is required. A salt value is
also sampled uniformly at random, salt ∈ F128

2 , which results in a constant-time complexity
of O(1). The randomness θ is computed, as defined in (5.8). Here, the hash function defined
in (5.1) is used, which processes input of size k1k2 +32+128 bits and outputs a fixed length
of 512 bits. As the time complexity of the firstBytes(·) function and salt value is constant,
the time complexity of computing θ is O(k1k2).
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Next, the error vector e ∈ Rwe with Hamming weight we is sampled uniformly at random and
the secret vectors r = (r1, r2) ∈ Rwr × Rwr , consisting of two sparse vectors with Hamming
weight wr each, are sampled uniformly at random. Sampling these sparse vectors involves the
same process as in the key generation algorithm, resulting in the same total time complexity
as given in (C.1).

The first ciphertext component, u, as defined in (5.4), includes a multiplication between h

and r2. As seen in the time complexity analysis of the key generation algorithm, using the
FFT for the multiplication is more efficient than classical polynomial multiplication. The
addition of r1, which involves at most wr non-zero positions, requires a time complexity of
O (

√
n). Therefore, the total time complexity of u is identical to the time complexity in

(C.2).

To compute the second ciphertext component v, as defined in (5.5), the matrix-vector mul-
tiplication mG is first computed. The generator matrix G ∈ Fk1k2×n1n2

2 is generated for a
concatenated RMRS [n1n2, k1k2] code. The generator matrix enables encoding of the message
m into a codeword, a process which involves multiplying a 1× k1k2 vector by a k1k2 × n1n2

matrix, which requires a time complexity of

O(1)O(k1k2)O(n1n2) = O(k1k2n1n2),

by Theorem A.4. Next, the multiplication between s and r2 with the addition of e is equiva-
lent to the process in the key generation algorithm, leading to the identical time complexity
as given in (C.2). The truncation operation reduces the output with ℓ bits and operates in
constant time, thus contributing O(1) to the time complexity. Therefore, the overall time
complexity of v is

O(k1k2n1n2) +O(n log2(n)) +O
(√

n
)
+O(1) = O(k1k2n1n2) +O(n log2(n)), (C.3)

as established by Theorem A.2. The dominant term depends on the relative sizes of k1k2n1n2

and n log2(n). Under the typical parameter choices in HQC where k1k2 ≪ n1n2 < n, the
total time complexity of v is dominated by O(n log2(n)).

The total time complexity for the encapsulation algorithm is obtained by summing the dom-
inant terms of each step:

O(k1k2) +O(k1k2) +O
(√

n
)
+O(n log2(n)) +O(n log2(n)) = O(n log2(n)),

where the O(n log2(n)) term dominates asymptotically under the assumption that k1k2 ≪ n,
as established by Theorem A.2.

Decapsulation

The decapsulation algorithm begins by decrypting the received ciphertext c using the pri-
vate decapsulation key sk. This includes the multiplication between u and y which is then
subtracted from v, as defined in (5.6). As explained in the key generation, using the FFT
method is more efficient than classical polynomial multiplication. The subtraction from v
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operates coefficient-wise and requires a time complexity of O(n). Therefore, the overall time
complexity of computing the decoding input is identical to (C.2).

Decoding that input with a decoding algorithm for the concatenated RMRS code, the RM
code is first decoded, then the RS code. The time complexity of decoding an RM code using
the decoding algorithm as explained in [31, p. 26] requires O(n1n2 log2(n1n2)) [39]. The time
complexity of decoding an RS code using the decoding algorithm as explained in [31, pp. 24–
25] requires O

(
n2
1n

2
2

)
[11, p. 201]. Therefore, the overall time complexity of the decoding

algorithm using concatenated RMRS codes is

O(n1n2 log2(n1n2)) +O
(
n2
1n

2
2

)
= O

(
n2
1n

2
2

)
,

as established by Theorem A.2. Subsequently, the randomness θ′ is computed, as defined in
(5.9). The time complexity of this operation is identical to the one of θ in the encapsulation
algorithm. Next, the sparse vectors e′, r′1, and r′2 of Hamming weights we, wr, and wr,
respectively, is sampled uniformly at random. Sampling these vectors involves the same
process as in the key generation algorithm, resulting in the same overall time complexity as
given in (C.1). Similarly as in encapsulation, the ciphertext components u′ and v′, as defined
in (5.10) and (5.11), are computed, with the total complexity identical to (C.2) and (C.3),
respectively.

Then, the re-encrypted ciphertext c′ is compared to the received ciphertext c. This requires
checking n bits in each component, leading to a time complexity of O(n). Depending on
the comparison, the shared secret key is computed using the hash function K, defined in
(5.2), applied to either m′ or σ. As K processes inputs of size k1k2, this step has complexity
O(k1k2).

Summing the dominant terms from each step, the total time complexity of the decapsulation
algorithm is:

O(n log2(n)) +O
(
n2
1n

2
2

)
+O(k1k2) +O(

√
n) +O(n log2(n))

+O(n log2(n)) +O(n) +O(k1k2) = O
(
n2
1n

2
2

)
,

where the second term dominates asymptotically, as established by Theorem A.2. This holds
under the assumptions that k1k2 ≪ n and n ≪ n2

1n
2
2, which are satisfied for typical HQC

parameter choices.

C.2 Space Complexity Analysis of HQC

The space complexity of HQC is influenced by the parameters n, n1, n2, k1, and k2. Since
the time complexity has already been examined in detail, including the use of big-O notation
and its underlying principles, this section adopts a more concise approach, similar to the
space complexity analysis of ML-KEM, as presented in Section B.2.

Key Generation

Table C.1 summarises the space complexities for key components in the algorithm.
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Component Space Complexity

Vector h O(n)

Secret vectors (x,y) O (
√
n)

Vector s O(n)

Seed σ O(k1k2)

Public encapsulation key pk O(n)

Private decapsulation key sk O (
√
n)

Table C.1: Space complexity of the key generation algorithm in HQC.

The sparse vectors (x,y) are stored by listing the positions of their non-zero entries, thus
requiring a space complexity of O (

√
n) each. The private decapsulation key sk is formed by

(x,y) and σ, where the latter consists of k1k2 bits, requiring a space complexity of O(k1k2).
Thus, under the assumption that k1k2 <

√
n, which holds for the typical HQC parameter

choices, the private decapsulation key has a space complexity of O (
√
n). The overall space

complexity for key generation is dominated by the storage of h and s, leading to a total space
complexity of O(n).

Encapsulation

A summary of the space complexities for key components is shown in Table C.2.

Component Space Complexity

Message m O(k1k2)

Matrix G O(k1k2n1n2)

Encoded message mG O(n1n2)

Error vector e O (
√
n)

Random vectors (r1, r2) O (
√
n)

Ciphertext component u O(n)

Ciphertext component v O(n1n2)

Ciphertext c O(n)

Table C.2: Space complexity of the encapsulation algorithm in HQC.
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The ciphertext components u and v occupy O(n) and O(n1n2) space each, respectively.
Therefore, the total ciphertext space complexity is O(n), under the assumption that n1n1 <

n. The overall space complexity is dominated by the storage of vectors, leading to a total
space complexity of O(k1k2n1n2).

Decapsulation

Table C.3 summarises the space complexities for key components in the algorithm.

Component Space Complexity

Private decapsulation key sk O (
√
n)

Ciphertext c O(n)

Difference and product v − u · y O(n)

Decoded message m′ O(n)

Re-computing e′, r′1, r
′
2 O (

√
n)

Re-encryption u′ O(n)

Re-encryption v′ O(n1n2)

Recomputed ciphertext c′ O(n)

Table C.3: Space complexity of the decapsulation algorithm in HQC.

The total space complexity is dominated by the ciphertext, resulting in a total space com-
plexity of O(n).

C.3 Bit Complexity Analysis of HQC

This section provides a bit-level complexity analysis, offering a more precise view than asymp-
totic analyses. It quantifies both the number of bits needed to perform operations and to
store data. The bit complexities are expressed in terms of the algorithm parameters.

Time Bit Complexity Analysis

The time bit complexity analysis expands on the asymptotic results from Section C.1, pro-
viding concrete estimates of bit-level operations per step. While it excludes practical factors
such as hardware details and coding optimisations, it offers a consistent basis for comparing
ML-KEM and HQC computational costs. Table C.4 details the time bit complexity for the
main operations in the HQC key generation algorithm. Similarly, Table C.5 and Table C.6
present the time bit complexities for the encapsulation and decapsulation algorithms.
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Operation Time Bit Complexity

Sample h n bits

Sample sparse vectors (x,y) 2
√
n bits

Compute s
√
n+ n log2(n) bits

Sample σ k1k2 bits

Table C.4: Time bit complexity of the HQC key generation algorithm.

Operation Time Bit Complexity

Select message m k1k2 bits

Salt value salt 128 bits

Randomness θ k1k2 + 160 bits

Sample sparse vectors e, r1 and r2 3
√
n bits

Calculate u
√
n+ n log2(n) bits

Calculate v k1k2n1n2 +
√
n+ n log2(n) bits

Table C.5: Time bit complexity of the HQC encapsulation algorithm.

Operation Time Bit Complexity

Calculate v − u · y
√
n+ n log2(n) bits

Decode RMRS code n1n2 log2(n1n2) + n2
1n

2
2 bits

Randomness θ′ k1k2 + 160 bits

Sample sparse vectors e′, r′1 and r′2 3
√
n bits

Calculate u′ √
n+ n log2(n) bits

Calculate v′ k1k2n1n2 +
√
n+ n log2(n) bits

Comparison of c and c′ 2n bits

Hash K k1k2 bits

Table C.6: Time bit complexity of the HQC decapsulation algorithm.
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Space Bit Complexity Analysis

The space bit complexity analysis is not subdivided into key generation, encapsulation, and
decapsulation, as in the previous sections. Instead, it builds directly on the space complex-
ities. The most relevant elements in the space bit complexity analysis are the sizes of the
public encapsulation key, the private decapsulation key, and the ciphertext.

Both the public encapsulation key and the private decapsulation key involve the use of a seed,
which is deterministically expanded using the SHAKE256 function. This seed is initialised
from a 40-byte string, corresponding to 320 bits [31].

The public encapsulation key pk, as defined in (5.3), consists of the vector h, which is
generated from the seed, and the vector s, which requires O(n) bits of storage. Therefore,
the total space bit complexity of the public encapsulation key is

320 + n bits. (C.4)

The private decapsulation key sk, as defined in (5.7), consists of the sparse vectors (x,y),
which are generated from the seed, and the rejection value σ, which is k1k2-bit. Hence, the
total space bit complexity of the private decapsulation key is

320 + k1k2 bits. (C.5)

The ciphertext c = (u,v, salt) consists of u, which has the space complexity O(n), the vector
v, which has the space complexity O(n1n2), and the salt value, which is a fixed 128-bit value.
Therefore, the total space bit complexity of the ciphertext is

n+ n1n2 + 128 bits. (C.6)

The shared secret key has a fixed bit length of 512 bits, as specified in the HQC specification
[31]. This concludes the complexity analysis of HQC. By substituting the concrete parameter
values for each HQC parameter set into the equations (C.5), (C.4), and (C.6), the resulting
bit sizes correspond to the byte-sized values presented in Table 5.4.
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