
Aalborg University

Summary

In this thesis, we develop an Instant Messaging Simulation tool (IM-sim) to investigate
the Deniable Instant Messaging protocol called DenIM.

DenIM is a hybrid messaging protocol that allows for piggybacking of deniable mes-
sages on regular instant messaging traffic, all in an effort to secure any metadata which
might be useful to an adversary. DenIM is proven to be formally secure through a
formal analysis by the creators of the protocol at Aarhus University, though not much
research has gone into testing the practicality and security in real-life scenarios.

With IM-sim, user behaviour in Instant Messaging can be simulated while capturing
protocol network traffic, in which the behavioural patterns were derived by looking
at current literature surrounding the topic of human online behaviour.

To facilitate this, we implemented the DenIM protocol on top of last semester’s Signal
implementation to allow for evaluation of the DenIM protocol.

Having all the proper tools in place, several simulations were conducted with different
scenarios and varying user counts to gather as much data on the protocols as possible.
The trust assumptions of the DenIM protocol were also weakened in an attempt at
trying to find vulnerabilities in the security guarantees.

Some initial success was achieved when searching for deniable contacts in scenarios
with few users. But by increasing the user count of the simulation, it quickly became
very hard to gain any information regarding deniable contacts.

The thesis, however, does undeniably reach its goals of creating a functional DenIM
implementation and a general simulation tool with rich opportunities for further im-
provements and development.

1

Yet Another Privacy Protocol
End-user Reveal

Master Thesis in Distributed Systems

Andreas Knudsen Alstrup,
Arthur August Osnes Gottlieb &

Martin de Fries Justinussen

Software, cs-25-ds-10-07, June 5, 2025

Department of Computer Science
Aalborg University

http://www.aau.dk

Title:
Yet Another Privacy Protocol End-user
Reveal

Theme:
Distributed Systems

Project Period:
Spring Semester 2025

Project Group:
cs-25-ds-10-07

Participant(s):
Arthur August Osnes Gottlieb
Andreas Knudsen Alstrup
Martin de Fries Justinussen

Supervisor(s):
René Rydhof Hansen
Danny Bøgsted Poulsen

Code Repository:
https://github.com/Deniable-IM

Number of Pages: 41

Date of Completion:
June 5, 2025

Abstract:

Metadata privacy has become an in-
creasingly researched topic in recent
years, with little testing in real-world
scenarios. We developed a gener-
alised simulation tool for Instant Mes-
saging user behaviour that captures net-
work traffic. The Deniable Instant
Messaging (DenIM) protocol has been
implemented to challenge the proto-
col’s trust assumption that deniable be-
haviour does not affect regular user be-
haviour. By simulating the DenIM pro-
tocol, network traffic has been captured,
and novel attacks using the traffic have
been designed to reveal deniable com-
munication between users.
The attacks deal with different prun-
ing strategies, and these are evaluated
empirically with the simulated network
traffic we generate.

The content of this report is freely available, but publication (with reference) may only be pursued
due to agreement with the authors.

http://www.cs.aau.dk
https://github.com/Deniable-IM

Aalborg University

Preface

In an ever-evolving world, privacy is a rare commodity in online communication.
Thus, it is important to investigate new avenues of metadata privacy to improve the
individual’s privacy when using instant messaging services. These avenues are still
largely unexplored, and even fewer attempts to implement metadata privacy have
been made. This thesis aims to mitigate the gap by faithfully implement a simulating
tool to further analyse networking traffic in instant messaging protocols. To facilitate
this, the Deniable Instant Messaging protocol has been implemented, which aims to
hide metadata on the transport layer.

Use of generative AI

This thesis has utilised generative AI for minor parts of the project. GitHub Copilot
has been used for added reviews of some pull requests, which has helped highlight
minor problems in the code, e.g. a struct field not being initialised in the simulator.

Furthermore, ChatGPT has been utilised to generate nonsensical text strings format-
ted as a Go array. These strings have been used as the messages sent between clients
in the simulation1.

1These strings can be found in messagemaker.go on line 3

I

https://github.com/Deniable-IM/im-sim/blob/473fecbe7e2f727541d5c6c6a6b0d091b30aafc8/pkg/simulation/messagemaker/messagemaker.go#L3

Aalborg University

Acronyms

E2EE End-to-End Encryption . 1

GUID Global Unique Identifier . 13

IM Instant Messaging . 1, 3, 14 f., 17, 19, 22, 37

IMD Inter-Message Delay . 17 f., 20 f., 27 f.

KDC Key Distribution Center . 5, 38

SDA Statistical Disclosure Attack 3, 22, 25 f., 28 ff.

II

CONTENTS Aalborg University

Contents

1 Introduction 1

2 Related Work 3

3 Preliminaries 4
3.1 Deniable Instant Messaging (DenIM) 4
3.2 Threat Model . 5

4 Deniable Instant Messaging 6
4.1 Key Request . 6

4.1.1 Contact Discovery . 6
4.2 Deniable Buffers . 7
4.3 Chunk Sizing . 8
4.4 Chunk Ordering . 11

5 Instant Messaging Simulation 14
5.1 Architecture . 14

5.1.1 Containerisation . 14
5.1.2 Packet Capture . 15

5.2 Implementation . 15
5.2.1 Scaling Clients . 16
5.2.2 Client-server Communication 16
5.2.3 IP Assignment . 16
5.2.4 Simulate in Cloud . 17

5.3 Simulating Users . 17
5.3.1 User Behaviour . 19

6 Traffic Analysis 22
6.1 Experimental Setup . 22
6.2 Identifying Regular Contacts . 23

6.2.1 Counting-Based Statistical Disclosure Attack 23

III

CONTENTS Aalborg University

6.2.2 Normalised Statistical Disclosure Attack 25
6.2.3 Generating List of Contacts . 26

6.3 Identifying Deniable Contacts . 27
6.3.1 Identification of Deniable Behaviour 27
6.3.2 Recipient Identification . 28

6.4 Evaluation of Attacks . 28
6.4.1 Whistleblower Contacts News Agency 29
6.4.2 Deniable Counting-Based Statistical Disclosure Attack 30
6.4.3 Deniable Normalised Statistical Disclosure Attack 30

7 Discussion 32
7.1 Message Size and Session Initialisation 32
7.2 Contact Discovery . 34
7.3 Server Deadlock . 35
7.4 Scaling Clients . 35
7.5 Simulation data . 36

8 Conclusion 37

9 Future Work 38
9.1 Key Distribution Center . 38
9.2 Cluster Simulation . 38

Bibliography 39

IV

Introduction Aalborg University

1 | Introduction

Instant Messaging (IM) has become a widespread form of communication during the
past few decades, with 8.3 billion accounts existing in 2021 [1]. In an effort to ensure
the privacy of users, most IM apps enable message confidentiality by implementing
End-to-End Encryption (E2EE) on their services. Protocols such as the formally
secure Signal Protocol are widely used to facilitate E2EE [2]. The Signal Protocol
has resilience, forward security, and future secrecy as useful properties [3], but these
properties do not prevent IM apps using the Signal Protocol from leaking sensitive
information to adversaries through metadata and traffic patterns [4]. The leaked
information may seem harmless in itself, but it is enough to identify administrators
of group chats as well as other individuals [4]. An oppressive government can identify
dissenters by analysing the metadata and crack down on the dissenters. Former
CIA director Michael Hayden goes even further and states “We kill people based on
metadata” [5]. Metadata should therefore be as protected as the message itself, to
minimise the information an adversary can obtain and analyse. Signal Foundation
has attempted to mitigate the leakage by implementing functionality to anonymise
senders, called sealed sender, where the identity of the sender is hidden from the
server [6]. However, sealed sender has been proven to be insufficient in its privacy
guarantees, which means more complex solutions are required [7].

Several proposals for achieving metadata privacy exist, but none of them have been
implemented in an IM app, as metadata privacy is a somewhat recent research topic.
Deniable Instant Messaging, DenIM, is one such proposal, which seeks to preserve
metadata privacy on both the transport layer as well as the application layer [8]. The
provable metadata privacy makes the proposal interesting to investigate, as the work
assumes user behaviour is not affected by the deniable messages.

Problem statement

According to the trust assumptions in Nelson et al. (2024), the deniable behaviour of
users will not influence their regular behaviour. How resilient is DenIM to a leak of
metadata when this trust assumption is weakened? Neither DenIM implementation

1

Introduction Aalborg University

nor a dataset for DenIM exists. From this lack of available data, the following problem
arises:

How can we develop a tool that generates realistic data for evaluating the
metadata leakage in Instant Messaging protocols, by capturing all network
traffic between clients and adjusting user behaviour?

Contribution

In order to facilitate the investigation of the DenIM protocol, there is first a need
for a functional implementation of the protocol, as well as plenty of DenIM user
communication data to enable an analysis of its security guarantees. This leads to
the contributions of this thesis, which are the following:

1. An implementation of the basic functionalities of the DenIM protocol.

2. A tool for simulating user behaviour on an instant messaging platform.

3. Attacks on the DenIM protocol under weakened trust assumptions.

4. An analysis of the attacks and an evaluation of the data collected using the
simulation tool.

The remaining part of this work will be divided into the following sections:

• Chapter 2 reviews the existing literature in deniable instant messaging as well
as traffic analysis of secure instant messaging.

• Chapter 3 outlines the protocol, as well as defining the adversary used in this
work.

• Chapter 4 outlines the implementation of DenIM, which is based on the Signal
client-server infrastructure described in Alstrup et al. (2025) [9].

• Chapter 6 describes the novel attacks we perform on the protocol, then analyses
and evaluates the data gathered from the attacks.

• Chapter 7 discusses the limitations and future work.

• Chapter 8 concludes the work.

2

Related Work Aalborg University

2 | Related Work

Several methods of traffic analysis for IM services can be found in existing litera-
ture. Bahramali et al. (2020) describe several algorithms which can be utilised to
identify users communicating with each other as well as identify administrators of
group chats [4]. Martiny et al. (2021) show that the stated privacy of Signal Founda-
tion’s sealed sender feature can be compromised by a global passive adversary using
a Statistical Disclosure Attack (SDA) [7].

The field of deniable communication contains several other proposals. Chakraborti et
al. (2023) propose a framework called Wink, which enables deniable communication
on compromised devices [10]. They accomplish this by utilising Trusted Execution
Environments to execute all encryption schemes. Wink is limited by the requirement
of regular communication with the recipient of a deniable message, which breaks
anonymity.

User behaviour on instant messaging platforms is an essential part of being able to
properly simulate communications, and different models have been presented to most
accurately depict real user behaviour. Cui et al. (2018) try to model human on-
line behaviour through the inter-event time between two consecutive visits to instant
messaging platforms [11].

3

Preliminaries Aalborg University

3 | Preliminaries

Some preliminary information is necessary, as it will be used throughout the rest
of the thesis, and therefore, a basic understanding of these principles is vital before
getting into the specific implementation details.

3.1 Deniable Instant Messaging (DenIM)

This thesis focuses on analysing the deniable protocol, DenIM, as presented in the
paper by Nelson et al. (2024) [8]. DenIM uses a hybrid messaging model, which means
it supports both regular instant messaging and deniable messaging. This hybrid model
is essential for the functionality of the protocol, as the deniable part is dependent on
regular traffic in order to be delivered.

When a user sends a deniable message, it gets put into a buffer waiting to be sent.
Then, once the client sends a regular message, part of the deniable message gets
chunked up and piggybacked inside the regular message. The size of the deniable
part is decided based on a global parameter q, such that its length will be q times the
length of the regular message.

Once the regular message reaches the server, it will unpack the deniable chunks and
keep them in a local incoming buffer until the entire deniable message has been
received and reconstructed. When a deniable message is reconstructed, it is then
added to an outgoing deniable buffer for the intended receiver. The server will then
chunk up any outgoing deniable message to the receiver and add it to the regular
message, which is then finally forwarded to the receiver. The receiving user then
unpacks the chunks from the regular messages and reconstructs the deniable message.

If any of the outgoing deniable buffers are empty when a message is being sent either
from the client or from the server, the regular message will instead be padded with
dummy chunks, such that the size, depending on the q value, always is consistent.
The dummy chunks are simply discarded when received.

4

Preliminaries Aalborg University

3.2 Threat Model

As this thesis focuses on the analysis of the deniable instant messaging protocol,
DenIM, we use the same threat model described in Nelson et al. (2024) [8]. They
use a global active adversary, in which the adversary may participate in the proto-
col and observe all network traffic between the clients and server. Looking at their
specific trust assumption in our analysis allows us to loosen or remove some of the
assumptions, and then test the rigidity of their protocol. We keep the following trust
assumptions from Nelson et al. (2024) [8]:

• The internal state of honest participants cannot be accessed.

• Recipients of deniable traffic are trusted.

• The servers handling delivery of keys and messages are trusted.

• The Key Distribution Center (KDC) is trusted.

• Honest users do not interact with adversaries over the protocol

It is important to note that the trust assumption regarding user behaviour has been
removed in this work. This means a user can exhibit different behaviour when sending
deniable traffic, such as increasing the volume of messages a user sends to piggyback
deniable messages.

5

Deniable Instant Messaging Aalborg University

4 | Deniable Instant Messaging

In this chapter, the implementation details of Deniable Instant Messaging (DenIM)
are explained, and it is further detailed how DenIM is slightly extended to address an
issue when chunks are delivered out-of-order.

The DenIM protocol is built upon a prior implementation of Signal in Alstrup et al.
(2025), which is a derived implementation from the Signal Foundations implementa-
tion that mimics the architectural choices and behaviour of one-to-one communication
in the Signal Protocol [9]). As messages are cached using Redis in the signal server,
DenIM is implemented by extending this caching infrastructure for fast, scalable and
reliable deniable storage [12].

4.1 Key Request

Upon initialising a new session with a contact, a key request is first sent to the server,
asking for a key bundle to enable the initialisation of the ratchets. In a regular non-
deniable Signal session, this step will be completed shortly before sending the first
encrypted message. However, in a deniable conversation, the key request will be done
deniably, and therefore, there is no time guarantee for the response, which makes
it impossible to encrypt the outgoing message immediately on the client, because
that would require the key bundle. Instead, the client will locally store the deniable
message awaiting encryption in plaintext, along with an indication that a key request
has been sent. On every subsequent deniable message sent to the same contact, the
client will then know not to send a new key request and instead just store the plaintext
message. When the client then eventually receives the key bundle response from the
server, it will start to encrypt all the stored plaintext messages for that user, and
ready them to be sent deniably to the recipient.

4.1.1 Contact Discovery

Almost all activity in Signal and DenIM requires the service ID of a contact. Nor-
mally, the process of getting a service ID from a phone number in Signal follows

6

Deniable Instant Messaging Aalborg University

a complicated process to try to keep the user’s social graph as private as possible,
and not give the Signal server any unnecessary data. In Signal, this is achieved by
running code in an Intel SGX secure enclave, which supports remote attestation and
hides memory access patterns [13]. Such a solution was deemed to be out of scope,
and we instead opted for a simple new endpoint on the server side, which takes the
phone number of a user and returns the service ID.

4.2 Deniable Buffers

In DenIM, the server is responsible for storing and forwarding deniable messages.
To achieve this, an incoming chunk buffer and an outgoing payload buffer have been
implemented to store deniable data before it gets piggybacked on a regular message.
The incoming chunk buffer will store payload chunks from a sending client until
these chunks can make a deniable payload, which is then stored in the outgoing
payload buffer. When a client is about to receive a regular message, data from the
outgoing payload buffer is piggybacked as chunks on that regular message as described
in section 4.4.

As seen in Figure 4.1, when the server receives a regular message from a client, all
the piggybacked chunks in that message get extracted and stored in the incoming
chunk buffer for that sending client. As the sending client continuously sends regular
messages, the incoming chunk buffer will grow as piggybacked chunks get stored in
the buffer. Once the server receives a final chunk, the incoming chunk buffer is flushed
and deserialised into a deniable payload. Given the type or the content of the deniable
payload, it is decided which client should receive this payload. The payload is then
stored in a client’s respective outgoing payload buffer. From the outgoing payload
buffer, data will be dequeued and piggybacked to deliver a payload in chunks.

7

Deniable Instant Messaging Aalborg University

Figure 4.1: Illustration of the relations between clients and the deniable
buffers, where incoming chunks get deserialised to payloads to then be
piggybacked on regular messages on delivery to a client.

4.3 Chunk Sizing

The original DenIM implementation from Nelson et al. (2024) is done in TypeScript
and uses protobuf to create the different message types [8]. DenIM’s specifications
show that the deniable part of a message is always supposed to be a ratio of the regular
payload. Protobuf uses variable-width integers, which makes for clever encoding, but
causes problems when the goal is to have specific message lengths, as with DenIM.
A lot of work goes into getting around this encoding in the original implementation,
such as creating two ballast integers, which can be manually manipulated to create
the wanted length.

In our implementation, we instead rely on Rust structs and the serialisation done using
the bincode crate. This approach simplifies the padding of the messages significantly,
as integers have constant length, and the only variables needed for the calculations
are the overheads for creating new structs and vectors.

This is perhaps best shown by taking a look at the code for creating chunks on the
client side, as seen below in Listing 4.1. It takes the trait DeniableSendingBuffer

as input, which is implemented directly with the underlying SQLite database to get
deniable payloads. It then calculates the total size of free bytes using the regular
payload size and the q value. In the actual chunking, two constants are used to account
for the overheads of vectors and structs, they are EMPTY_VEC_SIZE and EMPTY_-

8

Deniable Instant Messaging Aalborg University

DENIMCHUNK_SIZE. The first is to account for the overhead of the vector containing
all the DenIM chunks. The second is for the overhead of creating a chunk struct, so
it scales linearly along with the amount of chunks being sent.

Once the space has been calculated, any outgoing deniable payload is retrieved from
the database (line 11). If no deniable payload is found, it means that it will just
create a dummy chunk (line 39). Otherwise, a deniable payload was found, and then
it will determine if the entire payload can fit in the available space. If it cannot, then
it will create a chunk to fill the available space (line 25), and then put the rest of the
payload back in the database (line 31). If the whole payload fits, it will put it into a
final chunk and remove it completely from the database (lines 18-23), and then start
over by getting the next deniable payload to fill up any remaining space.

Finally, the function will return all the chunks created, along with any unused free
space, that will then get added to a ballast field, to ensure that the sizing is consistent
and always uses all available space.

9

Deniable Instant Messaging Aalborg University

1 pub async fn create_chunks<T: DeniableSendingBuffer>(&self,
2 regular_payload_size: f32, buffer: &mut T,
3) -> Result<(Vec<DenimChunk>, usize), String> {
4 let mut outgoing_chunks: Vec<DenimChunk> = vec![];
5 let total_free_space =
6 (regular_payload_size * self.q_value).ceil() as usize;
7

8 let mut free_space = total_free_space - constants::EMPTY_VEC_SIZE;
9 while free_space >= constants::EMPTY_DENIMCHUNK_SIZE {

10 let chunk_size = free_space - constants::EMPTY_DENIMCHUNK_SIZE;
11 let current_outgoing_message =
12 buffer.get_outgoing_message().await.unwrap_or_default();
13

14 let new_chunk;
15 if !current_outgoing_message.1.is_empty() && chunk_size != 0 {
16 //Deniable
17 if current_outgoing_message.1.len() <= chunk_size {
18 new_chunk = DenimChunk {
19 chunk: current_outgoing_message.1.to_vec(),
20 flags: ChunkType::Final.into(),
21 };
22 buffer.remove_outgoing_message(current_outgoing_message.0)
23 .await.map_err(|err| format!("{err}"))?;
24 } else {
25 new_chunk = DenimChunk {
26 chunk: current_outgoing_message.1[..chunk_size].to_vec(),
27 flags: ChunkType::Data(current_outgoing_message.2).into(),
28 };
29 let remaining_current_outgoing_message =
30 current_outgoing_message.1[chunk_size..].to_vec();
31 buffer.set_outgoing_message(
32 Some(current_outgoing_message.0),
33 current_outgoing_message.2 - 1,
34 remaining_current_outgoing_message,
35).await.map_err(|err| format!("{err}"))?;
36 }
37 } else {
38 //Dummy
39 new_chunk = DenimChunk {
40 chunk: vec![0; chunk_size],
41 flags: ChunkType::Dummy.into(),
42 };
43 }
44 outgoing_chunks.push(new_chunk);
45 free_space =
46 total_free_space - serialize(&outgoing_chunks).unwrap().len();
47 }
48 Ok((outgoing_chunks, free_space))
49 }

Listing 4.1: Client side chunking of deniable payloads when sending a
message.

10

Deniable Instant Messaging Aalborg University

4.4 Chunk Ordering

Every piggybacked chunk has a flags field, containing some metadata about the chunk.
In the DenIM implementation found in Nelson et al. (2024), the flags are only used
to indicate whether a chunk is a dummy chunk, a deniable payload chunk, or the
final chunk of a payload [8]. This means that all deniable chunks are unordered, and
therefore vulnerable to deserialisation errors if the chunks are delivered out-of-order.

A simple mitigation was implemented, where every non-final chunk would get a de-
scending number starting from zero and going negative. When the final chunk is then
received, all prior chunks are sorted in descending order and finally appended with
the final chunk. This solution mitigates most simple out-of-order problems, but still
has problems if the final chunk is out-of-order.

When the final chunk is received on the server, it can sort the incoming buffer. The
payload is then enqueued in cache, and the server should be able to dequeue a desired
amount of payload data from the cache to piggyback on a message as one or more
chunks. Listing 4.2 shows the implementation details for when payload data gets
dequeued, which later will be used to create chunks.

11

Deniable Instant Messaging Aalborg University

1 pub async fn dequeue_bytes(
2 mut connection: Connection,
3 queue_key: String,
4 queue_metadata_key: String,
5 queue_total_index_key: String,
6 queue_lock_key: String,
7 bytes_amount: usize,
8) -> Result<(Vec<u8>, usize, i32)> {
9 // Return early when buffer is empty

10 let first = match get_first(// ..
11

12 let field_id = get_field_metadata(&first)?;
13 let mut value = Bytes::decode(vec![first.clone()])? // ..
14

15 // Get some data from first value and remove
16 if bytes_amount < value.len() {
17 let rest = value.split_off(bytes_amount);
18 let (updated, order) = update_value(&mut connection, &queue_key, field_id, rest).await?;
19 if !updated {
20 return Err(anyhow!("Failed to update value."));
21 }
22 return Ok((value.clone(), value.len(), ChunkType::Data(order).into()));
23 // Get whole of first value and remove
24 } else {
25 // Get guid for proper removal
26 let field_guid: Option<String> = cmd("HGET")
27 .arg(format! {"{}:rev", &queue_metadata_key})
28 .arg(&field_id)
29 .query_async(&mut connection)
30 .await?;
31 // Delete and retrieve
32 if let Some(guid) = field_guid.clone() {
33 let removed: Vec<Vec<u8>> = remove(vec![guid], // ..
34 let value = removed.into_iter().flatten().collect::<Vec<u8>>();
35 return Ok((value.clone(), value.len(), ChunkType::Final.into()));
36 }
37 return Err(anyhow!("Failed to take values: field guid not found."));
38 }
39 }

Listing 4.2: Function responsible for dequeuing data from the set of pay-
loads stored in cache. Some error-handling logic has been omitted to make
the code snippet more concise.

Payloads are enqueued in the cache, but payload data should be dequeued from the
set of all payloads belonging to the receiving user. The dequeue_bytes() function in
Listing 4.2 implements this by getting the first payload from the cache and returning
early if no payload is found in the cache; this would indicate that a dummy chunk
should be used (line 10). When a payload is found, the ID is extracted, which is stored
alongside the payload data as Base64 and the payload’s current chunk order (line 12).
A payload entry is therefore a string in the format {id}:{Base64}:{ChunkType}

where the metadata surrounding the Base64 encoded payload is maintained as the

12

Deniable Instant Messaging Aalborg University

payload data gets dequeued.

The Base64 encoded payload gets decoded to a vector of bytes (line 13), and if the
desired amount of data to take from the payload is lower than the total amount of
data, then the remaining amount is returned, which is used to update the payload
and advance the order (line 16-22).

A payload’s data will therefore shrink as data gets taken and updated in the cache.
Then, when the amount of data to take is greater than or equal to the payload data, a
lookup is made to get the Global Unique Identifier (GUID) of the payload (line 26-30).
The Signal implementation uses the GUID to store values’ expiration time and ID
counter in a metadata queue. A removal of an entry requires this GUID to properly
remove the value and its metadata. Since an envelope in the Signal implementation
contains a GUID (server_guid) for insertion and removal in the cache, another way
was needed in DenIM to get the GUID of a payload or a chunk, while reusing the
logic for envelope insertion and removal [6]. To achieve this, a reverse lookup queue
is maintained when inserting and removing an entry in the cache. The reverse lookup
queue is a metadata queue that is used to map a payload’s ID to its GUID. On line
33 the looked-up GUID is used to remove a payload from cache by using the same
remove function that removes chunks and envelopes. This results in the return of the
removed value, together with its size and marked as final chunk since it’s the last
data taken from a payload (line 35).

When the server sends a regular message to a client, the amount of bytes of piggy-
backed data is relative to the size of the regular message and the callee of dequeue_-
bytes can thereby request payload data given the regular message size.

13

Instant Messaging Simulation Aalborg University

5 | Instant Messaging
Simulation

In this chapter, the DenIM-sim architecture is presented using our developed IM
simulation tool. Using the tool allows the simulation of user behaviour in IM protocols
to generate network traffic, and the implementation to facilitate this is detailed.

5.1 Architecture

The Instant Messaging Simulation (IM-sim) is a tool that uses the Docker SDK to
manage and control the communication between multiple containerised instant mes-
saging clients [14]. Figure 5.1 shows the architecture of a DenIM simulation (DenIM-
sim), where the server and all the clients communicate on their own isolated network
for the ease of capturing the network traffic related to the protocol.

The architecture of an instant messaging protocol can vary quite differently, and
Figure 5.1 is just one such configuration that can be simulated using the tool. Many
different IM architectures can be represented using the tool while supporting all the
network configurations that exist for Docker [15]. Furthermore, processes can be
started in each client to control the behaviour of each client, and while the simulation
is running, all the network traffic will be captured.

5.1.1 Containerisation

Docker is used to containerise any component necessary for simulating communication
between clients in an instant messaging network. For DenIM that means a Dockerfile
for the server, database, cache and client respectively. Then, IM-sim uses the Docker
SDK to build containers using these Dockerfiles and sets up the network configu-
rations, whereafter the simulation can be conducted, in which IM-sim controls how
containers need to communicate.

14

Instant Messaging Simulation Aalborg University

Figure 5.1: An illustration of the DenIM-sim architecture used to capture
network traffic to later be used for traffic analysis.

5.1.2 Packet Capture

The goal of IM-sim is to capture instant messaging traffic to later analyse, and it is
therefore important to differentiate client traffic in a realistic way. For DenIM-sim
the server and clients are all running on a MacVlan network driver to ensure that
the clients have a unique IPv4 address and MAC address. This makes the server and
clients’ network appear to be a physical network interface that is directly connected to
the physical network [16]. This allows IM-sim to use Wireshark (Tshark) to capture
all the network traffic on that specific network interface to then only capture what is
happening between the server and the clients for the duration of the simulation [17].

5.2 Implementation

The implementation choices for scaling clients and facilitating custom user behaviour
in IM protocols are explained in this section. Furthermore, to simulate traffic between
users on a single host machine, it is needed to faithfully represent users in an IM
network, where each user is isolated from each other on the transport layer. The
Docker SDK is used for the isolation of users, where orchestrating user communication
is the main responsibility of IM-sim. This allows IM-sim to generate network traffic

15

Instant Messaging Simulation Aalborg University

for DenIM to later analyse in chapter 6.

5.2.1 Scaling Clients

Since each client container uses the same Docker image, that image should scale to
multiple individual client containers. As a result of implementing the creation of
one container, creating multiple containers are implemented by looping N times to
create the desired number of clients. Since creating and running multiple containers
was making IM-sim quite slow to set up the containers, a worker pool pattern was
implemented. This helped speed up this process by running these set-up tasks with
a fixed number of concurrent tasks.

5.2.2 Client-server Communication

When all containers are running, each client needs to be able to communicate with one
another. This is done using the Docker SDK to make a system call for a given client
to instantiate a DenIM client. However, since each system call starts a new process
for the client, this will not suffice to send messages in the context of an instantiated
client. The Docker SDK does not inherently support sending commands to a running
process. But since a new process returns a stream-oriented network connection, IM-
sim holds that handle to the process throughout the simulation. This allows IM-sim
to write to the process via the standard input stream and read from the process via
the standard output stream. The result is a fine-grained control over what a given
client should send to another client and the ability to log the output message when
it is received by the other client.

5.2.3 IP Assignment

IM-sim supports the existing network configurations that come with Docker, which
makes it possible with IM-sim to configure a network with a given subnet and let
Docker handle IP assignment. When statically assigning an IP, that IP must not be
in the configured IP range, as Docker can otherwise dynamically assign that IP while
it’s already in use. Since some services, such as the server and a handful of clients,
could benefit from having a static IP to later ease the analysis of a specific pattern in
network traffic, IM-sim needed to implement IP assignment.

IP assignment in IM-sim is implemented by using the IP range that is specified for
a new network and then calculating the available set of IP addresses. Then, when
a container is created with an assigned docker network and a specific IP, that IP is
removed from the set of available addresses. When a container is created without a
specific IP, it just pops an available address from the set. This implementation allows
reserving IPs while having IM-sim dynamically assign IPs from the same IP range.

16

Instant Messaging Simulation Aalborg University

5.2.4 Simulate in Cloud

IM-sim supports simulations with hundreds or more clients, and these simulations can
run for multiple hours. Since each container uses some RAM, a simulation can scale
proportionally to the amount of RAM available. Table 5.1 shows the approximate
memory usage for each container in DenIM-sim and can give an estimate of how many
clients can be simulated on a given system.

Container RAM Usage

Denim-client ≈ 6.5 MB
Denim-server ≈ 50 MB
Redis ≈ 17.3 MB
Database ≈ 502 MB

Table 5.1: The approximate memory usage for each container in DenIM-
sim with 500 simulated users.

If a simulation benefits from having multiple thousands of clients, those simulations
can be run on a cloud computer with more available memory. Since the Docker
Engine can be configured to allow incoming connections, IM-sim therefore supports
connecting to a remote host to run all the containers in the cloud. When IM-sim is
specified to use a remote host, the context of the host machine will be used to build
the Docker images on the remote machine. After this initial process, the containers
will start on the remote host, but all the control of the container will be managed by
the host matching running IM-sim.

5.3 Simulating Users

Simulation of user behaviour was chosen since those can affect the trust assumptions of
IM protocols, and since no real-world IM application implements the DenIM protocol.
Furthermore, there are no existing datasets for this unestablished protocol. Simulation
also enables data collection of multiple runs with small changes between each run.
This is especially useful when finding limits of what is possible to detect with the
weakened trust assumptions.

Modelling user behaviour is a key part of creating a simulation of IM clients. Simu-
lated users should exhibit behaviour which is as close as possible to real users. Existing
literature utilises Inter-Message Delay (IMD) as a feature, which various models at-
tempt to estimate as a probability distribution. IMD is defined as the delay between
any two messages being sent from a given user. Bahramali et al. (2020) use an ex-
ponential distribution to estimate the IMD using Maximum Likelihood Estimator to
find the rate parameter [4]. Figure 5.2 shows an example of IMD of real-life data.

17

Instant Messaging Simulation Aalborg University

Figure 5.2: Histogram of the IMD of one of the authors’ usage of Discord
totalling around 30000 messages over 5 years. Group chats and servers
are excluded from this dataset. The data was obtained by requesting all
the author’s data Discord stored.

Cui et al. (2018) classify existing models of user behaviour into three categories:
models based on queue theory, models based on human properties such as memory,
interest, etc., and models based social interactions [11]. All three categories of models
attempt to describe the IMD.

This thesis uses a mix of the current literature to simulate users such that the IMD
of any user follows a distribution resembling an exponential distribution, while using
a simplified model of human behaviour to create the messages. Each user is assigned
individual probabilities of starting new regular and deniable message chains, and re-
plying to existing message chains. In our implementation, the time between messages
is a uniform distribution between 0 seconds and an arbitrary upper limit. The time
between a user receiving a message and sending a reply follows the same distribution,
but with the restriction that the latest time a reply can be sent is the time the next
regular message is sent at. This assumption does not reflect the real-world behaviour
of users perfectly, but makes the IMD closely follow an exponential distribution using
only uniform distributions.

18

Instant Messaging Simulation Aalborg University

5.3.1 User Behaviour

The simulator is implemented as a dispatch server similar to the approach of Nelson
et al. (2024) [8]. This approach separates the implementation of the IM clients
and server from the simulator, which handles the behaviour of individual users and
determines when a given IM client sends a message.

The individual behaviour of clients can be implemented through a Go interface. This
ensures the simulation can easily switch to different types of behaviours, as well
as change messaging protocols without changing the code in the simulation itself.
The interface requires a behaviour struct to implement functions for calculating time
between messages, creating all types of messages supported in the protocol, as well
as handling all logic concerning replies and sending bursts of messages. All required
functions can be seen in Listing 5.1. For the purposes outlined in this thesis, a single
implementation is used for all simulations, which can easily be configured for the
relevant protocol experiments.

1 package Behavior
2

3 import (
4 Types "deniable-im/im-sim/pkg/simulation/types"
5)
6

7 type Behavior interface {
8 GetNextMessageTime() int
9 WillRespond(Types.Msg) bool

10 GetResponseTime() int
11 IsBursting() bool
12 MakeMessages() []Types.Msg
13 MakeReply(Types.Msg) Types.Msg
14 ParseIncoming(string) (*Types.Msg, error)
15 }

Listing 5.1: The Behaviour interface used for handling message timings,
parsing incoming messages as well as creating valid messages for the chosen
protocol.

The simulation is made as generalised as possible to allow other implementations of
protocols and behaviour to be tested without rewriting the simulation itself. It still
requires the clients to be containerised, as the simulator relies on the use of writing
to std-in for all types of communication. The simulator itself does not need to know
any specifics about the message commands required by each client implementation,
as that responsibility is delegated to the behaviour structs. The responsibility of the
simulation itself can be split into the following main functionalities: Sending messages
to an IM client through its std-in, sleeping the specified time between messages,
passing incoming text from std-out to the behaviour struct for parsing, logging send
and receive events, as well as sending responses after the specified sleep time. This

19

Instant Messaging Simulation Aalborg University

can be seen in the functionality shown in Listing 5.2.

1 func (su *SimulatedUser) OnReceive(msg Types.Msg) {
2 if su == nil {
3 return
4 }
5

6 //Determine if Alice responds to the message
7 if !su.Behavior.WillRespond(msg) {
8 return
9 }

10

11 res := su.Behavior.MakeReply(msg)
12 sleep_time := su.Behavior.GetResponseTime()
13 time.Sleep(time.Duration(sleep_time * int(time.Millisecond)))
14

15 su.SendMessage(res)
16 }

Listing 5.2: The function in the simulation which is responsible for sending
replies if the behaviour determines it should happen.

Parameter Tuning

A fuzzing library for Go called gofuzz accelerated the choice of parameters [18]. The
library takes an arbitrary Go struct and populates all public fields with random data
recursively, with the possibility of customising the random data to better suit any
specific use case. The only customisation for gofuzz was setting the probability of
a value being nil to 0, meaning all public fields in the passed structs will have
some value. The use of parameter sweeping with gofuzz allowed for a quick and
coarse filtering of parameters, which ensured that most time was spent investigating
configurations that were likely to produce desirable results.

The results of the parameter sweeps showed that most simulated users with a suitable
IMD distribution had a lower probability of sending a message than the probability
of replying to a message. Further testing showed these observations to be correct.

20

Instant Messaging Simulation Aalborg University

Figure 5.3: Histogram of the IMD of two simulated users.

The selection of suitable parameters took multiple iterations, as the IMD of a given
user is dependent on said user’s contacts. For example, Bob might have a low prob-
ability of responding to each incoming message, but with enough contacts sending
messages quickly, Bob will eventually send multiple replies in a short time frame.

Functions were added to generate users easily for the type of behaviour modelled in
this thesis. One function takes a struct with all the necessary options to make a
customised array of simulated users. A default option exists, which generates random
values within ranges we have determined as suitable. The default generation is also
used as a fallback in case of encountering nil fields when using the options struct.
The chosen ranges of the default generation are the ones used to create data for the
rest of this thesis.

21

Traffic Analysis Aalborg University

6 | Traffic Analysis

The goal of this chapter is to identify communication between two users, even if
they only use deniable communication. This is accomplished by leveraging Statistical
Disclosure Attacks (SDAs) found in current literature and adapting them to the limi-
tations of the DenIM protocol. This chapter first explores attacks on regular contacts,
which is a well-defined problem within the literature of SDAs. Afterwards, attacks are
designed to specifically compromise users communicating deniably within the threat
model specified in section 3.2.

6.1 Experimental Setup

The simulator and DenIM implementation described in this thesis are used in this
chapter to conduct all experiments.

Each experiment has two variations: one where users change behaviour when sending
deniable messages, and one where a user never changes behaviour during a simulation.
Both variations have been simulated with 10, 100, and 500 users in the IM network.
More specific scenarios have also been created to test the anonymity of the DenIM
protocol under certain circumstances.

Table 6.1 shows the parameters used when running the simulation.

Parameter Min Max

Time Between Send attempts (ms) 0 10000
P(Send message) 0.231 0.431
P(Reply to message) 0.530 0.730
P(Deniable message) 0.1 0.1
Burst length (no. message) 5 5
Burst rate 0.1 0.1

Table 6.1: The configuration of behaviour for all clients when simulating.
Some parameters are kept constant, whereas others vary between runs.

22

Traffic Analysis Aalborg University

The time between attempted send events is randomised between each event, but is
at most 10000 ms. This does not guarantee a message being sent after 10000 ms, as
that entirely depends on the probability of sending a message. Therefore, only the
probabilities of sending and replying to messages vary, as these reflect the uniqueness
of users and add necessary variation in traffic to test attacks. The probability of
sending a deniable message is kept as a constant, as we attempt to keep it at a ratio
of 10 regular messages for each deniable message in line with the findings of Nelson
et al. (2024) [8].

Bursting is a consequence of weakening the trust assumptions and is therefore kept
as a constant to make the attacks easier to construct and verify. A burst consists of
5 messages sent within a short time interval of each other. The burst time interval is
defined as 0.1 times the normal time between send events, with a user always sending
messages when bursting.

The simulated traffic has primarily been run on a laptop with a Ryzen 7 PRO 5850U
CPU and 32 GB RAM. Due to time constraints, other machines have been utilised
to generate some of the data.

6.2 Identifying Regular Contacts

Several approaches to the identification of regular contacts have been implemented.
The attacks utilise different methods to identify contacts, but with the shared goal
of identifying the most likely contacts of a chosen user. A recurring challenge for
all algorithms described in this section is that the attacks rank the likelihood of all
other users being a contact, but they do not provide a way to filter the contacts from
non-contacts. We outline an approach to find a subset of the contacts which will help
prune the list of suspected deniable contacts.

6.2.1 Counting-Based Statistical Disclosure Attack

This attack is based on the work of Martiny et al. (2021) [7]. The article identifies
the sender of Signal messages, even when Signal’s sealed sender is used to obscure the
sender. Signal still sends delivery receipts when a sealed sender message is received,
which can be exploited by an adversary. Bob’s contacts are identified by monitoring
the outgoing network traffic in a time frame just after Bob has received a message.
The likely contacts sending Bob a message are more likely to appear in this time
frame than in any randomly sampled time frame [7].

Nelson et al. (2024) prevent a one-to-one copy of this attack as their article states that
delivery receipts are disabled in the DenIM protocol [8]. The attack is thus repurposed
to suit the changed features in network traffic, which can be exploited. The main idea
behind the attack remains, as Bob and his contacts will still be communicating, with

23

Traffic Analysis Aalborg University

contacts being more likely to send messages in a time frame just after Bob has sent a
message. The pseudocode for the attack can be found in Algorithm 1.

Algorithm 1 Counting-Based Statistical Disclosure Attack
Input: The network capture input as table, number of samples rounds, window size

w, IP address of target user target_ip, server IP server_IP
Output: a list of users from most likely to least likely contact
1: procedure Counting_SDA(input, rounds, target_ip, server_ip)
2: suspects← Zero initialised dictionary
3: ttarget ← rows in input where Source = target_ip
4: input← rows in input where Source ̸= server_ip
5: for 1 to rounds do
6: rtarget ← random row in ttarget
7: tstart ← rtarget.T ime
8: tend ← tstart + w
9: target_epoch← rows in input where Time ∈ (tstart, tend]

10: for all x in target_epoch do
11: if x.Source = target_ip then
12: continue
13: suspects[x]← suspects[x] + 1

14:
15: rrandom ← random row in input
16: rstart ← rrandom.T ime
17: rend ← rstart + w
18: random_epoch← rows in input where Time ∈ (rstart, rend]
19: for all x in random_epoch do
20: if x.Source = target_ip then
21: continue
22: suspects[x]← suspects[x]− 1

23:
24: return suspects

Martiny et al. (2021) show that the attack works best for associates who have few
other contacts than Bob, and when Bob generally appears in few other conversations
according to Theorem 1 and Corollary 2 [7].

The attack works for regular traffic in the DenIM implementation. If a chosen contact
has a large number of contacts, the number of rounds must be increased to increase the
probability that an actual contact is identified as the most likely contact. Similarly,
the window size must be adjusted to include any response, but exclude as much other
traffic as possible. We found that rounds = 1000 and a window size of 1 second
returns the majority of regular contacts consistently when using simulated network
traffic with the configurations used in this chapter.

24

Traffic Analysis Aalborg University

6.2.2 Normalised Statistical Disclosure Attack

The Normalised Statistical Disclosure Attack was created by Troncosco et al. (2008)
as an improvement to the original SDA while being more performant, but less accurate
than the Perfect Matching Disclosure Attack [19].

The attack works by iterating over all packets sent in the network, sorted by time in
ascending order. Every time a packet is sent to the server, the source IP is added
to the list of senders along with the time window it should exist in the list. When
the server sends a packet to a client, all other clients will be assigned probabilities
according to how many times they have sent packets to the server during the time
window. The probabilities of all senders are made into a probability matrix, which can
then be normalised using the Sinkhorn-Knopp algorithm [20]. This attack is adapted
from the implementation in Kristensen et al. (2025) but with some changes [21]. The
most notable change is the function assigning probabilities to all senders is changed,
such that the probabilities go from being 1

|senders| to 1
|senders|−k where k is the number

of times the receiver of a package appears in the senders list. Algorithm 2 shows the
pseudocode of the attack with Algorithm 3 and Algorithm 4 as helper functions.

Algorithm 2 Normalised Statistical Disclosure Attack
Input: The captured TLS packets input as table, window size w, server IP

server_IP .
Output: a probability matrix of the most likely associates of all users.
1: procedure Normalised_SDA(input, w, server_ip)
2: senders← []
3: previous_time← input[0].T ime
4: receivers← dict(dict())
5:
6: for all row ∈ table do
7: senders← update_senders(senders, row.T ime− prev_time)
8: if row.Destination == server then
9: senders← senders ∪ (row.Source, w)

10: else
11: receivers← update_receivers(senders, row.Destination, receivers)

12: previous_time← row.T ime

13:
14: matrix← matrix_from_dict(senders)
15: result← Sinkhorn(matrix)
16: return result

This attack is consistent in its results as it does not rely on randomly sampling the
dataset, but instead iterates over all traffic. The attack correctly identifies one of
the regular contacts as the most likely contact. However, not all regular contacts are
marked correctly as likely suspects, because it depends on the two users’ interactions
during the simulation.

25

Traffic Analysis Aalborg University

Algorithm 3 Update Senders
Input: a list of sender tuples senders and time delta since last update time.
Output: an updated list of active senders.
1: procedure update_senders(senders, delta)
2: updated← []
3: for all sender, time ∈ senders do
4: remaining ← time− delta
5: if remaining > 0 then
6: updated← updated ∪ (sender, remaining)

7: return updated

Algorithm 4 Update Receivers
Input: a list of sender tuples senders, the IP address of the receiver, receiver, and

the nested dictionary of possible contacts, contacts.
Output: an updated list of active senders.
1: procedure update_senders(senders, receiver, contacts)
2: k ← 0
3: for all sender, time ∈ senders do
4: if sender = receiver then
5: k ← k + 1

6: for all sender, time ∈ senders do
7: if sender = receiver then
8: continue
9: if sender /∈ contacts then

10: contacts[sender]← dict()

11: if receiver /∈ contacts[sender] then
12: contacts[sender][receiver]← 0

13: contacts[sender][receiver]← contacts[sender][receiver] + 1
|senders|−k

14: return updated

6.2.3 Generating List of Contacts

The Statistical Disclosure Attacks (SDAs) in this section may identify different users
as the most likely contact. This is not an issue, as each user can have multiple
contacts, and each algorithm may rank any of the contacts as the most likely. The
contact list of any user is estimated as the intersection of the N most likely contacts
from specified attacks. This way, more contacts than the most likely contact can be
found from the attacks, with the drawback that an actual contact might be dropped
from the final list, if any of the chosen attacks do not rank it among the N most likely.
Another risk is getting the empty set if the attacks return disjoint sets of users. This
method does not identify the complete list of contacts, but it helps approximate the
list while minimising the likelihood of false positives.

26

Traffic Analysis Aalborg University

6.3 Identifying Deniable Contacts

The attacks used to identify any given user’s deniable contacts are based on some
additional assumptions. All attacks are based on the following assumptions:

• All users have completely disjoint sets of contacts for regular and deniable mes-
sages.

• A user will respond with the same type of message as the received message, i.e.
a user will reply deniably to a deniable message.

• A user is allowed to send a burst of messages just after a deniable message is
created.

This section will create and evaluate attacks on the DenIM protocol under these
assumptions with a varying number of users. Figure 6.1 shows the initial setup used.
It contains two separate sets of users, where the only interaction between the sets
happens through deniable messaging. This setup is used in all attacks to test the
viability of an attack before scaling with more users.

Figure 6.1: Illustration of communication between users. The solid arrows
indicate normal traffic, with the dotted line arrow indicating deniable com-
munication happening between Alice and Dorothy.

6.3.1 Identification of Deniable Behaviour

The Inter-Message Delay (IMD) is chosen as a feature from which deniable behaviour
can be identified [4].

It is assumed that a user will send a burst of messages just after making a deniable
message, with the goal of quickly getting the deniable chunks of the message sent to
the server. This is a consequence of the fact that this thesis assumes a user cannot
observe the state of the outgoing message buffer on the client. In case Alice needs to
initialise the session with Dorothy, the burst still helps, as it carries the deniable key
request to the server as well as attempting to trigger her regular contacts to send her

27

Traffic Analysis Aalborg University

replies, which will get the deniable key response piggybacked.

The IMD constituting a burst varies, as it depends on the IMD for regular messages.
The IMD for regular messages can not be deduced from the network traffic alone,
as it includes both types of messages. Some arbitrary percentile of the IMD can be
used as a guideline for identifying bursts, with the ability to make some changes if
the length of each burst is deemed to be too long.

6.3.2 Recipient Identification

A recipient of a deniable message can be any user receiving TLS packets after a burst
has been made. The deniable message is reconstructed on the server and turned into
new chunks to fit the length of any regular message sent to the recipient of the deniable
message. Deniable communication follows the assumption that a user receiving a
deniable message might respond to it. It is assumed that a reply to a deniable message
will also be deniable, as it would otherwise disclose that a conversation between the
parties is taking place.

We only consider bursting behaviour as the feature from which deniable messages can
be identified in the network traffic, but it only showcases that a deniable message has
been attempted to be sent. Identifying a client as the recipient of a deniable message is
difficult, as a recipient can, in theory, receive an extremely long regular message, which
in turn could be used to piggyback the entirety of a small deniable message. This
means a simple decrease of probability can be done on non-viable suspected contacts,
as a suspected contact who has not received any messages between the target bursting
and the suspected contact itself bursting can be eliminated as a potential response.

Implementing SDAs for deniable messages requires a bit more effort, as the time
between a sending burst event taking place and a reply being sent can be longer than
for regular messages. Thus, it will take more data to ensure the most likely contact
is indeed a contact.

The attacks described in subsection 6.2.1 and subsection 6.2.2 are repurposed to be
used for deniable messages instead of regular messages. They follow the same base
logic as their counterparts used for regular messages and assign probabilities based
on identified deniable behaviour instead of regular messages. The largest change is
made to Algorithm 2, as receiving deniable messages cannot be detected. Instead,
probabilities are assigned when a new burst is started.

6.4 Evaluation of Attacks

The attacks used to compromise deniable contacts are evaluated in simulated runs
with 4, 10, 100 and 500 users to determine the capability to handle a scaling user
base. They are evaluated in four different variations to determine the effectiveness of

28

Traffic Analysis Aalborg University

each improvement step: the attacks in their simplest form with no pruning, pruning of
all regular contacts, pruning of all bursts which have not received a regular message,
and both types of pruning. The regular contact list is taken from the ground truth
found in the logs generated by the simulator to ensure the attacks are evaluated in
ideal conditions. The drawback is the fact that any improvements shown by pruning
regular contacts may not be possible in more realistic settings, as it would require
attacks on regular messages to perfectly identify all regular contacts. All data shown
in this section is for attacks run with the same user as the target.

6.4.1 Whistleblower Contacts News Agency

The DenIM protocol is meant to hide metadata when sending and receiving deniable
messages. One such example could be a scenario where a whistleblower wants to
publish some information via a news agency.

To simulate such a scenario, 4 entities are required: the whistleblower, the news
agency, a regular contact for the whistleblower and one for the news agency. This sce-
nario was set up in IM-sim without bursting, and with bursting to challenge DenIM’s
trust assumption that deniable behaviour does not affect regular behaviour.

The network packets that were captured during the simulated scenario were then
evaluated to identify and prune the whistleblower’s regular contacts as described in
section 6.2.

The attack conducted in this scenario is designed to identify bursting behaviour be-
tween the clients. Table 6.2 shows the result that when the whistleblower participates
in the protocol by complying with the trust assumptions in Nelson et al. (2024), the
SDA assigns the news agency a low probability of being a deniable contact. When
the whistleblower’s behaviour is changed when sending deniable messages, the SDA
assigns a 92% probability that the whistleblower and the news agency have been
exchanging messages.

Configuration With Bursting Without Bursting

No pruning 0.0032 0.1528

Regular contact
pruning

0.9205 0.3808

Table 6.2: Probability of whistleblower sending a deniable message to the
news agency, with and without bursting user behaviour.

To investigate whether identification of deniable behaviour with a weakened trust
assumption is still valid in a network with many concurrent users participating, further
simulations have been run.

29

Traffic Analysis Aalborg University

6.4.2 Deniable Counting-Based Statistical Disclosure Attack

This attack is based on the SDA described in subsection 6.2.1, but modified to count
based on deniable bursts in the sampled epochs instead. The results are evaluated as
an average of 10 runs of the attack to minimise the effect of outliers in the sampling.
Table 6.3 shows the average placement of the best-ranking deniable contact.

Configuration 10 users 100 users 500 users

No pruning 3.7 38.8 172.8

Regular contacts
pruned

2.8 33.4 283.2

Infeasible contacts
pruned

4.1 29.1 289.1

Both pruned 3.5 20.1 311.4

Table 6.3: Average of 10 runs with the best ranking deniable contact in the
deniable normalised statistical disclosure attack. Lower ranking is better.

The pruning of regular contacts simply moves the deniable contact up a few places
on the list of suspects, marking them as slightly more probable. The attacks were
re-run for each pruning configuration, which means the difference in averages might
be affected by the random sampling, as one would suspect the pruning of regular
contacts to simply move all other contacts a few placements up. The attack does not
handle the increase to 100 users well, but it still ranks deniable contacts among the
1
3 most likely contacts. For 500 users, the attack fails to identify deniable contacts
or limit the number of possibly deniable contacts in any meaningful way. Thus, this
attack should not be used if a lot of users participate in the network concurrently.

6.4.3 Deniable Normalised Statistical Disclosure Attack

This SDA iterates through all packets passed to the attack, which only makes it
necessary to run the attack once for each configuration. Table 6.4 shows the highest
ranking deniable contact for each configuration.

30

Traffic Analysis Aalborg University

Configuration 10 users 100 users 500 users
No pruning 2 30 179

Regular contacts
pruned

1 31 164

Infeasible contacts
pruned

2 28 175

Both pruned 1 29 160

Table 6.4: Placement of the highest ranking deniable contact in the pro-
posed deniable normalised statistical disclosure attack. Lower ranking is
better.

The best pruning strategy for 10 users was pruning regular contacts. The normalised
probability of the top contact being the correct choice fell marginally when pruning
both regular contacts and contacts which were not possible responders, but it kept the
correct ranking of the deniable contact. For 100 users, the best pruning strategy was
pruning suspects purely on the fact that they could not reply to a specific message.
Using both pruning strategies keeps the deniable contact amongst the top 1

3 of users
most likely to be a deniable contact. This is still not ideal, as it would mark 159
users as more likely to be the deniable contact. The practicality of doing further
investigation of 1

3 of all participants in the network makes the attack infeasible at
scale.

31

Discussion Aalborg University

7 | Discussion

Throughout the project, several interesting discoveries were made, both in terms of
the details of our implementations and in relation to our simulations and analysis. In
this chapter, a closer look is taken at some of the most interesting things found.

7.1 Message Size and Session Initialisation

In deniable instant messaging, the size of the deniable part of a message is determined
as a fraction of the size of the regular payload, denoted with the constant q. However,
all Signal messages are not the same length, and two types are mostly used that vary
a lot in size. One of them is the regular Signal message, which in our implementation
uses around 300 bytes for a simple “hello” message, while the second type, the pre-key
Signal message, used for initialising a session after having gotten a key bundle from
the server, uses around 2500 bytes. Messages in Signal are padded to blocks of 160
bytes, so if the plaintext content is larger than 160 bytes, it will be padded to 320
bytes and so on. To start a session, one user has to receive a pre-key message and send
a response. For regular messaging, this is all done rather quickly, as it just takes one
message back and forth to establish the session, and start sending smaller messages
from then on.

For deniable messaging, this session initialisation can be quite cumbersome. As the
2500 bytes deniable pre-key messages will most likely have to be piggybacked on the
already initialised regular messages of 300 bytes, which means it will take quite a lot
of regular messages to deliver the deniable message. This is made worse by the fact
that every subsequent message to the same person, before they respond, will also be
a pre-key message with a size of 2500 bytes. Also, before any pre-key messages can
be sent, a key request to the server has to be made once, where the response also
has a size of around 2500 bytes. Below is a sequence diagram showing approximately
the amount of regular messages with a size of 300 bytes, it would take to initialise a
deniable session with a q-value of 0.6. This is in a perfect scenario, where the fastest
way to establish the session is taken.

32

Discussion Aalborg University

Figure 7.1: Deniable session initialisation over established normal session.

While the message size goes down significantly after initialisation, and therefore the
throughput goes up, this is still quite a hefty start. It might lead to user behavioural
changes, where they might spam more messages, or just start new regular sessions to
have a larger deniable part. The user could even start sending regular messages to
self-created users, whom never respond, so that all the messages are pre-key messages
with a size of 2500 bytes, just to be able to quickly empty their local buffer of deniable
payloads.

Below is the start of another sequence diagram showing the previous process, but
where the sending users abuse sending regular pre-key messages to non-responding
users, to empty their local buffer fast. Note that this approach will only allow an
increase of payload size from the sending clients to the server, and not to the target
client, as the sender has no way to control the traffic to the deniable target from the
server. And we see that the initial message sending then drops from sixteen to two
messages.

33

Discussion Aalborg University

Figure 7.2: Deniable session initialisation over unestablished pre-key mes-
sages.

If the abuse of pre-key messages is extended even further to assume both sides of the
communication are doing the same for all deniable messaging. Then all parts of the
initialisation sequence drop to two or three messages.

7.2 Contact Discovery

In subsection 4.1.1, we described the contact discovery implementation on the sending
side of a conversation, however, there are also some issues when it comes to identi-
fying the sender on the receiving side. When sending a message, a phone number or
username gets converted into a service ID, which the server uses to deliver a message
to the correct receiver. On the other side of the interaction, the opposite problem
arises of only having the service ID of the sender in the message. Our client needs an
alias to associate with the sender’s service ID to be able to save the user as a contact.
If the user is not saved locally as a contact, then, when the receiver tries to reply,
the receiver will not know how to properly find the already established session, and
will instead restart the session initialisation with a new key exchange, leading to an
unnecessary extra step.

In a regular Signal implementation, the username and phone number can easily be
retrieved from the server by sending a request for profile information. The profile
information will be encrypted, but can be decrypted using the sender’s profile key,
which is contained in every message.

A DenIM implementation, on the other hand, needs to be more careful with request-
ing data from the server, as getting profile information for a specific user could lead
to possible vulnerabilities in the deniability of a conversation. There are two ways
to handle this: one is to make deniable profile information requests, which would
increase the number of deniable payloads, and potentially slow down the overall com-
munication. Another solution would be to simply include the basic user information

34

Discussion Aalborg University

that the receiver might normally get from the profile key, directly in the message.
This should not affect the deniability of the exchange, as the information would be
accessible to the receiver anyway, but it does bypass the profile information request.
This request stops unauthorised users from getting profile information, in case they
might have gotten hold of the profile key. We decided to go for the latter approach,
deeming the trade-off to be more acceptable than increasing the deniable traffic.

7.3 Server Deadlock

When the server receives a message, it is inserted in the cache, and if the receiving
client is online, the message is retrieved from the cache and delivered. To accom-
modate this, the server maintains a ListenerMap to manage all currently connected
clients. Then, upon receiving a message, a lookup is made to access the receiving
WebSocket connection to forward the cached message.

A bug on the server from Alstrup et al. (2025) was discovered, where some clients
would stop sending messages in a running simulation. Since the clients were unre-
sponsive, it was not immediately considered that the server was the root cause, and
since the behaviour was observed when simulating 100 clients, it could possibly be a
problem with the simulation.

To narrow down the issue, 3 clients were set up to communicate with each other and
then iteratively shorten the time between messages sent for each simulation. With
a very short time between messages, the client became unresponsive, and to exclude
the simulation tool as the cause, a manual test was conducted.

As a result, it was discovered that when two clients simultaneously sent a message,
the server had a high chance of causing a race condition. Since upon receiving each
new message, the server would lock the ListenerMap, but since the logic was not
wrapped in tokio::spawn that creates a new asynchronous task, the execution could
not yield back to the Tokio runtime, which in turn is responsible for scheduling pend-
ing tasks [22, 23].

This bug was not discovered last semester since it was hard to catch without scaling
the number of clients, and since IM-sim is very good at scaling clients, this overlooked
implementation detail in the Signal implementation was discovered when simulating
a lot of clients, which stress tested the server.

7.4 Scaling Clients

Using containerisation with Docker comes with a lot of benefits when setting up
client, server or other services used for an instant messaging protocol, but it becomes
a resource-intensive task to run IM-sim when scaling clients. When scaling beyond

35

Discussion Aalborg University

500 clients, it started to become infeasible to run a simulation on a host machine
with 16 GB of RAM. Since Docker’s containerisation is done by managing Linux
namespaces, it was uncertain if the scaling issue could be because of Docker overhead
or a limitation in Linux namespacing when running many processes.

To investigate further, a script was created to run a simple netcat echo service, in
as many Linux namespaces as possible [24]. With a machine with 16 GB of RAM,
it ran out of memory at around 7000 Linux namespaces. Running the same ser-
vice with Docker, using IM-sim to start containers, memory ran out at around 1500
containers. This indicates that Docker has some overhead compared to just using
Linux namespaces. However, the ease of setting up services for an instant messaging
protocol benefits the use of IM-sim with Docker rather than implementing a Docker
alternative that uses Linux namespaces to attempt to gain better performance than
Docker Engine.

Another solution for scaling to thousands of clients could be to explore the clustering
of clients to be run on multiple host machines as described in section 9.2.

7.5 Simulation data

The number of clients sending messages in the network determines the number of
bursts required to definitively determine who communicates with whom. For a small
number of participants in the network, the number of deniable messages remains
relatively low, as there are fewer other participants generating noise. Any of the two
attacks on deniable traffic in this thesis can reasonably determine the most likely
deniable contact for a low number of users, especially when using one of the pruning
strategies.

The number of participants in the network affect the number of bursts required from
each user to identify deniable contacts. This means significantly more data was re-
quired to identify contacts when 100 clients participated in the network. Generally
speaking, the attacks always benefit from larger amounts of data for each user and
fewer participants. However, the drawback comes from the fact that each user can
get away with exhibiting a larger amount of deniable behaviour when more users are
participating in the network and sending their own messages at the same time. Intro-
ducing noise in the network traffic works in the deniable users’ favour, which could
be a suitable cover for whistleblowers and protesters. Due to time constraints, it has
not been possible to identify the lower bounds of bursts needed to identify a target’s
deniable contacts for a given number of users in the network.

36

Conclusion Aalborg University

8 | Conclusion

This thesis presents an implementation of a generalised Instant Messaging simulation
tool with which the DenIM protocol has been simulated. A functional implementation
has been made of the deniable instant messaging protocol, which is described in theory
in Nelson et al. (2024), where the security guarantees are proven through formal
analysis [8].

Using this simulation tool to test the security guarantees, statistical disclosure attacks
were performed under the original threat model, and then again under the weakened
trust assumption that users’ regular behaviour may be influenced by their deniable
behaviour.

To facilitate this analysis, the tool was designed to collect data by simulating user
traffic based on user behaviour specified in the simulator. Several simulations were
run using different scenarios with varying numbers of users to see the effects they had
on the attacks performed.

The evaluation of the attacks described in this thesis showcases how other participants
in the IM network affect the ability to identify a target user’s deniable contacts. At
100 concurrent users sending messages, it became difficult to identify a user’s deniable
contacts, which means the trust assumption in Nelson et al. (2024) is not vital to
prevent our attacks from working as long as enough users are participating.

While the attacks on the DenIM protocol might not have yielded any definite vul-
nerability results using our methodology, we were still quite successful in creating a
helpful simulation tool, which allowed for quick setup and testing of different scenar-
ios, efficient data collection and is full of potential for future improvements to further
enhance the ease of use.

37

Future Work Aalborg University

9 | Future Work

As with any project of this size, other focus points have been left out due to time
constraints. In our case, we decided to focus on developing a generalised Instant
Messaging Simulation tool and implement the basic functionalities of the DenIM
protocol to simulate communication and capture the network traffic. The generalised
tool for generating network traffic is at the centre of our project, with section 6.4 using
the captured traffic to make analysis on different simulation settings. Improvements
in the DenIM implementation and optimising the simulation are therefore a focus for
future work.

9.1 Key Distribution Center

One such feature was the Key Distribution Center (KDC), while being an essential
part of DenIM as shown in the trust assumptions found from Nelson et al. (2024) [8].
The KDC only affects the key exchanges. As this thesis does not try to break the
trust assumption of the KDC or try to find vulnerabilities in the key exchange, it was
deemed to not be of utmost importance. However, it would be an immediate candidate
for future work, both so that the DenIM implementation can be fully finalised, and
that perhaps attacks on the DenIM key exchange can be investigated further by
simulating deniable key exchanges between users.

9.2 Cluster Simulation

To accommodate the scaling issue described in section 7.4, a solution could be to clus-
ter clients distributed on a set of host machines. Each host machine could, for instance,
run 500 clients, where all host machines are on the same virtual private network (VPN)
to enable a combined packet capture when clients communicate across host machines.
Since IM-sim manages each client’s behaviour and controls the messages sent, this re-
sponsibility of IM-sim could then be distributed to the host machines, or it could be
a responsibility of the individual clients, where each client contacts a dispatch server
for initialisation and behaviour.

38

BIBLIOGRAPHY Aalborg University

Bibliography

[1] Radicati Group. Instant Messaging Statistics Report, 2021-2025: Executive Sum-
mary. Accessed: 2025-2-17. 2020. url: https://www.radicati.com/wp/wp-
content/uploads/2020/12/Instant-Messaging-Statistics-Report-2021-

2025-Executive-Summary.pdf.
[2] Katriel Cohn-Gordon et al. “A Formal Security Analysis of the Signal Messaging

Protocol”. In: J. Cryptol. 33.4 (Oct. 2020), pp. 1914–1983. issn: 0933-2790. doi:
10.1007/s00145-020-09360-1. url: https://doi.org/10.1007/s00145-
020-09360-1.

[3] Moxie Marlinspike and Trevor Perrin. “The Double Ratchet Algorithm”. In:
Applied Sciences (2016). url: https://signal.org/docs/specifications/
doubleratchet/.

[4] Alireza Bahramali et al. “Practical Traffic Analysis Attacks on Secure Messag-
ing Applications”. In: 27th Annual Network and Distributed System Security
Symposium, NDSS 2020, San Diego, California, USA, February 23-26, 2020.
The Internet Society, 2020. url: https://www.ndss-symposium.org/ndss-
paper/practical- traffic- analysis- attacks- on- secure- messaging-

applications/.
[5] General Michael Hayden, Dr. David Cole, and Major Garrett. The Price of

Privacy: Re-Evaluating the NSA. url: https://youtu.be/kV2HDM86XgI?si=
wArJkCPWU1ARGVhD&t=1079.

[6] J. Lund. Technology Preview: Sealed sender for Signal. 2018. url: https://
signal.org/blog/sealed-sender/.

[7] Ian Martiny et al. “Improving Signal’s Sealed Sender”. In: 28th Annual Network
and Distributed System Security Symposium, NDSS 2021, virtually, February
21-25, 2021. The Internet Society, 2021. url: https://www.ndss-symposium.
org/ndss-paper/improving-signals-sealed-sender/.

[8] Boel Nelson, Elena Pagnin, and Aslan Askarov. “Metadata Privacy Beyond
Tunneling for Instant Messaging”. In: 9th IEEE European Symposium on Se-
curity and Privacy, EuroS&P 2024, Vienna, Austria, July 8-12, 2024. IEEE,

39

https://www.radicati.com/wp/wp-content/uploads/2020/12/Instant-Messaging-Statistics-Report-2021-2025-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2020/12/Instant-Messaging-Statistics-Report-2021-2025-Executive-Summary.pdf
https://www.radicati.com/wp/wp-content/uploads/2020/12/Instant-Messaging-Statistics-Report-2021-2025-Executive-Summary.pdf
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1
https://doi.org/10.1007/s00145-020-09360-1
https://signal.org/docs/specifications/doubleratchet/
https://signal.org/docs/specifications/doubleratchet/
https://www.ndss-symposium.org/ndss-paper/practical-traffic-analysis-attacks-on-secure-messaging-applications/
https://www.ndss-symposium.org/ndss-paper/practical-traffic-analysis-attacks-on-secure-messaging-applications/
https://www.ndss-symposium.org/ndss-paper/practical-traffic-analysis-attacks-on-secure-messaging-applications/
https://youtu.be/kV2HDM86XgI?si=wArJkCPWU1ARGVhD&t=1079
https://youtu.be/kV2HDM86XgI?si=wArJkCPWU1ARGVhD&t=1079
https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://www.ndss-symposium.org/ndss-paper/improving-signals-sealed-sender/
https://www.ndss-symposium.org/ndss-paper/improving-signals-sealed-sender/

BIBLIOGRAPHY Aalborg University

2024, pp. 697–723. doi: 10.1109/EUROSP60621.2024.00044. url: https:

//doi.org/10.1109/EuroSP60621.2024.00044.
[9] Andreas Knudsen Alstrup et al. Signal Implementation for Testing Metadata

Privacy Protocols. Tech. rep. Aalborg University, 2025.
[10] Anrin Chakraborti, Darius Suciu, and Radu Sion. “Wink: Deniable Secure Mes-

saging”. In: 32nd USENIX Security Symposium (USENIX Security 23). Ana-
heim, CA: USENIX Association, Aug. 2023, pp. 1271–1288. isbn: 978-1-939133-
37-3. url: https : / / www . usenix . org / conference / usenixsecurity23 /

presentation/chakraborti-wink.
[11] Hongyan Cui et al. “Heterogeneous characters modeling of instant message ser-

vices users’ online behavior”. In: PLOS ONE 13.5 (May 2018), pp. 1–21. doi:
10.1371/journal.pone.0195518. url: https://doi.org/10.1371/journal.
pone.0195518.

[12] Redis. Redis - The Real-time Data Platform. Accessed: 2025-01-06. url: https:
//redis.io/.

[13] Moxie Marlinspike. Technology preview: Private contact discovery for Signal.
Sept. 26, 2017. url: https://signal.org/blog/private-contact-discovery/
(visited on 05/05/2024).

[14] Docker. Develop with Docker Engine SDKs. Accessed: 2025-08-05. url: https:
//docs.docker.com/reference/api/engine/sdk/.

[15] Docker. Networking overview. Accessed: 2025-08-05. url: https : / / docs .

docker.com/engine/network/.
[16] Docker. Macvlan network driver. Accessed: 2025-08-05. url: https://docs.

docker.com/engine/network/drivers/macvlan/.
[17] Wireshark · Go Deep. Wireshark. url: https://www.wireshark.org/ (visited

on 11/28/2024).
[18] Google. gofuzz. url: https://pkg.go.dev/github.com/google/gofuzz#

section-readme (visited on 04/24/2025).
[19] Carmela Troncoso et al. “Perfect Matching Disclosure Attacks”. In: Privacy En-

hancing Technologies, 8th International Symposium, PETS 2008, Leuven, Bel-
gium, July 23-25, 2008, Proceedings. Ed. by Nikita Borisov and Ian Goldberg.
Vol. 5134. Lecture Notes in Computer Science. Springer, 2008, pp. 2–23. doi:
10.1007/978-3-540-70630-4_2. url: https://doi.org/10.1007/978-3-
540-70630-4_2.

[20] Richard Sinkhorn and Paul Knopp. “Concerning nonnegative matrices and dou-
bly stochastic matrices”. In: Pacific Journal of Mathematics 21.2 (1967), pp. 343–
348.

[21] Mads Møller Kristensen and Mikkel Boje Larsen. “Traffic Analysis Tool and
The Deniable Disclosure Attack”. Unreleased manuscript of Kristensen et. al.
master’s thesis. 2025.

40

https://doi.org/10.1109/EUROSP60621.2024.00044
https://doi.org/10.1109/EuroSP60621.2024.00044
https://doi.org/10.1109/EuroSP60621.2024.00044
https://www.usenix.org/conference/usenixsecurity23/presentation/chakraborti-wink
https://www.usenix.org/conference/usenixsecurity23/presentation/chakraborti-wink
https://doi.org/10.1371/journal.pone.0195518
https://doi.org/10.1371/journal.pone.0195518
https://doi.org/10.1371/journal.pone.0195518
https://redis.io/
https://redis.io/
https://signal.org/blog/private-contact-discovery/
https://docs.docker.com/reference/api/engine/sdk/
https://docs.docker.com/reference/api/engine/sdk/
https://docs.docker.com/engine/network/
https://docs.docker.com/engine/network/
https://docs.docker.com/engine/network/drivers/macvlan/
https://docs.docker.com/engine/network/drivers/macvlan/
https://www.wireshark.org/
https://pkg.go.dev/github.com/google/gofuzz#section-readme
https://pkg.go.dev/github.com/google/gofuzz#section-readme
https://doi.org/10.1007/978-3-540-70630-4_2
https://doi.org/10.1007/978-3-540-70630-4_2
https://doi.org/10.1007/978-3-540-70630-4_2

BIBLIOGRAPHY Aalborg University

[22] Tokio. Function spawn. Accessed: 2025-26-05. url: https://docs.rs/tokio/
latest/tokio/task/fn.spawn.html.

[23] Tokio. Struct Mutex. Accessed: 2025-26-05. url: https://docs.rs/tokio/
latest/tokio/sync/struct.Mutex.html.

[24] Netcat. The GNU Netcat project. Accessed: 2025-02-06. url: https://netcat.
sourceforge.net/.

41

https://docs.rs/tokio/latest/tokio/task/fn.spawn.html
https://docs.rs/tokio/latest/tokio/task/fn.spawn.html
https://docs.rs/tokio/latest/tokio/sync/struct.Mutex.html
https://docs.rs/tokio/latest/tokio/sync/struct.Mutex.html
https://netcat.sourceforge.net/
https://netcat.sourceforge.net/

	Forside
	Introduction
	Related Work
	Preliminaries
	Deniable Instant Messaging (DenIM)
	Threat Model

	Deniable Instant Messaging
	Key Request
	Contact Discovery

	Deniable Buffers
	Chunk Sizing
	Chunk Ordering

	Instant Messaging Simulation
	Architecture
	Containerisation
	Packet Capture

	Implementation
	Scaling Clients
	Client-server Communication
	IP Assignment
	Simulate in Cloud

	Simulating Users
	User Behaviour

	Traffic Analysis
	Experimental Setup
	Identifying Regular Contacts
	Counting-Based Statistical Disclosure Attack
	Normalised Statistical Disclosure Attack
	Generating List of Contacts

	Identifying Deniable Contacts
	Identification of Deniable Behaviour
	Recipient Identification

	Evaluation of Attacks
	Whistleblower Contacts News Agency
	Deniable Counting-Based Statistical Disclosure Attack
	Deniable Normalised Statistical Disclosure Attack

	Discussion
	Message Size and Session Initialisation
	Contact Discovery
	Server Deadlock
	Scaling Clients
	Simulation data

	Conclusion
	Future Work
	Key Distribution Center
	Cluster Simulation

	Bibliography

