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Uncertainty in prospective Life Cycle Assessment: A review of current
practices and the role of scenario choice

Johanna Sofia Guldbrandsg Nolsge and Stisanna Rakul Foldbo Hjallnafoss

Abstract: In the context of the ecological crisis, assessing the environmental impacts of products and services can play a
crucial role in guiding future development. Prospective Life Cycle Assessments (pLCA) have gained increasing attention in
recent years, due to their ability to anticipate future environmental impacts of technologies, even when the technology is at an
early stage of development. Besides the inherent uncertainties embedded in any quantification of environmental impacts, the
future-oriented outlook of pLCAs introduces additional uncertainties as they depend on assumptions related to the technology’s
prosperity and broader societal development. A widely suggested approach to address these uncertainties is to apply scenarios
to consider multiple potential futures, instead of relying on a single projection. While scenario-based approaches can be a
valuable tool for pLCA, addressing uncertainty is still an evolving practice, leading to differing approaches among practitioners.
Consequently, a varying approach to account for and interpret uncertainties in pLCA can reduce the transparency and robustness
of results, potentially leading to sub-optimal decision support. To address this gap, this study examines how uncertainties are
addressed in current literature on pLCA, as well as what the implications of scenario choice are for the uncertainty of LCIA
results. To explore how current pLCA practice addresses uncertainty and utilises scenarios, a systematic literature review was
conducted using a predefined classification framework. The results show that uncertainties in pLCA are often related to a lack of
knowledge and data-related uncertainties. To explore the implications of scenario choices, prospective LCIA results related to the
climate change impact category were modelled across different background system activities within four sectors. The findings
demonstrate that the choice of scenario affects LCIA results differently, depending on the technological and regional context,
thus suggesting that the implications of a specific scenario choice can not be generalised across contexts. Combined with insights
from the literature review, which revealed inconsistencies in how uncertainties are addressed, these observations suggest that
current pLCA practices may contribute to a reduced transparency and reliability of results. Therefore, this study suggests further
research aimed at developing a more standardised practice for addressing and managing uncertainties to increase the reliability
and transparency of pLCA studies.

1 Introduction approach 1416 However, assessing the environmental impacts
of emerging technologies has gained increased attention as a
response to the awareness of their potential role in sustainable
development. This has led to the establishment of prospec-
tive Life Cycle Assessments (pLCA)!'7. Various typologies
and definitions exist for the concept of future-oriented LCA,
for instance, ex-ante, dynamic, and anticipatory LCAs. While
these are all based on the same fundamental concept, they
have minor differences in approach and perspective 8. Fol-
lowing the definition of Cucurachi et al. 19 pLCA refers to
situations where the studied technology is at an early stage
of development, but is modelled at industrial scale in a fu-
ture time, allowing the tool to identify potentially avoidable
environmental impacts and lock-ins in the early stages of de-

In the current ecological crisis, the assessment of the envi-
ronmental impacts of products, services, and technologies can
play a crucial role in guiding future development!. Life Cy-
cle Assessments (LCA) are a widely used tool to quantify the
environmental impacts through all life cycle stages (i.e. from
resource extraction to end-of-life stages)?, making it a use-
ful tool for evidence-based decision ma.king3’4. Howeyver, the
inherent uncertainties in LCA calculations can undermine its
effectiveness in decision-making processes . If these uncer-
tainties are not accounted for in the interpretation of findings,
the use of such models can introduce a risk of overconfidence
in results, and thereby lead to sub-optimal decisions*%°. Ad-

dressing uncertainties is thus an important step towards ensur-
ing reliable and transparent decision-support®.

Traditionally, LCAs have been used to evaluate the envi-
ronmental impacts of existing technologies, spanning a wide
range of products and services, for example, transport in-
frastructure '°, construction materials !' and renewable energy
(e.g. wind turbines!? and photovoltaics'3). The commonly
used LCA guidelines and databases, such as the ISO 14040,
ISO 14044, and ecoinvent, are well suited for this traditional

velopment. This can guide decision-makers in an appropriate
direction in advance and prevent them from investing in tech-
nologies expected to have a higher environmental impact than

other alternatives 2.

While traditional LCA guidelines and databases are well
suited for a retrospective LCA approach, they do not fully
address or accommodate the challenges when conducting
pLCAs2%2! such as limited knowledge about the future char-

acteristics of a technology, limited data, and scaling issues'”.
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To overcome such challenges, models can be used as tools to
anticipate future developments and their associated environ-
mental impacts, for example, by presenting an anticipated up-
scaling of the emerging technology, or an anticipated devel-
opment of potential future socioeconomic conditions>. How-
ever, including models to anticipate future developments in-
creases the complexity and, in turn, the potential for uncer-
tainty, as each additional assumption, parameter, or scenario

introduces new sources of variability and unknowns !°.

To navigate the complex landscape of uncertainties, clas-
sification frameworks have been developed. For example,
Walker e al.?* defines uncertainty as “any deviation from
the unachievable ideal of completely deterministic knowledge
of the relevant system”, and suggests dividing uncertainty
into three dimensions; the nature, the location, and the level,
with additional sub-divisions ?2. Building on Walker’s frame-
work, which categorises uncertainty in a broad model-based
decision-making context, several studies have adapted it to
emphasise different aspects specific to LCA>823,

The academic literature on uncertainties in pLCA addresses
the issue of uncertainty in a variety of different ways. In nu-
merous cases, uncertainty is not explicitly defined, but rather
described as an inherent part of pLCA, or solely by its height-
ened presence in pLCA compared to traditional LCA2+26,
This reflects an understanding of the nature of uncertainty, de-
spite a lack of a systematic approach to fully define its char-
acteristics or implications. Some define uncertainties with a
focus on lack of case-specific data®*. Similarly, others argue
that the uncertainty of pLCA will decrease with increased data
or knowledge?’. Sander-Titgemeyer et al.?® uses Walker’s
matrix for uncertainty identification, followed by a classifica-
tion by relation to the unknown future (scenario dependency)
and relation to other elements, such as allocation method (sce-
nario independency). Another topic often addressed concern-
ing uncertainty is the challenges arising when dealing with
emerging technologies, where data availability is limited to
the Technology Readiness Level (TRL) of the system?%-30. In
such cases, the necessary up-scaling of the technology from
laboratory to industrial scale introduces uncertainty due to as-
sumptions about future development3!~33. While uncertainty
in pLCA has gained increasing attention in recent years, the
field is highly affected by the novelty of the subject. This is ev-
ident from the inconsistency in how uncertainty is addressed.

Regarding the management of uncertainty, traditional un-
certainty assessments in LCA, such as uncertainty and sen-
sitivity analyses, often follow a positivist approach, assum-
ing that uncertainties can be reduced through better data or
modelling?’. Uncertainty analysis is often conducted through
Monte Carlo simulations®, allowing probabilistic assessments
of uncertainty by generating a distribution of possible out-
comes rather than relying on a single deterministic value. For
sensitivity analysis, a widely adopted method is global sensi-

tivity analysis®. This technique evaluates how different input
parameters impact the model’s output, helping identify which
variables contribute most to uncertainty and should be priori-
tised for refinement 4.

However, as the increased complexity of pLCAs intro-
duces additional uncertainties 8333 related to the issues of
‘unknown unknowns’, these are not as easily addressed by
common state-of-the-art uncertainty quantifications?’. Thus,
van der Giesen et al. ?* argue for a more constructivist per-
spective, recognising that uncertainty is inherent in complex
systems and cannot always be quantified. One of the highly
suggested ways to handle uncertainty in pLCA is the use of
scenarios to anticipate future development, enabling the con-
sideration of multiple potential futures instead of relying on a
single static projection?%2%30 Scenarios are especially high-
lighted as a preferred approach to situations with deep un-
certainty, where traditional quantitative methods are insuffi-
cient®”. Moreover, scenarios are argued to increase the trans-
parency and reliability of pLCA results in a decision-making
context.

The literature reveals different methods for using scenar-
ios. A common approach is using scenarios to anticipate fu-
ture technological development and up-scalings 33839 whilst
others use scenarios to project pessimistic, moderate and op-
timistic scenarios for the same technology path?#2627. For
example, the scenarios presented by Fouquet et al. 2%, include
two variables expected to change over time; the electricity mix
and improvements in manufacturing processes. For each of
these variables, three scenarios are set up, respectively, ad-
dressing a baseline scenario, as well as an optimistic and a
pessimistic scenario. According to Saavedra del Oso et al. »°,
the key choices regarding scenario development are made dur-
ing the Goal & Scope definition phase. Moreover, the pa-
per presents another consideration related to scenario devel-
opment, as a scenario approach can be predictive (what will
happen?), explorative (what can happen?), and/or normative
(how can a specific target be reached?)*.

A common characteristic for these approaches is that they
take the point of departure in a predicted development, and
assume an environmental impact related to this. Contrary to
these approaches, Jouannais ef al. #! shifts the focus from try-
ing to predict a specific technological development to defin-
ing a probability threshold, and defining which circumstances
need to be fulfilled for the technological development. This is
done through a scenario discovery algorithm, an analysis of re-
quirements on uncertain factors which allows the assessment
of whether the overall success probability of the technological
concept meets the decision-making threshold*! .

Despite methodological advancements and increased atten-
tion on using scenarios to address uncertainties, challenges
have been identified, particularly in terms of consistency and

transparency, which hinder the reproducibility of scenarios3.
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The scenarios generated for the foreground system are closely
related to the specific technology under study. However, for
the background system processes, practitioners often rely on
the use of large databases, such as ecoinvent. To address
the challenges related to consistency and transparency, Men-
doza Beltran er al. 3 have developed a method to system-
atically change the background system processes of ecoin-
vent to align with different scenarios of Integrated Assess-
ment Models3. A further development of this approach has
led to the creation of the Python library premise, which al-
lows for systematic integration of IAMs across multiple sec-
tors*?. Premise allows for scenario generation for the years
2005 — 2100 with projections from the IAMs; IMAGE, RE-
MIND, and TIAM-UCL*?. However, the process of generat-
ing scenarios requires a certain technical level and computa-
tion time, decreasing its applicability for practitioners lacking
these resources. As an alternative, researchers from the Nor-
wegian University of Science and Technology (NTNU) are de-
veloping a simulation tool which integrates premise, enabling
quicker computational time and more accessible scenario gen-
eration. Currently (May 2025), the NTNU tool allows for
scenario generation for two IAMs; IMAGE and REMIND.
The two IAMs are based on different assumptions, with RE-
MIND having a focus on the energy sector and its implica-
tions for climate change*, and IMAGE having a broader fo-
cus on modelling the interaction of human and natural sys-
tems**. Additionally, the tool allows for specifications of
Shared-Socioeconomic-Pathways (SSPs) and policies*. The
pathways outline three possible global futures, offering more
nuanced alternatives to the current baseline development, in
which projected global warming will range from 3.1°C to
5.1°C by year 2100%°. Whilst the pathways are defined by
various conditions, they are primarily grouped according to
the societal/economic trends under which they are set to ex-
ist. SSP1 represents optimistic trends driven by sustainabil-
ity, whereas the same is applicable to SSP5, however, driven
by fossil fuel-focused developments. In contrast, SSP2 more
moderately functions under trends extrapolated from historical
developments, continuing existing socio-economic trends®.
The pathways are further divided into four climate policy as-
sumptions: no climate policy (Base scenarios), Paris Agree-
ment Objective (PkBudg scenarios), National Policies Im-
plemented (NPI) and Nationally Determined Contributions
(NDC)®.

While several studies are identified using premise to gen-
erate prospective background systems, most do so in isolated
cases (e.g. construction materials*’ or wind turbines*?). No
study was identified focusing on a systematic exploration or
mapping of how background system scenarios behave across
different sectors and regions. This reveals a knowledge gap
related to the implications of using tools such as premise for
scenario generation.

The pLCA literature reveals a non-systematic practice in
how uncertainties are defined, classified and managed which
has led to the following research question: How is uncertainty
characterised and managed in current prospective Life Cycle
Assessment (pLCA) practices, and how can a scenario-based
approach be utilised to increase the reliability and trans-
parency of results? with the following sub-questions:

e What types of uncertainties are addressed in current
prospective pLCA practice?

* How are scenarios typically used in current prospective
pLCA practice?

* How are pLCA results affected by the choice of scenario,
and what implications does this have for the associated
uncertainties?

2 Materials and methods

2.1 Classifications in current pL.CA literature

The first part of this study utilised a systematic literature re-
view to map the current practice of uncertainty in pLCA. The
search for relevant pLCA studies to include in the literature re-
view was conducted through the database Scopus. The initial
search aimed to identify published peer-reviewed papers about
future-oriented LCAs and uncertainty. Therefore, the follow-
ing search string was constructed, using multiple words aimed
at identifying pLCA and uncertainty-related aspects: ( TITLE-
ABS-KEY ( “prospective LCA” ) OR TITLE-ABS-KEY (
plca) OR TITLE-ABS-KEY ( “ex-ante LCA” ) AND TITLE-
ABS-KEY ( uncertainty ) OR TITLE-ABS-KEY ( sensitivity
) OR TITLE-ABS-KEY ( variability ) ) AND ( LIMIT-TO (
DOCTYPE, 7ar” ) ) AND ( LIMIT-TO ( LANGUAGE , “En-
glish”)).

The search, carried out in March 2025, yielded 119 stud-
ies. Due to the relative novelty of the pLCA methodology,
the search was limited to the years 2010 — 2025, reducing the
number of results to 109 papers. Firstly, the abstracts were
read to exclude irrelevant papers. The exclusion criteria were:

 Papers about listeria containing the same words as de-
fined in the search string, but with a different meaning.

* Papers focusing on LCA, where the technology under as-
sessment was not an emerging technology, or where the
assessment method was not future-oriented. For exam-
ple, a traditional LCA case study of Tiger Puffer, sug-
gesting the use of ex-ante LCA for parameter optimisa-

tion®.

The process resulted in 30 papers, which were read more in-
depth in a second round. Finally, the remaining papers under-
went a final round of classification, during which they were
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organised into two primary categories: methodological contri-
butions and applied research studies. While the methodologi-
cal contributions support the factual ground of this study, the
pool of applied research papers made up the final group of 23
analysed papers.

The final list of papers was used as a basis for a literature
review aiming to map what types of uncertainties, and meth-
ods to manage these, are addressed in the current pLCA lit-
erature. A deductive approach was taken, constructing a pre-
defined framework from existing classifications deriving from
LCA literature, aiming to ensure a systematic and consistent
analysis of the contents of the papers®’. The findings from
the analysis were incorporated into an Excel spreadsheet with
each row representing a paper and the columns representing
the pre-defined criteria of the analytical framework (see Sup-
plementary Information 1).

As an overarching theoretical framework, the three dimen-
sions of Walker et al. ?* were applied; nature, location, and
level. To classify the nature of uncertainties, it has been es-
timated whether they are epistemic (i.e. stemming from lack
of knowledge) or aleatory (i.e. due to random variability) 2.
The location of the uncertainty has been further defined by the
five criteria of the Pedigree Matrix Weidema and Wesnas !, a
data quality framework, dividing quality indicators according
to reliability, completeness, geographical correlation, tempo-
ral correlation and technological correlation. The quality indi-
cators of the pedigree matrix are used as a framework to clas-
sify uncertainties by their source. During the initial reviews of
the chosen papers, it became evident that a significant amount
of uncertainties derive from scaling issues and model uncer-
tainties, respectively, leading to the two additional classifica-
tions being applied along with the five criteria of the Pedigree
Matrix (Figure 1).

In analysing Walker ez al.*> dimension of level, i.e. the
depth of uncertainties in the reviewed papers, the initial aim
was to apply the four levels of uncertainty, as presented by
Stirling 3. However, the complex and often overlapping depth
of the uncertainties has led to its exclusion from the analysis.

The literature review was extended with a section focus-
ing on methods applied to address the uncertainties. Two of
the 23 papers were excluded from the method analysis, as the
premise of these papers deviated from the scope of methods
aimed to be documented in this study. A column was dedi-
cated to the general question of what methods were applied
in the paper. This served to capture a whole picture of the
approach, bringing relevant context to how scenarios other-
wise may or may not have been applied. Given that scenarios
were applied as a method in a paper, these were addressed di-
rectly in two separate columns, asking whether the scenarios
are related to the foreground or background system, respec-
tively. The categorisation aims to provide insights into how
uncertainties are approached on different system levels, help-

ing to clarify whether scenario assumptions in current practice
primarily affect product modelling or the broader system. Ad-
ditionally, a column was dedicated to potential descriptions of
the scenario approach of the paper; the amount of scenarios
applied, the time frame of projection, as well as the type of
scenarios, if specified.

2.2 Modelling prospective LCIA results

The second part of this study utilised a simulation tool devel-
oped by the NTNU to explore how different background sys-
tem scenarios affect the environmental impacts of activities.
The tool allows 19 different scenario combinations, which can
be modelled with 10-year intervals between 2030 and 2100.
The applied scenarios consist of pre-defined IAM scenarios,
which are subdivided into different SSP pathways and poli-
cies. The combinations of background systems are visualised
in Figure 2.

For this study, the modelling spanned across the 19 scenar-
ios for the years 2030, 2040, and 2050. The applied impact
assessment method was ReCiPe, midpoint (H), with the no
LT (long-term) option. Results were produced for the impact
category Climate Change. Midpoint indicators are chosen (as
opposed to endpoint) to avoid the additional uncertainty re-
lated to adding an aggregation step to the model>*. Addition-
ally, the 'no LT’ version of the impact assessment method was
chosen due to the temporal scope being less than 100 years,
which aligns with the period before long-term emissions are
modelled to be emitted to the air>*. The choice of focusing
solely on climate change was based on it being a shared focus
of the IAMs REMIND and IMAGE 336

Four technologies were chosen as case studies based on a
set of criteria. Firstly, it was decided to choose activities from
differing sectors to enable analysis of potential sector-related
differences. Secondly, the study required each activity to span
across two regions to enable analysis of potential regional
differences. For continuity and comparability, regions within
Europe and Asia were set as criteria for the activity. Lastly,
the NTNU tool presented a few limitations, as it could not
produce status quo results for all activities in the database.
This led to the choice of the following four technologies;
electricity, transport, steel, and wheat. The functional units
of the case studies are 1 kilowatt hour (electricity), 1 ton
kilometer (transport), and 1 kilogram for steel and wheat. This
resulted in a total of eight activities; electricity, production
mix and transport, freight train, diesel were analysed across
China (CN) and the Netherlands (NL), steel production was
analysed across India (IN) and Europe without Switzerland
and Austria (EwSA), and lastly, wheat production was
analysed across India (IN) and Germany (DE). As stated,
LCIA results were generated for 19 scenarios for each of the
eight activities for the years 2030, 2040, and 2050, leading to
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Walker's three
dimensions of Sub classifications
uncertainty (2003)

Shared
Integrated . . .
Socioeconomic Policy
Assessment Model Pathwa
» Epistemic 4
Nature
Aleatory
SSP1 Base
IMAGE —
Base
SSP2 RCP1.9
Relation to ROR2E
data
reliability
Relation to
data
R
completenes Base
S NDI
> SSP1 > NDC
. PkBudg1150
Relation to
temporal Pedigree's criteria PkBudg500
correlation (1997) Base
NDI
REMIND > SSP2 NDC
Relation to PkBudg1150
Location = » geographical PkBudg500
uncertainty
Base
NDI
- SSP5 NDC
Relation to PKBUdg1150
future of PkBudg500
technology
Fig. 2 Construction of each scenario, based firstly on IAM models;
IMAGE (Integrated Model to Assess the Global Environment) and
iElatfion e REMIND (Regional Model of Investment and Development),
i secondly on SSPs (Shared Socioeconomic Pathways), and lastly on
respective policies; Base, RCP (Representative Concentration
- Pathways), NPI (National Policies Implemented), NDC (Nationally
ReIangnlto Determinde Contributions), and PkBudg1150 and 500 (Paris
m . .
uncer(iaii s Agreement Objective).

Fig. 1 The content analysis uses pre-defined classifications, based

on Walker ef al. 22 (exl. level), along with sub-classifications based

partly on the five criteria of Weidema and Wesnaes 3! .
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a total of 57 LCIA results for each activity, as visualised by
Figure 3.

Analysis of scenario modelling output
The analysis of the eight activities was initiated by analysing
the range of LCIA results across scenarios. The range of re-
sults was visualised as shaded areas between minimum and
maximum values, with a coloured line showing the average
result across scenarios. The width of the shaded area was
interpreted as uncertainty, meaning that a wide range of re-
sults indicated high uncertainty about the future development,
whilst a narrow range of results indicated more certainty about
the future development. Additionally, status quo values were
provided for each activity to compare the assumptions of sce-
nario ranges to an assumed status quo. Visualisations were
constructed in PyCharm using Matplotlib>’.

To analyse the distribution of the LCIA results across sce-
narios, Kernel Density Estimation (KDE) was applied to gen-
erate density plots in PyCharm using scipy.stats>® for KDE
computations and Matplotlib for visualisations>”.

A density plot was constructed for each of the four tech-
nologies, visualising the distribution of results for each re-
gion. The density plots enabled identification of the shape
and spread of the underlying data. The interpretation of re-
sults was based on analysing overlapping and non-overlapping
areas to identify similarities and differences in results. Addi-
tionally, the spread of data was interpreted by the width of
the distribution, i.e. a narrow distribution suggests similar re-
sults, whereas a wide distribution suggests a higher variety in
results.

Additionally, density plots were made for the distribution
of the difference in results across regions for each technology.
The difference was calculated using Equation 1.

Difference = COz-eqr s — CO2-eqgp M

Where RA refers to one region and RB refers to the other
region of the same technology.

To analyse whether the variables IAM and pathway behave
similarly across activities, strip plots have been used to visu-
alise the results for each JAM and SSP, plotting them compar-
atively for the years 2030, 2040, and 2050. The strip plots are
generated in PyCharm using seaborn.sns>°. This approach al-
lowed for a clear comparison of variability and trends tied to
specific modelling assumptions.

Multiple linear regressions were conducted in PyCharm for
the 57 LCIA results for each activity to analyse the statisti-
cal relationship between the independent categorical variables
IAM, pathway and year to the dependent continuous variable
kg CO2-eq/functional unit. The analysis was performed using
the statsmodels library for statistical modelling®°. The model

is defined by Equation 2.
GWP = By + B1 - IAM + B, - pathway + B3 - year ~ (2)

Where:

B = Intercept, representing the baseline (status quo) level of
GWP

IAM = Explanatory variable representing IAM model
pathway = Explanatory variable representing pathway

year = Explanatory variable representing scenario year

Bi, B; and B3 = Coefficients estimating the effect of each
explanatory variable on the baseline.

Similarly, multiple linear regressions were conducted for
the difference in GWP across regions. The difference was cal-
culated using Equation 1 and the regression model was defined
by Equation 3.

Difference in GWP = By + f; - IAM + f3, - Pathway + f3; - Year

3)
The results from the multiple linear regressions were used to
identify the Coefficient of Determination (R?) for each model,
suggesting how much the independent categorical variables
can explain the dependent continuous variable. Additionally,
the estimated coefficients were used to identify which inde-
pendent variables are most influential on the range of results
for each activity. Lastly, the number of statistically significant
variables for the individual models was analysed. The results
between regression models were compared to identify similar-
ities and differences across models.

3 Results and analysis

3.1 Mapping of uncertainty in current pLCA practice

Nature of uncertainty

The first part of the literature review focused on the nature of
uncertainties addressed in the pLCA literature. Out of the 23
analysed papers, 12 papers (52%) exclusively addressed the
epistemic nature of uncertainty. Some papers use the term
“epistemic” to describe the uncertainty (e.g. Mendoza Beltran
et al.3°, Fonseca et al. 61), while others relate uncertainty to
a lack of knowledge, for example, about the development of
the emerging technology or the development of supply-chain
related aspects (e.g. Horup et al.*’). In some cases, uncer-
tainty is described as inherent to the future-oriented outlook
of pLCA, without specific examples of what this inherent un-
certainty entails (e.g. Roder et al.%%). 9 papers (39%) ad-
dress a combination of the epistemic and aleatory nature of
uncertainty. The uncertainties are either addressed in relation
to methodological choices (e.g. in relation to goal and scope
or LCI) or in relation to the consistency of results (interpre-
tation). For example, Jouannais and Pizzol ®> mention epis-
temic uncertainty in relation to the unpredictable behaviour of
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/—b 2030

Activity > 19

> 2040 57

\—D 2050

Fig. 3 The scenarios derive from eight activities, each yielding 19 scenarios with varying IAMs, pathways, and policies. These scenarios are
projected for three different years; 2030, 2040, and 2050, finally resulting in 57 scenarios per activity.

the technology under study, while certain parts of the tech-
nology are modelled as a random draw, thereby introducing
aleatory uncertainty to the system. In contrast, Saavedra del
Oso et al.?® address the epistemic and aleatory uncertainty
by conducting an uncertainty analysis of performance param-
eters by including a 10% upper and lower bond, supporting
the notion that the nature of uncertainty is addressed in dif-
ferent LCA stages. One paper out of the 23 papers (4%) was
identified as exclusively addressing the aleatory nature of un-
certainty. This is identified through an explicit reference to the
uncertainty being aleatory (natural variation)%*.

Nature of uncertainties in chosen papers

129

10 4

Number of articles
o
|

T T
Epistemic Aleatory Both

Fig. 4 The bar chart presents distribution of observed uncertainties,
categorised by nature; epistemic, aleatory, or both.

These findings indicate a higher tendency in pLCA lit-
erature to emphasise the epistemic nature of uncertainty.
This aligns with results by Gavankar et al. 37 a review
in which reducible epistemic uncertainties were found to
be acknowledged seven times as often as non-reducible
variability (aleatory uncertainty). Despite the 10-year time
gap between the findings presented by Gavankar et al.’’
and the findings presented in this study, the overarching
trend of addressing epistemic uncertainty more often remains
consistent. However, the relatively higher representation

of aleatory uncertainties in the findings of this study might
suggest that the acknowledgement of natural variability
among uncertainties has increased in the last decade. Another
explanation for the difference in findings can be related to the
difference in how uncertainty is conceptualised across papers.
While several studies address subjects related to epistemic
and aleatory uncertainty, the distinction is often implicit,
thus increasing the room for interpretation, which can lead
to different conclusions. As suggested by the literature
review, results are products of ambiguous definitions and
interpretations, leading to a decrease in reproducibility and
comparability in pLCA . These findings suggest a need for
methodological standardisation and guidance, ensuring con-
sistency and transparent management of different uncertainty

types.

Location of uncertainty
Figure 5 shows the observed trends for the location of the un-
certainties, which are addressed in the current literature.

Out of the seven categories of the location dimension, data-
related uncertainties are the most frequently observed source
of uncertainty, with 18 out of the 23 papers (78%) address-
ing this aspect. In general, the uncertainty is related to a lack
of process-specific data, leading to the use of secondary data,
proxy data and estimations #3161 As a consequence, varying
sources are used with inconsistent data quality, representative-
ness, and reliability, which also introduces uncertainty 30 In
addition to the specific sources of data-related uncertainties,
two distinct scopes are identified. In some papers, the uncer-
tainty is related to specific data inputs, such as the input quan-
tities of pulp and water?® or energy?’, while others address the
data-related uncertainty as a general issue. An example of the
latter case is presented by Mendoza Beltran et al. 3%, describ-
ing that inventories in general have large parameter uncertain-
ties, which are expected to be increased for pLCA studies.

Seven papers (30%) address the process of up-scaling in
relation to uncertainty. In general, the uncertainties are de-
scribed as being introduced by the precision of the up-scaling
process, the ambiguity of future development, and as an am-
plification of existing uncertainties. When up-scaling a tech-
nology from laboratory to industrial scale, several assump-
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tions are required regarding how the technology under study
will behave. These assumptions are described as contributing
to uncertainty, since the accuracy of the predicted behaviour
on an industrial scale relies on the precision of the assump-
tions 3192, Besides the uncertainty regarding how precise the
up-scaling assumptions are, some technologies are modelled
at such an early stage that there are ambiguous opinions about
whether the efficiency of the process will increase or decrease
when scaled up to industrial scale. This point is highlighted by
Sinke et al.?”, for which there are ambiguous opinions about
the efficiency of culture medium, an ingredient necessary to
produce cultivated meat, thus introducing a high degree of un-
certainty about the assumed efficiency for the up-scaled tech-
nology. The previous examples highlight aspects of epistemic
uncertainties introduced by a lack of knowledge of how the
up-scaled system will operate. In contrast, Villares et al. %
highlights uncertainties which are closer related to aleatory
uncertainty by stating that up-scaling amplifies the existing
imprecision and variability of the modelled system.

4 papers (7%) address temporal aspects in relation to un-
certainty. Whilst being a frequently addressed topic, two dis-
tinct areas of focus are identified; the first topic addresses
the uncertainty of results of future projections, and the sec-
ond topic addresses the data input and the degree to which
older data can be considered representative. Regarding the un-
certainty of results, indications of uncertainty increasing with
the extent of the projection are observed consistently within
the analysed papers. This is highlighted by Horup er al. 4’
and Mendoza Beltran et al. 3®, modelling future projections
through IAM-based scenarios for building materials and vehi-
cles, respectively. In both cases, the papers find that the range
of results across scenarios increases over time, concluding that
uncertainty increases over time. While there is relative agree-
ment on the uncertainty of future projections, diverging opin-
ions about the temporal representativeness of input data are
identified. For example, Horup ez al. *’ highlights the potential
over- and underestimations by using ecoinvent data to predict
future environmental impacts, thus concluding that ecoinvent
data are already outdated. In contrast, whilst acknowledging
the higher uncertainty of pLCA compared to traditional LCA,
Villares et al. % argues that the use of two decades old data is
representative for their study of the emerging technology, bi-
oleaching of e-waste. In another study by Villares et al. 3, the
authors furthermore argue that a 10-year future projection is
viable to conduct based on 25-year-old data. These findings
indicate a general agreement about the uncertainty increas-
ing with the use of long-term projections. However, differ-
ent views are identified regarding the temporal representative-
ness of older data (i.e. ecoinvent database) when conducting
pLCAs.

3 papers (13%) address geographical representativeness in
relation to a lack of knowledge of where the production will
take place in the future. For example, Jouannais and Pizzol %
present a consequential pLCA, highlighting geographical lo-
cation as an uncertainty. From a consequential approach, an
increase in demand will be answered by different producers,
and their location will have an effect on the total environmen-
tal impact of the technology under study. Similarly, Jouannais
et al. *! highlights unknown production location as contribut-
ing to uncertainty. In another example, the geographical un-
certainty is addressed in relation to input data by conducting a
global sensitivity analysis to analyse the models’ response to
the chosen geography 2.

The examples of uncertainties related to geographical as-
pects generally address similar topics related to the uncertainty
about future production locations and how this will impact re-
sults. However, there are diverging ways to address this as-
pect, for some through qualitative descriptions, whilst others
account for them through statistical measures, indicating an
inconsistent practice across pLCA papers.

A central element of pLCA is the focus on assessing the
environmental impacts of emerging technologies. Due to its
future-oriented perspective, naturally, a large part of the uncer-
tainties are related to either the unknown technological pros-
perity, or other influencing factors such as the technological
landscape, consumption patterns, and other supply-chain re-
lated aspects. 11 out of 23 papers (48%) address uncertainty
in relation to the unknown future development.

Regarding the unknown development of the technology, un-
certainty is emphasised in relation to the early-stage nature of
the technology, for which it is unknown what configuration or
combination of the parameters will result in the desired tech-
nological property®. In other cases, limited data and experi-
ence of the early-stage technology contributes to uncertainty
about future performance and large-scale feasibility 192, Re-
garding the uncertainties which indirectly impact the future
prosperity of the technology under study, various examples are
observed, such as related to the supply chain?%%2, the techno-
logical landscape 3, production conditions ®2, energy produc-
tion 2636 and consumption patterns 2¢-62,

11 papers (48%) addressed uncertainties which were not
captured by the pre-defined categories of the analytical frame-
work, falling into a category of other/mixed. An example is
Porcelli et al. 3* emphasising the modelling complexity in re-
lation to uncertainty. Specifically, there is a trade-off between
simplifying assumptions to reduce model complexity along
with its ability to predict phenomena, and the uncertainty in-
troduced by additional modelling due to the increase in in-
put factors. Another example, also related to simplicity of the
model, is the argument of attributional modelling to keep the
model simple and avoid uncertainties®>. Whilst these uncer-
tainties do not fit into the initial analytical framework, they
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show a similar focus on the trade-off between complex mod-
elling to increase the level of detail, along with increased un-
certainties.

Location of uncertainties in chosen papers

18 4

16 1

14 4

12 4

10 4

Number of articles

Fig. 5 The bar chart presents distribution of observed uncertainties,
categorised by location; data reliability, data completeness, temporal
corralation (time), geographical aspects, technological prosperity,
scale-up related, and other/mixed.

It is, from the chosen papers, evident that data-related
sources are the most frequent from which uncertainties arise.
This trend highlights a limitation in prospective modelling,
as future-oriented scenarios depend on assumptions and sec-
ondary data, making the data input a consistent point of un-
certainty. Given the fragility of data reliability in future pro-
jections, robust scenario construction becomes essential, not
only to predict future developments, but also to communicate
the range and implications of data uncertainty in a constructive
and transparent manner.

3.2 Application of scenarios in chosen papers

20 out of 21 papers (95%) apply scenarios to some degree,
with varying approaches. The exception is Matin and
Flanagan ®, in which uncertainty and sensitivity analyses are
conducted, however, with no scenario or time frame specified.
In some papers, it is explicitly stated that the scenarios are
used to address uncertainty, while others apply scenarios
without direct reference to uncertainty. While these findings
indicate that scenarios are widely applied, an overview of
the literature review proves that the approach to scenarios
can vary. This variation is reflected in the time frame of
their projection, in whether the scenarios are applied to the
foreground and/or background system, and in the number of
scenarios.

Time projection for scenarios
10 of the papers (48%) defined a time frame for the projection
of the scenarios, while 11 of the papers (52%) did not. It can
thus be argued that there is a fair variation in how time pro-
jection is included in scenario construction. Papers without
explicit references to a set time frame have been categorised
as having not defined a time frame (Figure 6). For the papers
with a defined time frame, a common observation is scenario
projections with ten-year intervals between 2030, 2040, and
20503536:4748 -~ Additionally, some papers are identified with
time projections to 2050 and 2060 with 5-year intervals?®34,
A common characteristic of these papers is a recent publica-
tion date, relative to the remaining papers. Moreover, all ex-
cept one utilise premise to generate background system sce-
narios. These findings indicate an evolving common practice
for time projections. In addition, single examples are iden-
tified using other time frames. These include long-term pro-
jections, for example, 100-year projections?®, and short-term
projections*-%7. For example, in a paper by Villares et al. 33,
the time projection does not involve a long-term set of inter-
vals, such as every ten years. Instead, the authors consider a
shorter-term time horizon of up to 10 years. This time frame
is chosen to reflect a realistic development period for scaling
up the technology, while keeping impact assessments relevant

to near-future conditions38.

Time projection of scenarios

10 4

Number of articles

Defined Not defined

Fig. 6 The bar chart presents the frequency of timeframe
application in scenario construction across 21 papers.

Scenario application
Results have been classified by whether the scenarios are re-
lated to the foreground or background systems (Figure 7).
Eight of the 21 papers (40%) analyse both foreground and
background systems in their scenarios, eight papers (40%) ap-
plied scenarios to the foreground system, while four papers
(20%) applied scenarios to the background system only.

For the eight papers applying scenarios to the foreground
system, some include multiple scenarios for the same technol-
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ogy, while others present the assessed emerging technology as
the only scenario. An example presenting multiple scenarios
for the technology is observed in a paper by Abbate et al.>'.
In this paper, a sensitivity analysis, performed on repairable
carbon-fibre-reinforced polymers to address uncertainty, is the
basis for six foreground system scenarios being constructed;
three for each of two presented composite types. Likewise, in
a paper presented by Spreafico and Thonemann3°, the anal-
ysed technology itself serves as the variable of the scenarios.
In this case, three scenarios are constructed to respectively ad-
dress the current, future, and patented technology. In other ex-
amples, the emerging technology is presented as one scenario,
compared with other non-prospective alternatives®?. These
examples highlight a difference in the number of scenarios in-
cluded.

For the four papers identified as exclusively applying sce-
narios for the background system, this is typically done us-
ing premise, either by conducting scenarios for specific ac-
tivities or for the whole background database. An exam-
ple is presented by Spreafico?, where six prospective sce-
narios, such as SSP2-NPI, SSP2-PkBudg1150, are applied to
specific background system activities. Similarly, other stud-
ies are identified constructing two scenarios (SSP2-Baseline
and SSP2-RCP2.6)28 and six scenarios (combination of SSP1,
SSP2 and SSP5 pathways)3¢. These findings highlight a dif-
ference in practice regarding the number of scenarios anal-
ysed.

For the seven papers applying scenarios to the foreground
and background systems, this involves a combination of tech-
nology projections and different background system scenar-
ios. One example is presented in a paper by Li ef al. >*. The
study, focusing on two emerging pretreatment technologies of
crumb rubber, initially performs a scale-up analysis of four
scenarios. The first is a baseline scenario, followed by three
scenarios focusing on, respectively, CO, reuse, pressure re-
duction, and fewer chemical agents. Subsequently, the back-
ground system was tested by an allocation scenario analysis,
examining the impact on results by adjustments in system ex-
pansion, physical allocation, and economic allocation?*. In
another study, three scenarios are conducted named ’Opti-
mistic, "Moderate ,” and ’Pessimistic’, aligning the narrative
of the scaled-up technology to varying modified background
systems using premise*®. A simpler scenario structure is iden-
tified in a paper by Villares er al. 3, describing the perfor-
mance of a sensitivity analysis based on changes in technol-
ogy efficiency and energy supply. Adjustments in technology
are related to the foreground system, while adjustments in en-
ergy supply relate to the background system>8. These exam-
ples highlight an inconsistency in practice when scenarios are
constructed for foreground and background systems, both in
terms of how the foreground system scenarios are generated
as well as the basis for the background systems.

Scenarios are applied to

Number of articles
-~

Foreground Background Both

Fig. 7 The bar chart presents the frequency of scenario application
to the foreground system, background system, or both, across 21
papers.

In general, the literature review findings indicate that using
scenarios for pLCA is a common practice. However, incon-
sistencies are observed, both in terms of the described aim of
using scenarios (i.e. explicit mentioning of uncertainty or not)
and their configuration.

Regarding the configuration of scenarios, differences are
observed in terms of defined time projection, whether sce-
narios are applied to the foreground system, background sys-
tem, or both, and the number of scenarios applied. The find-
ings suggest that the scenario configuration depends on the
study approach, which correlates with the level of uncertainty
present for the emerging technology under assessment. For
cases with higher epistemic uncertainties related to making
future projections, multiple variables are involved in the sce-
nario generation (such as technology design, geographical lo-
cation, electricity input, etc.), which steeply increases the fi-
nal number of scenarios. Despite the case-dependent scenario
approach, recent publications increasingly adopt premise for
conducting background system scenarios. This indicates a
preference for applying tools that standardise practice. How-
ever, even within the papers applying premise in scenario gen-
eration, an inconsistency is observed in terms of the number
and selection of scenarios. A more standardised scenario ap-
proach could, thus, further enhance the transparency of how
the choice of scenario influences results, leading to a more ro-
bust interpretation of results.

3.3 Range of results from prospective scenario modelling

The LCIA results for the 19 different scenarios analysed for

each of the eight activities are visualised in Figures 8 — 11.
Generally, the range of results for the European regions

across the activities shows a similar assumed development
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Fig. 8 Predicted development in GWP for electricity, production mix, NL on the left side and electricity, production mix, CN on the right side.
The black lines show status quo, while coloured lines indicate the average value of 19 future scenarios, and the coloured shaded area indicates
the range in all 19 scenarios.
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Fig. 9 Predicted development in GWP for transport, freight train, EwSA on the left side and transport, freight train, CN on the right side. The
black lines show status quo, while coloured lines indicate the average value of 19 future scenarios, and the coloured shaded area indicates the
range in all 19 scenarios.
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Fig. 10 Predicted development in GWP for steel production, electric, low-alloyed, EwSA on the left side and steel production, electric,
low-alloyed, IN on the right side. The black lines show status quo, while coloured lines indicate the average value of 19 future scenarios, and
the coloured shaded area indicates the range in all 19 scenarios.
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Fig. 11 Predicted development in GWP for wheat production, DE on the left side and wheat production, IN on the right side. The black lines
show status quo, while coloured lines indicate the average value of 19 future scenarios, and the coloured shaded area indicates the range in all

19 scenarios.

trend, with the shaded area having a trumpet shape. The trum-
pet shape suggests that the possible range of results increases
over time, indicating an increase in uncertainty related to the
extent of the forecast. In contrast, the comparison of the ac-
tivities for the non-European regions (i.e. CN and IN) do not
show the same consistency in projected developments. For
example, electricity, production mix, CN in Figure 8 and steel
production, electric, low-alloyed, IN in Figure 10 show an al-
most uniform range of results over time, whilst the range of
results for transportation, freight train, diesel, CN in Figure 9
and wheat production, IN in Figure 11 decreases towards 2040
and increases again towards 2050. Since the results show dif-
ferent trends across activities and regions, this indicates that
the projected development across IAM based scenarios de-
pends on the context of the analysis, for example, which ac-
tivities and regions are included.

The black line in Figures 8 — 11 show the results when as-
suming status quo, i.e. not taking potential background sys-
tem developments into account. These results are equivalent
to using ecoinvent results directly. The results show different
trends across technologies and regions, in terms of whether
assuming status quo leads to an overestimation or underesti-
mation of results.

For electricity, production mix, NL in Figure 8, the range
of results of the prospective scenarios are below the line as-
suming status quo. This indicates that assuming the status
quo leads to an overestimation of the GWP/kWh. This is
also the case for both regions of steel production, electric,
low-alloyed (Figure 10). In comparison, the status quo as-
sumption for electricity, production mix, CN in Figure 8 is
within the range of scenario results, indicating that assuming
status quo can lead to under- or overestimation of GWP/kWh.
However, the distance between the average value and status

quo increases over time, indicating that the risk of overestima-
tion increases when the extent of the projection increases. For
transport, freight train, diesel (Figure 9), the results are simi-
lar across regions and show that assuming status quo provides
similar results to the average value for the scenario generation,
indicating the potential of both overestimation and underes-
timation of results. However, the difference between status
quo assumption and average result for scenarios decreases to-
wards 2050. For wheat production, assuming status quo will
lead to overestimations of CO2-equivalents for the DE region,
whereas for the IN region, this is only the case for 2040 (Fig-
ure 11). For 2030 and 2050 the status quo assumption falls
within the scenario ranges.

The different trends observed across technologies can be
explained by the difference in how the IAMs project the de-
velopment of different sectors. For example, premise applies
sector-specific transformations and efficiencies for the elec-
tricity sector and steel production?. This means that effi-
ciency and market adjustments are directly applied to the ac-
tivities within these sectors, leading to a relatively higher de-
crease in CO;-eq compared to the transport and agriculture
activities*?. Since transport, freight train, diesel and wheat
production are not included in the major transformation sec-
tors, the observed changes in GWP can be assumed to derive
from the transformation of activities in the supply chain (for
example, electricity). A modelled decarbonisation of the elec-
tricity sector can, thus, indirectly have a relatively large influ-
ence on energy-intensive sectors and processes, whereas such
effects might not be observed in less energy-intensive sectors
and processes.

These findings highlight two aspects; the first aspect is re-
lated to the comparison of assuming status quo in prospective
assessments with the range of results for the scenarios. The
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findings indicate the potential risk of over- or underestimating
results. However, the observed inconsistency of trends across
regions and technologies indicates that the extent of the po-
tential over- or underestimation depends on the context of the
activity under assessment. For the latter aspect, the range of
results, the findings indicate a similar inconsistency, suggest-
ing that the projected development depends on the context and
region-specific assumptions embedded in the JAMs.

3.4 Distribution of LCIA results

Figures 12 — 15 show the distributions of the 57 LCIA results
generated for each activity.

For the electricity, production mix (Figure 12), the distri-
butions reveal an overlap between the two regions, indicating
similar results. The overlap in results suggests that the rel-
ative performance of the regions (meaning which region has
higher environmental impact scores) depends on the choice of
scenario. The width of the distributions suggests that the re-
sults for NL are more narrowly distributed compared to the
results for CN. Moreover, the distribution for NL is unimodal
and slightly skewed to the right, suggesting that a majority
of results are centred around the mean, with a tendency to-
wards higher values. In contrast, the distribution for CN is
bimodal, indicating two peaks in the data. One of the peaks
is aligned with the one observed for NL, whilst the other is
slightly higher. The bimodal distribution indicates the poten-
tial presence of a subset of scenarios generating higher GWP
results.

Similar to the electricity distributions, the distributions for
transport, freight train, diesel (Figure 13) overlap. This sug-
gests that the choice of scenario can also be influential for
which region has the lowest value of CO;-eq. In contrast to
the electricity, the distributions for the two regions are simi-
lar, with a relatively narrow width and unimodal pattern. This
indicates a similar spread of results, with EWSA in general
producing slightly higher GWP.

A different trend is observed for steel production, electric,
low-alloyed, which reveals no overlapping areas between the
regions, as visualised by Figure 14. This indicates that the
choice of scenario will not influence the relative performance
of steel production for the regions; IN will generate higher im-
pact scores for all scenario combinations. Both distributions
are unimodal, however, the distribution for EwSA is narrower,
indicating a higher consistency in results.

Similarly, the distributions for wheat production (Figure 15)
show no overlap, indicating that under all scenario assump-
tions, IN will produce higher results for the climate change
impact category than DE. As with transportation, both distri-
butions are similar in terms of width and unimodal pattern,
indicating similar spread in results with a higher mean for one
region.

To further analyse the regional differences across scenar-
ios, density plots showing the distribution of the difference be-
tween regional results were generated for each activity (Figure
16). For transport and wheat, the distribution of differences
is narrow, indicating a consistent absolute difference between
the regional results across the scenarios. The consistent dif-
ference of results between the regions was also indicated by
the similarity in distribution of results for the regions in Fig-
ures 13 and 15. In contrast, the distribution of differences for
electricity and steel is wider, indicating an inconsistency in
the absolute difference in results across scenarios for the two
regions. These results are consistent with the observed differ-
ences in distributions in Figures 12 and 14.

These results indicate a sector-specific sensitivity for the
climate change impact category, depending on which scenar-
ios are included in the analysis. This sensitivity is highlighted
by the examples from the electricity and transportation sec-
tors, where the choice of scenario can shift the ranking of the
regional impact scores, which was not present for the steel
and agricultural sectors. Consequently, the choice of scenario
introduces an additional source of uncertainty, as the results
become dependent on the selection of scenarios. In a decision-
making context this means that scenario choices could lead to
different conclusions.

3.5 Variability of prospective LCIA results across IAM
and pathway

Variability across IAM results

Figures 17-20 visualise the variability of GWP across the vari-
able IAM. For electricity, production mix, NL (Figure 17), the
scenarios generated with IMAGE show a wider spread over
time, indicating increasing uncertainty. In contrast, the sce-
narios generated with REMIND show a slight decrease over
time. In comparison, both REMIND and IMAGE show a simi-
lar trend of slightly decreasing values over time. This suggests
that REMIND projects similar development trend over time
for both regions. However, a difference is observed for how
IMAGE projects development trends across the regions, which
can be explained by different assumptions regarding technol-
ogy efficiency and market adjustments for NL and CN within
the IMAGE model. Additionally, the differing development
trajectories across IAMs for NL suggests that the LCIA results
are more sensitive to the choice of IAM for this region com-
pared to CN.

The results for IAMs for transport, freight train, diesel in-
dicate consistencies across as well as witin the regions. As
indicated by Figure 18, the JAMs behave similarly across re-
gions, with IMAGE showing more concentrated projections
of results, and REMIND showing a higher variation of maxi-
mum and minimum results. Within regions, similar trends can
especially be observed for EWSA, as both JAMs show an in-
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Fig. 12 Density distribution of GWP values for electricity, production Fig. 13 Density distribution of GWP values for transportation, freight
mix, NL, visualised in blue, and electricity, production mix, CN, train, diesel, EwSA, visualised in blue, and electricity, production mix,
visualised in red. CN, visualised in red.
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Fig. 14 Density distribution of GWP values for steel production,
electric, low-alloyed, EwSA, visualised in blue, and steel production,
electric, low-alloyed, IN, visualised in red.

Fig. 15 Density distribution of GWP values for wheat production, DE,
visualised in blue, and wheat production, IN, visualised in red.
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Fig. 16 Density distribution of regional difference in GWP values across activities; wheat production visualised in gray, electricity, production
mix, visualised in purple, transportation, freight train, diesel, visualised in red, and steel production, electric, low-alloyed, visualised in green.

creasing range of results over time. This is also observed for
scenarios of the REMIND model for CN, however, the scenar-
ios generated for IMAGE reflect a stagnating development.

The LCIA results across IAM for steel production, elec-
tric, low-alloyed (Figure 19) show a similar trend as for elec-
tricity. For the region of EwSA, REMIND has a consistent
range, having a lower impact on GWP over time, whilst IM-
AGE projects a wider spread. For the region of IN, both JAMs
project relatively constant results over time.

The LCIA results for wheat production (Figure 20) show
a similar development for scenarios of the REMIND model,
with increasing minimum and maximum values over time.
However, the scenarios generated with IMAGE show differ-
ent trends across the two regions. For DE, the scenarios follow
a similar projection as the REMIND models, with increasing
minimum and maximum values over time. In contrast, for the
IN region, IMAGE projects a decrease in values over time.

The overall trend across all activities and regions demon-
strates more ambitious development projections of carbon ef-
ficiency for scenarios from REMIND. This is interpreted by
REMIND, yielding the lowest results for all activities and re-
gions. In general, both JAM produce similar maximum values,
with occasional examples where one IAM has considerably
higher values.

Additionally, these findings uncover variabilities in how
the two IAMs, REMIND and IMAGE, project results across
technologies and regions. In alignment with the results from
the density distributions, presented in Section 3.4, a higher
variation was observed in trends across regions for electricity,
production mix and steel production, electric, low-alloyed.
These differences highlight the impact of the model’s assump-
tions about technology efficiency and other market-related
developments. These variations underscore the importance of
considering different JAMs for decision-making, especially
when considering different geographical contexts, to reduce
the risk of overconfidence in results.

Variability across Shared-Socioeconomic-Pathways

In Appendix A-D, similar analyses are visualised for the same
set of activities and regions. These plots are based on the same
data points as the ones used for the plots in Figures 17 — 20,
however, they are centered around scenario pathways as vari-
ables in the pLCAs. As a result, othe verall tendencies for
pathway follow similar trajectories as IAM . For example, for
electricity, production mix, NL the spread of data increases
over time, while for electricity, production mix, CN a con-
sistent spread with incremental decrease in GWP is observed
(Appendix A).
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Fig. 17 Strip-plot illustrating the predicted development in GWP for electricity, production mix, classified by applied IAM; IMAGE or
REMIND, across the years of 2030, 2040, and 2050.

Transport, Freight Train, EwSA, by |IAM Transport, Freight Train, CN, by IAM
0.065
o) 0
0.075 4
o}
0.060 -
®
o o
0.070 4 0
o
0.055
— e —
E ® E
S 0.065 - o) ® = o
@ 1AM I @ 1AM
o S 0.050
o] a @ © IMAGE S ° @ IMAGE
o @ © REMIND © ° © REMIND
2 - - o <
— (9} @ @ - @
= 0.060 1 @ ® ® ES
[} o] o 0 O 0.045 A @ o o
@ @ a Q@ Q (0] o]
(o] @ [ ] @ @
e o g © -
m .}
0.055 0.040{ © o [} 5] o )
@ @ ° °
© © 0 @
@ o [+
@ o o o
0.050 [} 0.035 e
T . . . . .
2030 2040 2050 2030 2040 2050
Year Year

Fig. 18 Strip-plot illustrating the predicted development in GWP for transport, freight train, diesel, classified by applied IAM; IMAGE or
REMIND, across the years of 2030, 2040, and 2050
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Steel production, electric, low-alloyed, EwSA, by IAM Steel production, electric, low-alloyed, IN, by IAM
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Fig. 19 Strip-plot illustrating the predicted development in GWP for steel production, electric, low-alloyed, classified by applied IAM;
IMAGE or REMIND, across the years of 2030, 2040, and 2050.
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Similar to the analysis of variability for JAM, the pathway
analysis showed that the pathways did not behave similarly
across activities and regions. Therefore, it is not possible to
determine one pathway as generating the lowest (optimistic)
or highest (pessimistic) GWP results overall. In contrast, the
pathway considered to be either optimistic or pessimistic de-
pends on which sector and region is analysed. This indicates
that for some activities, the choice of pathway can lead to dif-
ferent conclusions regarding which technology or regions per-
form best.

In parallel with JAM, these findings underline that path-
way choice significantly influences GWP projections, and that
uncertainty can be affected by, or intertwined with, socio-
political complexity.

3.6 Multiple linear regression of prospective LCIA re-
sults

The multiple linear regression models for the eight activities
achieved R? values between 0.77 — 0.94, indicating that the in-
dependent categorical variables can explain between 77% and
94% of the variance of results for the activities (see Supple-
mentary Information 2). The regression analysis revealed 11
— 16 significant variables for the activities as visualised by
Figure 21. The statistically significant variables consist of a
mix of the two IAMs (REMIND and IMAGE), the pathways
(SSP1, SSP2 and SSP5) and the years (2030, 2040 and 2050).

Comparing the coefficient results from the linear regres-
sions (Figure 21), it becomes evident that there are similarities
and differences in how the independent variables contribute to
the LCIA results. A general trend is observed between the
coefficients and their significance; the independent variables
with the highest coefficients are also the ones which are sta-
tistically significant. Additionally, the number of statistically
significant variables is between 11 — 17, indicating a simi-
larity of amount of significant variables across the activities.
However, there is a difference in which of the independent
variables are statistically significant for the individual activity.
Only four independent variables (SSP5-PkBudg500, SSP2-
PkBudg500, SSP2-Base, and SSP1-PkBudg500) are identified
as statistically significant variables across all eight activities.
Despite the four variables’ statistical significance across all
activities, a difference is observed concerning the relative con-
tribution of each variable to the results. For example, the in-
dependent variable SSP1-PkBudg500 has a relatively high co-
efficient for the transport activities, whilst having a relatively
low coefficient for the steel production. This inconsistency
is also observed for other independent variables. For exam-
ple, the choice of IAM is a statistically significant variable
for some activities (e.g. electricity, production mix, NL and
transport, freight train, diesel, CN) and not for others (elec-
tricity, production mix, CN and transport, freight train, diesel,

EwSA). This variability in results indicates that the sensitivity
of the LCIA results to the variables in the IAM-based back-
ground systems is highly context-dependent. For example, the
choice of IAM can be a dominant factor for the LCIA results
in one case, whilst for another case, both IAMs can produce
similar results, thus, the choice of IAM is of less importance
for the outcome. These results emphasise the potential risk of
relying on a single scenario to project a future development,
highlighting the potential of added transparency by including
arange of scenarios.

3.7 Multiple linear regression of the difference between
regions

The multiple linear regression results showed significant dif-
ferences in the explanatory power of the model. In the case
of electricity and steel, the models achieve R2-values of 0.86
and 0.93, indicating that the model can explain 86% and 93%
of the variance in results, respectively. The regression results
revealed 11 independent variables as statistically significant
for electricity. The 11 parameters are a mix of nine path-
ways (SSP1, SSP2 and SSP5), one IAM (IMAGE) and one
year (2030). For steel production, the amount of statistically
significant variables was 15, which are a mix of 11 pathways
(SSP1, SSP2 and SSP5), two IAMS (IMAGE and REMIND)
and two years (2040 and 2050).

Similar to the multiple linear regressions for the activities,
there is variation regarding which of the independent variables
has the highest coefficient. A high coefficient means that the
individual variable has a high influence on the difference in
results across the regions. For example, for electricity, the in-
dependent variables with the highest coefficients are the JAM
IMAGE, or the pathways SSP5-NPI, or SSP5-Base. In com-
parison, the individual variables with the highest coefficients
for steel are the JAM REMIND, or the year 2040, or the path-
ways SSP2-RCP2.9, SSP5-Base, or SSP5-PkBudg500. These
findings indicate a technology-dependent influence regarding
which of the independent variables of the model drives the
difference in results.

In contrast, the multiple linear regression analyses for trans-
port and wheat showed considerably lower explanation power
of the model, with R?-values of 0.59 and 0.58, respectively.
These results indicate that there are other factors besides the
independent variables which explain the difference in results.
For transport, the regression statistics revealed seven signifi-
cant independent variables, four of which are pathways (SSP1,
SSP22, and SSP5) and two IAM's (IMAGE and REMIND). For
wheat, only two independent variables were identified as sta-
tistically significant (SSP2-Base and SSP2-NPI).

These findings highlight the difference in projections, based
on whether the activity is part of a sector which under-
goes major transformation (electricity and steel) in premise
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Independent variable

Electricity Electricity Transport

Transport

C(IAM)[T.IMAGE]
C(IAM)[T.REMIND]
C(Pathway)[T.SSP1-Base]
C(Pathway)[T.SSP1-NDC]
C(Pathway)[T.SSP1-NPI]
C(Pathway)[T.SSP1-PkBudg1150]
C(Pathway)[T.SSP1-PkBudg500]
C(Pathway)[T.SSP2-Base]
C(Pathway)[T.SSP2-NDC]
C(Pathway)[T.SSP2-NPI]
C(Pathway)[T.SSP2-PkBudg1150]
C(Pathway)[T.SSP2-PkBudg500]
C(Pathway)[T.SSP2-RCP19]
C(Pathway)[T.SSP2-RCP26]
C(Pathway)[T.SSP5-Base]
C(Pathway)[T.SSP5-NDC]
C(Pathway)[T.SSP5-NPI]
C(Pathway)[T.SSP5-PkBudg1150]
C(Pathway)[T.SSP5-PkBudg500]
C(Scenarioyear)[T.2030]
C(Scenarioyear)[T.2040]
C(Scenarioyear)[T.2050]

CN

0.004
0.005

0.027 0.064

0.062 0.175 6 0.008

0.073 0.155 0.005.  0.009

0.053 0.004 0.004

0.028

0.047 0.116 0.005 0.007

0.070 0.188 0.008

0.132 0.005

0.085 0.004 0.006
0.006 0.002
0.004 0.005

0.033 0.003
0.061 0.159 0.006 0.007
0.076 0.201 0.008
0114  0.035 0.003 0.004
0.167 0.112 0.003 0.003

Steel Steel
EwSA

0.019

0.065 0.122
0.047 0.323

0.045 0,008

0.044
0.069
0.094
0.047

0.168
0.280

0.090 0.525
0.042( 0008
0.028 0.412
0.054 0.068
0.068 0.182
0.102 0.566
0.141 0.345
0.157 0.287

Wheat

0.015

0.010

0.023
0.025
0.012

0158 0.004

Wheat
IN

0.030]
0.027
0.014

Fig. 21 Coefficients for all independent variables across all activities; Electricity NL and CN (electricity, production mix), Transport EWSA

and CN (transport, freight train, diesel), Steel EwWSA and IN (steel production, electric, low-alloyed), and Wheat DE and IN (wheat

production). Significant variables are written in bold. Green cells indicate higher coefficients, and red cells indicate lower coefficients.
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Independent variable Electricity Transport Steel Wheat

C(IAM)[T.IMAGE] 0.158 0.004 0.134 0.002
C(IAM)[T.REMIND] 0.027 0.003 0.311 0.004
C(Pathway)[T.SSP1-Base] 0.100 0.001 0.132 0.001
C(Pathway)[T.SSP1-NDC] 0.035 0.004 0.021 0.001
C(Pathway)[T.SSP1-NPI] 0.016 0.000 0.061 0.006
C(Pathway)[T.SSP1-PkBudg1150] 0.025 0.001 0.019 0.002
C(Pathway)[T.SSP1-PkBudg500] 0.091 0.001 0.177 0.001
C(Pathway)[T.SSP2-Base] 0.077 0.004 0.156 0.011
C(Pathway)[T.SSP2-NDC] 0.019 0.000 0.066 0.002
C(Pathway)[T.SSP2-NPI] 0.039 0.001 0.050 0.016
C(Pathway)[T.SSP2-PkBudg1150] 0.063 0.002 0.097 0.001
C(Pathway)[T.SSP2-PkBudg500] 0.104 0.001 0.219 0.002
C(Pathway)[T.SSP2-RCP19] 0.228 0.004 0.306 0.003
C(Pathway)[T.SSP2-RCP26] 0.030 0.003 0.103 0.002
C(Pathway)[T.SSP5-Base] 0.246 0.004 0.315 0.001
C(Pathway)[T.SSP5-NDC] 0.060 0.001 0.087 0.002
C(Pathway)[T.SSP5-NPI] 0.280 0.003 0.264 0.001
C(Pathway)[T.SSP5-PkBudg1150] 0.093 0.001 0.135 0.001
C(Pathway)[T.SSP5-PkBudg500] 0.116 0.001 0.234 0.002
C(Scenarioyear)[T.2030] 0.146 0.000 0.013 0.004
C(Scenarioyear)[T.2040] 0.059 0.000 0.195 0.001
C(Scenarioyear)[T.2050] 0.021 0.000 0.237 0.002

Fig. 22 Coefficients for all independent variables, showing regional differences for all activities; Electricity (electricity, production mix),
Transport (transport, freight train, diesel), Steel (steel production, electric, low-alloyed), and Wheat (wheat production). Significant variables
are written in bold. Green cells indicate higher coefficients, and red cells indicate lower coefficients.

or if the changes are induced indirectly through other sec-
tors (transportation and wheat). These findings align with
the findings of the density distributions, which indicated that
the regional difference for electricity and steel results were
subject to scenario-specific differences, whilst transportation
and wheat were subject to non-scenario specific differences.
Therefore, a higher statistical correlation between the inde-
pendent variables was expected for electricity and steel. The
sector-dependency of results introduces a substantial uncer-
tainty, as the results depend on the assumption embedded in
the projected sector and region-related developments across
scenarios. Additionally, the varying statistical relationships
between the conducted multiple linear regressions make it dif-
ficult to analyse general trends across the sectors and deter-
mine, on a general level, which variables are most important.
In a decision-making context, this decreases the robustness of
results, as it is difficult to make general assumptions about
the behaviour of scenarios. The lack of generalisability across
technology and regions requires extensive knowledge about
the assumptions for each individual scenario for a practitioner
to be able to consider the implications of scenario choice.

4 Discussion

The findings of this study provide insights into how uncer-
tainty is addressed in current pLCA literature, as well as how
the choice of background system scenario influences LCA
results. However, certain limitations need to be discussed
to ensure a nuanced interpretation of results. This section
discusses some of this study’s key methodological choices
and limitations to address their influence on the results.
Potential approaches to address the limitations and areas for
further research are also suggested.

Literature review on uncertainty in pLCA
Choosing a deductive approach has provided a clear analyt-
ical framework, aiding in positioning the study within exist-
ing knowledge. Moreover, it allowed a more focused and po-
tentially more efficient literature review. However, such ar-
guments rely on the set framework, especially given that the
framework applied in this study is constructed from various
typologies. It could furthermore be argued that a predefined
framework might limit engagement with literature, as there is
a risk of confirmation bias>°.

In contrast, the inductive approach is of an exploratory na-
ture, which covers exploring new phenomena or when existing
theories are inadequate>’. In terms of uncertainties in pLCA,
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existing theories could be deemed insufficient. True to the
methodology’s nature, the analysis would have a bottom-up
structure, starting with observations in the chosen papers, fol-
lowed by a subsequent generalisation, thus potentially reflect-
ing a truer representation of the state of the art>’. Given the
limited knowledge existing within pLCA, such an approach
could allow a beneficial level of flexibility, holding space for
changes in research direction based on emerging data. The
ambiguity of the research topic, which an inductive approach
could potentially aid in capturing on a higher level, is, how-
ever, a double-edged sword. Entirely inductive approaches
can lead to subjectivity or inconsistency>’ — a relevant as-
pect given that the content analysis of the literature review re-
sults was developed in collaboration between two researchers.
The framework surrounding the analysis was constructed by
various sets of typologies, not only to introduce nuance and
perspectives to the findings of the chosen papers, but also to
ensure clarity and coherence in how the findings should be
classified. These are measures meant to, partly, leave mini-
mal room for interpretation when analysing the content, thus
strengthening continuity despite the analysis being conducted
by more than one researcher. A measure to further combat this
aspect could have been to have both researchers analyse all of
the papers, including reviewing the findings of the other.

To limit the search, specific search words have been used
for sorting throughout the literature, thus leaving out papers
in which uncertainty management potentially could have been
addressed in a more ambiguous tone. While such an approach
is a tangible way of narrowing down material, the immaturity
of the subject of uncertainties in pLCAs is relevant to take
into consideration. It could be argued that in a research field
so relatively unexplored, there can exist a margin of error,
in which explicit typologies and terms are not yet widely
accepted as set practice. Moreover, the papers have a varying
emphasis on uncertainty — for some papers, uncertainty is
a central aspect, whilst for others it is a subject included
in the discussion section, ultimately creating a challenge in
assessing uncertainties on an even level. However, due to
limited resources, a wider search demanding interpretation
and assumptions of relevance was deemed impractical.

Limitations of pLCA results
The choice of which activities to include for the modelling of
prospective scenarios is a key element of the methodological
approach. In this study, eight activities were analysed — two
regional cases for each of the four technologies, with each
technology representing a different sector (electricity, trans-
port, steel, and agriculture). The selection was based on an
assumption that the projected development trajectories vary
across sectors and regions.

A key limitation of this approach is that only one technol-
ogy was assessed for each sector. This reduces the general-

isability of results, as there is a potential risk of technology-
specific conditions affecting results, which are not represen-
tative of all technologies within the sector. Addressing this
limitation could include the generation of results for multiple
technologies within a sector, thus increasing generalisability.

Due to the relative novelty of the subject, few papers have
been identified applying a similar approach. However, a
study has been identified, where premise was used to gener-
ate a range of results across 9 scenarios for different building
materials for the Danish building sector®’. By focusing on
multiple materials within a single sector, their findings high-
lighted potential differences in assumed development trajecto-
ries within a sector. Interestingly, their findings indicated sim-
ilar development trajectories across materials with minor dif-
ferences (trumpet shape, i.e. increasing range of results over
time). This suggests that the sector-specific modifications of
the IAMs have a similar impact across the technologies within
the sector. Another interesting element to compare is the re-
gional focus. In the study by Horup et al.*’, all building ma-
terials are representative for Denmark, which is categorised as
Europe by the IAMs®. Similarly, the range of results for the
European regions in Figures 8, 9, 10, and 11 have more sim-
ilar development trajectories (trumpet shape) compared to the
range of results for CN and IN. These results suggest a similar
region-specific development across different sectors, besides
the ones included in this study.

Moreover, the density distributions presented in Section 3.4
indicated the regionally determined influence of the prospec-
tive scenarios. The results highlighted a technology/sector-
specific sensitivity, where the choice of scenario can be influ-
ential for which region has lower GWP scores. The novelty of
pLCA and the relatively recent development of premise lim-
its the number of papers focusing on the regional difference
in technology performance. However, an example of this is
identified in a study by Spreafico >, where the author com-
pares the environmental impact of market group for electric-
ity, medium voltage for Europe and CN. Different scenarios
within the SSP2 pathway are modelled for the European re-
gion, and one scenario is modelled for CN (SSP2-NPI). The
author concludes that all the scenarios, except the one for CN,
reduce emissions compared to the baseline. While this con-
clusion holds for the specific case presented by Spreafico,
the findings in the present study suggest that a different com-
bination of scenarios could lead to different outcomes. This
highlights the importance of presenting a range of scenarios
instead of one to reduce the risk of overconfidence in results
in a decision-making process.

The results of the multiple linear regression, presented in
Section 3.6, show a high degree of variation in which of the
independent variables contributes most to the dependent vari-
able across activities, and when the difference between regions
was analysed. One possible explanation is that the validity and
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reliability of the model varies across predictors, due to the pre-
dictor variables (IAM, pathway, and scenario year) having dif-
fering amounts of observations. The predictors with sufficient
amounts of data (for example, JAM) are expected to provide
more valid and representative results, and to better reflect the
relationship between the predictor and the independent vari-
able. In contrast, for the predictor pathway, the low amount of
data points may provide misleading results (e.g. for the coef-
ficient and the confidence intervals), since the amount of data
points is too low to reflect the relationship between the predic-
tor and the dependent variable. Each of the categories of the
categorical variable pathway consists of a combination of SSP
and policy. In an attempt to increase the amount of data points
per category, it could be argued to divide the data into cate-
gories according to the pathways, SSP or policy. However, the
GWP result (dependent variable) reflects the combined effect
of a specific SSP and policy. Thus, treating the SSP or policy
as an independent variable could lead to a misrepresentation of
the modelled outcomes and lead to wrong conclusions about
the influence on GWP.

Given these limitations, the regression results should be in-
terpreted with caution to prevent overconfidence in results.
As with all modelling, especially relevant for a subject such
as pLCA, which operates within a high degree of epistemic
uncertainty, there is a risk of quantification to back-fire. As
stated by Saltelli ef al. °, an excessive focus on producing pre-
cise numbers increases the risk of pushing “a discipline away
from being roughly right towards being precisely wrong”.

The results of the prospective background activities were
presented for the Climate Change impact category. This
choice was based on climate change being a shared focus
of the IAMs REMIND and IMAGE>>¢. Despite the exclu-
sion of other impact categories, the results revealed diverging
trends in projected developments across technologies and re-
gions, suggesting the importance of transparency in scenario
selection. However, the narrowed scope of analysed environ-
mental impacts limits the representativeness of results to the
climate change impact category. Including other impact cat-
egories would enable a comparison of whether the identified
trends in results are limited to the chosen impact category or
if the results can be generalised across impact categories.

Despite the methodological limitations, this study provides
valuable insights into the field of uncertainty in pLCA. The
literature review revealed a predominant focus on the epis-
temic nature of uncertainty, for which the use of scenarios is
considered a viable solution. Additionally, the findings from
the modelling of prospective background system activities re-
vealed a potential context-dependency of the IAM-based sce-
narios. Further research should focus on expanding the anal-
ysis of technologies within different sectors, as well as ex-
panding the results to other impact categories to enable more
generalisable results. These efforts could enhance the robust-

ness and reliability of using tools such as premise to generate
background system scenarios as a way to address the epis-
temic nature of uncertainty in pLCA.

5 Conclusions

This paper shows a higher tendency in pLCA literature to em-
phasise the epistemic nature of uncertainty, aligning with find-
ings in other studies. Differences in how uncertainty is con-
ceptualised, often implicitly rather than explicitly, contribute
to inconsistent findings across studies, reducing reproducibil-
ity and comparability in pLCA. This highlights the need for
clearer methodological standards and guidance on managing
different types of uncertainty. The reviewed papers moreover
show that data is the most common source of uncertainty in
prospective modelling, underscoring the need for robust and
transparent scenario design to address the uncertainty of fu-
ture projections. While scenarios are a widely applied method
to address uncertainty, there is considerable variation in their
configuration, purpose, and level of detail. These findings
point to a broader need for methodological consistency to en-
hance transparency, comparability, and robustness in scenario-
based pLCA.

Prospective scenario modelling overall shows that projected
developments vary significantly across regions and activities.
Comparing scenario results to status quo assumptions reveals
that relying on static background data can lead to over- or
underestimation, depending on the context. These findings
highlight the importance of considering regional and sector-
specific dynamics in IAMs, as well as the risks of oversimpli-
fying future developments in pLCA.

Density distributions of GWP suggest that for certain tech-
nologies, the choice of scenario can influence the difference
between regional scores. Consequently, the choice of scenario
introduces an additional source of uncertainty, as the results
become dependent on the selection of scenarios. In a decision-
making context, this uncertainty is important since different
scenario choices could lead to different conclusions. In sce-
nario modelling, the choice of IAM and pathway has an ev-
ident influence on GWP projections, additionally suggesting
that assumed policy within scenarios has an impact and should
be included in a potential expansion of the study. Moreover,
variability in multiple linear regression results indicates that
the sensitivity of the LCIA results to the variables in the IAM-
based background systems is highly context-dependent. This
emphasises the potential risk of relying on a single scenario to
project a future development.

Along with the previously mentioned factors, varying statis-
tical relationships among the regressions lead to difficulty in
making general assumptions about the behaviour of scenarios,
ultimately decreasing the robustness of results in a decision-
making context. The findings of this study underline how the
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lack of generalisability across technology and regions requires
extensive knowledge about scenario assumptions and associ-
ated implications for a practitioner to meaningfully interpret
and apply results.

For pLCA practitioners, this study emphasises the impor-
tance of documenting and communicating scenario assump-
tions clearly, using multiple scenarios to explore a range of
possible futures, and being cautious of over-relying on de-
fault or standardised pathways without context-specific justi-
fication. For users of pLCA results, such as policy decision-
makers or industry stakeholders, it is essential to be aware
that outcomes may vary substantially depending on scenario
choices. Decisions supported by pLCA should therefore con-
sider the scenario-dependency of results as a critical dimen-
sion of uncertainty that can influence the robustness and rele-
vance of the conclusions drawn.

Further research should focus on expanding the analyses to
technologies within different sectors and to other impact cat-
egories to enable more generalisable results about the impli-
cations of scenario choice. These efforts could enhance the
robustness and reliability of using tools such as premise to
generate background system scenarios as a way to address the
epistemic nature of pLCA.
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Appendix A
Strip-plot illustrating the predicted development in GWP for electricity, production mix, classified by applied pathway; SSP1, SSP2, or SSP5, across the years of
2030, 2040, and 2050.
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Strip-plot illustrating the predicted development in GWP for transport, freight train, diesel, classified by applied pathway; SSP1, SSP2, or SSP5, across the years
of 2030, 2040, and 2050.
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Appendix C
Strip-plot illustrating the predicted development in GWP for steel production, electric, low-alloyed, classified by applied pathway; SSP1, SSP2, or SSPS5, across
the years of 2030, 2040, and 2050.
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Strip-plot illustrating the predicted development in GWP for wheat production, classified by applied pathway; SSP1, SSP2, or SSP5, across the years of 2030,

2040, and 2050.
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