
Summary:

This thesis presents novel GSRec hybrid model for sequentional recommendation.
With this model, we aim to tackle problem which ocurres in recommendation sys-
tems, like predict next item in dynamical nature of user behavior.

The GSRec model combines two sequential modeling methods: the SASRec trans-
former, which uses a self-attention layer to learn recent patterns in user interac-
tions, and the Gated Recurrent Unit (GRU), a recurrent neural network which
is used for learning long-range dependencies. Unlike other hybrid models that
use these methods in parallel or depend on heavy preprocessing, GSRec organises
them in a pipeline architecture, applying SASRec to process immediate user behav-
ior and then passing those outputs into GRU to learn broader trends. This pipeline
architecture reduces architectural complexity and also improves training efficiency.

To validate the performance of this GSRec model, the model was tested on two
datasets: Amazon Beauty, representing sparse e-commerce data, and MovieLens
1M, a denser dataset of movie ratings. GSRec was evaluated using Hit Rate
(HR@10), Normalized Discounted Cumulative Gain (NDCG@5, @10), and Mean
Reciprocal Rank (MRR). Baselines for comparison included simple model PopRec,
as well as more complex architectures like GRU4Rec, SASRec, and BERT4Rec.

Results of the experiments showed that GSRec model outperformed the GRU-only
model (on sparse Beauty dataset) and the POP baseline across both datasets. Re-
sults on sparse dataset were lower than SASRec and BERT4Rec but not significantly,
which indicates robustness of the GSRec model in areas where user data is limited.
But, GSRec did not outperform SASRec or BERT4Rec in the denser ML-1M dataset,
which is possibly because of the GRU’s reprocessing of embeddings from SASRec,
which may dilute attention patterns.

While the model does not outperform all of the state-of-the-art models, its efficient
pipeline architecture shows a promising foundation for future hybrid recommen-
dation systems. The thesis concludes by proposing few future directions how to
improve GSRec, like the integration of feed-forward layers in the transformer part
of model, the use of multi-layer GRUs to capture more complex dependencies.

Overall, GSRec contributes meaningfully to the field of sequential recommendation
by showing how the combination of attention mechanisms and recurrent networks
can lead to balanced performance across different types of user behavior data.
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Sequential recommendation is key in
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ture user behavior in data. Two ap-
proaches for this have proliferated:
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brid model, GSRec, for sequential rec-
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strengths of the SASRec transformer
and the GRU neural network. We in-
tegrate them in a sequential pipeline
to capture both short-term and long-
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applied to extract recent patterns in
user data using an attention layer, fol-
lowed by GRU to model longer-term
dependencies. We evaluate GSRec
on two datasets, Amazon Beauty and
MovieLens 1M to see performance in
comparison to state-of-the-art models
such as POP, GRU4Rec, SASRec, and
BERT4Rec. While BERT4Rec outper-
forms GSRec in dense datasets, our
model shows robustness in sparser en-
vironments.
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Chapter 1

Introduction

In recent years, deep learning has played a crucial role in recommendation
systems, specifically in capturing user behavior over a period of time. With
the development of the internet, numerous digital platforms have emerged,
such as music streaming services like Spotify, Apple Music, and Deezer;
movie streaming platforms such as Netflix, Amazon Prime, and Disney+;
and e-commerce sites like Amazon, Asos, and Zalando. To stay compet-
itive, these platforms require models capable of capturing sequential user
interactions, for example, what users bought or watched, what they liked or
disliked based on their reviews, how long they listened to a particular song
or podcast, and how their behavior evolved over time. Effectively capturing
this information does not only mean understanding what a user likes right
now but also how their preferences have changed. These are the reasons
why sequential recommendation models are so important.

Two popular deep learning models used for sequential recommendation
tasks are Recurrent Neural Networks (such as gated recurrent unit (GRU)
and Long-Short Term Memory (LSTM)), and self-attention-based models
like Transformers (such as SASRec and BERT4Rec) [25]. GRU and LSTM
are great for learning long-term dependencies in sequences, but they can
struggle with very recent or rapidly changing user behavior [11, 24]. On
the other hand, attention mechanisms like those used in Transformers focus
more on identifying which parts of a sequence are most relevant, making
them powerful for learning short-term user interests [22]. Thanks to the
strengths both of these approaches have, many recent models try to com-
bine them to get the best of both worlds.
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Several hybrid models have already been proposed in other fields that show
the benefit of combining these algorithms. For example, Zheng et al.[24],
introduced a GRU–Transformer model for predicting soil moisture levels.
Their setup uses two parallel branches—one with GRU to model time de-
pendencies and another with a Transformer to catch broader, contextual
patterns. Li and Qian’s [11] FDG-Trans model, designed for forecasting
stock prices, first cleans up the data using signal decomposition and then
feeds it through GRU, LSTM, and Transformer layers. While these models
work well for their specific use cases, they are either tailored to structured,
domain-specific data or require complex preprocessing steps. That makes
them less ideal for general-purpose recommendation systems, where data
is often less structured and changes fast.

In this project, we focus on sequential recommendation tasks in areas like
movie and e-commerce platforms, where user interactions are unpredictable
and often short-lived. We propose a simple but effective model that com-
bines SASRec and GRU, not in parallel, but in a pipeline, which, as a result,
thanks for this pipeline architecture, has faster training and lower com-
plexity. The SASRec component comes first, using self-attention to capture
recent user interests and behavior patterns. The output from SASRec is then
passed into a GRU, which builds on that information to learn longer-term
trends in user behavior. By doing this, the model first gets a clean, short-
term representation of what the user is into right now, and then uses GRU
to learn how that behavior fits into a bigger picture over time.

The paper is organised as follows: In Chapter 2, we present similar papers,
which inspired this work. Chapter 3 provides an overview of the model we
considered, including RNN variants and Transformers, and introduces our
proposed hybrid model. In Chapter 4 we explain the experimental setup,
including datasets, baselines and evaluation metrics. Chapter 5 presents
and discusses the experimental results, comparing our model with existing
approaches across different datasets. Finally, Chapter 7 concludes the paper
and outlines potential directions for future work.



Chapter 2

Related Works

Over the past several years, there has been a vast amount of research on
using recurrent neural networks to make recommendations across various
domains such as finance, investment, music streaming, e-commerce, etc.
Long short term memory (LSTM) being the most prominent and widely
adopted model thanks to its structure of long-term and short-term cells.
Those two cells captures different information, such as important informa-
tion over longer period of time due to long-term cells and instant infor-
mation thanks to short-term cells. Due to the complexity of data involved
in making recommendations in domains such as e-commerce, finance, or
movies, hybrid models are often used.

2.1 GAT4Rec

He et al. [5], proposed a sequential recommendation model based on a
GRU and Transformer to capture both recent and long-term user interests.
In GAT4Rec, the gated recurrent unit (GRU) models the latest k interactions
to generate category information and uses the learned hidden layer to ex-
press users’ intentions and filters the user’s history before feeding it into
a Transformer, while effective, this method relies on additional metadata
such as item categories and applies GRU early in the sequence to guide
filtering.

In contrast, our approach adopts the reverse order: we first use SASRec to
capture short-term user interest through self-attention, then apply a GRU to
learn long-term patterns from the attention-enhanced representations. This
structure should allow our model to learn richer temporal dependencies
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without needing additional data. Also, our framework is designed for wide
applicability across domains such as movie and e-commerce recommenda-
tion, where auxiliary data may be limited.

2.2 FDG-Trans

Li and Qian [11], proposed a hybrid FDG-Trans model for stock price pre-
diction that combines frequency decomposition, GRU, LSTM, and Trans-
former layers. Their model first applies Complete Ensemble Empirical
Mode Decomposition (CEEMD) to decompose the raw, noisy financial time
series data into trend and mode components, reducing noise and improving
signal clarity. These decomposed series are then passed through LSTM and
GRU layers to capture both temporal dependencies, followed by a Trans-
former to learn patterns over time and figure out which past steps are most
important for the current one. While effective in the financial domain, this
pipeline is adjusted specifically for noisy, high-frequency stock data and re-
quires significant preprocessing.

In contrast, our approach is more lightweight and domain-flexible, de-
signed for movie and e-commerce recommendation tasks. We first apply
SASRec to extract short-term user behavior patterns using self-attention,
then pass the resulting sequence into a GRU to learn longer-term trends.
By reversing the layer order used in FDG-Trans and excluding decompo-
sition, our method aims to capture temporal dynamics in a streamlined
way that should adapt well to diverse datasets without requiring domain-
specific signal processing. That way, our model works better across different
recommendation systems where the data isn’t that noisy, but user behavior
keeps changing.

2.3 GRU-Transformer

Zheng et al. [24], introduced a GRU–Transformer hybrid model aims to pre-
dict soil moisture levels in root zones. Their model uses parallel branches,
where GRU captures long-term sequence information and a Transformer
module handles broader relationships within the input data. This structure
was shown to be effective in capturing moisture dynamics at various soil
depths and across different time frames. However, their approach is suited
specifically to environmental data, especially in the agricultural domain,
and relies on a parallel processing design.
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In contrast, our GSRec model rather than processing GRU and Transformer
outputs in parallel, uses a sequential pipeline: SASRec is applied first
to capture short-term user patterns using self-attention, followed by GRU
to model longer-term dependencies from the attention-refined sequences.
This ordering is better suited for user-item interactions, where the imme-
diate past strongly influences short-term preferences, and long-term trends
evolve more gradually.



Chapter 3

Method

3.1 Neural network

In this section, we will discuss different neural networks that we considered
while deciding on which neural network to use for this project.

3.1.1 Vanilla RNN

First, we looked into the most basic Vanilla Recurrent Neural Network.
Vanilla RNN is the foundational architecture for processing sequential data.
It is also known as Elman RNN, thanks to Jeff Elman, who introduced it
back in 1990 [16] is used in natural language processing, speech recognition,
and other sequence modeling tasks. Due to the loop architecture of Vanilla
RNN, information can persist over time periods, which enables the neural
network to capture temporal dependencies in a sequence. Mathematical
representations of Vanilla RNN is [13] [7]:

ht = tanh(Wxh · xt + Whh · ht−1 + bh)

where:

• xt: input vector at time step t

• ht: the new hidden state, which serves two roles:

– The output of this time step

– The input to the next RNN cell in the sequence

• ht−1: hidden state from the previous time step

• Wxh, Whh: weight matrices

6
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• bh: bias term

• tanh is an activation function (hyperbolic tangent) which quashes the
input to a range between -1 and 1. Formula is:

tanh(x) =
ex − e−x

ex + e−x

where:

– x: Input value

– e: Euler’s number

Figure 3.1 represents one cell of RNN with a representation of how RNN
works. Wt serves at the same time as output of the current cell as well as
input for the next cell.

Figure 3.1: Representation of RNN cell [1]

Vanilla RNN is simple and easy to understand. It works well for short se-
quences, and since it processes one element at a time it can handle different
length inputs. Naturally, since Vanilla RNN is the most basic type of RNN,
it has major critical limitations [16].

One of the main issues is the vanishing gradient problem. During training,
backpropagation through time is used to update weights. This involves
applying the chain rule, which multiplies many derivatives together across
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time. Since derivatives of activation functions such as tanh are always <= 1,
gradient can decrease exponentially. If the gradient shrinks to 0, as a result,
weights will stop updating, and the model won’t be able to learn patterns
from earlier in the sequence. Sometimes, gradients can grow excessively
large during training. This happens when, during backpropagation through
time, the chain rule causes the model to multiply several derivatives greater
than 1. As a result, the gradient values increase exponentially, especially in
long sequences. The problem arises from the weight matrices — especially
the recurrent weight matrix Whh. This happens if the weights in Whh are
large or they were badly initialized. As a result this often leads to numerical
overflow [2] [15].

3.1.2 Long Short-Term Memory

The second neural network we considered is Long Short-Term Memory
(LSTM). LSTM is a more advanced type of Recurrent Neural Network (RNN)
introduced by Hochreiter and Schmidhuber in 1997 [6]. LSTM like vanilla
RNN, is used for natural language processing, speech recognition, and
other sequence modeling tasks. Like Vanilla RNNs, LSTM processes se-
quences of data one element at a time, maintaining a hidden state through-
out the input sequence, constantly updating it with new relevant informa-
tion while discarding information which is less important at each time step.
However, LSTM has a more complex architecture, which is specifically de-
signed to address the vanishing gradient problem[7].

LSTM uses a cell state in addition to a hidden state, and introduces three
gates: input, forget, and output, that control the flow of information through
the network. Figure 3.2 displays an architectural representation of LSTM.

Forget gate - The forget gate decides what information from the pre-
vious memory (Ct−1) should be discarded. This is important because
not all past information is relevant. The gate takes the current input
xt and the previous hidden state ht−1, and outputs values between 0
and 1. A value that is close to 1 means keep this, while a value that
is close to 0 means forget this. This gate ensures that the LSTM can
discard outdated or irrelevant information[8]. The formula for forget
gate is [15]:

ft = σ(W f · [ht−1, xt] + b f )
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Figure 3.2: Representation of LSTM architecture [1]

where:

– ft represents forget gate vector at time step t

– σ represents sigmoid activation function

– W f represents weight matrix for the forget gate

– [ht−1, xt] is concatenation of the previous hidden state ht−1 and
current input xt.

– b f represents bias vector for the forget gate

Input gate - The input gate decides what new information should
be added to the cell’s memory. It works together with the candidate
cell state, which calculates a potential update using a tanh activation.
The input gate decides how much of this information should actually
be added. This is what lets the LSTM learn new information while
still remembering previous relevant information. This gives the model
flexibility to update its memory without overwriting everything[8].
Formula for input gate is [15]:

it = σ(Wi · [ht−1, xt] + bi)

C̃t = tanh(WC · [ht−1, xt] + bC)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t
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where:

– it: represents input gate activation (decides how much new infor-
mation to let into the memory)

– C̃t: represents new candidate values (proposed content to be added
to memory)

– σ: represents sigmoid activation function used for gating

– tanh: represents hyperbolic tangent activation function

– Wi, WC: Weight matrices for the input gate and candidate cell
state.

– bi, bC: represents bias vectors for the input gate and candidate cell
state

– Ct: updated cell state which, combines what to forget ( ft ⊙ Ct−1)
and what new info to add (it ⊙ C̃t)

Output gate - The output gate decides what part of the updated cell
state (Ct) should be shown as the hidden state (ht) for the current step.
This is the part that gets passed on to the next LSTM cell and poten-
tially used to make predictions. The gate applies a sigmoid activation
to the current input and previous hidden state to calculate the output
gate vector, whose values are in a range between 0 to 1. If value is
closer to 1 it will allow information to pass through, while values near
0 will mostly not be passed through. The gate vector (ot) is multiplied
element-wise with the tanh activated cell state (tanh(Ct)), producing
the new hidden state (ht). This helps the model express useful in-
formation at each time step without dumping the entire memory[8].
Formula for the output gate is [15]:

ot = σ(Wo · [ht−1, xt] + bo)

ht = ot ⊙ tanh(Ct)

where:

– ot: represents output gate activation

– σ: represents sigmoid function

– Wo: represents weight matrix that transforms the input and pre-
vious hidden state for the output gate.

– [ht−1, xt]: represents a concatenated vector combining previous
hidden state and current input.
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– bo: Bias term added to the gate computation to help adjust learn-
ing.

– ht: represents final hidden state

– tanh(Ct): reduce the updated memory to a range between −1 and
1 before output.

LSTM reduces the vanishing gradient problem due to cell state. Cell state
(Ct), is designed to flow mostly unchanged across time steps; it avoids re-
peated nonlinear squashing like tanh/sigmoid at every step (unlike hidden
states in vanilla RNNs). LSTM, as the name suggests, remembers long-
term dependencies better due to cell state (Ct) and forget, input, and output
gates. LSTM is also more robust for longer sequences or complex depen-
dencies since it selectively update memory rather than overwrites it through
an input (update) gate [20] [8].

3.1.3 Gated recurrent unit

Gated Recurrent Unit (GRU) is a type of Recurrent Neural Network intro-
duced by Cho et al. in 2014 [3]. It was designed as a simpler alternative to
LSTM while still solving the vanishing gradient problem that affects vanilla
RNNs. GRU has simpler architecture because it merges the input and forget
gates into a single update gate, and it removes the separate cell state used
in LSTM. GRU like LSTM is also well suited for sequence data[19]. Figure
3.3 represents GRU architecture.

As mentioned before GRU has two main gates:

Reset gate - The reset gate in a GRU controls how much of the previous
hidden state ht−1 should be forgotten before creating the candidate hidden
state h̃t. When the reset gate is close to 0, it means that the model will
ignore past information and focus mostly on the current input. This is es-
pecially useful when the network needs to reset its memory and focus on a
sudden change in the sequence. While, if the gate is close to 1, it allows the
full influence of the past state. The reset gate allows the GRU to be more
flexible in deciding when to leave out old information[19]. Formula for the
reset gate is [15]:

rt = σ(Wr · [ht−1, xt] + br)
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Figure 3.3: Representation of GRU architecture [1]

where:

rt: represents reset gate values

σ: represents sigmoid activation function

Wr: represents reset gate weight matrix

[ht−1, xt]: represents concatenation of the previous hidden state and
current input.

br: represents bias term for the reset gate.

Update gate - The update gate calculates how much of the previous hidden
state should be carried forward into the current step. If the update gate zt
is close to 1, most of the previous state is kept, and little new information
is added. If it’s close to 0, the model overwrites the memory with the new
candidate hidden state h̃t. This gate helps the GRU decide how much to
"remember" and how much to "update" at each time step[19]. It serves a
similar purpose to the combined forget and input gates in LSTM.

zt = σ(Wz · [ht−1, xt] + bz)
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where:

zt: represents update gate values

Wz: represents update gate weight matrix

[ht−1, xt]: represents concatenation of the previous hidden state and
current input.

bz: represents bias term for the update gate.

Candidate hidden state (h̃t) is the new potential content to add and is cal-
culated using formula:

h̃t = tanh(Wh · [rt ⊙ ht−1, xt] + bh)

where:

- h̃t: represents candidate hidden state at time step t

- tanh: represents activation function

- Wh: represents weight matrix for generating the candidate hidden
state

- rt ⊙ ht−1: represents element-wise multiplication.

- xt: represents input at the current time step

- bh: represents bias term for the candidate hidden state

Final hidden state (ht)blends the previous hidden state and the candidate
state using the update gate. Formula for final hidden state is:

ht = (1 − zt)⊙ h̃t + zt ⊙ ht−1

where:

- ht: represents final hidden state

- (1 − zt): represents inverse of the update gate

- h̃t: represents candidate hidden state

- zt: represents update gate

- ht−1: represents hidden state from the previous time step.
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GRU as LSTM reduce the vanishing gradient problem due to the gate mech-
anisam (update and reset gate). Due to simpler architecture, GRU is trained
faster, also less memory and computational power are needed. GRU, since
it doesn’t have a cell state like LSTM, offers less memory control [19] [18].

Selected neural network

To better understand how those three neural network process data we cre-
ated a toy example in Table 3.1 where input is altering between 0s and 1s.
In the table, it’s visible that Vanilla RNN at the third timestamp decreases,
which indicates that Vanilla RNN is not good for longer sequences and does
not retain memory as good as LSTM and GRU, which are similar, with a
small difference in favour of LSTM.

Time Step Input Vanilla RNN Output LSTM Output GRU Output
1 0 0.1 0.1 0.1
2 1 0.5 0.6 0.6
3 0 0.3 0.5 0.4
4 0 0.2 0.4 0.3
5 1 0.4 0.8 0.7

Table 3.1: Example of outputs of different RNN architectures at each time step

After comparison of Vanilla RNN, LSTM, and GRU, we decided to use GRU
in this project because of its simplicity, efficiency, and strong performance
on sequential recommendation tasks. Vanilla RNN was not a workable
choice because it suffers heavily from the vanishing gradient problem and
lacks gating mechanisms to manage memory over time, which is a problem
we aim to solve in this project. LSTM solves this issue with gated archi-
tecture, including a separate memory cell. However, because of LSTM’s
complex architecture it has higher computational cost and longer training
times. GRU, on the other hand, offers similar performance to LSTM while
being faster and more lightweight. It uses fewer gates, trains more effi-
ciently, and still has the ability to model long-term dependencies.

3.2 Transformers

In this section, we will discuss BERT4Rec and SASRec transformers. We will
dive into their architecture, which tasks they solve, and what are advantages
and disadvantages of both of those transformers, and make a conclusion on
which we picked and why.
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3.2.1 BERT4Rec

BERT4Rec is a Transformer-based model for sequential recommendation. It
is based on the BERT model originally used in natural language processing,
but it has been adapted for recommendation tasks by teaching it to pre-
dict masked items in a user’s interaction history. Masked items are items
which are randomly hidden (replaced with [MASK] token) in the sequence.
During training the model tries to predict those masked items based on the
surrounding context. For example, given sequence [x1, x2, x3, x4], the model
might mask x3 and be asked to predict it using the rest of the sequence. This
approach helps the model learn contextual dependencies between items, no
matter of their position. Unlike autoregressive models, which predict next
value in a sequence based only on previous values, BERT4Rec uses bidirec-
tional self-attention to model both past and future user behavior, giving it
a more complete view of the sequence [21].

Mathematical Formulation:

The input to BERT4Rec is a sequence of user-item interactions such as:

X = [x1, x2, . . . , xT]

where xt denotes the item user interacted with at position t, and fixed
percentage of those positions are randomly masked during training. The
[MASK] token is predefined and assigned a unique ID in the vocabulary.
Sequence with masked items looks like:

X̃ = [x1, [MASK], x3, . . . , xT]

This masked sequence X̃ is passed through a stack of L Transformer en-
coder layers, where each of these layers is composed of multi-head self-
attention and a feed-forward sublayer. For each layer l and position t, the
hidden representation is computed as:

H(l)
t = LayerNorm(H(l−1)

t + MultiHead(H(l−1)))

H(l)
t = LayerNorm(H(l)

t + FFN(H(l)
t ))

Where:

- H(l)
t : represent hidden representation of item xt at layer l

- MultiHead: represents multi-head self-attention function
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- FFN: represent position-wise feed-forward network

- LayerNorm: represents layer normalization

BERT4Rec tackles some big challenges in sequential recommendation by
using bidirectional self-attention and predicting masked items in a user’s
interaction history. Transformer encoder within BERT4Rec captures depen-
dencies across the whole sequence, which helps it to learn from past and
future interactions. The masking mechanism trains the model to guess
missing items based on surrounding context. Because BERT4Rec doesn’t
rely strictly on item order, it performs nicely even when user history is par-
tially missing. However, BERT4Rec has several limitations. It is not good
for real-time recommendation systems, as it relies on future context, which
isn’t available in live scenarios. Also, the Transformer encoder is compu-
tationally expensive, specifically when processing long sequences, making
training heavy. BERT4Rec requires careful tuning, including the masking
strategy and hyperparameter selection [21], [14], [17].

3.2.2 SASRec

SASRec (Self-Attentive Sequential Recommendation) is a unidirectional Trans-
former based model which is particularly developed for sequential recom-
mendation. It replaces traditional recurrent architectures like one in RNNs
and GRUs with self-attention which allows it better parallelization and effi-
cient modeling of both short and long range dependencies in user behavior.
Compared to BERT4Rec, SASRec uses causal masking, which limits each
item to attend only to past items which makes it suitable for realtime rec-
ommendation systems [9].

Mathematical Formulation: Let M ∈ RN×d be the item embedding ma-
trix, where N is the total number of items and d is the embedding dimen-
sion (size of vector which is used to represent each item). Given a fixed
padded sequence s = [s1, s2, . . . , sn], we retrieve the input embedding ma-
trix E ∈ Rn×d1 where Ei = Msi .

Since self-attention model doesn’t use any recurrent or convolutional model,
positions of previous items are not known to model. To keep order of items
in the matrix, positional embeddings P ∈ Rn×d are added to item vectors
using formula:

1n is maximum sequence length
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Ê =


Ms1 + P1

Ms2 + P2
...

Msn + Pn


where Ê are item embeddings and P are positional encodings.

To demonstrate this lets assume:

- Item vocabulary size N = 5 where items are: [A, B, C, D, E]

- Embedding dimension d = 3

- Input sequence: [B, D, A] which would have ID [1,3,0] and this is
important since model can’t process raw "A", "B", etc. inputs, instead
it needs integer values which are IDs, to look up corresponding vectors
in the embedding matrix.

- Max sequence length n = 3

Table 3.2: Vocabulary items and their corresponding embedded vector

Item Embedding (size 3)
A [0.1, 0.3, 0.5]
B [0.2, 0.4, 0.6]
C [0.5, 0.5, 0.5]
D [0.3, 0.7, 0.2]
E [0.9, 0.1, 0.2]

Embedded items [A, B, C, D, E,] are shown in Figure 3.2. Embedding of
input sequence [B, D, A] is:

M =

0.2 0.4 0.6
0.3 0.7 0.2
0.1 0.3 0.5


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Next thing needed for calculation is positional embedding matrix P. In SAS-
Rec, positional embeddings are learnable parameters, not fixed encodings.
As Kang and McAuley explained in the original SASRec paper [9], using
fixed positional encodings resulted in worse performance in their case.

Since max sequence length T = 3 and embedding dimension d = 3, then
P ∈ R3×3, it would look like:

Table 3.3: Example positional embedding matrix

Position Positional Encoding
1 [0.01, 0.02, 0.03]

2 [0.04, 0.05, 0.06]

3 [0.07, 0.08, 0.09]

P =

0.01 0.02 0.03
0.04 0.05 0.06
0.07 0.08 0.09


Now since we have E matrix and positional embedding matrix P it can be
calculated Ê = M + P and it would look like:

Ê =

0.21 0.42 0.63
0.34 0.75 0.26
0.17 0.38 0.59



Each Transformer encoder layer within SASRec has two parts: self-attention
layer and feed-forward layer. The input to the self-attention mechanism is
the position-aware item embedding matrix Ê ∈ Rn×d, where Êi = Msi + Pi.
Queries, Keys, and Values are computed as linear projections of Ê:

Q = ÊWQ, K = ÊWK, V = ÊWV

where WQ, WK, WV ∈ Rd×d are learned weight matrices. In l-th Trans-
former encoder layer self-attention output is calculated using formula:

Attention(Q, K, V) = softmax
(

QKT
√

d
+ M

)
V
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where:

- Q: Query vectors

- K: Key vectors

- V: Value vectors

- d: Dimensionality of vectors which is used for scaling so there wouldn’t
be any large value which would influence softmax

- M: represents causal mask matrix to ensure that model only attends to
previous items where:

Mi,j =

{
0 if j ≤ i
−∞ if j > i

A feed forward layer has a purpose of looking at items one by one for
further processing and transformation of its information. The feed-forward
network (FFN) in SASRec is a small neural network applied independently
to each item within the sequence. It transforms the output of the self-
attention layer to better model relationships between item features which as
a result helps the model learn more complex patterns in data. To calculate
FFN this formula is used:

FFN(Si) = ReLU(SiW(1) + b(1))W(2) + b(2)

where:

- W(1), W(2) are d x d matrices

- b(1), b(2) are dimensional vectors

- Si is output of the self-attention layer at position i (Si = Attention(Q, K, V)i)
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Example: How FFN Works

Let the self-attention output be: Si =
[
0.6 −0.2

]
Let first layer weights (W(1) ) and bias (b(1)) be:

W(1) =

[
1 −1

0.5 2

]
, b(1) =

[
0.1 0.1

]

Now it can be calculated first part of the formula (SiW(1) + b(1)), and that
would be:

SiW(1) + b(1) =
[
0.6 −0.2

] [ 1 −1
0.5 2

]
+

[
0.1 0.1

]
=

[
0.6 − 0.1 −0.6 − 0.4

]
+

[
0.1 0.1

]
=

[
0.6 −0.9

]

After the first layer output is calculated now we need to use Rectified Linear
Unit (ReLU) formula which is ReLU(x) = max(0, x). Using ReLU formula,
we get:

ReLU(
[
0.6 −0.9

]
) =

[
0.6 0

]

Let second layer weights (W(2) ) and bias (b(2)) be:

W(2) =

[
1 2
−1 0.5

]
, b(2) =

[
0.0 0.2

]

Now second layer output can be calculated:[
0.6 0

] [ 1 2
−1 0.5

]
+

[
0.0 0.2

]
=

[
0.6 1.2

]
+

[
0.0 0.2

]
=

[
0.6 1.4

]

Final output of the feed-forward network (FFN) is:

FFN(Si) =
[
0.6 1.4

]
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After the self-attention and FFN layers process the input sequence, the
model ends up with a final representation for each time step, which is new
vector for every position in the sequence. The prediction score for each
position i and target item ŷi is:

ŷi = Fi · Mi

where Fi = FFN(Si) is output of feed-forward layer at positon i and Mi
is the embedding of item i, which may be the true next item or a negative
sample.

The model is trained with a binary cross-entropy loss:

L = −∑
t

[
log(σ(ŷi)) + ∑

j∈Nt

log
(
1 − σ(ŷj)

)]

where:- σ() is the sigmoid function

- ŷi is the score for the true item

- ŷj is the score for a negative item j

- Nt is the set of negative items sampled at time t

Cross-entropy calculates how close the model’s predicted probabilities are
to the correct ones. It penalizes confident wrong guesses and rewards con-
fident correct ones. In the case of SASRec, cross-entropy compares the
predicted score of the actual next item (the positive class) to the scores of
randomly selected non-interacted items (the negative class). Through this
process of rewarding and penalizing, cross-entropy guides the model dur-
ing training to learn attention weights and embeddings that help it better
predict the next item in a user’s sequence [4], [12].

SASRec has several advantages that make it suitable for the recommenda-
tion task. Since SASRec removes recurrence, it can process the entire input
sequence in parallel, which makes it efficient in terms of training. Also
causal masking mechanism ensures that each item can only attend to past
interactions, not future ones. SASRec is suitable for real-time recommenda-
tion systems. This may also be viewed as a limitation of the SASRec model,
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but for this project, which proposes a new model for a recommendation
system, it is not a concern. Since SASRec relies on historical data, its effec-
tiveness may be reduced if the data is sparse or limited [9].

Selected transformer

After comparing BERT4Rec and SASRec, we selected SASRec for several
reasons. Although both SASRec and BERT4REc are made for recommenda-
tion tasks, because of difference in masking its noticeable that BERT4Rec is
not suitable for this project since it relies on bidirectional attention. Predic-
tion of masked item within BERT4Rec is appropriate for real time scenarios
which is not case of our project. SASRec uses causal masking, which de-
mands that items only look into history (past interactions) but not in the
future which makes it appropriate for this project. Furthermore, SASRec is
lighter in both model complexity and computational cost than BERT4Rec
due to its unidirectional attention and causal masking.

3.3 Proposed model

The proposed GSRec hybrid model combines a previously selected GRU
neural network and SASRec transformer to learn both short term and long
term user preferences. Figure 3.4 shows a representation of the proposed
model. Input for the model is the user’s historical interaction sequence,
which is fed into the SASRec module. Within SASRec each item is mapped
to a sequence of dense embedding vector, and a positional embedding is
added so the SASRec component can preserve the order of the interactions.
After the item is embedded into a dense vector using a learnable embedding
layer and positional embedding is added input goes through multiple Self-
attention blocks. Those multiple blocks have the task of capturing short-
term dependencies between items. The output of the SASRec component
is a tensor of shape [batch_size, sequence_length, hidden_units], which repre-
sents contextualised embedding for each timestep in the sequence is then
passed to GRU. The reason why we decided to use only the self-attention
layer from SASRec is that feed-forward layer, which comes after the self-
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attention layer, doesn’t retain long-term dependencies as good as GRU, as
a result of the GRU gating mechanism (update and reset gate).

Figure 3.4: Representation of proposed model

One of the potential limitations of our design is that GRU receives only
refined outputs from SASRec, but not raw item embeddings. Since in our
design, SASRec had proposed that the self-attention layer focuses on short-
term patterns, there is a possibility that it will suppress information which
can be valuable for long term preference. This could limit the GRU’s use-
fulness in learning deeper user behavior. However, we choose this pipeline
architecture for its simplicity and computational efficiency.

Output of the self-attention layer is then passed into a GRU for learning
long-term dependencies, as mentioned before. GRU takes contextualized
embeddings from SASRec as input and processes them recurrently. While
doing this GRU updates its internal memory so information across se-
quences are retained. From the GRU output, only the hidden layer at the
last time stamp is selected, since it encapsulates the overall user’s prefer-
ence up to that point. Final hidden representation is then through a fully
connected output layer, represented as a vector of size equal to a total num-
ber of items. This vector contains an unnormalized prediction score (logits)
for all possible next items.
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During training, the GSRec model uses BCEWithLogitsLoss as a loss func-
tion. BCEWithLogitsLoss combines Sigmoid function together with Binary
Cross-Entropy loss into a single formula. It is most often used for binary
classification tasks where each prediction is either 0 or 1. Sigmoid part is
used to transform raw outputs (logits) into probabilities between 0 and 1
where Binary Cross Entropy loss is used to measure how well the predicted
probability matches the true label. The formula for BCEWithLogitsLoss is:

BCEWithLogitsLoss(x, y) = − [y · log (σ(x)) + (1 − y) · log (1 − (σ(x)))]

where:

- x: represents the logit, which is the raw output of your model

- y: represents the target label, either 0 or 1.

- σ(x): represents the sigmoid function applied to the logit to convert it
into a probability

In our architecture, the loss function is applied at the end of the model
pipeline directly after the output layer, and it is used to guide learning by
penalising incorrect predictions.

To demonstrate how BCEWithLogitsLoss works let’s say that the model
predicts x = 2.0. The sigmoid function turns this into:

σ(2.0) =
1

1 + e−2.0 ≈ 0.88

Now, if true label is y = 1, the loss would be:

− [1 · log(0.88) + 0 · log(1 − 0.88)] = − log(0.88) ≈ 0.127

If true label is y = 0, the loss would be:

− [0 · log(0.88) + 1 · log(1 − 0.88)] = − log(0.12) ≈ 2.12
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Setup

In this chapter, we present the setup used to evaluate the performance of
our proposed model. First, we will discuss the datasets used to train and
test our model. Next, we will introduce baseline models, which are used
so we can compare them with our model. We will then elaborate on the
metrics we used to monitor our model’s efficiency together with baseline
models. Lastly, we will briefly describe the hyperparameters we used and
how we selected them.

4.1 Dataset

For this project we used two publicly available datasets. Datasets are Ama-
zon Beauty and MovieLens 1M (ml-1m). We picked those datasets since
they represent two different domains: e-commerce (Amazon Beauty) and
entertainment (MoviLense 1M), so we can test how our model works on
different datasets.

The MovieLens 1M dataset consists of 1 million ratings collected from the
MovieLens website. It is an often used dataset for movie recommendation.
Dataset is consist of:

25
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- Number of users: 6,040

- Number of items: 3,952

- Number of interactions: 1,000,209

- Average 165 interactions per user

The Amazon Beauty dataset is a subset of the larger Amazon product re-
view dataset. It is also one of the common datasets used for recommenda-
tion tasks. Dataset is consist of:

- Number of users: 52,024

- Number of items: 57,289

- Number of interactions: 394,908

- Average of 7.6 interactions per user.

To prepare data for training we filter out users who have less than 3 inter-
actions. We decided to do this because users with very short histories don’t
provide enough sequence data to meaningfully train the model, in this case
the cold start problem can occur. The cold start problem refers to the chal-
lenge of making precise recommendations when there is not enough data
about users or items [23]. For partitioning of data we used Leave-One-
Out (LOO) partitioning. LOO partitioning split user’s interaction sequence
Su = {su

1 , su
2 , . . . , su

|Su|}into three segments: the most recent interaction su
|Su|

is reserved for testing, the second most recent su
|Su|−1 is used for validation,

and the remaining interactions {su
1 , . . . , su

|Su|−2} form the training sequence,
where u refers to a specific user.

4.2 Baseline and hyperparameter values

To verify the effectiveness of our method, we compare it with the following
representative baselines: To measure how good is our proposed model, we
compare it with few different baselines:
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· PopRec - this is a straightforward baseline that ranks items according
to their popularity.

· GRU4Rec - we also want to observe the performance of our model in
comparison with its components.

· SASRec - we are also using this one since it’s a component in our
hybrid model.

· BERT4Rec - we decided to use this transformer to see how our model
performs compared to bidirectional transformer

4.3 Hyperparameters

For optimal performance of our GSRec model on datasets with different
sparsity characteristics (number of users, items, and interactions), we tuned
hyperparameters separately for both the Beauty and ML-1M datasets.

For the Beauty dataset, we set a batch size of 512 to stabilize gradient up-
dates. In sparse dataset, small batch sizes can have many interactions with
almost no data, so increasing batch size will have as a result that more data
points are going to be included, and noise in gradient estimates will be
somewhat smoothed out. Also, we set the learning rate to 0.0003, to allow
more gradual updates and in that way prevent overfitting. The sequence
length (maxlen) was set to 150, since this is a sparse dataset and it wasn’t
expected that user sequences were going to be long. Also, to reduce mem-
ory in case the user has less interaction than maxlen is set, padding will
be added so sequence reach the size of maxlen. This padding will also be
included when generating the attention matrix, so to reduce memory us-
age, we set maxlen to be 150. The dropout rate of 0.2 and L2 regularization
(l2_emb) of 0.02 help control overfitting, which is crucial in sparse environ-
ments.

For ML-1M, we set batch size to 128. Smaller batches can introduce useful
noise in denser datasets, since updates are gonna occur more often, and
parameters are going to be updated more often than in the Beauty dataset,
which will lead to faster learning. We increased the learning rate slightly
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to 0.0005. A longer sequence length of 300 was chosen since the number
of interactions increases here, and it is expected that each user have more
interactions than in the Beauty dataset. The model size was also scaled up,
with 500 hidden units to accommodate the increased data complexity.

4.4 Evaluation metrics

To evaluate our model, we used a couple metrics. Firstly we used two com-
mon Top-N metrics, NDCG@k and HitRate@k. HitRate@k measures the
percentage of users whose ground truth item appears in the top k recom-
mended items. Formula for HitRate@k is:

HitRate@K =
1
|U| ∑

u∈U
I (i∗u ∈ Top-K(u))

where:

- U is the set of users

- i∗u is the ground-truth item for user u

- Top-K(u) is the top K recommended items for user u

- I(·) is the indicator function (if true then 1, otherwise 0)

Since we have only 1 test item for each user, then HitRate@k is equivalent to
Recall@k, so that reason we didn’t think to include Recall@k as evaluation
metrics.

Normalized Discounted Cumulative Gain (NDCG) is a ranking quality met-
ric. It measures the quality of a ranked list, how well are the top-K recom-
mended items compared to the ideal order.

Besides those two metrics, we also used Mean Reciprocal Rank . Mean Re-
ciprocal Rank (MRR@k) measures how early the first relevant item appears
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in the ranked list of top-k recommendations. Higher results tell that the
relevant item appeared higher in the ranking list. Unlike NDCG, which ac-
counts for multiple relevant items and their positions, RNN only takes the
first relevant item into account. Formula for MRR is:

MRR@K =
1
|U|

|U|

∑
s=1

1
rankK

u

where:

- |U| represents a total number of sequences

- rankK
u represents the rank position of the ground-truth item for se-

quence u within the top-K recommended items.
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Experiments

In this chapter, we will provide results for our proposed model and com-
pare it with different baselines described in section 4.2. The goal is to
validate whether combining SASRec and GRU into a pipeline architecture
results in better performance on sequential recommendation tasks accross
different datasets. Results of experiments are displayed in Table 5.1. The
primary objective of our experiments is to evaluate our proposed GSRec
model in terms of capturing both short-term and long-term user prefer-
ences. With those experiments, we aim to answer the following questions:

1. Does GSRec outperform state-of-the-art models?

2. How does it compare to its components (SASRec and GRU4Rec)?

3. How well does GSRec perform on datasets with different characteris-
tics?

1. Does GSRec outperform state-of-the-art models?

In this experiment, we compare the performance of POP, BERT4Rec, and
our proposed GSRec model. We exclude SASRec and GRU4Rec from this
comparison, as their performance is discussed in detail in the following ex-
periment.
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Table 5.1: Performance Comparison of Baseline Models and the Proposed Hybrid Model on Beauty
and ML-1M Datasets

Datasets Metric POP GRU4Rec SASRec BERT4Rec GSRec

Beauty

HR@10 0.0823 0.2133 0.2450 0.2715 0.2357
NDCG@5 0.0351 0.0725 0.1323 0.1387 0.1296
NDCG@10 0.0442 0.1035 0.1517 0.1773 0.1349
MRR 0.0347 0.0997 0.1488 0.1529 0.1348

ML-1m

HR@10 0.1283 0.5407 0.6429 0.6385 0.4212
NDCG@5 0.0324 0.3058 0.4011 0.4162 0.2633
NDCG@10 0.0588 0.3404 0.4392 0.4611 0.2841
MRR 0.0459 0.2902 0.3543 0.3943 0.2209

When looking at Table 5.1, it is evident that GSRec consistently outperforms
the POP baseline on both datasets, thanks to its more complex architec-
ture and ability to capture short and long-term dependencies. However,
BERT4Rec achieves the best performance overall. On the Beauty dataset,
NDCG@10 value for GSRec is 0.1349, while BERT4Rec value is 0.1773, a
small difference of around 4.2 percentage points. While on ML-1M dataset,
GSRec’s HR@10 value is 0.4212, which is much lower compared to BERT4Rec’s
value, which is 0.6385.

Even though GSRec theoretically benefits from combining SASRec (for short-
term interest) and GRU (for long-term behavior), our design might intro-
duce redundancy. Since SASRec already captures short-term dependencies
through self-attention, passing its output to a GRU may have the conse-
quence of reprocessing the same information without adding any value.
In some cases, GRU could even blur the high-resolution patterns SASRec
identifies, leading to a loss of predictive precision.

2. How does it compare to its components (SASRec and GRU4Rec)?

In this experiment, we compare the performance of GSRec with SASRec and
GRU4Rec to see if our proposed model predicts better than its components.
As shown in Table 5.1, GSRec outperforms GRU4Rec on the Beauty dataset
across all four metrics. For example, on Beauty:
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- HR@10: GSRec = 0.2357 vs. GRU4Rec = 0.2133

- NDCG@10: GSRec = 0.1349 vs. GRU4Rec = 0.1035

- MRR: GSRec = 0.1348 vs. GRU4Rec = 0.0997

This suggests that combining GRU with SASRec provides an improvement
over using GRU alone, especially in sparse environments like Beauty.

But SASRec still outperforms GSRec in all four metrics. For example, in
HR@10 SASRec value is 0.2450 compared to GSRec’s 0.1991. While the
difference isn’t so big, it shows that adding GRU on top SASRec may not
improve its strengths and could even make SASRec worse.

On the ML-1M dataset, both GRU4Rec and SASRec outperform GSRec.
SASRec achieves the highest overall performance. When looking HR@10
SASRec values is 0.6429 while GSRec value is 0.4212. This suggests that
the GRU component within GSRec does not effectively capture long-term
dependencies on datasets that are more dense.

3. How well does GSRec perform on datasets with different characteris-
tics?

We chose this experiment to see how our model performs on sparse (Beauty)
and denser (ML-1m) datasets. Even though we tackled this experiment in
the previous two experiments we want to elaborate on it more.

From the results in Table 5.1 its obvious that our model performs better on
dense ML-1m dataset compared to sparse Beauty dataset. When looking
sparse dataset its visible that our model outperformed GRU4Rec, which is
its component. This indicates that through Self-Attention layer from SAS-
Rec, our model learns better than GRU4Rec does by itself. But, on the dense
ML-1M dataset, GSRec does not perform as expected. Its Hit Rate@10 is
only 42.12%, which is quite lower than for SASRec’s 64.29% and GRU’s
54.07%. This suggests that passing the output of SASRec into the GRU may
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reduce the performance rather than improve it. One possible explanation is
that in dense datasets such as ML-1m, recent user actions are highly predic-
tive, and SASRec already models them effectively through the self-attention
layer. When these embeddings are passed into a GRU, the GRU may repro-
cess them, which can result in worse signals. Also, the GRU’s sequential
processing may introduce noise or overwrite the weights which are already
been learned by the attention mechanism within SASRec. In this case, the
GRU does not add new information and instead acts as a bottleneck, de-
grading the overall performance of the model.



Chapter 6

Future Work

For future work, there are multiple things that we can try and explore to
attempt to make our model better. Firstly, we can enhance the SASRec part
of our GSRec model with Feed-Forward Layer, which we excluded in our
arhitecture. Our model doesn’t include FFL, but there is a possibility that
this would enhance the performance of our model since FFL add non lin-
earity after the attention layer. This nonlinearity would help with learning,
since linear functions can’t model complex patterns [10].

Another possible improvement that we can try is stacking multiple GRUs
to create multi-layered GRU. This seem as an promising way also, since
multiple GRUs can lead to better results, and the GSRec model will in that
way be able to learn richer patterns in user history.

Eventhough GSRec was evaluated on Beauty and ML-1M, future experi-
ments could include denser datasets with more complex user behavior pat-
terns, such as: Netflix dataset.
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Conclusion
In this thesis, we proposed a new hybrid sequential recommendation model
named GSRec which combines the SASRec and GRU in a sequential pipeline
architecture. Our goal for this thesis was to create model which can effi-
ciently capture both short-term and long-term user preferences with a fairly
simple but efficient architecture.

Through experiments on two datasets, Amazon Beauty and MovieLens 1M
we showed that our GSRec model performs competitively with state-of-the-
art models in sparse dataset. Even though it does not outperform BERT4Rec
in denser dataset, it shows competitive performance in comparison with
state-of-the-art models on sparse dataset.

GSRec shows a promising approach for hybrid model architecture in se-
quential recommendation, particularly in its attempt to combine the strengths
of self-attention and recurrent networks. While it does not surpass simpler
models like SASRec in performance or complexity, the design emphasises
the possible advantages of integrating various modeling strategies.

Future work may explore possible improvements such as including multi-
layer GRUs or integrating feed-forward layers, also applying the model
to more diverse datasets could improve how our proposed GSRec model
works across different domains.
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