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Abstract
This study explored the use of an electromyography (EMG) based
machine learning model to classify hand gestures in a spatial virtual
reality (VR) environment. A total of 18 participants participated
in the evaluation. The EMG signals were recorded from the fore-
arm of each participant, and they were used to train intra-subject
classification models to predict the movement of a hand prosthetic.
The results showed a significant gap between the offline and online
performance of the trained model, with macro F1 scores averag-
ing 0.86, while a notable average performance drop was observed
during the online tests, where the macro F1 score fell to 0.52. Indi-
vidual participants achieved more satisfactory scores, suggesting
the presence of individual differences that may be influenced by
various contributing factors. The results show promising steps to-
wards training and testing a machine learning algorithm to control
a hand model with EMG signals in VR. With further development,
this approach has the potential to support amputees in training a
prosthetic hand within a spatial VR environment prior to receiving
the physical device.
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1 Background
Human hands play a crucial role in everyday activities, and the
sudden loss of them can be deeply traumatic and leave a person
with disabilities that greatly impact a person’s quality of life [6].
Amputee Coalition of America estimates that over 5.6 million peo-
ple live with limb loss or difference of limbs in the US alone. Upper
limp amputations only make up 17% of all amputations [3], with the
average amputee in America being a 35-year-old male, according
to Stearns et al [31]. Prostheses have been used for a long time,
but there is still much to be desired regarding functionality and
comfort. Issues such as: users being just as or more functional with-
out it, difficult controls or discomfort such as increased weight or
temperature can lead to abandonment of the prosthetic [4].
Fortunately, people suffering from upper-limb amputations can
utilize myoelectric prosthetics, which pick up signals from remain-
ing stump muscles to substitute for the original limb functions.
However, the variation in the size of the residual stump, mobil-
ity, and muscle contraction, make it difficult to find one solution
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tailored to all amputees [24]. Most commercially available pros-
thetic systems utilize low degrees of freedom (DOF), such as single
DOF grippers, which are typically controlled using either binary
(on/off) or continuous (proportional) signals, depending on the
system. More advanced prostheses apply more DOFs and allow for
more complex hand gestures such as pinches, grasps and individual
finger movements, through the use of machine learning (ML) which
can be trained to recognize a broader range of patterns (Pattern
recognition(PR)) from electromyographic (EMG) signals [6]. ML
algorithms can suffer in some areas such as a lack of robustness,
therefore a certain amount of training by both the user and ML al-
gorithm is required. The user has to get familiar with the prosthetic
to generate the most distinct EMG patterns for each posture. The
idea is that each movement produces a unique signal which the
ML model can classify and differentiate between [18]. Woodward
and Hargrove outlined two data collection methods: passive and
active. In the passive method, the subject maintains a fixed arm
position, with the elbow at a 90° angle and the upper arm parallel to
the body. In contrast, the active method allows the subject to move
their arm freely within the workspace during each movement, with
an emphasis on elbow flexion and extension [33]. Generally, PR
systems collect data passively. This passive data collection results in
high classification rates for amputees in controlled lab conditions,
but does not always translate well to real-life scenarios, where the
arm is typically moving while performing gestures[33]. To account
for this, active data collection can be used, studies have found that
classification is strongly dependent on arm position [12, 14, 30].
The structure of the data collection seems to vary with each study,
however, some patterns can be found. A window for when the ges-
ture is supposed to be performed was found in previous research;
from what we gathered, this can range from 2.5 seconds [33] to
5 seconds [6, 18]. Some specify a "relax" state where the user is
not performing a specified gesture or moving to/from the gesture
area. For example, a relaxed state may involve resting the arm on a
chair’s armrest [18].
Some of the most common gestures trained for prediction are flex-
ion, extension, supination, and pronation of the wrist, fists, grasp
of an object, and different pinches [6, 18, 23, 33, 34]. Models used in
the field of predicting gestures based on EMG signals include neural
networks [2, 8, 13, 18, 23, 32, 34], support vector machines [5, 8, 9],
linear discriminant analysis (classification method) [6, 33], and
linear regression [15, 22]. Depending on the task, for continuous
control (e.g., measuring the movement along with the gesture and
stopping in the middle of it to do something else), regression mod-
els are used [22], and for discrete movements e.g. open/close hand,
classification models are used [5].
A range of different approaches have been used to predict the move-
ment of a hand prosthetic based on the EMG signals from the resid-
ual muscles. Research has been made on intra-subject classification,
where the algorithm is trained and tested on each subject [17, 23],
and on cross-subject classification, where the algorithm is trained
on one group of individuals and tested on a different group [9].
Accotli et al. compared both intra-subject and cross-subject classifi-
cation, where the performed gestures were two wrist movements
(flexion/extension), two wrist rotations (pronation/supination), and
four hand grasps (lateral, power, bi-digital, and open), resulting in
8 total, with their arm fixed on a table. The results were more satis-
factory with intra-subject classification, with a median accuracy of
up to 89% for amputees, while the cross-subject median accuracy

was only up to 35%. Both intra-subject and cross-subject models
performed better on non-amputees [9]. This highlights the impor-
tance of calibration to account for individual differences, as done
by e.g., Gandolla et al. [13]. According to the co-supervisor from
the Health, Science and Technology Institute, it is not uncommon
that an amputee will have to recalibrate their prosthetic every day
when donning it [10].
In the context of EMG pattern, it can be divided into two kinds,
steady-state (continuous muscular contractions) and transient EMG
(EMG associated with the onset of the muscle contraction) [9]. Hud-
gins et al. discovered that the transient EMG is more descriptive of
an intended movement than the steady-state EMG is [16]. A newer
study by D’Accolti et al. proposed a pattern recognition controller
based on the transient EMG signal, and achieved results comparable
to state-of-the-art steady state EMG controllers [9]. This suggests
that the transient phase of the EMG signal contains valuable in-
formation for training a model to recognize hand gestures. Both
steady-state and transient EMG can be used to provide insight.
The success of the classification system largely depends on the
choice of representation of the continuous EMG signal. Trying to
predict solely based on the raw EMG signal will not give good re-
sults for control purposes[16]. Time domain features (derived from
the raw signal over time) are often quick to implement because
they are calculated directly from the raw EMG signal [25]. This
type of feature is well-suited for myoelectric-controlled devices,
as it supports fast calculation and prediction, helping to minimize
delay perceived by the end user. A disadvantage of time domain
features is that they assume the EMG signal is stationary. However,
EMG signals are usually non-stationary, meaning that features can
vary a lot during different actions [25].
Providing visual feedback in Virtual Reality (VR) reduces the men-
tal effort required by amputees during the training stage of using a
hand prosthesis, making it easier for them to adapt, control it reli-
ably, and become accustomed to the device. Therefore, the virtual
environment can help a patient adapt to a myoelectric prosthe-
sis [23]. VR provides benefits in terms of embodiment and visual-
ization, along with the ability to train the use of a prosthesis before
receiving it. Specifically, virtual hand representations can enhance
embodiment by inducing phantom sensations in the amputees’
missing limb during VR training. When the virtual limb moves, it
can increase the feeling of prosthesis ownership and make it more
likely for the amputee to continue usage of the prosthesis [27].
Training and rehabilitation activities that are engaging, such as VR,
can be more effective compared to conventional rehabilitation. If
the activity is enjoyable, it can enhance long-term use as well [11].
Additionally, more and repeated training further promotes neuro-
plasticity [13].
While virtual-reality training offers clear benefits, e.g, increasing
embodiment, reducing cognitive load, promoting repeatable and
engaging rehabilitation sessions, successful gesture recognition
still hinges on the underlying signal fidelity. EMG recordings are
inherently sensitive to a multitude of factors, e.g., muscle mass,
fatigue, placement and pressure of electrodes, perspiration, and
arm posture [19, 20, 26].
In this report, we focus on classifying EMG signals from hand ges-
tures performed in different arm positions. This serves as a step
toward enabling amputee patients to train myoelectric control of a
prosthetic hand before receiving the physical device. To promote a
sense of embodiment during training, the study is conducted in a
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virtual reality (VR) environment. This setup is intended to better
simulate naturalistic scenarios involving active arm movement, in
contrast to strictly controlled laboratory conditions where the arm
remains stationary.
In the broader context, the aim is to better prepare users for real-
world prosthetic use and decrease the risk of abandoning the pros-
thetic.

2 Implementation
The VR environment was made in Unity. It consisted of a grid with
9 cubes, 23 cm on each side, placed inside a 1.2 x 1.2 meter area
with 15 cm of empty space between the cubes, and approximately
40 cm distance between the participant and the grid. There were
different states the user could have in the environment. (1) resting,
(2) moving to box, (3) in box, (4) moving to the rest position. Logging
of data was separated into two CSV files. One for the raw EMG data
and the other for unity data, such as HTC tracker x,y,z positions (see
the worksheets for detailed logging information). The system was
designed to capture both offline and online performance metrics of
the model. Offline performance refers to the classification results
obtained from a held-out test set, providing a static evaluation of
the model’s accuracy. In contrast, online performance refers to
the model’s real-time predictions, where it processes live data and
delivers real-time feedback to the user.

2.1 Unity Data Collection Flow
The beginning of the training started with the user performing a
Maximum Voluntary Contraction (MVC) for a calibration period
of five seconds. The 30% and 60% thresholds were calculated as
the percentage of the MVC and displayed on a slider next to the
cube where they had to place their hand inside. The participant’s
muscle activation was calculated as the exponential moving average
(EMA) smoothing during training and shown on the slider for the
participant so they could collect data at 30% and 60% of their MVC.
The slider can be seen in figure 1. Next, the participant placed their
hand in a comfortable resting position, and this was set as their
"rest position" throughout the data collection. A random cube in
the grid would turn blue, indicating that the participant should
move their arm into that cube. A "ghost hand" signifier shows the
gesture the user should perform in the cube, see figure 1.

Figure 1. Screenshot from VR recording, showing the ghost hand,
and the slider showing the contraction force

When they were in the correct position, the cube would turn green
and the "ghost hand" would disappear. The given gesture was held
for 5 seconds as seen in [6, 18]. After the 5 seconds, the user would
be prompted to go back to their rest position and rest for 3 seconds.
This approach ensured a consistent flow in the system, which was
maintained until the data collection was completed. Figure 2 shows
the structure of the Unity data collection flow for the user, which
is obtained to later test the model and provide offline performance
metrics.

Figure 2. Figure showing the structure of the Unity data collection
flow for the user. The first section is to be repeated until all repeti-
tions are done, then the model will provide the offline results from
the performance metrics.

2.2 Unity Online Test Flow
The online test flow was slightly different than the data collection
flow. The core of the system was the same, with the same grid in
the same position. There was no slider to indicate 30% and 60%
and no MVC. The beginning of the data collection started with a
calibration of themodel, where the user would perform each gesture
for 3 seconds, with a 0.5-second rest between them. This allowed us
to record the mean probability for each gesture. Next, they would,
as before, place their hand in a comfortable resting position, and
the resting position was set. A random cube would turn blue, and a
text would appear with the gesture they were supposed to do. The
participant then inserted their hand and performed the mentioned
gesture. Each gesture was performed nine times in random cubes,
resulting in a total of 36 cube interactions. After completing this
segment, a single cube appeared on the screen.When the participant
touched it, the cube would move. It traces a square path, right, up,
left, and down, with each side roughly spanning the arm’s reach.
Participants were instructed to perform a gesture and follow the
moving cube using the virtual hand. This was repeated for all four
gestures.
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Figure 3. Image of the test scenario. The image shows the hand
model, a portion of the cube grid, a highlighted blue cube indicat-
ing the target for the participant to move into, and an instruction
prompting the participant to perform a pinch gesture once inside
the cube.

Figure 2.2 shows the structure of the online test of the model,
which is used to create a classification report for the model while
running in real-time and provide live feedback for the user.

Figure 4. Figure showing the structure of the Unity data collection
flow for the user during the online test.

3 Data Preprocessing
The data stream from the raw EMG signals is noisy, which can lead
to wrong predictions in a model. Figure 5 shows an example of the
raw EMG data for the MVC, three resting phases, and three gesture
phases (denoted "in box").

Figure 5. EMG signals over time for three performances of the
pinch gesture.
Red: MVC, White: Resting, Green: Moving to cube, Blue: In cube,
Yellow: Moving to rest position

Before performing any further analysis, we started by merging and
cleaning the data. The data gathered was, as mentioned, collected
in two CSV files; these needed to be merged to get the full range of
the data.
The EMG data was collected at 200 Hz, while the Unity data was
sampled at 90 Hz. When merging the two datasets, Unity values are
forward-filled, repeating the last recorded value until a new value
is available. This ensured there were no empty rows in the merged
dataset.
The data cleaning was done in 5 steps.

• Trim all data before the MVC entry. Everything before that
is unnecessary.

• Create an index column counting rows.
• Cut off data after the last gesture.
• Remove extra spaces from text columns, except ID.
• Save the cleaned version, while also keeping the originals

untouched.

The data was split into sliding windows of 200 ms, with 100 ms
overlap, since the nature of the data is continuous. The feature
extraction happened per window and is explained in section 3.1.
Since the goal gesture label was a string, we encoded it as an integer
using a label encoder to ensure compatibility with the model input.
Next, the data was standardized using Z-score normalization. Lastly,
the data was collected in the same file again with: Labels, Tracker
position, Cube position, and the extracted features.

3.1 Feature Extraction
As mentioned, the data was windowed in 200 ms with 100 ms
overlap, and the feature extraction calculations were done on each
EMG channel in eachwindow. Thus, from eachwindow, the features
were extracted.
The time domain features used in this project were mean absolute
value, mean absolute value slope, zero crossings, slope sign changes,
and waveform length.

3.1.1 Mean Absolute Value
The Mean Absolute Value (MAV) is a popular feature used in EMG
signal analysis (e.g., used by Hudgins et al. [16], Martinez et al. [22],
D’Accolti et al. [9], and Mattioli et al. [23]). MAV is an estimate
of the average absolute value of the signal, 𝑋𝑖 within segment 𝑖 ,
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which contains 𝑁 samples. It can be calculated as:

𝑋𝑖 =
1
𝑁

𝑁∑︁
𝑘=1

|𝑥𝑘 | for 𝑖 = 1, . . . , 𝐼 (1)

where 𝑋𝑘 is the 𝑘th sample in the segment 𝑖 and 𝐼 is the total
number of segments in the sampled signal.
As defined by Hudgins et al. [16].

3.1.2 Mean Absolute Value Slope
Mean Absolute Value Slope is the difference between the sums of
adjacent segments, 𝑖 and 𝑖 + 1, and is defined by:

Δ𝑋𝑖 = 𝑋𝑖+1 − 𝑋𝑖 , for 𝑖 = 1, . . . , 𝐼 − 1. (2)

As defined by Hudgins et al. [16].

3.1.3 Zero Crossings
Zero crossings (ZC) is used to capture the frequency information of
the EMG signals, defined as the number of times the signal’s ampli-
tude crosses zero. A threshold is necessary to mitigate the impact
of noise in the data, as it will help avoid low-voltage fluctuations
or background noise [16, 25]. Given two consecutive samples 𝑥𝑘
and 𝑥𝑘+1, incrementing the zero crossing count if:

𝑥𝑘 > 0 and 𝑥𝑘+1 < 0, or
𝑥𝑘 < 0 and 𝑥𝑘+1 > 0, and

|𝑥𝑘 − 𝑥𝑘+1 | ≥ 0.01V.
(3)

As defined by Hudgins et al. [16].

3.1.4 Slope Sign Changes
Slope Sign Change (SSC) is another way to represent frequency
information of the EMG signal. It counts how many times the slope
of the signal changes direction—from increasing to decreasing or
vice versa [16, 25]. Like with zero crossings, a threshold is used
again. Given three consecutive samples 𝑥𝑘-1, 𝑥𝑘 , and 𝑥𝑘+1, the slope
sign change count is incremented if:

𝑥𝑘 > 𝑥𝑘−1 and 𝑥𝑘 > 𝑥𝑘+1, or 𝑥𝑘 < 𝑥𝑘−1

and 𝑥𝑘 < 𝑥𝑘+1, and |𝑥𝑘 − 𝑥𝑘+1 | ≥ 0.01V
or |𝑥𝑘 − 𝑥𝑘−1 | ≥ 0.01V.

(4)

As defined by Hudgins et al. [16].

3.1.5 Waveform length
Waveform length (WFL) gives a sense of how complex the signal is
over a time window. Adds up all the small changes between each
point in the EMG signal. The total length reflects how much the
signal is changing, which give insight into amplitude, frequency,
and duration of the EMG signal [16, 25].

𝑙0 =

𝑁∑︁
𝑘=1

|Δ𝑥𝑘 | (5)

where Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘-1 (the difference in consecutive samples
voltage values). As defined by Hudgins et al. [16].

3.1.6 Delta Values
According to the background research, the transient EMG signal
contains information about the gesture. This is why we were also
interested in the gesture onset, which we identified using Delta
values.

The features mentioned in section 3.1.1 through 3.1.5 were used
as they were, but the window-to-window delta values for each
feature were also calculated. These were also used as features, but
their most important use case was to give an indication of gesture
start and end. For this, three variables were used: an Onset flag,
GestureStart flag, and GestureEnd flag.
If the delta values changed a certain amount across all the EMG
channels, it would trigger the Onset flag. GestureStart was set to
true when the onset was true after being false, and GestureEnd was
set to true when the onset was false after being true. The output
was a gesture window, which is the window the model will be
trained on, which is from gesture start to gesture end.

3.2 Feature Visualization

Figure 6. Time-series visualization of extracted EMG features from
top to bottom during a fist gesture: Raw EMG, Mean Absolute
Value (MAV), Zero Crossings, Slope, Slope Sign Change (SSC), and
Waveform Length (WFL) averaged across all 8 EMG channels for
visual purposes. Each subplot shows the feature response over
time during gesture execution. There is a noticeable increase in the
features during muscle contraction.

Figure 6 shows the raw EMG signal along with the extracted fea-
tures. As expected, the raw EMG signal is noisy and difficult to
interpret directly. Each subplot illustrates the effect of a specific
transformation on the raw signal. E.g., the Mean Absolute Value
(MAV) feature captures the overall intensity of the muscle activity
and shows a clear rise and fall that aligns with muscle contractions.

4 Training of Model
We chose the Random Forest model, based on the results presented
in the worksheets, where Random Forest (RF) was compared with
Stochastic Gradient Descent (SGD) Classifier, Neural Network (NN),
Support vector machine (SVM) classifier, and Linear discriminant
analysis (LDA). These models were chosen for comparison with
Random Forest as they represent some of the most commonly
used approaches for this type of classification, as outlined in the
background section.
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Model A. P. R. F1
RF 0.94 0.94 0.93 0.94
SGD 0.86 0.89 0.87 0.87
NN 0.90 0.92 0.89 0.90
SVM 0.86 0.86 0.86 0.86
LDA 0.80 0.82 0.80 0.80

Table 1. Comparison of classification performance across different
models, in offline test. All scores are macro values.
A = Accuracy, P = precision, R = Recall.

For each participant the model was trained on two hand gestures
(1) three finger pinch (thumb, index and middle finger) (2) closed
fist and two wrist motions: (3) extension and (4) flexion, see figure
7 for visualization. All four will be referred to as "gestures" going
forward for simplicity.

Figure 7. Figure showing the four gestures

According to Accotli et al.’s results, intra-subject models perform
more satisfactorily [9]. This was also evident in our own findings
during early testing, which led to the decision for all users to train
their ownmodel to achieve better accuracy. Users trained the model
one gesture at a time to simplify both the user experience and the
data sorting process. Figure 8 shows a diagram of the flow of the
training, to provide an overview of the system from data collection
to a model ready for testing. The feature extraction points towards
the features explained in section 3.1

Figure 8. This diagram illustrates the data acquisition flow during
Unity-based data collection. It represents the system-level architec-
ture corresponding to the process described in Section 2.1.

4.1 Features used for training
The features used for training of the model are the ones extracted
in section 3.1 amongst other features, they are as follows:

• MAV and ΔMAV for 8 channels,
• MAV slope and ΔMAV Slope for 8 channels,
• Zero Crossings and ΔZC for 8 channels,
• Slope Sign Changes and ΔSSC for 8 channels,
• Waveform length and ΔWFL for 8 channels,
• HTC vive tracker x,y, and z,

resulting in 83 features.

5 Random Forest online prediction process
EMG data were sampled at 200 Hz and processed in sliding windows
of 40 samples with a 20-sample overlap. Each window contained 11
columns of data (8 EMG channels and 3 HTCVive tracker positions),
resulting in a feature vector of 440 elements, which was transmitted
to a Python server for calculating features and classifying based
on the features. Python then returned a predicted gesture and
a probability for that prediction. Before the trial with the cubes
started, we wanted the participants to perform each gesture for 3
seconds with half a second rest between each gesture, one by one.
This allowed us to record the mean probability for each gesture.
We used this mean probability as a threshold for valid predictions
made by the model. If the model returned a prediction above the
mean probability threshold, that prediction was pushed into an
array of size three. If all elements in the array contained the same
prediction values, e.g., [3, 3, 3] (3 is the pinch gesture), this satisfied
a uniformity check, meaning all predictions agreed, and the pinch
animation was then played. The array was checked each time a
new prediction was returned by Python to see if all elements were
the same. This ensured that a new animation did not play each time
a prediction was made, since there were roughly 2-3 predictions
each second. This was slower than the window size transferal, due
to multiple factors, e.g., the calculations, the transferring of the
data, and instances where the uniformity check was not satisfied
across multiple predictions, resulting in a longer time between final
predictions. If the MAV across channels was below a predetermined
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threshold of low muscle activity, we pushed a 4 into the array(4 is
the key for the "rest" animation).

6 Evaluation
According to Lock et al. [21], differences can be found between
offline and online testing of a model, where completely new data is
presented to the model. The goal of the test was to assess online
performance alongside the user’s experience of embodiment of the
virtual hand representation.

6.1 Participants
18 people participated in the evaluation (6 female, 12 male), and
they were aged 22-30. The participants were all able-bodied.

6.2 Materials and setup
The materials for the evaluation were a computer for running the
VR environment, an HTC Vive VR headset, one controller, one HTC
Vive tracker, and a MyoBand for measuring EMG signals. The setup
can be seen in figure 9

Figure 9. Picture of the setup while wearing the VR headset and
performing a gesture.

6.3 Method
The evaluation took place in a room big enough for outside-in
tracking for a VR setup with a chair for the participant. The evalua-
tion had two main phases: data collection for the model and online
testing of the model. A visual overview of the evaluation process
showing the different phases can be seen on figure 10.

Figure 10. Overview of the evaluation process

Prior to participation, the subjects were informed about the
project, its goals, and how their data would be used. All partici-
pants provided written informed consent.
Participants were introduced to the VR environment and the ges-
tures they would be performing. This was done through images of
the gestures and the VR environment, while outside of VR, on a
piece of paper, and with verbal explanation from the facilitator.

6.3.1 Data Collection Phase
The participant collected data for one gesture at a time; they per-
formed MVC of the current gesture, and then performed the gesture
three times in all cubes in random order. The flow of the system
during training is explained in section 2.1. EMG data were collected
throughout this phase for model training.

• Participants were guided through each gesture to ensure
they understood how to perform it.

• Assistance was provided as needed to ensure proper under-
standing and execution of gestures.

When they had completed each gesture three times in each cube,
the data collection phase ended.

6.3.2 Post data collection
Following the data collection, participants were given a short break
outside of VR, while the classification model was trained on their
individual data they just created.

6.3.3 Online Model Performance Test Phase
Before the testing phase, participants were briefed on the updated
procedure. They were informed that they would control a virtual
hand using their EMG signals.

• Participants performed the prediction probability calibra-
tion.

• Participants placed their hand in a highlighted cube and
performed the given gesture for five seconds, after which
they went back to the rest position for three seconds, and a
new cube appeared. Each gesture was performed nine times
in random cubes. Unlike the training phase, the gesture
order was counterbalanced using a Latin Square design,
rather than focusing on one gesture per block.

• After completing this segment, the single moving cube ap-
peared as mentioned in section 2.2
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6.3.4 Post Online Testing
Participants completed a final short questionnaire (see section 6.4)
regarding their sense of embodiment with the virtual hand and
their experience performing the movements.
Upon completion, participants were thanked for their time.

6.4 Questionnaire
The questionnaire that the participants were asked to fill out was the
Virtual Embodiment Questionnaire [28]. It addresses three factors:
Virtual body acceptance refers to the perception of the virtual hand
being their own. Agency, which refers to the perception of control
over the virtual hand, and through the virtual hand, control events
in the environment. Change refers to the change in the perceived
body schema due to the stimulation [28].
The purpose of this questionnaire is to explore whether our VR
hand representation can enhance the sense of embodiment of the
hand, which was found to be important in the background section.
We aim to determine if this implementation has the potential to
produce such effects. The questionnaire is scaled from 1-7 (1 =
strongly disagree, 7 = strongly agree).

7 Results
This section covers the results from the online test, comparing them
with the offline test and the questionnaire.
The online performance metrics were calculated by comparing all
the predictions the model made to the "goal gesture", from when
the hand was in the cube.

7.1 Comparison of Online and Offline Performance
Metrics

The average classification report is shown in table 2, to compare the
average online performance metrics to the average classification
report from the offline evaluations using a held-out (test) dataset.
A clear disparity is seen between the two. A Wilcoxon test that
compared gesture-wise macro performance showed statistically
significant differences between the train and test scores for all
metrics and all gestures, with no p-values higher than p < .001.

Off. P On. P Off. R On. R Off. F1 On. F1
Extension 0.94 0.62 0.87 0.50 0.90 0.50
Fist 0.88 0.60 0.87 0.43 0.88 0.48
Flexion 0.94 0.70 0.83 0.60 0.88 0.63
Pinch 0.77 0.47 0.88 0.56 0.82 0.45
Macro 0.88 0.60 0.86 0.53 0.86 0.52
Table 2. All participants’ offline and online average performance

metrics.
Off. = Offline, On. = Online, P = Precision, R = Recall.

Figure 11 shows a violin plot of the macro F1 scores for each gesture
across all participants.

Figure 11. Violin plot showing macro F1 scores for each gesture
across all participants

A confusion matrix of the online test results across all participants
can be seen in figure 12. The online confusion matrix shows that
the gestures that were most often mistaken are pinch and extension,
followed by pinch and fist. Compared to the offline confusion ma-
trix (see figure 13), where the most common wrong prediction was
flexion predicted as pinch. It can be seen from the confusion ma-
trices that the online test generally made more wrong predictions
than the offline performance metrics.

Figure 12. Confusion matrix of the results from the online tests
across all participants

8



Figure 13. Confusion matrix of the results from the offline tests
across all participants

Figure 14 shows the average learning curve for the model, plot-
ting training and validation accuracy against the training set size.
The training set size was a data sample across all participants. The
accuracy for training and validation plateaued at approximately
3000 samples; therefore, only results up to 4000 samples are shown.
The average training set size for all participants was approximately
6200 samples.
The shaded area around each curve represents one standard devia-
tion, illustrating the variability in the data. Wider bands indicate
greater variability between participants. Training accuracy remains
high across all training sizes, with a slight decrease as the training
set size increases. Validation accuracy improves steadily with in-
creasing amount of training data until it reaches around 3000 in
training set size.

Figure 14. Learning curve showing training and validation accu-
racy as a function of the training set size, with the highlighted area
representing the variability in the data.

For the individual results, figure 15 shows the macro F1 score for
each participant.

Figure 15. Point graph of macro F1 scores for each participant

As can be seen in figure 15, there is a big gap between the individual
F1 scores for the participants. The participant who has the highest
F1 score is participant 6, where the online test and offline test
metrics gap was not as big as the average gap. The performance
metrics for participant 6 can be seen in table 3, with a comparative
figure on figure 16

Off. P On. P Off. R On. R Off. F1 On. F1
Extension 0.97 0.73 0.84 0.76 0.90 0.75
Fist 0.84 0.87 0.90 0.62 0.87 0.73
Flexion 0.96 0.96 0.90 0.70 0.93 0.81
Pinch 0.80 0.69 0.91 0.82 0.86 0.75
Macro 0.89 0.81 0.88 0.73 0.88 0.76

Table 3. Participant 6 performance metrics.
Off. = Offline, On. = Online, P = Precision, R = Recall.

Figure 16. F1 scores for each gesture for participant 6.

To see if there was a significant difference between online and
offline performance for participant 6, who was the highest scor-
ing participant on F1 score, a Wilcoxon signed rank test was per-
formed. This was done because the average results for all partici-
pants showed significant differences, and we wanted to examine
whether this was the case for this individual as well. We did not
check for normality or equal variances because the assumption of
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normality is unreliable when the sample size is small, which is why
the Wilcoxon signed-rank test was conducted to compare offline
and online performance across the gesture specific values for recall,
precision, and F1-score. Due to the small sample size (n = 4, one
data point per gesture), the statistical power of the test is limited.
Each data point represents the performance of a single gesture in
the two conditions (offline vs online).
The test revealed no significant difference between the dependent
variables: precision, z = -0.80, p = .50 (median difference = 0.055),
recall, z = -1.64, p = .13 (median difference = 0.145), or F1 score, z =
-1.64, p = .13 (median difference = 0.1300).
These results suggest no significant difference between the offline
and online performance metrics across the evaluated metrics for
participant 6.

7.2 Individual cube results
In addition to the overall results of the online testing, we looked at
the classification results for each gesture at each cube’s position,
(see figure 17 for individual cube positions) to see if there were any
significant differences in how well the model performed at various
arm positions. We chose to focus on the cubes’ position instead of
the specific X/Y coordinates for the cube, as the cube represents
an area in Unity space. It is important to note that a participant’s
hand could have been at multiple coordinates inside the cube. The
layout of the cubes with their given numbers in Unity can be seen
in figure 17. After determining that the data was parametric, a one-
way ANOVA was conducted to examine the effect of cube position
on macro F1 scores across participants. The effect of cube position
was not statistically significant, F(8, 153) = 1.17, p = .319.

Figure 17. Position of the cubes in the Unity application

7.3 Moving Cube
At the end of the online test, a moving cube was implemented to
test how well the model predicts while the arm is in motion.
The online precision, recall, and F1 scores for the moving cube are
presented in table 4. There is no offline test for the moving cube, as
we did not have the participants train while moving their arm.

Gesture Precision Recall F1-score
Extension 0.17 0.16 0.15
Fist 0.08 0.12 0.09
Flexion 0.15 0.13 0.1
Pinch 0.07 0.12 0.09
Macro Avg 0.12 0.13 0.11

Table 4. Online performance metrics for moving cube

Shapiro–Wilk tests indicated that the F1-score distributions per
gesture, per participant, significantly deviated from normality (p <
.001 for each gesture). To assess the equality of variances, a Levene’s
test was conducted, which indicated no statistically significant dif-
ference in variances across the groups (p = .75). We checked if there
were any indications of significant differences between the F1-score
based on which direction the cube moved, with a Kruskal–Wallis
test. This was to determine if the model performed differently de-
pending on which direction the arm was moving. Each gesture was
only performed once per moving cube, per participant, leading to a
low sample size for the Kruskal-Wallis test, which limits the power
of the test.
The test showed no significant difference between the movement
directions, H = 0.360, p = .948. This indicates no significant differ-
ence between how the model performed, no matter which direction
the participant’s arm moved. This suggests that the model is con-
sistent in performance and does not depend on the direction the
arm moves.

7.4 Virtual Embodiment Questionnaire (VEQ)
Acceptance (4.75 out of 7) and agency (5.1 out of 7) scores were
relatively high, indicating that participants experienced amild sense
of body acceptance and agency during the test. The Change (3.4
out of 7) score, which refers to the change in the perceived body
schema due to the stimulation, is closer to the midpoint of the scale.
This suggests that participants experienced a moderate or neutral
perception of changes in their own body schema, indicating that the
virtual hand did not lead to strong alterations in how participants
perceived their own hand. The results can be seen in Table 5

Acceptance (Ownership) Control (Agency) Change
4.75 5.1 3.4

Table 5. Average scores for all participants on the VEQ. The scores
range from 1 to 7.

8 Discussion
As shown in the test results in section 7.1, there is a significant gap
between the online and the offline performance metrics, and we
believe that it is possible to decrease this gap through additional
practice or training of the movement by the participants.
Scheme et al. states that in general, there can be a disparity between
classification accuracy and real-time usability [29]. Furthermore,
Lock et al. found that systems with good accuracy did not always
help users perform better in virtual/clinical online tests, because
accuracy can be misleading [21]. Abbaspour et al. presented find-
ings similar to ours, such as online performance being worse than
offline performance. They tested several models, with their best

10



performing model in the online condition being a multilayer per-
ceptron (feedforward NN) with the offline average accuracy being
91.1% and online average accuracy being 69.8% [1], making the
difference in accuracy for offline and online 21.3%. We did not use
accuracy since it can be a misleading metric compared to F1-score,
with the difference between our F1-scores in offline and online
averages being 0.34. This demonstrated the same pattern with a
lower prediction score when testing online compared to offline.
Abbaspour et al. also demonstrated differences subject- and gesture-
wise (10 gestures) across nine machine learning models and found
the gap across all models [1]. They reported a difference in indi-
vidual participants’ performance [1], which is similar to what we
observed as well. We observed instances of participants, such as
Participant 6, where the model worked well. On the other hand,
we also observed cases at the opposite extreme, where the model
would never predict a certain gesture (e.g., extension), which makes
the average value fall considerably.
The relatively high ecological validity in this test came at the cost
of some accuracy, which was also clear in the results. To increase
performance further, it might be necessary to explore richer fea-
ture sets, such as using time-frequency domain features, or further
participant-specific fine-tuning to improve classification evenmore.
The online test confusionmatrix in figure 12 revealed that themodel
often confused the pinch gesture with extension and fist. One pos-
sible explanation for the pinch/extension confusion is that a slight
wrist extension often occurs naturally during a pinch, which may
cause EMG data for these gestures to appear more similar. The con-
fusion between pinch/fist could stem from participants either using
more fingers than instructed during a pinch or not fully clenching
their fist. This results in gesture signals being less distinct and more
difficult to differentiate.
The moment a participant entered the cube, we calculated whether
the predicted gesture was the same as the goal gesture. This could
have led to many prediction errors, given that the participant was
instructed to perform the gesture once they were in the cube. An-
other issue with this approach was that the model had a delay for
when it was able to predict, as explained in section 5, meaning there
would inevitably be incorrect predictions during the first second,
which led to lower performance scores.
During online testing of the model, the participants were prompted
on the screen as to which gesture they should perform when they
put their hand in the cube. As participants were less guided through
the online test, and the variability had increased, stemming from all
the gestures being performed in the same session, some mistakes
were observed. Some participants mistook e.g., flexion for exten-
sion, which would have yielded wrong predictions. Participants
might have felt less confident in their gesture performance, which
potentially resulted in less accurate performance of the gestures or
performance with more variability.
Something worth noting when reading and interpreting the results
from this study is that it has not been tested or evaluated in any
way by amputees. All participants were able-bodied and healthy
individuals. It is also worth noting that controlling EMG signals
can be challenging; effective control typically requires training [18].
Results from a single trial may not accurately reflect the partici-
pants’ and models’ potential performance.

8.1 Embodiment
The questionnaire results showed a mild sense of body acceptance
and agency, which is important for the argument of providing good
visual feedback that can reduce the mental effort during the train-
ing stage for their prosthetic [23]. The results can also partly stem
from the fact that VR is known to provide benefits in terms of
embodiment[27], and not so much from the hand and animations
specific to this application. One factor that may have influenced the
VEQ results is the delay associated with triggering the animation for
the predicted gesture, which was governed by a uniformity check.
Specifically, the participant was required to insert their hand into
the interaction cube and perform a gesture, after which the system
would wait for three consecutive identical predictions exceeding a
certain confidence threshold before initiating the animation. During
the testing of the model, we occasionally encountered issues where
the virtual hand failed to visually animate the predicted gesture,
despite Unity successfully receiving the gesture classification. As
a result, participants received no visual feedback corresponding
to their physical hand movement. This loss of feedback may have
disrupted the sense of agency and acceptance of the virtual hand,
which might affect the participant’s response in the VEQ, particu-
larly in relation to perceived control and embodiment of the hand.
When this issue was encountered, the participants were told to
continue testing and ignore the static hand, since we still got the
gesture classification through Unity.
We observed that when the model produced accurate predictions,
the animation was typically triggered within approximately one
second. In contrast, when the model’s predictions were less consis-
tent, a longer delay, spanning several seconds, was often observed
before the animation was activated. The standard maximum unde-
tectable delay for users of myoelectric control has been accepted to
be delays less than 300 ms [29]. Our method exceeds this threshold
by a considerable margin, even for the most favorable prediction
conditions, which could have affected the embodiment scores from
the questionnaire.

8.2 Thresholds and Calibrations
The rest gesture for the hand was inconsistent, as the rest threshold
was determined by calculating the MAV across all channels. If the
calculated MAV is below the threshold set for low muscle activity,
it plays the rest animation. However, the threshold for low muscle
activity was predetermined rather than individually calculated. As
a result, the model frequently misclassified gestures during rest,
because the participant’s muscle activity often exceeded the fixed
threshold. As stated by Carvalho et al., using a single threshold to
find "rest" can lead to false positives in noisy signals [7], which
seemed to be the case from our results. Going forward, we suggest
calculating low muscle activity thresholds for each participant if
the threshold method is to be used. This led to confusion between
the rest animation and other animations as the model continued
making predictions even when the participant was actually resting,
which might have led to a lower sense of agency.
A limitation in our calibration process was that gesture thresholds
were based on the model’s predicted labels rather than the ground
truth. For instance, if a participant performed a “Fist” gesture but
the model predicted “Pinch,” that incorrect prediction was recorded
under “Pinch.” This led to misclassified data skewing the average
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probabilities for some gestures, making the thresholds inaccurate,
especially for gestures prone to misclassification.

8.3 Moving Cube
The results for the moving cube were not promising. Our initial
suspicion lies in the fact that no training data was collected while
the participants actively moved their arms, which in turn meant
that the model had no reference for the patterns of a moving arm.
Additionally, the model generated continuous predictions, resulting
in approximately 100 prediction entries per gesture during each
moving cube phase. Consequently, a single misclassification span-
ning across several seconds could disproportionately impact the
overall results for that entire moving cube segment. With the low
sample size, wrong predictions would have a significant impact on
the performance metrics.
When testing the model, we implemented a moving cube to see how
the model would perform while the arm was moving. We did not
train the model on any gestures in movement, which potentially
could have helped make the model more robust. The way the model
works now breaks the gesture down into multiple parts, moving
the arm to a desired location and then performing the gesture once
there, whereas in a real scenario, the gesture is typically done more
smoothly in one continuous movement. Training of the gestures,
both being performed and held in movement, could potentially
contribute to a more robust model.

8.4 Individual differences and variables
There are several variables to take into account for the variation in
F1-scores observed across participants. The quality of EMG signals
can be influenced by numerous factors, including muscle fatigue,
perspiration, muscle configuration, muscle mass, shifts in electrode
placement, and changes in arm posture. Based on our tests, we
speculate that the build of the arm might have had an impact on
the EMG signals, which, according to the co-supervisor [10], may
be because of the muscles being more separated and the patterns
being more discriminable.
While there were clear differences between some of our participants,
the overall sample was still homogeneous, with all participants be-
ing healthy adults between the ages of 22 and 30. As stated by
Stearns et al, the average amputee is slightly older than our sample
at 35, but our gender breakdown is closer to their findings, with
two-thirds of our participants being male [31].
To minimize variability related to electrode displacement, we en-
sured that participants did not remove the Myo armband at any
point during training and testing. However, this precaution may
have introduced another source of signal degradation, namely, per-
spiration. It is well documented that perspiration can affect EMG
signal quality, and given that participants wore the armband contin-
uously throughout the experiment, this factor may have contributed
to reduced signal clarity in some cases, which could partially explain
the variability in model performance observed across participants.
Several participants reported experiencing fatigue in their shoulder
or arm during the training and testing of the model. As mentioned
in the background, fatigue, among other factors, can affect the EMG
signal, which may have contributed to the difficulty in accurately
predicting some gestures. It might have been more appropriate to
have the participant relax for longer, or have them back another

day to test the model to reduce fatigue factors. This would pose
other problems, such as making it harder to place the Myo band
in the exact same place again, and the participant having time on
another day.

8.5 Training and Data collection
During the model’s training phase, we noticed that after some
participants performed their MVC, the calculated 30% and 60%
effort levels were sometimes too low to capture the full range of
motion involved in the gesture without exceeding the 30% mark.
For instance, when a participant performed a fist, at 30%, they might
only partially close their hand, which would lead to not providing
a complete fist gesture. This results in the model being fed with
partially imprecise data on what the pattern for a fist was. The
opposite problem was noticed a few times for pinch at the 60%
mark, where the participant had to pinch down too hard, such that
they lost the correct posture for the fingers and almost clenched
their whole hand. The improper performance of a gesture (either
too hard or not complete) could significantly impact the data and
how well the model can differentiate between gestures, such as
fist and pinch. In particular, if participants perform a gesture at a
"comfortable" effort level during testing, it may not align well with
either the 30% or 60% effort levels data recorded during training,
leading to misclassification.
The workaround for this problem could have been to also provide
the 30% and 60% slider during the online testing, to provide visual
feedback as to how hard their contraction was. In addition to effort
level mismatches, physical factors related to the experimental setup
may also have affected prediction accuracy. The fixed distance
between the participant and the 3x3 cube grid was chosen to allow
comfortable reach to all cubes. However, during testing, it was
observed that participants with shorter arm lengths experienced
difficulty reaching certain positions in the grid, particularly the
upper-left cube, as all participants performed the gestures with their
right arm. This physical strain or awkward positioning could lead to
inconsistent or incomplete gesture execution, whichmay negatively
impact the model’s prediction accuracy. Gestures performed under
physical discomfort or at the edge of a participant’s reach may
result in noisier input data, reducing the model’s ability to correctly
classify the gesture.
The learning curve presented in figure 14 suggests that the model
is overfitting on smaller training set sizes, which is indicated by the
large gap between training and validation accuracy. The gap does
narrow as the training set size increases, which indicates improved
generalization and reduced overfitting. This is to be expected with
the variability and noise present in EMG signals. The validation
accuracy plateaus slightly beyond 2500 samples (windows in this
case), which corresponds to 4 minutes and 10 seconds of active
training time. Participants were actively training each gesture for
2 minutes and 15 seconds, suggesting the model might approach
its highest potential under the current feature set.

9 Future Work
A key direction for future work is to improve the model’s overall
performance before proceeding, this can be investigated through
several approaches. One could do more feature engineering or
selection. Another approach could be to use the hierarchical classi-
fication method, where an initial classifier distinguishes between
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grasp and wrist movements, and subsequent classifiers identify the
specific type within each category.
It might be valuable to implement an iterative testing approach for
the model, where the participant would be back to test the model
again multiple times to minimize participant fatigue and help partic-
ipants adapt and improve their control of the myoelectric interface.
This method would better simulate real-world usage scenarios we
aim to emulate.
Future projects should also consider training and testing on am-
putees. There are a lot of considerations to take into account when
dealing with amputees, compared to participants with intact limbs.
Muscle anatomy, electrode placement, the size and shape of the
residual limb, and gesture execution could significantly impact the
EMG signals. Future studies should consider custom or adaptive
sensor configurations to accommodate these differences.

10 Conclusion
This study explored the use of an EMG-based machine learning
model to classify hand gestures in a spatial VR environment, to
simulate real-world scenarios that include active arm movement
and gestures in space. While the offline performance of the trained
model was high, with macro F1 scores averaging 0.86, a notable
performance drop was observed during the online tests, where the
average macro F1 score fell to 0.52. This significant gap highlights
the challenges of translating controlled offline model accuracy into
real-time applications. However, individual results revealed variabil-
ity, with some participants achieving relatively stable performance
between online and offline testing. This indicates that factors such
as gesture consistency, muscle signal quality, and physical comfort
likely influence performance. Furthermore, discrepancies between
the training conditions (static, controlled gestures) and the test
environment (dynamic, moving gestures) may have contributed to
reduced online accuracy. The embodiment questionnaire indicated
that participants experienced a moderate sense of control and ac-
ceptance, suggesting that the VR environment and system design
effectively created a sense of interaction, despite the technical and
model-related limitations.
The results highlight a significant gap in offline and online results,
while also revealing considerable variation across participants, with
both low and high individual performances. Despite these varia-
tions, the findings provide a strong foundation for training and
testing a machine learning algorithm to control a hand model with
EMG signals in VR. With further development, this approach has
the potential to support amputees in training the use of a prosthesis
within a spatial VR environment prior to receiving a myoelectric
prosthetic.
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