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Summary

This paper explores how fleets of electric vehicles (EVs), can be aggregated and scheduled as a
single unit, called a FlexOffer, in order to participate in electricity markets, specifically the day
ahead spot market and the manual frequency restoration reserve market.

As renewable energy sources are a large part of today’s electricity production, the balance
responsible parties are in need of flexible demand-side resources like EV charging in order to
balance fluctuation in the energy consumption. In other words, EVs can be charged, when we have
an abundance of energy, or they can be idle when the power grid struggles to keep up with the
energy demand.

The key modeling tools used in this paper are FlexOffers, which are used for capturing
flexibility in electric devices, such as batteries, heat pumps, washing machines and EVs. We use two
types of advanced FlexOffers, Total energy constraint FlexOffers and dependency-based FlexOffers.

In the danish electricity markets, there are minimum bid size of 1 mWh, which is way
more than what an EV can charge. Therefore FlexOffers representing a single EV must be aggre-
gated into larger ones, in order to meet market requirements. To do this we experiment with known
clustering techniques such as bottom up agglomerative clustering and k-means, and for aligning the
clustered FlexOffers we use the known start alignment technique, and we introduce our own align-
ment techniques called flexibility alignment and a naive version of it, called fast flexibility alignment.

Next we have developed an idealized two-stage linear programming model that we run
with perfect price forecasts. The first stage makes bids in both the spot and reserve markets, based
on a price forecast. Stage 2 then adjusts operations depending on reserve activations of the EVs. To
do this, we experimented with different strategies, namely:

• Sequential scheduling: Here we first schedule our bids on the reserve market, and afterwards
we schedule the bids on the spot market. The idea is, that we want our bids in the spot market,
to be based on the bids we made in the reserve markets. This means that we might not be able
to make as much money as possible in the spot market, but hopefully the gains in the reserve
market will make up for it.

• Joint scheduling: Here we co-optimize both markets at the same time, in order to capture
opportunities in both markets, and not be restricted to one of them.

• Spot-only: In this case we only make bids on the spot market, and ignore the reserve market.

We then run experiments with fleets of electric vehicles of up to 500.000 EVs over a one-month
period, which shows:

• Dependency-based FlexOffers consistently outperform total energy constraint FlexOffers,
regardless of which bidding strategy is used.

• Joint optimization yields the highest savings, with up to 92.14% of the theoretical optimal.
• Fast flexibility alignment reaches much better a runtime than the ordinary flexibility alignment,

while it is only very slight worse in terms of savings.

Our thesis improves on this domain by: (1) Improving aggregation time with a new fast flexibility
alignment. (2) Inputting aggregated FlexOffers into a linear programming problem (LP) that
co-optimizes day-ahead, mFRR capacity, and activation bids according to realistic driver behavior.
(3) We show that this approach scales to 500.000 EVs with good performance.
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Abstract

The continuing transition towards an electrical grid which has a greater proportion of its electricity being generated from
renewable energy sources (RES) introducing more fluctuating energy prices. Flexibility in the electrical demand could
introduce considerable savings, shifting demand from hours of scarcity to hours of abundance. This paper considers a
Balance responsible party managing a fleet of electric vehicles (EVs) participating in the danish electricity markets. The EVs
are modeled as so-called FlexOffers, models which describe the inherent flexibility of the EVs. The Total energy constraint
and Dependency-based FlexOffer are the considered variants. This paper experiments with different ways to cluster, align
and then schedule the FlexOffers in the danish spot market, mFRR reserve / activation market, in order to maximize profit
from participating in the mFRR market and minimize the cost of the purchased electricity used to charge the EVs from the
spot market.

1 Introduction

1.1 Background and motivation

In recent years, the Danish power grid have achieved
good progress in integrating renewable energy
sources (RES). Wind and solar generation are replac-
ing power plants at an increasing rate with renewable
energy sources having accounted for almost 50% of
Denmarks final electricity consumption in 2022 [1].
Such a high level of electricity coming from RES also
increases the need for a grid that can handle this un-
certain level of generation. Specifically, the grid needs
to be flexible such that it can handle sudden spikes in
energy production. An example of flexibility could
be demand side flexibility from EV owners, who can
change their charging patterns. Transmission system
operators (TSOs) therefore seek flexibility. I.e, the
ability to adjust generation and consumption easily
in order to maintain balance when RES production is
variable. In Denmark, official forecasts of future en-
ergy systems predict a large rise of almost a million
electric vehicles by 2030 [2].

Demand-side resources, specifically electric vehicle
(EV) charging, can be used as a scalable and effective
way to provide this flexibility. EVs are essentially
large mobile batteries with somewhat predictable
charging patterns. Shifting EV charging can either
help absorb excess electricity production from RES or
decrease electricity consumption during hours with
excess demand, which contributes to balancing the
grid. In the future, bidirectional charging using V2G
(vehicle-to-grid), can even return energy to the grid
if needed [2]. In the long run, this means that a large
fleet of EVs will be a substantial resource of flexibility

for the power grid.
Utilizing all EVs in a fleet at large scale requires

strong coordination. Individual EV owners can only
charge small amounts of energy and are uncoordi-
nated. On the contrary, third party aggregators can
combine the individual charging profile of many in-
dividual EVs into a single large virtual EV. Generally
these aggregators serve as market actors and can com-
bine small flexible energy assets into a larger unified
asset [3]. By aggregating the fleet into a few larger
unified assets, it reaches the size that is required to
participate in energy and reserve markets. Thus it
is possible for the aggregators to bid and schedule
EV charging sessions when prices are cheap, which
also often coincides with a high level of RES produc-
tion. EV owners are thus incentivized to allow this
controlled charging from a third party aggregator
for cheaper prices and use of RES. Furthermore, in
Denmark the TSO (Energinet) encourages EV aggre-
gators to participate in ancillary services like reserve
markets. By allowing them to bid into reserve mar-
kets, the aggregator can provide balancing for the
TSO [4].

1.2 FlexOffer Model description

To succesfully integrate EV fleets flexibility for proper
market participation requires precise modeling, ag-
gregation and scheduling of each individual EV
charging session. There are multiple ways to rep-
resent these flexible EV charging loads formally, but
recent research introduces the so called FlexOffer (FO)
model [5]. A FlexOffer (FO) in our case encodes a
predicted EV charging session, capturing the flexi-
bility of it [6]. A description of a FO is available in
[7].
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Figure 1: Timeline of market events and closures

1.3 Total Energy constraint FlexOffer

The TEC-FO is a variant of the normal FO seen on
figure 2. The image illustrates an instance of a TEC-
FO. Each bar represents a time unit (eg. one hour),
and the the allowable energy to be scheduled to the
EV at that time unit. The lower-bound in this exam-
ple is then 0 kWh, which means we can decide to
not charge the EV, and the upper-bound is 11 kWh,
which means we could charge up to 11 kWh for this
timeslice. The upper-bound constraint is of course
determined by the physical properties of the EV. The
TEC-FO also enforces a total energy constraint, en-
suring that the sum of energy over all time units to
be within a bound. For instance, the total energy
allocated to this EV has to be between 36 kWh and
40 kWh. The full formal definition is seen in [7].

Figure 2: Example of TEC FO

1.4 Dependency-based FlexOffer

The Dependency-based FlexOffer (DFO) is a variant
of the standard FO model, originally introduced in
[8], with the intention of improving the dependency
modeling between time steps, in order to better cap-
ture the constraints and state of charge (SoC) of a
battery-like device e.g. EVs. For each time unit, the
DFO has a 2-dimensional polygon describing the al-

Figure 3: Example of a DFO

lowed minimum and maximum energy usage for that
time step, given the total cumulative energy used in
the previous time steps (referred to as the dependency
amount). An example of this can be seen in figure 3.
Each polygon models this, by having the dependency
amount on the x-axis, and the allowed energy usage
on the y-axis. Given a specific dependency amount, the
allowed energy usage range are then all the y-values
of the points within the polygon on that specific x-
value. This way, the DFO also models total energy
constraints implicit. The full formal description is
also seen in [7].

1.5 FlexOffer lifecycle

The lifecycle of a FO captures the start to end process
of utilizing the flexiblity of EVs for market participa-
tion. In the construction phase, automated software
analyze and forecast the expected charging pattern
of each EV - based on user behavior, driving needs
and battery level. With this, a FO is constructed,
which represents a set of constraints for energy us-
age, capturing the flexibility of each EV. Flexibility
includes both amount and time flexibility, which de-
scribe how much energy the EV needs (amount flex-
ibility) and within what time window the charging
can take place (time flexibility). The FOs are then sent
to the aggregator, who collects multiple FOs during
the aggregation phase. In this phase the aggregator
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combines these into a few unified aggregated FlexOf-
fers (AFOs). These AFOs are then scheduled through
optimization to minimize the cost of electricity. This
results in a large schedule (a discrete time and energy
amount) which is then disaggregated to the original
users, respecting the constraints of the individual
FOs. The user then executes the assigned schedule
(charging their EV by the specified amount in the
specified hours).

1.6 Objectives and contribution

Having established the lifecycle of an FO, we now
focus on (1) developing methods for scheduling ag-
gregated EV fleets for participation into multiple
energy markets, specifically the danish spot market,
mfRR capacity market, and the regulation market.
(2) improve the speed and quality of aggregation
with new aggregation techniques, and (3) maximize
multi-market revenue under realistic constraints, but
assuming perfect knowledge.

In order to build a multi market scheduling frame-
work, we start by describing the relevant structure
of Danish electricity markets; then we survey EV-
aggregation and related papers.

2 Related work

2.1 Danish electricity markets

In Denmark, the electricity system operates within a
multi-market framework. The market events follow
a structured timeline as shown on figure 1. The spot
market (elspot) is where the largest quantity of energy
is traded. Aggregators or Balance response parties
(BRP) submit their hourly bids by 12:00 day D-1, a
day before realtime operations begin. In the same
day, the aggregator can place potential mFRR capac-
ity offers in the manual Frequency Restoration Reserve
(mFRR) before 07:30 on day D-1. On day D dur-
ing real time operations, the mFRR activation market
opens (also refered to as just activation or regulation
market). If the TSO determines an imbalance in real
time, they may choose to activate the mFRR capac-
ity offers from aggregators that provided capacity
reserve about 45 minutes in advance. The aggregator
thus receives a regulation response profit for the re-
serve capacity they delivered, furthermore, they gain
a small profit for just providing capacity even if they
are not activated. [10] If the aggregator activate the
reserves, the fleet should be able to respond within
15 minutes. In reality there are multiple different
ancillary markets, however the figure only includes
the markets we are considering, hence markets like
FCR and aFRR are not included.

Most studies have taken advantage of this two
day market structure. Stage 1 (day D-1) decisions
are usually made deterministically with forecasted
spot and reserve prices while real time operations in
stage 2 (day D) are dependent on uncertain activation
chances.

2.2 Literature review on EV optimization

[11] provides a comprehensive review of charging of
EVs by detailing the key role of aggregators, charging
infrastructure, and economic opportunities in differ-
ent markets. They show that using smart charging,
charging costs can be cut by 30% and grid opera-
tional costs by 10%. [12] was one of the first to de-
velop a day-ahead market framework integrating EV
aggregators. They capture aggregate State-of-Charge
(SoC) constraints and bids for flexible energy and
reserve capacity. [13] determines an optimal bidding
strategy for aggregators in Day-ahead and reserve
markets through stochastic optimization. Stochas-
tic programming is common for optimizing multi-
market revenue with uncertain prices and is seen in
many papers [14] [15]. [16] extends this model by
introducing a “reserve capacity ratio” to tune the risk
of not being able to meet reserve demand. Another
common approach to optimize in the reserve market
is to use chance-constraints like in [17] to explicitly
set a max limit for probability of failing to deliver
promised reserve, and integrate a penalty for delivery
failure. Furthermore some studies also include spe-
cific battery properties like aging constants [18]. [19]
extends further by introducing a stochastic bi-level
optimization where an aggregator optimizes its own
day-ahead first. EV-owners then decide on charging
based on the aggregators prices. Very recent litera-
ture has begun to address new reserve market for-
mats that better capture flexibility of EVs. [20] point
out that existing reserve markets cannot fully capture
the cross-temporal nature of EV flexibility (limited en-
ergy capacity), and propose a new “Energy Reserves”
product. [21] develop a MILP program for entire EV
fleets that co-optimizes day-ahead energy and ancil-
lary servicse (frequency-regulation) bids, while also
modeling driver charging patterns, SoC, and network
constraints. Lastly [22] uses a data driven approach
by using reinforcement learning (RL) to learn optimal
trading patterns. Other works combines EV charg-
ing sessions together with grid constraints across
markets by letting an RL-based controller adapt to
charging rates to avoid transformer overloads [23].

Our thesis improves on this domain by: (1) Improv-
ing aggregation time with a new fast flexibility align-
ment. (2) Inputting AFOs into a linear programming
problem (LP) that co-optimizes day-ahead, mFRR
capacity, and activation bids according to realistic
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Figure 4: Life cycle of a FlexOffer. Reproduced from [9]

driver behavior. (3) We show that this approach
scales to 500.000 EVs with good performance.

2.3 Demand response

The concept of demand response (DR) enable end-
users to shift energy consumption to support grid
needs based on prices or other factors. EVs provide
large demand side flexibility by allowing end-users to
decide when to charge through a well defined plug-
in and plug-out windows. The danish TSO actually
incentivizes aggregators to bid in reserve markets
[24].

2.4 Aggregation using FlexOffers

Individual EV FOs are usually too small to bid di-
rectly into the day-ahead markets, furthermore as EV
fleet size grows, the scheduling space expands ex-
ponentially. Given n EVs with d discrete start times,
the total solution space would be dn. This makes
exact scheduling hard as the fleet grows. Market
participation adds further complexity:

• mFRR bids depend on flexible charging capacity.
• Bid granularity and minimum sizes (e.g., 1 MWh

spot, 5 MW mFRR) constrain actions, and intro-
duces integer and binary variables, which makes
the optimization problem harder.

An aggregator fixes this by combining multiple
EV FOs into a single unified FO that meets market
requirements. This process is necessary but trades off
some of the potential time flexibility of the individual
FOs. This means that the AFO has a smaller range of
feasible charging time than the joint flexibility of its
individual offers [5].

Aggregation requires aligning individual FO pro-
files together. Aligning all EV schedules at the same
start time (a simple method called start alignment)

yields a very fast runtime, but an imbalanced profile
that loses flexibility. [3] More advanced alignment
strategies uses heuristics to achieve more balanced
FO with a flatter profile (net load), at the cost of extra
computations. [3] One study made a set of market
aware alignment strategies that fit Nordic day-ahead
flexible order. These strategies automatically con-
forms to the market rules and led to about 20% cost
savings for the aggregator [25].

Before alignment, FOs need to be clustered with
other similar FOs. (E.g. making sure they have
overlapping time windows or energy requirements).
Common examples of clustering methods are hierar-
chical bottom up clustering. Bin packing heuristics
can be further used to respect constraints within each
group [3].

3 Problem Formulation

Based on previous chapters we define the key prob-
lem formulation as

How can flexible EV charging loads be optimally
aggregated and scheduled, to maximize the overall
revenue in both the spot market (Nordpool) and
the manual frequency reserve regulation market
(mFRR)

We now model the LP problem and then define
how we cluster and aggregate in the next section.

3.1 FlexOffers and Electric Vehicles (EVs)
fleet modeling

Let

• i ∈ I: Set of EV flexible loads, each represented
as a FO

• t ∈ T: Set of time slots (either 24 (hourly) or 96
(15-minute) intervals for the entire day.
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Each FO i represents a charging session with:

• A time window Ti = {tearliest, ..., tlatest},
• Duration di,
• Min and max charging bounds emin

i,t , emax
i,t .

where
emin

i,t ≤ ei,t ≤ emax
i,t

where ei,t is the energy scheduled at time t, and
emin

i,t , emax
i,t are the minimum and maximum energy

amounts allowed at time t.
We convert these energies to power variables, this

aligns with market participation (specifically reserve
capacity bids, which are made in kW). We convert en-
ergy bounds to average power bounds using the time
unit length ∆t (eg. ∆t = 0.25 denotes 15 minutes):

pmin
i,t =

emin
i,t

∆t
, pmax

i,t =
emax

i,t

∆t

Here, pi,t represents the average charging power for
EV i during interval t.

3.2 The optimization problem

We model an aggregator managing a fleet of EVs that
can participate simultaneously in the spot market
and mFRR (both up and down regulation). The goal
is to schedule charging optimally such that revenue
is maximized from selling reserve capacity and par-
ticipating in energy markets, while ensuring that EVs
are charged before their deadlines. Instead of con-
structing a full Mixed Interger Linear Programming
(MILP) based on real world uncertainties, which may
be unrealistic to solve within practical computational
limits, we try to make a realistic deterministic lin-
ear programming (LP) problem that runs on perfect
forecasted prices.

Parameters:

Bi Battery capacity of EV i (kWh)

Pmax
i Maximum charging power of EV i (kW)

∆t Duration of time interval (e.g., 1 for 1
hour, 0.25 for 15 min)

Ereq
i Required energy for EV i (kWh)

λ̄
spot
t Forecasted Day-ahead spot price at t

(DKK/kWh)
λ̄r↑

t Expected up reserve capacity price at t
(DKK/kW)

λ̄r↓
t Expected down reserve capacity price at

t (DKK/kW)
λ̄b↑

t Expected up activation price at t
(DKK/kW)

λ̄b↓
t Expected down activation price at t

(DKK/kW)
π

p
t Penalty if reserve is not delivered at t

ηi Charging efficiency of EV i

δ↑t , δ↓t Precomputed activation reserve indica-
tors ∈ {0, 1}

R↑t , R↓t The ramp limit for activating up and
down reserve

As we are using perfectly forecasted prices, the
imbalance will always be 0, and as such the penalty
term π

p
t is negligible in our use case.

Decision variables We start by selecting the
necessary decision variables from the danish energy
market day D-1 from figure 1.

In stage 1, decisions are made before market clo-
sures on day D-1. This entails bidding for reserve
capacity in the MFRR markets as well as procuring
energy in the spot market, and are modeled by vari-
ables:

pr,↑
i,t ≥ 0 : Upward reserve bid (kW) in time t,

pr,↓
i,t ≥ 0 : Downward reserve bid (kW) in time t,

pspot
i,t ≥ 0 : power at time

t (kW) bought in the day-ahead

These variables must be fixed before 07:30, and 12:00
respectively. Stage 2 captures how the EV fleet re-
sponds in real-time on Day D. In the model, reserve
activations depend on whether a precomputed in-
dicator signals an expected call by the TSO. This
indicator functions is simply based on forecasted ex-
pected prices. The key decision variables that we
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want to optimize are:

pi,t ≥ 0 : Actual charging power for EV i at t,
SoCi,t ≥ 0 : State-of-Charge of EV i (kWh) at t,

pb,↑
i,t ≥ 0 : upwards activation amount (kW) at t,

pb,↓
i,t ≥ 0 : downwards activation amount (kW) at t,

s↑i,t, s↓t ≥ 0 : slack variables for unmet reserve at t

3.3 Objective function

max ∑
i∈I

∑
t∈T

λ̄r↑
t pr,↑

i,t + λ̄r↓
t pr,↓

i,t )︸ ︷︷ ︸
Reserve revenue

+ λ̄b,↑
t pb,↑

i,t + λ̄b,↓
t pb,↓

i,t )︸ ︷︷ ︸
activation revenue

− (λ̄
spot
t · pspot

i,t · ∆t)︸ ︷︷ ︸
Spot market

−πp(s↑t + s↓t )︸ ︷︷ ︸
Penalty

3.4 Constraints

Battery Dynamics and SoC Constraints:

SoCi,t+1 = SoCi,t + ηi pi,t∆t

0 ≤ pi,t ≤ Pmax
i , 0 ≤ SoCi,t ≤ Bi ∀t

SoCT ≥ Ereq
i + ∑

t∈T
pb,↑

t ∆t

Energy Balance:

pi,t = pspot
i,t − pb,↑

i,t + pb,↓
i,t ∀t ∈ T

This constraint ensures the actual charging power pt
for EVs at time t matches the procured spot market
energy, given potential regulation actions.

Reserve market Feasibility: The aggregator’s of-
fered mFRR reserves must be feasible given the spot
schedule. Ie., the spotmarket consumption at time
t should be made such that the aggregator can still
deliver the reserve if called by the TSO. The key con-
straints are:

Up-regulation (load reduction) capacity:

pr↑
i,t ≤ pi,t, ∀t.

Down-regulation (load increase) capacity:

pr↓
i,t ≤ pmax

t − pi,t, ∀t.

The first constraint ensures that in period t the
aggregator cannot promise to reduce more load than
it is actually consuming and the second constraint
ensures that the aggregator has headroom to increase
consumption by pr,↓

t if down-regulation is called.

Reserve Activation Feasibility:

pb,↑
i,t = 0 if δ↑t = 0 pb,↓

i,t = 0 if δ↓t = 0

pb,↑
i,t + s↑i,t ≥ pr,↑

i,t · δ
↑
t , pb,↓

i,t + s↓i,t ≥ pr,↓
i,t · δ

↓
t ∀t ∈ T

we ensure that the activated up/down reserve
pb,↑

t , pb,↓
t can meet the reserve commitments pr,↑

t , pr,↓
t ,

if the TSO activates them (i.e., when δ↑t = 1 or δ↓t = 1).
If activation is not fully met, the slack variables s↑t , s↓t
capture the amount of shortfall, which then means
the aggregator gets a penalty

Aggregate Fleet-Level Constraints: Across all EVs,
the total scheduled charging power at time t ∈ T is:

pt = ∑
i∈I

pi,t

pmin
t = ∑

i∈I
pmin

i,t , pmax
t = ∑

i∈I
pmax

i,t

pmin
t ≤ pt ≤ pmax

t

These bounds define the aggregator’s safe range
for scheduling and market participation.

Ramp Rate Constraints Let R↑i be the per-slot ramp
limit.

|pr↑i,t − pr↑i,t−1| ≤ R↑t (1)

|pr↓i,t − pr↓i,t−1| ≤ R↓t (2)

DFO Energy If we use a DFO instead of FO we have
to ensure that each DFO time unit has a polygon con-
straint on feasible power pi,t, based on accumulated
energy:

y(i,t)min(
t−1

∑
π=1

pi,π) ≤ pi,t ≤ y(i,t)max(
t−1

∑
π=1

pi,π)

where y(i,t)min and y(i,t)max are bounds interpolated from

the dependency polygon of DFO i at time t. y(i,t)min

and y(i,t)max are themselves functions of the cumulative
energy consumed up to time t1, i.e. ∑t−1

π=1 pi,π .
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4 Clustering, Aggregation and
Scheduling

In this section, we will describe the two different
alignments we have utilized for aggregation in this
project, specifically start alignment [3] and flexibility
alignment[7]. Flexibility alignment is our own con-
tribution[7], which is described in section 4.2. These
alignments are a core part of the aggregation phase,
as it is in these algorithms that we decide how to
align different FO objects, in regards to time and
energy consumption.

4.1 Start alignment

Start alignment is very simple and intuitive to un-
derstand. In start alignment, we simply position all
the incoming FOs that we are aggregating over, and
position them all at the earliest possible start time for
the individual FO. An intuitive illustration of start
alignment can be seen in figure 5.
From the figure it is very clear to see, that we might

Figure 5: Illustration of start alignment

get aggregated FOs which are very large in terms of
the duration of the aggregated FO. This means that
we are forced to spend energy in a lot of hours, and
it is likely that we might be forced to charge in hours,
where the energy prices are high. Start alignment
runs in linear time O(n · d) where n is the number of
FOs and d is duration of the FO.

4.2 Flexibility alignment

With flexibility alignment, we aim to preserve as
much flexibility of the individual FOs as possible.
Production of electricity from RES cannot be moved
in time, but flexible energy consumption can [7]. As
such, preserving as much flexibility in the aggrega-
tion process allows for better utilization of energy
from RES.

Figure 6: Illustration of flexibility alignment

We calculate the flexibility of a FO using the fol-
lowing equation:

Flexibility f =
1
d ∑

t∈T

(
emax

t − emin
t

)

Where emax
t corresponds to the maximum con-

sumption of the timeslice in the FO at time t. Like-
wise, emin

t corresponds to the minimum consumption
of the same timeslice in the FO. T is the set of all
timeslices in the FO, and d = |T| represents the dura-
tion of the FO. This definition is a refinement of the
energy flexibility metric introduced in [26]:

EF =
d

∑
t=1

(
emax

t − emin
t

)

Our version uses a normalization by duration d,
yielding a per-time-unit average, enabling compari-
son across FOs of variying lengths and allowing for
benchmarking at a system level. For a given set
F of FOs which we want to align using flexibility
alignment, the alignment which maximizes the total
flexibility is selected:

Flexibility align(F) = Maximize ∑
f∈F

Flexibility f

While flexibility alignment heuristics have been
explored in previous papers, we extend them in a
few ways [7][3]. First we introduce a tunable offset
variable, enabling users to choose the number of
candidate offset positions to be evaluated when
aligning two FOs. This allows a trade-off between
computational cost and flexibility. This makes
our method adaptable for different fleet sizes and
runtime requirements. Furthermore we also use a
min-priority queue to always merge and keep track
of the least flexible FlexOffers first. We simply call
this fast flexibility alignment as show in algorithm 1.
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Algorithm 1 Fast Flexibility Alignment

Input: List of FlexOffers F = [F1, F2, . . . , Fn], number
of candidate offsets k

Output: Aggregated FlexOffer FA
1: Initialize a priority queue Q with

(flexibility(Fi), Fi) for all Fi ∈ F
2: while |Q| > 1 do
3: Pop the two least flexible offers Fa, Fb from Q

based on est and lst
4: Fbest ← None, minCost← ∞
5: for each offset δ in k candidate offsets do
6: Ftemp ← Merge(Fa, Fb, δ)
7: cost← Flexibility(Ftemp)
8: if cost < minCost then
9: minCost← cost, Fbest ← Ftemp

10: end if
11: end for
12: Insert Fbest into Q with updated flexibility

score
13: end while
14: return Final aggregated FlexOffer from Q

Where the Flexibility metric measures the amount
balance in the FlexOffer that we want to optimize.
we simply measure the average power in each of the
profile P, and divide by the duration of the FO. Here
we try to stack as much amount flexible as possible
in a few hours, while still retaining time flexibility
allowing for shift.

AbsBalance(F) =
P

∑
i=1

∣∣∣∣∣ pmin
i + pmax

i
2

∣∣∣∣∣
We merge flexoffer Fb on Fa with a given offset δ

like this:

• Determine the combined length from the earliest
start of the two to the latest end when one is
shifted with δ

• Initialize a new profile with that length.
• Flexoffer F′as min and max power slices are

added directly to the new profile.
• Flexoffer F′bs power slices are then added with

the shifted offset δ taken into account.
• The new EST of the AFO is the latest of both

individual ESTs.
• The new LST is the earliest of the individual

LSTs among the FOs
• The total energy constraints are summed from

the two original offers.

4.3 Clustering

In order to group similar FOs, we experimented with
a set of different clustering algorithms:

4.4 Bottom up agglomerative clustering

In this approach we are essentially building a tree-
like structure. The FOs are sorted based on its struc-
ture, such as earliest start time and latest start time,
and a tree is then build on top of this sorted list of
FOs. We continue building up the tree, until we reach
the number of clusters we desire. This is done by
always merging, the most similar clusters.

4.5 k-means clustering

In the k-means algorithm, the goal is to separate
X datapoints (Our FOs), into k clusters. A point
belongs to the cluster, which cluster center is closest
to the point. Whenever a point is added to a cluster,
it moves the center of the cluster it was added
to, which means that we need to run quite a few
iterations of the algorithm, until we are sure that the
cluster centers are not moving anymore [27].

We split the clustering from aggregation and allow
different sets of clustering methods like, k-means and
dbscan in addition to our implementation of bottom
up clustering. All clustering are based on the same
set of features that is [earliest start, latest start, end
time, and average energy requirement in each slice].
Our implementation also supports dynamic cluster-
ing, where the number of clusters is selected based on
quality criteria such as silhouette score. This yields
an overall data-driven approach to clustering. To
further improve runtime, we use parallel aggregation
for FOs. Here we distribute clustering and alignment
across multiple CPU cores.

4.6 Dynamic clustering

In order to improve clustering quality, we implement
a dynamic clustering strategy. Here we iterate over
a number of cluster counts k ∈ [kmin, kmax]. We eval-
uate the results of each clustering by its silhouette
score, which measures how well separated the clus-
ters are. The number k that yields the highest score
is then the actual number of clusters used the final
clustering (which will be final number of AFOs).

The silhuette score is defined as

s(i) =
b(i)− a(i)

max(a(i), b(i))

where a(i) is the mean intra-cluster distance between
point i to its cluster center, where the distance is
measured as the difference between features such as
[est, lst, end, and energy balance]. Similarly b(i) is
the mean nearest cluster distance.
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Algorithm 2 Dynamic Clustering

Input: List of FlexOffers F = [F1, F2, . . . , Fn], Range
of clusters count k = [kmin, kmax]

Output: List of k clusters
1: kbest ← None
2: score_best← −∞
3: for each k in[kmin, ..., kmax] do
4: clusters, labels← cluster_offers(offers, k)
5: score← eval_silhouette_score (clusters, labels)
6: if score > score_best then
7: score_best← score
8: kbest ← k
9: else

10: break
11: end if
12: end for
13: final_clusters, _← cluster_offers(offers, best_k)
14: return Final Clusters to be aggregated

4.7 Scheduling

After aggregation produces a set of AFOs, they are
input in the scheduling phase where they are bid
and dispatched in the energy markets. Depending
on a chosen strategy, we solve one of three linear
programming problems. We assume perfect price
forecast knowledge, to isolate the aggregation logic
impact on costs from forecasting errors.

In all cases, the scheduling LP is built with AFOs,
and not FOs. This is done to limit the number of
variables and constraints, such that the scheduling
runtime is negligible compared to the aggregation.
Decision variables and parameters are seen in section
3.2.

• Joint: A single LP allocates energy for spot mar-
ket, mfRR reserve and activation market simul-
taneously, maximizing profits.

• Sequential: First a single LP optimizes reserve
capacity bids, and only then does a second LP
allocate energy on the spot market energy, while
ensuring that we meet the fixed reserve bids
from the first LP pass.

• Spot only: A single LP program optimizes for
spot energy only, minimizing the cost. This
is used as a baseline for comparing the other
modes.

5 Evaluation

In this section we evaluate the runtime performance
and economic benefits in multiple markets of our
aggregation and scheduling framework.

Figure 7: Optimal cluster amount

5.1 Method

To evaluate the performance of our EV scheduling
framework, we simulate an electric vehicle (EV) fleet
over a one-month period, using synthetic input data.
For each day, we generate FOs or DFOs based on
sampled EV behavior and then optimize their par-
ticipation in the day-ahead spot and mFRR reserve
markets, through clustering and aggregation and the
different LP programs described in section 4.7.

Fleet Simulation and Offers Each EV in the fleet
generates a flexible charging schedule using proba-
bilistic sampling of:

• Arrival and departure times (sampled between
18:00 and 10:00) drawn from a log-normal distri-
bution [28] [29].

• Arrival SoC, drawn from a uniform distribution
[30] between 0.3 and 0.5.

• Target SoC bounds is set to a uniform distribu-
tion between 0.8 and 0.9

Each day we compare 3 market strategies,

• Joint: A single LP solves a co-optimization prob-
lem for both spot and mFRR simultanously.

• sequential: optimize for reserve market first,
then spot-market.

• spot only: optimize only the spot costs in the
day-ahead.

All 3 strategies are evaluated under two time res-
olutions (15 min and 60 min). We use real prices
from Nordpool and Energinet CSV archives for spot,
mFRR and balance activation prices in the DK1 area
for the entire month of January of 2024.

Aggregation and scheduling We aggregated our
EVs into 15 clusters based on the clustering results of
our dynamic clustering shown on fig 7, which shows
that 15 clusters yields the best score for well sepa-
rated clusters for 500.000 EVs. We then aggregated
each cluster to convert them into AFOs.

Baseline and Optimal Models Our baseline mode
charges each EVs naively starting at the earliest start
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time, without reserve participation (only spot market)
until their charging requirements are met.

The theoretical optimal strategy solves a full LP
on non-aggregated DFOs participating in all markets
with the same market rules.

Metrics We use the following metrics:

• Total savings (%):

Savings =
Cbaseline − Cscheduled

Cbaseline
(3)

where Cbaseline is the cost under a naive spot-
only baseline, and Cscheduled is the optimized
schedule cost.

• Percent of theoretical optimal (%):

% of theo. opt =
Cscheduled

Copt
(4)

This measures the economic gap between our
aggregated strategy and an ideal MILP using
non-aggregated DFOs. This metric is only com-
puted for small fleet sizes (N ≤ 1000) as it is
computationally inefficient for larger fleet sizes.
We therefore assume that the % of theoretical op-
timal we get is independent of the fleet size. It is
important to note that here we still use perfect
foresight, so that the difference is truly between
non-aggregated and aggregated FOs and DFOs.

• Runtime (seconds): Aggregation and schedul-
ing times are measured.

Scenario Configuration We run all possible combi-
nations of settings for each day, where each setting
is a possible combination of the following variables.
We do this for a month then average values for each
day.

For each scenario and day:

• We simulate the fleet and generate FOs/DFOs.
• We cluster, align, and aggregate offers.
• We schedule them via LP (joint or sequential).
• We evaluate performance and savings in each

market.

5.2 Results and discussion

Runtimes Figure 8 and 9 show the total different
runtime from FlexOffer creation to scheduling of
aggregated offer for 15 minutes granularity and 60
minute granularity respectively for different aggre-
gation setting. At 15 minute granularity, the normal
flexibility alignment grows steeply with fleet size
while flexibility_fast, start, and DFO remain under
∼80 seconds at 500 k EVs. Furthermore the agglomer-
ative clustering is only slightly slower than k-means,
however it is still respectable, since we can prove that

Figure 8: Mean total runtime versus fleet size at 15 minute
resolution. (a) Comparison of four alignment/DFO aggregation
methods—classic flexibility (blue), fast flexibility (orange), start
alignment (green), and DFO aggregation (red). (b) Comparison
of two clustering algorithms—k-means (blue) and agglomerative
(orange).

Figure 9: Mean total runtime versus fleet size at 1 hour resolu-
tion.

agglomerative respects earliest and latest start time
thresholds, whereas k-means cannot guarantee those
thresholds are always maintained.

Figure 10 breaks down the execution time of each
step (excluding the initial simulation of EVs), doing
this we see the bottleneck as the fleet size increases.
The key takeaway is that after about 50 000 EVs,
the time spent aggregating FOs is much higher than
both clustering and scheduling. This means that
optimizing aggregation will yield the largest gains
for large-fleets. It also means that for large fleets,
more precise clustering could be a good idea since it
is not the bottleneck.

5.3 Savings

Figure 11.a illustrates how alignment strategies affect
cost savings compared to the naive baseline in a box-
plot. Here we average over all market modes. The
median saving for for flexibility alignment is about

Figure 10: Percentwise runtime of each part in the pipeline
excluding simulation (drawing charging windows from distribu-
tions, loading prices, etc.
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MODE Joint, sequential, spot
TIME_RES 15 min, 1 hour
NUM_EVS 10000, 100000, 500000
NUM_CLUSTERS 15
ALIGNMENT Flexibility, Flexibility_fast , start
CLUSTER_METHOD agglomerative, kmeans

Table 1: We run all possible settings for every day in a month, then take the average for every day

Figure 11: a) Cost savings compared to a naive baseline. b) FO
savings by mode

5.6% DKK compared to the naive baseline. Further-
more we see that about 50% of all savings lie between
4.5 to 6 % indicated by the box. This captures market
volatility as prices can change much from day to day.
Choosing different alignments seem to have a slight
affect on the overall flexibility on the market, but
the main takeaways are that flexibility alignment is
better than start alignment, and that flexibility_fast
heuristic loses almost nothing compared to the slow
flexibility heuristic. Here we have set the number
of candidate offsets to be 5 for fast_flexibility. DFOs
are not shown in the image as they do not use align-
ments, however when we use DFOs we can capture
up to 40% savings in best case scenarios, showing
that DFOs are much better at capturing and keeping
flexibility when aggregated. Figure 11.b shows how
much of a difference the reserve and activation mar-
ket presents when we use the joint model compared
to our sequential reserve first model, which is even
worse than spot only. This shows that optimizing
for reserve first, even with perfect knowledge of the
activation prices is a bad strategy, since we mostly
ignore better spot prices.

pct of theo.opt and Market Contributions Table 1
summarize the effectiveness of our aggregation and
scheduler versus the actual theoretical limit we could
attain by scheduling unaggregated DFOs in the joint
solver in all markets. DFOs substantially outperforms
the FO in all settings, and the joint optimization is
generally better than sequential for profits. Lastly
we also note that clustering only has a minor effect

compared to the type.
Table 2 summarizes market contributions under

both joint and sequential optimization. As expected
we see that when we run reserve first in sequential,
we gain much more potential activation revenue. The
model sacrifices spot revenue to gain more flexibility
for activation bids

Table 2: Average % of Theoretical Maximum, grouped by Type,
Mode, and Clustering Method (FO aggregation is flexibility_fast)

Type Mode Cluster Method Avg. % Optimal

DFO joint dbscan 91.02
DFO joint k-means 90.13
DFO joint agglomerative 92.14
DFO sequential dbscan 86.65
DFO sequential k-means 82.98
DFO sequential agglomerative 87.92
FO joint dbscan 73.90
FO joint k-means 70.73
FO joint agglomerative 73.88
FO sequential dbscan 70.15
FO sequential k-means 67.88
FO sequential agglomerative 70.91

Table 3: Average Market Contributions (%) by Type and Mode

Mode Spot (%) Reserve (%) Activation (%)

joint 89.25 7.20 3.55
sequential 24.24 50.54 25.22

6 Conclusion

We have shown that smart aggregation of EVs flexibil-
ity via FOs makes it feasible for aggregators to partic-
ipate in the danish spot, mFRR reserve, and balance
activation market by making profitable scheduling
decision in under 1 hour for 500.000 EVs and beyond
for a 15 minute resolution. Specifically, by align-
ing individual EV charging windows into AFOs we
showed through multiple simulations that a flexibil-
ity_fast alignment can be used to aggregate multiple
FOs into 15 AFOs in less than a minute, and still be
profitable in the 3 mentioned markets, boosting bids
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by up to 70% of theoretical max profits for FOs and
up to 92.14% for DFOs.

The key takeaways is that fast_flexibility is usually
better than normal flexibility alignment given that it
runs much faster and keeps almost all of the flexibil-
ity. Furthermore if we aggregate down to 15 AFOs,
then co-optimizing a joint market is better than a se-
quential market, since the savings are higher and the
runtime is negligible. Lastly we observe that DFOs al-
ways achieves higher savings and only takes slightly
longer to compute than FOs with flexibility_fast.

6.1 Future work

Renewable Uncertainty: Extend the co-optimization
model to incorporate wind and solar forecast errors
(e.g., via chance-constrained programming), enabling
more aggressive yet safe bids in reserve markets.

Uncertain Flexoffers: incorporate Uncertain Flex-
Offers into clustering and aggregation and measure
its potential savings compared to DFO and FO. [9]

Grid Constraints: Extend hierarchical aggregation
such that that we respect local distribution limits in
areas (by making individual areas their own clus-
ters)), ensuring that AFOs remain feasible as EV pen-
etration grows.

Scalability Trials: Make a pilot approach to vali-
date that the runtime remains for low for 15 minute
resolutions in real time scenarios with potential chal-
lenges (such as communication latency, data privacy,
etc.).

6.2 Github

The complete code for this project can be found
at https://github.com/orgs/cs-25-dt-10-03/
repositories. All repositories belonging to the
organization, is a part of this project.
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