Evaluating
Synthetic
Digital Twin
Data Quality

A NO-REFERENCE APPROACH USING
A PRETRAINED VISION MODEL &
A CUSTOMIZABLE DATA GENERATOR

AAAAAAAAAAAAAAAAA
||||||||||



This page is intentionally left empty



AALBORG UNIVERSITET
STUDENTERRAPPORT

Title:

Evaluating synthetic digital twin data
quality: A no-reference approach using
a pretrained vision model and a cus-
tomizable data generator

Theme:
Masters Thesis

Project Period:
01/02/2025 - 27/05/2025

Project Group:
Medialogy 10th Semester Group 04

Participant(s):
Rebecca R. Hansen &
Sebastian M.L. Whitehead

Supervisor(s):
Ivan A. Nikolov

Copies:
Page Numbers:

Date of Completion:
27/05/2025

10th Semester
Aalborg University
Rendsburggade 14
9000 Aalborg
http://www.aau.dk

Abstract:

The use of synthetic data is becoming more common as com-
panies realise the workflows it facilitates. This, however,
poses a difficult and yet somewhat unanswered question:
How can someone, without the use of trial and error model
training, evaluate the quality of synthetic data for any given
use case? Herein, how can developers evaluate where their
development efforts are best dedicated to achieve the high-
est performance for their efforts. It is these questions that
this paper seeks answer, by exploring existing quality evalu-
ation methodologies. Based in those, it is posited that perfor-
mance of models trained on natural data, reflects the quality
of digital twin synthetic data implementation. To evaluate
this, a digital twin environment of an open-source vision
dataset was created, equipped with a number of degradable
parameters, herein: lighting quality, texture resolution and
polygon count. 37 test datasets were generated, totalling
~ 7400 images and tested with a model trained on the nat-
ural data. By comparing the performance of the degraded
datasets to the highest quality twin dataset, this paper shows
a statistically significant decline in performance, indicating
that the performance of a model trained on natural data does
reflect the quality of said data. This is reflected through fur-
ther testing, as models fine-tuned on the datasets showed the
greatest difference which had orders of magnitude greater
performance decline.

While there is a significant performance impacts, this work
fails to show a significant breakpoint in performance. It
is hypothesised that this lack of significant breakpoint was
caused by visual class diversity and differences. This is re-
flected in the fact that when evaluating the performance
of individual classes, breakpoints where present across all
three degradation types. Due to these findings, this pa-
per concludes that the proposed no-reference methodology
shows merit as a means for digital twin quality assessment,

potentially enabling developers to direct their efforts, such

to enable best performance for the invested resources.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

author.
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Preface

This document functions as documentation for the work conducted in connection with the
10th semester Masters thesis at Aalborg University Medialogy. It covers the work of both
participating group members and is provided in conjunction with the created programs de-
scribed herein. These programs are available through links provided in the Appendix section
of this rapport. Overall, this rapport focuses on themes of synthetic data, machine learning,
vision and data quality analysis. The authors earnestly appreciate any constructive feedback,
suggestions, or corrections from readers and hope the provided research provides useful
findings for future work.
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Chapter 1

Introduction

Artificial intelligence (AI) has become more and more prevalent in society, and many compa-
nies are transitioning to automating tasks using Al. To create these systems however requires
a lot of data to have them perform well. Such data is often expensive, time consuming and
in some cases unethical to gather. For vision tasks, images or videos are required for training
such a model, and gathering thousands or millions of labelled data points is a difficult task
when the data needs to be representative, varied, and include edge cases for generalizability
[Whang et al., 2021]].

To this extent, many have seen that the process of gathering visual data could be au-
tomated by using synthetic data [Mumuni et al., 2024, Man and Chahl, 2022]. This can be
done using methods such as generative Al, through tools such as Generative Adversarial
Networks [Goodfellow et al., 2014, Zia et al., 2024]], or by creating purpose-built virtual en-
vironments and capturing images, videos, and data points from that [Mumuni et al., 2024,
Qiu et al., 2017]]. The creation of synthetic data at a level comparable to natural data, thereby
minimizing the reality gap, is a continuing research field. Topics such as, Investigating how
to mimic natural data, quantify the quality of the data, and evaluate how Al models perform
when trained on synthetic data [Mumuni et al., 2024, Tremblay et al., 2018] are still actively
researched. Currently, it is quite difficult to generate synthetic data to the level required
to train a model that will be used on natural images or videos. A large part of this dif-
ficulty lies in testing the quality of synthetic data and its resulting effect on model perfor-
mance, as it commonly requires extensive implementation and training time to obtain such
results [Mumuni et al., 2024, Singh et al., 2024]. To this extent, this project proposes a no-
reference [Shaoping Xu and Min, 2017]] data quality assessment method to evaluate synthetic
images based on the performance of existing natural-image-trained vision models.

This project functions is a proof of concept, testing if synthetic data quality can be mea-
sured using an object detection model trained on natural data. This was tested by capturing
image based synthetic data, through Unity’s perception package, in a purpose built envi-
ronment. Built such to enable control of three vision oriented parameters, Lighting Quality,
Texture Resolution and Polygon Count permitting the parametric control of the reality gap.
The environment was built to mimic an externally sourced beverage dataset, of which a
YOLOvV11 model has been trained on. To test this, 37 test datasets of 201 images were gen-
erated, each representing an isolated level of parameter degradation. In general, seeing a
decrease in model accuracy would represent an increase in the difference between the data
the model was trained upon and the test set. In combination with the assumption that the
data used to train the model is of a sufficiently high quality, a decrease in performance would
be equivalent to a decrease in image quality. Beyond this, a breakpoint in model performance
was sought after, described as the point at which one receives highest resulting performance



from invested resourceﬂ Finding this breakpoint would prove the methodology’s proposed
use case of function as a preliminary testing phase during the creation of large scale vision
datasets.

For testing, the utilized YOLO model was given each of the aforementioned datasets, and
the output’s accuracy was evaluated. Through this, it was observed that most parameters
did not show statistically significant change / degradation. However, this was not true for 3
datasets: DwS-0.4, DwS-0.2, Worst. Two polygon count decimation datasets at the strongest
tested levels and Worst which was the accumulation of all parameter degradations at the
strongest effect. From these findings, it was shown that there is potential merit in the pro-
posed method, as results generally worsened when exposed to higher levels of degradation.
However, while plausible, the method is believed to understate the impacts each degradation
parameter has on a model resulting from the respective data’s use in training. Simply degrad-
ing one parameter in the majority of cases was shown to not degrade the respective accuracy
significantly. To compare against, the worst dataset was used to fine tune a model derived
from that used in testing. The decreases in its performance were orders of magnitude more
significant, when compared to a similar model fine-tuned on the Best quality dataset, than
that shown through the proposed testing methodology. It was intended that a similar fine-
tuned model was to be created for each degradation parameter’s breakpoints, however, no
such overall breakpoint was found through testing. Likely the result of the utilized dataset/
tield of interest.

Acknowledgements

Al was used during the process of writing this report. Its use pertained to: Source finding and

citing, reformulation of sentences, formatting of the report, code debugging and code restruc-

turing. The Als used are: ChatGPT[OpenAl, 2025], CoPilot[Microsoft-Corporation, 2025],

Primo (AAU Bib Al search engine)[Aalborg-University-Library, 2024] and Goblin Tools[Buyser, 2023].
At no point, however, were an Al’s findings, opinions and generated text taken as fact, with

it merely functioning as an assistant in all the aforementioned use cases.
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Chapter 2

Background Research

This chapter seeks to answer the following;:

What objective metrics or analytical approaches can be used to evaluate the quality of
synthetic image data, particularly in terms of its similarity to natural image data and its
later effectiveness for machine learning tasks?

Figure 2.1: Project Research Question

Herein, what means would a developer have to evaluate the quality of a synthetic data
implementation before investing resources in training a model.

Existing methods for assessment of both natural and synthetic image based data quality
will be researched, exploring how applicable such approaches would be for an under devel-
opment model. Additionally, this chapter will research the reality gap, its influence and how
one can manipulate it.

2.1 Image Quality Assessment

Ensuring the quality of gathered or generated data is essential for developing high-performance
vision machine learning models. In the context of natural images (NI), Blind No-reference Im-
age Quality Assessment (NR-IQA) strategies [Yan et al., 2013} |Golestaneh and Chandler, 2013,
Saad et al., 2012, Moorthy and Bovik, 2010, Talebi and Milanfar, 2018] leverage known distor-
tion effects, such as blur, noise, and compression, to evaluate the quality of datasets and
instances of real data. These methodologies are referred to as Natural Image Quality Assess-
ment (NIQA) [Talebi and Milanfar, 2018]. However, it is important to note that they do not
address generation artifacts or biases present in synthetic data [Gu et al., 2020]. This being
due to such defects not being present in NI, as they are caused by the generation process.
Such challenges and benefits, of a variety of data evaluation metrics, will be further discussed
in the following subsections.

2.1.1 Full-, Reduced- and No Reference Quality Assessment

Image quality metrics can be divided into three categories, based on the extra image informa-
tion needed for the assessment. They are often compared to subjective human evaluations of
image quality, which is used as a baseline for how well the models perform[Ding et al., 2014,
Shaoping Xu and Min, 2017, Sheikh et al., 2006]. A flow diagram of the different categories is

visualized in
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Figure 2.2: Flow diagram showing the differences between full-, reduced - and no-reference image quality assess-

ment. Source: Atidel et al. [Atidel et al., 2017

Full Reference (FR) requires the ground truth image, to compare with the image which qual-
ity is being assessed[Ding et al., 2014]. Images are compared one to one.

Reduced Reference (RR) requires some information from either a ground truth image or a
collection of similar real images. Features are extracted from the image(s), which will be the
base of the quality assessment.[Shahi et al., 2022]

No Reference (NR) does not require any extra image input as part of the quality assess-
ment [Shaoping Xu and Min, 2017]. It is often called "blind assessment”. These methods,
while efficient, grow progressively more complicated and subjective as they rely solely on the
image itself, without ground truth or reference data for comparison.

2.1.2 Natural Image Quality Assessment

Focusing on natural or "real images" the quality assessment can be achieved through two main
methodologies; Subjective human assessment of image quality (NR and FR) [Murray et al., 2012,
[Pei and Chen, 2015] and CNN assessment trained on annotated human assessment labelled
datasets (RR [Talebi and Milanfar, 2018]], NR [Mittal et al., 2012, Mittal et al., 2013] and FR
[Eskicioglu and Fisher, 1995]).

The paper NIMA: Neural Image Assessment[Talebi and Milanfar, 2018] describes such a
reduced reference CNN approach, which evaluates visual quality. Trained on two labelled
human assessment datasets [Murray et al., 2012, Pei and Chen, 2015], the model derives its
quality assessment score from human opinion. Their implementation modified image clas-
sification architectures. Specifically, they replace the last base layer of the model with a
"Fully-connected layer with 10 neurons followed by soft-max activations”, the weights for this layer
are initialized by training on the ImageNet dataset [Krizhevsky et al., 2012] and later refined
on the aforementioned human rating datasets. [Murray et al., 2012, [Pei and Chen, 2015]

The NIMA model boasted leading AVA predictiorﬂ accuracy at the time, being only
matched in prediction accuracy by [Ma et al., 2017] using a more complex CNN type model.
Both boasting accuracies slightly greater than 80 during testing%. [Talebi and Milanfar, 2018]

1" A Large-Scale Database for Aesthetic Visual Analysis



Scoring Frameworks

To assess the quality of natural images, multiple frameworks have been proposed and refer-
enced throughout related scientific research. Such frameworks attempt to define fixed mea-
surement metrics to measure image quality against, two of the more popular frameworks are
as follows.

PSNR: A full-reference quality metric, “Peak Signal to Noise Ratio” measures the quality of re-
constructed or compressed images and videos. It attempts to quantify how much a processed
image deviates from the original by comparing pixel differences. [Eskicioglu and Fisher, 1995|
It is important to note, that PSNR score does not relate to perceptual quality but rather per-
pixel comparisons.

SSIM: Another full reference quality assessment metric, the Structural Similarity Index con-
siders structural information, luminance and contrast, generally aligning it more with human
vision and perception rather than mathematical differences. [Wang et al., 2004] While this
metric aligns more with human perception, there is no direct correlation between human
perception scores and SSIM scores.

Original PSNR=26.547 PSNR=26.547 PSNR=26.547
SSIM=1 S$SIM=0.988 SSIM=0.840 55IM=0.694

Figure 2.3: A visual comparison between PSNR and SSIM scores [Data Monsters, 2017]]

2.1.3 Synthetic Image Quality Assessment

The research on the quality assessment of synthetic data instances is quite limited, with the
most relevant methodology found in generative image quality assessment [Gu et al., 2020].
This framework simplifies the evaluation of generated data quality into two primary met-
rics: the Quality Score [QS] and the Diversity Score [DS]. In contrast, other approaches to
synthetic data analysis typically aggregate these two values rather than assessing them sep-
arately [Gulrajani et al., 2017, [Heusel et al., 2018]. These metrics serve as direct indicators of
the performance of generative models.

Quality score evaluates the realism of the data. Traditionally, similar scores have been tested
through scoring systems involving human participants [Ding, 2018} Lévéque et al., 2020]. More
recently, the predominant approach has utilized CNNs to assess perceived data quality.
[Kang et al., 2014, Kang et al., 2015, Bosse et al., 2016]

Diversity score assesses the relative distribution of a synthetic dataset in comparison to a
real-world distribution, indicating the likelihood of a data instance appearing in both real and



synthetic datasets. Ideally, the distribution of the generated dataset should closely resemble
that of a corresponding real-world dataset, as low diversity or significant skew can adversely
affect the performance of detection models. [Gu et al., 2020]

Scoring Frameworks

To assess the quality of generated images, two quantitative metrics were developed and now
widely used: Inception Score (IS) and Fréchet Inception Distance (FID)[Sato and Imura, 2017,
Gulrajani et al., 2017, Heusel et al., 2018]. These metrics evaluate the quality of a collection of
images, rather than the quality of each individual generated image.

Inception Score: IS is used to assess images using a pre-trained Inception v3 classifier,
which is trained on a dataset of 1.2 million RGB images with over 1000 classes. It anal-
yses the label distribution of the Inception v3 model for each individual image, and then
measures how confidently the classifier assigns the labels. It evaluates how diverse the
labels are on a set of images. A higher score means a higher quality and more diverse
dataset.[Barratt and Sharma, 2018} Gulrajani et al., 2017]]
It is widely used to evaluate the sharpness and diversity of sets of generated images. IS can
only be used on sets of images, so it cannot give a usable score for an individual image.
[Barratt and Sharma, 2018, |Gulrajani et al., 2017]]

IS is a no-reference metric (see section , as it is based on a model trained on real data,
but does not compare images one to one using ground truth images during the evaluation.

Fréchet Inception Score: FID compares the statistical properties of real and generated im-
ages. It uses a pre-trained Inception-v3 model, which takes in real and generated images and
extracts features from them. It computes the Gaussian distribution for each dataset (real and
generated). The mean and covariance are computed and used to generate a FID score for the
generated dataset.[Heusel et al., 2018, |Obukhov et al., 2020]

FID relies on the assumption the generated images follow a normal distribution, and
will only give insight on a collection of images, rather than each image separately. Be-
sides needing a pre-trained model, FID also requires reference images[Heusel et al., 2018,
Obukhov et al., 2020]. These do not have to be ground truth images for each generated im-
age, but needs to be a representation of the data the generative model is trying to create. This
falls under reduced-reference metrics (see section ).

214 Computer Graphics Quality Assessment

Synthetic image quality assessment is a specialized area that concentrates on CGI. While
previous studies have utilized human perception in controlled environments to create IQA
databases. [Zhang et al., 2023] This approach is beginning to be seen as old-fashioned. Recent
advancements have demonstrated potential in utilizing learned discriminators to effectively
differentiate between natural and unnatural data instances [Sato and Imura, 2017]. Sato et al.
successfully applied such a discriminator to a probability derived from 100 CNN discrimi-
nators, enabling them to rank images based on perceived realism (QS), and to distinguish
between instances of NI and simulated CGI.



(a) CGImage A (b) CG Image B (c) Real Image R

Figure 2.4: 2 CG- and 1 natural-images used for testing of the CGIQA approach [Sato and Imura, 2017
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Figure 2.5: The application of the probability discriminator applied to 2 CG and 1 natural images
[Sato and Imura, 2017]]

shows the images used by [Sato and Imura, 2017] as a test base for their im-
plemented approach to Image Quality Assessment. While [Figure 2.5/shows the three images
placed in order of their "realism" based on the model’s output probability of each image be-
ing natural. The illustrated curves show each image’s probability distribution based on the
outputs of the aforementioned CNN discriminators.

2.1.5 IQA Summary Table
summarizes the different IQA methods discussed in It includes the

methods features, a description, and an example of good and bad ranking images for each
method.



Table 2.1: Summary of IQA methods explained in

Method Name Image Type Reference Type Minimum testing Method Low Score High Score
quantity

NIMA Natural RR Dataset Trained CNN on la-

belled human assess-

ment datasets
GIQA Synthetic NR Singular Assess QS and DS sep-

arately

= :
[Gu et al., 2020]

CGIQA CaGI RR Singular Learned discriminators

ranking realism proba-

bility St

[Sato and Imura, 2017]




PSNR

Natural

FR

Singular

Compares pixel differ-
ences between a refer-
ence and distorted im-
age.

SSIM

Natural

FR

Both

Evaluates structure and
texture in addition to
luminance and contrast

ata Monsters,

Quality Score

Synthetic

NR

Dataset

Evaluates realism on
data using CNN (Com-
ponent of GIQA)

N/A N/A

Diversity Score

Synthetic

NR

Dataset

Compares relative dis-
tribution to a real-
world dataset (Compo-
nent of GIQA)

N/A N/A

IS

Synthetic

NR

Dataset

Pre-trained model
analyses label distri-
bution, diversity, and
confidence

[Gu et al., 2020




0t

FID

Synthetic

RR

Dataset

Compares the distri-
bution of features ex-
tracted from real and
generated images us-
ing a pre-trained Incep-
tion model, assessing
quality without a refer-
ence

——

[Heusel et al., 2018]




2.2 Adversarial approach to machine learning

While CGI used to be the only type of synthetic images, the advances in Al has made gen-
erating synthetic images possible. Generative adversarial networks (GAN) are the primary
approach of generating synthetic data. This is relevant for the research question, as they
utilize a form of quality assessment as part of their training. They are often described as
a model based on game theory [Goodfellow et al., 2014, [Yates et al., 2022]. GANSs train by
pitching two models against one another. A generator trying to deceive and the discriminator
trying not to get fooled. shows a flowchart of how a GAN functions made by Shah
et al.[Shah, 2022]

The generator starts off with no knowledge of what images to generate, so it will perform
very poorly. For every image it generates, commonly it will start with random noise. In the
early training, producing nothing remotely resembling natural data.[Goodfellow et al., 2014,
Yates et al., 2022, |Alibani et al., 2024]

The discriminator on the other hand receives a mix of images from a real dataset and from
the generator. It grades how real or generated it believes each image is, outputting a value
between 0 and 1. 1 conveying certainty a given instance is real, 0 that it is certain it is gener-
ated and 0.5 it does not know.[Goodfellow et al., 2014, Yates et al., 2022, |Alibani et al., 2024,
Shah, 2022]
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Figure 2.6: A flow diagram illustrating the internal workings of a simple GAN model [Shah, 2022

Due to the fact that the generator does not know what to generate initially, the discrim-
inators job is initially easy. The generator uses the value outputted by the discriminator to
guide its change, becoming better. As the generator improves, and starts generating im-
ages more similar to the dataset, the discriminator will start to struggle. Now, the rela-
tionship flips, with the discriminator needing to improve its ability to distinguish real and
generated images. Both models will continue to improve themselves, based on the output
from the other model. An example of a GAN model’s learning progress can be seen in
It shows how it starts with random noise, but learns to generate numbers[Deng, 2012
through multiple learning iterations. The models are theoretically done learning, when
it becomes impossible for the discriminator to distinguish between natural and generated
images.[Goodfellow et al., 2014, Yates et al., 2022, |Alibani et al., 2024]

11



50 epoch 150 epoch

Figure 2.7: Example of a GAN improving its image generation, using the MNIST number dataset[Deng, 2012]

2.3 Performance of Models Trained on Synthetic Data

In evaluating the quality of training images, understanding how their use in a resulting ML
model would influence its performance is important. To this extent a comprehensive study
by [Singh et al., 2024] showed that when done correctly, models trained on purely synthetic
datasets can perform comparably to models trained on purely synthetic data. This, however,
does come with a number of caveats.

Through their research, [Singh et al., 2024] tested three training methods, Supervised, Self
Supervised and Multimodal. They concluded that, specifically, the self supervised and multi-
modal training methods achieved the aforementioned comparable performance. Despite this
performance, the models showed a number of weaknesses. They saw the synthetically trained
model lagging behind in a number of robustness measurements including; calibration, out-
of-distribution detection, and adversarial robustness as well as a number of common image
Corruptionﬂ

To combat these deficits, the work of [Fan et al., 2023] is highlighted. Their approach com-
pared an array of dataset sizes (64M, 128M, 256M and 371M) consisting of Real, Synthetic or
a combination there of. By then comparing the performance between Real, Synthetic and
mixed datasets, they were able to conclude that while similar performance is seen between
Real and mixed datasets, both showing consistently higher accuracy’s than the purely syn-
thetic dataset, the mixed dataset showed greater robustness than both the real and synthetic
datasets. This can be seen as a possible remedy to the problems previously described in
[Singh et al., 2024].

In summary, while it is possible to achieve adequate model performance though training
a model solely on synthetic data, a number of deficits are commonly visible. These deficits
are easily exaggerated through poor data quality. They can be combatted by bettering over-
all data quality and or mixing natural and synthetic entries in the dataset. [Fan et al., 2023,
Singh et al., 2024, Dankar and Ibrahim, 2021, Mumuni et al., 2024, Dabiri et al., 2023} Seth et al., 2023,
Pozzi et al., 2024]

2.4 The Reality Gap

When evaluating the quality of synthetic images, the term "Reality Gap" cannot be avoided,
as it describes differences between natural and synthetic data. This is often equated to the re-

2 "Gaussian noise, shot noise, motion blur, elastic transforms, etc" [Singh et al., 2024]
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alism or quality of the synthetic data. There is an ongoing discussion among engineers about

the most effective strategies to address this reality gap. Many advocate for concentrating ef-
forts on reducing this gap to improve the realism of generated images. [Dankar and Ibrahim, 2021,
Richter et al., 2017, Sato and Imura, 2017, |Gu et al., 2020, Zhang et al., 2023} Bigand et al., 2018]
Conversely, some propose leveraging the reality gap as a means to enhance model gener-
alizability and mitigate model overfitting.  [Raj, 2024, [Dataversity, 2025, |[Chen et al., 2024,
Fan et al., 2024, Tronchin et al., 2023, Chang et al., 2024] This section will discuss the pros and
cons of both, despite this paper’s proposed premise advocating for the general reduction of

the reality gap.

24.1 Reduction of the reality gap

As previously stated, a significant number of studies emphasize the importance of reducing
the reality gap when producing synthetic data, applying to both generated and simulated
datasets. To support these endeavours, various metrics have been developed to quantify the
reality gap. One prominent example is FID (see [subsubsection 2.1.3), which employs the
Inception v3 model to compare the high-level feature distributions of two datasets.

Differing from pixel-wise similarity metrics, FID assesses the realism of generated images
by evaluating their high-level feature distributions in relation to real images. By utilizing
the Inception v3 model, FID captures both the average characteristics and variance of features
across a dataset, ensuring that not only individual images mirror real ones but that the overall
diversity and structure of the dataset correspond with reality. This capability makes FID
particularly adept at identifying issues such as mode collapse, where a generative model
yields a limited variety of images. [Heusel et al., 2018]

In contrast, the Maximum Mean Discrepancy (MMD) measurement adopts a distinct
methodology, concentrating on the comparison of feature means without explicitly address-
ing their internal structure. Unlike FID, which assumes a multivariate normal distribution
of features, MMD utilizes kernel methods to compare distributions more flexibly. While this
flexibility enables MMD to be employed across a broader array of contexts, it may also miss
nuanced differences in data distribution, such as variations in feature diversity or internal
correlations. [Johnson, 2025]

2.4.2 Reality Gap Manipulation

The primary reason for the intentional manipulation and slight expansion of the reality gap
is to improve the generalizability of the resulting model. By introducing unconventional or
physically impossible scenarios, specific types of datasets can achieve greater robustness than
when trained solely on real or hyperrealistic synthetic data. [Raj, 2024] This practice, some-
times referred to as impossible data generation, allows models to learn a broader range of fea-
tures and scenarios, thereby reducing their tendency to over-fit to narrow, real-world data dis-
tributions. [Dataversity, 2025| [Chen et al., 2024] The use of deliberately unrealistic synthetic
data not only increases the variety of training samples but also helps simulate edge cases and
rare occurrences that may be under-represented in real data. Studies have demonstrated that
this method enhances model performance across a wider range of conditions, particularly on
unseen or atypical examples. [Fan et al., 2024, Tronchin et al., 2023} Chang et al., 2024] It is
important to note that while this practice is becoming more common, especially in the context
of using synthetic data alongside natural data to augment and diversify datasets, it remains
an evolving approach. Researchers are continuously investigating how the manipulation of
data distribution - by intentionally increasing diversity or introducing contradictions to estab-
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lished real-world patterns - can push the boundaries of model learning and assist in mitigat-
ing biases or gaps present in real-world data.[Raj, 2024, Dataversity, 2025, [Chen et al., 2024
[Fan et al., 2024, Tronchin et al., 2023, Chang et al., 2024]
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Chapter 3

Design

From the research question described in chapter a hole in current knowledge was
found, which this paper will seek to fill. In general, there is a lack of approaches for evaluating
CGI synthetic data. Most methods fail in their generalizability to other use cases or require
excessive implementation to achieve. To this extent, this paper will investigate the utilization
of existing, purpose-built vision models as tools for assessing the quality of synthetic data
implementations.

We posit that the performance of a well-functioning model on a synthetic dataset serves as
an indicator of data quality.
Additionally, we believe that this quality metric directly reflects how a hypothetical model
would perform if trained on that same synthetic data.

Figure 3.1: Project Hypothesis

If this hypothesis is validated, this paper will aim to establish a minimum effective quality
requirement for visual synthetic data implementations. Ultimately, the goal is to delineate
the balance between implementation complexity and resulting model performance, enabling
future developers to allocate resources more effectively. This research intends to provide
best practices and a framework for future researchers to develop and evaluate their digital
twin outputs and synthetic data prior to utilizing them for training further models. Through
this approach, we aspire to reduce uncertainty and expedite the timeline from development
to utilization. This chapter will describe the design choices and planning of the systems
required to test the hypothesis, these include:

¢ The data generation system
¢ The testing system for evaluation

* The training system for verification

3.1 Model Choice

When choosing a model for use in testing the hypothesis in we seek a "solved"
problem field with a model, trained on natural data, capable of high mAP@50 scores. We
believe such a model would be most capable of judging data quality. Beyond that, the problem
field must be simple to replicate through simulation as high complexity environments would
prove both time consuming and resource intensive. This simplicity could likely prove useful
in reducing unforeseen parameters that could hinder the validity of such results.
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The first intention was to utilize a proprietary model from a partnered company / organ-
isation, however, such cooperation did not come to fruition. As such, turning to an open-
source model was required. After deliberation, the "Beverage Containers" object detection
project [Roboflow Universe Projects, 2024] and connected model was chosen. An example of
data from which can be seen in It boasts a MAP : 95%, Precision : 93.5% and
a Recall : 89.3%, according to Roboflow Universe[Roboflow Universe Projects, 2024]. To this
extent the model is performant enough to be used as a baseline for this project. Furthermore,
the data utilized is both natural images, and of environments and subjects simple enough to
replicate within the simulation platform. The noise objects within the data are fairly consis-
tent throughout the dataset herein also reducing the number of 3d models required.

3.2 Simulation platforms

There are a multitude of simulation platforms available each with varying degrees of graph-
ical fidelity, capabilities and flexibility. As such this project must choose a platform within
our means both time and resource wise. This section will weigh a few prominent platforms
against one another, their respective pros and cons and finally which platform we choose to
utilize going forward.

3.2.1 Nvidia Omniverse

Considered the industry standard: The omniverse SDK’s cover a number of different be-
spoke implantations[NVIDIA Corp, 2024]. The platform enables engineers to simulate high
fidelity and highly realistic datasets for use in almost any environment. One of the most
graphically impressive, publicly available, examples of its use is the "da Vinci’s Workshop"
[NVIDIA, 2025] demo which was created through the use of a "filmmaking-like production pro-
cess” (see [Figure 3.2). This is especially relevant, as it is an example of a fully generated syn-
thetic environment, rather than a reconstructed scene, such as the autonomous driving dataset
which reconstructs real world recordings [NVIDIA Technical Blog, 2024, Mildenhall et al., 2020].
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Figure 3.2: 4 sample images generated through the omniverse pipeline [NVIDIA, 2025]

The omniverse platform consists of a number of programs and SDKs enabling a wide va-
riety of sensor emulations, rendering workflows, scene reconstructions and data generation
functioning both out of the box together with industry standard tool (Revit[Autodesk, 2025b],
Rhino[Robert McNeel & Associates, 2025[], 3DS Max [Autodesk, 2025al], etc.) as well as be-
spoke solutions such as that described in [NVIDIA Technical Blog, 2024].

Selecting this platform would be the most logical choice, were it not for two primary con-
cerns. Firstly, the cost is a significant prohibitive factor, as this platform is proprietary and
access-controlled. Gaining access, even under the premise of academic research, would ne-
cessitate a substantial financial or time commitment. Secondly, the documentation necessary
to understand the complete scope of such an implementation is secured behind a restrictive
paywall. This makes it innately difficult to choose this platform without further insight into
what the resource requirements for an effective implementation would be.

3.2.2 Kubrick

Kubric is an open-source platform developed by a Google research team led by Klaus Gref
[Greff et al., 2022]]. It facilitates the generation of high-fidelity synthetic data through a Python
[Python Foundation, 2023|] interface that controls a Blender[Blender Foundation, 2025] instance
to simulate and render environments. Kubric presents a viable option for organizations seek-
ing to simulate synthetic data at scale, offering notable graphical fidelity and scalability for
those interested in creating customized generation solutions. An example of Kubric generated

data can be seen in [Figure 3.3
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optical flow surface normals  object coordinates

Figure 3.3: Overview of data formats generable through the Kubric framework. [Greff et al., 2022]

However, it is important to note that the documentation for the Kubric platform has some
deficiencies. Significant portions of the documentation necessary for implementing a Kubric
environment are either sparse or entirely absent. While these limitations can potentially be
addressed, they may pose challenges and could be time-consuming. Consequently, while
Kubric is a preferable option for synthetic data generation, it remains untested and might
present certain issues.

3.2.3 Unity Perception Package

The Unity Perception Package [Unity - Perception Package, 2020] is a reliable platform that
facilitates data generation by offering labelling scripts and frameworks tailored for plug and
play use in game objects within a scene. When used in conjunction with the High Defini-
tion Render Pipeline [HDRP], the Perception Package provides a highly flexible and effective
open-source implementation platform.

INSTANCER | [ 30 BOUNDING
stGMENTATION | ©

semantic. | . - SURFACE
SEGMENTATION & ¥ NORMALS

LipaRr

Figure 3.4: Overview of collection formats available through the perception frame-
work [Unity - Perception Package, 2020]

However, a notable limitation of the Unity generation platform stems from its rendering
engine, which is oriented towards real-time performance across a diverse range of platforms.
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This focus may result in a compromise on graphical fidelity. While it is still possible to achieve
high-quality rendering, it often requires using the platform in ways that are not explicitly
aligned with its primary design objectives. This, though, may prove a non issue given the
testing parameters outlined in [subsection 3.3.1 A graphical example of generated data can

be seen in [Figure 3.4

3.2.4 UnrealGT

Unreal Engine can be used to create complex synthetic scenes with high customizability
[Epic Games, ||. It can be used to make highly detailed and realistic environments using its
lighting and shader features. An example of generated data output can be seen in [Figure 3.5|

The UnrealGT plugin provides a toolkit to make data generation easier[Pollok et al., 2019].
It uses a three-step process, where each step can be altered to fit the specific user needs.

Trigger is the first step, which will specify when to activate the Generator. The trigger can
be anything from time based to a motion sensor.

The Generator is a type of camera. it includes the normal settings for cameras in Unreal
Engine, as well as being able to save images with bounding boxes, outlines of the objects,
labels and more.

Streamers transports the images and information from the Generator to an external storage

or API. [Pollok et al., 2019]
The documentation for UnrealGT is unfinished, which can make it difficult to work with. The
package was last updated in 2022 and only supports Unreal Engine 4. Compared to Unreal
Engine 5, it has worse graphic quality and is not competitive with current rendering alter-
natives. An example of generated image and data can be seen in [Figure 3.5
it shows both colour image, segmentation image and depth images generated through the
unreal engine.

Figure 3.5: Example data created using the Unreal GT environment. Credit: Unreal GT[Pollok et al., 2019]

3.3 Simulation Requirements

In order to test the digital twin data quality, a natural data twin will decide the layout and
function of the virtual testing assembly. For this, a setup similar to that of was
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chosen, as it represents the most common layout found within the dataset. To summarize it
presents three major features:

1. Camera is placed near and almost level to the target objects
2. Target objects are prominent and forthcoming within the image
3. Few noise / non target objects, and even fewer which obscure the target objects.

While representative, this image does not encompass every image, as others represent a more
in the wild type composition. However, for the purposes of this test, it will function as the
baseline features which the simulation system seek to emulate in the generated data. Herein
creating a digital twin type environment.

Figure 3.6: Image "000000011742.jpg" from the natural dataset [Roboflow Universe Projects, 2024]

For the simulation to be complete, a number of features must be present. The base system
requires a data creation system and a number of labelled objects representing each of the
classes utilized by the chosen vision model detailed in[section 3.1} Beyond this, it is considered
best practice to randomize as many, non controlled, visual parameters as possible parameters
such as object placement, object distribution, camera placement, background, noise objects,
and lighting randomisation. Generally the greater the number of randomizations, the more
normally distrusted the data. From which a more robust model can be trained.

3.3.1 Adjustable Parameters

In order to test the hypothesis a number of control parameters must be implemented such that
they can individually be degraded for generation. This section will describe the parameters
which will be used to test the hypothesis, each of these parameters must be clearly degradable
and have clear definition of what is higher and lower quality for a realism standpoint.
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Lighting & Shadows: The lighting parameter encompasses several aspects, ultimately re-
flecting how accurately the rendered lighting implementation simulates real-world condi-
tions. While there is no singular numerical value that quantifies lighting quality, within
Unity’s HDRP, presets range from high-quality, non-real-time ray tracing implementations —
similar to those utilized in 3D modelling software — to greatly simplified lighting conditions
designed for real-time performance on lower-end systems. [Unity Technologies - HDRP, 2025
Specifically, the lighting and shadows parameters encompasses parameters pertaining to light
bounce calculations, showdown count, shadow resolution and ambient occlusion, among
many others. It is due to this complexity that this paper utilizes the presets defined by
[Unity Technologies - HDRP, 2025]], as it would be time intensive to implement these inde-
pendently.

Texture Quality: The Unity platform facilitates texture scaling natively through its mesh

renderer, allowing for the specification of maximum texture resolution. [Unity Technologies - HDRP, 2025]
A high texture quality means sharper and more readable textures on objects, where down-

scaling the texture may result is blurriness and effect the ability to identify logos and text. For

testing purposes, the highest texture quality will correspond to the native resolution of the

original texture, with each subsequent degradation level halving this resolution. Ultimately
culminating in an almost flat average colour representation of the texture.

Polygon Count: In the context of testing, the highest polygon count quality will utilize the

original model, with each quality level being progressively reduced. This is used under the
assumption that reducing the objects polygon count will affect how the 3d model appears, pri-

marily in a negative way when compared to natural objects. This should be achieved through
standardized decimation algorithms similar to that used in blender [Blender Online Community, 2025
In accordance to this high fidelity models will be utilized to avoid "low poly" or stylized mod-

els.

3.4 Testing system

In order to test the varying levels of graphical fidelity (described in [subsection 3.3.1) a mAP,
Precision and Recall evaluation program is required such that the vision model’s (chosen in
performance can be evaluated. For this to be possible, the program must facilitate
these calculations, for singular- as well as sets of images. To this extent, a python script
will be constructed using the Inference [Roboflow, 2025] package to retrieve the model, where
it will then be run upon the dataset and mAP@50, mAP@50-95, Recall and Precision score
can be calculated through the use of the supervision package[Skalski, 2024] and stored for later
comparison in a JSON file.

3.5 Training system

As a comparison point to the data which will be captured through the testing system de-
scribed in a system to train models is required. The intent is for it to train three
models to compare against one another. These models will be based on the, best performing,
worst performing and breakpoint test sets.

The breakpoint is considered the quality level with the highest performance for invested
resources. Resources in this case, refers to how complex an implementation of equivalent
quality would be. In combination with the assumption that the more simplistic the data,
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the easier an equivalent quality implementation would be to createE] To create equivalents
to these lower quality levels, this paper degrades the quality of the adjustable parameters
described insubsection 3.3.1

For comparability to the model used in a similar model is to be trained. This
will both enable a comparison against the testing model for a performance loss metric, as well
as against one another to determine the effects of data degradation. Alternatively, the use of
model fine-tuning may prove more effective for this purpose, as it would create a strong base
model. This model can then be refined upon each of the selected quality levels, resulting in
both lower training times and potentially better performance.

I The "resources" described here refer only to implementation complexity, however, while undocumented, imple-
mentation complexity often directly relates to cost and time. These are not included in the definition.
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Chapter 4

Implementation

The implementation of this project is primarily divided into two components: data generation
and object detection. For the data generation process, Unity was selected as the development
platform due to its familiarity, comprehensive documentation, and the availability of a dedi-
cated package for creating and annotating synthetic data.

Within Unity, degradation levels for various quality parameters were developed, which in-
fluence the visual appearance of each dataset. Two types of datasets were generated: "Wild"
and "Restricted." The "Wild" dataset features broad randomization boundaries, resulting in
more diverse images, while the "Restricted" dataset constrains randomization to better emu-
late the natural dataset.

A YOLOv11 model was trained on the natural dataset, achieving a mAP@50 score of 90%,
indicative of robust performance on actual data. This model was then utilized to evaluate the
synthetic datasets, with the aim of identifying a potential performance threshold or "break
point." Metrics such as mAP, recall, precision, standard deviation, and others were recorded
from the object detection results. Additionally, the original YOLOv11 model was further fine-
tuned to produce two new models: one trained on the best quality synthetic dataset, the other
on the worst quality dataset.

Testing the fine-tuned models on the natural dataset test set, in conjunction with the other
collected data, will help evaluate the hypothesis outlined in

4.1 Simulation

This section seeks to break down the unity implementation. Herein, discussing the target/non-
target objects, randomization measures, parameter adjustment systems and general scene
setup. The general flow diagram of the system is visible in First, the quality
parameters are manually set. Generation for a frame is then triggered, which causes a check
to see if max frame counter is reached. If it is, the program ends, if not, the program begins
generating an image. A location for the generation is chosen, followed by randomizing the
table and the camera’s position. A random selection of target and noise objects are spawned
into the scene at a random locations above the table and dropped onto the table. Once all
objects have reached a combined speed of ~ 0, the capture image command is run. The cap-
tured image and annotations are then saved, and all objects are removed. The frame counter
variable is incremented, and it returns to triggering the next frame generation. This loops
through until the max frames counter has been reached.
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Figure 4.1: A flow diagram illustrating the overall flow of the simulation program

4.1.1 Simulation Assembly

To generate each frame a virtual experimental setup consisting of objects and systems was
created as to facilitate this. An annotated overview of this assembly is visible in
It consists of the camera placement system (green zone), target object spawner (blue zone),
noise object spawners (orange zone), chair spawner (yellow zone) and table system (removes
grey square and places table at same scale and placement).

For the restricted dataset, the camera system was replaced with a system restricted to eight
placement locations and spawn areas were restricted and/or disabled. A similar annotated
diagram of this can be seen in which no longer includes chair and noise object

Spawn zones.
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(a) Top-down view of the wild simulation assembly (b) Top-down view of the restricted simulation assem-
bly

Figure 4.2: Top down view of wild and restricted simulation assemblies and spawn zones.

4.1.2 "Wild" Dataset

The initial version of the generated dataset features almost unrestricted camera placement
and an extensive object spawn area. This dataset aims to replicate real-world conditions
and imposes minimal constraints on camera or object positioning. Compared to the natural
dataset, this dataset presents a greater level of complexity and difficulty for trained models to
accurately identify target objects. See|paragraph 4.1.6|for further detail on camera placement.
An illustrative example of a wild data instance can be seen in [Figure 6.1a]

4.1.3 '"Restricted" Dataset

A dataset was developed to address performance issues, observed during testing, with the
wild datasets, which imposes constraints on camera placement, object positioning, assembly
locations, and the presence of noise objects. These restrictions lead to decreased variation
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in lighting conditions, as well as more prominently sized and closely packed target objects,
with no noise objects included. This more consistent and simplified synthetic dataset was
created to emulate the carefully selected data present in the natural dataset. An illustrative
example of a restricted data instance can be seen in [Figure 4.3b| with an example image from

the natural dataset in

(c) An image from the test set of the natural dataset

[Roboflow Universe Projects, 2024]

Figure 4.3: Comparison between wild and restricted dataset examples and a natural image

In summary the following was modified between the wild and the restricted dataset:
* Noise objects and chairs were disabled.
* The target object spawn area was reduced in size.

* The camera placement was limited to 8 positions closer to the spawn area.

4.1.4 Scene

During the implementation process, constructing a representative background environment
was identified as a resource-intensive task. While important, it was considered non-essential
for establishing a functional generation environment. Therefore, we utilized the indoor envi-
ronment provided by the Unity HDRP scene template [Unity - HDRP, 2024]. This scene offers

25



high-fidelity indoor and outdoor environments with advanced lighting conditions within the
Unity engine.

By varying the placement of each generation within this environment, we can achieve dif-
ferent lighting conditions, backgrounds, and levels of scene complexity. Given our current re-
source constraints, we believe that accurately replicating such an environment independently
would not be feasible. For an overview of the environment and these placement locations see

O VA
®,

4.1.5 Objects

This section will discuss all spawn-able objects within the scene, including target objects
(cups, mugs, bottles, etc) and non target objects (plates, pizza boxes, chairs, etc). For both,
sourcing will be discussed together with object composition and implementation.

Target Objects Sourced from a number of open-source platforms, the free models are uti-
lized to represent each of the 9 classes present in the sourced natural dataset. This includes
"["bottle-glass’, "bottle-plastic’, ‘cup-disposable’, "cup-handle’, 'glass-mug’, ‘glass-normal’, ‘glass-wine’,
‘qym bottle’, 'tin can’]”. Examples of objects from each class can be seen in Each
model was chosen based on its "realism", preferring scanned models or models mimicking
real world objects. Due to this, low-poly or abstract models are excluded from the chosen
models.

In addition to the physics components applied to all objects, target objects additionally
receive a labelling component [Unity - Perception Package, 2020] such that the perception
camera correctly registers and labels the object during generation, as well as a decimation

controller which can be seen in [subsubsection 4.1.71

MPNgTER

(e) Normal Glass (f) Wine Glass (g) Gym Bottle (h) Tin Can

Figure 4.4: Examples of all 8 utilized object classes present in the data creation process. Glass Mug is ignored as

it is merged with “glass normal’ (see [subsection 5.1.2)

Non-Target / Noise Objects Several externally sourced open license models were imported
to fill empty space and simulate background noise observed in certain examples of natural
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data. These objects included a plate, pot coaster, pizza box, and chairs. Each object was
assigned basic physics components, such as box colliders and rigid bodies. Given their pur-
pose was primarily to introduce variability and noise into the dataset, their implementation
remains intentionally simple. In the natural dataset there are both images with and with-
out noise objects, therefore, noise objects were implemented to represent those found in the
dataset. As they were intended as a noise parameter, their placement is random to create a
varied dataset. They spawn using the same method as the target objects, which is explained

in [subsubsection 4.1.6

. | D

(a) Noise Object 1 - Pot Coaster (b) Noise Object 2 - Pizza Box (c) Noise Object 3 - Plate

Figure 4.5: Examples of different noise objects used in the dataset

41.6 Randomization

This section outlines the various randomization systems employed to generate diverse and
representative data. By randomizing all non-test parameters and minimizing control param-
eters, the approach aims to achieve an even distribution of potential outcomes across all
variables not subject to direct control.

Object Placement

The object placement system comprises three primary functionalities: target object spawn-
ing, noise object spawning, and the initiation of image capture once object come to rest. The
spawning mechanism utilizes two scripts: a parent spawner responsible for generating tar-
get objects, and a child spawner dedicated to spawning noise objects. When activated, both
spawners generate a random number of objects (within specified minimum and maximum
limits) at random positions within a predefined zone. The parent spawner manages the acti-
vation of its child spawner, coordinating the spawning process. The is similar across
both the main object spawner and client spawners.

I public void SpawnRandomObjects ()

2 {

3 DestroySpawnedObjects () ;

4

5 int spawnCount = Random.Range(min_spawn_count, max_spawn_count + 1)
6 for (int i = 0; i < spawnCount; i++)

7 {

8 int randomIndex = Random.Range (0, spawnList.Count);

9 GameObject prefab = spawnlist[randomIndex];

11 Vector3 spawnPosition = new Vector3(
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transform.position.x + Random.Range (-spawnRange.x, spawnRange.x),
Random.Range (-spawnRange .y, spawnRange.y),
Random.Range (-spawnRange .z, spawnRange.z)

+

transform.position.y

+

transform.position.z

)

GameObject spawnedObject = Instantiate(prefab, spawnPosition, prefab.
transform.rotation) ;
spawnedObjects.Add (spawnedObject) ;

code 4.1: Method for spawning a random number of objects within a specified range

After the objects are spawned and begin descending toward the table surface, each spawn-
ing script calculates the total velocity of its spawned objects. The child spawners expose this
velocity information to the parent spawner, allowing it to compute the combined velocity of
all spawned objects. Once the total velocity falls below a predetermined threshold—indicating
that all objects have come to rest — a frame capture is triggered, and the process resets for
the next cycle. Once a predefined number of frames (set to 200 for current dataset) have been
captured the system exits. The code which performs this calculation is visible in

private void CheckSpeed0fSpawnedObjects ()

{
totalSpeed = 0;

// Sum the speed of all locally spawned objects
foreach (GameObject obj in spawnedObjects)

{
Rigidbody rb = obj.GetComponent<Rigidbody>() ;
if (rb != null)
{
totalSpeed += rb.velocity.magnitude; // Add object’s speed
}
}

// Include speed from any external client spawners
foreach (ClientSpawner clientSpawner in clientSpawners)

{
totalSpeed += clientSpawner.CheckSpeedOfSpawnedObjects () ;

// If the total speed exceeds the threshold, mark the system as "moved"
if (totalSpeed > speedThreshold)
{

hasMoved = true;

hasCaptured = false; // reset capture flag
}
// If everything has stopped moving and a capture hasn’t been made yet
else if (totalSpeed < speedThreshold && hasMoved && !hasCaptured)

{
hasCaptured = true;
hasMoved = false;
perceptionCamera?.RequestCapture(); // Trigger perception camera
capture
captureCount ++; // Increment capture counter
respawn = true; // Set flag to allow new spawn cycle
}
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code 4.2: Method to check the speed of all spawned objects and trigger a perception capture

Table Changer A simple object changer script. It functions to alternate the table used for
each frame capture. Each table is placed and scaled similarly. There are three functioning
tables implemented taken from copyright free model platforms and each consist purely of
static colliders. Code is used to randomly switch between the multiple table prefabs
implemented. It selects a random table by its index in a list, then removes the previously
spawned object, before instantiating the new model in the same location. Images of the
tables used can be seen in where they are placed inside the unity scene used for
generating the datasets.

1 public void ChangeModel (int modelIndex)

2 {

3 // Check for valid index

4 if (modelIndex < O || modelIndex >= modelPrefabs.Count)
5 {

6 Debug.LogWarning ("Invalid model index. Cannot change model.");
7 return;

8 }

9

10 // Destroy the existing model if one is active

11 if (currentModel != null)

12 {

13 Destroy (currentModel) ;

14 }

15

16 // Instantiate the selected model and assign it

17 GameObject newModel = Instantiate(modelPrefabs[modelIndex], modelParent);
18 currentModel = newModel;

19 }

20

21 public void RandomModel ()

2 o

23 // Select a random model index and change to it

24 int randomIndex = Random.Range (0, modelPrefabs.Count) ;
25 ChangeModel (randomIndex) ;

2% }

code 4.3: Methods to change or randomly assign a model from a prefab list

231

A

(a) Table 1 (b) Table 2 (c) Table 3

Figure 4.6: The table models used for placing objects on when generating datasets.
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Assembly placement

In order to randomize background, lighting conditions and perspective moving the gener-
ation location per capture was the simplest and most robust solution available. To achieve
this, 10 predefined locations were chosen for the wild dataset. Between each generation, the
entire testing assembly was teleported to a random location index. These 10 locations are
distributed between the 3 major lighting conditions/environment types available in the demo
scene described in [subsection 4.1.4, The possible locations for this system are highlighted in

red in [Figure 4.

Figure 4.7: A side view of the testing environment with the possible teleport locations highlighted by red spheres

Camera Placement

To vary the camera placement between images, two randomization systems where created:
one unrestricted within a certain zone, and one restricted to a subset of predefined param-
eters. The latter constructed to assist in the creation of the restricted dataset (see
tion 4.1.3). This section will describe these systems as implemented at the point of generation.

Wild The standard randomization system functions by selecting a random camera position
within a designated bounding box. Additionally, the camera is oriented to look at a secondary
random position situated within a smaller bounding box located near the centre of the table.
This approach simultaneously randomizes both the position and orientation of the camera,
within specified maximum and minimum parameters.

public void MoveCameraRandomly ()

{
CameraPosition () ; // Randomize camera position within zone
Vector3 point = ObjectPosition(); // Get a random nearby point around the
target
CameraLookAt (point) ; // Point the camera at that position

}

void CameraPosition ()
{
// Random offset around a central =zone
var position_c = new Vector3(Random.Range(-c.x, c.x),
Random.Range(-c.y, c.y),
Random.Range(-c.z, c.z));
Cam.transform.position = Zone.transform.position + position_c;
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17 Vector3 ObjectPosition ()

158 {

19 // Center around the object the camera should look at
20 Vector3 center = LookAt.transform.position;

21 Debug.Log(center) ;

23 // Generate random offsets within defined bounds

24 float randomX = Random.Range(-1l.x, 1l.x);

25 float randomY = Random.Range(-1.y, 1.y);

26 float randomZ = Random.Range(-1l.z, 1.z);

28 // Offset center by noise and return result

29 Vector3 randomPoint = center + new Vector3(randomX, randomY, randomZ);
30 return randomPoint;

31}

code 4.4: Randomized camera movement and dynamic target look-at point

Restricted A modified implementation of the unrestricted wild camera placement replaces
the position randomization with eight predefined positions surrounding the object spawn
area. Each time the camera is randomized, a random small Y-offset is applied. This approach
better replicates the characteristics of the sourced natural data by positioning objects closer to
the camera and restricting camera angles to predominantly side-on views of the target objects.

See for a physical representation of the possible camera locations.

I void CameraPosition ()

{

N

w

4 int randomIndex = Random.Range (0,

GameObject randomPosition =

<l

7 // Apply a small random Y offset
8 float y_rand = Random.Range (-y_randomization, y_randomization);

// Get a random GameObject from the list of predefined positions
positions.Count) ;
positions [randomIndex];

10 // Set the camera position to the selected point plus vertical offset

11 Cam.transform.position = new

12 randomPosition.transform.
13 randomPosition.transform.
14 randomPosition.transform.

15 )

Vector3(
position
position

position.

0% g
.y + y_rand,
z

code 4.5: Restricted Postion Function: Camera positioning restricted to predefined points with random vertical

offset

When adapted for the restricted dataset, the spawn area was reduced in size to allow
the camera to be positioned closer without resulting in clipping errors, thereby decreasing
the average distance between objects and the camera. Additionally, all child spawners were
deactivated to prevent scenarios where target objects were heavily obscured by noise objects,
and to decrease data complexity, in order to more closely replicate the characteristics of the

natural dataset.

4.1.7 Parameter adjustment

In order to parametrize the quality of the synthetic simulation systems to control each of the
intended test parameters, each parameter was implemented in the Unity scene. These being;:
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lighting quality, polygon count and texture quality. This section will describe these systems
and how they control these parameters.

Lighting

The implemented lighting quality control system builds upon the standard HDRP quality
presets. The presets are: Raytracing, High, Medium and Low lighting. For the most part
the implementation functions by switching between these presets upon program start. This
simple switch, however, is not sufficient for the Pathtracing setting, as a frames rendering
must first start when the objects come to rest. If not, one will, among other artifacts, expe-
rience ghosting and excessive motion blur. In this, the system must also wait for the frame
to render completely before restarting the capture process. Examples of each of the lighting
levels utilized can be seen in[Figure 4.8] The shadows in [4.8a|are sharp and high contrast, and
the image is generally darker than the rest. has softer and brighter shadows. to
shows no significant difference in their visual. Their settings are more performance focused,
than visually impacting. There is however a slight overall brightness difference between the
images.

(b) Ray Tracin, (c) High Lightin
y g g g g

(d) Medium Lighting (e) Low Lighting

Figure 4.8: Examples of lighting variations using path tracing, ray tracing, and different intensity levels. The
brightness of the image and the sharpness of the shadows are the main difference between pathtracing, raytracing
and the high/medium/low levels. The last three settings have very slight differences, because their focus is
mainly performance enhancing rather than visual.
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Texture

The texture degradation utilizes unity’s native "MIP Map" functionality. [Unity - MIPMAP, 2024]
This functionality is traditionally applied such that “A higher mipmap level is used for objects
closer to the camera, and lower mipmap levels are used for more distant objects”. More accurately,
this decreases texture resolution for objects presenting a larger inter pixel distanceEl (close
object) and inversely increases it the smaller the inter pixel distance (distant object). This
system is commonly used for optimization purposes and automatically generates and caches
the scaled textures.

For use in our application, the MIP map value is adjust manually and uni-formally for all
objects. For each integer increment of the MIP map value [0, 1, 2, 3...], the texture is halvedEl
It is important to note, however, that this function only affects image based textures and will
not affect materials such as untextured glass and flat plastic.

The effect of each degradation level is visualised in where is no degrada-
tion and is max degradation. The scene becomes increasingly blurry, to the point where
some textures (like the table) looks flat, and the icon on the can is unrecognizable.

(a) Level 0 (c) Level 2 (d) Level 3

(e) Level 4 (f) Level 6 (g) Level 8

Figure 4.9: Mip map levels used during rendering, from original resolution (Level 0) to coarsest (Level 8). Each
level halves the resolution of the original texture. For reference, level 2 would reduce the resolution to 1/4th of
the original size, and level 8 would reduce it by 1/256.

Polygon count

To degrade the polygon count of the imported models, a unity mesh simplification library, cre-
ated by Mattias Edlund is used, which implements the Fast Quadratic Mesh
Simplification Algorithm [Forstmann, 2025]. Similar algorithms are used across platforms
such as Blender[Blender Foundation, 2025] in their decimate function. The Unity implemen-
tation of this algorithm facilitates the initialization of a "mesh simplifier" object which, once
passed, the mesh of an object enables the reduction of model complexity based on a decimal

I The visual distance between pixels from the rendering camera’s perspective 2 level one would be original
resolution multiplied by 1/2, and level 4 would be multiplied by 1/16
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value. (1 — Original model polygon count, 0.5 — 50% polygon count, 0.2 — 20% poly-
gon count). The implementation of this is applied to each target object prefab, enabling this
decimation each frame when the objects are created. See for implementation. An
example of its effects can be seen in The individual polygons become more ap-
parent, and the smooth round edges become rigid and angular. An artifact also appears in
in the indent of the main bottle, which worsens as the decimation worsens.

1 public void decimate(float quality)

2 {

3 currentQuality = quality;

4

5 // Get the original mesh from the MeshFilter

6 var originalMesh = meshFilter.sharedMesh;

8 // Create and initialize the mesh simplifier

9 var meshSimplifier = new UnityMeshSimplifier.MeshSimplifier();
10 meshSimplifier.Initialize (originalMesh);

11

12 // Perform mesh simplification with the specified quality (0 1 )
13 meshSimplifier.SimplifyMesh(currentQuality);

14

15 // Replace the current mesh with the simplified one

16 var destmesh = meshSimplifier.ToMesh();

17 GetComponent <MeshFilter >() . sharedMesh = destmesh;

18 }

code 4.6: Simplifies a 3D model mesh using a target quality ratio
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(a) Decimation 1.0 (b) Decimation 0.8 (c) Decimation 0.6

(d) Decimation 0.4 (e) Decimation 0.2

Figure 4.10: Examples of polygon decimation levels used during generation. The original poly count is multiplied
by the decimation value, so an object which originally had 4000 polygons, decimated by a value of 0.6, would end
up with a poly count of 2400. As the decimation value decreases, the model becomes more angular, and artifacts
(such as the one seen on the neck of the bottle in begin to appear.

The standard implementation of this, however, decimates all models by an equal percent-
age but neglects one major factor; The point at which a model "breaks" El differs based partially
on the number of polygons the decimated model consists of. For example, a model originally
consisting of 20,000 polygons [p] being decimated by 90% still consists of 2000p, while a 2000p
model being decimated 90% results in a 200p model which, in many cases, would struggle
to represent a more complex object. To combat this imbalance, the application of an inverse
sigmoid function is implemented. It is derived from the the average polygon count of the
available target objects, which enables the resulting models to be nearer one another in re-
sulting polygon count. The average polygon count when all objects are used is 15995. The
implemented sigmoid function is as follows:

model polygon count 1

€= polygon mean x input quality’ adjustedQuality = 1+ el-2(c—4)

3 The point through the decimation where models exhibits major artifacts and become non representative of their
intended representation.
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Adjusted Decimation Strength = 1/ (1 + (1.2 (x - 4)))

08

06

04

02

05 0 o5 1 15 2 2l5 3 3ls 4 45 5 55 6 65 7 75 8 85 9 95

Figure 4.11: Graphical representation of the utilized inverse sigmoid function plotted as a function of the ¢
parameter

Through testing, this function represented the best distribution, as the mean polygon
count returned an adjusted strength of 0.5 while the greatest and lowest values returned
values near 0 and 1 respectively. This results in an effect where the greater the polygon count
a given model posses, the stronger the resulting decimation strength becomes. An example
of a high poly count object with and without the application of the sigmoid function can be
seen in [Figure 4.12] [£.12a shows no significant change in appearance to its original polygon
count model, but shows a heavily distorted model. This is because the polygon count
is heavily decreased through the sigmoid function.

(a) Decimation 0.2 without sigmoid weighting (b) Decimation 0.2 with added sigmoid weighting

Figure 4.12: Comparison of decimation at level 0.2 with and without the sigmoid application. The object has a
high poly count of 24950 (56% above average), which means the decimation with sigmoid will affect the model
much more.

Dataset Overview

Each parameter listed in Sections has various degredation levels.

Lighting used predefined Unity settings, which limited the amount of degeredations to 4
levels. Texture halved the resolution for each interger value, and through testing, 8 (1/256
of original scale) was chosen as the highest level that would affect the textures. Poly Count
multiplies the polygon count with a decimal value, and to avoid reaching the break point of
the model, 0.2 is the lowest value used.
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Each main dataset degraded only one parameter, and kept the others at the highest quality.
In each dataset is listed, with the non-degraded parameters greyed out. The only
exceptions are the Best and Worst datasets listed at the top of the table. Best degrades no
parameters, while Worst degrades all parameters to their maximum value. It degrades poly
count without using the sigmoid function. All datasets but Worst have been generated in both
Wild and Restricted format, while Worst has only been generated in Restricted format.

# Dataset Name Lighting Level =~ Mip Map Decimation

0 Best Ray Tracing [RT] 0 1
18 Worst Low 8 0.1
£& 1 LHigh High 0 1
= 'T'ss 2 L-Mid Medium 0 1
'ED O 3 L-Low Low 0 1
4 M-1 RT 1 1
wn ~
[~ -
25 5 M-2 RT 2 1
oS 6 M3 RT 3 1
B 7 M4 RT 4 1
82 8 M5 RT 6 1
9 M-6 RT 8 1
< 10 D-0.8 RT 0 0.8
5 .50
G& 11 D06 RT 0 0.6
bg 12 D-0.4 RT 0 0.4
S 13 D-0.2 RT 0 0.2
‘g‘ 14 DwsS-0.8 RT 0 0.8
SF 15 Dws-06 RT 0 0.6
>z 16 Dws-04 RT 0 0.4
S 17 DwS-0.2 RT 0 0.2

Table 4.1: Overview of Dataset Variants and Parameter Configurations. Higher MIP map values correspond to
lower texture resolution, and lower decimation values reduce the number of polygons in the 3D models. In each
variant group, all parameters are held at their highest quality setting except for one, which is systematically
degraded to analyse its individual impact.

4.1.8 Implementation problems

During the implementation of the project, a number of challenges arose. A combination of
system quirks caused bugs and rendering issues, resulting in a lengthy bug fixing process.

Transparent object artifacts Due to conflicts with a transparent objects the glass table had
to be removed. This issue cause other overlapping transparent objects to not render, leaving
labels in the dataset of invisible objects. Additionally, transparent objects also blocked the
perception camera from correctly labelling visible objects behind them.

Beyond artifacts caused by unity’s handling of transparent objects, a number of object
placement systems cause noise objects to commonly spawn obscuring the majority of one or
multiple of the target objects. Other instances of target obstruction came with the glass mugs,
as the handle commonly spawned behind the body of the cup, leaving no visible difference
between the glass normal and glass cup. To remedy this, the glass mugs object class was
merged with the glass normal class for testing purposes.
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4.2 Object Detection Models

This section outlines how the main object detection model was trained and used to evaluate
both the natural and synthetic datasets. A well-performing model is essential for the project,
as it needs to detect objects in synthetic images that differ in several ways from the natural
data. Since the beverage dataset came from Roboflow [Roboflow, 2025] and was already
associated with a pretrained YOLOv8 model, continuing with the YOLO architecture made
the most sense. To enable model fine-tuning later in the project, it was necessary to have access
to the model weights — something Roboflow only provides for models you train yourself. A
YOLOvV11 model was therefore trained on the same dataset and later used as the base for
fine-tuning on synthetic data.

4.2.1 YOLO Model and dataset

A YOLOv11[ultralytics, 2025] model was trained using Roboflow’s server [Roboflow, 2025].
When training a model, they offer preprocessing and augmentation methods to improve
model performance and generalisation. By using preprocessing and augmentation, the initial
dataset gets diversified and generalised, such as using greyscale can help the model focus on
the shape of the object rather than its colour. Using these additions will generally result in
a more robust model, even with a limited initial dataset. The methods used are detailed in
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Preprocessing

Auto-Orient Applied
Res1ze5tretchto64ox640px ............
Auto-Adjust Contrast ~ Using Contrast Stretching
GreyscaleApphed ........................
Augmentation
Outputs per training example 3
thHonzontalandvertlcal .........
9°Rotate  Clockwise, Counter-Clockwise,

Upside Down
Crop 0% Minimum Zoom, 20% Maxi-
mum Zoom

Exposure -10% to +10%
Blur Up to 2.5px
Noise Up to 0.22% of pixels

Table 4.2: The preprocessing and augmentations used during the training process of the Yolo model used for

It is comparable to the YOLO v8 model, having slightly higher mAP and recall, but slightly
lower precision at IoU 50. The values can be seen in The YOLOVS values differ
from those mentioned in [section 3.1} In [subsection 4.2.2| a script to measure performance
(mAP@50, precision and recall) is described, and both models will use the results from that
script. This is done to ensure all results are based on the same method, so they are compa-
rable to each other. The values in come from the script. As mAP -is the primary
value used to evaluate models, and a results of the recall and precision values, the v11 model
is considered to have higher performance. By training the model ourselves, downloading the

model weights was possible, which was needed for the project.

Values@50 ‘ vll ‘ v8 ‘ Difference (v11 - v8)

Precision | 0.86 | 0.89 -0.03
Recall 0.92 | 0.90 0.02
mAP@50 | 0.90 | 0.88 0.02

Table 4.3: Comparison between YOLO v8 and v11 models trained on Roboflow on the beverage dataset.
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The precision is not completely accurate, as the sourced dataset is not perfectly labelled.
The shows our model detection on the left, and the ground truth on the right.
Both of the YOLO models detect the bottle at the top of the screen as a glass bottle, however
it is not labelled in the dataset. shows an instance of the model wrongly de-
tecting objects as beverage containers, and shows and example of both a wrong
classification, detecting multiple objects as one, and missing multiple objects in the image.

(a) Comparison of YOLO v11 model detection (left) and ground
truth (right). The model detects the bottle in the top of the image,
however it is not labelled in the dataset.

(b) Comparison of YOLO v11 model detection (left) and ground
truth (right). The model correctly detects the bottle in the middle
of the image, and additionally detects two phones as tin cans (both)

”’%@u:i{ RAL
] J %

(c) Comparison of YOLO v11 model detection (left) and ground
truth (right). The model incorrectly detects two tin cans as one gym
bottle, and does not detect the rest of the objects in the image.

Figure 4.13: These images show a series of occasions where the models detections does not align with the ground
truth from the natural dataset.
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4.2.2 Running YOLO

To run the YOLO model on a single or a batch of images, a python script was set up.
shows a flow diagram of how the scripts works. The program will run either a single
image or a batch of images, where it iterates through the given folder of images. It reads
the image using OpenCV, and then initializes the metrics calculators using the Supervision
package. The MeanAveragePrecision, Recall, and Precision classes are initialized each, and
used later to compute mAP50, mAP50-95, recall50, precision50 and helps to calculate std for

each of these values.

1uvis weidoag

Iterate Over Images
> g

In Folder

New Batch Image

Input:
File Path Load Model
Model Path
5

Choose:
Single ¥
Batch —

Read Image

g

Initialize metrics:
mAP
Precision
Recall

Resize Image

1

Save Annotations

g

Predict

g

Compare to
Ground Truth

1

Calculate

Log Results to Json

|

= »

Metrics (.\
1

1

\

single:
One Image
Iteration
Batch:
Folder of Images

Find Matching .txt

File in Labels Folder _’:

Iterate over Result

|
Calculate Overall: : 1
mAP «<--
Recall A 1
Precision ] 1

Convert Each Line to
Class + xyxy in pixels

-

Append to
Annotation List

Calculate Per Image:
mAP
Recall
Precision

Calculate STD:
mAP
Recall
Precision

Figure 4.14: Flow Diagram of the script for running the YOLO model.
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The image is resized to a height of 640, and width to match the image size ratio. After
each image is read and resized, the annotations are calculated and saved for each image. To
get the path for the correct annotation, the image path was used. shows the folder
structure for each dataset. The only difference between the natural dataset and synthetic was
natural used ’jpg’ images and synthetic used "png’. Both datasets named the annotation file
the same as the image. This is utilized to navigate the file structure by replacing parts of the
path using path.replace(). In this instance "images" is replaced by "labels" and both "png" and
"jpg" are changed to "txt".

Dataset/

|- images/

| |- imagel.png
| |- image2.png
l1-

|- labels/

| |- imagel.txt
| |- image2.txt
l1-

|- data.yaml

Figure 4.15: Overview of the folder structure used for the dataset

Code 4.7 shows the function used to manually convert annotations from YOLO to xyxy.
The area of each annotation is calculated, and if it is under 150 pixels, equivalent to 0.021%
of the image, the annotation is skipped. This is done due to the model having no chance
of detecting an object of this size. This decision is further supported by the fact that the
natural dataset had no instances of objects that small. They were therefore ignored to make
the synthetic datasets more similar to the natural dataset. The annotations for an image are
saved as a Detections object, and the object is returned.
def get_anno (annotation_path, image):

with open(annotation_path, ’r’) as file:
annotations = []

# Convert annotation to xyxy format, matching the size of the image

for line in file:

class_id, x_center, y_center, width, height = map(float, line.strip
O .split O))
x_min = (x_center - width / 2) * image.shape[1]

y_min = (y_center - height / 2) * image.shape[0]
X_max (x_center + width / 2) * image.shape[1]
y_max = (y_center + height / 2) * image.shape[0]
area = (x_max - x_min) * (y_max - y_min)
# Removes annotations too small to detect
if area < 150:
print (£"Skipping annotation with area {area} for image {

annotation_pathl}")
continue
annotations.append ([x_min, y_min, x_max, y_max, class_id])

annotations = np.array(annotations)
# If no annotations are found, return empty detections
if len(annotations) ==
return sv.Detections(xyxy=np.empty((0, 4)), confidence=np.empty((0,)),
class_id=np.empty ((0,)))
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Xxyxy = annotations[:, :4]

class_id = annotations[:, 4].astype(int)

#class_id = np.zeros(len(class_id), dtype=int) #For class agnostic
evaluation

confidence = np.ones(len(class_id))

# Convert to supervision Detections object
ground_truth_detections = sv.Detections (

XYyXYy=XYyXy,
confidence=confidence,
class_id=class_id

)

return ground_truth_detections

code 4.7: Annotation converter

The annotations are appended to an array in the main body of the code. Afterwards the model
is run on the image, and the result is converted to a Detections object. The object is appended
to a results array, which will have the same length as the image results. Therefore, to compute
the results, a for loop that matches the index of the results array with the annotation array
was used.

The results are then iterated over, and the mAP50, mAP50-95, recall50, and precision50 is
calculated for each image, which is then used to calculate an std for each dataset. The overall
mAP50, mAP50-95, recall50, and precision50 is calculated. Furthermore, the AP for each IoU
and detected object class is calculated and saved. All data is then subsequently logged in a
unique .json file.

4.2.3 Fine-tuning

Two models are trained by finetuning the YOLOv11 model. The finetuning consists of con-
tinuing the training of the model, using only a single synthetic dataset as the training data.
The two datasets used were the best (all settings on the highest value) and worst (all settings
on the lowest value) restricted datasets (see [subsection 4.1.3), where the model trains for 20
epochs.
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Explanation

Epochs

Image Size

Degrees

Flipud

Fliplr

Pretrained

To train the Ultralytics train() method is used, where the last- and the best epoch model
is saved. The settings used for finetuning the models can be seen in These are the
arguments manually set, while any other arguments use the default setting from the function

1 epoch means each sample has affected
the model weights once.

Amount of rotation (both counter- and
clockwise) the images can get. A random
number from 0 to 180.

Chance the sample will be flipped upside
down. 0.5 = 50% chance.

Change the sample will be rotated left or
right. 0.5 = 50% chance.

Determines if the model continues train-
ing the model inputted.

Table 4.4: Finetuning settings[ultralytics, 2023].

[ultralytics, 2023]. See Appendix H for full list of model parameters.

The performance per epoch of the models is shown in The model is trained
for 20 epochs. It is stopped after, as the mAP@50 and @50-95 values are beginning to plateu.
To avoid overfitting on the synthetic dataset, stopping the training before a plateu is neces-
sary. As the datasets used are rather small for training (201 images each), overfitting is a big

concern, hence limiting the number of epochs was important.
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(a) BEST dataset. Training graphs for the finetun- (b) WORST dataset. Training graphs for the fine-
ing model per epoch. tuning model per epoch.

Figure 4.16: Performace graphs of the two finetuned models.

The fine-tuned models are tested on the natural test set from the beverage dataset, and
the performance can be seen in The model used are the best version from training,
which is not necessarily the last version.

Values@50 ‘ Best ‘ Worst ‘ Original

Precision | 0.44 | 0.25 0.86
Recall 0.58 | 0.36 0.92
mAP 045 | 0.23 0.90

Table 4.5: Performance of the finetuned models on the bevearage test set, with the v11 performance for compari-
son.

4.3 Additional Tooling

To convert the output of the Unity Perception package (in SOLO format) to a more com-
monly used format (YOLO format), utilizing PySlootools [Unity Technologies - PST, 2022
was identified as the most appropriate approach. However, the available tooling is incom-
plete, primarily supporting conversion from SOLO format to COCO format. To address this
limitation, a custom patch was developed to extend this functionality. The implementation
accurately reads and converts bounding boxes, converts the "annotation_definitions.json" file
from SOLO format to the "data.yaml" file standard in YOLO datasets, and resolves a pro-
gram error that occurs when a data instance lacks annotations. See Appendix H for further
implementation details.
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Chapter 5

Evaluation

The evaluation process primarily aims to test the hypothesis outlined in specifi-
cally whether a model trained on natural data can effectively assess the quality of synthetic
data implementations. If this hypothesis is validated, we plan to analyse the degradation
of data quality by examining the model’s performance on progressively degraded datasets.
This analysis will help identify the point at which model performance declines significantly,
providing insights into the optimal balance between performance and implementation com-
plexity. Performance will be based off the mAP@50 metric, as mAP is the industry standard
for evaluating models[Henderson and Ferrari, 2016].

Based on the observations from testing the hypothesis, we will refine models categorized
as "best," "worst," and "breakpoint" versions, derived from the original natural-data model.
This approach will serve as additional evidence to support or refute the proposed testing
methodology. It will also offer valuable insights into how the performance of pre-trained
models compares to models trained directly on synthetic data as a measure of data quality.

To summarize, the evaluation will seek to provide evidence towards the following:

1. Can a model trained on natural data be used as an evaluation tool for testing the quality
of synthetic data?

2. At which point does the implemented synthetic data see the greatest performance return
based on invested resources?

3. How does the performance of a pre-trained, natural data model, on synthetic data com-
pare to models fine-tuned upon similar synthetic data?

Note that this evaluation seeks to function as a base for further research and that beyond
potentially proving the methodology valid, these results will likely not be reflective of
other use cases and models.

5.1 Degraded dataset evaluation

To evaluate the ability of a pre-trained model to assess the quality of synthetic data, a series of
datasets have been generated, each consisting of 201 images representing a degradation of the
highest quality dataset (outlined in [Table 4.I). By measuring the mAP@50 of the natural data
model and plotting the performance across datasets within the categories of lighting quality,
texture quality and polygon count, we aim to measure the relative quality of each dataset.
This analysis is conducted without training a separate model for each degradation level. The
objective is to demonstrate a measurable performance decline across datasets and to establish
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statistically significant differences between each degraded dataset and the highest quality
(baseline) dataset. Hopefully resulting in a "breakpoint” dataset where utilized resources
have the highest return in performance.

5.1.1 Class Agnostic Performance

As even the restricted data set [subsection 4.1.3]] does not provide a level of detail comparable
to the natural data used. Testing agnostic of object class may, in some cases, offer better
insights into the model’s ability to locate objects independently of its ability to classify them
correctly. To facilitate this, we will treat both detected classes and the ground truth labels as
class 0. This means that if a target object is located, its class and its corresponding label from
the generated data set will always be considered the same class, effectively disregarding the
specific class. In summary, if a detected bounding box sufficiently overlaps with the ground
truth label, the result will be deemed correct regardless of whether the detected class matches
the ground truth. This testing would likely also help to mitigate inaccuracies in material
implementations within the simulator. So while we believe the glass to be representative of
the real-world material, this is subjective and may not be classified correctly by the system.

5.1.2 Class Dependent

In contrast to the class agnostic testing, class dependent testing does not ignore identified
classes. Herein, if a target object is misclassified, fx. glass bottle being classified as a plas-
tic bottle, the resulting mAP value reflects this, treating the label as incorrect. This testing
methodology should be seen as the most realistic, however, it will by definition treat the
generated datasets more harshly. From class dependent testing, we will derive two types of
metric.

Please note that the class-dependent implementation continues to merge the glass_normal
and glass_handle categories, as their visual representations often result in the misclassification
of glass mugs as simply glass normal. This is likely due to real-world data predominantly
capturing the handle side of the glass mug, whereas the synthetic dataset, with its varied
perspectives and randomized placements, often does not exhibit this bias.

Overall Performance These metrics reflect those of the class agnostic testing, describing
overall mAP@50 & mAP@50-95 performance metrics for each dataset while still taking object
class into account.

Individual class performance The class-dependent analysis allows for the assessment of
individual classes, providing potential insights into how each class is affected by various
degradation parameters. For instance, it is expected that glass objects exhibit minimal impact
in texture degradation, as transparent materials are likely to display little to no visible change.

5.2 Model fine-tuning

To establish comparable parameters for developing multiple trained models intended for
performance evaluation and comparison, three derivative models will be created: "Best,"
"Worst" (refer to [Table 4.1), and "Breakpoint” — the point at which the highest return on
invested resources, only considering implementation complexity and -time, is achieved. Each
of these models will be generated through a 20 epoch fine-tuning process of the original

model used for degradation testing (see |section 5.1).
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Once fine-tuned, each model will then be run on the natural dataset test set. The resulting
performance metric{] will then be compared. To test for significant difference, the Welch’s
t-test will be used between each dataset and the highest quality dataset (best), as it does not
assume normal distribution. As each dataset has no direct parallel, the test is unpaired. If
a statistically significant difference is shown between any single dataset and the best dataset,
that would indicate that:

¢ The testing methodology is likely plausible.

* The measured difference likely reflects, at least in part, the difference in performance
that a model trained on that dataset would exhibit.

¢ The degraded parameter is likely influential on a resulting model’s performance.

This analysis aims to provide a baseline understanding of the impact of degraded data on
model training. The results will then be compared to degradation testing outcomes to assess
whether there is a correlation.

L mAP@50 [with and without classes], precision and recall
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Chapter 6

Findings And Analysis

From the evaluation comes results, this chapter both state the results as well as discuss
their meaning and implication upon the plausibility of the proposed data quality evalua-
tion method. This chapter seeks to give insights into the process which led to the generation
of two dataset variants, the influence each of the degradation parameters had on the resulting
model performance as well as the performance of models fine tuned on datasets chosen based
on their performance.

Terminology Key:

¢ Class Agnostic = Treating all classes as one

¢ (Class Dependent = Requiring correct object classification

¢ Lighting = Lighting degradation parameter (described in [subsubsection 4.1.7)

¢ MIP Map = Texture Degradation through the unity mipmap functionality. (described
insubsubsection 4.1.7)

¢ Polycount = Model degradation though the Fast Quadratic Mesh Simplification algo-
rithm (described in [subsubsection 4.1.7)

- wos = without sigmoid processing

- ws = with sigmoid processing

6.1 TEST 1A - Wild

The wild data sets reflect the first iteration of the simulator. shows an example
image of the wild dataset and one from the natural dataset. The wild data posed a drastic
difference in perspective and scene complexity compared to that of the natural data, causing
what can only be defined as almost random results at best, with datasets averaging 50+ im-
ages (out of 201) without detection, despite having valid annotations within them. However,
the findings from the testing procedure being run on these datasets could still show valuable
insights into the hypothesis and its ability to generalize to scenarios not directly reflective of
data it has previously trained upon.
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(a) Example image from the wild dataset (b) Image "000000122259.jpg" From the Roboflow
dataset

Figure 6.1: Comparable images illustrating the difference between an instance from the wild dataset and the most
common composition type found in the Robowflow dataset [Roboflow Universe Projects, 2024]

6.1.1 Class agnostic

As described in [subsection 5.1.1} class agnostic means treating all ground truth labels and
detections as a single class. This enables insights into the models ability to detect target
objects, while ignoring any misclassification tendency it may have. Despite this, it was evident
during early testing (before the testing procedure was fully developed) that the wild datasets
were too distant from the sourced real dataset the model was trained upon. More refined

versions of these results can be seen in |Figure 6.2
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Wild Class Agnostic
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Figure 6.2: A series of 4 graphs showing the MAP_50 results from the wild dataset results, ignoring detected and
ground truth classes. Each controlled variable is plotted individually from least to most degraded.

Figure |6.2|shows each degradation separated into its own graph. In all cases three notable
finding are true.

1. General model performance is considerably low. Averaging a mAP@50 value of 0.224.
This suggests a large gap between the natural data and the synthetic data.

2. The differences between graphed values can, at most, be considered random, with no
two related values showing significant difference. This likely occurred as a result
of the randomization causing some datasets to be slightly more difficult than others,
purely by chance, rather than any effect caused by the degradation parameters.

3. While the effect is not significant, there is some trends shown through the fitted dotted
lines. With both Texture degradation (MipMap) and Model degradation (Poly-count wos
sigmoid) showing slight negative trends. While far from conclusive, this does give hope
for future findings giving an indicative of the hypothesis’ feasibility.

6.1.2 Class Dependent Overall Findings

By looking at the classes individually, insights into how each degradation may effect any par-
ticular object class can be ascertained. This section will discuss overall mAP@50 performance
metrics when reinquiring correct class identification. Furthermore, this section will delve into
and highlight interesting findings from specific classes as well as discuss the reasons for them.
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Wild With Classes
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Figure 6.3: Overall class dependent performance metrics for the wild dataset each degradation parameters is
plotted separately.

Figure reflects a number of the findings also applicable to the class agnostic testing
(see[6.1.1). Herein, that the general model performance further iterates the large gap between
the models training data and the synthetic testing data. This is even more emphasised in the
class dependent results, as they average a mAP@50 of 0.106. Similarly, no parameter show
mAP@50 values degraded to a significantly different level when compared to un-degraded
data.

In contrast to the class agnostic results graphed in shows neutral to upwards
trends, suggesting that higher degradation levels of lighting poly count, and texture, are of
higher quality / are more similar to the models training data. This would however contradict
other findings, suggesting one of two things: The gap between the natural and synthetic data
is too large and these trends a result of noise, or that there is a direct difference between
performance and quality such that more simplistic, stronger degradations may be easier for
the model to detect within, despite being considered less realistic.
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6.1.3 Per Class Breakdown
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Figure |6.4] gives insights into each degradation parameter’s effect on class specific basis. For
the majority of cases, data points from the same class seem within a margin of error from one
another. Between classes we see 2 major general observations:

1. The models ability to correctly detect and classify plastic bottles is greater than that of
the other classes. Why objects of this class have such a advantage over others is not
directly clear. Speculatively, one could conclude that objects of this class are of a unique
shape compared to the other classes. Its closest visual relative being that of the glass
bottle, however the pallet of implemented objects differentiate between the two, through
both the utilized material, in addition to the plastic variant commonly having a label,
and in some cases prominent liquid contents.
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Figure 6.4: Individual class performance for each of the degradation parameters

6.1.4 Wild Datasets Overall Findings

Overall we can consider these results indicative of a large gap between the models training
data and the wild implementation of the synthetic data. While these finding may be indica-
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In direct contrast glass normal is near non functional with some cases showing a ~ 0
mAP@50 Score. The near complete failure of the model to detect glass indicates a
likely error in its implementation. This could be for example due to an unrealistic glass
implementation, unrepresentative model choice to name two however we do not believe
these to be applicable so the exact reasoning is unclear.

\\5;/7:\ T




tive of greater trends, they are likely unclear or unrepresentative. To remedy this, a second
iteration of the dataset was created (see [subsection 4.1.3). By reducing randomization param-
eters and restricting camera placement, the restricted dataset would likely reflect the training
data used by the model. If the trends seen within the testing of the wild datasets continue,
this second iteration would prove as further evidence of these findings.

6.2 TEST 1B - Restricted

The restricted dataset was created as a refinement of the wild dataset, generally reducing the
dataset complexity, as well as bringing its baseline closer to the natural data. This iteration
seeks to increase the resulting performance of the model during testing, such that it becomes
more comparable to the performance of the natural data (see [subsection 4.1.3|for details.).

6.2.1 Class agnostic

The restricted dataset was run as class agnostic, to mimic the testing done for the wild dataset

in [subsection 6.1.1]

Restricted Class Agnostic
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Figure 6.5: Class agnostic results of the restricted dataset

Firstly shows a dramatic performance improvement over results from the wild
dataset testing in Averaging a mAP@50 of 0.585, a 161% improvement over the
wild dataset testing is seen. Beyond this improvement, the class agnostic dataset shows at
most what could be considered random variation between degradation levels, with no defini-
tive or obvious trends easily identifiable. Despite the lack of trends, the increase in per-
formance is seen as beneficial to making more accurate assumptions. Further conclusions
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will be based around the restricted data variants, unless explicitly stated otherwise.

6.2.2 Class Dependent Overall Findings

The class dependent results function similarly to the testing conducted in[subsection 6.1.2| for
the wild datasets. First this section will cover overall statistics in order to illustrate trends
within the given dataset. Then continuing to look at individual class performance and high-
lighting notable findings and what they could indicate.

Restricted With Classes
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Figure 6.6: The class dependent results for the restricted dataset

Figure[6.6|illustrates the overall findings of the class dependent testing variation. The most

prominent finding here is the downwards trend present in all parameters, with the lighting
parameter being the most subtle. These trends contrast those of indicating that
while the models ability to find target objects is increased at lower degradation levels, the
models ability to correctly classify these objects is more severely impacted. Each of the degra-
dation test sets was individually compared to the best dataset through the welches unpaired
t-test. Almost all returning what can be considered statistically insignificant p values, with
only the two strongest degradation levels of model decimation (poly count ws, 0.4 & 0.2) re-
turning significant values of 0.047 & 0.029.
On average the restricted model shows a mAP@50 performance of 0.408, worse than the
class agnostic testing, which is to be expected considering the possibility of misclassification
influencing the results. The visible downwards trends, however, suggests that the stated hy-
pothesis is plausible. Yet the overall performance findings do not indicate a "breakpoint" as
previously sought after. The lack of such non linear degrading response, from the testing,
could suggest one or multiple of the following;:
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1. There is a linear relationship between data degradation and the model’s response. How-
ever, this is unlikely to be sustained indefinitely, as at a certain point, the target object
may lose the features essential for the model to accurately identify and classify it.

2. The degradation granularity is insufficient and does not accurately plot the models
response.

3. The test sets generated are too small, generating larger noise in the models response,
hiding a potentially small breakpoint.

4. The maximum degradation strength is insufficient to find the breakpoint - the idea that
the breakpoint exists at a lower data quality than that currently generated.

5. Each object class responds differently to the degradation, so the scope of task may be to
diverse for obvious breakpoints to emerge. This could be caused by the following;:

(@) The breakpoint of each object class is different - hiding breakpoints from other
classes.

(b) Certain objects classes may respond positively to degradation parameters.

6.2.3 Per Parameter Breakdown

® bottle-glass cup-disposable glass-normal gym bottle
bottle-plastic A cup-handle » glass-wine tin can

Restricted With Classes - results_rev_cls

lighting mip map

0.8 4 0.8 4

0.6 \0,/‘
041 = =% 2 0.4 - ,,»,/////,7 :

0.2 4 0.2

0.6

mMAP@50
mMAP@50

0.0

0.0

raytracing high medium low 0 1 2 3 4 6 8
Degradation Amount Degradation Amount
oly count wos oly count ws

10 POy 10 poly

0.8 4 0.8 4

0.6 \ 061 @
o 2 '\9\
) s | §

. —

S / > _— N o \\
< <
€ / \,// € -

0.4 <  — 0.4 1 = R g

o _— ——$ ———4 — < ~ —
— __— — L > ~_
~—a— T R
0.2 1 0.2 -
0.0 T T T T T 0.0 T T T T T
0 0.8 0.6 0.4 0.2 0 0.8 0.6 0.4 0.2
Degradation Amount Degradation Amount

Figure 6.7: Individual class performance across each degradation parameter
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Similar to the findings of Test1A (subsection 6.1.2) the plastic bottle often performs best of all
object classes, while glass normal continues to generally perform worst in most cases. Beyond
these two parameters, most object classes often perform similarly.

Lighting

Most prominently the classes, gym bottle and bottle-glass show what could be considered break-
points between high — medium and raytracing — high respectively. These differentiate them-
selves from the other classes as they do not then inversely increase in performance again at
further degradation levels - such behaviour is seen in the tin can and cup-disposable classes.
The Welch’s unpaired t-test showed none of the breakpoints was seen as statistically signifi-
cant - all showing p_values greater than 0.05 when compared to the Best dataset. This lack of
increase suggests that this break may be caused by factors beyond noise. An example of the
difference across the glass bottle breakpoint can be seen in the images in Note,
however, that these images are, subjectively, near identical. It is believed that noise is a factor
in the breakpoint described above.

,__.Qg

(a) An example of the "ray tracing" lighting quality (b) An example of the "high" lighting quality

Figure 6.8: Comparable images illustrating the difference between ray tracing and high lighting level on a portion
of the glass bottle class

Texture

The texture degranulation shown in shows a general degradation in model per-
formance as the texture quality was reduced. While this is true, a number of object classes
standout in their response to texture degradation. This section will describe these.

Firstly there are two main classes showing prominent breakpoints in performance; Tin Can
and Wine Glass. Starting with Tin Can which breaks at a Mip Map value of 2 (1/4 resolution),
where it then continues to degrade at higher levels. Eventually performing worse than the
otherwise worst performing class, glass-normal. For a visual representation of this, see the tin
can example images in [Figure 4.9

In contrast wine glass starts by trending upwards until its breakpoint a Mip Map value of
4 (1/16 resolution). Note that the glass texture is not affected by Mip Map, as it is a shader,
not an image texture. This suggest that the glass objects become easier to detect with more
simplistic backgrounds, hitting a breakpoint which likely occurs when the overall data quality
is unrepresentative of anything the model was trained upon.

In addition to the two breakpoints within the wineglass and tin can classes, the disposable
cup also experiences a break in performance at 1/4 resolution, however, it differs in that it
then subsequently increases in model performance, eventually surpassing the response from
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lower Mip Map values. This response suggest factors beyond the degradation parameter
likely being driven by chance and randomizations throughout generation.

Beyond breakpoints the results of plastic bottle are notable, as while the model performance
trend breaks (Mip Map 3) it does not trend downwards, instead it becomes erratic. One could
interpret this as a sign that the texture dependent portion of the bottle, herein the label, may
be, at most, a minor identification feature. This could be the case, as the labels are the most
prominent image based texture. In contrast, however, this could also indicate similar findings
as those of the glass bottle.

Polygon Count wos

The effect of the polygon count model degradation (without sigmoid) shows a number of pa-
rameters that gently decline across the degradation levels. A number of parameters, however,
show noisy or positive trends as the data is degraded.

The object classes; cup disposable, gym bottle and bottle glass show general degradation across
the degradation levels, with cup disposable and gym bottle having breakpoints between 0.6 and
0.4 in degradation strength. Bottle glass, in contrast, appears to break between 0.8 and 0.6, but
it seems the dip is emphasised by noise, as the gentle degradation resumes immediately at
0.4 decimation strength. Arguably, similar noise influenced breakpoints also visible for the
plastic bottle and glass-wine classes, as while they do show breakpoints they either, regain per-
formance at stronger degradation or start with a gain in performance before later degrading
sharply. See [Figure 6.9al and [6.9b| for visual examples of the breakpoint for the plastic bottle
class, the image shows visual subtle differences across the breakpoint - likely indicating noise
as a factor.

Polygon Count ws

The poly count model decimation degradation with the sigmoid function, described in
lsubsection 4.1.7] weights decimation strength based on model complexity. In general, this has
lead to the shifting of breakpoints to stronger decimation levels. An example is the plastic
bottle, which before broke at 0.8, now breaks at 0.6. The sigmoid weighting also presents
a general reduction in result noise, herein showing clearer and more consistent trends. For
example, the previously noisy class bottle-glass, has now become more uniform. With this
reduction, it now presents a prominent break between 0.4 and 0.2. See [Figure 6.9d and [6.9d|
for a comparable plastic bottle degradation with sigmoid. Note that the images contrast
drastically across the breakpoint - a difference not represented by the poly count decimation
without sigmoid weighting. This could be due to the chosen bottle not naturally breaking be-
fore much stronger degradations are applied. Such effects are not otherwise reached without
the sigmoid’s weighting.
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(a) Plastic bottle at 0.8 poly degra- (b) Plastic bottle at 0.6 poly degra-
dation wos dation wos

(c) Plastic bottle at 0.6 poly degra- (d) Plastic bottle at 0.4 poly degra-
dation ws dation ws

Figure 6.9: A 4-way comparison of plastic bottles at different poly count degradation levels, with and without the
sigmoid weighting effect.

6.2.4 Restricted Datasets Overall Findings

While the restricted datasets improves upon the performance of the wild dataset, it still shows
a substantial reduction in performance compared to that of the natural dataset test set. To
this extent, we believe this dataset to be a more conducive to drawing reliable and repre-
sentative conclusions. Despite its comparably worse performance, the restricted dataset did
show interesting finding when looking at individual classes, giving insights into: How certain
object classes are influenced by each degradation parameter, how the pre-trained model iden-
tifies each object class and where each class breaks in performance under each degradation
parameter.

Some of the per class results also indicate the possibility of inverse correlation between
degradation strength and subsequent model performance. Such findings could be indicative
of a oversight in the base hypothesis: resulting performance may be higher and the data easier
to process, but training upon said data may prove a negative influence in model robustness
and generalizability. This would prove to then emphasise the difference between data realism
and model performance.

6.2.5 '"Best" dataset

The best dataset is the baseline to which all other datasets are compared to. Its performance
in most cases can be considered average for each given dataset, despite its intended use as
the best quality produced through the simulation. This difference from intent to actualized
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performance would indicate that either; the implementation, while possibly more visually
pleasing, either does not accurately represent real-world lighting conditions or that the best
dataset, while more realistic, also creates a higher challenge for the model to detect within.
We believe the latter, however, to be most likely, as one occasionally sees a slight increase in
model performance from dataset 0 (best) to its subsequent degradation level in each of the

parameters graphed in [Figure 6.7,

6.2.6 "Worst" dataset

The worst dataset was created specifically for testing purposes and was the accumulation
of the harshest degradation from each parameter possible. This dataset was then tested
separately and became the largest decrease in performance and showed an un-paried t_test
result of 0.005, which is traditionally considered statistically significant. These findings could
additionally suggest that the effects of the utilized degradation parameters on the tested
metrics are multiplicative rather than additive. [Figure 6.10shows comparable images from the
best and worst datasets, displaying the effects of compounding degradations.

(a) An example image taken from the best "restricted" (b) An example image taken from the worst "re-
dataset stricted" dataset

Figure 6.10: Compatible images between the best and worst datasets

6.3 TEST 2 - Model Fine Tuning

Due to the lack of overall breakpoint in either synthetic data variant, only two models were
fine-tuned. Those used the best and worst synthetic dataset, as explained in [subsection 4.2.3|
The utilized models were run on the natural dataset, and the results can be seen in
with the original YOLOv11 models results for reference. The models are tested on the natural
dataset to understand the real-world use case impact, of fine-tuning a model using synthetic
data. Furthermore, how degradation of the synthetic data affects the model results.

The p_value is calculated using the original YOLOv11’s results. There is a substantial de-
crease in performance of the model when trained on the synthetic data, where the best dataset
halves the mAP@50 value, and worst is close to a quarter of the originals value. mAP@50-95
shows an even bigger decrease, signifying that the fine tuned models accuracy per IoU falls
off after the 50 mark. In all performance values, the best model outperforms the worst model.
The p_values indicate that there is a significant difference in the results. This confirms the
fine tuning had an effect on the model performance. The std of the two fine tuned models is
almost double the original models, showing there is a higher variance in how accurately the
model detects the images.
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YOLOv11 Best Worst

mAP@50 0.90 0.45 0.23
mAP@50-95 0.83 0.30 0.15
Recall 0.92 0.58 0.36
Precision 0.86 0.44 0.26
mAP@50 std 0.23 0.47 0.45
p_value 1 8.70E-83 5.39E-159

Table 6.1: Model performance after running the model on the natural datasets test set. The table shows the three
models: Original, Best and Worst.

Since all the performance values for the best fine-tuned model are higher than the worst
model, it suggest that image quality is an important part in generating synthetic data for
model testing. This aligns with the findings described in

In addition to the Best and Worst fine-tuned models, there was plans to create a breakpoint
model as well. This was, however, not possible as neither dataset created breakpoints in their
overall findings. Alternatively, a medium quality model could have been produced but was
ruled against due to the lack of time and processing resources required, as well as relative
lack of merit for such a model, when compared to the potential of a breakpoint model.

6.4 Natural Dataset Discussion

The natural dataset consists of over 6500 images split into training- (4562 images), validation-
(1303 images) and test (653 images) sets. The distribution of classes is mostly even, with tin
can having the least occurrences (911 objects) and glass bottle having the most (1281). The
rest of the classes have around 1000-1200 occurrences.

The dataset has images of different composition, colour, complexity and noise levels, how-
ever, it has been noticed that many images fall into a simplistic category: The beverage object
is the main focus, with limited to no background/noise, and sometimes with other objects
blurred out of it. Three examples of simplistic images can be seen in [Figure 6.11a| to |6.11c}
with a complex image for comparison in This means the model will be over-fitted on
this simplistic dataset, and will struggle with more complex images (such as or
[6.11d). The datasets main purpose is educational, hence the data is kept simplistic and fairly
uniform for easier training.

The model was trained using preprocessing and augmentation to diversify and generalise
the dataset, however, if there is not enough diversity in the dataset to begin with, prepro-
cessing and augmentation will not resolve the issue, only minimise it. This means that the
overall dataset is not generalised or varied. This lead us to revising how the synthetic data
was generated, and create the restricted datasets, which is more simplistic looking and has
much less variance. This matched the mainly simplistic images of the natural dataset.
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(a) Restriced image - only cup. (b) Restricted image - only tin can + blurred noise

(0) Restricted image - only tin cans. (d) Wild image - glass cup is part of a bigger scene,
not the focus.

Figure 6.11: 4 example images from the beverage dataset. to would be considered "Restricted" images,
and [6.TTd| would be considered "Wild"

A sample of 200 random images from the natural dataset were evaluated by the authors,
where they were split into two categories: "Wild" and "Restricted". Restricted images were
classified as: Images were the labelled object is the main focus of the image, with little to
no distraction or noise in the background (examples in [Figure 6.11afto |6.11c). Wild images
were considered any other image, usually where the labelled object is part of a noisy scene,
but not necessarily the focus (example [Figure 6.11d). These classifications are subjective but
discerning the two types was conducted independently and cross referenced between both
authors, discussing any differences and coming to a consensus.

From the 200 images, 22 images qualified as "wild" and 178 images as "restricted". That
means an estimated 11% of the dataset is considered restricted. The sample consisted of
around 3% of the overall dataset, hence not a conclusive estimate, but it does give an idea of
how the dataset is distributed.

6.5 Hypothesis discussion

Throughout, this paper posits that a well functioning vision model’s performance reflects data
quality, when exposed to sets of synthetic images similar to those it was previously trained
upon. In this, enabling simple measuring of data quality and providing foresight into how
training a model upon the tested data would effect the resulting model performance. To this
extent, the conducted research sought to prove or disprove the merits of this approach.
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First, the statistically significant difference between the best and worst, as well as the DwS-
0.4 and DwS-0.2 datasets, enables the rejection of the null hypothesis. By this enabling the
conclusion that to some degree, the models performance does reflect the data quality. How-
ever while significant, the relative difference dramatically understates the performance impact
the degraded data had upon the resulting model.

While the hypothesis, to some extent, is proven true, the testing has shown some holes
in the hypothesis premise. Mainly, the premise seems to not properly reflect the models
ability to judge a datasets effect on a resulting models generalizability and robustness. This
is exemplified by the instances of positive trending results seen in some object classes when
exposed to degradation of the lighting parameter. It may be easier for the model to detect
target objects, however, would likely reduce performance of a model trained on such a lower
quality dataset.

6.6 Future work

This project is to function as proof of concept so future work could build upon it. Multiple
areas could be improved upon to answer the hypothesis more accurately. The majority of the
datasets did not show significant difference compared to the best dataset, only 3 datasets did.
A break point for the parameters was not found, which could be for various reasons, and
likely a mix of them. The areas that we believe could improve the results are:

More degradation levels: Having a larger amount of datasets, with more degradations lev-
els, which are less spaced out, could give a clearer overview of how the model performs when
the degradation is increased.

Larger datasets: Increasing the size of the datasets would help minimize noise variations
between them. Due to the inherent randomness in the image generation process, it is chal-
lenging to produce perfectly comparable datasets for the object detection model. Expanding
the dataset size would help average out the noise and lead to a distribution closer to normal-
ity across the randomized parameters. Ultimately with would result in more consistent and
reliable outcomes.

Using pathtracing: Additionally, generating pathtracing datasets could be interesting to in-
vestigate, as lighting degradations used in this project did not have a significant impact on
the models detection ability. Pathtracing, however, was not tested, and is considered a sub-
jectively, a significantly different looking dataset in terms of lighting.

This project did not test how combinations of degradation parameters affected the models
ability to detect the target objects. Testing combinations of parameters will be a substan-
tially larger amount of data to test, and will require more resources and time. However, this
would lead to a clearer understanding of how the parameters affect each other and the overall
data quality. The only dataset generated with multiple parameter degradations is the Worst
dataset. This had the lowest mAP@50 values compared to the other datasets, in addition to
also having a significant difference in performance during testing.

Training more fine tuned models could lead to a better understanding of how the pa-
rameters affect model training and its detection abilities. Training on various degradation
levels and including combinations of parameter degradations could inform the most efficient
practises for using synthetic data generation in the future. Testing which preprocessing and
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augmentations perform best and how many epochs to train for, would increase the success of
this as well.

It was found that different classes responded differently to the parameter degradations,
where some responded heavily to the degradations (such as tin can with mip map), and others
barely at all (glass objects with texture). It is recommended to replicate the method using a
mono class environment, where all objects are expected behave similarly to the degradations.
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Chapter 7

Conclusion

This project set out to determine the feasibility and plausibility of using existing image based
detection models as evaluation tools for judging synthetic data quality, in a no-reference
style image quality analysis. This was achieved by manipulating the reality gap through the
degradation of 3 different visually derived parameters Lighting Qualityﬂ Texture Qualityﬂ
and polygon coun For each level of degradation, a 201 image test set was created and
exposed to the model. By comparing the relative performance of the model on each dataset,
we sought to graph the performance across the degradation levels, resulting in a best, worst
and breakpoint dataset. However, due to a lack of an obvious breakpoint in overall data, only
the best and worst models were created. We theorize, based on the graphed performance
of individual object classes, that the differences between each class lead to any breakpoints
being averaged out across the generated datasets. This is due to some classes being almost
unaffected by parameter degradation, while others showed an obvious decline. When overall
performance was measured, the inconsistent class performance lead to a near linear degra-
dation. To this extent, we propose the next step to be a mono class type environment, or
alternatively separating object classes such that they would not affect one another during
testing.

To summarize, we believe the hypothesis shows merit, and that with further
work, it could prove to be a means for creating higher quality supplementary synthetic data
through simple models trained on limited natural data. However, this rapport does not
achieve its goal of finding a minimum/ breakpoint data quality as previously hoped, but
rather describes a simple to implement framework for synthetic data quality analysis during
the creation of a vision based machine learning model enabling better informed and more
effective development.

I Levels derived from unity’s graphics levels. 2 Degraded through the use of unity’s Mip Map function
3 Reduced through the Fast-Quadric-Mesh-Simplification algorithm as implemented by [Edlund, 2022]
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APPENDIX A1 - Unity Data Synthesiser Implementation Github

Unity Project Environment [Branch]
https:/ /github.com/Sebastian-Whitehead /Med-10/tree /Final-Unity-Environment

APPENDIX A2 - Python ML Testing and Fine-tuning

Python scripts for training and testing [Branch]
https:/ /github.com/Sebastian-Whitehead /Med-10/tree/vision

APPENDIX B - PySoloTools Fork

The PySoloTools fork created to convert our output data in solo format to the yolo format.
https:/ /github.com/Sebastian-Whitehead / pysolo2yolo

APPENDIX C - HuggingFace Dataset

The Huggingface repository for the synthetic data sets utilized for testing the hypothesis and
generated for the purposes of this project.
lhttps:/ /huggingface.co/datasets /P4rzlval/SyntheticBeverages|

APPENDIX D - AV Production

Can be found in appendix folder:
appendix / av_production

And seen on:

https:/ /youtu.be/PA8Stop7304

APPENDIX E - Poster

Can be found in appendix folder:
appendix / project_poster

APPENDIX F - Raw Data

Can be found in appendix folder:
appendix / Data
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APPENDIX G - Results

Wild class agnostic results

Test # | Name mAP@50 | mAP@50-95 | Recall | Precision | mAP@50_std | p_value_50
0 Best 0.229 0.158 0.251 0.782 0.279 1.000
1 L-High 0.262 0.189 0.279 0.784 0.281 0.250
2 L-Mid 0.244 0.157 0.255 0.806 0.259 0.578
3 L-Low 0.232 0.169 0.263 0.751 0.286 0.917
4 M-1 0.222 0.145 0.253 0.727 0.257 0.781
5 M-2 0.242 0.156 0.260 0.750 0.282 0.646
6 M-3 0.237 0.181 0.260 0.758 0.275 0.786
7 M-4 0.211 0.150 0.234 0.726 0.272 0.508
8 M-5 0.231 0.164 0.246 0.752 0.286 0.948
9 M-6 0.207 0.152 0.223 0.791 0.257 0.406
10 D-0.8 0.200 0.146 0.228 0.739 0.275 0.293
11 D-0.6 0.198 0.144 0.228 0.739 0.267 0.256
12 D-0.4 0.229 0.158 0.256 0.741 0.297 0.975
13 D-0.2 0.186 0.123 0.223 0.725 0.268 0.110
14 DwS-0.8 0.219 0.152 0.232 0.778 0.293 0.722
15 DwS-0.6 0.222 0.152 0.240 0.762 0.266 0.776
16 DwS-0.4 0.237 0.175 0.260 0.772 0.278 0.795
17 | DwS-0.2 0.223 0.163 0.243 0.766 0.292 0.811

Table 1: Model results for wild ds class agnostic.
Wild class dendent results

Test # | Name mAP@50 | mAP@50-95 | Recall | Precision | mAP@50_std | p_stat_50
0 Best 0.094 0.071 0.134 0.473 0.227 1.000
1 L-High 0.133 0.102 0.169 0.521 0.234 0.094
2 L-Mid 0.107 0.079 0.144 0.565 0.233 0.561
3 L-Low 0.128 0.100 0.159 0.529 0.241 0.151
4 M-1 0.100 0.069 0.145 0.462 0.187 0.767
5 M-2 0.122 0.092 0.164 0.518 0.246 0.239
6 M-3 0.116 0.093 0.157 0.575 0.225 0.338
7 M-4 0.116 0.086 0.146 0.451 0.220 0.335
8 M-5 0.119 0.089 0.156 0.503 0.221 0.269
9 M-6 0.110 0.085 0.148 0.592 0.217 0.474
10 D-0.8 0.078 0.059 0.121 0.439 0.219 0.469
11 D-0.6 0.095 0.073 0.134 0.557 0.216 0.949
12 D-0.4 0.124 0.092 0.151 0.528 0.224 0.184
13 D-0.2 0.091 0.066 0.129 0.540 0.216 0.882
14 DwS-0.8 0.094 0.072 0.124 0.513 0.244 0.992
15 DwS-0.6 0.104 0.079 0.136 0.520 0.204 0.650
16 DwS-0.4 0.089 0.069 0.138 0.478 0.218 0.805
17 | DwS-0.2 0.092 0.075 0.133 0.512 0.229 0.938

Table 2: Model results for wild ds with classes
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Restricted class agnostic results

Test # | Name mAP@50 | mAP@50-95 | Recall | Precision | mAP@50_std | p_stat_50
0 Best 0.566 0.431 0.578 0.901 0.358 1.000
1 L-High 0.608 0.469 0.622 0.848 0.365 0.247
2 L-Mid 0.572 0.414 0.583 0.852 0.359 0.873
3 L-Low 0.612 0.472 0.624 0.864 0.339 0.190
4 M-1 0.621 0.493 0.632 0.869 0.343 0.116
5 M-2 0.589 0.453 0.604 0.819 0.381 0.529
6 M-3 0.603 0.478 0.620 0.861 0.355 0.299
7 M-4 0.606 0.468 0.620 0.881 0.380 0.284
8 M-5 0.596 0.447 0.616 0.853 0.377 0.421
9 M-6 0.576 0.431 0.583 0.879 0.356 0.790
10 | D-0.8 0.590 0.462 0.604 0.890 0.384 0.521
11 | D-0.6 0.582 0.427 0.598 0.862 0.376 0.657
12 D-0.4 0.611 0.484 0.624 0.859 0.362 0.214
13 | D-0.2 0.572 0.424 0.589 0.859 0.364 0.874
14 | DwS-0.8 0.545 0.415 0.559 0.852 0.366 0.556
15 | DwS-0.6 0.587 0.460 0.601 0.842 0.357 0.552
16 | DwS-0.4 0.554 0.418 0.561 0.835 0.375 0.742
17 | DwS-0.2 0.562 0.453 0.588 0.856 0.365 0.900
18 | Worst 0.561 0.444 0.585 0.836 0.364 0.889

Table 3: Model results for restricted ds class agnostic

Restricted class dependent results

Test # | Name mAP@50 | mAP@50-95 | Recall | Precision | mAP@50_std | p_stat_50
0 Best 0.442 0.356 0.471 0.783 0.387 1.000
1 L-High 0.453 0.364 0.492 0.730 0.385 0.782
2 L-Mid 0.423 0.325 0.460 0.774 0.374 0.616
3 L-Low 0.445 0.359 0.496 0.761 0.377 0.947
4 M-1 0.423 0.346 0.482 0.714 0.385 0.618
5 M-2 0.434 0.347 0.480 0.721 0.401 0.832
6 M-3 0.414 0.339 0.486 0.723 0.383 0.463
7 M-4 0.424 0.341 0.464 0.686 0.405 0.642
8 M-5 0.382 0.299 0.444 0.662 0.373 0.111
9 M-6 0.380 0.299 0.420 0.680 0.390 0.110
10 D-0.8 0.427 0.346 0.463 0.754 0.411 0.693
11 D-0.6 0.391 0.307 0.425 0.711 0.391 0.186
12 D-0.4 0.403 0.325 0.468 0.733 0.398 0.319
13 D-0.2 0.392 0.304 0.445 0.743 0.390 0.197
14 DwS-0.8 0.425 0.341 0.457 0.792 0.390 0.646
15 DwS-0.6 0.425 0.353 0.470 0.774 0.392 0.664
16 DwS-0.4 0.366 0.293 0.412 0.728 0.381 0.047
17 DwS-0.2 0.358 0.299 0.427 0.712 0.387 0.029
18 Worst 0.335 0.271 0.402 0.572 0.379 0.005

Table 4: Model results for restricted ds with classes
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APPENDIX H - Model Training Parameters

task: detect
mode: train

;lmodel: weights.pt

data: //Med-10/fine_tune_sets/0/train/data.yaml
epochs: 20

time: null

patience: 100

batch: 16

imgsz: 640

save: true

save_period: -1

cache: false

3| device: mps

workers: 8

5| project: //Med-10/fine_tune_sets/0

name: ’0°

7| exist_ok: true

pretrained: true
optimizer: auto
verbose: true

seed: O
deterministic: true

3| single_cls: false

rect: false

5| cos_1r: false
| close_mosaic: 10

resume: false

amp: true
fraction: 1.0
profile: false
freeze: null
multi_scale: false

3| overlap_mask: true

mask_ratio: 4
dropout: 0.0

36| val: true

split: val
save_json: false
save_hybrid: false
conf: null

iou: 0.7

max_det: 300

slhalf: false

dnn: false

5| plots: true
;| source: null

vid_stride: 1

;| stream_buffer: false

visualize: false
augment: false
agnostic_nms: false
classes: null
retina_masks: false
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embed: null

show: false
save_frames: false
save_txt: false
save_conf: false
save_crop: false
show_labels: true
show_conf: true
show_boxes: true

3| line_width: null

format: torchscript

»5| keras: false

optimize: false

71 int8: false

dynamic: false
simplify: true
opset: null
workspace: null
nms: false

311r0: 0.01

1rf: 0.01

momentum: 0.937
weight_decay: 0.0005
warmup_epochs: 3.0
warmup_momentum: 0.8
warmup_bias_lr: 0.1

box: 7.5
cls: 0.5
dfl: 1.5

;| pose: 12.0
kobj: 1.0
nbs: 64
hsv_h: 0.015

7lhsv_s: 0.7

;| degrees: 180

translate: 0.1
scale: 0.5
shear: 0.0

2| perspective: 0.0
;| flipud: 0.5

fliplr: 0.5
bgr: 0.0

smosaic: 1.0

mixup: 0.0

copy_paste: 0.0
copy_paste_mode: flip
auto_augment: randaugment
erasing: 0.4

2| crop_fraction: 1.0
3| cfg: null

tracker: botsort.yaml
save_dir: //Med-10/fine_tune_sets/0/0

code 1: YOLOv11 Training Configuration
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