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Summary

This thesis presents the design, implementation, and evaluation of DenIM on SAM,
a secure instant messaging system that addresses metadata privacy. While many
popular messaging services implement end-to-end encryption using protocols such
as the Signal Protocol, communication on their platforms expose metadata. With
enough metadata, an adversary can construct social graphs and learn about users

relationships and behaviours.

To counter this, the authors implement the DenIM (Deniable Instant Messaging)
protocol on top of the Signal Protocol. DenIM depends on a hybrid messaging service
where users can send both regular and deniable messages. The protocol provides
transport layer privacy by allowing users to piggyback deniable messages onto regular
messages. Thereby, the traffic of the deniable messages are covered by the regular
messages. This hybrid approach ensures that regular messages maintain low latency,

while deniable messages remain hidden in plain sight.

The authors developed the SAM instant messaging from scratch, with modularity
and scalability in mind. It uses the Signal Protocol to end-to-end encrypt messages.
With the development of DenIM on SAM the, DenIM functionality is integrated
through a proxy component that wraps and unwraps deniable payloads transparently,
enabling the server to remain unaware of the presence of the DenlM protocol. A Key
Distribution Center is introduced to handle prekey generation deterministically based
on client-provided seeds, ensuring that key exchange itself does not leak information

about the deniable communication.

The system is evaluated in a controlled test environment using Docker and Aalborg
Universitys Strato infrastructure. Automated clients simulate realistic behaviour, and
the resulting traffic is captured and analysed. The authors demonstrate that deni-
able messages cannot be distinguished from regular ones in terms of size. A modified
version of a normalized statistical disclosure attack tool fails to detect deniable com-

munication, confirming the systems.

The thesis concludes that DenIM on SAM almost satisfies the full DenIM specification
and delivers strong metadata privacy. It provides a practical foundation for future
privacy-preserving messaging systems and contributes meaningfully to research in

secure communications.






AALBORG UNIVERSITY
STUDENT REPORT

Title:
DenIM on SAM

Theme:
Distributed Systems

Project Period:
Spring Semester 2025

Project Group:
cs-25-ds-10-09

Participant(s):

Simon Deleuran Laursen

Magnus Jgrgensen Harder Christensen
Alexander Skytt Steffensen

Supervisor(s):
René Rydhof Hansen
Danny Bggsted Poulsen

Code Repository:
https://github.com/SAM-Research

Page Numbers: 56

Date of Completion:
June 5, 2025

Department of Computer Science
Aalborg University
http://www.aau.dk

Abstract:

This thesis presents DenIM on SAM,
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without compromising usability or scal-
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1 Metadata Privacy

IM services are very popular and continue to see strong growth. With 8.3 billion
accounts worldwide in 2021, this number is expected to increase to 9.5 billion in
2025 [1]. Today, many of the popular IM services like WhatsApp [2] and Facebook
Messenger [3] use the Signal Protocol to provide E2EE for their users [4]. With E2EE
the content of the users message is securely hidden from an adversary but, even though
the message content is safe, current IM services still leek metadata when users are

messaging.

Metadata in an IM conversation is data related to the conversation, including location
and identity of the users in the conversation [5]. This information may seem harmless,
but with enough metadata it is possible to create social graphs and identify relation-
ships and behaviours of people [6]. Also, consider the example where the metadata
reveals that a government official has had an E2EE conversation with a specific jour-
nalist that has just published an article revealing government secrets. It may not
even matter what the contents of the message are, the fact that the communication

occurred is damning enough.

Even though there have been many proposals on protocols that claim to offer meta-
data privacy [7, 8, 9, 10], popular IM services do not offer metadata privacy. Signal
has made an attempt to hide the sender of a message [11]. This solution is known as
Sealed Sender. However, as shown in [12] the sender of messages can still be identified
when multiple messages are send back and fourth. This project will look into different
transport privacy protocols in order to find the most suitable for an IM service. Fur-
thermore, the project will contribute with an implementation of a transport privacy

protocol on top of an already known E2EE protocol.
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2 Transport Privacy

Many protocols that promise transport privacy exist, each with its own set of benefits
and trade-offs. Some transport privacy protocols are round-based, which means that
communication happens in rounds and all clients must participate in a given round [7,
9]. This approach leads to high network and energy costs over time [13]. It becomes
expensive to run on mobile devices where resources are limited. Other transport
privacy protocols are delay-based which means that the messages are intentionally
delayed at the server, making it difficult to correlate the message that some user
sent to a message that someone received from the server [8, 10]. The problem with
these transport privacy protocols is that they are not fit for Instant Messaging (IM).
You could never achieve the same quality of service that users have come to expect
from an IM service. Therefore, users would only want to use the protocol when the
message they are sending requires transport privacy. This means that communications
using these protocols are vulnerable to censorship. As there is no reason to use these
protocols if you have nothing to hide, people who have something to hide are the only
ones affected by the censorship. Previously, cover-protocols have been suggested to
mask the traffic by imitating other, non-suspicious protocols such as HTTP, but as

explained in [14], cover-protocols are not sufficient.

The DenIM protocol is a kind of delay-based protocol that uses a hybrid model where
most messages are regular instant messages that are delivered instantly, and some
messages are deniable [15]. Deniable messages are not sent instantly. Instead, they
piggyback on regular messages so that an adversary cannot prove that a deniable

message was sent or received.

2.1 Combining Transport Privacy and End-to-End
Encryption

DenIM piggybacking approach means that the protocol can be layered on top of an
existing IM protocol. The DenIM paper argues that such an approach would be more

resilient to censorship because it could be implemented in a mainstream messaging
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service with millions of users [15]. As explained in chapter 1, many IM services use

the Signal Protocol, so it may be a good choice for a DenIM IM service.

Implementing DenIM on top of the Signal protocol requires an IM service using the
Signal Protocol that can be modified to support DenIM. It would be easier to im-
plement on top of an already existing implementation instead of implementing one
from scratch. Signal has their own IM service by the same name, also using the Sig-
nal Protocol. Its implementation is also open source, making it a good candidate.
However, in the pre-specialization, prior to this project, an investigation of their im-
plementation revealed that the Signal-Server implementation® relies on paid services
like Amazon Web Services (AWS), Firebase and many more [16]. Signal is open source
for the sake of transparency and to allow anyone to audit the code [17], not for the
sake of allowing others to easily self-host Signal. Not being able to self host Signal
without extensive costs is a deal breaker as this project does not have that amount

of resources.

Also, these proprietary technologies that Signal relies on are American, and with the
current state of the world, it is popular to opt for a solution not reliant on American
companies. Having an open source alternative that is not dependant on the will of

Jeff Bezos may be desirable.

As no other candidates were found, a IM service using the Signal Protocol will have
to be implemented so that DenIM can be implemented on top of it. Before creating
the implementation, we have to dive deeper into the DenIM protocol, to know what

it requires to implement the protocol.

IThe Signal-Server source code: https://github.com/signalapp/Signal-Server


https://github.com/signalapp/Signal-Server
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3 DenIM

The DenIM protocol, as described by [15], uses a hybrid approach to transport privacy
where most messages are regular messages that are sent without transport privacy,
and some messages are deniable. Deniable messages are not instantly delivered. Each
time a regular message is sent, chunks of deniable messages can be attached to it.
The chunks travel to the server together with the regular message, so that the reg-
ular message creates a cover story that explains why the server was contacted. The
server will split the regular and deniable parts of the message and forward the regular
message to its recipient immediately. The deniable message chunks are saved until
the full message can be reconstructed and the server can read who the message is
for. Then, the message can be split up into chunks again and attached to any regular

messages that are outgoing to its recipient.

Figure 3.1 describes the anatomy of a message in DenIM. As described in [15], the
regular part of the message will have some size [ and the deniable payload will have
size [ -q where ¢ can be tuned to accommodate higher or lower throughput of deniable

messages.

Regular Deniable

Figure 3.1: A DenIM message has a regular and deniable part. The de-
niable part size is a product of the length of the regular part and ¢, a
parameter set by the server.

The deniable part of the message may contain any number of chunks, including zero.
The only constraint is that the deniable part must have size [ - q. If there are no more

chunks that can be appended, the rest of the space is filled with random bytes [15].
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3.1 Key Distribution Center

Since deniable messages must also be encrypted, DenIM has to facilitate the encryp-
tion protocol that is implemented under it. In our case, that would be the Signal

Protocol.

The only thing that you need to know about the Signal Protocol in relation to DenIM
is that it uses the FEztended Triple Diffie-Hellman (X3DH) key agreement protocol
to establish an encrypted session between two users'. X3DH requires the clients to
upload prekeys that other clients can later retrieve from the server to initialize a
session even if the recipient is offline. When clients fetch prekeys, they get a prekey

bundle from the server containing all the information that is required to start a session.

The DenIM server must therefore have a Key Distribution Center (KDC) that is
responsible for distributing keys to clients that request them. This KDC is different
from how Signal handles prekeys. According to the X3DH protocol, clients can still
participate in the protocol if they run out of one-time prekeys [18]. However, if an
adversary sends a key request and the server responds with a prekey bundle without
a one-time prekey, it can give information to the adversary about how many deniable
conversations a client has started. Therefore, the DenIM specification states that the
KDC should be able to generate one-time prekeys on behalf of the user such that it

is impossible for a client to run out of one-time prekeys [15].

Since the server is generating the keys, and because DenIM does not want the client
to have to request its own keys from the server, the key generation is done using a
seeded, cryptographically secure random number generator. Both client and server
can then generate the same keys. The client uploads two seeds during registration,
one for generating the actual key, and one for the key ID as it has to be random.
If the key ID’s were simply incremental (as they are in Signal?), an adversary could
simply subtract one from the current ID to learn how many deniable sessions a user

has.

According to the specification, DenIM clients should still be able to upload one-time
prekeys, which means there has to be some measure to avoid the client and the server
generating two different keys for the same key ID. DenIM on Signal handles this issue
by enforcing that every n-th key ID is reserved for the server as depicted on Figure 3.2.

In practice, this is achieved by keeping track of the state of the pseudorandom number
generator. Each time the generator is used, the state is incremented by one. When
the state reaches some multiple of n, it means that key corresponding to this ID is
reserved for the server. The client generates the key using the same method as the

server so that it can decrypt any incoming message that claims to be using the prekeys

I1X3DH has now been deprecated in favour of a post-quantum secure alternative. See subsec-
tion 9.1.3.
2Signal-Desktop, AccountManager.ts L408-L410


https://github.com/signalapp/Signal-Desktop/blob/ad5dadd666c62b7e262a570e6f951c7b9d5bdeae/ts/textsecure/AccountManager.ts#L408-L410
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that corresponds to the ID. If the state value is not a multiple of n the client can
generate the key in any way it wants and upload it to the server using a deniable
action. This way, the client can generate however many prekey they want and the

server can generate however many it needs.

Client Client
RNG State 1 2 3 4 5 6
Generated ID 9910 8195 5642 0579 7650 3704
Server Server

Figure 3.2: Example of Key ID Segmentation where n = 3.

In DenIM, clients need some deniable way to retrieve the prekey bundle of other users
so that they can initiate a conversation. If an adversary could see that a client made a
key request but did not send a regular message immediately after getting a response,
they can assume that the client is using DenIM. Therefore, key requests must be

handled deniably as well.

3.2 Threat Model

As a part of their design, DenIM defines a threat model [15]. They consider a global
active adversary. The adversary can participate in DenIM, which gives them the
opportunity to communicate with other users and send requests to the server. Addi-
tionally, the adversary can observe, insert, and modify the traffic sent between two
parties. The adversary is presumed to be incapable of compromising the internal state
of the server and of clients that are not controlled by the adversary. The adversary
has three goals. The first is to read or modify deniable payload sent between two
honest parties. The second is to learn whether a user is sending deniable messages.

The third is to learn who is communicating deniably with whom [15].

As this project will implement DenIM, the same adversary will be considered in this

project. The threat model will be discussed later in section 9.6.

3.3 DenIM on Signal

The authors of [15] have created a reference implementation of DenIM using the
Signal Protocol called DenIM on Signal?. The purpose of this implementation is
to perform experiments on the protocol and not to be an actual production-ready

Instant Messaging (IM) service with DenIM. As such, it is not complete and has issues

3DenIM on Signal can be found here: https://github.com/Niteo/denim-on-signal
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that would need to be addressed in a proper implementation. The most important

omissions of DenIM on Signal in terms of being production ready are as follows:

First of all, DenIM on Signal does not adhere entirely to the specification. It does
not support block requests* and the deniable payload does not always have [ - ¢ size,

as the implementation has a bound for how small it can be®.

Secondly, DenIM chunks in DenIM on Signal do not contain any identifiers to help
the recipient to reconstruct the messages if chunks arrive out of order, which means

an adversary could block the service simply by delaying packetsS.

Finally, DenIM on Signal is a simple TypeScript project that is clearly not designed
to be extensible. It is designed by the authors to run some experiments and as such,

there is no support for persistence.

Still, DenIM on Signal serves as a useful reference when designing a DenIM imple-
mentation. The implementation gave a closer and more detailed look at how some
of the DenIM properties can be implemented. This helped us identifying potential

shortcomings, which made it easier to implement a robust solution from the beginning.

4Found in DenimClient.cs L576-L582
5Found in Util.ts L142-L.149
SFound in message.proto L68-L71


https://github.com/Niteo/denim-on-signal/blob/b9649570f7614a704facd1c2ed52b712b7138568/src/core/DenimClient.ts#L576-L582
https://github.com/Niteo/denim-on-signal/blob/b9649570f7614a704facd1c2ed52b712b7138568/src/helper/Util.ts#L142-L149
https://github.com/Niteo/denim-on-signal/blob/b9649570f7614a704facd1c2ed52b712b7138568/src/proto/message.proto#L68-L71
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4 Problem Formulation

With the description of DenIM and an experimental implementation as reference, an
implementation of DenIM on an IM service that uses the Signal Protocol is feasible

in this project.

As there is no version of DenIM with the full specification implemented that is suitable

for real-world usage, the following problem arises

How can we implement an instant messaging service and client library
that uses the DenIM protocol on top of the Signal Protocol and is ready

for real-world use?

It should be said that this project focuses on building a library that has all the main
functionality using DenIM on top of the Signal Protocol. The library can be used by
others to develop a application for a specific medium whether that is for computer or
smartphones. To validate that the DenIM protocol has been properly implemented, it
needs to be tested against a traffic analysis attack. Additionally, an evaluation should
be conducted where the traffic is observed to make sure that messages with deniable

chunks piggybacked are indistinguishable from messages with dummy padding or not.
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5 System Requirements

The goal is to implement the DenIM protocol specification in a deployable and scalable
system. To do this, we must first define the requirements that have to be satisfied in
order to claim that we have in fact implemented DenIM. Also, we must define what

we mean by a deployable and scalable system.

The system requirements are be split into the requirements for our Signal Protocol
compliant instant messaging service implementation, and the DenIM implementation

that is going to be implemented on top.

5.1 Instant Messenger Requirements

In order to be production ready, the system should have persistent storage such that
the system can be shut down and brought back up without data loss. It also means
that the server itself is stateless, meaning it can be scaled horizontally if it is required

due to the number of clients interacting with it.

In practice, this requirement means that all data held by the server should be placed

in an external database that can be scaled independently of the server.

Since the plan is to implement DenIM on top of the Instant Messaging (IM) service,
the infrastructure that we create for the IM service should be designed with reusability
in mind. Many of the constructs that are required for regular IM will also be needed

for DenIM, so reducing coupling between components should be a priority.

The following table sums up the requirements for the system:
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ID Requirement

R-1 Server must use persistent storage to avoid data loss when the server shuts
down.

R-2  Client should use persistent storage to avoid data loss when the client shuts
down.

R-3 Multiple server instances should be able to exist simultaneously for hori-
zontal scaling.

R-4 Clients should be able to communicate securely using the Signal Protocol.

R-5 Server components should be reusable and interchangeable so that they can
be reused for DenIM.

R-6  The system should be able to recover from errors.

Table 5.1: Requirements for the Instant Messaging (IM) service.

5.2 DenIM

The DenIM paper explicitly states several requirements that any implementation must
follow. These are covered in subsection 5.2.1 Aside from those, there are requirements
that must be satisfied in order to create a viable implementation strategy for a DenIM

compliant instant messenger. These are covered in subsection 5.2.2.

5.2.1 DenIM Protocol Requirements

This section aims to formalize the requirements of the DenIM protocol for the purpose

of clarity. A summary of the requirements can be found in Table 5.2

DenIM provides transport layer deniability through a hybrid approach where some
messages are regular and some messages are deniable [15]. The deniable messages
are transported between the clients and server by piggybacking on regular messages.
Each regular message that is sent has some amount of space (I-¢) for deniable content
that can be piggybacked on it. This is covered by DenIM Requirement D-1. The need
for higher through-put of deniable messages may necessitate that the server regulates
the value of ¢ to achieve the best quality of service. This is covered by DenIM
Requirement D-2. If a high volume of deniable messages are being sent, the server
should increase the value of ¢ to ensure that clients are able to deliver their deniable

messages without too much delay.

Because the amount of content in a deniable payload is limited, deniable messages
are split into chunks. Both server and clients uses a buffer to reassemble the chunks
as they arrive. This is requirement DenIM Requirement D-3. Additionally when the
client and server are preparing the deniable payload for a message, they have to use
a buffer that takes from the oldest deniable message. This is requirement DenIM
Requirement D-4. Since DenIM payloads sometimes contain garbage and other times

contain actual chunks that need to be processed, DenIM implementations need to

10
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be careful about creating timing channels. One mitigation that the server should
implement is to always forward the regular message before processing its deniable
payload. This is DenIM Requirement D-5. Doing this still leaves a potential timing
channel when the server attaches deniable payload to an outgoing message. This is

discussed in subsection 9.1.4.

Before any message can be sent using DenIM, the sender of the message must fetch
a prekey bundle of the recipient to start an encryption session in accordance with
the Signal Protocol. According to the Signal Protocol, clients upload new one-time
prekeys when they register and also refill the server’s key store periodically to avoid
running out of one-time prekeys [19]. In DenIM, this is not sufficient. If a client
runs out of one-time prekeys, it leaks information to the adversary about how many
sessions the client has. Therefore, the server must be able to generate new one-time

prekeys for the clients (DenIM Requirement D-6).

Since the client also needs to know the keys that the server has generated on its behalf,
the key generation is performed using a cryptographically secure seeded pseudoran-
dom generator (DenIM Requirement D-9). The key needs to be randomly generated
but, as mentioned in section 3.1, the identifier of the key must also be random (DenIM
Requirement D-10). The client therefore uploads two seeds during registration that
both the server and the client can then use to generate the same keys and key identi-
fiers for each iteration (DenIM Requirement D-7). To ensure that the server and the
clients agree on how many keys have been generated, the server includes the iteration
count of the random generator in each message that it sends to the clients (DenIM

Requirement D-8).

as described in chapter 3, the primary feature of DenIM is the fact that deniable
messages are piggybacked on regular messages. “Messages”, in this context, refers to
all communication between client and server, not just the messages that are addressed
to other users (DenIM Requirement D-11).

The DenIM paper outlines three actions that a client has to be able to perform

deniably [15]. They are as follows:

¢ Clients have to be able to silently block other users from contacting them. This
is to avoid an adversary blocking the receive queue of a client by spamming
them (DenIM Requirement D-12.

o Clients also have to be able to exchange keys with the server. The client must
be able to request keys of other users (DenIM Requirement D-13) and upload
its own keys (DenIM Requirement D-14).

o Finally, clients must obviously be able to send messages to each other deniably
(DenIM Requirement D-15).

11
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ID Requirement

D-1  The deniable part of a message should be exactly [ - ¢ bytes.

D-2 ¢ is a system-wide global configuration value dictated by the server.

D-3  Clients and server must have buffers to reassemble deniable messages as
they arrive.

D-4  Clients and server must have buffers used to send the oldest deniable
messages first.

D-5  Server should forward regular message before processing DenlM chunks.

D-6  Server must have a KDC that can generate one-time prekeys on behalf of
the user.

D-7  The KDC must generate keys using a seed provided by the client so that
the client can also generate the same key.

D-8  The server must inform the client how many times the key generator has
been used so that the client can synchronize.

D-9 Keys must be generated with a cryptographically secure random generator.

D-10 The identifier for each key must be random.

D-11 Client and server must be able to communicate deniably by piggybacking
messages.

D-12  Clients must be able to block other users deniably.

D-13  Clients must be able to request prekeys deniably.

D-14  Clients must be able to upload prekeys deniably.

D-15 Clients must be able to send messages to other users deniably.

Table 5.2: Explicit requirements dictated by the DenIM specification.

5.2.2 DenIM Implementation

ID Requirement
R-7 The DenIM specification should be implemented as described by [15].

R-8 Server should have a strategy for deleting old key IDs when they are no
longer able to cause a collision.

Table 5.3: Requirements specific to our DenIM implementation.

12
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6 SAM Instant Messenger

SAM! is a complete overhaul of the instant messaging service that we developed
during the previous semester?. There were enough problems with the previous im-
plementation that we concluded that a complete rewrite was in order. The most
important issues that we identified included the error handling. If something went
wrong at runtime, it was difficult to figure out what and how to handle it properly.
Another issue was that the project had a rigid structure with high coupling that did

not allow for us to tinker with the configuration.

SAM consists of a client and a server. The following sections cover how they are

structured and how they communicate.

6.1 SAM Server

SAM Server is architected around a request router that routes incoming requests from
clients to a corresponding endpoint handler function. The endpoint handlers perform
the desired operations and return a result to the request router which forwards the
result to the client. The data that is required to perform the operations is held by
managers. For instance, the key manager is responsible for managing all of the prekeys

and supports actions such as adding and deleting a prekey.

A manager in SAM is a type that implements one of the four manager interfaces:
AccountManager, DeviceManager, KeyManager and MessageManager, and their area
of responsibility should be obvious from their names. AccountManager manages ac-
counts, DeviceManager manages information about user devices, KeyManager man-
ages prekeys and MessageManager stores messages until the recipient is ready to

receive them.

Managers are responsible for storing data, which means that any type that implements
a manager interface must have some strategy for doing that. When deploying a SAM

Server instance in a production environment, this storage strategy should be using

LISAM is the initials of the authors of the report
2 Available here: https://github.com/Diesel-Jeans/signal
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Figure 6.1: SAM Server: Parts related to handling a registration

some form of persistent storage such as an SQL database.

To illustrate how the architecture works, consider a registration request as in Fig-
ure 6.1: A user sends a request containing information about the account that they
would like to register (such as their desired username), but also information about
their primary device (such as a key bundle) since the Signal Protocol requires users
to include this during the registration phase. Assuming that the registration request
is valid, the endpoint handler function for this request invokes a series of functions
that will eventually have the account manager store the account, the device manager
will have stored the user’s primary device and the key manager will have processed

the keys in the key bundle and stored them as well.

6.2 SAM Client

The SAM Client contains all methods that you would need to communicate with
other clients through the server. It also contains a collection of data stores which
are responsible for storing all data related to a client. Some store types are required
by libsignal. These are for storing keys, prekeys and sessions. Some stores are
defined by us. These are for storing contacts, account information and messages and

are configured to use SQLite for persistent storage.

Sending a message works as illustrated by Figure 6.2: The client calls a function
in the logic module that constructs an encrypted message during step 1. Since the
recipient may have multiple devices, each with their own keys, the message must be

encrypted once per recipient device as per the Signal Protocol. Therefore, in step
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Figure 6.2: Client Sending a Message

2, the API client is invoked to fetch prekeys for each recipient device if the client
does not already have an established session with that device. Once the prekeys have
been fetched, the message can be encrypted for each recipient device and all of the
messages are put into an envelope and sent to the server in step 3. If the envelope
was prepared correctly, the server replies with an acknowledgement. Otherwise, the

server will respond with the reason that the envelope was rejected in step 4.

Imagine the case where Alice and Bob have a conversation and Bob decides that he
would like to also have SAM on his other computer. He links the new device to
his account, but Alice does not know about this new device yet. Next time they
communicate, she sends a message addressed to Bob’s initial device only. Once the
envelope reaches the server, the server will discover that it does not contain a message
for Bob’s second device and reject it. Upon rejection, Alice’s client will call a handler
function in the logic module that attempts to fix the issue by fetching the prekeys for
Bob’s new device, encrypt the message for the new device, and re-deliver the message

to the server.

6.3 Client - Server Communication

SAM clients have two ways that they communicate with the server. The method
used depends on the scenario. Requests that a client might need to make to the
server are performed using HTTP. This includes performing key requests and account
registration. For Instant Messaging (IM), SAM uses a simple communication scheme
created with Protobuf and WebSocket. Using WebSocket ensures that messages can

be delivered to the recipient instantly if they are online.

The communication protocol that SAM uses through WebSocket is called SAM Pro-

tocol and consists of a ClientMessage type that the clients can send to the server
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Figure 6.3: SAM Protocol Examples

and a ServerMessage type that the server can send to clients.

A ClientMessage can either contain an encrypted message that the user wants the
server to deliver to some recipient or it can contain an acknowledgement that the

client has received a message that the server has previously sent.

A ServerMessage can either contain an encrypted message that was addressed to the
recipient or some status message such as an acknowledgement or a rejection of the
client’s request. If the client receives a rejection, the server will include the reason
why the request failed so that the client can attempt to fix the problem before retrying

the request as seen on Figure 6.3b.
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7 DenIM on SAM

As DenIM on SAM will use the DenIM protocol, its design will be different from SAM.
However, DenIM on SAM should reuse as much of SAM as possible. This chapter
explains how we constructed a DenIM extension on top of SAM and how we reused

as much as possible from SAM to do it most efficiently.

7.1 DenIM Proxy

Because DenIM on SAM is an extension of SAM, we decided to implement DenIM as a
WebSocket proxy for SAM message communication. This creates a distributed system
where the DenIM Proxy communicates with the SAM Server over the SAM Protocol
and DenIM clients using the DenIM Protocol. This is illustrated in Figure 7.1.

Private Network

A

Denim On SAM
Client

>
3
HTTP. a
g
S

SAM Server -
DenlM Protocol (WS’ z

SAM Protocol (WS)| DenIM/KDC
Proxy

Database

(Shared State)

Figure 7.1: Infrastructure of the server on DenlM on SAM.

When the client sends a regular message, it is wrapped in a DenIM Protocol message
as the regular payload. Afterwards, the deniable payload is added before sending the
message. The client sends the WebSocket message to the DenIM Proxy. Once the
DenIM Proxy receives the message, it will immediately forward the regular payload
(the SAM Protocol message) to the SAM Server to reduce the chance for timing
leaks. The message is forwarded over an authorized WebSocket connection created

on behalf of the client. The SAM Server does not know that it communicates with
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a DenIM Proxy. When the SAM Server sends a WebSocket message out it is send
through the DenIM Proxy which wraps the message in a DenIM Protocol message and
adds a deniable payload to the message. The SAM Server and DenIM Proxy shares
a database running on another server, which allows the DenIM Proxy to retrieve
account information of clients without the need to ask the SAM Server. This design
also has the benefit of being stateless for both the SAM Server and DenIM Proxy,

allowing for horizontal scaling.

7.2 Reconstructing Deniable Messages

The DenlIM paper does not specify how deniable messages are reconstructed when
the deniable payload is received. Therefore we have to design our own way of recon-

structing deniable messages from DenIM chunks.

As DenIM chunks can be received out of order it is important to be able to tell which
message each DenIM chunk belongs to and also its position in the sequence of chunks
for that message. To do this, each deniable message is given an ID that is unique for
the receiver such that they can differentiate between the messages. Furthermore each
chuck is also given a sequence number, indicating its position so each message can be
ordered correctly. The receiver should additionally be able to know whether a chunk
is the last in the sequence. This is achieved by each chunk having a flag indicating
whether it is the last chunk of a message or not. An example of two deniable messages
parted into chunks is seen in Figure 7.2. It is possible to distinguish each chunk and

know which message it belongs to.

ID=1 ID=1 ID=1 ID=1
Sequence number = 1|Sequence number = 2| Sequence number = 3| Sequence number = 4
Flag = None Flag = None Flag = None Flag = Final

Deniable Message

ID=2 ID=2 ID=2
Sequence number = 1 Sequence number =2 Sequence number =3
Flag = None Flag = None Flag = Final

Deniable Message

Figure 7.2: Two Deniable Messages parted into chunks, each chuck is
distinguishable from another.

When the proxy or the client receives a deniable payload they will use a ReceivingBuffer
to recreate the deniable message. Listing 7.1 shows a possible implementation of a
ReceivingBuffer. It consists of a HashMap that maps a MessageId to a ChunkBuffer.
The ChunkBuffer holds the current chunks received in ChunkBuffer.chunks and the
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SequenceNumbers of the chunks it knows that is missing in ChunkBuffer.waiting_-

for.

struct ReceivingBuffer {
chunk_buffers: HashMap<Messageld, ChunkBuffer>,
}

chunks: HashMap<SequenceNumber, Vec<u8>>,

1

2

3

4

5 struct ChunkBuffer {
6

7 waiting_for: HashSet<SequenceNumber>,
8

}

Listing 7.1: ReceivingBuffer struct used to receive and reconstruct a
DeniableMessage from chunks for a user.

When a DeniablePayload is received, a function that processes the chunks and de-
codes the messages is called. The pseudocode for this function is shown in Algo-
rithm 1. It ensures that all chunks of a message are received before attempting to

reconstruct it and that all chunks are ordered correctly.

The algorithm keeps track of the chunks that it must receive before it can reconstruct
a message. When a chunk is received that is not a final chunk, the algorithm adds
the next chunk ID to the list of awaited IDs. This is handled in the first highlighted
section (from line 9 to 11). The second highlighted section (from line 12 to 20) handles
the case where a chunk is received out of order. In this case, all IDs before the ID of
the current chunk must be added to the list of awaited IDs if they have not already
been received. Finally, if all the chunks of a message have been received, the message

bytes are decoded.
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Algorithm 1 Process and Decode Chunks
Input: ReceivingBuffer and a list of DenIMChunks
Output: list of DeniableMessages

1: Messages < empty list

2: for all Chunk in Chunks do

3:  if Chunk.Flag = DummyPadding then
4: continue

5. end if

6:  ChunkBuffer < ReceivingBuffer. Buffers|Chunk.Messageld] or create new
7. seq < Chunk.SequenceNumber
8:  mext < seq+1

9: if Chunk.Flag #Final and next ¢ ChunkBuffer. WaitingFor then
10: ChunkBuffer. WaitingFor.insert(next)
11:  end if

12:  if seq ¢ ChunkBuffer. WaitingFor then

13: for id =0 to seq — 1 do

14: if id ¢ ChunkBuffer. WaitingFor then
15: ChunkBuffer. WaitingFor.insert(id)
16: end if

17: end for

18:  else

19: ChunkBuffer. WaitingFor. Remove(seq)
20:  end if

21:  ChunkBuffer.Chunks|[seq] < Chunk.Content

22:  if ChunkBuffer. WaitingFor is not empty then
23: continue
24:  end if

25:  DeniableMessage < Decode(ChunkBuffer.Chunks)
26:  Messages.Add(DeniableMessage)

27: end for

28: return Messages

Both the client and server receives deniable payloads, and therefore both use the
functionality explained in this section. When a client sends a message to the server,
it uses a unique message ID to ensure that the server can assemble the message
correctly. Then, when the server forwards the message to the recipient, the server
assigns a new message ID to ensure that the message ID does not collide with the ID

of another message that the recipient has previously received.

20



DenIM on SAM Aalborg University

7.3 Message Structure

A message in DenIM on SAM follows the structure seen in Figure 7.3. A DenIM
Envelope is used as a wrapper around DenIM Message, as DenIM Envelope also can
be a QStatus message just containing the q value. QStatus message is only used
when a client connects to the proxy and needs to know the q value. DenIM Message
consists of a Regular Payload, Deniable Payload and g. The Regular Payload
is the regular message, and the Deniable Payload are the piggybacked deniable

messages.
DenlIM Envelope <€«<———2 to 4 bytes
DenlM Message < q + Regular Payload + Deniable Payload bytes
| q I€ 4 bytes
| Regular Payload I{ 8 + I bytes
Deniable Payload I« DenIM Chunks + Garbage bytes

DenlM Chunks |« 8 + DenIM Chunks bytes
Garbage < 8 + Garbage bytes

Figure 7.3: Structure of a message in DenIM on SAM.

The Deniable Payload has two parts, DenIM Chunks and Garbage. This is to satisfy
DenIM’s requirement that the deniable payload should always have a size of [ - g.
During preparation of the deniable payload, DenIM on SAM will have to check if
there are enough bytes available to include a DenIM chunk. As explained earlier in
section 7.2 a chunk has overhead and as a result, a scenario can happen where there
are some bytes available but not enough for a DenIM chunk. When this happens the
deniable payload is padded with random bytes to reach a size of [ - g.

Chunk 1 Chunk 2 Random bytes

l-q

Figure 7.4: A Deniable payload with two chunks. As there are not enough
bytes available to fit another chunk it is padded with random bytes up to
size [ - q.

Furthermore, due to the DenIM requirement, DenIM on SAM cannot use Proto-
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buf for encoding DenIM Messages because Protobuf uses variable-width integers [20].
Variable-width integers allows one to encode an unsigned 32 bit integer using between
one and five bytes depending on its value. Because its size is value dependent, it will
be harder to predict encoded size of the deniable payload. Instead, DenIM on SAM
should use bincode! with a fixed-length integer encoding. This means the encoded
size of a unsigned 32 bit integer would always have a size of four bytes. Bincode is
used to encode DenIM Message and creates a constant overhead of 28 bytes. These
bytes comes from the g type size and the vector length value of Regular Payload,
Denim Chunks and Garbage as shown in Figure 7.3. Additionally the size of a en-
coded DenIM Envelope can range from two to four bytes because it uses Protobuf.

This means the total size of a message sent over DenIM on SAM is
l+1l-g+o0

where 30 < o < 32 bytes. The overhead value o will not leak any information about

the deniable payloads, as the variable size of o is also publicly known.

7.4 Starting a Deniable Conversation

In SAM, when a user wants to start a new conversation with another user, they
would first have to fetch the prekey bundle of that other user before sending the
first message. The procedure is similar when starting a new deniable conversation
in DenIM on SAM, but because everything is sent as deniable messages, and DenIM

uses a KDC, the procedure has a little twist.

Consider the example where Alice wants to send a message to Bob as depicted on
Figure 7.5. It starts with Alice who wants to start a conversation with Bob. She
creates her initial message to Bob, and her client notices that Bob is a new contact,
so instead of enqueueing the message, it will store it for encryption once Bob’s prekey

bundle is received.

Alice’s client enqueues a key request for Bob’s prekey bundle. Once the key request
reaches the proxy, the KDC will try to create a prekey bundle using Bob’s keys. If
the proxy has not received Bob’s seeds for generating one-time prekeys, the KDC
cannot generate a prekey bundle. When this happens, the proxy will store Alice’s key
request on the proxy, and wait for Bob to upload his seeds. Once Bob has uploaded
his seeds, the KDC will generate a prekey bundle for Alice and the proxy will send it
to the receivers.

Once Alice receives Bob’s prekey bundle, she will find the message she has stored,
encrypt it, and send it to Bob. When Bob receives Alice’s initial message, he will use

the seeds he uploaded to generate the keys Alice used when she encrypted the initial

Ibincode https://github.com/bincode-org/bincode
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Figure 7.5: A sequence chart showing how a conversation can be started
on DenIM on SAM. The envelope is the initial message.

7.5 Key Distribution Center

According to the DenIM specification, clients should be able to upload one-time

prekeys to the server to avoid the server having to generate them. In our imple-

mentation, the client cannot do this. This is to prevent the client’s sending buffer

being filled with key upload requests instead of deniable messages. We discuss the

issue further in subsection 9.1.2.
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8 Evaluation

To verify our implementations of both SAM and DenIM on SAM, we have imple-
mented both services with rigorous unit testing, integration testing, end-to-end testing

and system testing.

8.1 Testing Strategy

From the start of development, we wanted to have an extensive test suite, so we could
catch bugs early. Whenever we implemented some functionality for our libraries, we
would write unit tests for it and later, when our libraries had become more mature,
we would write integration testing for the different components in the libraries. When
writing our integration tests, we would sometimes realize that changes to the func-
tionality were required. Making these changes sometimes had unintended side effects
that might have gone unnoticed if our suite of unit test had not caught them. When
our libraries, were done and all unit and integration tests were passing, we began to
implement end-to-end tests. Here again we would need to make changes to the code
base, and our test suite would catch errors and unintended side effects, which would
have been hard to detect without the test suite. This approach lead us to be confi-
dent in our development process and not being afraid to make changes to the code
base. If our test suite was passing, we were confident that our solutions were working

correctly. After this we would go on to do full system testing of our implementations.

8.2 System Testing Environment

For the system test of DenIM on SAM we used Docker Compose to run all the services
required to make it work. We used a VPS from Aalborg University’s Strato cluster
running Ubuntu 24.04.2 LTS on a Intel Xeon Skylake processor with 16 cores and 64
Gigabytes of RAM.
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Figure 8.1: DenIM on SAM System Testing Environment

8.2.1 Message Types

Depicted as envelopes in Figure 8.1 are the different protocols used in the system

testing environment.

The blue SAM Protocol envelopes are WebSocket messages containing SAM Protocol
messages. These messages are only sent between the SAM Server and DenIM Proxy.

The red envelopes are HTTP messages that are sent between the following instances.
e DenIM on SAM Clients to and from the SAM Dispatch.

e DenIM on SAM Clients through the Nginx Proxy to and from the SAM Server
and the Health Service.

e Health Service to and from the DenIM Proxy and SAM Server.

The purple DenIM Protocol envelopes are WebSocket messages with the DenIM Pro-
tocol Protobuf messages. These are sent to and from DenIM on SAM Clients through
the Nginx Proxy. The yellow Database messages are SQL queries and SQL results,

which are received and sent from the following instances.
¢ DenIM Proxy and the Database
¢ SAM Server and the Database

e Health Service and the Database, where it only checks if certain tables exist.

8.2.2 SAM Dispatcher

To make the testing environment versatile and configurable we developed a SAM
Dispatcher seen in Figure 8.1. The SAM Dispatcher is responsible for giving clients
in the testing environment an identity, synchronizing the clients and saving a report

of all the clients activities.
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The SAM Dispatcher works by reading a configuration file containing client behaviour
settings and the amount of clients it should expect to be contacted by. It will then
generate client identities that include client behaviour that is configurable on their
sending rate, reply rate, their reply probability, and when to discard received mes-

sages.

Reply rate is how many ticks pass between replying to messages whereas reply prob-
ability is the probability that a reply will be sent when the current tick is a reply
tick.

The client identity also includes a weighted friend list such that each client has a
number of friends and a few friends are weighted higher than others. These are the
best friends. Best friends are mutual meaning that if Alice’s best friend is Bob, then
Bob’s best friend is Alice. The friend lists also represents clusters where two clusters

never talk to each other using regular messages, only deniable messages.

Clients will ask the dispatcher for an identity, and when the clients are ready they will
tell the dispatcher that they are waiting for synchronization. When all clients have
been given an identity and told the dispatcher that they are ready, the dispatcher will

give them a ready signal and the simulation will begin.

When the clients are done with their experiments they will upload a report to the
dispatcher about with whom they have communicated with and all the messages along
with timestamps. When the dispatcher has received reports from all the clients it will
save them as one big report. All communication between clients and the dispatcher

happens over HTTP.

8.2.3 DenIM on SAM Test Clients

Depicted on in the Figure 8.1, the DenIM on SAM Test Clients perform actions
dynamically depending on the specific identity they receive from the SAM Dispatcher.

We modelled and implemented these clients as simple test client from using the DenIM
on SAM client API and the SAM client API. It uses both APIs to be able to perform
experiments with only SAM as well. When a client has received an identity from the
SAM Dispatcher, it will register itself with the DenIM on SAM Server, and signal
to the SAM Dispatcher that it is ready to begin the experiment. When the SAM
Dispatcher signals to the test client that it can begin, it will follow the state machine

depicted below.
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¢t mod Ry, =0

Idle = End

mod R, =0A P(r)

Figure 8.2: DenIM on SAM Test Client State Machine

Every client has a clock that is configured by the SAM Dispatcher, so an experiment
can be run at configurable speeds. Each time the clock ticks the value t is incremented

by one.

The client also has two action rates, where R, represents the rate at which the client
will send messages to a user and R, represents the rate at which a client will reply
to a received message. Each client also has a probability of which to respond to a

message, so it does not respond to all messages, this is represented by P(r).

A client has four states. It will begin in the Idle state and each time the clock ticks it
will decide if it should reply to a received message and if it should send a new message
by going to either the Reply or Send state respectively. A client can go to both states
in one tick, and come back to the idle state. When the clients clock reaches the end

tick it will stop experiment and send their reports to the SAM Dispatcher.

8.2.4 Public Network

All test clients communicate with the DenIM on SAM server through a public network
interface. On this network we run a TShark instance capturing all packets to and
from the DenIM on SAM server. This enables us and potential users of our system

testing environment to perform traffic analysis on the captured traffic.

8.2.5 Private Network

To hide all internal traffic from outsiders and clients, we configured a private network
where the distributed DenIM on SAM infrastructure resides. Seen in Figure 8.1,
the DenIM on SAM infrastructure is behind an Nginx Proxy. The Nginx Proxy
only allows clients to establish WebSocket connections to the DenIM Proxy. HTTP
requests about SAM registrations and keys are routed to the SAM Server. The Nginx
Proxy in this environment also exposed a health endpoint which is routed to the

Health service. This has been done so the clients can synchronize with the DenIM
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on SAM Server on the initial docker compose startup phase. The Health Service is a

simple service that just asks the other SAM services if they are up.

8.2.6 Configuration

The system testing environment can be configured to a wide range of scenarios, it
supports both TLS and insecure communication between clients and the DenIM on
SAM infrastructure DenIM can also be disabled entirely, so that the client only can
use SAM. The internal communication of services can also be configured to use mu-
tual TLS, enabling services authenticating each other instead of only client services

authenticating server services.

Clients can also be configured for many different scenarios. All services and clients
need to be configured with their own TLS certificates, configuration files and docker
configurations. Managing all of this can be very difficult, so instead of having to con-
figure everything from many different configurations, we have made a setup generator

that will configure everything from one configuration.

.===-r
DenIM on SAM
»  System Testing
Environment
Setup
Generator Test

Driver

tshark

\ 4

Figure 8.3: DenIM on SAM System Testing Environment Generator

Depicted in Figure 8.3, the Setup Generator takes in a configuration file describing all
settings for both the internal DenIM on SAM infrastructure and the client behaviour.
Subsequently, it generates a project directory that contains a test driver and a docker
compose configuration file. Running the testing environment only requires one to
launch the Test Driver, which will start all services and the TShark instance. While
the experiment is running the Test Driver monitors the status of the experiment.
Once the experiment has finished the Test Driver will stop the TShark instance from
capturing and shutdown the testing environment. When a test run is done the system
testing environment and TShark instance have generated a report JSON file and a

traffic pcap file, that can be used for further analysis.
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8.3 Anonymity Assurance

We want to assure that our implementation of the DenIM on SAM client API and
the DenIM on SAM server infrastructure is correct and correctly uses DenIM to
piggyback messages between a client in one friend group and client in another friend

group, without being able to observe it in the traffic.

Our scenario is inspired by example used to explain DenIM in [15] and contains four
clients: Alice, Bob, Charlie and Dorothy. Alice and Bob communicates over regular
messages, and Charlie and Dorothy do the same. Alice and Dorothy also communicate

with each other using deniable messages.

We will do this by creating an instrumented program and make the clients perform the
scenario while tracing their traffic. Each event in the scenario happens in a noticeable
time delay (5 seconds) apart from each other to make it easier to analyse the traffic

trace.

The clients will perform these actions in the given order:

ID Action
AA-1 Alice sends a message to Bob with a deniable key request for Dorothy’s
keys.

AA-2 Bob sends a message to Alice where the proxy has put a deniable key
response with Dorothy’s keys in it.

AA-3 Alice sends a message to Bob containing a deniable message to Dorothy.

AA-4 Charlie sends a message to Dorothy where the proxy has put Alice’s de-
niable message to Dorothy in it.

AA-5 Dorothy reads the deniable message.

AA-6 Dorothy sends a message to Charlie containing a deniable message to
Alice.

AA-7 Bob sends a message to Alice where the proxy has put Dorothys deniable
message to Alice in it.

AA-8 Alice reads the deniable message.

Table 8.1: Actions the clients will perform in the scenario with Alice, Bob,
Charlie and Dorothy.

We ran the instrumented program with the four clients and the DenIM on SAM server
infrastructure performing the actions in Table 8.1. The clients would all communicate
with a different message size, for example Alice would always send 400 bytes. This
will help us identify if our DenIM implementation works as expected. The message

sizes can be seen in section A.1.

From this we obtained a log from the server and clients describing what they have done
and the traffic trace encrypted with TLS. We also ran it without TLS encryption to
be able to see the sizes of each WebSocket packet to confirm that they do not change
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size if there are DenIM chunks in them. We will first confirm that our deniable
padding of [ - ¢ is working and later explain the traffic traces and how you cannot see
that two clients are communicating over DenIM. Secondly, we will confirm that, when
observing line charts, we cannot see that Alice and Dorothy communicating with each
other.

When running the instrumented test program we observed that the size of Alice’s
message to Bob is always 1195 bytes, no matter if it contains DenIM chunks or not.
The value of ¢ is 1 and we found that the size of the encrypted message (1) is 582
bytes. Since the DenIM portion has 31 bytes of overhead, the actual calculation is
l+1-q+ o where o is the extra overhead of the structure. The calculation comes out
to:

582 bytes + 582 bytes - 1 4+ 31 bytes = 1195 bytes

The logs from the test run can be found in section A.1.
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Figure 8.4: Alice sending a regular message to Bob.

In Figure 8.4 we can see Alice sending a message to Bob. Each spike either represents
upstream from a client to the server or the downstream from the server to a client.
They are scaled a bit so that they are not directly on top of each other. The biggest
spike (blue) is Alice sending a message to Bob. The second biggest spike (red) is the
server sending Alice’s message to Bob. The smaller spike (orange) is the server telling
Alice that it has received her message. The smallest spike (green) is Bob telling the
server that he has received its message. This traffic happens almost instantaneously,

which is common for all regular traffic.
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Figure 8.5: Traffic trace from the senario explained in Table 8.1.

Figure 8.5 contains the traffic trace from performing the actions described in Table 8.1.
It shows the upstream and downstream of all clients in the instrumented test. After
timestep 20, Anonymity Assurance Step AA-5 (Dorothy reads the deniable message.)
is performed, and does not show up in the network traffic as its happens inside the
client. The final two actions appear to be Charlie and Dorothy talking and Alice and
Bob talking, but a deniable message was in fact transferred to Alice.

4 —— Alice Upstream

—— Alice Downstream
—— Dorothy Upstream
—— Dorothy Downstream

Bytes (scaled)

0 5 10 15 20 25 30 35
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Figure 8.6: Alice and Dorothy deniable communication.

If we look at the traffic from Alice and Dorothy in isolation, we can see that there are
only two spikes at a time and that their streams do not overlap. Whenever Alice sends
a message, Dorothy is not receiving any message and whenever Dorothy is sending a

message Alice is not receiving any.

31



Evaluation Aalborg University

8.4 Traffic Analysis

Our results from section 8.3 are promising, but to further prove that we have im-
plemented DenIM correctly we will use our system testing environment to generate
traffic traces of clients communicating with each other through both regular messages

and deniable messages.

Figure 8.7: Sample System Testing Clusters, where the dashed line repre-
sents a denim friendship between two clients

In Figure 8.7 a representation of the client and their friendships can be seen. A
solid line represents a friendship between two clients that do not send any deniable
messages to each other, and the dashed line represents a friendship between clients
that communicate with deniable messages. Clients communicating with deniable
messages are not in the same cluster, and the only link between two clusters is a
single deniable friendship. We want to see if our implementation of DenIM on SAM

successfully hides this connection between clusters.

To verify that our implementation successfully hides the connection we will be using
Traffic Analysis Tools! developed by a fellow Master’s thesis group. The attack used
is a form of statistical disclosure attack [21]. The attack tries to match a message

that is incoming to the server to an outgoing message such that the destination of the

IThe tool can be found at https://github.com/cs-25-ds-10-08/Traffic-Analysis-Tools

32


https://github.com/cs-25-ds-10-08/Traffic-Analysis-Tools

Evaluation Aalborg University

incoming message can be determined. It works by considering all outgoing messages
that leave the server between 0 and e timesteps from the incoming message that you

are investigating.

When testing DenIM on SAM with the tool, we used an € value that was recommended

in their thesis.

We configured the system testing environment for DenIM on SAM with 60 clients in
20 groups of three clients. Clients in each cluster will only communicate with other
clients in the same cluster except one, which will communicate with one from another

cluster.

For the sake of comparison, the same setup was used for SAM, but obviously without

an option to communicate deniably.

Each test ran for 100 seconds. The total amount of messages sent on DenIM on SAM
was 210,000 and the total amount of messages sent on SAM were 251,000 messages.
Clients would send a message to a random friend every 200 to 600 milliseconds. The
Reply Probability of each client was random between 70% and 95% and the Reply
Rate was between 2 and 5. Each client also had a threshold after which they would
consider a received message too old to reply. This value was also set randomly between

2 to 5 seconds.

A possible explanation for why the SAM test yielded more messages is that DenIM on
SAM deniable messages needs to be piggybacked to reach the receiver, where messages

on SAM are instant.

Type Target Secret Friend Guessed Confidence
Client

SAM  192.168.0.16 192.168.0.19 192.168.0.19 100%

SAM 192.168.0.19 192.168.0.16 192.168.0.16 100%

DenIM  172.29.0.34 172.29.0.37 172.29.0.36 100%

DenIM  172.29.0.37 172.29.0.34 172.29.0.19 100%

Table 8.2: Results from traffic analysis using a tool developed by a fellow
master thesis group.

We ran the tool on two clients in each run. When testing with SAM, the tool could
classify the secret friend with a confidence of 100% in both cases, which is under-
standable, considering that they communicate with regular messages. However when
testing with DenIM on SAM, the tool could not classify any of the secret friends cor-
rectly. In the test where the target was 172.29.0.34, the tool guessed that the secret
friend was one inside its own cluster with a confidence of 100%. In the last test,
something interesting happened. The tool classified the secret friend as someone, the

target had not communicated with, also with a high confidence of 100%. The results
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from the tests on DenIM on SAM make sense when we also take the results from

section 8.3 and Figure 8.6 into account.

8.5 Benchmarking

To ensure that our infrastructure is robust, and can handle many clients we performed
benchmarks. In the benchmark we registered and deleted 10.000 clients, to see how
many resources our SAM Server would use, as registration is an expensive task to
do. We also benchmarked our system testing environment where 500 clients commu-
nicated with each from one server instance to another in Strato. The clients would
send messages and reply to incoming messages as fast as they possibly could. Our

registration benchmark yielded some concerning results in terms of memory usage.

Memory Megabytes Over Time (s)

Memory Megabytes

50 1 name_pid
—— sam-server - 12534

0 500 1000 1500 2000 2500
Time

Figure 8.8: Memory usage when registering and deregistering 10,000
clients using default memory allocator.

Figure 8.8 shows the memory usage of the SAM Server in the registration benchmark.
Its usage would rise to 423 megabytes of RAM while performing 10,000 registrations
and account deletions over 41 minutes. The slow speed was due to running the
entire system, including performing all 10,000 registrations, on a single machine. The
interesting part is that the memory usage did not fall when all clients were done

performing the benchmark. We suspect that the SAM Server has a memory leak
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somewhere.

Memory Gigabytes Over Time (s)
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Figure 8.9: Memory usage when 500 clients communicating using default
memory allocator

The next benchmark was making 500 clients communicate over two servers. The
benchmark, shown in Figure 8.9, confirmed our suspicion of a memory leak. During
the benchmark, the SAM server peaked at 12 GB RAM usage in the start of the
test and kept a consistently high RAM usage through the entire benchmark. The
DenIM Proxy however performed quite well while forwarding messages for 500 clients
communicating at a rate of 1 message per millisecond, with a peak of 173 megabytes
of RAM usage.

With the memory leak confirmed, we ran the registration benchmark again. But
this time using the tikv-jemallocator? memory allocator, which reduces memory

fragmentation and has great scalability in high concurrency use cases[22].

2tikv-jemallocator can be found at https://github.com/tikv/jemallocator
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Figure 8.10: Memory usage when registering and deregistering 10.000
clients using tikv-jemallocator memory allocator

As seen in Figure 8.10 this benchmark showed better results. It would reach a max-
imum of 228 megabytes, and would climb down again after the clients were done
performing the tests. But as can be seen in Figure 8.10 it would not go down to its
start memory usage again. When we tried to kill the client program and start a new
one repeatedly, we found that that the SAM Servers memory usage would climb after

each iteration, starting at a higher baseline each run.

8.6 System Requirements

We have almost implemented most of our requirements to the fullest with some of

the requirements having minor things missing, in order to be fully implemented.

8.6.1 SAM Instant Messenger Requirements

For SAM, we have implemented persistent storage fully for the SAM client API com-
pleting Requirement R-2. The SAM Server has not been implemented with persistent
storage for messages, which means that Requirement R-1 is not complete. This also
leads to SAM not being scalable, failing Requirement R-3. Our infrastructure is com-

pliant with the Signal Protocol, where our clients use the libsignal library for Rust to
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utilize the Signal Protocol, this completing Requirement R-4. All relevant managers
from SAM is reused on DenIM on SAM, which completes Requirement R-5. During
system testing the SAM Server did not output any errors to the logs, even with 60
clients communicating, which leads us to believe we have successfully implemented

Requirement R-6. Table 8.3 shows which of the SAM requirements were satisfied.

Requirement Satisfied

Requirement R-1
Requirement R-2
Requirement R-3
Requirement R-4
Requirement R-5
Requirement R-6

NN N X% N\ %

Table 8.3: Satisfied SAM Instant Messenger Requirements

8.6.2 DenIM on SAM Requirements

Our DenIM on SAM common module contains the SendingBuffer which has been
tested® to ensure that the messages are always [+ - ¢+ o and along with our manual
analysis of traffic traces in section 8.3, we are confident that we have satisfied DenIM

Requirement D-1.

Our DenIM on SAM client API will not begin to send messages to the server if it has
not received a status message from the DenIM on SAM Proxy containing the current
g. We have validated this using tests*. When clients connects to the DenIM on SAM
Proxy, the proxy will immediately send a message with the current ¢, from this we

can confidently say that we have satisfied DenIM Requirement D-2.

We have implemented both a ReceivingBuffer and SendingBuffer in our DenIM on
SAM common module. The SendingBuffer and ReceivingBuffer have been tested
together to assert that the ReceivingBuffer can reassemble deniable messages from
payloads created by the SendingBuffer, even if they are received out of order®.
With this the DenIM Requirement D-3 and DenIM Requirement D-4 requirements

are satisfied.

Our processes for forwarding messages between clients and the SAM Server in our
DenIM on SAM Proxy, will forward regular messages immediately before processing

any deniable payloads®, which satisfies DenIM Requirement D-5.

We have implemented an InMemoryDenimEcPreKeyManager” on the DenIM on SAM
Proxy. It takes a cryptographically secure RNG in, that will be used to generate

3Test is found in send.rs L259-L317
4Found in denim_ client.rs L.254
5Tests are found in buffers.rs L29-1.98
SFound in proxy.rs L191-L193
"Found in keys.rs L117
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keys for users with provided seeds, this satisfies DenIM Requirement D-6, DenIM
Requirement D-7, DenIM Requirement D-8 and DenIM Requirement D-9.

The next_key_id® method on the InMemoryDenimEcPreKeyManager uses rejection
sampling while generating random key IDs, which satisfies DenIM Requirement D-
10.

Our analysis in section 8.3 and section 8.4 makes us confident in the satisfactory of
DenIM Requirement D-11. Our end-to-end tests cover cases where clients blocks other

clients deniably”, which verifies that DenIM Requirement D-12 has been satisfied.

We have tested ongoing deniable communication in our end-to-end tests, which re-
quires users to successfully exchange keys using DenIM and also send many deniable
messages, verifying that DenIM Requirement D-13 and, DenIM Requirement D-15
have been satisfied.

We have not implemented clients being able to upload their own prekeys for DenlM,

which means DenIM Requirement D-14 has not been satisfied.

Table 8.3 shows which of the DenIM Protocol Requirements have been satisfied.

Requirement Satisfied
DenIM Requirement D-1
DenIM Requirement D-2
DenIM Requirement D-3
DenIM Requirement D-4
DenIM Requirement D-5
DenIM Requirement D-6
DenIM Requirement D-7
DenIM Requirement D-8
DenIM Requirement D-9
DenIM Requirement D-10
DenIM Requirement D-11
DenIM Requirement D-12
DenIM Requirement D-13
DenIM Requirement D-14
DenIM Requirement D-15

NSX NSNS SNSNSSSNSNSSNANANSN

Table 8.4: Satisfied DenIM Protocol Requirements

We have not implemented DenIM as described by [15] as clients are missing the ability
to upload keys to DenIM on SAM, and therefore we have not satisfied Requirement R-
7. We have implemented a strategy for marking key IDs as unused when clients

have sent a prekey message and the DenIM on SAM Proxy receives it, this can be

8Found in keys.rs L198
9Test can be found in message.rs 1187
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seen in handle_user_messagelo7 this satisfies Requirement R-8. Table 8.3 shows the

satisfactory of DenIM Implementation Requirements. The requirements not fulfilled

will be discussed in chapter 9.

Requirement Satisfied
Requirement R-7 X
Requirement R-8 v

Table 8.5: Satisfied DenIM Implementation Requirements

10Found in denim_routes L211
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9 Discussion

9.1 System Requirements

This section will discuss the system requirements for SAM and DenIM on SAM that
were not fulfilled. The first requirement not fulfilled, is for the server of SAM and
DenIM on SAM to have persistent storage and be able to scale in order to serve a lot

of users.

9.1.1 Persistent Storage

With the current state of SAM Server, the only thing needed for persistent storage
is a persistant MessageManager. A solution could be to implement message storage
like Signal does it. Signal first stores messages in a Redis cache for up to 10 minutes
before it is put into a database for long-term storage'. This could be a good way of
storing the regular messages. For the deniable messages it is important to choose the
fastest storage option to help mitigate potential timing leaks. Using a slow storage
option could increase the timing difference between sending a message with dummy

padding or with deniable content.

A way to solve this problem could be to use a Redis cache for everything handled
by the DenIM Proxy. The deniable buffers of all currently connected users would be
loaded into the cache. Then, when the user disconnects, the proxy would put the rest
of the content from the deniable buffer that has not yet been delivered into persistent
storage. This could be a database. Once SAM and DenIM on SAM has persistent

storage, it is also possible scale the server horizontally.

9.1.2 Clients Uploading Their Own Keys

A requirement of DenIM that was not satisfied on DenIM on SAM is giving the client
the option to upload their own generated one-time prekeys for deniable sessions. This
was not implemented because we determined that the trade-off was not worth it in

practice. DenIM assumes that the KDC is not compromised as stated in section 3.2.

Hine 148-149 in MessagePersister.java
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Also, if the client has to upload keys, then the key refill request will take up space in
the deniable buffer so that any message the client wants to send afterwards will be

delayed even further.

In order to implement this requirement, the DenIM Protocol would have to be ex-
tended with a key refill message. This message type would include one or more
one-time prekeys. For the server to facilitate this feature, it would need functional-
ity to handle the key refill messages sent by the client. Once a key refill message is
received, it would store them in a persistent storage solution. In section 3.1 we de-
scribed how DenIM on Signal handles generating key IDs without collision. We could
also use this same approach. Upon starting new deniable sessions, the server would
always prefer using a one-time prekey uploaded by the client instead of a one-time

prekey generated by the Key Distribution Center.

9.1.3 Key Agreement Protocol

The DenIM paper describes the X3DH key agreement protocol that Signal uses, and
this is the protocol that DenIM modifies slightly by having the KDC generate prekeys
on behalf of the user [15].

X3DH is the old key agreement protocol that Signal has since moved on from. Today,
Signal uses the Post Quantum FEuxtended Diffie-Hellman (PQXDH) protocol which
provides protection against “harvest now, decrypt later”’-attacks where a future ad-
versary with access to a quantum computer is able to break the encryption on messages
collected today [19]. PQXDH extends X3DH with a post quantum prekey which is
cryptographically signed. The KDC cannot generate this type of prekey on behalf
of the user because this would require the server to have the client’s private key for
generating the signature and therefore, deniable messages cannot have post quantum

security.

If the content of the message itself is so sensitive that the possibility that an attacker
with access to a compromised server might one day use a quantum computer to break
the encryption of a session that you start today, then DenIM on Signal may not be
sufficiently secure. Whether it is more likely for the scenario above or simply for the

sender or the recipient to be compromised will determine if DenIM is secure enough.

Regular messages can of course still use PQXDH.

9.1.4 Timing Attacks

Since regular messages are supposed to be delivered instantly but also have a deniable
payload attached to it before it can be delivered, DenIM is potentially vulnerable to
timing attacks. It may be the case that the time it takes for the server to attach

deniable payload is different from the time it takes to attach dummy padding. In
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that case, an adversary might be able to deduce that a deniable message was received.
Some form of mitigation will be required to ensure that our implementation is not

vulnerable to timing attacks.

9.1.5 Reconstructing Deniable Messages

In section 7.2 we described a solution where deniable messages can be reconstructed
disregarding what order the DenIM chunks arrives in. However if there are chunks
that never arrive, the receiver will hold the rest of the chunks indefinitely. To resolve
this problem, each DenIM chunk should have a timestamp so that old messages that

were never reconstructed can eventually be evicted.

9.2 Benchmark

The benchmarks of DenIM on SAM showed some subpar results. We discovered that
the SAM Server had a big memory leak. However the DenIM Proxy performed well
under the benchmarks with a peak of 173 megabytes of RAM usage. We have not
located the memory leak in SAM Server.

We could have mitigated this by also making benchmarks for each of the components
in the SAM and our DenIM implementations. Then, it would be easier to find the
leak, and we might have caught it earlier. Also, it would be useful during development

to know that a change in the code would not lead to a performance regression.

We should have used the same strategy for our benchmarks as we did for our testing
as described in section 8.1. We tried to identify the source of the memory leak, by
profiling our entire SAM Server with heaptrack?, Valgrind® using massif and tokio-
console*, but we did not have enough time to find the issue. If we had done it earlier
in the development process we could profile each component separately in isolation,
making it easier. For future work on this project, benchmarking should be a high

priority to find the memory leak.

9.3 Road To Production

There are still quite some way to have a production ready implementation of SAM
and DenIM on SAM, aside from that DenIM on SAM is not scalable yet as described

in subsection 9.1.1.

Our system testing environment described in chapter 8 wrote logs that contained
warnings and errors. We sometimes encountered bad MACs from libsignal’s MAC

verification process. These warnings lead to decryption errors as the MAC verification

2Heaptrack https://github.com/KDE/heaptrack
3Valgrind https://valgrind.org/
4tokio-console https://github.com/tokio-rs/console
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failed. This is a vital error where the cause would have to be looked further into.
However, this was not a common sight as we only got 177 of them in total from both
of our tests in section 8.4 where there were sent a total of 462,000 messages. This
means it only occurs 0.00038% of the time, which is very low, but it still needs to
be addressed. The tests for DenIM on SAM in section 8.4 yielded 13 errors where a
client would send a message using the same prekey ID when it was already pending
deletion. Additionally, we got 2 errors where a client would simply completely fail to
decrypt a message. We also got 3 errors where a client failed to process a message

because our PreKeyStore failed to save a prekey.

The server infrastructure is also missing some vital parts before it can be safely

deployed.

¢ Rate limiting: We have not implemented any rate limiting of any kind on either
the SAM Server and DenIM Proxy.

o WebSocket timeouts: Clients WebSocket connects to the server does not time-
out, which is needed so the server does not use resources to keep a WebSocket

connection alive when a client is not active.

o User reporting feature: Our implementation lacks a report and blocking feature

of regular messages, which means users can be subject to spam.

e Scalability: Missing implementations of persistent managers yields the infras-

tructure unsuitable for real world usage.

The infrastructure is also missing popular features from other Instant Messaging (IM)

services such as group chats and file sharing.

9.4 Architecture

As explained in section 7.1, the SAM Server does not know that it is communicating
with a DenIM Proxy rather than a normal SAM client. This shows that it could be
possible to implement a DenIM Proxy on more established services such as Signal.
The DenIM Proxy implementation relies on some SAM Managers, such as the Key,
Device and AccountManagers. This was done to validate that clients were actually
trying to send deniable messages to a valid receiver and to reuse signed prekeys and
identity keys from SAM. This could be difficult to do if it was to be done on the
official Signal Server as it requires access to Signals databases. Another method to be
completely independent from Signal, is to have a double identity, meaning that users
would have to upload a separate identity key and signed prekeys or the same to the
DenIM Proxy. Using this approach would also mean that the DenIM Proxy would
have no way of validating receivers. Unless users would register through the DenIM

Proxy, so it could obtain account IDs and device IDs, or users uploading them to the
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DenIM Proxy whenever they make an update to their account. These requests should

also be carried out through the DenIM Protocol, to keep them deniable.

9.5 Updating Seed in DenIM

In DenIM the user only uploads their seed once during registration. But if somehow
their seed has been compromised, it should be possible for a user to update their seed.
Updating a users seed would allow the proxy to generate one time prekeys using the
new seed, and thereby new conversations. But scenarios can happen, where an old

seed would have to be used in order to preserve anonymity.

Consider the example where Alice and Bob, do not know each other, and Alice wants
to update her seed. If Bob starts a conversation with Alice and gets a prekey bundle
based on the past seeds, the conversation would have to be started based on the past
seed. Even if Bob’s prekey message reaches the proxy after it has received Alice’s
new seeds, the proxy cannot force Bob to create a new prekey message using a prekey
bundle based on the new seeds, as this would reveal that Alice has performed a seed
update. The proxy would have to check what seed each prekey message was created
on, and send that information to Alice so she knows which seed she has to use to
generate the one time prekey. Prekeys could have a time-to-live such that once you
have requested a prekey, you must use it before a specified time. This means that
both the client and proxy have to keep the old seeds until all prekeys based on a
specific seed have been used in a prekey message or until a the prekey has timed out,

as new conversations could have been started using them.

9.6 Threat Model

The threat model DenIM uses was presented earlier in section 3.2. Here DenIM
assumes that the adversary cannot compromise the internal state of the server. The
need for this assumption gives an indication to how much responsibility is given to

the server.

The way that DenIM works, if the server is compromised, an adversary would be able
to see who is communicating with whom, completely defeating the purpose of DenlIM.
Also, the adversary would have access to a third of the key material that is used for
generating the shared secret key that the encryption session is based on. We cannot
rule out the possibility of an attack where an adversary exploits the reduced entropy,
but this is the same as if a Signal Server was compromised. The only difference is

that the adversary would have the seed for generating new one-time prekeys.
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10 Conclusion

As no popular Instant Messaging (IM) service fully supports metadata privacy, this
Master’s thesis set out to implement a transport privacy protocol to hide metadata
from messages. After looking at different types of transport privacy protocols, the
choice landed on the DenIM protocol which is a kind of delay protocol. It is a hybrid
protocol, meaning it supports regular and deniable messages. It works by piggyback-
ing the deniable messages to the regular messages upon transmission, thereby hiding
the deniable messages in the traffic. As the Signal Protocol provides end-to-end en-
cryption and is widely used on popular IM services, this project decided to implement
DenIM on top of the Signal Protocol. Without having access to an IM service that is
using the Signal Protocol to implement DenIM onto, such IM service had to be built
from scratch in addition to a DenIM implementation. These discoveries lead us to

the following problem:

How can we implement an instant messaging service and client library
that uses the DenIM protocol on top of the Signal Protocol and is ready

for real-world use?

With the implementation of the instant messenger using the Signal Protocol, SAM,
the next objective was to implement DenIM on top, creating DenIM on SAM. With
the implementation of DenIM, most of the components from SAM was reused by

using a proxy that handled all deniable messages.

An anonymity assurance analysis was conducted where the traffic was observed with
and without deniable communication. When observing the traffic there was no differ-
ence between a regular message with deniable chunks and one with dummy padding,
and we could not correlate deniable communication. Additionally a type of statistical
disclosure attack was conducted on DenIM on SAM. Results showed that the tool
could not correlate deniable communication, but it could correlate communication
between clients that were not using DenIM. We also evaluated the DenIM implemen-
tation on a list of system requirements set before implementation. Here we fulfilled
the requirement that the deniable payload of all messages always reached [ - q. Fur-

thermore DenIM on SAM does not have the functionality for the client to upload
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their own deniable keys to the KDC. However, the functionality that DenIM provide

works without this requirement fulfilled.

We can conclude that we have a DenIM implementation that does not fully live
up to the specification. However, a client can send deniable messages that are not
identifiable over the traffic. Furthermore, DenIM on SAM is resilient against a form
of a statistical disclosure attack. The implementation is not ready for production,
because of missing persistent storage solutions, rate limiting, client timeouts and
memory leaks in the server. Thereby this project achieves its primary goal, enabling

deniable messaging without revealing metadata.
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11 Future Work

As there is room for improvement on DenIM on SAM, this chapter will describe how
DenIM on SAM can be improved.

Many of the sections from chapter 9 require some future work. The tasks that are
required for a fully production ready DenIM on SAM Instant Messenger service, are
listed below.

¢ Benchmarks and stress tests: The infrastructure should undergo more rig-
orous benchmarks and stress testing, before it can be deemed ready for pro-
duction, as there were some errors and warnings while we did system testing as

mentioned in section 9.3 and section 9.2

¢ Bug Fixes: In section 9.3, we described that the DenIM on SAM infrastructure
experienced errors and warnings, where some lead to decryption errors. The

source of the errors and warnings would have to identified and fixed.

« Timing attack mitigation strategy for dummy padding: as described in
subsection 9.1.4 there needs to be some sort of strategy so that an adversary
cannot tell when the DenIM Proxy is creating denim chunks or dummy chunks

to piggy back on regular messages using timing attacks.

¢ DenIM chunk lifetime limits: As described in section 7.2, clients and the
DenIM Proxy should have a strategy for when to delete DenIM chunks if the
remaining chunks needed for the message never arrive. This would mitigate

unnecessary storage of chunks that are essentially orphans.

o Persistent Message Manager: Mentioned in subsection 9.1.1 the message
manager should be persistent as with the other managers, but also have a short

time storage for online clients, for faster query times.

¢ Persistent Chunking Buffers: Also mentioned in section 7.2, the buffers
holding chunks should also have a persistent storage and fast storage for online

users to mitigate timing attacks as mentioned in subsection 9.1.1.

e Seed Updates: As described in section 9.5, users need to update their seed if
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their seed has been compromised. This goes beyond DenlM’s specification.

o Key Uploads: Users need to be able to upload their own keys to DenIM to
support the specification, and DenIM Requirement D-14.

¢ Rate limiting: To be production ready the infrastructure would also need to

have some kind of rate limiting as described in section 9.3.

« WebSocket Timeouts: Inactive clients does not timeout of their WebSocket

connection, this is is also needed to be implemented to satisfy section 9.3.

e User reporting: Users cannot report or block regular users, which can make

them subject to spam as mentioned in section 9.3.
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A

Appendix

A.1 Anonymity Assurance

The following appendices shows what clients and proxy done in the Anonymity As-

surance program. the following symbols will be seen in the listings:

11
11
11
11

11
11
11
11

11

A -(X)-> B: A sent X bytes to B

A <-(X)- B: A recieved X bytes from B through the server.

A <-(KEY)- B: A received a deniable key from B

A <-(X)- B DENIM: A received X deniable bytes from B,

| SCENE |
| SCENE |
| SCENE |
| SCENE |

| PROXY |
| PROXY |
| PROXY |
| SCENE |

| PROXY |

Alice -(400)-> Bob
REGULAR MESSAGE SIZE: 582
DENIM MESSAGE SIZE: 1192
MESSAGE SIZE: 1195

Received Message From Alice
Received Key Request
Received Message From Bob

Bob <-(400)- Alice

Enqueued Key Response

Listing A.1: Logs from server and clients of Alice performing Anonymity
Assurance Step AA-1
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16 |SCENE| Bob -(450)-> Alice

16 |SCENE| REGULAR MESSAGE SIZE: 582

16 |SCENE| DENIM MESSAGE SIZE: 1192

16 |SCENE| MESSAGE SIZE: 1195

16 |PROXY| Received Message From Bob

16 |PROXY| Received Message From Alice

16 |SCENE| Alice <-(KEY)- Dorothy

16 | SCENE| Alice <-(450)- Bob

Listing A.2: Logs from server and clients of the server performing

Anonymity Assurance Step AA-2

21
21
21
21

21
21
21
21

21

| SCENE |
| SCENE |
| SCENE |
| SCENE |

| PROXY |
| PROXY |
| PROXY |
| PROXY |

| SCENE |

Alice -(400)-> Bob
REGULAR MESSAGE SIZE: 582
DENIM MESSAGE SIZE: 1192
MESSAGE SIZE: 1195

Received Message From Alice
Received User Message Request
Enqueued Deniable Message
Received Message From Bob

Bob <-(400)- Alice

Listing A.3: Logs from server and clients of Alice performing Anonymity
Assurance Step AA-3

26
26
26
26

26
26

26

| SCENE |
| SCENE |
| SCENE |
| SCENE |

| PROXY |
| PROXY |

| SCENE |

Charlie -(500)-> Dorothy
REGULAR MESSAGE SIZE: 742
DENIM MESSAGE SIZE: 1512
MESSAGE SIZE: 1515

Received Message From Charlie
Received Message From Dorothy

Dorothy <-(500)- Charlie

Listing A.4: Logs from server and clients of Charlie performing Anonymity
Assurance Step AA-4
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31 |SCENE| Dorothy <-(200)- Alice DENIM

Listing A.5: Logs from server and clients of Dorothy performing
Anonymity Assurance Step AA-5

36 |SCENE| Dorothy -(550)-> Charlie

36 |SCENE| REGULAR MESSAGE SIZE: 742
36 |SCENE| DENIM MESSAGE SIZE: 1512

36 |SCENE| MESSAGE SIZE: 1515

36 |PROXY| Received Message From Dorothy
36 |PROXY| Received User Message Request
36 |PROXY| Enqueued Deniable Message

36 |PROXY| Received Message From Charlie

36 |SCENE| Charlie <-(550)- Dorothy

Listing A.6: Logs from server and clients of Dorothy performing
Anonymity Assurance Step AA-6

41 |SCENE| Bob -(450)-> Alice
41 |SCENE| REGULAR MESSAGE SIZE: 582
41 |SCENE| DENIM MESSAGE SIZE: 1192
41 |SCENE| MESSAGE SIZE: 1195

41 |PROXY| Received Message From Bob
41 |PROXY| Received Message From Alice

41 |SCENE| Alice <-(450)- Bob

Listing A.7: Logs from server and clients of Bob performing Anonymity
Assurance Step AA-7

46 |SCENE| Alice <-(200)- Dorothy DENIM

Listing A.8: Logs from server and clients of Alice performing Anonymity
Assurance Step AA-8
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0 |SCENE| Alice -(400)-> Bob

0 |SCENE| REGULAR MESSAGE SIZE: 582

0 |SCENE| DENIM MESSAGE SIZE: 1192

0 |SCENE| MESSAGE SIZE: 1195

0 |PROXY| Received Message From Alice
0 |PROXY| Received Message From Bob

0 |SCENE| Bob <-(400)- Alice

Listing A.9: Logs from Alice sending a message to bob containing no
deniable messages

Frame 969: 1269 bytes on wire (10152 bits), 1269 bytes
— captured (10152 bits) on interface lo, id O
Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00),
— Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)
Internet Protocol Version 4, Src: 127.0.0.1, Dst:
— 127.0.0.1
Transmission Control Protocol, Src Port: 43144, Dst Port:
> 9443, Seq: 6151, Ack: 2862, Len: 1203

WebSocket
1... .... = Fin: True
.000 .... = Reserved: 0x0
0010 = Opcode: Binary (2)
1 = Mask: True

.111 1110 = Payload length: 126 Extended Payload
< Length (16 bits)

Extended Payload length (16 bits): 1195
Masking-Key: 42a0f98c

Masked payload

Payload

Data (1195 bytes)
Data []: 0aa809....
[Length: 1195]

Listing A.10: Alice’s WebSocket packet without TLS containing a cipher-
text for Bob and a deniable ciphertext for Dorothy
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Frame 1105: 1269 bytes on wire (10152 bits), 1269 bytes
— captured (10152 bits) on interface lo, id O

Ethernet II, Src: 00:00:00_00:00:00 (00:00:00:00:00:00),
— Dst: 00:00:00_00:00:00 (00:00:00:00:00:00)

Internet Protocol Version 4, Src: 127.0.0.1, Dst:
— 127.0.0.1

Transmission Control Protocol, Src Port: 43144, Dst Port:
— 9443, Seq: 7430, Ack: 4203, Len: 1203

WebSocket
1... .... = Fin: True
.000 .... = Reserved: 0x0
0010 = Opcode: Binary (2)
1 = Mask: True

.111 1110 = Payload length: 126 Extended Payload
< Length (16 bits)

Extended Payload length (16 bits): 1195
Masking-Key: 09d1e07d

Masked payload

Payload

Data (1195 bytes)
Data []: 0aa809....
[Length: 1195]

Listing A.11: Alice’s WebSocket packet without TLS containing a cipher-
text for Bob and DenIM garbage
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