
Summary

The correctness of privacy protocols can be asserted in many different ways. One way is to set up a
differential privacy model for it, which means that it is private, but over time it will lose privacy. Another
way is to prove that it is private. This can be done by creating some assumptions about the usage of
the protocol, and then proving that under those assumptions the protocol will provide privacy. Another
way is simply to test it with different disclosure attacks and see if the protocol can withstand it. This
approach however requires that the protocol is implemented, and implemented correctly, such that an
analysis of it can be conducted, for example through a simulation. A disclosure attack can then be used
on a network trace, from the simulation to try and disclose the users. If the attack can disclose the users
correctly, then the protocol is not private, and if the attack cannot disclose the users, then the protocol
is resistant towards that attack. But a protocol being resistant towards one attack is not the same as
it being private, it only means that it can resist that attack. The good thing about testing is that it is
easy, either it resist or it does not and by showing that it is not resistant to one attack then it is also
proved that the protocol is not private. Therefore, the purpose of this study is to create a tool which
can be used to test the privacy of different privacy protocols and use it to evaluate DenIM a deniable
protocol.

The tool that we have created consists of different disclosure attacks. These attacks can be used to
test an implementation of a protocol to see if the protocol is private. If the protocol has been proven
private, like DenIM, then these attacks can test whether the protocol has been implemented correctly.
Because if the attacks works against a protocol which has been formally proven to be private, then it
must mean that it has been implemented incorrectly.

One of the attacks which has been implemented is the Normalized Statistical Disclosure Attack.
This attack is designed to work on threshold mixes, and not continuous networks. Therefore, we have
modified it slightly to work on continuous networks. This is accomplished by looking at time intervals
of the network data of fixed time t, and utilizing these intervals for the attack instead of the thresholds
which would otherwise be used. This is possible because a threshold in a mix network is some amount
of messages passing through the server at a specific time, whereas the intervals are some messages which
has passed through the server within some time. Therefore both thresholds and intervals represent some
messages passing through the server at a time, where the only difference is that intervals uses a duration
instead of a fixed time. We have used this attack to disclose users communicating through an application
utilizing the Signal protocol. This would serve as a test to see whether our attacks worked, since the
signal protocol is not private. From that, we can see that our attack works and can disclose Signal users.

With this attack in place, we can use it to test the implementation of DenIM which has been formally
proved to be private. By using our attack as is, we can see that the implementation of DenIM fends of
our attacks. DenIM is a privacy protocol which acts as an extension for the Signal protocol. It works by
letting the users have some conversations which should be private, these are refereed to as deniable, and
some conversations which are not. The messages of a deniable conversation is called deniable messages,
and the messages of a regular conversation is called regular messages. In order for a user to send a
deniable message it must be picky-bagged on a regular message. This is done by padding every regular
message with a buffer and optionally store some of the deniable message in it. By doing this, the deniable
messages will be hidden from the transport layer, making regular messages carrying deniable messages
indistinguishable from regular messages which are not carrying deniable messages. The size of the buffer
is determined by a value q which is used to describe a relation between the deniable and regular payload.
When a regular message hits the server, it will drop of the part of the deniable message if it was carrying
something in its buffer. After that it will check to see if the recipient of this deniable message has
some deniable messages in its queue on the server, and if so piggybacks that and then it is forwarded
to the recipient. So in order for a deniable message to go from the server to the destination, it must be
piggybacked on some other regular message going to that destination.
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DenIM operations under a specific user assumption which states that a users deniable behavior must
not influence their regular behavior. This means that when a user has created a deniable message, he
must not send more regular traffic to forward it than he otherwise would, because this can leak his
privacy. We have addressed this assumption and tried to come op with a less restrictive assumption
which states that a user in a hurry can send a larger volume of regular traffic than they otherwise would
to forward the message. Then we have tested this variation of DenIM following this new user behavior
assumption, to see how much privacy is actually lost. To accomplish this, we have created a new attack
for our tool which can detect these increases of regular traffic and use that as an indicator of a deniable
message having been forwarded. Then we can try to correlate these events to find possible deniable
communication links between the users. From the attack which we have conducted on DenIM where
users follow this new user behavior assumption we can see that the privacy lost is related to q. When q
is large, the users are difficult to correlate, and when q is small, the users are easier to correlate. So a
large q would seem like an obvious choice, but unfortunately that would lead to a high bandwidth.
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Messages sent throughSignal andmany other instant
messaging applications are encrypted such that an
adversary cannot read the content of the messages.
But even if that is the case, an adversary can figure
out who is communicating with who and when that
communication took place. With this knowledge, the
adversary will be able get and idea about the context
of the messages. Therefore the metadata privacy of
a system is just as important. In this project we have
created a tool which consist of different disclosure
attacks. This tool can then be used to test the pri-
vacy of different privacy protocols. Throughout this
project, we have utilized this tool to test the privacy
of Signal and DenIM. In Chapter 3 the focus is to test
the privacy of Signal by using a variation of the Nor-
malized Statistical Disclosure Attack which is devel-
oped in that chapter. In Chapter 4 we shift the fo-
cus to test the privacy of DenIM with the same attack
as used on Signal. DenIM has a specific assumption
about user behavior which the privacy is dependent
on. In Chapter 5 we try to address this assumption,
and come up with a less restrictive new assumption.
In order to test the privacy of DenIM where users fol-
low this newuser behavior assumption,wedeveloped
a new attack in Chapter 6 which tries to detect this
kind of behavior to correlate the clients. Finally, we
discuss in Chapter 7 the results fromusing the tool on
simulated data, and additionally discuss the new at-
tackwhichwe created to disclose DenIMwhere users
would follow the new user behavior assumption.
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1. Introduction

Many instant messaging applications like Signal and Facebook Messenger provide strong security guar-
antees through encryption. For Signal and Facebook Messenger [1] the security is provided through
the Signal protocol which is formally secure [2] and provides resilience, forward security, and break-in
recovery [3]. This means that an adversary cannot read the content of the messages. But an adversary
will still be able to correlate communicating users with well known disclosure attacks [4, 5]. This can be
just as compromising because an adversary can reason about and try to infer the context of the messages
by knowing who has communicated and when. Making conversations private would then allow people to
communicate without possible consequences as could be under e.g. authoritarian rule. Furthermore, for-
mer US government official General Hayden said, “We kill people based on metadata” [6], which further
underlines why privacy is necessary.

For an instant messaging application to be private, it must prevent meta data leakage that could allow
an adversary to correlate the communicating parties. A system usually follows the anonymity tri-lemma
[7], meaning that the system can provide low latency, low bandwidth, and privacy, but only two of
the properties at a time. This means that an instant messaging application, which provides privacy
for its users, must sacrifice either latency or bandwidth. There has already been proposed several
privacy protocols. Vuvuzela [8], Karaoke [9], and Stadium [10] among others has taken a round based
approach and utilizes mix networks. Generally the approaches send messages through their respective
mix network architectures, adding a large amount of noise in the process making disclosure slow. These
solutions generally use a differential privacy model making metadata leakage inevitable but bound,
instead of being proven private. DenIM [11] is another privacy protocol which has recently emerged with
proven privacy guarantees as a novel approach to the privacy problem. DenIM works by hiding so called
deniable messages which, supported with various privacy guarantees, allows for private communication.
The privacy is gained by their novel architecture and by hiding deniable messages within regular messages
at the cost of an overhead on the regular messages. This overhead can contain a deniable message which
means that one message sent by a client could in fact include two messages, however the adversary
cannot make the distinction of the overhead either being a dummy message or a deniable message hence
providing deniable properties. A further explanation of the DenIM protocol can be seen in Chapter 4.
We choose to focus on DenIM since it takes a new approach towards privacy, they state that “rather
than offering privacy to all users all the time, let us offer privacy to all users some of the time.” [11],
which we find interesting. We also believe that this approach has better potential for use in current
instant messaging services and therefore should be the focus of improvement. To see whether a protocol
is private, one could either prove it mathematically like in DenIM, or one could test it with different
traffic analysis attacks.

The purpose of traffic analysis attacks is to disclose communication links between clients. Many of these
attacks rely on statistics such as the Statistical Disclosure Attack (

 

 

SDA) proposed by [4], and variations
thereof like Normalized Statistical Disclosure Attack (

 

 

NSDA) proposed by [5]. Many of these traffic
analysis attacks are, to the best of our knowledge, not implemented and publicly available or grouped
together as a collection, making traffic analysis an inconvenient way to test privacy solutions. Therefore
we propose to implement a selection of traffic analysis attacks and collect them into a tool for the purpose
of testing privacy systems, an explanation of this tool can be seen in Chapter 2. We also propose two
variations of the

 

 

NSDA which work on continuous networks as opposed to mix networks, see Chapter 3.
Furthermore, we also propose a new attack which can disclose a variation of DenIM where users do not
follow the normal user behavior assumption as stated in [11], which can be seen in Chapter 6.
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2. TrafficAnalysis Tool

To further demonstrate the need for a privacy solution, we show that Signal is not private by attacking
it with a well know traffic analysis attack. We also want to show how DenIM can solve this issue and
attack it as well. For other studies which might also need to verify that their implementation is resistant
to the attacks, we have chosen to group and automate the attacks within a tool. This tool is publicly
available on our GitHub1. The tool consists of four different disclosure attacks, two of which is used in
this study to disclose and test the privacy of Signal and DenIM.

Many disclosure attacks are based upon the
 

 

SDA proposed by [4], as this attack has shown great results
in the past, hence many have further developed upon it. One of such is the

 

 

NSDA proposed in [5],
which uses the original

 

 

SDA and builds upon it. They show that it is a general improvement to the
 

 

SDA. Their model, unlike the original, does not focus on a single user’s communication pattern, but
instead uses every users’ communication patterns and extract more information thereby improving the
algorithm, detailed in Section 3.1. Variations of these two attacks are implemented in the tool and work
on continuous networks as opposed to their original purpose for mix networks. Our implementation is
presented in Section 3.1.

Another disclosure attack within the tool is a variation of the
 

 

SDA proposed by [12]. This attack is
important since it coverts the

 

 

SDA from working on a round based protocol to a continuous network
stream. The approach we got from [12] was also used to implement the

 

 

SDA and
 

 

NSDA in the tool and
therefore they work on continuous network streams.

According to our tests
 

 

NSDA yields the best results compared to the two other disclosure attacks. It
is therefore also the reason we used it to disclose conversing Signal users in Chapter 3 and to test the
privacy of DenIM in Chapter 4.

Finally we have also implemented an attack for the purpose of testing and disclosing DenIM users
following a new user behavior model described in Chapter 5. A detailed explanation of this attack can
be seen in Section 6.1.

1https://github.com/cs-25-ds-10-08/Traffic-Analysis-Tools
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3. Attacking Signal

To further demonstrate the need for a privacy solution, we show that plainly using the Signal protocol
leaves services to be vulnerable to traffic analysis attacks. Using a fork1 implementing a client-server
architecture using the Signal protocol2, we show that this implementation is not private. To illustrate
Signal’s lack of privacy, we employ a

 

 

NSDA, inspired by [5]. This attack correlates users through their
traffic patterns over Signal - disclosing users, meaning to reveal likely communication links between users.

3.1 The Normalized Statistical Disclosure Attack

The goal of this attack is to identify which two users have communicated with each other. The Normalized
Statistical Disclosure Attack, as proposed in [5], is comprised of two steps to reach said goal, a profiling
and disclosure step. The goal of the profiling step is to generate a profile for each user, a profile has a
user’s predicted communication pattern containing the probabilities of it sending a message towards each
of the other users. Profiling therefore generates a pattern for users which then is used for correlation
and disclosure of those users. When generating profiles for each user, we focus on a specific time frame,
in [5] this is a round of a threshold mix. During this period, we consider each sender and update their
profile based on potential interactions. For each sender, we assume they could have sent their message
to any of the receivers within that time frame. Therefore, the profile update process involves adding a
value of 1

|Si| to the sender’s profile for each receiver, where |Si| represents the number of senders in round
i. This adjustment updates the belief of the sender having communicated with each of the different
receivers. The joint profiles is a zero initialized matrix where the rows are senders and the columns are
the receivers. The profiles is updated in the following manner, where P is the matrix of profiles:

1. For each round i, group the senders into the set Si and the receivers into the set Ri.

2. Update the profiles of all senders by adding the likelihood of them having send a message to each
receiver, which is depicted in Equation 3.1.

P ′(s, r) = P (s, r) +
1

|Si|
, s ∈ Si, r ∈ Ri (3.1)

Do note that [5] assumes a uniform distribution of the probability within rounds by adding 1
|Si| to the

profile of each sender in each round. This is because it is not certain which of the senders actually is
communicating with the receiver.

With the profiles all set, the attack enters the disclosure step, where the goal is to use the profiles to
make a guess on which users are communicating. The finalized profiles are then transformed into a
doubly stochastic transition matrix, resulting in each row and column being normalized [5]. [5] uses the
Sinkhorn algorithm [13] to convert the profiles into a doubly stochastic transition matrix, therefore we
do the same. The intuition behind the transformation is a shift in perspective. Initially, the profiles hold
all sent messages distributed across all senders. After the transformation each profile now describes, for

1The fork can be viewed here: https://github.com/cs-25-ds-10-08/signal
2The implementation can be viewed here: https://github.com/Diesel-Jeans/signal
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a given user, how likely their messages are to go to each possible receiver. So rather than summarizing
the sent messages the profiles now reflect the probability of a message’s destination from the point of
view of each sender. Using the transformed profiles, we can now identify communicating users based
on their profile data. To conclude the attack, for any profile of interest, we select the receiver with the
highest belief - our best guess as to whom the sender most likely communicated with.

The
 

 

NSDA, originally proposed by [5], was designed for threshold mix networks. Therefore, we must
adapt the attack slightly for it to be applicable for Signal and be a fit for the tool, as the focus is
continuous networks and not threshold mix networks. To accommodate the issue we introduced an
epoch-based approach, inspired by [12], which utilizes a new time frame that they call an epoch. The
intuition behind using an epoch is that [12] models Signal as a threshold mix network and uses the epoch
to act in place of the threshold. Therefore, the epoch is simply just a parameterized amount of time
that can then be adjusted and as argued in [12] should allow for their round based attack to work for
continuous networks instead. We propose two variations of the

 

 

NSDA, chunking and selected, using
epoch-based approaches. The goal of the different approaches is to create the sender and receiver sets to
then perform the profiling.

The chunking variant utilizes the epoch to chunk the data into epoch sized chunks. It then partitions the
chunk into a sender and receiver set, Si and Ri respectively, and updates the senders’ profiles as depicted
in Equation 3.1. This can also be seen in algorithm 1 which depicts the entire chunking approach. The

Algorithm 1: The chunking
 

 

NSDA variation
Input: data, epoch
Result: A matrix describing each clients profile
/* Each cell in the profiles matrix maps to 0 */

1 P (s, r) 7→ 0
2 initial_time← data[0].time

3 chunk_amount← ddata.last.time−initial_time
epoch e

4 for i← 0 to chunk_amount do
5 start← initial_time+ i ∗ epoch
6 end← start_time+ epoch

/* The senders and receivers are not the server */
7 Si ← get_senders_between(data, start, end)
8 Ri ← get_receivers_between(data, start, end)
9

10 foreach s ∈ Si do
11 foreach r ∈ Ri do
12 if s 6= r then
13 P (s, r)′ ← P (s, r) + 1

|Si|
14 end
15 end
16 end
17 end
18 return P

chunking method suffers from an issue where it can correlate a previous receiver with a later sender
within a chunk. As an example if there is a receive event followed by a sending event, chunking would
still correlate that the message originating from the sender could be received by that recipient, which is
clearly not possible since the receive event happened earlier that the send event.

To accommodate the issue of chunking, we made the selected variation which does not chunk the data.
This approach will read one line at a time from the network trace, and concludes whether the sender is
a client or the server. If the sender is a client, it will simply add the client and the current timestamp
to a buffer S. If the sender is the server, then the recipient must be a client, and all the senders in S
could have sent a message to that recipient and therefore each sender’s profile is updated accordingly, as
depicted in Equation 3.1. Clients will be removed from S once they have been in S for epoch time. This
can also be seen in algorithm 2 which depicts the entire selected approach.
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Algorithm 2: The selected
 

 

NSDA variation
Input: data, epoch, server
Result: A matrix describing each clients profile
/* Each cell in the profiles matrix maps to 0 */

1 P (s, r) 7→ 0
2 S ← ∅
3 foreach row ∈ data do
4 S′ ← remove_expired_events(S, row.time, epoch)
5
6 if row.sender = server then
7 foreach s,_ ∈ S do
8 if s 6= row.receiver then
9 P (s, row.receiver)′ ← P (s, row.receiver) + 1

|S|
10 end
11 end
12 else
13 S′ ← S ∪ {(row.sender, row.time)}
14 end
15 end
16 return P

3.2 Attacking Signal in Practice

We consider how the attack can perform in the real world on the production Signal server to show the
relevance of a privacy solution. For the attack to work the attack needs to run on Signal messaging
data, therefore it is important to deliberate on how this data is actually obtained. To obtain the data,
the attacker has to be able to sniff the network traffic at the server which the two clients’ messages
pass through. A TLS handshake is initiated when a new connection to the Signal server is made. TLS
handshakes made with the Signal server contain the Server Name Identification (

 

 

SNI) of the Signal
server which the user needs to connect with. The

 

 

SNI can be used to filter information not coming
from Signal - removing unnecessary noise. Doing this on the running production Signal traffic data also
showed that using the

 

 

SNI is an effective method for filtering out noise to get the necessary data needed
for the attack. We tried this in practice by starting a hotspot, connection phones to the hotspot and
communicating through the Signal App, then we sniffed the packages routed through the hotspot. This
resulted in Signal data mingled with auxiliary data which after filtering as previously described, left us
with only the desired Signal data. Further filter might be needed if the network trace contains Signal
data from other services than the Signal messages, such as Signal’s video chat data.

3.3 Experiments

To test the privacy of the Signal implementation mentioned in Chapter 3, we simulate client interaction.
Before starting the simulation, we create all the clients and connect them to the server. Furthermore, we
partition the clients into groups of 2 to 5 members, allowing only intra-group communication as a previous
study [14] found that people typically communicate with 2 to 5 others, which informed our choice of
group size. While this study provides insight into communication patterns, it focuses solely on employee
communication between and within businesses and does not fully represent instant messaging services
as a whole. To the best of our knowledge, no studies have yet clarified such general communication
patterns.

The clients are run on a single machine to perform the simulation, following the approach taken in
previous studies [5, 12]. To enable independent client behavior, we introduce parallelism using the Tokio
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async runtime3, which allows tasks to run across multiple threads4. However, Tokio does not guarantee
full parallelism, as its tasks are scheduled on a limited set of worker threads. While Tokio controls task
scheduling, the operating system ultimately manages the execution of those threads, including context
switching. This can introduce slight variations in execution timing and delays beyond our control. A
potential solution for achieving full parallelism would be to run each client on a separate machine.

Each client starts by receiving all messages directed for it. It then probabilistic decides if it should reply
to the message. This chance was set to 95% for all the results on the Signal client. If the client replied to
a message, there is further a 10% chance it will send a new message to a random member in the group,
and if the client did not reply it will always send a new message to a random member of its group. To
ensure conversations automatically begin on startup, we also decided that each client should send out a
message in the first round forcefully. The reason for running the simulation in iterations, and not within
a fixed time, is to make the simulation more consistent since there always will be send and received close
to the same amount of messages. Where as with a fixed time, the amount of messages may be more
variable depending on the background load on the PC.

The traffic generated between the server and clients are captured on localhost with Wireshark5, this also
means that clients will be distinguishing based on their statically assigned port number. The network
trace captured by Wireshark can unfortunately not be reliably reproduced because the output relies on
network timing and delays, which we have no control over. In Wireshark we apply a filter on TCP ports
that forces all packets to have either the source or destination port be the server port, in our case 4444.
This isolates the client-server communication and we then run the attacks on this filtered captured data.

The tool is required to run on a .csv file which is created from the .pcapng file that Wireshark generates
while collecting the traffic data.

3.3.1 Results

The result indicates that both the chunking and selected approach allows to disclose users with high
belief over short conversations, even with significant amount of noise from other users. The results show
the algorithm’s belief in that the target user communicated with the expected user. Additionally, if the
algorithm correlates correctly that the target user’s expected receiver is the actual receiver, we mark
the result as a Hit, otherwise a Miss indicating that the belief is of a different receiver than the actual
receiver.

To have a high belief, the epoch of the attack must be set accordingly. This may require some tweaking
and is highly dependent on the actual network capture, but as a goal the epoch should be long enough
to contain both a sender event and the correlated receive event. Do note that the reason for the very low
epoch used in the tests is due to the fact that the tests has been running on localhost with no delays.
This epoch should be increased if a network trace was captured with transmission delays, such as if the
server was running on another machine.

We can see on the data analyzed with the tool, that as the client amount increases and the iterations do
not, our belief drops - as expected. This indicates that when there is many clients, but little data it is
hard to be certain of the communication links, so in a sense, they are hiding within each others noise.

The analysis revealed that capturing more messages generally improves our belief. This is evident when
approaching a local optimum, for example at epoch = 5 ∗ 10−4, where the belief increases consistently
with the number of iterations. In contrast, at epoch = 5 ∗ 10−3, our belief declines as the number of
iterations increases.

3https://tokio.rs/
4https://docs.rs/tokio/latest/tokio/runtime/
5https://www.wireshark.org/

6

https://tokio.rs/
https://docs.rs/tokio/latest/tokio/runtime/
https://www.wireshark.org/


Epoch Iterations Clients Belief Hit/Miss
5 ∗ 10−3s 10 100 2.50% Hit
5 ∗ 10−4s 10 100 8.48% Hit
5 ∗ 10−5s 10 100 0.00% Miss
5 ∗ 10−3s 100 10 89.14% Hit
5 ∗ 10−4s 100 10 93.61% Hit
5 ∗ 10−5s 100 10 14.96% Miss
5 ∗ 10−3s 100 100 82.49% Hit
5 ∗ 10−4s 100 100 90.99% Hit
5 ∗ 10−5s 100 100 0.45% Miss
5 ∗ 10−3s 100 1000 84.58% Hit
5 ∗ 10−4s 100 1000 86.99% Hit
5 ∗ 10−5s 100 1000 0.06% Miss
5 ∗ 10−3s 1000 100 88.69% Hit
5 ∗ 10−4s 1000 100 92.50% Hit
5 ∗ 10−5s 1000 100 63.38% Hit

Table 3.1: Results for running chunking
 

 

NSDA to correlate client 0 and client 1

Epoch Iterations Clients Belief Hit/Miss
5 ∗ 10−3s 10 100 2.91% Hit
5 ∗ 10−4s 10 100 3.36% Hit
5 ∗ 10−5s 10 100 0.00% Miss
5 ∗ 10−3s 100 10 88.37% Hit
5 ∗ 10−4s 100 10 95.51% Hit
5 ∗ 10−5s 100 10 11.70% Miss
5 ∗ 10−3s 100 100 79.57% Hit
5 ∗ 10−4s 100 100 91.46% Hit
5 ∗ 10−5s 100 100 1.09% Miss
5 ∗ 10−3s 100 1000 34.25% Hit
5 ∗ 10−4s 100 1000 86.88% Hit
5 ∗ 10−5s 100 1000 0.07% Miss
5 ∗ 10−3s 1000 100 36.67% Hit
5 ∗ 10−4s 1000 100 95.71% Hit
5 ∗ 10−5s 1000 100 79.71% Hit

Table 3.2: Results for running selected
 

 

NSDA to correlate client 0 and client 1

Using
 

 

NSDA as a black box is not transparent, therefore to make sense of the results we graph out
the network trace which the tool, using the two variations of the

 

 

NSDA, was used on. The network
trace behind each combination of iterations and client above can be depicted as an I/O graph with
Wireshark6. The graphs shows the amount of packages uploaded and downloaded to and from the server
over accumulated intervals of time where most are accumulated over a one second interval, but a two
second interval for Figure 3.1e. The graphs depict the targeted client, client 0, and the expected client,
client 1, which are the same two clients correlated in the tables above, and some other client. The traffic
patterns of client 0 and client 1 can indicate whether they have communicated. When one client sends
a message, the other receives it, resulting in both clients generating a similar volume of traffic in terms
of packets. Therefore, communicating clients may generates similar I/O graphs indicating a correlation.
This indication is not apparent for Figure 3.1a due to the low amount of iterations and a large amount
of clients, hence the results show high uncertainty. The indication is likewise not apparent for the graphs
depicted in Figure 3.1e. The rest of the data is more balanced between iterations and amount of clients,
hence the results can also be seen to correlate much more accurately as expected from looking at the
graphs.

6https://www.wireshark.org/docs/wsug_html_chunked/ChStatIOGraphs.html
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(a) Experiment with 100 clients and 10 rounds, showing the correlation of client 0 and client 1, the red and blue
graph, whom we expect to have communicated.

Wireshark	I/O	Graphs:	data_raw.pcapng.gz
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(b) Experiment with 100 clients and 100 rounds, showing the correlation of client 0 and client 1, the red and
blue graph, whom we expect to have communicated.
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Wireshark	I/O	Graphs:	data.pcapng.gz
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(c) Experiment with 100 clients and 1000 rounds, showing the correlation of client 0 and client 1, the red and
blue graph, whom we expect to have communicated.

Wireshark	I/O	Graphs:	data.pcapng.gz

0 5 10 15 20 25
Time	(s)

0	packets

10	packets

20	packets

30	packets

40	packets

Pa
ck
et
s/
1	s
ec

1	sec	Intervals	
Client	0
Client	1
Other

(d) Experiment with 10 clients and 100 rounds, showing the correlation of client 0 and client 1, the red and blue
graph, whom we expect to have communicated.
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Wireshark	I/O	Graphs:	Loopback:	lo
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(e) Experiment with 1000 clients and 100 rounds, showing the correlation of client 0 and client 1, the red and
blue graph, whom we expect to have communicated.
Figure 3.1: Graphs of client 0, client 1, and a third client’s network packages sent and received, over
the duration of the experiment, grouped in intervals
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4. DenIM-on-Signal

In order to reason about DenIM’s privacy guarantees it is imperative to understand the protocol itself.
Therefore, this section gives an overview of the protocol and its threat model. Following the overview,
we attack DenIM with the

 

 

NSDA used for Signal to verify that DenIM fends off this attack. The attack
is conducted on captured DenIM data, simulated with the DenIM implementation used in [11].

4.1 What is DenIM

DenIM is a protocol which provides impeccable privacy guarantees at the cost of either latency or
bandwidth [11], the effect can be seen in Section 4.3. DenIM can provide these privacy guarantees
through its use of deniable messages. Deniable messages has the property where the sender can deny
ever having send the message. In DenIM, this is done by hiding the message on the transport layer by
piggybacking them, resulting in the adversary never being able to observe the deniable messages sent. A
deniable message can only be sent and received when it is piggybacked on a regular message. A regular
message in DenIM is like a normal instant message with no privacy guarantees, but it is extended with a
buffer which may contain a piggybacked deniable message. The buffer is filled with a deniable message
if the user has one in his local deniable queue, otherwise it will use dummy data. The deniable queue
stores sent deniable messages which has yet to be piggybacked on a regular message. The size of the
deniable payload which can be piggybacked on a regular message is determined by a constant q which
is known by every user. The size of the deniable payload is calculated as: |d| = |r| ∗ q where d is the
deniable payload and r is the regular payload. A large q will then lead to a high bandwidth consumption
and low latency, and a small q will then lead to a high latency but little bandwidth consumption. When
a regular message reaches the server, the server splits the message into its regular message part and the
deniable message part. The server then checks whether the intended recipient of the regular message
has any deniable messages in their deniable queue. If the deniable queue is not empty the server pops
the deniable queue and piggybacks that deniable message onto the regular message. In case the queue
was empty the server piggybacks dummy data instead. Finally the server forwards the message to the
intended recipient. When an incoming message contains a deniable message, that deniable message is
queued for its intended recipient in their deniable queue on the server.

The threat model of DenIM assumes a Global Active Adversary, an entity capable of observing all
communication between the server and the user. Additionally, the adversary can inject, modify, or
replay messages, participate in the protocol itself, and even control nodes within the network. The
adversary’s objective is to uncover either the content of a deniable message or the existence of one. That
includes determining whether a regular message carries a deniable payload or identifying if two clients
are engaging in deniable communication. Despite the strength of the adversary model, DenIM operates
under certain assumptions for its privacy guarantees to hold. Notably, it assumes that users trust the
receivers of their deniable traffic. Furthermore, all forwarding servers are considered trustworthy and it
is assumed that deniable behavior does not influence a user’s regular behavior (see [11] for detail). The
authors of DenIM has chosen to create the DenIM protocol on top of the Signal protocol due to the
provided security guarantees [11]. [57]
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4.2 Initializing the Simulations

The implementation of DenIM used for simulation is provided to us as it is open source from [11]. The
implementation is used without modifications except for which contacts each client has, stressing this
change having no effect on the DenIM protocol. To initialize the simulation the clients must be assigned
two contact lists. The contact lists purpose is to dictate who the clients can converse with. One of the
contact lists are for their regular contacts, while the other is for their deniable contacts.

To create the two contact lists, we begin by enumerating all the clients. Based on this enumeration, we
generate two other lists by distributing clients with the even indices into one list and the clients with
odd indices into the other list. These lists are organized into a matrix as its rows. We call this matrix
the regular matrix and its transposed version the deniable matrix, and use these matrices to derive the
contact lists. Each client’s regular and deniable contacts are extracted from the regular and deniable
matrix and coincides with the row containing their enumeration index.

An example with 10 clients would be:

R =

[
0 2 4 6 8
1 3 5 7 9

]
, RT = D =


0 1
2 3
4 5
6 7
8 9


Where R is the regular matrix containing regular contact lists and D is the deniable matrix containing
deniable contact lists, and each row represents a contact list. From the example matrix the client with
index 0 would have regular contracts as [ 0, 2, 4, 6, 8 ] and deniable contacts as [ 0, 1 ], lastly the
clients remove themselves from their contacts.

4.3 Attacking DenIM

To attack DenIM we will perform the same attacks as used to attack the Signal implementation in
Section 3.1. As can be seen by the results below, DenIM is resilient towards these attacks, and do not
allow such attackers to disclose the users as expected. The results presented are based on simulations
using either 10 or 20 clients. These values were chosen because a lower number of clients simplifies
the correlation process. Therefore, when the algorithm fails to correlate even under these favorable
conditions, it strengthens our confidence in the effectiveness of DenIM. However, there is one outlier (see
†) in the below table, but we suspect this to be due to the small amount of clients used in the experiment.
An example where an outlier would emerge is if client A and client B is communicating through deniable
messages but A sends a message to C, and D sends a message to B. If these two events happen within the
same epoch the two approaches would still correlate that A could have sent a message to B. Therefore,
outliers are possible with these models, however they become less likely the more iterations and clients
are introduced.

12



Epoch Duration Clients Belief Hit/Miss
5 ∗ 10−3s 2m 10 0.00% Miss
5 ∗ 10−4s 2m 10 4.23% Miss
5 ∗ 10−3s 2m 20 0.00% Miss
5 ∗ 10−4s 2m 20 0.12% Miss
5 ∗ 10−3s 4m 10 0.00% Miss
5 ∗ 10−4s 4m 10 23.50% Miss
5 ∗ 10−3s 4m 20 0.00% Miss
5 ∗ 10−4s 4m 20 14.33% Miss
5 ∗ 10−3s 8m 10 0.00% Miss
5 ∗ 10−4s 8m 10 0.00% Miss
5 ∗ 10−3s 8m 20 0.00% Miss
5 ∗ 10−4s 8m 20 0.01% Miss

Table 4.1: Results for running chunking
 

 

NSDA to correlate client 0 and client 1 with q = 0.36

Epoch Duration Clients Belief Hit/Miss
5 ∗ 10−3s 2m 10 0.00% Miss
5 ∗ 10−4s 2m 10 0.01% Miss
5 ∗ 10−3s 2m 20 0.00% Miss
5 ∗ 10−4s 2m 20 0.00% Miss
5 ∗ 10−3s 4m 10 0.00% Miss
5 ∗ 10−4s 4m 10 0.00% Miss
5 ∗ 10−3s 4m 20 0.00% Miss
5 ∗ 10−4s 4m 20 0.00% Miss
5 ∗ 10−3s 8m 10 0.00% Miss
5 ∗ 10−4s 8m 10 0.00% Miss
5 ∗ 10−3s 8m 20 0.00% Miss
5 ∗ 10−4s 8m 20 0.00% Miss

Table 4.2: Results for running selected
 

 

NSDA to correlate client 0 and client 1 with q = 0.36
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5. DenIM's User Behavior Assumption

Using DenIM under their threat model provides strong privacy guarantees. However, we argue that for
a practical solution, user behavior should not be a determining factor for privacy. This is because clients
are able to act freely, making any assumption that they will behave in a particular way unrealistic, as
behavior cannot be controlled.

An example where users carelessly could compromise their privacy is when they are in a hurry. A user
familiar with the system would understand that the latency of their deniable messages is tied to their
regular behavior. This is because the user knows that they have to forward their deniable message
through piggybacking in order to send their deniable message. Consequently, if the user needs to quickly
relay information through a deniable channel, they could generate a large volume of regular traffic, either
by sending many smaller messages or one large message, to promptly forward their deniable messages to
the server.

Therefore, for practical usage, we study DenIM in a scenario where users do not conform to the assump-
tion “Users’ deniable behavior does not influence their regular behavior, [...]” [11] and instead assume
“Users sending a deniable message may forward it immediately by sending more regular traffic to ensure
that the entirety of the deniable message is forwarded to the server”. Altering this assumption provides
more lenience to the users’ behavior, sacrificing the privacy guarantees. Chapter 6 analyzes the loss
in privacy guarantees and in what degree this change affects user privacy, and how varying the server
parameter q can keep user’s private even under this new assumption.
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6. Analysis

In this section we focus on analyzing the new threat model’s effect on user privacy. We show the practical
effects by attacking users using DenIM, where the users are now acting under the new assumption
described in Chapter 5. We show that users can indeed be disclosed under the new assumptions but also
reason about how to protect users through tweaking DenIM’s q parameter.

6.1 Attacking DenIM Under the New User Behavior

To attack DenIM with users acting within the confines of the new defined assumption, we designed a
new attack for the tool, inspired by the

 

 

NSDA which is detailed in Section 3.1. We continue with the
idea of collecting profiles of users and use Sinkhorn to perform a transformation on which we can disclose
communication links. To effectively identify deniable communication links under DenIM with the new
user behavior assumption we are going to focus on that new user behavior. This is because DenIM is
designed to hide the deniable messages within the regular messages assuring that the regular messages
which carries deniable messages are indistinguishable from regular messages which carries dummy data.
Therefore it is insufficient to look at the send and receive events as is, because they reveal no information
about the deniable messages. Instead, we now look for when users abusing their newfound freedom by
forwarding deniable messages in a hurry, which in our case is when users send many smaller regular
messages to forward their deniable ones.

Armed with this knowledge we can begin to look at users who sent a rapid stream of regular messages
within a very short period of time, this behavior will be referred to as a burst. We can now attack based
on the assumption that when we encounter a burst it must mean that the same user has also queued
a deniable message shortly prior to the burst and tried to forward it with the burst. For the eventual
receiver of that deniable message to actually read it, the message must still be forwarded from the server
by other users, as such is DenIM. This means we now look for which client have received at least the
same amount of regular messages as the size of the burst since it happened. We look for this as it would
indicate that the receiver could have received the entire deniable message if it was the target for that
deniable message. If that receiver then follows these receive events by sending a burst shortly after, we
can then reason that the two are communicating since this pattern would indicate that a reply was sent
out. However, to confirm this we wait for the original sender to receive at least the amount of regular
messages from the reply burst, and then look for another burst from the original sender. To summarize
this pattern with an example we look for a user Alice sending a burst, denoted as A of length 2, user
Bob following receives twice, denoted for each as b. Bob then sends out a burst of length 3, denoted as
B, and then Alice receives those messages from other users, denoted a for each, and sends another burst
A. The pattern we are looking for would then be denoted as [A, b, b, B, a, a, a,A ]. This pattern would
then indicate a possible conversation between Alice and Bob.

The pattern relies on the assumption that in the use case of DenIM, even deniable traffic will have similar
patterns as the regular traffic, meaning it will be used for shorter text messages. We also assume that
these regular and deniable messages would be of equal length on average. For example if you are living
under an authoritarian regime but want to speak private and freely with other people, DenIM could be
used for that.
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The main difference between this proposed attack and the original
 

 

NSDA attack lies in the profiling
step and the fact that we no longer use the sender set directly for profiling. The sender set is now used
exclusively to identify where bursts occur. The receiver set remains unchanged, containing all receive
events that occurred in the trace.

To identify burst we assume that each small message in a burst is sent within a short period of time,
call this dt. Therefore, we look at each message and for each we evaluate if the next message from that
sender happened within dt time, if so we group the two and call them a burst. We continue from the
group to see if the time of the last message is within dt of the next message sent by that sender, if so we
include it in the group, and if not it will be seen as the start of a potential new burst. Finally, this will
give us the whole burst, a set where each message is from the same sender and each message happened
within dt time of each other. Therefore, doing this for each message we end up with all bursts in the
network trace. All identified bursts are collected into a burst set, which consists of pairs of senders and
the timestamps at which the bursts occurred, here we have chosen to identify when a burst happened
using the timestamp of the last message in the set. We decided to use the last timestamp in the burst
because this is the moment when the deniable message is in total on the server. Note that if we chose
the first timestamp we would have the time when the deniable message was sent instead, we elaborate
on the differences between the two approaches and the potential benefits of using the first timestamp
in Chapter 8. However, the research does not benefit from this change and therefore we stick with this
approach.

Moving on, we use both the burst set and the receiver set such that we can efficiently search for the
pattern described earlier in this section. To find this pattern, we start by selecting a user and identifying
their first two bursts. The timestamps of these bursts is used as a window of time wherein we search for a
sub-pattern in the network trace. Continuing from the earlier example, this sub-pattern might look like
[x, x,X, a, a, a ], where x represents any client. Clients matching the sub-pattern is considered potential
communication partners of Alice.

To identify such sub-patterns, we first locate all bursts that occur within the time window. Note that
none of these bursts originate from the sender, sender being the user who sent the bursts defining the
time window. For each of these other clients, we check whether they received the amount of messages
sent in the first burst of the window before they reply with a new burst (within the time window).
Additionally, the sender is also checked such that it received the amount of messages as was in the new
burst after that burst was sent, since otherwise it could not have sent it as a reply. Clients matching the
sub-pattern are added to a list Ri, which represents the possible receivers of the message. The approach
to finding such sub patterns is also showed in algorithm 4. Using this list, we then update the sender’s
s profile P (s, r) as follows:

P ′(s, r) = P (s, r) +
1

|Ri|
where r ∈ Ri, s ∈ S (6.1)

The entire attack is depicting in algorithm 3.

We continue updating the profiles for each client picking two bursts as: succn(B, s) and succn+1(B, s)
where s ∈ S and B is the set of all bursts. On the last bursts from the client where succn+2(B, s) = ∅ we
instead use the end of the network trace as timestamp instead of one from a burst. After computing all
profile updates we can then continue on as the normal

 

 

NSDA approach to disclose the communication
partners.
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Algorithm 3: DenIM Disclosure Attack
Input: burst_events, receive_events
Result: A matrix describing each clients profile
/* Each cell in the profiles matrix maps to 0 */

1 P (s, r) 7→ 0
2 for i← 0 to |burst_events| do

/* s is the sender of the burst */
3 s← burst_events[i]
4 for j ← i to |burst_events| do
5 if s.id 6= burst_events[j].id then
6 continue
7 end
8 start← s.time
9 end← burst_events[j].time

10
11 burst_events_slice← get_events_between(burst_events, start, end)
12 receive_events_slice← get_events_between(receive_events, start, end)
13 Ri ← filter_receivers(burst_events_slice, receive_events_slice, s.id, s.size)
14
15 foreach r ∈ Ri do
16 P [s.id][r.id]′ ← P [s.id][r.id] + 1

|Ri|
17 end
18 break
19 end
20 end
21 return Sinkhorn(P )

Algorithm 4: The pseudo code for filter_receivers
Input: burst_events, receive_events, id, size
Result: Ri

1 burst_events′ ← reverse(burst_events)
2 receive_events′ ← reverse(receive_events)
3 i← 0
4 count← 0
5 counts← ∅
6 foreach receiver ∈ receive_events do
7 while i < |burst_events| ∧ receriver.time < burst_events[i].time do
8 burst_event← burst_events[i]
9 if burst_event.id /∈ counts ∧ burst_event.size ≤ count then

10 counts[burst_event.id]← 0
11 end
12 i′ ← i+ 1

13 end
14
15 if receiver.id = id then
16 count′ ← count+ 1
17 else if receiver.id ∈ counts then
18 counts[receiver.id]′ ← counts[receiver.id] + 1
19 end
20 end
21 potential_receivers← filter(burst_events, burst_event→ counts[burst_event.id] ≥ size))
22 return remove_duplicates(potential_receivers)
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6.2 Results

In the section, our objective is to evaluate privacy under the updated threat model, detailed in Chapter 5.
This is achieved by varying the value of q and observing its effect on privacy. We simulate conversations
where clients may communicate both regularly and deniably. We vary three key parameters: the value
of q, the number of clients, and the proportion of clients attempting to forward their deniable messages
immediately, in accordance with the new threat model. The resulting network traffic from these sim-
ulations is captured using Wireshark and analyzed using the tool by executing the attack described in
Section 6.1.

The simulation data is generated on a single machine, with each client and server running in separate
node environments. This setup promotes parallelism and helps maintain client independence. However,
as discussed earlier, all operations are ultimately scheduled by the host operating system. Consequently,
we cannot guarantee full parallelism or complete independence. This limitation may introduce minor
timing artifacts due to OS-level context switching, however we did not experience any problems in the
simulation due to this. Furthermore, the number of clients we are able to simulate is limited due to the
high memory usage of the current DenIM implementation. Simulating 20 clients can consume up to 15
GB of memory. As a result, a more in-depth study of the effects of scaling the number of clients is left
for future work, when a more memory-efficient version of DenIM becomes available.

The effectiveness of the attack depends on a parameter dt, which defines the maximum allowable time
between two messages for them to be considered part of the same burst. Choosing a large dt may cause
unrelated messages to be grouped into a single burst (false positives), while a small dt may split actual
bursts (false negatives). Thus, it is crucial to choose a dt to be small enough so that it would not include
false positive bursts, yet big enough to include as many of the correct bursts.

The results demonstrate that clients who eagerly forward their deniable messages are at risk of being
identified and that the value of q has an effect on the privacy of the system. The impact of q having
an effect on privacy is discussed further in Chapter 7. In Table 6.1, we show the correlation results
between client 0 and client 1, who are communicating deniably. In this simulation, only these two clients
are actively attempting to forward their deniable messages immediately. We observe that they can be
reliably identified up to q = 0.96, implying that values of q above this threshold are necessary to ensure
their privacy. Consequently, this implies an overhead exceeding 96% on all messages, which is substantial
in practical use cases.

In Table 6.4, we present a scenario in which all clients eagerly forward their deniable traffic. This
creates significant noise, making it more challenging for an attacker to correlate client 0 and client 1.
Nevertheless, even in this noisier setting, we are able to correlate the two clients reliably up to q = 0.36.
Thus, to preserve privacy in this scenario, q must exceed 0.36, still implying a significant overhead of
more than 36% on all messages.

The optimal value of q therefore depends on the system’s intended use. A conservative configuration
aiming for stronger privacy should choose q > 0.96, while a more cost-aware configuration may settle for
q > 0.36. However, in realistic conditions, it is unlikely that all clients will simultaneously attempt to
forward their deniable messages eagerly. Therefore, a practical value for q likely lies somewhere between
0.36 and 0.96.
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Run 1 Run 2 Run 3
q Belief Hit/Miss Belief Hit/Miss Belief Hit/Miss

0.12 94.46% Hit 98.98% Hit 95.07% Hit
0.24 86.45% Hit 90.06% Hit 98.75% Hit
0.36 99.60% Hit 87.22% Hit 93.47% Hit
0.48 97.63% Hit 92.54% Hit 92.61% Hit
0.60 95.39% Hit 94.77% Hit 91.07% Hit
0.72 79.98% Hit 97.34% Hit 93.81% Hit
0.84 30.73% Hit 44.58% Hit 56.47% Hit
0.96 22.88% Hit 0.00% Miss 28.93% Hit
1.08 11.76% Miss 13.69% Miss 0.00% Miss
1.20 0.00% Miss 27.07% Hit 0.00% Miss

Table 6.1: Correlation of client 0 and client 1 where only these two clients forwards their deniable traffic
through bursts with the experiment running over a duration of 8 minutes with 10 clients and dt = 0.2.

Run 1 Run 2 Run 3
q Belief Hit/Miss Belief Hit/Miss Belief Hit/Miss

0.12 2.18% Miss 0.56% Miss 9.71% Miss
0.24 75.31% Hit 79.47% Hit 48.40% Hit
0.36 95.15% Hit 69.39% Hit 85.14% Hit
0.48 68.40% Hit 70.05% Hit 45.19% Hit
0.60 45.23% Hit 18.56% Miss 25.68% Hit
0.72 7.33% Miss 4.42% Miss 10.05% Miss
0.84 15.22% Miss 10.04% Miss 10.67% Miss
0.96 12.94% Miss 0.00% Miss 0.00% Miss
1.08 0.00% Miss 11.59% Miss 0.00% Miss
1.20 0.00% Miss 0.00% Miss 0.00% Miss

Table 6.2: Correlation of client 0 and client 1 where every client forwards their deniable traffic through
bursts with the experiment running for 8 minutes with 10 clients and dt = 0.2.

Run 1 Run 2 Run 3
q Belief Hit/Miss Belief Hit/Miss Belief Hit/Miss

0.12 94.34% Hit 86.99% Hit 87.31% Hit
0.24 89.18% Hit 85.71% Hit 90.98% Hit
0.36 84.74% Hit 84.83% Hit 87.04% Hit
0.48 84.79% Hit 86.98% Hit 86.77% Hit
0.60 83.39% Hit 84.28% Hit 88.97% Hit
0.72 82.84% Hit 60.71% Hit 30.31% Hit
0.84 10.50% Miss 11.06% Hit 5.49% Miss
0.96 4.82% Miss 5.31% Miss 4.34% Miss
1.08 5.15% Miss 4.76% Miss 6.04% Miss
1.20 4.44% Miss 6.70% Miss 6.45% Hit

Table 6.3: Correlation of client 0 and client 1 where only these two clients forwards their deniable
traffic through bursts with the experiment running for 8 minutes with 20 clients and dt = 0.2.
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Run 1 Run 2 Run 3
q Belief Hit/Miss Belief Hit/Miss Belief Hit/Miss

0.12 6.58% Miss 0.51% Miss 13.94% Miss
0.24 35.07% Hit 25.72% Hit 2.83% Miss
0.36 69.77% Hit 41.07% Hit 17.64% Hit
0.48 11.71% Miss 13.74% Miss 20.44% Hit
0.60 3.17% Miss 14.52% Hit 11.02% Hit
0.72 4.63% Miss 7.68% Miss 6.35% Miss
0.84 5.98% Hit 6.47% Miss 5.31% Miss
0.96 4.76% Miss 4.12% Miss 5.37% Miss
1.08 5.18% Miss 5.65% Miss 5.34% Miss
1.20 5.26% Miss 5.84% Miss 5.93% Miss

Table 6.4: Correlation of client 0 and client 1 where all forwards their deniable traffic through bursts
with the experiment running for 8 minutes with 20 clients and dt = 0.2.

Table 6.2 and Table 6.4 showed results with q = 0.12 which we did not expect. Logically, larger bursts
leads to easier detection and therefore the results are perplexing. However, Table 6.5 shows an experiment
with q = 0.12 and the deniable participation population varying. Here it becomes apart that after a
larger percentage of the population engages with the deniable communication the correlation of bursts
and users muddies, resulting in low beliefs. The results show that 60% of the population can participate
in deniable communication while doing bursts for the attack to be believable at q = 0.12.

Population Belief Hit/Miss
100% 2.18% Miss
80% 8.34% Miss
60% 71.81% Hit
40% 61.17% Hit
20% 94.46% Hit

Table 6.5: Correlation of client 0 and client 1 by varying the amount of clients who forwards their
deniable traffic through bursts with the experiment running over a duration of 8 minutes with 10 clients,
dt = 0.2 and q = 0.12.
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7. Discussion

The data that we have generated are generated on the same machine, which can potentially yield som
issues, as discussed in both Section 3.1 and Chapter 6. So the obvious choice to make it more realistic is
to run each client on separate machines, that way they cannot in any way be dependent of each other,
which would yield better results. But we doubt that the results would change that much, since the effect
from the OS is minimal.

According to our research and the study [11] has conducted, DenIM does indeed provide impeccable
privacy given a certain user behavior. However, if the users does not conform to this behavior, but lets
their deniable behavior influence their regular behavior, they may loose privacy or the system would
have to sustain a large overhead to keep the privacy. In order for DenIM where users follow the new user
behavior assumption to work in practice, the value of q must be large enough so it does not compromise
their privacy. According to our study, the value of q should at least be larger than 0.36 to not compromise
the users privacy and can be set higher to increase the privacy. However, this should still be studied on
a larger scale to be able to say anything more conclusive. To study this on a larger scale a more scalable
implementation of DenIM is required, we know of two implementations which is currently in the midst
of being developed, one trying to implement a production DenIM server which facilitates many client
connections at a time [15], and the other is a simulation tool which supports at least 500 clients [16].

In Chapter 6, we discussed the design of the attack on DenIM and briefly mentioned our choice to use
the last timestamp of a burst for executing the attack. We asserted that this choice would not impact
the results. In the following, we provide a more detailed explanation of the differences involved, thereby
supporting the validity of our claim.

Firstly, the difference of using the first or last timestamp is clearly what happens while the burst is
being sent. Therefore, if some messages in a burst has a significant delay some receive events could have
happened within the time of the burst. Going off the notation used in Chapter 6 to describe the pattern
that we are looking for, we need additional notation to identify each individual message within each
burst. We therefore denote a message for a burst from A as Ax,y, where x is a counter of bursts sent
by A, and y is the counter of messages within the burst x. Thus, we can construct an example of where
using the first timestamp is critical as: [A1,1, A1,2, b, A1,3, b, b, B, a, a, A]. In the example we can
see that user Bob is expecting to receive 3 messages in order to have received Alice’s deniable message,
since it took 3 messages for Alice to send out the deniable message (still working under the assumption
that messages are of equal length). Consequently, using the last timestamp Bob could not have received
the message according to our attack, where in fact he could since the first receive event for Bob could
receive either A1,1 or A1,2.

When using the first timestamp there is a catch, the attacker now also have to keep track of how many
receive events happened intra burst. An example of where an issue is apparent, when changing the current
algorithm to use the first timestamp, could be denoted as: [A1,1, b, b, A1,2, A1,3, b, B, a, a, A]. In the
given example when the attacker expects Bob to receive three times, they would therefore mark Bob as a
possible recipient of Alice’s burst. However, since two of Bob’s receive events happened between A1,1 and
A1,2 one of the two events could only have forwarded A1,1, and none of them could have transferred A1,2

or A1,3. Therefore in no instance could Bob have received all three messages from Alice and it must have
been another user who Alice was conversing with in this scenario. Therefore, a possible improvement is
using the first timestamp and adding more logic to the attack to circumvent this issue.
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8. FutureWork

Currently the analysis tool uses the last timestamp of a burst to determine when the burst occurred,
but as discussed in Chapter 7, this may impose some limitations on who we can correlate. Therefore we
suggest as future work to change the analysis tool to use the first timestamp of a burst for a more robust
algorithm.

As discussed in Section 6.2, we had some issues with running simulations with many clients due to the
memory consumption. Therefore we suggest that future work could focus on finding a way to conduct
these experiments with more clients. As mentioned in Chapter 7, we know of two other implementations
under development which could allow for this, namely [15] and [16]

The attacks within our analysis tool that we have created, both the one we applied on Signal and DenIM,
expects a CSV file representing the network trace to be analyzed, i.e. it is designed to work offline. Future
work could focus on finding a way to run these analysis tools online, so whilst the network trace is being
captured. This could either be done by using TShark directly in the analysis tool, for example with
pyshark1.

The experiments we conducted on Signal was with a group size of 2 to 5 clients, meaning that a client only
has 1 to 4 other friends (not including himself) he can have a conversation with. These numbers where
gotten from a research focusing on inter and intra company communication [14]. Private communication
may differ, but at the time of writing we where unable to find any research in that regard. In the
experiments we conducted on DenIM we created the groups as described in Section 4.2. The issue with
this approach is that the regular groups would grow with the amount of clients and eventually become
very large, but the deniable groups will always consist of two clients. Therefore we propose as future
work to find a better way to create these groups/contact lists.

Currently our analysis tool only works if the IP of a client does not change during the network capture.
This also means that the analysis tool is not suitable for roaming mobile devices, which may change IP
frequently depending on which telecommunication mast is closest. As future work we suggest to change
this analysis tool to make it work on roaming mobile devices. One way to accomplish this is with finger
printing.

1https://github.com/KimiNewt/pyshark/
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9. RelatedWork

Vuvuzela [8] is a privacy solution solving a similar problem as DenIM using a round based protocol.
The way in which Vuvuzela provides its privacy is through a large amount of cover traffic and a constant
participation in the protocol. Vuvuzela therefore provides a service for private communication, but due
to the nature of a round based protocol it cannot be integrate on top of existing IM services, unlike
DenIM.

Signal’s sealed sender1 is a privacy solution made by Signal which tries to hide the sender of a message
from the server, but not the receiver. Specifically it hides the sending client’s UUID from the server, but
not the IP address. Thus, sealed sender is designed to protect users from a potentially malicious service
provider, yet does not provide any additional privacy against external attackers.

Tor [17] is a privacy focused onion browser. An onion browser is a browser connected to an onion
network, which is a network with multiple relay nodes, which will relay your request forward in the
network to a possible other relay node or the destination. This also means there can be many hops from
source to destination which can affect performance.

A method for attacking signal’s sealed sender was proposed by [12] to correlate senders with
receivers. The authors utilize a modified version of the

 

 

SDA which they show can reveal sender and
receiver relationships over time. The attack they propose shows an approach where they modify an
existing attack on round based protocols such that it works for continuous networks.

The Perfect matching disclosure attack [5] proposed alongside the
 

 

NSDA, is a variant of the
statistical disclosure attack [4]. It works similar to

 

 

NSDA, but instead of normalizing the matrix it
computes an NP-hard problem to associate every single sender and receiver. This attack can achieve
better results that

 

 

NSDA, but compared to the heavy computation it is properly not worth it.

1Read more about sealed sender on Signal’s blog: https://signal.org/blog/sealed-sender/
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10. Conclusion

This study introduces a tool containing different disclosure attacks, which is publicly available on our
GitHub1, see Chapter 2 for a in-depth explanation of the tool. We have evaluated this tool throughout
this report by disclosing different instant messaging systems. In Chapter 3 we propose two methods to
attack normal communication channels such as Signal, detailed in Section 3.1, which are available in the
tool. From the test conducted it is clear that Signal is not private, as the two different attacks disclosed
communicating users. In Chapter 4 we have tested the privacy of DenIM by attacking it with the same
attacks as used on Signal. This showed that DenIM is resistant to traffic analysis attacks by keeping the
deniable traffic private. In Chapter 6 we introduced a novel method, available in the tool, identifying
deniable conversation links for users using the DenIM protocol under a new assumption, proposed in
Chapter 5. Under the new assumptions it is evident that the strong privacy guarantees stated by DenIM
starts to crack, since we are able to disclose deniable traffic. In Chapter 6 we successfully disclose the
deniable communications with the new assumption, but the privacy of DenIM is not completely lost under
this new user behavior assumption. The tests shows that the value of q not just related to bandwidth
and latency but also has an impact on the systems privacy. Furthermore, given a large value of q users
should still be private whilst following this new user behavior model, our tests shows that the value of q
should be at least greater than 0.36 and for a more conservative one could choose a value above 0.96.

1https://github.com/cs-25-ds-10-08/Traffic-Analysis-Tools
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