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Abstract:

Evaluating the quality of automatically generated sum-
maries remains a central challenge in natural language
processing. Standard metrics like ROUGE focus on lexi-
cal overlap and often fail to capture deeper qualities such
as factual consistency, fluency, or relevance. Recent QA-
based approaches, such as UniEval, offer multi-dimen-
sional evaluation but often act as black boxes, providing
binary outputs without interpretability or reasoning.

This thesis introduces QAG-Eval, a modular framework
that combines question generation, answer reasoning,
and scalar scoring to evaluate summaries across four
quality dimensions: coherence, consistency, fluency, and
relevance. By generating natural language justifications,
QAG-Eval provides transparent, interpretable evalua-
tions instead of opaque scalar scores.

The framework is evaluated against ROUGE and re-
trained UniEval models on human-annotated datasets.
Results show that QAG-Eval offers strong alignment
with human judgments and captures subtle mid-range
quality distinctions more effectively. The thesis also
analyzes score distributions, justification quality, and
performance trade-offs between multi-task and continual
learning setups.

By integrating reasoning and scoring in a transpar-
ent pipeline, QAG-Eval contributes toward more inter-
pretable, modular, and human-aligned evaluation meth-
ods applicable across diverse summarization tasks.
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1 Introduction

Text summarization refers to the task of producing short, coherent summaries that capture the
essential information of a longer document. As one of the foundational challenges in Natural
Language Processing (NLP), summarization has evolved significantly, from early rule-based
and statistical systems to modern neural models and Large Language Models (LLMs) capable
of generating fluent, human-like summaries. While these advances have led to impressive
generative performance, they also bring new challenges in reliably evaluating the quality of
automatically generated summaries.

Traditionally, evaluation relied on surface-level lexical overlap metrics such as Recall-Oriented
Understudy for Gisting Evaluation (ROUGE), which compare model-generated summaries
against human-written references. Although widely adopted, these metrics are limited in their
ability to assess semantics, factual consistency, or content relevance, especially in abstractive
summarization, where multiple valid summaries may differ lexically. More recent learned and
Question-Answer (QA)-based evaluation methods attempt to capture deeper quality signals but
often suffer from a lack of interpretability, oversimplified scoring schemes, or opaque decision-
making.

This thesis explores a new direction for summary evaluation that aims to improve inter-
pretability, scoring granularity, and modularity. The proposed framework, Question-Answer
Generation-based Evaluation Framework (QAG-Eval), leverages instruction-tuned models to
generate dimension-specific question-answer pairs that reason explicitly about summary quality
across fluency, coherence, consistency, and relevance. These reasoning traces are then mapped
to human-aligned quality scores, allowing both transparent and fine-grained evaluation.

The remainder of this thesis is structured as follows: Chapter 2 provides a detailed problem
analysis, covering existing summarization techniques, evaluation metrics, and recent QA-based
approaches. It concludes with a problem formulation and a set of guiding research questions.
Chapter 3 introduces the proposed QAG-Eval framework, outlining its evaluation dimensions,
core components, dataset construction process, and training procedures. Chapter 4 describes
the experimental setup and presents results addressing the defined research questions. Chapter
5 analyzes the empirical findings in greater depth, comparing the proposed framework against
existing metrics and models, and concludes with directions for future work. Chapter 6 offers
final conclusions and reflections on the contributions of the thesis.
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2 Problem Analysis

This chapter analyzes the problem space surrounding automatic summarization and its evalu-
ation. It begins by introducing the motivation and historical development of summarization
techniques, followed by a discussion of the current state of evaluation methods used to assess
summary quality. Both traditional metrics and more recent learned approaches are considered,
along with the quality dimensions they aim to capture. Special attention is given to the emerging
use of question-answering as a paradigm for evaluation, including its potential and current
limitations. Finally, the chapter concludes by formulating the research problem and objectives
that guide the remainder of this thesis.

2.1 Motivation and Context

Text summarization refers to the creation of short, accurate, and fluent summaries of longer
documents. As one of the most challenging tasks in NLP, it has seen a steady evolution—from
early rule-based systems in the 1950s [1], to unsupervised feature-based methods in the 1990s
and 2000s [2—4], and more recently, to neural models trained on large-scale datasets [5-8]. The
field has advanced further with the rise of such as BERT [9] and T5 [10] has shown signific
such as BERT [9] and T5 [10], which introduced self-supervised pretraining combined with fine-
tuning. This performance leap has been amplified by LLMs like GPT-4 [11]; [12], which can
produce high-quality summaries that rival those written by humans [13].

Despite these advancements, evaluating the quality of generated summaries remains a complex
issue. Traditional automatic metrics like ROUGE [14] and BLEU [15], which rely on n-gram
overlap with reference summaries, often fail to capture the semantic adequacy, factual correct-
ness, and overall quality of summaries, especially when multiple valid summaries exist for a
single source document. This limitation is particularly pronounced in domains where summaries
are expected to capture nuanced information, such as scientific articles, legal documents, and
conversational data.

Recent research has consistently highlighted the limitations of current evaluation metrics across
a wide range of summarization tasks. Metrics like ROUGE and BLEU, though widely used,
often fail to align with human judgment, particularly in settings where semantic adequacy,
factual grounding, and contextual relevance are crucial [16, 17]. These issues are amplified in
domains such as scientific, legal, or conversational summarization, where the input structure
is more complex and the expectations for summary content vary significantly. For example,
dialogue summarization presents unique challenges: it requires models to interpret informal,
often disfluent language, resolve speaker references, preserve discourse flow, and surface salient
points from loosely structured exchanges. These difficulties reflect broader evaluation gaps
that persist across summarization domains. As outlined by Kirstein et al. (2024) [18], robust
evaluation must account for latent document structure, factual consistency, pragmatic inference,
and topic salience, features that are typically invisible to surface-level metrics. Yet, even modern
neural or LLM-based evaluation methods often lack transparency or rely on binary decisions
that obscure nuanced judgment.

These challenges underscore the pressing need for evaluation frameworks that go beyond token-
level matching or opaque scoring systems. Instead, future evaluation methods must offer fine-
grained, interpretable, and dimension-specific insights into summary quality. Addressing this
need is the central motivation behind the framework proposed in this thesis.
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2.2 Existing Summarization Techniques

Modern summarization methods are generally categorized into two main types: extractive and
abstractive summarization. The following sections briefly outline the distinctions between them
and their respective advantages and limitations.

2.2.1 Extractive Summarization

Extractive summarization, which dates back to early work by Rau et al. in 1989 [19], was
among the first approaches to automatic summarization. It involves selecting and concatenating
sentences or phrases directly from the source text to form a summary. This method relies on
identifying the most informative or salient units, typically using statistical heuristics, graph-
based algorithms, or supervised models trained to rank sentence importance.

Extractive methods tend to be more robust in terms of factual accuracy and grammaticality, as
they avoid generating new content. However, they often suffer from redundancy, incoherence,
and poor discourse structure, particularly when summarizing long or loosely organized source
documents. An example of extractive summarization can be seen in Figure 1.

Source:

The city council voted on Tuesday to approve a new green initiative aimed
at reducing carbon emissions by 30% over the next decade. The plan includes
expanding bike lanes, investing in public transportation, and offering tax incen-
tives for electric vehicle owners. Some council members expressed concerns about
the budget implications of the initiative. However, the majority agreed that the
long-term environmental benefits outweigh the short-term costs. The initiative
is set to begin implementation in early 2025.

Summary:

The city council voted on Tuesday to approve a new green initiative aimed
at reducing carbon emissions by 30% over the next decade. The plan includes
expanding bike lanes, investing in public transportation, and offering tax incen-
tives for electric vehicle owners. The initiative is set to begin implementation in
early 2025.

Figure 1: An illustrative example of extractive summarization. The summary is formed by
selecting full sentences directly from the source document without rephrasing or compression.

2.2.2 Abstractive Summarization

Abstractive summarization, by contrast, seeks to generate novel sentences that paraphrase,
compress, or reorganize content from the source. This approach aims to mimic how humans
write summaries by rephrasing information instead of copying it verbatim [20, 21].

Early abstractive systems employed rule-based or statistical generation techniques, later evolv-
ing into neural models using recurrent architectures with attention mechanisms (Rush et al.,
2015 [22]). Recent progress has been driven by transformer-based models such as BART (Lewis
et al., 2020 [23]), T5 (Raffel et al., 2020 [10]), and other large pre-trained language models.
These models, when fine-tuned on summarization datasets, can produce fluent and coherent
summaries that often outperform extractive systems in readability and informativeness.
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2 Problem Analysis

However, this increased generative flexibility also introduces the risk of hallucinations, where
generated content is fluent but factually incorrect, along with semantic drift or inconsistencies
(Maynez et al., 2020 [24]). These issues are particularly pronounced in complex domains such
as multi-document or dialogue summarization, making faithful and interpretable evaluation
essential in abstractive pipelines. An example of abstractive summarization can be seen in
Figure 2.

Source:

The city council voted on Tuesday to approve a new green initiative aimed
at reducing carbon emissions by 30% over the next decade. The plan includes
expanding bike lanes, investing in public transportation, and offering tax incen-
tives for electric vehicle owners. Some council members expressed concerns about
the budget implications of the initiative. However, the majority agreed that the
long-term environmental benefits outweigh the short-term costs. The initiative
is set to begin implementation in early 2025.

Summary:

The city council approved a green initiative set to launch in 2025, aiming to cut
emissions by 30% through eco-friendly transport investments. Despite budget
concerns, most members supported the plan for its long-term environmental

impact.

Figure 2: Unlike extractive summarization, which copies full sentences from the source, abstrac-
tive summarization generates novel phrasing. This example shows how a model can compress
and reword content to produce a more concise and human-like summary.

2.3 Evaluation Metrics for Summarization

Evaluating the quality of generated summaries is a critical yet unresolved challenge in NLP.
A wide variety of metrics have been proposed, ranging from simple surface-level comparisons
to complex learned models. This section outlines the major categories of evaluation metrics,
highlights their limitations, and introduces the key quality dimensions used in modern summa-
rization evaluation.

2.3.1 Key Quality Evaluation Dimensions

Before introducing common evaluation metrics, it is important to clarify the underlying quality
dimensions they are intended to assess. Following Kryscinski et al. (2019) [25], modern summa-
rization evaluation typically considers four core dimensions, each capturing a distinct aspect of
summary quality:

¢ Coherence: Assesses the overall structure and logical flow of the summary. A coherent
summary reads naturally and presents information in a sensible order.

« Consistency (or factual consistency): Evaluates whether the summary remains faithful
to the content of the source text, avoiding hallucinations or unsupported claims.

e Fluency: Refers to the grammaticality and readability of individual sentences. A fluent
summary is well-written and free from language errors.

¢ Relevance: Measures whether the summary captures the most important and salient infor-
mation from the source, omitting redundant or trivial details.
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2.8 Evaluation Metrics for Summarization

These dimensions are not always entirely independent, but they provide a structured basis for
evaluating summary quality beyond surface-level similarity. Many existing automatic metrics
conflate or overlook these distinct criteria, highlighting the need for more granular and inter-
pretable evaluation methods.

2.3.2 ROUGE and Traditional Overlap-Based Metrics

ROUGE [14] is the most widely used automatic evaluation metric in summarization. It quantifies
the lexical overlap between a generated summary and one or more human-written reference
summaries, typically using precision, recall, and F1 variants over n-grams or subsequences.

The most common variants include:

¢ ROUGE-N: Measures n-gram overlap between candidate and reference summaries.
» ROUGE-1 focuses on unigrams (single words).
» ROUGE-2 captures bigram overlap, offering slightly more sensitivity to local phrase
structure.

e ROUGE-L: Measures the longest common subsequence (LCS), accounting for word order
while allowing gaps. This variant is more flexible than strict n-gram matching and emphasizes
sequence-level alignment.

The ROUGE-N recall is computed as:

Se{reference summaries} Z gram,, €S Count match (gramn )

ROUGE-N =

Z Se{reference summaries} Zgramn €s Count (gram" )

Where n is the n-gram size, and Count,,, ., (gram,,) is the maximum number of overlapping n-
grams between the candidate and reference summaries.

ROUGE-L uses the longest common subsequence between reference (X) and candidate (Y)

texts:
L XY
Rlcs = CS( : )
m
p _ LOS(XY)
n
E — (1 + 62>R1CSP105

“ Rlcs + /8 2 P]cs

Where m and n are the lengths of the reference and candidate summaries, respectively. 5 is
B

les

typically set to balance recall and precision, often as 8 = 7=

les

Due to its simplicity, language independence, and ease of use, ROUGE has become a de facto
standard in summarization benchmarks. However, it suffers from several well-known limitations:

o It fails to account for semantic equivalence, penalizing valid paraphrases that do not match
at the surface level.

e It is insensitive to factual errors or hallucinations.

o It provides no explanatory insight—only numerical similarity scores.

These limitations are especially problematic for abstractive summarization, where correct
summaries may differ significantly in phrasing from reference texts. Nonetheless, ROUGE
remains widely used due to its efficiency, reproducibility, and historical precedent. For consis-
tency with prior work, ROUGE is included as a baseline in this thesis.
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2 Problem Analysis

2.3.3 Other Automatic Evaluation Metrics
In response to ROUGE'’s limitations, several alternative metrics have been proposed to better
capture meaning, factual accuracy, and human judgment alignment.

o Semantic similarity metrics such as BERTScore [26] and MoverScore [27], attempt to measure
deeper contextual alignment between summaries and references using pre-trained language
models.

o Learned scoring models like BARTScore [28] generate likelihood-based scores directly from
transformer models conditioned on source and/or reference inputs.

o QA-based metrics, including FEQA [29] and QuestEval [30], attempt to assess factual
consistency by generating and answering questions derived from the summary or source
content.

While these approaches address some of ROUGE’s weaknesses, particularly in handling para-
phrasing and factual accuracy, they often suffer from limited transparency and interpretability.
Most produce a single overall score without distinguishing between specific quality dimensions
such as fluency, coherence, or consistency. As a result, it is often unclear which aspects of
summary quality are being evaluated or what types of errors contribute to the score.

2.4 Towards QA-Based Evaluation

QA has emerged as a promising paradigm for evaluating summaries, especially in contexts where
factual consistency or content inclusion must be assessed. Unlike traditional metrics that rely
on string overlap, QA-based methods evaluate summaries by asking whether specific questions
can be answered using only the summary, or whether the summary answers key questions about
the source.

A number of QA-style metrics have been introduced, including SummaQA [31], FEQA [29],
and QuestEval [30]. While these metrics help identify factual omissions or hallucinations, they
are often limited in scope, apply only to factual consistency, and offer no insight into other
quality dimensions such as fluency or coherence.

More recently, UniEval [32] has extended QA-based evaluation to multiple dimensions. The
following subsections provide a detailed overview of the UniEval framework and its limitations.

2.4.1 Overview of the UniEval Framework

UniEval [32] is a unified, automatic evaluation framework designed to assess Natural Language
Generation (NLG) outputs, such as summaries or dialogue responses across multiple quality
dimensions including coherence, consistency, fluency, and relevance. It reframes multi-
dimensional evaluation as a Boolean QA task, enabling a single language model to handle
all evaluation dimensions via simple, natural language prompts. An overview of the framework
can be seen in Figure 3.

At its core, UniEval uses a fine-tuned T5 [33] model to answer dimension-specific yes/no
questions about the source text. For example, to assess coherence and relevance, the model
is asked:

“Is this a coherent summary to the document?”

“Is this summary relevant to the reference?”

)

The model outputs either “Yes” or “No,” and the confidence in the “Yes” answer is used to

compute a continuous score:
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2.4 Towards QA-Based Evaluation

P(Yes‘xaghcvq'i)
S. =
‘ P(YeS’x7y767Qi> +P(NO‘$7ya ¢, qi)

Here, s, is the score for dimension i, and P(-) denotes the model’s probability of generating a
specific output token. By leveraging the softmax-normalized probability over “Yes” and “No,”
UniEval turns binary classification into a graded scoring system. This formulation allows the
model to reflect uncertainty in its judgment, producing real-valued scores aligned with human
quality.

To prepare the model for this task, UniEval undergoes a two-stage training process:

1. Intermediate multi-task pretraining, using generic QA, Natural Language Inference
(NLI), linguistics-related tasks, and Opening Sentence Prediction as a self-supervised task
to develop general-purpose reasoning skills.

2. Unsupervised fine-tuning on evaluation tasks, using pseudo data generated via rule-
based transformations (e.g., deleting words to break fluency, swapping sentences to break
coherence).

The final model is capable of zero-shot or few-shot evaluation, using only question prompts
to assess quality along different axes, without requiring separate evaluators for each task or
human-annotated labels.

However, this design choice also introduces several trade-offs, particularly in interpretability,
reasoning traceability, and content-level fidelity. Because the model generates a final
decision without exposing the underlying content relationships it considered, it behaves as a
black-box evaluator. Additionally, while the binary QA format is efficient, it provides no explicit
evidence of what information was preserved, omitted, or hallucinated in the generated summary.

LLM (T5) Intermediate Tasks Boolean Answer Evaluation Tasks UniEval Score
Generator

NLI Coherence Coherence :

. Linguistics . Relevancy . Relevancy

Generic QA Consistency Consistency :

e SST — Fluency Fluency :
A

Al Generated
Summary

Pseudo Data

Figure 3: An overview of the overall framework of UniEval.

2.4.2 Limitations of the UniEval Framework

Evaluating the quality of NLG outputs, especially in complex domains such as dialogue summa-
rization, presents ongoing challenges [18]. Traditional metrics based on surface similarity (e.g.,
ROUGE, BERTScore) fall short in capturing deeper semantic qualities like factual correct-
ness, coherence, and informativeness. To address these shortcomings, the UniEval framework
proposes a unified, multi-dimensional evaluation approach that reformulates evaluation as a
Boolean QA task. This framework enables a single model to assess multiple quality dimensions,
such as coherence, consistency, fluency, and relevance, by prompting the model with dimension-
specific yes/no questions.

While UniEval represents a significant step toward more comprehensive and flexible evaluation,
several architectural and methodological limitations merit closer analysis. These limitations,
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detailed below, identify potential blind spots in UniEval’s design and suggest avenues for further
improvement in the development of evaluation metrics.

2.4.2.1 Lack of Interpretability and Explainability

UniEval relies on a pre-trained language model to produce binary judgments (“Yes”/“No”) in
response to evaluation questions. However, the model offers no explicit reasoning or evidence
behind its predictions. This black-box design limits transparency and makes it difficult for
users to verify or understand why a given summary is rated as incoherent or irrelevant. As
evaluation tools are increasingly deployed in high-stakes or safety-critical contexts (e.g., medical
or legal summarization), the lack of interpretability poses a significant limitation. The authors
of UniEval themselves acknowledge this limitation, explicitly stating that although neural
evaluators can correlate well with human judgments, it remains unclear how exactly the model
arrives at its evaluation scores.

2.4.2.2 Binary Scoring Formulation May Oversimplify Complex Judgments
UniEval quantifies the quality of generated text by calculating the model’s confidence in a
“Yes” answer, which is interpreted as a continuous score. While this enables straightforward
scoring across dimensions, it inherently reduces nuanced quality assessments to a probabilistic
binary decision. Many aspects of summary quality, such as partial factual overlap or borderline
coherence, may not be well captured by a binary framing. This could lead to the underrepre-
sentation of ambiguous or intermediate cases in evaluation results.

2.4.2.3 Synthetic Pseudo Data: Quality and Realism Concerns

A key feature of UniEval is its use of rule-based pseudo data for unsupervised training on
evaluation tasks. Negative examples are constructed through transformations such as sentence
swapping (to break coherence) or entity substitution (to break consistency). Although this
eliminates the need for costly human annotations, it introduces a dependency on handcrafted
corruption rules that may not accurately reflect real-world model outputs. As a result, the
model may overfit to specific error patterns introduced during pseudo data construction and
underperform on naturally occurring errors found in real summaries. The authors of UnikEval
explicitly acknowledge concerns about noise in their synthetic pseudo data. For example, when
constructing negative samples for fluency, they remove text spans without considering their
importance, which may not affect sentence fluency. Nevertheless, these altered sentences are
still consistently labeled as negative examples. This indicates potential gaps in the realism and
quality of the pseudo data used to train the evaluator.

2.4.2.4 Implicit Modeling of Informational Content and Faithfulness

UniEval’s QA-based design evaluates global qualities of text (e.g., “Is this summary consistent
with the document?”) without explicitly modeling what factual or informational content is
preserved. There is no built-in mechanism to assess whether key pieces of information from
the source text are present, omitted, or hallucinated in the generated output. This limits
the system’s sensitivity to fine-grained content-level discrepancies and may obscure critical
omissions or hallucinations that negatively affect summary utility.

2.5 Problem Formulation

Automatic evaluation of text summaries remains a challenging task, particularly for complex
domains such as dialogue, where traditional metrics (e.g., ROUGE, BLEU) often fail to capture
the nuanced quality judgments made by humans. Recent frameworks such as UniEval have
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introduced instruction-based, multi-dimensional evaluation methods to approximate human
judgment across dimensions like coherence, consistency, fluency, and relevance.

However, UniEval faces notable limitations, including:
1. Lack of explicit reasoning traces, making it difficult to interpret or trust the model’s scoring
decisions.

2. Oversimplification of complex quality dimensions due to a binary scoring formulation.

3. Reliance on synthetic or pseudo-labeled training data, raising concerns about realism and
alignment with human preferences.

4. A boolean QA generator that yields yes/no judgments, but does not verify whether key
information is preserved, omitted, or hallucinated.

This thesis investigates whether a question generation and answering-based evaluation strategy
can address these limitations by:

¢ Introducing interpretable, dimension-specific QA probes that explicitly model quality dimen-
sions.

o Leveraging instruction-tuning on diverse, multi-domain datasets to improve generalization.

o Training a separate scoring module to simulate human judgment on a discrete 1-5 scale,
rather than a binary formulation.

e Incorporating human-annotated and grounded datasets to ensure human alignment and
scoring fidelity.

Ultimately, this thesis aims to develop a transparent, modular, and generalizable evaluation
framework that can be applied across diverse NLG tasks. As such, the central research question
guiding this thesis is:

How can a summarization evaluation framework be designed to be transparent,
modular, and generalizable across multiple NLG domains, while producing
human-aligned and interpretable quality scores?

2.6 Research Questions and Evaluation Objectives

As discussed in the previous sections, the UniEval framework presents a notable advancement
in automatic multi-dimensional evaluation across different NLG domains. However, as the
authors also stated, its design still suffers from key limitations. These include its reliance on
binary QA outputs without explicit reasoning traces, limited capacity for capturing borderline
or ambiguous quality judgments due to its probabilistic scoring formulation, its dependency
on synthetic pseudo data that may not reflect realistic error patterns, and finally, the lack of
explicit modeling of preserved or hallucinated content.

To address these limitations, this thesis proposes a novel, QA-based evaluation framework
designed to produce interpretable, human-aligned scores across multiple quality dimensions
using modular components. The framework incorporates reasoning-aware QA generation, and a
regression-based scoring model trained on real human-annotated data. A thorough and detailed
explanation of the framework will be given in Chapter 3.

To systematically investigate the effectiveness and practical value of this approach, the following
research questions guide the experimental evaluation. Each of these research questions will be
explored through targeted experiments, described in more detail in Chapter 4. The experiments
include cross-domain evaluations, score correlation analysis, and qualitative comparisons of
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model outputs to test both predictive performance and the transparency of the evaluation
process.

2.6.1 RQ1: Framework Interpretability

The following research question aims to investigate whether the QA-based reasoning approach,
where dimension-specific questions are generated and explicitly answered, provides meaningful
explanatory traces that both improve trust and transparency, but also provide meaningful
context for improved evaluation scoring. While direct human validation is outside the scope
of this thesis, the proposed framework’s interpretability is assessed using a combination of
structural and behavioral criteria. Specifically, interpretability is defined as the transparency
and traceability of the evaluation process, evidenced by the presence of explicit dimension-
specific questions, natural language answers, and their alignment with summary content. In
addition to qualitative examples, the thesis includes quantitative proxy indicators such as
average explanation length, presence of content-specific justifications, and full trace coverage
for each score.

RQ1: To what extent does the proposed evaluation framework provide inter-
pretable and transparent quality judgments compared to black-box models such
as UniEval?

2.6.2 RQ2: Scoring Accuracy & Granularity

The following research question aims to investigate how closely the scores predicted by the
proposed framework align with human-labeled quality judgments, using correlation metrics such
as Spearman and Kendall. In addition, an analysis will be conducted on the score distributions
between UniEval and the proposed framework, with particular attention to intermediate human
ratings. This is intended to assess whether the regression-based design of the proposed approach
captures subtle differences in summary quality more faithfully than UniEval’s soft binary
output. To ensure a fair comparison, the UniEval model is retrained on the same training data
as the proposed framework.

Beyond comparing QAG-Eval with UniEval, the experimental setup also includes the traditional
summarization metric, ROUGE, following the benchmarking protocol established in prior
works. These reference-based metrics have long served as standard tools for summary evaluation
and offer a surface-level approximation of quality based on lexical or semantic overlap with
human-written references. Including them provides a more comprehensive evaluation landscape,
enabling a clearer understanding of the trade-offs between interpretability, semantic sensitivity,
and alignment with human judgment.

RQ2: How well do the scores predicted by the proposed framework correlate with
human annotations, and how effectively does it distinguish between intermediate
levels of summary quality compared to UniEval and standard metrics?
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In this chapter, QAG-Eval will be introduced, a novel framework designed to evaluate summaries
across multiple quality dimensions using a question-answering-based approach. Traditional
evaluation metrics such as ROUGE often fall short in capturing deeper quality aspects of a
summary, such as factual consistency, relevance to the source, linguistic fluency, and structural
coherence. This is especially true when applied to abstractive or context-rich content.

QAG-Eval reframes summary evaluation as a structured reasoning task. Each quality dimension
is transformed into a set of targeted questions that probe specific properties of the summary
and optionally the context. This includes whether it faithfully represents the source content,
includes key information pieces, and maintains readability and logical flow. The system then
generates answers to these questions based on either the summary alone or the source-summary
pair, and uses the results to infer quality scores through a separate scoring model.

This chapter presents a comprehensive breakdown of the QAG-Eval pipeline. Section 3.1
outlines the underlying motivation and the challenges that inspired the framework. Section 3.2
defines the evaluation dimensions used and explains how each is operationalized within the QA
paradigm. Section 3.3 details the core components of the architecture, including instruction-
tuned modules for question and answer generation, as well as the scoring evaluator. Section 3.4
discusses the design and construction of datasets used across the training stages. Finally,
Section 3.5 describes the training procedures employed, including general QA training, scoring
model learning, and optional domain-specific fine-tuning.

3.1 Framework Motivation

As detailed in the previous chapter, existing summarization evaluation frameworks suffer
from critical limitations. Traditional metrics such as ROUGE fail to capture deeper semantic
and contextual nuances. Meanwhile, recent multi-dimensional frameworks, such as UniEval,
introduce promising multi-dimensional assessment, but remain constrained by interpretability
issues, oversimplified binary judgments, synthetic training data, and inadequate modeling of
fine-grained informational content.

To explicitly address these limitations, this thesis proposes the QAG-Eval, which fundamentally
reframes summary evaluation as an interpretable, structured QA task. Specifically, QAG-Eval
introduces explicit reasoning traces via dimension-specific QA probes, moves beyond binary
scoring toward fine-grained 1-5 human-aligned scores, and leverages diverse, human-annotated
datasets to ensure robustness and generalizability. By embedding explicit interpretability
and human-like reasoning directly into the evaluation pipeline, QAG-Eval bridges existing
methodological gaps and provides a transparent, modular, and flexible framework, suitable for
evaluating summaries across a wide range of NLG tasks.

3.1.1 Design Objectives and Contributions

The QAG-Eval framework is designed to address several limitations in existing evaluation
systems, such as UniEval and traditional metrics like ROUGE. The key design objectives and
corresponding contributions of this thesis are:

e Interpretability: The framework generates explicit reasoning traces in the form of natural
language question—answer pairs per evaluation dimension. This allows human reviewers to
verify and understand why a score was assigned.

o Dimension-Specific Evaluation: Each core quality dimension (fluency, coherence, consis-
tency, relevance) is modeled independently, using both tailored prompts and separate scores.
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e Modularity: The pipeline separates reasoning (QA generation) and scoring (regression),
enabling flexible adaptation and independent improvement of each module.

¢ Human-Aligned Scoring: A regression-based scoring model trained on 1-5 human labels
(rather than binary decisions) captures nuanced human preferences and reduces mid-score
compression.

¢ Multi-Domain Robustness: The use of multi-task intermediate learning and domain-
varied fine-tuning datasets improves generalization across dialogue, news, and open-domain
summarization tasks.

Together, these contributions provide a flexible, interpretable, and human-aligned alternative
to black-box or reference-only evaluation metrics.

3.2 Evaluation Dimensions and Metrics

Evaluating the quality of abstractive summaries requires attention to multiple quality dimen-
sions that collectively reflect human preferences and expectations. Unlike extractive summaries,
which often preserve factual consistency and relevance by construction, abstractive summaries
must be judged for how well they retain key information, maintain coherence, and fluently
convey ideas using paraphrased expressions derived from the source content.

3.2.1 Evaluation Criteria

The evaluation criteria used in this framework are based on the four key quality dimensions
introduced by Krysciniski et al. (2019) [25], which have become a standard in summarization
evaluation and research.

¢ Consistency: Assesses factual alignment between the summary and the source. A summary
is consistent if all of its claims are directly supported or entailed by the source content.

¢ Relevance: Measures the importance of the information selected from the source. A relevant
summary highlights key content while omitting trivial or off-topic details.

¢ Fluency: Evaluates sentence-level quality in terms of grammar, readability, and stylistic
naturalness. It focuses on the summary’s adherence to expected linguistic norms.

e Coherence: Captures how well the summary flows as a whole, considering sentence order,
topical progression, and discourse-level structure.

3.2.2 Scoring Scale and Label Representation
While human annotators typically provide ratings on each of these dimensions using a discrete
1-5 Likert scale, originally introduced by Rensis Likert [34], ranging from:

e 1 = Very poor
e 2 = Poor

e 3 = Acceptable
e 4 = Good

o 5 = Excellent

QAG-Eval, however, models scoring as a continuous regression task. Rather than predicting
discrete categories, the model is trained to output a floating-point score in the 1.0-5.0 range,
using the mean of multiple annotator ratings as the target label. This allows the evaluator
to capture subtle gradations in summary quality, such as distinguishing between outputs that
would otherwise be assigned the same categorical label but differ in perceived quality (e.g., 3.7
vs. 4.2).
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This approach aligns well with datasets such as SummEval [35] and DialSummEval [36], in which
each summary is independently scored by multiple human annotators across all dimensions.
By leveraging aggregated human judgments, QAG-Eval produces calibrated, human-aligned
predictions and avoids the brittleness of hard class boundaries. The continuous scoring scheme
thus supports more nuanced and realistic evaluation, both during training and in downstream
applications.

3.2.3 Metric-Based Evaluation

In addition to qualitative definitions of the evaluation dimensions, QAG-Eval adopts a set of
quantitative metrics to assess and monitor model performance during training and evaluation.
These metrics are chosen to reflect both prediction accuracy and alignment with human
judgment, particularly in regression-based scoring settings. This section summarizes the key
metrics used throughout the framework. All formal definitions and formulations are included
in Appendix A.1, while this section provides a usage-oriented overview.

3.2.3.1 Correlation-Based Metrics
These metrics assess the degree to which the model’s predicted scores align with human ratings,
focusing on both relative and absolute agreement.

e Spearman Rank Correlation (p)
Measures monotonic agreement by comparing the ranked order of scores. It assumes no
particular distribution and is robust to nonlinear but monotonic trends. Spearman is used as
the primary early-stopping criterion, since relative quality ranking is often more meaningful
than absolute score accuracy [37].

e Kendall’s Tau (<)
Provides an alternative rank correlation metric, placing greater emphasis on pairwise concor-
dance. It is typically more conservative than Spearman and useful for validating ranking
robustness [38].

These metrics are reported per dimension (consistency, relevance, fluency, coherence) and
aggregated where needed. This allows for fine-grained analysis of strengths and weaknesses in
the evaluator’s ability to model human judgment.

3.2.4 Correlation Granularities

Automatic-human correlation can be measured at different granularities, each capturing distinct
facets of evaluation metric performance. Prior work in summarization meta-evaluation, notably
by Bhandari et al. (2020) [39], formally introduced two primary correlation strategies: summary-
level and system-level, which evaluate how well automatic metrics align with human judgments
at varying degrees of aggregation. The UniEval framework (Zhong et al., 2022) later introduced
an additional sample-level correlation, focusing on per-summary agreement. The QAG-Eval
framework adopts all three levels to provide a comprehensive analysis of metric quality. A
summary of all three correlation levels can be seen in Table 1.

The correlation levels presented below follow a shared computational setup, inspired by the
formulation in Bhandari et al. (2020). A consistent notation is introduced first to standardize
the definitions and facilitate comparison across levels:

Let each document in the dataset be denoted as d; where ¢ € {1,...,n}, and let each document
" document as s,;, where j € {1,..., J}.
Let m represent a scoring function (e.g., an automatic metric or human annotation), and K a

have J system outputs. Denote the 5™ summary of the i

correlation measure (e.g., Spearman or Kendall Tau).
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Level | Unit of Analysis Computation Insights

Sample Single summary Correlation of predicted <«» | Captures per-summary align-
mean human scores per sum- | ment and outliers
mary

Summary | All systems’ sum-| Mean correlation of human | Highlights whether metrics
maries for one| <> metric rankings across | preserve local ranking
source document | systems per document

System All summaries | Correlation between mean | Stable estimate of leader-
from one system | predicted <> mean human | board agreement
scores per system

Table 1: Three correlation levels used in QAG-Eval. Each level captures a different view of
metric-human agreement: local accuracy, document-level ranking, and system-wide alignment.

3.2.4.1 Sample-Level Correlation

Definition: Measures the correlation between predicted metric scores and the mean human
score for each individual summary across the dataset. This approach, commonly referred to
as sample-level correlation in UniEval, was not part of the original Bhandari et al. (2020)
formulation.

Purpose: Assesses whether the metric produces scores that align with human ratings at the
level of individual summaries.

Example: Given three distinct summaries:

e Summary A: human = 4.5, predicted = 4.3
e Summary B: human = 3.0, predicted = 3.1
e Summary C: human = 2.0, predicted = 2.5

The correlation is computed across these points: correlation([4.5, 3.0, 2.0], [4.3, 3.1, 2.5]).

Insight: This level reveals instance-specific alignment, offering a fine-grained view of how well
a metric tracks human perception on a per-summary basis.

3.2.4.2 Summary-Level Correlation

Definition: For each source document, the correlation is calculated between human-assigned
and metric-predicted rankings of all system-generated summaries. The final score is the average
correlation across all documents.

Formula: Let d; represent a document with system outputs s;,...,s;,;. The summary-level
correlation is calculated as:

1 n
K m, = n Z(K([m1(8i1)7 sy (857)], [Ma(841), - ma(si7)])
=0
Purpose: Evaluates the metric’s ability to preserve the relative ranking of system outputs for
a given source document.

Example: Suppose three systems generate outputs for the same document. If human scores
rank the outputs as A > B > C and metric scores rank them as A > C > B, a partial rank
correlation is computed for this document. This process is repeated across all documents, and
the correlations are averaged.
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Insight: This level highlights document-level variation and whether a metric is consistent with
human judgment in ranking systems for the same input.

3.2.4.3 System-Level Correlation
Definition: Computes the average predicted score and average human score for each system
across all documents, then correlates these vectors of system-level means.

Formula: Let J denote the number of systems evaluated on n documents. The system-level
correlation is calculated as:

o
Km, =K n Z<m1<8i1>“'m1(5fu)> ;
| i=0

LS g s) ma(s:))

n =0

Purpose: Determines whether the metric produces system-wide rankings that align with
human assessments, averaged over the entire test set.

Example: Consider three summarization systems:

e System A: human mean = 4.1, predicted mean = 4.0
e System B: human mean = 3.5, predicted mean = 3.6
e System C: human mean = 2.9, predicted mean = 3.1

The correlation is computed across the three system-level pairs: correlation([4.1, 3.5, 2.9], [4.0,
3.6, 3.1)).

Insight: This level provides the most stable indication of overall system performance, smooth-
ing out per-sample variance and offering a leaderboard-style evaluation perspective.

3.3 Core Components

The QAG-Eval framework is built around a two-stage pipeline that transforms summary
evaluation into a structured, interpretable reasoning task. As illustrated in Figure 4, the system
first generates dimension-specific QA pairs based on the summary and optionally its source
content. These QA pairs are then fed into a dedicated scoring evaluator, which produces a fine-
grained quality score on a continuous 1.0-5.0 scale.

The architecture supports three core aspects of QAG-Eval. First, it promotes transparency
by generating QA pairs that show how the model evaluates each dimension. These reasoning
steps can be reviewed by humans to understand the basis for each score. Second, it offers
modularity, allowing the reasoning and scoring components to be developed and improved upon
independently. Third, it enables generalizability, since the same components can be reused
across different domains and types of summaries. At each stage, the framework is designed to
be interpretable, making it easier to diagnose model behavior and understand why a particular
score was assigned.

This section describes the two core components that make up the QAG-Eval pipeline: the
Question-Answer Generation (QAG) module and the Scoring Evaluator. The QAG module
is responsible for producing interpretable, dimension-specific reasoning traces by generating
natural-language question—answer pairs that probe summary quality. This component is
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implemented using a unified FLAN-T5 model trained in two stages: an intermediate multi-
task learning stage and a dimension-specific fine-tuning stage. The Scoring Evaluator then
maps these QA traces to continuous quality scores using a DeBERTa-based regression model.
Together, these components form a modular and interpretable evaluation system capable of
approximating human-like summary assessment across multiple quality dimensions. Figure 4
provides an overview of the framework.

All architectural figures in this section and those that follow use a consistent color-coding
scheme to enhance readability: blue boxes represent input data, green denotes model outputs,
purple indicates instruction prompts, red highlights QAG-Eval modules, and magenta is used
for scoring components. This convention is followed consistently throughout the thesis.

Question Instruction Answer Instruction O Input
Output
(Q: [CONSISTENCY] How would you ask about\ (A: [CONSISTENCY] Point out inconsistencies} P

any potential misinformation in the summary to between the summary and the source text if [J Instruction Prompt
verify its factual correctness? Reference both they exist. Use both texts as reference. [J  QAG Module
the original and the summary. [ Scoring Evaluator

Source
(A lsawthe dog run into the yard. )
B: Did it look hurt? — .
A: No, just scared. Question Generated
What did the dog look like when
Su mmary y \ 4 > itran into the yard? Score
Adog ran into the yard but ) G%"’“’:r‘a'::"‘\mgjl'e Scoring Evaluator a9
seemed uninjured. (FLAN-T5-Large) Answer Generated (DeBERTa-V3-Large)
. . The summary is factually [ 4
Dimension consistent with the dialogue.
The dialogue indicates that the
’J‘ Consistency J— dog wasn't hurt ...

Figure 4: Overview of the QAG-Eval framework. Given a source, a generated summary, and a
target evaluation dimension, the FLAN-T5-based QAG module produces a dimension-specific
question and answer pair. This reasoning trace is then passed to a DeBERTa-based scoring
evaluator, which predicts a continuous quality score between 1.0 and 5.0. The architecture
supports interpretability and modular fine-tuning across evaluation dimensions.

3.3.1 Question-Answer Generation Module

The core of the QAG-Eval framework is a unified FLAN-T5-Large [40] model trained to handle
both Question Generation (QG) and Answer Generation (AG) tasks. Rather than relying on
two separate components, the framework employs a single model to sequentially produce both
elements of each QA pair, which allows for a shared contextual understanding and consistent
reasoning across steps.

The module serves as the foundation of QAG-Eval’s reasoning-based evaluation strategy: it
transforms summaries and source inputs into interpretable, dimension-specific QA traces that
reflect the model’s understanding of summary quality. These traces serve not only as internal
evidence for the scoring evaluator, but also as optional explanations that can be reviewed or
visualized by humans.

The QAG module is trained in two stages: an initial intermediate multi-task learning
stage, designed to teach the model general-purpose reasoning skills and generate QA pairs, and
a dimension-specific fine-tuning stage, that specializes the model for generating dimension-
specific questions and answers.

3.3.1.1 Model Architecture and Prompt Design
The Question-Answer Generation (QAG) module is implemented using a unified FLAN-T5-
Large model [40], a transformer-based encoder-decoder architecture pre-trained for instruction
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following. In the paper they instruction finetuned various different models, most interestingly
the T5 family. See Table 2 for the family of T5 models that were instruction finetuned. FLAN-
T5 builds on the original Text-to-Text Transfer Transformer (T5) model [41] by combining
the original span-corruption pre-training objective with large-scale instruction tuning. This
tuning stage incorporates a wide variety of tasks, including question answering, summarization,
entailment, and classification, expressed in natural language prompts. As a result, FLAN-T5
demonstrates strong generalization to unseen tasks and domains, making it particularly suitable
for zero-shot and few-shot scenarios.

Model Params | Architecture
Flan-T5-Small | 80 M Encoder-Decoder
Flan-T5-Base | 250 M Encoder-Decoder
Flan-T5-Large | 780 M Encoder-Decoder
Flan-T5-XL 3B Encoder-Decoder
Flan-T5-XLL |11 B Encoder-Decoder

Table 2: This table lists the five encoder—-decoder variants of the FLAN-T5 family, all of which
share the same Transformer architecture and have been instruction fine-tuned on a diverse

mixture of tasks to enable strong zero-shot and few-shot generalization.

Instruction finetuning

Please answer the following question.
What is the boiling point of Nitrogen?

<

Chain-of-thought finetuning

Answer the following question by

reasoning step-by-step. The cafeteria had 23 apples

originally. They used 20 to
The cafeteria had 23 apples. If they make lunch. So they had 23 -
used 20 for lunch and bought 6 more, 20 = 3. They bought 6 more

how many apples do they have? \ Language ‘ apples, so they have 3 + 6 = 9.
model

Multi-task instruction finetuning (1.8K tasks)

Inference: generalization to unseen tasks
Geoffrey Hinton is a British-Canadian
computer scientist born in 1947. George
Washington died in 1799. Thus, they
could not have had a conversation
together. So the answer is “no”.

Q: Can Geoffrey Hinton have a
conversation with George Washington?

Give the rationale before answering.

Figure 5: An overview of the FLAN-T5 framework used to finetune various LMs 1.800 tasks,
each phrased as instructions [40].

For the proposed evaluation framework the Large variant is used and contains approximately
780 million parameters and inherits the full encoder-decoder structure of T5, enabling both
conditional generation and multi-step reasoning. The design choice of using this model was
primarily guided and inspired by UniEval. In the UniEval framework they used the original T5-
Large variant which showcased strong performance across multiple domains. As such, it was
only natural to use the descending model family FLAN-T5. The Large variant was chosen as a
tradeoff between performance and hardware constraints.

FLAN-T5’s instruction-tuned nature makes it ideal for modular, prompt-driven pipelines. In
QAG-Eval, a single instance of the model is used to perform both question generation (QG) and
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answer generation (AG), rather than splitting these steps across separate models. This unified
approach ensures shared parameterization and consistent reasoning across QA pairs, which is
critical when modeling structured reasoning traces for summary evaluation.

Inputs to the model are formatted using natural-language instructions, consistent with
the FLAN-style prompting paradigm. Instructions explicitly describe the generation task and
the required context. During intermediate training, each instruction is prefixed with a “Q:” or
“A:” tag to help the model distinguish between question and answer generation tasks. Example
prompts from this stage include:

o Q: Rewrite the follow-up question into a standalone question using the context.
o A: Answer the standalone question using the context.

During dimension-specific fine-tuning, the prompt format is augmented with explicit eval-
uation dimension tags, such as [CONSISTENCY], [RELEVANCE], [FLUENCY], and
[COHERENCE]. These tags condition the model to focus its generation behavior on specific
quality dimensions, enabling a flexible and interpretable evaluation process. For example:

e Q: [CONSISTENCY] Write a question that could reveal hallucinated or unsupported claims
in the summary.

o A: [CONSISTENCY] Compare the information in the summary with the source to identify
any mismatches.

This unified prompt framework ensures that the model learns to associate different generation
behaviors with distinct tasks and quality dimensions while maintaining flexibility in input
phrasing. Prompts are paraphrased across training examples to prevent instruction overfitting
and to promote generalization across domains.

FEach question and answer is generated independently by the same model, using the same
encoder-decoder structure. This modular generation behavior allows the QAG module to serve
as a reusable and adaptable reasoning engine within the broader evaluation pipeline.

3.3.1.2 Intermediate Multi-Task Learning

After initializing the QAG module with a general-purpose, instruction-following model (FLAN-
T5-Large), the first training stage focuses on teaching foundational QA and reasoning skills
across diverse NLP tasks. This intermediate multi-task learning stage is not yet aligned
with summarization evaluation but instead builds the broad reasoning abilities that underpin
the QAG module’s later specialization.

A wide range of datasets is used during this stage to promote generalization and expose the
model to different question and answer formats. Each dataset is selected to support a particular
reasoning Multicompetency, for example, the Multi-Genre NLI [42] and the Standford NLI [43]
dataset, are primarily used for teaching the model entailment and contradiction detection. The
Question Rewriting in Conversational Context (QReCC) [44] dataset is used for teaching the
model paraphrased standalone question generation from conversation contexts. A table of all
datasets used in this stage can be found in Section 3.4.1, Table 4.

Each dataset is converted into instruction-style prompts using the FLAN prompting format.
Natural language instructions explicitly define the task behavior. These prompts are prepended
with a “Q:” or “A:” tag to signal whether the model is expected to generate a question or an
answer. For instance:

QReCC:
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e “Q: Rewrite the follow-up question into a standalone question using the context.”
o “A: Answer the standalone question using the context.”

MNLI:
e “A: Determine the logical relationship between the following two statements.”

Quoref:
e “Q: Generate a question that requires resolving coreference in the text.”

CNN /DailyMail:
o “Q: Generate a question that reflects the information captured in the summary.”

Each instruction is treated as an independent training instance. Some datasets support both
QG and AG instructions, while others contribute only one. This decoupled design allows the
model to generalize across tasks and promotes flexible adaptation in the next training stage.

O Input
Output
[ Instruction Prompt

. - QAG Modul
Question Instruction o odule

Q: Rewrite the follow-up question into a
standalone question using the context.

N Question Generated

|nput FLAN-TS5-Large ——> Did Sam Cooke have any siblings?

(a) Instruction-based prompt for question generation, with an example illustrating the process

Context: When was Sam Cooke born? 01/22/1931
Follow-up Question: Did he have any siblings?

using a sample from the QReCC dataset.

Answer Instruction

[A: Answer the standalone question using the context. }—‘ Answer Generated

Input FLAN-T5-Large ——> Sam Cooke was the fifth of eight children.

Context: When was Sam Cooke born? 01/22/1931
Question: Did Sam Cooke have any siblings?

(b) Instruction-based prompt for answer generation, with an example illustrating the process

using a sample from the QReCC dataset.

Figure 6: Examples of instruction-based training prompts from the intermediate multi-task
learning stage. Each prompt is constructed from the same QReCC sample and used indepen-
dently for question or answer generation.

3.3.1.3 Fine-Tuning for Dimension-Specific QA Generation

Building on the model’s multi-task pretraining, the second training stage fine-tunes the QAG
module for the specific task of evaluating summary quality. This stage introduces dimension-
specific supervision, teaching the model to generate reasoning traces that correspond to the
four evaluation criteria described in Section 3.2: consistency, relevance, fluency, and coherence.

Each training instance consists of a summary and, where applicable, the source input. The
model is first prompted to generate a question that targets a specific quality dimension. Then,
in a separate instruction, the model generates an answer to that question based on the same
input. Unlike the intermediate stage, these prompts include explicit dimension tags (e.g.,
[CONSISTENCY]) to guide the model’s reasoning. Example prompt pairs include:

o Consistency (summary + source):
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» “Q: [CONSISTENCY] Write a question that could reveal hallucinated or unsupported
claims in the summary.”

» “A: [CONSISTENCY] Check whether the information in the summary matches the
original source facts.”

o Relevance (summary + source):
» “Q: [RELEVANCE] How would you ask to ensure the summary addresses the key aspects
of the source material?”
» “A: [RELEVANCE] Confirm if the summary addresses each magjor topic or event from
the source.”

o Fluency (summary only):
» “Q: [FLUENCY] Generate a question that tests how easy the summary is to read aloud
or stlently.”
» “A: [FLUENCY] Point out grammatical errors or awkward phrasing if present.”

e Coherence (summary only):
» “Q: [COHERENCE] Generate a question that checks for clarity in how the summary
moves from one idea to the next.”
» “A: [COHERENCE] Determine if there are any abrupt transitions or confusing jumps
in the summary.”

To improve the model’s robustness and avoid overfitting to rigid templates, each instruction was
paraphrased into several semantically equivalent forms. For example, the consistency question
could alternatively be phrased as:

o “Formulate a question to verify the summary’s factual accuracy.”

o “How would you test whether the summary aligns with the source?”

The dataset used for this fine-tuning was synthetically constructed using GPT-4 prompting. A
curated set of summarization datasets from diverse domains was selected to ensure coverage
of different writing styles and structures. For example, Extreme Summarization (XSum) [45]
dataset is based on news articles and consists of short abstractive summaries. Samsung
(SAMSum) [46] dataset consists of very short abstractive summaries centered around dialogue
conversations. A table of all datasets used can be found in Section 3.4.2, Table 5.

This stage completes the transformation of the QAG module from a general-purpose reasoning
engine into a dimension-aware assistant capable of producing interpretable justifications for

summary quality evaluation.
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(] Input
Output
[J Instruction Prompt

Question Instruction

Q: [CONSISTENCY] Write a question that could reveal [} QAG Module
hallucinated or unsupported claims in the summary.
Source Question Generated
A: | saw the dog run into the yard. > What did the dog look like when
B: Did it look hurt? FLAN-TS-Large | ——>| i oninto the yard?
A: No, just scared. > .
Summary

{ A dog ran into the yard but seemed uninjured.]i

(a) Instruction prompt for dimension-specific question generation. The instruction targets the
consistency dimension.

Answer Instruction

A: [CONSISTENCY] Compare the information in the
summary with the source to identify any mismatches.

Question Generated

What did the dog look like when
it ran into the yard?

Answer Generated

The summary is factually
consistent with the dialogue.
The dialogue indicates that the
dog wasn't hurt ...

;

FLAN-TS5-Large ——>»

Source

‘ A: | saw the dog run into the yard.

YY

B: Did it look hurt?
A: No, just scared.

T

Summary

[Adog ran into the yard but seemed uninjured.

i

(b) Instruction prompt for dimension-specific answer generation. The model responds to a
consistency-focused question using summary and source context.
Figure 7: Examples of dimension-specific QA generation prompts used during fine-tuning. Each
prompt is constructed from the same sample and targets the consistency dimension. Question
and answer generation are handled independently by the FLAN-T5 model, guided by explicit
instruction tags.

3.3.2 Scoring Evaluator

The scoring evaluator constitutes the second major component of the QAG-Eval pipeline.
Its primary function is to translate the structured reasoning traces generated by the QAG
module’s dimension-specific QA pairs, into scalar quality scores on a continuous 1.0-5.0 scale.
Unlike conventional evaluators that operate directly on raw summaries, QAG-Eval simulate the
evaluative reasoning process a human annotator might apply, promoting both interpretability
and modularity. This section details the model architecture, input formatting, and evaluation
principles that govern this module’s design.

3.3.2.1 Model Architecture and Input Format

The scoring evaluator is built on top of a pre-trained DeBERTa-Large model, a transformer-
based encoder architecture known for its strong performance on language understanding tasks.
Compared to earlier models like Bidirectional Encoder Representations from Transformers
(BERT) [47] and [48], Decoding-enhanced BERT with disentangled attention (DeBERTa) [49]
introduces improvements in how it represents word meaning and sentence structure, which help
it better capture subtle differences in language. These strengths make it a strong foundation
for evaluating dimension-specific QA explanations that reflect human judgment.
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Model Params | Architecture
DeBERTa-V3-XSmall | 22 M Encoder
DeBERTa-V3-Small |44 M Encoder
DeBERTa-V3-Base 86 M Encoder
DeBERTa-V3-Large |304 M Encoder

Table 3: This table lists selected models from the DeBERTa V3 family, which are based on an
encoder-only transformer architecture. Each variant differs in parameter size, enabling trade-
offs between computational efficiency and performance.

The core model architecture employed in this module is based on the DeBERTa-v3 encoder,
chosen for its strong semantic representation capabilities and competitive performance on
sentence-level regression tasks. A regression head is appended to the final layer to produce a
scalar score. While encoder-decoder variants such as FLAN-T5 were also explored, the encoder-
only setup was ultimately preferred for its efficiency and alignment with the input format.

Each input sample is flattened into a natural-language prompt comprising:
 the dimension tag (e.g., [CONSISTENCY]),

¢ the generated question,

o the generated answer, and

¢ the original summary.

This format enables the model to condition its prediction on a complete reasoning trace, rather
than raw summary content alone. A representative example:

“Q: [CONSISTENCY] What key claims in the summary might not be supported by the
source?”

o “A: [CONSISTENCY] The claim about the minister’s resignation is not corroborated in
the source.”

o “S: [SUMMARY] The article reports that the finance minister resigned amidst public
pressure...”

This structured representation encourages the model to ground its prediction in explicit, human-
readable logic.

a Input
Output
Generated Question [] Instruction Prompt
. ) [0 Scoring Evaluator
Q: [CONSISTENCY] What did the dog look like
when it ran into the yard?
Generated Answer Score
A: [CONSISTENCY] Yes, the summary is factually >
consistent with the dialogue. DeBERTa-V3-Large —— > 4.33
The dialogue indicates that the dog wasn't hurt ... >
Summary

S: [SUMMARY] A dog ran into the yard, and one
person said it looked scared but not hurt.

Figure 8: Overview of the scoring evaluator. The model processes structured QA traces and
predicts a continuous quality score per dimension. Input is flattened into a concatenated prompt
that includes the question, answer, and original summary.
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3.3.2.2 Scoring Objective and Prediction Behavior

The evaluator is trained as a regression model that predicts continuous quality scores between
1.0 and 5.0 for each evaluation dimension, using structured QA traces as input. Each trace
is paired with a human-annotated score, representing the average judgment across multiple
annotators. The model learns to map linguistic reasoning artifacts, such as questions probing
summary quality and their corresponding answers, to scalar ratings that reflect consensus
human opinion. To encourage the model to rank summaries in the same order humans prefer,
Spearman rank correlation is used as the early stopping criterion, ensuring that the model
prioritizes the correct ordering of summaries even if score magnitudes differ. The regression loss
itself is computed using Mean Squared Error (MSE).

At inference time, the model takes as input a QA trace and summary for a given dimension and
outputs a real-valued prediction. Because each prediction is grounded in a natural-language
reasoning process, model outputs are inherently interpretable: low scores can be traced back to
problematic answers or misleading questions, offering insight into evaluation failures.

Only a single regression head is used across all dimensions, with the active dimension explicitly
embedded in the prompt. This design maintains architectural simplicity while enabling flexible
control via input formatting.

The model is trained on two human-annotated datasets, SummEval [35] and DialSummEval
[36], covering both news and dialogue domains. These datasets offer real-world summaries scored
across fluency, coherence, consistency, and relevance, enabling supervised learning with reliable
evaluation targets.

3.4 Dataset Creation

This chapter details the construction and curation of datasets used throughout the QAG-
Eval pipeline, spanning the intermediate multi-task training stage, the fine-tuning of the QA
generation module, and the supervision of the scoring evaluator. Each section provides both the
rationale behind dataset selection and an explanation of how each dataset contributes to the
targeted evaluation dimensions. Limitations and domain coverage are also discussed to clarify
the trade-offs made during dataset creation.

3.4.1 Intermediate Training Dataset

The first stage of training the QAG module involves an intermediate multi-task learning stage.
This stage introduces the model to a broad range of reasoning types and input-output formats
to instill the necessary competencies for summary evaluation. Unlike dimension-specific fine-
tuning, the objective here is not to align the model with specific evaluation criteria but to
equip it with general-purpose skills like entailment, contextual inference, paraphrasing, and
both extractive and abstractive QA capabilities.

The datasets selected for this stage span a variety of domains and tasks, each contributing
distinct reasoning challenges. As shown in Table 4, they include span-based QA datasets like
SQuAD v2 and NewsQA, multi-hop inference tasks like HotpotQA, paraphrasing datasets like
Quora and QReCC, and dialogue-centric datasets like CoQA and SAMSum. Most of the dataset
choices were inspired by the UniEval paper, which used similar datasets for question-answering,
NLI, opening sentence prediction, and linguistically related tasks.
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Dataset Domain Purpose

CNN/DailyMail [50] Long summarization Teaches answer location across large
spans of narrative text.

CoQA [51] Conversational QA Builds dialogue-aware reasoning and
contextual chaining across turns.
HotpotQA [52] Multi-hop QA Enhances multi-step logical reasoning
across multiple documents.

MNLI / SNLI [42, 43] | Natural Language Inference | Develops entailment and contradiction
detection, critical for faithfulness prob-

ing.

NewsQA [53] Span-based QA Trains contextual answer grounding in
a news domain.

QReCC [44] Question rewriting Teaches paraphrased standalone ques-
tion generation from conversation con-

text.
Quora [54] Paraphrasing Enhances lexical and syntactic diver-

sity in question generation.

Quoref [55] Coreference QA Strengthens resolution of entity refer-
ences and pronouns.

SAMSum [46] Dialogue + Summary Bridges dialogue summarization with
question generation training.

SQuAD v2 [56] QA (span + no-answer) | Instills span-based extraction and an-
swerability uncertainty modeling.
WikiQA [57] Sentence-level QA Introduces binary QA decision-making
and sentence-level entailment.

XSum [45] Abstractive summarization | Encourages highly compressed sum-
mary abstraction and generation diver-

sity.

Table 4: Datasets used in the intermediate multi-task learning stage of QAG-Eval. Each dataset
contributes a specific reasoning or QA capability foundational for later fine-tuning.

To support general-purpose reasoning and robust instruction-following behavior, the interme-
diate training dataset was constructed from 13 diverse QA-style corpora spanning domains such
as news, dialogue, NLI, coreference resolution, paraphrasing, and multi-hop question answering.
Each dataset was selected to target specific cognitive or linguistic capabilities relevant to QA
generation, such as entailment detection, discourse coherence, answer span extraction, and
question rewriting. While the raw dataset pool contained substantially more entries, only
a filtered subset of 29,000 instruction-formatted samples was retained. This filtering step
excluded samples with input sequences that exceeded the context window of the FLAN-T5
model, ensuring compatibility with the model’s architecture. Dataset contributions were kept
relatively balanced to avoid overrepresentation by any single domain or task. This stage served
to prepare the model for downstream dimension-specific fine-tuning by exposing it to a wide
spectrum of input-output formats and reasoning styles. Figure 9 and Figure 10 visualize the
sample distribution by dataset and domain.
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Sample Distribution by Dataset

hotpotqa cnn_dailymail  xsum samsum newsqa multi_nli quora squad_v2 snli quoref wikiga
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Figure 9: Bar chart showing the number of training samples included from each dataset used
in the intermediate multi-task training stage.
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Figure 10: Bar chart showing the distribution of training samples by domain in the intermediate
multi-task learning stage.

This stage also serves a secondary purpose: familiarizing the model with a wide range of input
representations. All datasets are converted into instruction-style prompts in the FLAN format,
marked with either a “Q:” (question) or “A:” (answer) prefix depending on the objective. For
example, a span-based QA task might be formatted as:

e “Q: Generate a question that asks about a key detail from the passage.”
e “A: Extract the correct answer from the passage.”
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By varying task types and instruction formulations, the model becomes robust to diverse input-
output schemas, a feature critical for generalization across domains and summary types.

The intermediate stage is not supervised using summary quality scores. Instead, it lays the
groundwork for the model’s ability to generate meaningful QA traces across contexts, which
will be explicitly directed toward quality dimensions in the next fine-tuning stage.

3.4.2 Dimension-Specific QA Dataset

Following intermediate multi-task training, the unified FLAN-T5 model was fine-tuned on
a curated dataset of dimension-specific QA pairs. This dataset forms the backbone of the
QAG module’s reasoning behavior, bridging general-purpose QA skills with dimension-specific
summary evaluation. Each entry in this dataset consists of a generated question and answer
tailored to one of the four quality dimensions, using a summary and, when necessary, its
corresponding source.

Each dataset contributes a fixed number of samples based on its relevance to specific dimensions.
For example:

o News datasets (e.g., XSum, CNN/DailyMail) support relevance and fluency assessments,

o Biomedical/scientific datasets (e.g., PubMed, arXiv) enable hallucination and consistency
probing,

o Dialogue datasets (e.g., SAMSum, DialogSum) provide strong signals for coherence and
fluency,

o Legal/governmental summaries support consistency and structured relevance.

This sampling strategy ensures representation of:

o Extractive vs. abstractive styles
e Short-form vs. long-form summaries
e Formal vs. informal domains

The complete breakdown of dataset contributions is provided in Table 5.
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Dataset Domain Purpose

XSum [45] News (abstractive) | Short, focused summaries useful for fluency
and coherence assessment

CNN/DailyMail [50] | News (longform) | Longer summaries ideal for evaluating rele-
vance and factual consistency

SAMSum [46] Dialogue Tests coherence and fluency in conversational
summarization

DialogSum [58] Dialogue Complementary dialogue domain with more

grounded summaries

Reddit TIFU [59] Informal/social | Paraphrased, casual writing style ideal for flu-

ency robustness
WikiHow [57] Instructional Tests logical flow and step-based coherence

GovReport [60] Government Dense and factual — useful for faithfulness and
detail accuracy

BillSum [61] Legal Structured language ideal for checking rele-

vance and factual alignment

PubMed [62] Biomedical Fact-heavy domain for hallucination detection
and consistency

arXiv [63] Scientific Long-form abstracts suited for relevance and

factuality

Table 5: Datasets used for constructing the dimension-specific QA instruction dataset. Each

summary was paired with a synthetic question and answer targeting a specific evaluation

dimension. The datasets span a wide range of domains to encourage generalization across
content types and writing styles.

To ensure robust generalization across evaluation domains, the dataset was constructed from
summaries sourced across 10 public summarization corpora spanning news, dialogue, instruc-
tional, scientific, legal, and informal domains. While the source texts and summaries originate
from real-world datasets, the dimension-specific questions and answers were entirely syntheti-
cally generated using GPT-4.1. For each summary—dimension pair, the model was prompted
with a carefully designed instruction to produce a targeted question and corresponding answer,
followed by manual filtering and paraphrasing to ensure variation and quality. After filtering for
input length constraints, approximately 15,000 unique summaries were retained. Each summary
was then expanded into four QA pairs, one per evaluation dimension, resulting in a total of
~61,000 training samples. This setup promoted balanced domain exposure and dataset scale
while avoiding overfitting to specific content types or phrasing styles. Figure 11 and Figure 12
visualize the sample distribution by dataset and domain.
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Sample Distribution by Dataset
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Figure 11: Bar chart showing the number of training samples included from each dataset used
in the dimension-specific QA fine-tuning stage.
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Figure 12: Bar chart showing the distribution of training samples by domain in the dimension-
specific QA fine-tuning stage.

Each summary was paired with one QA pair per evaluation dimension. Prompts were generated
using GPT-based instruction scaffolds and later paraphrased to ensure instruction variation.
These QA pairs serve as fine-tuning signals, guiding the QAG model to approximate human-
like reasoning when judging summaries along specific dimensions.

This dataset plays a key role in transitioning the model from general QA ability to structured,
interpretable, and dimension-specific quality assessment.
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3.4.3 Scoring Evaluator Dataset

The final dataset used in the QAG-Eval pipeline is designed to supervise the scoring evaluator,
the component responsible for assigning real-valued quality scores to summaries based on
the QAG module’s dimension-specific reasoning traces. Unlike previous phases that focus on
generative capabilities, this stage teaches the model to align its scoring behavior with human
judgments.

The dataset is derived from two widely-used human-annotated benchmarks:

e SummkEval: A general-domain summarization benchmark where summaries are rated across
four dimensions: consistency, relevance, fluency, and coherence, by multiple annotators.

e DialSummEval: A dialogue-specific dataset that mirrors SummEval’s annotation framework
but evaluates summaries grounded in conversational inputs, supporting adaptation to
spoken-language summaries.

Both datasets contain a small number of unique source documents (100 each), paired with 14—
16 system-generated summaries per input, resulting in a limited set of annotated samples. Each
summary is rated by multiple annotators (3 for SummEval and 8 for DialSummEval), providing
averaged dimension-specific scores.

To convert these annotations into training data for the scoring evaluator, the QAG module is
applied to each summary to generate one QA pair per evaluation dimension. These dimension-
aligned QA traces serve as input to the scoring evaluator, while the mean human rating acts
as the regression target.

After filtering for sequence length and formatting compatibility, the number of usable samples
was reduced to ~1,300 from SummEval and ~1,500 from DialSummEval. After combining the
datasets approximately ~2,800 samples was available, and after further splitting the dataset
(80%/10%/10%) into separate training, validation, and test datasets, the total number of
samples available for the training was ~2,300. Each sample was then exploded into four
dimension-specific entries, yielding approximately ~5,200 and ~6,000 samples, respectively.

To mitigate this size limitation and improve generalization, further augmentation was applied
to the dataset by generating multiple paraphrased QA traces per summary—dimension pair.
This was achieved by re-prompting the QAG module with varied phrasings to create alternative
yet semantically equivalent questions and answers for each dimension. This approach yielded a
final dataset of ~140,000 samples, and the distribution can be seen in Figure 13.

This augmentation strategy serves two purposes:

1. Tt diversifies the linguistic inputs used for each summary, reducing overfitting to specific QA
phrasing.

2. It teaches the model score invariance, i.e., that different reasoning formulations describing
the same quality issue should receive the same score.

As a result, the scoring evaluator becomes more robust to natural variation in phrasing and
better equipped to generalize beyond its limited supervision base. This dataset ultimately closes
the training loop for QAG-Eval by anchoring structured QA-based reasoning in real-world
human evaluation standards.
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Figure 13: Bar chart showing the number of training samples derived from each dataset
(SummEval and DialSummEval) after QAG alignment and augmentation.

Dataset Domain Purpose

SummEval [35] News | Summaries annotated by multiple human raters across flu-
ency, coherence, consistency, and relevance.

DialSummEval [36] | Dialogue | Dialogue summaries rated on the same four dimensions by
crowd annotators, supporting domain adaptation.

Table 6: Datasets used to supervise the scoring evaluator. Each dataset contains summaries
annotated across the four quality dimensions. These ratings serve as regression targets for
training the evaluator.

3.5 Training Procedure

This chapter outlines the training procedure applied to the QAG-Eval pipeline across its three
core stages. Each stage builds upon the previous one, gradually specializing the model from
general-purpose reasoning to dimension-specific evaluation and ultimately to scoring grounded
in human judgment.

3.5.1 QAG Module Training

The QAG module was trained in two consecutive stages using the FLAN-T5-Large architecture.
The goal was to first equip the model with a broad foundation in instruction-based question
answering and then fine-tune this ability toward generating dimension-specific reasoning traces

for summary evaluation.

3.5.1.1 Stage 1: Intermediate Multi-Task Learning

In the first stage, the model was trained on a diverse multi-task dataset spanning QA,
entailment, paraphrasing, span extraction, and coherence tasks (see Table 4). The use of FLAN-
style instructions allowed the model to practice reasoning over different text types and question
formats in a consistent, interpretable way.

The training configuration was selected to balance efficiency, stability, and generalization.
FLAN-T5-Large was fine-tuned for 30 epochs using a cosine learning rate schedule with a
warmup ratio of 3%. A conservative learning rate of 5e-6 and weight decay of 0.01 were chosen
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to promote smooth convergence. Input sequences were capped at 512 tokens to fit within the
model’s context length, and early stopping was employed to avoid overfitting. To accommodate
hardware limitations and stabilize training, a batch size of 4 was combined with gradient
accumulation over 4 steps, yielding an effective batch size of 16. Mixed-precision training (BF16)
helped reduce memory consumption and training time. Gradient clipping with a max norm of
1.0 was used to prevent exploding gradients.

This stage was inspired by prior work such as FLAN and T0, which demonstrated that broad
multi-task instruction tuning helps models generalize to unseen formats. Unlike UniEval, it
was decided not to employ continual learning with dimension-wise replay. While continual fine-
tuning can mitigate negative transfer when tasks are highly specialized [64] (e.g., coherence
vs. consistency), the intermediate dataset focused on general QA reasoning rather than early
exposure to dimension-specific evaluative patterns. For this reason, a single-stage multi-task
strategy was opted for rather than sequential dimension introduction.

Hyperparameter Value

Batch Size 4

Gradient Accumulation | 4 steps (effective batch size = 16)
Learning Rate oe-6

Weight Decay 0.01

Learning Rate Scheduler Cosine

Warmup Ratio 0.03

Epochs 30

Max Gradient Norm 1.0

Precision BF16

Table 7: Key hyperparameters used during the intermediate multi-task learning stage of QAG
module training.

3.5.1.2 Stage 2: Dimension-Specific Fine-Tuning

Once the model acquired general instruction reasoning capabilities, it was fine-tuned on a
dataset of synthetic QA pairs specifically aligned with the four evaluation dimensions: consis-
tency, relevance, fluency, and coherence (see Table 5). These QA pairs were generated using
GPT-4.1 with handcrafted instruction prompts designed to elicit dimension-aware questions
and answers based on summaries and their corresponding source texts. Each summary was
expanded into four samples, one per dimension, and formatted with FLAN-style instructions
to maintain alignment with the previous training stage.

This stage used a higher learning rate (le-4) and a larger batch size (16) compared to Stage
1, combined with a shorter training duration (5 epochs) and 500 warmup steps. These choices
allowed the model to rapidly adapt to dimension-specific patterns without overwriting the
general-purpose capabilities acquired during intermediate training. Cosine scheduling, weight
decay (0.01), and BF16 precision were again used to maintain stability and efficiency. Gradient
clipping (1.0) ensured training robustness, and the absence of gradient accumulation (effective
batch size = 16) accelerated fine-tuning on available hardware.

The decision to treat dimension alignment as a separate fine-tuning stage, rather than
integrating it into Stage 1, was motivated by the desire to isolate general reasoning from
evaluative judgment. This separation allowed for more controlled learning of quality-specific
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behavior, avoiding early anchoring on any single evaluative dimension. Unlike UniEval, which
explores continual training to incrementally introduce dimensions, this approach separates
general reasoning from evaluative specialization by first training on broad instruction tasks and
then refining the model through focused fine-tuning. This two-stage strategy enables the QAG
module to perform both general and evaluative reasoning in a structured and interpretable

manner.
Hyperparameter Value
Batch Size 16
Gradient Accumulation |1 (effective batch size = 16)
Learning Rate le-4
Weight Decay 0.01
Learning Rate Scheduler Cosine
Warmup Steps 500
Epochs 5
Max Gradient Norm 1.0
Precision BF16

Table 8: Hyperparameters used during the dimension-specific QA fine-tuning stage of the QAG
module.

3.5.2 Scoring Evaluator Training

The final stage of the QAG-Eval pipeline focuses on training the scoring evaluator, a regression
model designed to assign real-valued quality scores (1.0-5.0) to summaries based on structured
QA reasoning traces produced by the QAG module. Unlike earlier stages that focus on gener-
ation, this stage emphasizes learning alignment with human judgments.

Supervision was provided by two annotated benchmarks: SummEval and DialSummEval (see
Table 6). Each dataset contains multiple model-generated summaries per source, rated across
consistency, relevance, fluency, and coherence. The QAG module was used to generate one QA
pair per dimension, forming structured input traces. The average of multiple human scores per
dimension served as the regression target.

As described in Section Section 3.4.3, the number of unique annotated summaries was limited.
To expand coverage and improve generalization, the dataset was augmented through controlled
paraphrasing: multiple QA traces were generated per summary—dimension pair using varied
GPT-based prompts. This resulted in a final dataset of 140,000 examples and encouraged
score-invariant reasoning, where different formulations of the same evaluative logic receive
the same score.

The evaluator was implemented using DeBERTa-v3-Large, selected for its strong semantic
encoding and regression performance. A single regression head was shared across dimensions,
leveraging structured inputs that combine the generated question, answer, and original
summary. The model was trained using MSE loss, with early stopping based on Spearman
correlation to prioritize rank consistency. To address score imbalance, class weighting was
applied during training.

To explore how training strategy impacts performance, two variants of the scoring evaluator
were developed: one trained via multi-task learning across all dimensions simultaneously, and
one trained using a sequential continual learning setup with replay from previous dimensions.
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3.5.2.1 Training Strategies: Multi-Task vs. Continual Learning

While the scoring evaluator in QAG-Eval is designed to operate over a unified regression dataset
with consistent supervision (1-5 Likert scores), this framework also investigates two alternative
training strategies to assess whether training dynamics affect alignment with human judgment.
Both strategies use the same core data (i.e., structured (Q, A, summary) triplets paired with
human scores), but organize the data differently and apply distinct optimization approaches.

Multi-Task Learning Setup

The primary training strategy described earlier employs a multi-task setup, where the model is
jointly trained on samples from all four evaluation dimensions: fluency, coherence, consistency,
and relevance. Each sample includes a question-answer pair specifically targeted at one dimen-
sion, but the training objective is shared across all dimensions using a single regression head.

This strategy allows the model to learn general representations that span different quality
dimensions simultaneously. It treats dimension-specific variation as part of the overall input
distribution, relying on shared capacity to capture both universal and specialized evaluative
signals. The multi-task setup is trained using a stratified version of the scoring dataset that
preserves balance across dimensions and score bins (see Section 3.4.3).

The selected hyperparameters reflect the scoring task’s sensitivity to subtle textual signals and
limited supervision scale. A smaller learning rate (8e-6) and higher batch size (32) were used to
stabilize training, while the cosine learning rate scheduler with a warmup ratio of 0.2 supported
smooth convergence. Gradient clipping and weight decay was applied to help control overfitting.
Unlike the generative stages, FP16 precision was used to accelerate training with minimal loss
in accuracy. The selected hyperparameters can be seen summarized in Table 9.

Hyperparameter Value

Batch Size 32

Gradient Accumulation |1 (effective batch size = 32)
Learning Rate 8e-6

Weight Decay 0.02

Learning Rate Scheduler Cosine

Warmup Ratio 0.2

Epochs )

Max Gradient Norm 0.5

Precision FP16

Table 9: Hyperparameters used during multi-task scoring evaluator training. The model was
trained using MSE loss and Spearman correlation as the early stopping metric.

This final training stage grounds the QAG-Eval pipeline in real-world evaluation standards,
enabling the model to generalize from structured QA traces to scalar predictions that mirror
human scoring behavior.

Continual Learning Setup with Replay

In parallel, a continual learning strategy is explored, inspired by the approach proposed by
UniEval. In this setup, the model is trained sequentially on each evaluation dimension, following
a fixed ordering;:

coherence — fluency — consistency — relevance
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After completing training on one dimension, the model continues with the next, while retaining
a 20% replay buffer from all previously seen dimensions. This ensures that past dimensions are
revisited during training, mitigating the risk of catastrophic forgetting.

To support this setup, a separate set of training and validation datasets is constructed. Each
training stage consists of:

e 100% of the current dimension’s data,
e +20% randomly sampled replay from each previously seen dimension.

The validation set follows the same structure, ensuring that evaluation reflects both retention
and adaptation. For example, when training on consistency, the dataset consists of:

e 100% consistency samples,
e +20% coherence samples,
e +20% fluency samples.

As for the selected hyperparameters, new values were chosen compared to the multi-task
learning setup. A higher learning rate is chosen (le-5), a similar batch size (32), and a lower
warmup ratio of 0.1 was used to allow the model to adapt more quickly at the beginning of each
stage, since the amount of new data per stage was comparatively small. Gradient clipping and
weight decay to help control overfitting. The selected hyperparameters can be seen in Table 10.

Hyperparameter Value
Batch Size 32
Gradient Accumulation |1 (effective batch size = 32)
Learning Rate le-b
Weight Decay 0.01
Learning Rate Scheduler Cosine
Warmup Ratio 0.1
Epochs )
Max Gradient Norm 1.0
Precision FP16
Class Weighting Applied

Table 10: Hyperparameters used during continual scoring evaluator training. The model was
trained using MSE loss and Spearman correlation as the early stopping metric.

Training Objectives and Supervision
Both training strategies use identical supervision, mean human scores on a continuous scale
from 1.0 to 5.0, and are trained using the same model architecture (DeBERTa-v3-Large)
and regression objective (MSE loss). Input formatting, tokenizer configuration, and evaluation
metrics are kept constant across strategies.

This design enables a fair comparison between training strategies by keeping conditions consis-
tent, so that any differences in performance can be attributed to how the data is organized and
how the training is conducted, rather than to factors like model size or label quality.
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4 Experimentation

This chapter presents the experimental evaluation of the proposed QAG-Eval framework, guided
by the two research questions outlined in Section 2.6. The primary goal is to assess whether the
framework meets its design objectives: providing interpretable evaluations (RQ1) and aligning
well with human quality judgments (RQ2).

To this end, the chapter introduces the experimental setup, including datasets, baseline systems,
and evaluation metrics. Each of the following sections then addresses one of the research
questions through targeted experiments. Quantitative analyses, such as score correlation and
distribution comparisons, are complemented by qualitative examples that illustrate how the
framework behaves in different evaluation scenarios.

4.1 Evaluation Overview

This section outlines the experimental design used to evaluate the QAG-Eval framework across
interpretability and scoring accuracy. It complements the dataset creation and formatting
processes detailed in Section 3 by describing how the datasets were grouped for training and
evaluation, which comparative baselines and metrics were used, and the technical environment
in which experiments were conducted.

4.1.1 Datasets

This section introduces the evaluation dataset used across all experiments in this chapter,
including the test set for QAG-Eval and the retraining dataset for UniEval. While the full corpus
was divided into training, validation, and test splits, only the held-out test set is discussed here.
Score distributions for the other splits are available in Section B.1..

4.1.1.1 Evaluation Dataset

The evaluation dataset consists of a held-out test set constructed from the combined SummEval
and DialSummEval datasets. These datasets were merged and stratified into training, validation,
and test splits using a sampling strategy based on dataset source and mean human-annotated
quality scores. This ensured representative coverage across the full range of summary qualities.

The final test set contains 289 unique samples, balanced across the two sources. This same
test set is reused consistently across all experiments in this chapter to support fair comparison
between models.

Figure 14 shows the distribution of human-annotated scores across the four quality dimensions
in the test set. Most scores fall within the 3—4 range, highlighting the importance of accurately
capturing mid-quality variation in summary evaluation.

Section B.1.
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Figure 14: Each histogram displays the frequency of the human-annotated scores (1-5) for each
of the quality dimensions.

4.1.1.2 Retraining Dataset for UniEval
To support a fair and direct comparison, the UniEval baseline is retrained on the same source
data used for QAG-Eval. However, due to architectural and training constraints, UniEval

operates in a Boolean QA format, where supervision is framed as a binary classification task
(i.e., “Yes” or “No”).

Unlike QAG-Eval, which uses scalar 1-5 scores as direct supervision, UniEval is trained on
synthetically generated binary-labeled data, following the original methodology outlined by the
UniEval authors. Specifically:

o Positive samples (“Yes”) are constructed from the original (summary, source) pairs. These
examples are assumed to represent high-quality outputs and are paired with dimension-
specific yes/no questions, resulting in a “Yes” label.

o Negative samples (“No”) are created by applying dimension-specific pseudo-data transfor-
mations, adapted from UniEval’s official implementation. These include:
» Disfluency transformations for fluency (e.g., introducing broken syntax),
» Incoherence transformations for coherence and consistency (e.g., sentence swapping or
retrieval-based perturbation),
» Irrelevance transformations for relevance (e.g., injecting unrelated content).

Each example is framed using the original task-specific prompt templates provided in the
UniEval codebase. The final dataset contains one QA pair per dimension per sample, with a
corresponding binary label.
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At inference time, UniEval produces softmax-normalized probabilities for “Yes” and “No”
answers to each quality question. The final score is derived as the normalized confidence of a
“Yes” response:

B P(Yes)
%= P(Yes) + P(No)

This results in a continuous value in the 0-1 range, which can be interpreted as a probabilistic
judgment of quality. No explicit mapping to the 1-5 Likert scale is performed in the default
UniEval setup.

To confirm supervision balance, a visualization will be made for:

e The number of Boolean QA samples per dimension,
o The distribution of “Yes” vs. “No” labels across dimensions.

These plots ensure that the retraining process is based on a structurally similar dataset, though
architecturally adapted, enabling a controlled and meaningful performance comparison with

QAG-Eval.

Label Distribution per Dimension
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Figure 15: Balanced label distribution across evaluation dimensions in the UniEval dataset. Each
dimension contains an equal number of “Yes” and “No” QA pairs, ensuring binary supervision
is uniformly distributed.

The plots shown in Figure 15 indicate that the retrained UniEval dataset achieves a comparable
structure to that of QAG-Eval, with balanced supervision across all quality dimensions and an
even distribution of binary “Yes” and “No” labels. This setup helps ensure that any observed
performance differences are primarily due to differences in evaluation architecture or method-
ology, rather than disparities in data distribution.

4.1.2 Baselines and Comparative models

To assess the performance of the proposed QAG-Eval framework, a set of representative
evaluation models and metrics was selected. These fall into three broad categories: similarity-
based metrics, learned evaluators, and multi-dimensional evaluators. It is important to note
that not all baselines are included in every experiment. Instead, evaluations are separated by
research question, with baselines chosen to match the nature of the comparison and training
assumptions.
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e Similarity-based Metrics:
The following commonly used metrics are included as standard general-purpose baselines.
These methods require access to human-written reference summaries and primarily rely on
surface-level or embedding-based similarity:

» ROUGE-1/-2/-L (Lin, 2004 ROUGE): is a family of lexical overlap metrics that compare
the n-grams in a candidate summary against a reference summary. ROUGE-1 measures
unigram (single word) overlap, providing a coarse but often informative signal of content
presence. ROUGE-2 measures bigram (two-word) overlap, capturing short phrasal matches
and offering a more fine-grained signal of fluency and coherence. ROUGE-L computes the
length of the Longest Common Subsequence (LCS), capturing matches that preserve word
order while allowing for gaps. This variant is less rigid than strict n-gram matching and is
often seen as a proxy for fluency.

o UniEval (Zhong et al., 2022) is a unified model that formulates multi-dimensional evaluation
as a Boolean QA task. UniEval generates binary answers (Yes/No) to dimension-specific
questions and produces a confidence score, which is normalized to obtain a probabilistic
estimate of quality. This score serves as its continuous output for comparison against scalar
human ratings. For this thesis, UniEval is retrained on the same combined dataset as QAG-
Eval to ensure a fair and consistent comparison. Both the multi-task and continual learning
training variants are included.

e QAG-Eval (Proposed evaluation framework): The proposed framework is evaluated in two
variants, similar to UniEval: one model trained using continual learning across dimensions
and the other trained using multi-task learning. Both use the same data and training protocol
as the retrained UniEval models.

Motivation for Baseline Selection

The selected baselines represent a broad range of automatic evaluation strategies, including
lexical and semantic methods. ROUGE serve as standard benchmarks for surface and embed-
ding-level similarity. UniEval, as a task-specific, learned evaluator, provides the most direct
point of comparison with QAG-Eval.

In particular, the inclusion of UniEval as a retrained baseline is intended to enable a direct and
fair comparison between evaluation frameworks. In the original UniEval paper, the model was
benchmarked against these same similarity-based metrics using a separate training setup. In
this work, UniEval is retrained on the exact same dataset used to train QAG-Eval, allowing for
a controlled “apples-to-apples” comparison. This setup ensures that any observed performance
differences between the two models can be attributed to differences in architectural design and
reasoning methodology, rather than disparities in data exposure or training supervision.

4.1.3 Evaluation Metrics

Model predictions are evaluated against human-annotated quality ratings across the four quality
dimensions: consistency, relevance, fluency, and coherence, using both rank- and regression-
based metrics. All evaluations are performed across three levels of granularity:

e Sample-level: Correlation on individual summary predictions
e Summary-level: Correlation across system summaries for a single source
e System-level: Correlation on overall means for each summarization model

For measuring alignment with human judgment, the following correlation metrics are used:
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o Spearman rank correlation (p): Evaluates monotonic agreement, reflecting whether the model
ranks outputs in the same order as human annotators.

o Kendall’s tau (t): Assesses pairwise ranking similarity, providing a stricter alternative to
Spearman.

A detailed explanation of each metric and its purpose is provided in Chapter 3, Section 3.2.

4.2 Framework Interpretability (RQ1)

This section describes the evaluation strategy for assessing whether the proposed QAG-Eval
framework offers more interpretable and transparent quality assessments than black-box evalu-
ation models such as UniEval. The evaluation addresses RQ1, formulated as:

RQ1: To what extent does the proposed evaluation framework provide inter-
pretable and transparent quality judgments compared to black-box models such
as UniEval?

4.2.1 Motivation

Interpretability is a critical property for evaluation systems, especially in applications where
model outputs may impact decision-making, user trust, or downstream learning processes. While
UniEval produces soft binary scores based on internal model confidence, it does not expose any
intermediate reasoning or provide insight into why a summary is judged to be either consistent-
inconsistent, relevant-irrelevant, fluent-nonfluent, or coherent-incoherent.

In contrast, QAG-Eval is explicitly designed for interpretability. It first generates dimension-
specific questions about a summary, then answers them in a natural language using a reasoning-
capable QA module. These structured QA pairs represent explicit evaluative judgments that
are passed to a separate scoring model. This modular pipeline not only enables traceability but
also surfaces the rationale behind each score in a human-readable form. Figure 16, shows an
example of a question and answer generated by the QAG module.

Summary: paul merson has restarted his row with andros townsend . the
tottenham midfielder was brought on with only seven minutes remaining in his
team ‘s 0-0 draw with burnley . townsend was brought on in the 83rd minute for
tottenham as they drew 0-0 with burnley .

Question: Are there any grammatical or stylistic errors in the summary that
affect its overall fluency and readability?

Answer: Yes, the summary contains several grammatical and stylistic errors
that affect its fluency and readability. The sentences are fragmented and lack
proper connectors, such as missing articles ( “paul merson has restarted his row”
should be “Paul Merson has restarted his row”). Additionally, the phrase “with
only seven minutes remaining in his team’s 0-0 draw with burnley” is awkward
and unclear, disrupting the flow. Overall, the summary would benefit from more

varied sentence structures and clearer phrasing to improve readability..

Figure 16: Example of a fluency QA pair generated by the QAG module. The summary is
analyzed using a dimension-specific question about grammatical and stylistic quality, followed
by a reasoning-based answer that identifies specific issues affecting fluency and readability.
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4.2.2 Evaluation Objectives

Since direct human assessment of interpretability is outside the scope of this thesis, inter-
pretability is evaluated using structural and content-based analysis of the model’s outputs. The
evaluation focuses on the following criteria:

1. Trace Completeness
e Confirm that each dimension score is accompanied by a corresponding question and
natural language answer (QA trace).

\V)

. Explanation Depth
e Compute the average token length of generated answers per dimension.
o Identify short (< 13 token) answers that may reflect minimal or binary reasoning.

3. Justification Content
e Analyze the presence of factual references, named entities, and linguistic markers in each
answer

W

. Qualitative Output Examples
e Present a small set of representative examples showing reasoning traces for summaries of
varying quality.

5. Modular Transparency
e Discuss how QAG-Eval’s pipeline enables human-readable reasoning steps compared to
black-box scoring systems.

4.2.3 Evaluation Procedure

o Sample selection: A stratified subset of summaries from the held-out test set was used to
demonstrate qualitative differences across varying quality levels (low, mid, high).

e Traceability Analysis: Each summary was checked for the presence of four complete QA
traces, one per evaluation dimension.

e Quantitative Analysis: Token lengths and justification cues were computed for all generated
answers. Dimensions were compared based on average reasoning length and justification
frequency.

¢ Qualitative Showcase: Three representative examples were selected to illustrate the nature
of dimension-specific reasoning in QAG-Eval’s outputs.

4.3 Scoring Accuracy and Granularity (RQ2)

This section describes the evaluation strategy for assessing how accurately and finely the QAG-
Eval framework reflects human quality judgments compared to existing evaluation methods,
specifically UniEval and standard similarity-based metrics. The evaluation addresses RQ2,
formulated as:

RQ2: How well do the scores predicted by the proposed framework correlate with
human annotations, and how effectively does it distinguish between intermediate
levels of summary quality compared to UniEval and standard metrics?

4.3.1 Motivation

While UniEval converts binary “Yes”/“No” answers into soft probabilistic scores, as previously
discussed in Chapter 1. Section 2.4.2.2, this binary framing may oversimply nuanced or
ambiguous quality differences in human summaries, particularly in borderline cases. Consider
Figure 17, an example dialogue and summary about a company’s quarterly financial results:
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CEO: Our revenue increased by 15% this quarter. That’s mostly due to streamlining
operations and cutting non-essential spending.

CFO: Yes, the saving from operational adjustments were significant. We've also seen a
small improvement in margins, though sales figures remained flat.

(a) Dialogue excerpt illustrating a key financial statement and its context.

The CEO announced that revenue increased significantly, and the company plans to expand
into new markets. The CFO also mentioned an improvement in operating margins.

(b) Summary example that omits a critical causal detail while maintaining surface fluency.

Figure 17: Examples of instruction-based training prompts from the intermediate multi-task
learning phase. Each prompt is constructed from the same QReCC sample and used indepen-
dently for question or answer generation.

The summary is arguably quite fluent and accurate in tone, but it omits a key detail: the
source of the revenue increase (cost-cutting rather than sales growth), which is a critical piece of
context. Human annotators might rate the summary as 3 or 4, acknowledging its surface coher-
ence and fluency while penalizing the omission under the consistency or relevance dimension.
A binary QA evaluator like UniEval must answer a general question such as: “Is this summary
consistent with the document?” and is therefore likely to produce a confident “Yes” answer.
This can be reflected as a score of 4-5, effectively overlooking the partial inconsistency. In
contrast, QAG-Eval, with its dimension-specific prompting and reasoning outputs, can generate
a “Yes”/“No” answer along with an explanation that explicitly accounts for what is missing.
The reasoning module might conclude that the summary is only partially consistent with the
source document. As such, the dimension-specific score can more faithfully reflect the partial
omission through a value in the range of 3.0—4.0.

4.3.2 Evaluation Objectives
In order to test this hypothesis, the following objectives will be pursued:

1. Score Correlation With Human Annotations

o Compute Spearman and Kendall correlations between predicted scores and human labels
across each evaluation dimension.

o Evaluate separately for each quality dimension (consistency, relevance, fluency, coher-
ence).

e Compare QAG-Eval’s correlation against:
» A retrained UniEval model (continual and multi-task variant).
» Standard metrics: ROUGE-1, ROUGE-2, ROUGE-L.

2. Score Distribution Analysis
o Analyze the spread and shape of predicted scores across the full human rating scale (1.0-
5.0), focusing on how models distribute scores rather than just rank them.
e Compare model and human distributions to assess how closely each model reflects the
range, density, and central tendencies of human scoring.
e Visualize model vs. human distributions using histograms across all four evaluation
dimensions.
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4.3.3 Evaluation Procedure

¢ Dataset: The models will be trained on a combined SummEval and DialSummEval dataset,
which includes 1-5 scale human quality ratings from multiple annotators. The models will
be tested on a separate held-out test dataset from SummEval and DialSummEval.

e Dimensions: Evaluation is performed across all four quality dimensions using both QAG-
Eval and UniEval variants (continual and multi-task).

4.4 Experiment Results

This chapter presents the empirical results of the experiments described in Section 4. The
findings are grouped by research question and reported using objective criteria, including direct
outputs, correlation scores, distribution patterns, and quantitative statistics. Interpretive or
subjective analysis is deferred to Section 5.

4.4.1 RQ1: Interpretability Results

This section presents objective results regarding the interpretability of outputs generated by
the QAG-Eval framework. The analysis includes quantitative statistics on QA trace coverage,
explanation lengths, and justification content, followed by representative examples of reasoning
outputs. All findings are reported without subjective interpretation or evaluation.

To assess the traceability of QAG-Eval outputs, the percentage of summaries in the evaluation
set that include a complete set of four QA traces, one for each evaluation dimension, was
computed. Full QA trace coverage is considered a prerequisite for transparent, modular evalu-
ation.

Analysis confirms that 100% of system-generated summaries in the test set are accompanied
by a complete set of dimension-specific QA traces. This outcome is not incidental, but a direct
result of the framework’s design, which enforces modular question generation and answering as
part of the scoring pipeline. As such, we can confirm that QA trace coverage is complete:

100% of system-generated summaries include a full set of four QA traces

The presence of a QA trace for each evaluation dimension ensures that every predicted score is
explicitly backed by a structured, interpretable reasoning step. Unlike black-box scoring models
that produce numerical outputs without rationale, QAG-Eval’s full traceability provides trans-
parency into how and why each dimension was evaluated in a particular way. This completeness
also facilitates downstream analysis, such as explanation quality filtering or error diagnostics,
and supports integration in high-stakes contexts where reasoning transparency is critical.

4.4.1.1 Explanation Lengths

The token length of each answer generated by the QAG module was computed to serve as a
proxy indicator of explanation depth. While not a direct measure of quality, longer responses
are more likely to reflect greater elaboration, detail, and reasoning, whereas shorter answers
often indicate limited justification or surface-level assessments. Short answers tend to reflect
categorical judgments (e.g., “Yes.” or “No.”), whereas longer responses are more likely to contain
supporting arguments, references to the source content, or explicit descriptions of identified
issues.

Based on empirical observations, it is assumed that answers in the range of 3—12 tokens generally
lack sufficient explanatory depth and may not qualify as fully reasoned traces. This assumption
is supported by a controlled tokenization test using the FLAN-T5 tokenizer, which showed that
even extended “Yes”/“No” responses rarely exceed 12 tokens. Therefore, token length serves
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not only as an approximation of explanation complexity, but also as a useful diagnostic for
identifying minimal or incomplete reasoning outputs. Table 11 reports average token lengths
per dimension, while Table 12 provides illustrative tokenization examples.

Dimension | Avg. Token Length
Consistency 87.03
Relevance 101.71
Coherence 88.43
Fluency 81.22

Table 11: Average token length of QAG-Eval answers grouped by evaluation dimension. Longer
responses are more likely to reflect deeper justification and content traceability.

Example answers Token Length
“Yes, I agree with the statement.” 10
“No, I do not think that is correct.” 12
“Yes, it is a valid point.” 10
“No, I disagree with that conclusion.” 10
“Yes” 3
“No” 3

Table 12: Token length of typical categorical “Yes”/“No” answers as processed by the FLAN-
T5 tokenizer. These examples support the threshold assumption that answers under 13 tokens
likely lack sufficient explanation depth.

These results show a clear difference in average explanation length across evaluation dimensions.
Relevance answers have the highest average token count (101.71), followed by coherence (88.43),
consistency (87.03), and fluency (81.22). This variation reflects the different types of information
involved in each evaluation task. Relevance assessments frequently involve references to multiple
content points and their inclusion or omission, which may result in longer textual reasoning.
Coherence and consistency involve structural and factual alignment, which also require multi-
sentence reasoning. In contrast, fluency assessments are typically confined to surface-level
grammar and phrasing, and are often expressed in shorter spans. In all cases, the average
token length exceeds the 3—-12 token threshold associated with minimal or categorical responses,
indicating that QAG-Eval consistently generates answers containing more than basic binary
confirmation.

4.4.1.2 Justification Presence/Content
To assess the types of justification present in QAG-Eval’s generated answers, each response was
automatically analyzed for three distinct categories of interpretability cues:

1. Entity Mentions

Named entities, such as people, places, organizations, dates, and other proper nouns, were
identified using spaCy [65], an open-source Python library for advanced NLP. Specifically, the
en__core_web__trf model was used for named entity recognition (NER). Any answer containing
at least one entity with a recognized label (e.g., PERSON, ORG, GPE, DATE) was counted as
containing an entity reference. spaCy is a widely known library recognized for its comprehensive
set of advanced NLP tools and techniques, and used in various industry use-cases
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2. Factual Content Indicators

Factual grounding was detected through the presence of lexical indicators suggesting inclusion
or omission of source content. The keyword set included terms such as mention, includes, omits,
missing, covers, details, and relevant. These were matched in a case-insensitive manner using
simple string pattern checks. Answers containing one or more of these keywords were considered
factually grounded.

3. Linguistic Cues

Linguistic or fluency-related justifications were detected through the presence of terms referring
to grammar, phrasing, sentence structure, or readability. The keyword set included awkward,
smooth, grammar, natural, readable, and phrasing. These cues typically reflect stylistic judg-
ments and are characteristic of the fluency dimension. As with factual cues, keyword presence
was determined via substring matching in lowercase text.

The proportion of answers containing each justification type was computed for each evaluation
dimension and is summarized in Table Table 13.

Dimension | Entity Mention (%) | Factual Content (%) | Linguistic Cue (%)
Coherence 91.3 23.8 49.7
Consistency 95.5 67.1 0.7
Fluency 22.7 2.8 100.0
Relevance 95.1 99.0 0.0

Table 13: Proportion of QAG-Eval answers containing named entities, factual indicators, or
linguistic cues. The distribution reflects each dimension’s focus: fluency traces contain fluency
markers, while relevance and consistency contain source-grounded references.

These results reveal clear patterns across dimensions. Fluency-related answers almost univer-
sally include linguistic cues (100.0%) but rarely contain factual references or named entities.
In contrast, relevance and consistency answers exhibit high rates of entity mentions (95.1%
and 95.5%, respectively) and factual indicators (99.0% and 67.1%). Coherence answers often
refer to entities but contain a more mixed presence of stylistic terms and lower factual density,
reflecting the dimension’s more abstract evaluative focus.

4.4.1.3 Qualitative Reasoning Trace Showcase

To illustrate the nature and diversity of QAG-Eval’s generated reasoning traces, three represen-
tative examples were selected from the evaluation set. These examples correspond to a relatively
lower-scoring, a mid-range, and a higher-scoring summary, based on the model’s predicted
overall quality scores. Each case includes the source context (either document or dialogue), the
system-generated summary, and the corresponding QA pairs produced by QAG-Eval for each
evaluation dimension: consistency, relevance, coherence, and fluency.

This showcase is intended to demonstrate how QAG-Eval produces interpretable outputs tai-
lored to each dimension. The selected examples exhibit a range of justification styles, including
factual references, structural explanations, and surface-level linguistic feedback. Each showcase
can be found in Appendix B.

These examples illustrate how QAG-Eval produces dimension-specific reasoning traces that
vary in specificity and elaboration based on summary quality. All evaluated examples contain
structured QA outputs with natural language justifications, supporting the framework’s design
objective of interpretability and transparency.
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4.4.2 RQ2: Scoring Accuracy & Granularity Results
This section presents the quantitative evaluation results for QAG-Eval and baseline methods
in terms of scoring accuracy and granularity, addressing RQ2.

To assess these qualities Spearman and Kendall correlations are reported across the four quality
dimensions. Results are reported at three levels of correlation: sample-level, summary-level,
and system-level, previously described in Section 3.2. Each QAG-Eval variant (multi-task and
continual learning) is compared against retrained UniEval baselines (multi-task and continual
learning) and a suite of reference-based similarity metrics.

All models are evaluated on a held-out test set derived from DialSummEval and SummEval.
The subsections below report correlation performance and score distribution behavior, followed
by a discussion of trends and comparative observations.

4.4.2.1 Correlation with Human Judgments

This section presents the alignment between model-predicted quality scores and human anno-
tations, evaluated at three correlation granularities: sample-level, summary-level, and system-
level. Results are reported separately for each of the four evaluation dimensions: consistency,
relevance, fluency, and coherence, and Spearman (p) and Kendall’s t correlations.

Correlation tables are reported in full in Appendix C. Below, key observations are highlighted
from the results.

Sample-Level Correlation

As previously mentioned in Section 3.2.3, UniEval introduced sample-level correlation as a
measure for determining the correlation between a model’s predicted score and the correspond-
ing mean human rating for each individual summary. This correlation level offers a fine-grained,
instance-specific perspective on how closely the model approximates human judgments at the
per-summary level. A higher correlation at this level indicates the metric is well-calibrated for
detecting subtle quality differences across summaries, regardless of their source system.

The results for the sample-level correlation for all metric types are presented in Appendix C,
Table 14. Each model’s predicted quality scores are compared to the mean human annotation on
a per-summary basis across the four quality dimensions, with both Spearman (p) and Kendall’s
tau (7).

Among the similarity-based metrics, ROUGE-1 achieves the highest average correlation (p =
0.355,7 = 0.243), followed by ROUGE-2 and ROUGE-L. Across dimensions, all ROUGE
variants perform best on Coherence and Fluency, while showing consistently low correlation
with Consistency and Relevance. Specifically, ROUGE-L obtains the highest correlation for
Coherence (p = 0.385,7 = 0.274) and Fluency (p = 0.325,7 = 0.226), while ROUGE-2 leads in
Consistency (p = 0.190,7 = 0.130) and ROUGE-1 slightly outperforms the others in Relevance
(p =0.182,7 = 0.125). These findings suggest that ROUGE’s surface-level lexical overlap is
better suited for capturing surface-level properties, such as grammaticality and sentence-level
fluency, but is less effective for deeper semantic properties like factual consistency or content
relevance.

The multi-dimensional evaluators demonstrate more varied performance. Both the continual
and multi-task variants of the retrained UniEval model perform comparably, though their
correlations are generally low across all dimensions. Coherence and Consistency exhibit the
weakest alignment, where both UniEval variants fall below even ROUGE-1. The multi-task
variant achieves slightly higher average correlation (p = 0.364,7 = 0.247), while the continual

CE AVS10 June 4, 2025 45 of 72



4 Ezxperimentation

variant performs marginally better in Coherence (p = 0.184,7 = 0.127) and Relevance (p =
0.245, 7 = 0.166), though most of these scores do not exceed the best-performing similarity-
based baselines. The only dimension where both variants exceed the baselines is in Relevance,
with correlations well above 0.200.

In contrast, the proposed QAG-Eval framework shows strong and consistent performance across
all quality dimensions. Both the continual and multi-task variants substantially outperform all
baselines, including UniEval. While the continual variant achieves the best results on Fluency
(p =0.533,7 = 0.387), the multi-task variant achieves the highest average sample-level corre-
lation (p = 0.598, 7 = 0.435), and outperforms all other models in Coherence (p = 0.664, T =
0.497), Consistency (p = 0.606, 7 = 0.449), and Relevance (p = 0.612, 7 = 0.460). These results
indicate that QAG-Eval is highly effective at approximating human-perceived summary quality
and is particularly well-aligned with human judgment on semantically complex dimensions such
as consistency and relevance.

Summary-Level Correlation

Summary-level correlation captures the correlation between human and predicted rankings of
multiple system outputs for the same input document. This measure reflects the metric’s ability
to preserve human-preferred ordering when comparing summaries generated from identical
source content. A high summary-level correlation suggests that the metric reliably differentiates
between better and worse outputs on a per-document basis, aligning with human ranking
patterns.

The results for the summary-level correlation for all metric types are presented in Appendix C,
Table 15. These results assess the ranking between predicted and human scores across all system
outputs for each individual source document, offering insight into whether models preserve
document-specific ranking patterns. Correlations are calculated per document and averaged
across the dataset.

Among the similarity-based metrics, ROUGE-L achieves the highest average correlation (p =
0.260, 7 = 0.255), particularly on Coherence (p = 0.511, 7 = 0.493) and Fluency (p = 0.288,7 =
0.288). In contrast, correlations with Consistency and Relevance remain relatively low across
all ROUGE variants. ROUGE-1/-2 performs moderately on Coherence (p = 0.390, 7 = 0.376)
and (p = 0.311,7 = 0.307), respectively. These results suggest that ROUGE—L aligns more
with surface-level fluency than with semantic or factual correctness, and may better capture
coherence within document-specific rankings.

Similarly to the sample-level correlation, the multi-dimensional evaluators demonstrate more
varied performance. Both the continual and multi-task variants of the retrained UniEval model
achieve similar performance. Coherence and Fluency exhibit the weakest alignment, where
both UniEval variants fall below all baseline metrics. The multi-task variant slightly exceeds
the continual variant on average correlation (p = 0.213,7 = 0.206), while the continual variant
performs moderately better in Coherence (p = 0.201,7 = 0.180) and Relevance (p = 0.238,7 =
0.233), but falls short on Fluency and Consistency. Most notably, the variants both exceed the
baselines significantly in Consistency and Relevance.

In contrast, QAG-Eval generally shows strong and consistent performance across all quality
dimensions. The continual variant moderately outperforms ROUGE-L, the best performing
baseline, on Coherence and Fluency (p = 0.540, 7 = 0.522), and significantly outperforms it in
Consistency (p = 0.283, 7 = 0.260) and Relevance (p = 0.419, 7 = 0.412). The multi-task variant
performs slightly worse than ROUGE-L in Coherence (p = 0.469, 7 = 0.451) and Fluency (p =
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0.286,7 = 0.270), while outperforming it moderately in Consistency (p = 0.220,7 = 0.205)
and significantly in Relevance (p = 0.420,7 = 0.402). Both variants generally outperform the
UniEval variants by a large margin. These results suggest that QAG-Eval more effectively
captures per-document level human preferences across all quality dimensions, particularly in
ranking system outputs for semantic properties such as Consistency and Relevance.

System-Level Correlation

System-level correlation evaluates the correlation between model-predicted and human-assigned
mean scores aggregated over all outputs from each system. This level of correlation captures
how well a metric reflects overall system performance across the entire test set. A high system-
level correlation suggests that the metric is effective at ranking systems in a manner consistent
with human evaluators, providing the most stable and interpretable signal for leaderboard-style
comparisons. However, it may mask local inconsistencies at the summary or document level, as
it averages over many outputs.

The results for the system-level correlation for all metric types are presented in Appendix C,
Table 16. This level of evaluation aggregates predicted and human scores across all summaries
produced by each system, assessing whether the overall ranking of systems according to the
metric aligns with human judgments.

Among the similarity-based metrics, ROUGE-2 achieves the highest average correlation (p =
0.411,7 = 0.301). ROUGE-L slightly outperforms ROUGE-1 and ROUGE-2 in Coherence
(p =0.660,7 = 0.514) and Fluency (p = 0.764,7 = 0.557), although differences are marginal.
ROUGE-2 achieves the highest Consistency (p = 0.054,7 =0.044) and Relevance (p =
0.132, 7 = 0.092) scores among the ROUGE metrics. Notably, ROUGE-1 and ROUGE-L pro-
duce negative correlations on Consistency (p =-0.099, 7 = -0.085) and (p =-0.116,7 = -0.071),
respectively, and ROUGE-L also exhibits negative correlation on Relevance (p =-0.016,7 =
-0.014). This reversal suggests that these metrics may reward lexical overlap patterns that do
not align with human preferences for consistency or relevance.

The multi-dimensional UniEval models show mixed performance. Both variants underperform
on Coherence and Fluency but perform better in Consistency and Relevance relative to the
similarity-based metrics. The multi-task variant achieves the highest average correlation (p =
0.451, 7 = 0.310), but underperforms on Consistency (p =-0.049, 7 =-0.018). A similar trend
is observed in Relevance, where both UniEval variants outperform ROUGE but remain well
below the QAG-Eval variants.

In contrast, QAG-Eval demonstrates superior system-level alignment across all dimensions.
The multi-task variant achieves the highest overall performance (p = 0.733,7 = 0.572), with
especially strong results in Consistency (p = 0.840,7 = 0.669) and Relevance (p = 0.801,7 =
0.621). The continual variant performs comparably well, even exceeding the multi-task variant
on Relevance (p = 0.825, 7 = 0.635). These results confirm that QAG-Eval consistently captures
human preferences when ranking system performance, offering significantly more reliable and
semantically grounded estimates than both ROUGE and UniEval.

4.4.2.2 Score Distribution

While correlation measures assess the ranking alignment between model predictions and human
judgments, they do not reveal how evaluators behave across the full scoring spectrum. This
section investigates whether QAG-Eval produces fine-grained and human-aligned quality scores,
with particular attention to the mid-range region (approximately 3.0-4.0), where most human
scores tend to concentrate.
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This range is especially challenging because summaries often exhibit a mix of strengths and
weaknesses, making it difficult even for human annotators to assign a definitive quality label.
Unlike clear-cut examples that deserve a 1 or a 5, mid-range cases reflect partial coverage, vague
phrasing, or minor factual errors that resist binary classification. The goal is to examine whether
model predictions reflect this nuanced distribution rather than collapsing toward extremes.

The analysis is structured in two parts:

o« Histogram analysis and Intermediate Scoring:
» Visual comparison of predicted vs. human score distributions across quality dimensions.
» Evaluation of how models assign scores in the mid-range, where most human ratings tend
to cluster
» Assessment of how each model utilizes the 1.0-5.0 scale and whether scores are narrowly
or broadly distributed
¢ Raw UniEval scores:
» Visualization of UniEval’s output confidence scores to illustrate the impact of its binary
classification framing

Histogram Analysis and Intermediate Scoring

To assess the distributions of predicted vs. human scores, grouped histograms are plotted across
the four quality dimensions. A comparison of the frequency of scores (on the 1.0-5.0 scale)
is made between each histogram. These visualizations provide a direct comparison between
human-annotated scores and the outputs produced by the two QAG-Eval variants (UniEval is
omitted from the plot because its raw scores sit on a different scale).

As shown in Figure 18, human scores (grey bars) exhibit a strong central tendency toward the
mid-range (3.0-4.0), with a clear peak in the 3.5-4.0 range, reflecting the subjective and often
ambiguous nature of summary quality. Most summaries are not entirely correct or incorrect
but instead exhibit partial correctness, which human raters can express through intermediate
scores. A well-calibrated model should reflect this tendency by avoiding collapsed predictions
at the extremes or specific scores.

Both QAG-Eval variants capture this mid-range behavior effectively. Rather than clustering
around a few discrete bins, both models make active use of nearly every 0.5-point interval
across the full 1.0-5.0 scale. The distributions follow the general shape of human annotations,
especially in the fluency and coherence dimensions.

Both models tend to overpopulate the 3.5 bin, particularly in the consistency and relevance
dimensions, suggesting a mild prediction bias toward the central scores. While both variants
show broadly similar patterns, the continual learning model appears to more closely mirror
the overall human distribution, especially around the peaks. This may be a reflection of the
benefits of the continual learning with replay training strategy. Overall, these trends suggest
that QAG-Eval not only avoids collapsing to extreme or median scores, but also learns to
represent intermediate levels of quality.
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Figure 18: Grouped histograms showing predicted and human score distributions across the
four evaluation dimensions. Each bar represents the number of predictions at a given score level
(1.0-5.0).

Raw UniEval Scores

To better understand the limitations of binary-oriented evaluation models, this subsection
analyzes the raw softmax confidence scores output by UniEval. These scores reflect the model’s
internal certainty when assigning a “Yes” label for each quality dimension.

As shown in Figure 19, the raw confidence distributions for coherence, fluency, consistency, and
relevance are all heavily skewed toward maximum values (= 0.97), with most scores concentrated
in the 0.99-1.0 range. This uniform pattern is consistent across dimensions and is clearly visible,
highlighting the lack of variance.

This extreme concentration reflects a key limitation of UniEval’s binary QA-based formulation.
Trained to produce categorical yes/no decisions, the model tends to assign high-confidence
outputs even in borderline or partially correct cases. As a result, it struggles to express degrees
of quality, particularly in the ambiguous mid-range (e.g., 3.0-4.0 on a 1-5 scale) where human
annotations are most densely distributed.

In contrast, QAG-Eval generates dimension-specific reasoning traces and converts them into
continuous scores using a context-aware scoring mechanism. This enables it to reflect a broader
and more human-like spectrum of quality, including subtle distinctions between moderately
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good and clearly flawed summaries. These findings reinforce that UniEval’s scoring formulation
imposes structural limitations on granularity. Its overconfident predictions and compressed
output range reduce its suitability for tasks that require fine-grained quality assessment.
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Figure 19: Each plot shows the raw softmax confidence assigned to the “Yes” label (scaled 0—
1) for each quality dimension on the held-out test set. All distributions are highly concentrated
near 1.0 (= 0.98), with minimal variation, indicating UniEval’s inability to represent partial or
uncertain quality. This behavior is consistent across all four dimensions.
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5 Discussion

This chapter discusses the experimental results from Chapter 4, focusing on their relevance
with respect to the research questions and evaluation goals of the thesis. It provides a deeper
interpretation of QAG-Eval’s empirical performance, highlights its strengths and limitations,
and compares it to existing evaluation methods

5.1 Framework Interpretability
This section serves to address RQ1: To what extent does the proposed evaluation framework

provide interpretable and transparent quality judgments compared to black-box models such
as UniEval?

The motivation behind this research question stems from the need for evaluation frameworks
to offer transparency into why specific quality scores are assigned, a particularly important
requirement in high-stakes or diagnostic use-cases. This issue is not unique to NLP tasks such
as summarization but is broadly relevant across domains. Notably, the UniEval authors (the
main comparison reference) explicitly acknowledge this as a core limitation in their own design,
as well as in most existing evaluators.

QAG-Eval was designed to promote interpretability through reasoning traces. Unlike black-box
models such as UniEval, which output numerical confidence scores without justification. QAG-
Eval decomposes each quality assessment into a dimension-specific QA pair. Each summary is
evaluated across four dimensions through the generation of dimension-specific human-readable
questions and explanatory answers.

5.1.1 Evaluation Outcomes

QA trace coverage

Empirical results confirm that QAG-Eval achieves 100% QA trace coverage, with every system-
generated summary accompanied by a complete set of four reasoning traces. It is clear from the
results shown in Appendix B that the design guarantees modular transparency and ensures that
each quality score is grounded in a structured explanation. However, during implementation,
it was observed that QA pairs with answers explicitly beginning with “Yes, the summary...”

9y

or “No, the summary..” introduced ambiguity. The scoring evaluator often overfit to these
binary patterns, which led to degraded performance. So, while the framework design seems to
imply that including additional contextual data (reasoning traces) helps the model learn the

intricacies of human judgment, this needs to be further explored.

Justification Depth and Features

As mentioned previously in Section 4.2, answer token length is used as a proxy indicator for
explanation depth. While not a direct measure of quality, longer responses are more likely to
reflect greater elaboration, detail, and reasoning. This not only suggests deeper explanation
content but also reinforces QAG-Eval’s interpretability objectives.

Results showed that average response lengths exceeded 80 tokens, significantly above typical
short response lengths. Interestingly, answers in regards to the relevance dimension averaged
101.71 tokens. This suggests a high degree of justification and reasoning, with particularly
extensive elaboration in semantically complex dimensions such as consistency and relevance.
These dimensions require the model not only to interpret what the summary conveys but also
to understand the underlying meaning of the text and verify its alignment with the source,
including checks for factual entailment, contradiction, or hallucination.
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These findings are further supported by the justification content analysis, which examined
whether model responses included key evidential features aligned with each evaluation dimen-
sion. Specifically, the analysis focused on the presence of named entities, factual references, and
linguistic markers, elements that reflect dimension-specific reasoning. For instance, relevance
and consistency evaluations depend heavily on factual grounding and entity-level alignment with
the source text. Without these elements, the justification may lack sufficient evidence to justify
high scores for relevance or consistency. Results showed that the relevance and consistency
dimension answers contained entity mentions and factual content in over 95% and 67% of cases,
respectively, indicating the answers are strongly grounded in the source material. In contrast,
fluency explanations exhibited 100% presence of linguistic cues related to grammar, phrasing,
sentence structure, and readability, which highlights the dimension-specific nature of reasoning.
Coherence answers contained factual content in approximately 23% of cases and linguistic cues
in 49%, highlighting that this dimension is less concerned with factual grounding and more
with how well ideas are connected and organized.

5.2 Scoring Accuracy and Granularity

This section serves to address RQ2: How well do the scores predicted by the proposed framework
correlate with human annotations, and how effectively does it distinguish between intermediate
levels of summary quality compared to UniEval and standard metrics?

The primary analysis was conducted across three levels of correlation: sample-level, summary-
level, and system-level, each providing insight into different aspects of scoring accuracy and
granularity. Sample-level correlation evaluates how closely a metric’s predicted scores align with
human scores on an individual summary basis. This level is the most fine-grained and reflects
the model’s ability to assign accurate scores to specific input-summary pairs. Summary-level
correlation aggregates scores per summary and assesses whether the relative ranking of those
summaries aligns with human rankings. This level is particularly informative in multi-system
comparisons, as it captures whether a metric can consistently rank better and worse summaries
across systems. System-level correlation assesses whether the metric can correctly rank entire
summarization systems in alignment with human preferences. While often used for leaderboard
evaluations, system-level correlation also offers insight into how robustly a metric captures
overall performance trends across models.

Together, these levels provide a comprehensive view of a metric’s effectiveness, from individual
scoring behavior to global system rankings. Strong performance across all three levels indicates
that the metric not only mimics human judgments but also preserves score granularity across
varying quality levels.

Additionally, an analysis of score distributions was conducted to gain deeper insight into the
model’s predictive behavior and assess whether it captures the nuanced and subjective nature
of human judgments, particularly within mid-range scores (3.0-4.0), without collapsing to
dominant or extreme values.

5.2.1 Correlation Findings

Sample-Level Correlation

At sample-level, both QAG-Eval variants significantly outperform all baselines (ROUGE-1/-2/-
L) and retrained UniEval variants across all dimensions. The multi-task QAG-Eval model
achieves the highest average sample-level Spearman and Kendall (p = 0.598, 7 = 0.435) corre-
lations, particularly excelling in coherence (p = 0.664,7 = 0.497), consistency (p = 0.606, T =
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0.449), and relevance (p = 0.612,7 = 0.460), only beaten slightly by the continual variant in
Fluency (p = 0.533,7 = 0.387). Overall, these results demonstrate that QAG-Eval is highly
effective at predicting scores that align closely with human judgments.

Summary-Level Correlation

At summary-level, the continual QAG-Eval variant only slightly outperforms the baseline
ROUGE-L metric in coherence (p = 0.540, 7 = 0.522) and fluency (p = 0.305, 7 = 0.292), while
ROUGE-L achieves (p =0.511,7 = 0.493) and (p = 0.288,7 = 0.288) respectively. However,
it greatly outperforms it in consistency (p = 0.283,7 = 0.260) and relevance (p = 0.419,7 =
0.412), showcasing QAG-Eval’s superior ability to capture and understand complex semantics.
The continual variant also achieves the highest average summary-level Spearman and Kendall
(p =0.318,7 = 0.307). Overall, these results show QAG-Eval can correctly capture and preserve
the relative ranking of summaries, which aligns with human rankings.

System-Level Correlation

The strongest results appear at system-level, where the multi-task QAG-Eval variant achieves
the highest average Spearman and Kendall (p = 0.733,7 = 0.572). Generally, across all dimen-
sions, both variants approach near-perfect alignment in Spearman ranking (above p = 0.800),
demonstrating QAG-Eval can reliably rank systems in agreement with human evaluation.
Remarkably, ROUGE-L also achieves high correlation in coherence (p = 0.660,7 = 0.512) and
fluency (p = 0.764, 7 = 0.557). Overall, these results show that QAG-Eval is effective at ranking
systems that align with human assessment.

5.2.2 Score Distribution Insights

Beyond correlation metrics, the analysis of score distributions reveals that QAG-Eval effectively
captures mid-range scoring behavior. Both QAG-Eval variants utilize the full 1-5 scale and
show particularly strong alignment with the 3.5—4.0 range, where the majority of human scores
are concentrated. This result is likely influenced by the distribution of the training data, which
contains a higher density of mid-range scores (3.0-4.5) and relatively fewer examples at the
extreme low (1.0-3.0) and high (4.5-5.0) ends. As a result, the model has more training signals
in this range, making it naturally better at scoring moderate-quality summaries.

Despite this imbalance, the model still demonstrates the ability to assign scores across the full
scale, including the extremes. This suggests that QAG-Eval is capable of generalizing beyond
the most frequent score ranges, supporting the reliability of its scoring behavior. Incorporating
reasoning traces likely contributes to this robustness by providing richer contextual signals for
learning accurate input—summary score mappings.

While the multi-task variant achieves a stronger correlation with human annotations at the
sample level, the continual learning variant produces a score distribution that more closely
mirrors the shape of the human score distribution. Specifically, it demonstrates broader coverage
across the full 1-5 scale, including the underrepresented extremes. This suggests that while the
multi-task model excels in per-instance scoring accuracy, the continual variant more effectively
captures the broader distributional patterns present in human judgments.

UniEval’s raw confidence distributions show they are heavily skewed toward maximum values
(> 0.97), which could be a likely consequence of its binary scoring. This results in compressed
score distributions and poor granularity. In contrast, QAG-Eval’s continuous scoring, derived
from free-form reasoning, allows for more human-like scoring patterns. However, these results
may also be due to incorrect reproduction of the UniEval models and incorrect data processing.
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Early signs during implementation and training showcased signs of partial overfitting to the
task, which may be attributed to the inherent simplicity of the task. While training losses
and validation losses were steadily decreasing, even validating at quarter epochs, the models
showcased perfect scoring across a variety of metrics. As such, the results shown should be
taken with a grain of salt and are due for further exploration.

5.3 Comparative analysis

This section aim to provide a fair comparative analysis of the findings across baselines, UniEval,
and QAG-Eval. The goal is not only to highlight QAG-Eval’s strengths, but also to critically
examine why existing approaches may fall short for nuanced quality evaluation.

5.3.1 UniEval Architectural Limitations

While UniEval was retrained on the same datasets as QAG-Eval for an apples-to-apples
comparison, it exhibited notable limitations in both score granularity and interpretability. Most
notably, UniEval’s raw confidence distributions were heavily skewed toward high values (> 0.97)
across all quality dimensions. This compression likely stems from its binary QA design, which
frames each dimension as “Yes”/“No” questions. Such a setup inherently restricts the model’s
ability to express ambiguity or partial correctness, especially in the mid-range scoring where
most human judgments cluster.

However, it is important to note that these outcomes may not solely reflect architectural design.
As previously mentioned, the retraining process, which relied on synthetic binary supervision,
may have contributed to early overfitting. During training, both training and validation losses
slowly decreased, and evaluation metrics appeared to be saturated early on after only a quarter
epoch. This could suggest that the task formulation, involving perturbed positive/negative
pairs, may have led to premature convergence and overconfident predictions. As such, the lack
of score diversity and sensitivity may be as much a reflection of training data assumptions as
of model design.

Therefore, while UniEval’s binary framing likely limits its ability to reflect nuanced or uncertain
quality judgments, the models’ observed behavior under the current setup and conditions should
be interpreted with caution.

5.3.2 Interpretability Gaps

Another area where QAG-Eval diverges meaningfully is in interpretability. By design, UniEval
offers no explanation for its judgments, making it difficult to examine decisions, assess
confidence, or identify reasoning failures. In contrast, QAG-Eval decomposes each score into
structured QA pairs with natural language justifications, enabling downstream error analysis
and model accountability. While UniEval’s simplicity may make it more efficient, scalable, and
generalizable in some contexts, the absence of intermediate reasoning significantly limits its
utility in scenarios requiring these insights.

5.4 Strengths and Limitations

This section reflects on the practical and theoretical strengths of the QAG-Eval Framework, as
well as its current limitations. While the results across RQ1 and RQ2 demonstrate QAG-Eval’s
capacity to generate interpretable and accurate evaluations, several caveats remain that should
be addressed in future iterations.

Strengths
1. Dimension-Specific Reasoning
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The core strength and contribution of QAG-Eval is its ability to reason separately about
consistency, relevance, coherence, and fluency through QA reasoning traces. This modular
structure enables dimension-specific evaluation, allowing the model to focus on grammar for
fluency, discourse flow for coherence, factual alignment for consistency, and content coverage
for relevance.

2. Fine-Grained and Human-Like Scoring Behavior

Unlike evaluators such as UniEval, QAG-Eval produces scalar outputs along a continuous 1-5
scale. These scores exhibit meaningful variation across mid-range values, which closely mirrors
the subjective nature of human judgments. The scoring granularity is especially valuable in real-
world use cases involving partially correct or ambiguous summaries. Moreover, QAG-Eval avoids
prediction collapse by actively utilizing the full scale, with a particular strength in replicating
the 3.0-4.0 range where most human annotations are shown to cluster.

3. Transparency and Interpretable Outputs

By generating explanatory answers alongside each score, QAG-Eval offers clear insight into why
a summary received a particular evaluation. This interpretability supports downstream error
analysis, refinement, and integration into high-stakes environments.

4. Modular and Generalizable Architecture

While the final scoring evaluator was trained primarily on dialogue and news-centered datasets
(SummEval and DialSummEval), the core QAG module, which is responsible for generating
QA reasoning traces, was trained on a diverse set of tasks and domains. This multi-domain pre-
training equips QAG-Eval with broad reasoning capabilities, making the overall architecture
modular and extensible. With additional labeled data or calibration strategies, the full frame-
work could be adapted for other generation tasks such as translation evaluation, captioning, or
more diverse question answering.

Limitations

1. Length-Sensitive Generation

The natural language justifications produced by the QA module can be verbose and vary
significantly in length. While longer responses may reflect deeper reasoning, they also increase
computational overhead and risk diluting the signal with unnecessary elaboration.

2. Prediction Bias

Despite the use of scalar scoring, both QAG-Eval variants exhibit a mild clustering around
3.5-4.0, especially in relevance and consistency dimensions. This is highly likely to stem from the
skewed score distribution in the training data and suggests a potential need for score calibration,
regularization to avoid central bias, or simply increasing the underrepresented sample scores.

3. Data and Training Demands

The framework’s modularity and traceability come at the cost of increased data and training
requirements. QAG-Eval relies on large-scale instruction-style QA /QG datasets, as well as fine-
tuning on domain-aligned evaluation data. This raises the barrier for deployment in low-resource
or rapid prototyping settings.

4. Continual Learning Complexity
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5 Discussion

The continual learning variant, while promising in terms of score distribution generalization,
introduces non-trivial training complexity. Managing replay buffers and avoiding catastrophic
forgetting requires additional infrastructure, which may not be trivial to implement at scale.

5. Sensitivity to Answer Phrasing

As noted in the interpretability discussion, early experiments revealed that QA answers starting

7

with fixed binary phrases (“Yes, the summary..” or “No, the summary..”) led to overfitting
in the scoring model. This suggests that even with modularity, the phrasing and structure
of generated answers significantly impact score quality, an area requiring further control or

normalization.
6. Context Length Constraints

The underlying model architecture (FLAN-T5) imposes a fixed input length limit of 512 tokens,
which restricts the amount of source content and summary that can be encoded together.
In multi-turn dialogues or long documents, this often leads to input truncation, potentially
excluding critical context required for accurate QA generation or score prediction

7. Reliance on Synthetic QA-generation Supervision

The QAG module’s dimension-specific question and answer generation was fine-tuned on
synthetic data generated by GPT-based models rather than human-created evaluative traces.
While this approach enabled scalable training across a wide range of tasks and dimensions,
it introduces potential artifacts. Some questions or answers may exhibit unnatural phrasing,
verbosity, or model-internal reasoning patterns that differ from human evaluators. This could
affect both the quality of reasoning traces and the scoring evaluator’s alignment with truly
human judgment.

5.5 Future Works

While QAG-Eval demonstrates promising results in both interpretability and scoring accuracy,
several areas remain for further development. These directions focus on improving calibration,
generalization, and integration, as well as addressing the architectural and training limitations
discussed previously.

1. Mitigating Mid-Range Score Bias

While QAG-Eval makes full use of the 1-5 scale, both variants show a mild prediction bias
toward central scores, particularly in the 3.0-4.0 range. While this tendency may reflect the
distribution of training data, it also highlights an opportunity to explore different calibration
strategies to help the model express a fuller range of quality distinctions.

2. Unified QAG and Scoring Pipeline

The current framework operates as a two-stage pipeline, with QA generation feeding into a
separate scoring model. Future work could explore a unified architecture capable of performing
both reasoning and score prediction in a single pass. Such an approach could reduce inference
latency, improve consistency between generated explanations and scores, and simplify deploy-
ment in hardware-constrained environments.

3. Human Supervision for QA Traces

Since the current QAG module is trained on synthetic QA data generated by GPT models,
future work could incorporate human-created QA traces for fine-tuning or validation. This
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5.5 Future Works

would help ensure natural phrasing, reduce stylistic artifacts, and further improve alignment
with human judgment.

4. Training on Multi-Domain Evaluation Data

The scoring evaluator is currently limited to two datasets, SummEval and DialSummEval,
which constrains its exposure to diverse summarization styles. Incorporating additional human-
annotated scoring datasets from domains such as legal, scientific, or open-domain summarization
would enable better generalization and more robust performance.

5. Longer Context Support

To overcome the 512-token input limit of FLAN-T5, future iterations could adopt long-context
transformer variants. This would improve the model’s ability to handle multi-turn conversations
or documents with extended context, reducing reliance on input truncation or aggressive
summarization.

6. Generalizability and Robustness

While this thesis primarily focused on in-domain evaluation, an important open question is
how well QAG-Eval generalizes to new domains or noisy inputs. Future work should assess its
robustness under out-of-domain, paraphrasing, or hallucinated content.

7. Model Evaluation Comparison

This thesis focused on a targeted set of evaluative baselines, namely, the ROUGE family,
UniEval, and QAG-Eval. While this allowed for controlled comparisons, future work could
expand the analysis to include a broader range of reference-free metrics, learned metrics, or
current state-of-the-art evaluators. This would offer a more comprehensive understanding of
where QAG-Eval stands in the current evaluation landscape.
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6 Conclusion

This thesis presented QAG-Eval, a modular evaluation framework designed to assess the quality
of abstractive summaries through interpretable reasoning and fine-grained scoring. Motivated by
the limitations of existing black-box evaluators, such as UniEval and reference-based metrics like
ROUGE, QAG-Eval aims to bridge the gap between accuracy and transparency in automatic
evaluation. While the QAG module itself was trained on a diverse set of domains and tasks,
the full framework’s generalization to unseen domains remains an open area for future work.

The framework is built on a two-stage architecture. The first stage generates dimension-specific
questions and answers that reflect human-like reasoning across four evaluation dimensions:
consistency, relevance, coherence, and fluency. The second stage maps these reasoning traces
to scalar quality scores along a 1-5 scale using a separate scoring model. This modular design
allows for both human interpretability and machine-learned precision.

To evaluate the framework, a series of empirical experiments were conducted corresponding
to two primary research questions. The first, RQ1, asked whether QAG-Eval could produce
traceable and interpretable quality judgments. The second, RQ2, focused on the accuracy and
granularity of QAG-Eval’s predicted scores in relation to human annotations.

Findings for RQ1 showed that QAG-Eval successfully produces a complete set of reasoning
traces for every evaluated summary, with 100% QA trace coverage across all test samples. The
generated answers demonstrated strong justification patterns, including high rates of factual
grounding, entity mentions, and linguistic cues aligned with each dimension. The average token
lengths of the answers, typically exceeding 80 tokens, further indicate that the framework
generates elaborate, human-readable explanations rather than binary or overly simplistic judg-
ments. These findings confirm that QAG-Eval fulfills its goal of providing interpretable outputs
with rich, structured reasoning.

Results for RQ2 revealed that QAG-Eval achieves strong correlations with human quality judg-
ments at the sample-level, summary-level, and system-level across all evaluation dimensions.
The multi-task variant achieved the highest average sample-level Spearman and Kendall corre-
lation (p = 0.598, 7 = 435) and performed especially well on dimensions like consistency and
relevance. Additionally, the framework exhibited human-like behavior in its score distribution,
effectively replicating the mid-range density (3.0-4.0) commonly observed in human ratings. In
contrast, baselines such as UniEval and ROUGE either lacked granularity or failed to capture
semantically grounded differences in quality.

Beyond empirical results, this thesis reflected on the framework’s key strengths and limitations.
QAG-Eval’s core contributions lie in its interpretability, dimension-specific reasoning, and
human-like scoring behavior. At the same time, its reliance on synthetic supervision, sensitivity
to phrasing, input length constraints, and mid-range score bias highlight areas for improvement.

Several directions were identified for future work, including unified architectures for QA and
scoring, improved calibration techniques, broader human-annotated training data, and long-
context model support. Additionally, evaluating the framework’s robustness across domains and
input conditions remains an important area for further research.

In conclusion, QAG-Eval offers a promising alternative to existing evaluation metrics by
combining question-answering with scalar score prediction in a transparent and modular design.
While refinements remain, this work takes a meaningful step toward building evaluation
methods that not only approximate human judgment but also make it interpretable.
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Appendix A
A.1. Metric Definitions

This appendix provides formal definitions and formulas for the evaluation metrics used
throughout this thesis. These metrics are applied to assess the alignment between predicted
scores and human annotations of the QAG-Eval models.

A.1.1. Spearman Rank Correlation (p)
Spearman’s p, also known as the Spearman rank-order correlation coefficient, assesses the
monotonic relationship between predicted and true scores by comparing their ranks.

6> d?

:1—
P n(n? —1)

Where:
o d; : The difference between the ranks of the i-th pair of observations.
e n : The number of pairs of observations.

Measures:

e 1 : Perfect monotonic positive correlation
e 0 : No monotonic correlation

e -1 : Perfect monotonic negative correlation

A.1.2. Kendall Rank Correlation Coefficient (t)
Kendall’s t (tau) is a non-parametric measure of rank correlation that assesses the similarity
of the ordering of data when ranked by quantities.

Nc_Nd

in(n—1)

T =

Where:

e N, : The number of concordant pairs (pairs where the ranks for both variables agree in
direction).

e N, : The number of discordant pairs (pairs where the ranks for both variables disagree in
direction).

e n : The total number of observations or pairs.

Measures:

o 1 : Perfect agreement (monotonic positive correlation)

e 0: No agreement (independence)

e -1 : Perfect disagreement (monotonic negative correlation)
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Appendix B

B.1. Score Distribution per Dimension

This appendix provides the figures showing the score distribution per dimension for the training
and validation dataset splits.

B.1.1. Training Score Distribution

Score Distribution per Dimension train
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Figure 20: Each histogram displays the frequency of the human-annotated scores (1-5) for each
of the quality dimensions.
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B.1.2. Validation Score Distribution

Score Distribution per Dimension validation
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Figure 21: Each histogram displays the frequency of the human-annotated scores (1-5) for each
of the quality dimensions.

B.2. Qualitative Reasoning Trace Showcase

This appendix provides examples of summaries with different quality levels. These examples
showcase a low-quality, medium-quality, and high-quality summary and their corresponding
overall score, reflecting an averaged predicted score across dimensions, the source document/
context, model-generated summary, and dimension-specific QA pairs for each dimension.

B.2.1. Showcase Example 1: Low-Quality Summary

e Predicted Overall Score: 2.478
e Source:

Everett: Ralph asked me if i could give him your phone number, is that cool?

Amy: who’s ralph?

Everett: my friend, i introduced him to you at the pub last week, tall, brown

hair, weird laugh...

Amy: oh i remember him now, is he a psycho?

Everett: no
Amy: ok, he can have my number

e Summary:

Everett gave Ralph Amy’s phone number.

CE AVS10 June 4, 2025 66 of 72



B.2. Qualitative Reasoning Trace Showcase

Consistency:

Question-generated:
Does the summary accurately reflect that Everett gave Ralph Amy’s phone
number as stated in the context?

Answer-generated:

Yes, the summary accurately reflects that Everett gave Ralph Amy’s phone
number. The context clearly shows Everett asking Amy if he could give Ralph
his phone number, and Amy agreeing, confirming that Everett gave Ralph Amy’s
phone number. The summary correctly captures this key detail without adding
or omitting critical information.

Relevance:

Question-generated:
Does the summary include all the secondary details about Ralph’s identity and
the context of Everett giving Ralph Amy’s phone number?

Answer-generated:

No, the summary does not include all the secondary details about Ralph’s identity
and the context of Everett giving Ralph Amy’s phone number. While it mentions
Everett giving Ralph Amy’s phone number, it omits important context such
as Ralph being Everett’s friend, his tall, brown hair, weird laugh, and Amy’s
confusion about who he is and whether he is a psycho. These details are crucial
for understanding the identity and context of the exchange.

Coherence:

Question-generated:
Does the summary present the sequence of events and information about Ralph’s
phone number in a clear and organized manner?

Answer-generated:

Yes, the summary presents the sequence of events and information about Ralph’s
phone number in a clear and organized manner. It begins with Everett giving
Ralph Amy’s phone number, which naturally follows from the conversation where
Everett introduces Ralph at the pub and asks if he could give him his phone
number. The summary logically follows with Amy’s reaction and the agreement
to give Ralph Amy’s phone number, maintaining coherence throughout.

Fluency:

Question-generated:
Does the summary use clear and grammatically correct language that makes it
easy to read and understand?

Answer-generated:
Yes, the summary uses clear and grammatically correct language that makes it
easy to read and understand. The sentence is straightforward, concise, and free
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of awkward phrasing or grammatical errors. It effectively conveys the main point
without unnecessary complexity or complexity, contributing to good fluency.

B.2.2. Showcase Example 2: Mid-Quality Summary
e Predicted Overall Score: 3.638
e Source:

Former Holland forward and assistant coach Patrick Kluivert has made a winning
start in World Cup qualifying as coach of Curacao. The Caribbean island team
advanced to the second qualifying round in CONCACAF for the 2018 tournament
late Tuesday. Curacao drew 2-2 in a second-leg match at Montserrat to win 4-3 on
aggregate. Kluivert’s team won 2-1 on Saturday in Willemstad. Patrick Kluivert
has helped Curacao progress to the next stage of 2018 World Cup qualification
Former Holland assistant Kluivert (far right) worked with Louis van Gaal (centre)
at the 2014 World Cup The first-round encounter was headed to extra time on
Tuesday until former Holland Under 21 international Charlton Vicento scored in
the 87th minute, five minutes after coming on as a substitute. Curacao face Cuba
in the next round, on June 8 and 16. Kluivert, whose mother is from Curacao,
was a World Cup losing semi-finalist in 1998 as a player, and last year as assistant
to coach Louis van Gaal.

e Summary:
Kluivert’s side won 2-1 on Saturday in Willemstad
Consistency:

Question-generated:
Does the summary accurately reflect that Patrick Kluivert’s side won 2-1 on
Saturday in Willemstad, as stated in the context?

Answer-generated:

Yes, the summary accurately reflects that Patrick Kluivert’s side won 2-1 on
Saturday in Willemstad. The context confirms that Kluivert’s team won 2-1 on
Saturday in Willemstad, which aligns with the summary’s statement. There are
no hallucinated or unsupported details introduced in the summary.

Relevance:

Question-generated:
Does the summary capture the key details about Patrick Kluivert’s victory and
the significance of the match as described in the context?

Answer-generated:

Yes, the summary captures the key details about Patrick Kluivert’s victory
and the significance of the match. It mentions that Kluivert’s side won 2-1 on
Saturday in Willemstad, which aligns with the context mentioning the victory
and the significance of the match. However, it omits important specifics such as
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the match outcome (2-2 draw, 4-3 aggregate), the coach’s background, and the
team’s progression to the second qualifying round. Including these details would
provide a fuller understanding of the match’s significance.

Coherence:

Question-generated:
Does the summary present the information in a clear and logically connected
sequence that makes it easy to understand the sequence of events?

Answer-generated:

Yes, the summary presents the information in a clear and logically connected
sequence. It begins by introducing Patrick Kluivert’s winning start in World Cup
qualifying, then explains the match outcome (2-1 win in Willemstad), followed
by the team’s progress to the second qualifying round, and concludes with the
significance of the victory. This progression makes it easy to understand the
sequence of events.

Fluency:

Question-generated:
Does the summary read smoothly and naturally without awkward phrasing or
grammatical errors?

Answer-generated:

Yes, the summary reads smoothly and naturally without awkward phrasing or
grammatical errors. The sentences are clear, concise, and well-structured, making
it easy to understand. The use of punctuation and conjunctions (e.g., “Kulivert’s
side won 2-1 on Saturday in Willemstad”) contributes to natural flow and
readability. Overall, it is fluent and well-written.

B.2.3. Showcase Example 3: High-Quality Summary
e Predicted Overall Score: 4.591
e Source:

Peter: Did you hear what happened at school today?

Jack: No?

Peter: There’s been kind of an emergency, gas leak or something.
Jack: Oh, I hope it’s nothing serious. Did they called fire units?
Peter: Yep, three engines and ambulance. It turned out to be a drill.
Jack: It’s better this way than the other.

e Summary:

There was an emergency at school today. Three engines and ambulance came,
but it was a drill.
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Consistency:

Question-generated:
Does the summary accurately reflect that there was an emergency at school and
that three engines and ambulance came, as stated in the original conversation?

Answer-generated:

Yes, the summary accurately reflects the original conversation. It correctly states
that there was an emergency at school, that three engines and ambulance came,
and that it was a drill. The summary aligns with the dialogue without adding or
omitting key details.

Relevance:

Question-generated:
Does the summary include all the secondary details about the emergency, ambu-
lance response, and drill that are present in the conversation?

Answer-generated:

Yes, the summary includes all the secondary details about the emergency, ambu-
lance response, and drill. It correctly states that three engines and ambulance
came and that it was a drill, which aligns with the conversation where Peter
confirms the emergency was a gas leak and fire units called fire units. The
summary captures the essential points without omitting any critical information.

Coherence:

Question-generated:
Does the summary present the events in a clear and logically connected sequence
that makes it easy to understand the sequence of events?

Answer-generated:

Yes, the summary presents the events in a clear and logically connected sequence.
It begins by stating the emergency at school, then explains the presence of three
engines and ambulance, followed by the fact that the drill was a drill. This
sequence flows naturally from the emergency to the ambulance arrival, making
it easy to understand the sequence of events.

Fluency:

Question-generated:
Does the summary use clear and grammatically correct language throughout?

Answer-generated:

Yes, the summary uses clear and grammatically correct language throughout. The
sentences are straightforward and easy to understand, with proper punctuation
and no awkward phrasing. The summary effectively conveys the information
without grammatical errors, contributing to good readability and fluency.
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C.1. Tables of Correlation Levels RQ2

This appendix provides the tables of sample-level, summary-level, and system-level correlation
for RQ2. Each table provides an overview of the Spearman and Kendall correlation for each

quality dimension as well as the average overall correlation.

C.1.1. Sample-Level Correlation

. Coherence Fluency Consistency  Relevance Average
Metrics
e T e T e T e T e T

Similarity-based Metrics
ROUGE-1 | 0.379 0.269 | 0.300 0.209 | 0.166 0.108 | 0.182 0.125 | 0.355 0.243 |
ROUGE-2 | 0.278 0.198 | 0.259 0.183 | 0.190 0.130 | 0.177 0.126 | 0.334 0.230 |
ROUGE-L | 0.385 0.274 | 0.325 0.226 | 0.100 0.069 | 0.096 0.067 | 0.305 0.208 |
Multi-dimensional Evaluators
UniEval (Continual) | 0.184 0.127 | 0.319 0.223 | 0.077 0.056 | 0.245 0.166 | 0.344 0.234 |
UniEval( Multi-Task) | 0.183 0.129 | 0.319 0.221 | 0.049 0.036 | 0.233 0.157 | 0.364 0.247 |
QAG-Eval (Continual) | 0.615 0.454 | 0.533 0.387 | 0.581 0.434 | 0.576 0.427 | 0.548 0.392 |
QAG-Eval (Multi-Task) | 0.664 0.497 | 0.499 0.360 | 0.606 0.449 | 0.612 0.460 | 0.598 0.435 |

Table 14: Sample-level Spearman (p) and Kendall-Tau (1) correlations of different metrics on the
held-out test dataset. Bold numbers indicate the best performing metric of the its corresponding

dimension column.

C.1.2. Summary-Level Correlation

R Coherence Fluency Consistency  Relevance Average
Metrics
P T P T P T P T P T

Similarity-based Metrics
ROUGE-1 | 0.390 0.376 | 0.179 0.182 | 0.044 0.040 | 0.133 0.140 | 0.226 0.229 |
ROUGE-2 | 0.311 0.307 | 0.167 0.168 | 0.008 0.005 | 0.046 0.048 | 0.139 0.126 |
ROUGE-L | 0.511 0.493 | 0.288 0.288 | 0.132 0.136 | 0.165 0.164 | 0.260 0.255 |
Multi-dimensional Evaluators
UniEval (Continual) | 0.201 0.180 | 0.148 0.133 | 0.211 0.216 | 0.238 0.233 | 0.160 0.165 |
UniEval( Multi-Task) | 0.121 0.109 | 0.158 0.145 | 0.244 0.248 | 0.184 0.182 | 0.213 0.206 |
QAG-Eval (Continual) | 0.540 0.522 | 0.305 0.292 | 0.283 0.260 | 0.419 0.412 | 0.318 0.307 |
QAG-Eval (Multi-Task) | 0.469 0.451 | 0.286 0.270 | 0.220 0.205 | 0.420 0.402 | 0.303 0.284 |

Table 15: Summary-level Spearman (p) and Kendall-Tau (<) correlations of different metrics
on the held-out test dataset. Bold numbers indicate the best performing metric of the its

corresponding dimension column.
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C.1.3. System-Level Correlation

X Coherence Fluency Consistency  Relevance Average
Metrics
P T P T P T P T P T

Similarity-based Metrics
ROUGE-1 | 0.647 0.500 | 0.752 0.552 | -0.099 -0.085 | 0.018 0.000 | 0.369 0.274 |
ROUGE-2 | 0.492 0.380 | 0.596 0.442 | 0.054 0.044 | 0.132 0.092 | 0.411 0.301 |
ROUGE-L | 0.660 0.514 | 0.764 0.557 | -0.116 -0.071 | -0.016 -0.014 | 0.382 0.278 |
Multi-dimensional Evaluators
UniEval (Continual) | 0.451 0.315 | 0.501 0.364 | 0.099 0.060 | 0.244 0.168 | 0.382 0.297 |
UniEval( Multi-Task) | 0.405 0.274 | 0.611 0.480 | -0.049 -0.018 | 0.240 0.164 | 0.451 0.310 |
QAG-Eval (Continual) | 0.773 0.560 | 0.815 0.608 | 0.814 0.628 | 0.825 0.635 | 0.715 0.549 |
QAG-Eval (Multi-Task) | 0.799 0.615 | 0.846 0.658 | 0.840 0.669 | 0.801 0.621 | 0.733 0.572 |

Table 16: System-level Spearman (p) and Kendall-Tau (<) correlations of different metrics on the
held-out test dataset. Bold numbers indicate the best performing metric of the its corresponding

dimension column.
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