
A Study of RAuxStore
Analyzing the Performance of RAuxStore

Through Benchmarking

Mads Lildholdt Hansen,
Nikolaj Kofod Krogh

Master’s Thesis

S
T

U

D
E

N
T R E P O R T

Department of Computer Science
Software

Selma Lagerløfs Vej 300
9220 Aalborg Ø

www.aau.dk

Title:
A Study of RAuxStore

Project Period:
Spring Semester 2025

Project Group:
cs-25-ds-10-01

Participants:
Mads Lildholdt Hansen
Nikolaj Kofod Krogh

Supervisor:
Josva Kleist

Number of Pages: 51

Date of Completion:
May 15, 2025

Abstract:

This thesis uses a synthetic benchmark to
analyze the performance of the RAuxStore,
a new auxiliary store developed to replace
the TAuxStore in the ATLAS experiment
at CERN. The RAuxStore is the RNTu-
ple implementation of an auxiliary store,
and the RNTuple data format is designed
to improve I/O performance and reduce
storage size compared to TTree, the for-
mat used by the existing TAuxStore. Ini-
tial benchmarking revealed surprising re-
sults, with the RAuxStore being outper-
formed by the TAuxStore. This thesis
investigates the performance bottlenecks
of the RAuxStore with a benchmark de-
signed according to principles of well-
defined benchmarking. We successfully
identified bottlenecks in the RAuxStore;
however, due to ongoing updates to AT-
LAS’ software, we cannot definitively con-
clude whether these issues still exist in the
current software.

The content of this report is freely available, but its publication (with source reference) is allowed only after arrangement

with the authors.

http://www.aau.dk

Preface

Mads Lildholdt Hansen
mlha20@student.aau.dk

Nikolaj Kofod Krogh
nkrogh20@student.aau.dk

Aalborg University, May 15, 2025

i

Summary

Dansk

CERN, den europæiske organisation for nuklearforskning, undersøger universets funda-
mentale partikler. The Large Hadron Collider (LHC), verdens største og mest kraftfulde
partikelaccelerator, ligger på CERN. Ved LHC er der fire eksperimenter, der indsamler
data: ATLAS, CMS, LHCb og ALICE.
I vores tidligere projekt arbejdede vi på ATLAS-eksperimentet. Ligesom de andre LHC-
eksperimenter gemmer ATLAS data i et format kaldet TTree, udviklet af ROOT som er et
dataanalyse framework til højenergifysik. TTree formatet blev udviklet i 1990’erne og er
ikke optimeret til moderne hardware. Derfor har ROOT udviklet et nyt dataformat kaldet
RNTuple, som er designet til at være mere effektivt end TTree. RNTuple forventes at være
klar til produktionsbrug i ATLAS-eksperimentet i Run 4, der forventes at starte i 2030.
I denne rapport bygger vi videre på vores tidligere projekt med titlen Further Work on
RNTuples in ATLAS, hvor vi udviklede RAuxStore som er RNtuple implementeringen
af TTree’s auxiliary store, TAuxStore. En auxiliary store er en datastruktur til at gemme
auxiliary data, som er data der ikke er en del af hoveddatastrukturen, men som kan tilføjes
dynamisk, hvis det er nødvendigt for en analyse. Gennem eksperimenter med RAuxStore i
vores tidligere arbejde opdagede vi, at dens perfomance ikke levede op til forventningerne
sammenlignet med TAuxStore.
Vores primære fokus i denne rapport har derfor været at undersøge årsagen til disse per-
fomance problemer i RAuxStore ved at gennemføre en række eksperimenter. Disse eksper-
imenter er udført med et benchmark, som oprindeligt blev skabt i vores tidligere projekt.
I denne rapport har vi forbedret den eksisterende benchmark baseret på benchmark teori
og på, hvordan man skaber et benchmark, der er både interpretable og reproducible. En
benchmark er interpretable, hvis det giver tilstrækkelig information, så andre forskere kan
forstå det og drage deres egne konklusioner. Det er reproducible, hvis andre forskere kan
gentage resultaterne. Vores benchmark kan klassificeres som syntetisk, og vi vurderer, at
den opfylder kravene til at være både interpretable og reproducible.
Med denne benchmark har vi kunnet identificere performance bottlenecks i RAuxStore og
har løst én af dem. Vi har også lavet et kernel-benchmark for en specifik del af auxiliary
stores for at undersøge den tid, det tager at indlæse en entry for en bestemt branch eller et
bestemt field. Her fandt vi, at indlæsningstiden for nogle entries var op til en faktor 1000
langsommere end medianen.

ii

Alle vores eksperimenter blev udført på et SSD, men for at teste på et andet lagermedium
gennemførte vi dem også på en HDD. Ved dette fandt vi, at performance var en smule
bedre på SSD end på HDD. Vi konkluderer dog, at lagermediet ikke har en meningsfuld
indvirkning på resultaterne.
Vi har identificeret problemer med performance i RAuxStore, og de relaterer sig hoved-
sageligt til specifikke entries i eventdata. Vi har ikke løst alle problemer, blandt andet
fordi vi ikke ved, om de stadig eksisterer. ATLAS’ software er omfattende, har mange
aktive bidragsydere, og koden ændres konstant. For at teste den version af RAuxStore, vi
arbejdede med, skabte vi et snapshot af koden på et bestemt tidspunkt. Siden da er der
foretaget store ændringer i auxiliary stores, og nogle af de problemer, vi opdagede, kan
allerede være blevet løst.

English

CERN, the European Organization for Nuclear Research, is exploring the fundamental
particles of the universe. The Large Hadron Collider (LHC), the world’s largest and most
powerful particle accelerator, is located at CERN. At the LHC, there are four experiments
collecting data: ATLAS, CMS, LHCb, and ALICE.
In our previous project, we worked on the ATLAS experiment. Along with the other LHC
experiments, ATLAS stores data in a format called TTree, which was developed by ROOT,
a data analysis framework for high-energy physics. The TTree data format was developed
in the 1990s and is not optimized for modern hardware. Therefore, ROOT has developed
a new data format called RNTuple, which is designed to be more efficient than TTree. The
RNTuple format is expected to be ready for production use in the ATLAS experiment by
Run 4, which is scheduled to start in 2030.
In this thesis, we build upon our earlier project titled Further Work on RNTuples in ATLAS,
in which we developed the RAuxStore, the RNTuple-based implementation of TTree’s aux-
iliary store, TAuxStore. An auxiliary store is a data structure used to store auxiliary data,
which is data that is not part of the main data structure but can be added dynamically, if
needed for analysis. Through experimenting on the RAuxStore in our previous work, we
discovered that it did not perform as expected in comparison to the TAuxStore.
Our main focus for this thesis has thus been to investigate the reason for these performance
issues of the RAuxStore by conducting a series of experiments. These experiments have
been conducted using a benchmark initially made in our previous project. In this thesis,
we have improved upon the existing benchmark based on the theory of benchmarking
and on how to create a benchmark that is interpretable and reproducible. A benchmark
is interpretable if it provides enough information for other researchers to understand it
and draw their own conclusions. It is reproducible if the results can be replicated by other

iii

researchers. We can classify our benchmark as a synthetic benchmark, and we deem that
it meets the requirements of being both interpretable and reproducible.
With this benchmark, we have been able to identify performance bottlenecks in the RAuxStore
and have solved one of them. We have also created a kernel benchmark for a specific part
of the auxiliary stores to investigate the time it takes to load an entry for a specific branch
or field. Here, we found that the time taken for some entries was up to a factor of 1000
slower than the median time.
Our experiments were all performed on an SSD, but to test on a different storage medium,
we also performed them on an HDD. By doing this, we found that the performance was
slightly better on an SSD than on an HDD. However, we conclude that the storage medium
does not have a meaningful impact on the results.
We have identified problems regarding the performance of the RAuxStore, and they are
mainly related to specific entries in the event data. We have not solved all problems, in
part because we do not know if they are still problems. ATLAS’ software is huge, has
many active contributors, and the code is constantly changing. To test the version of
the RAuxStore we worked on, we created a snapshot of the code at a specific point in
time. Since then, major changes have been made to the auxiliary stores, and some of the
problems we discovered might already have been dealt with.

iv

Contents

Contents

1 Introduction 1

2 Problem Definition 6

3 Related Work 7
3.1 Comparing the Performance of the RNTuple to the TTree 7
3.2 Benchmarking of Computer Systems . 7

4 Background 10
4.1 TTree . 10
4.2 RNTuple . 11
4.3 Auxiliary Store . 11
4.4 Benchmark . 14
4.5 Performance Measurement Techniques . 15

5 Benchmark Analysis 17
5.1 Analyzing the Benchmark Code . 17
5.2 Applying the Benchmark Theory . 21

6 Performance Measuring 23
6.1 Analyzing Performance Bottlenecks . 23
6.2 Why RAuxStore is Faster Without a Warmup Phase 25
6.3 First RAuxStore Run is Faster . 27
6.4 SSD vs. HDD . 28
6.5 Impact of Different Seeds . 29
6.6 RNTuple Throughput . 31

7 Benchmark Improvements 32
7.1 Initial Improvements . 32
7.2 Redesigned Benchmark . 33

8 Discussion 37

9 Conclusion 39

v

Contents

10 Future Work 40
10.1 Application Benchmark . 40
10.2 Refactoring Our Benchmark . 40

Bibliography 41

A Performance Measuring 46

B Benchmark Tables on HDD 47

C Comparison Tables 49

vi

Chapter 1. Introduction

1 — Introduction

The Conseil Européen pour la Recherche Nucléaire (CERN), or the European Council for
Nuclear Research, was founded in 1954. CERN is focused on studying the fundamental
particles that make up the universe [1]. This is studied by accelerating particles to high
speeds and colliding them into either a fixed target or other particles using a particle ac-
celerator [2]. CERN built its first accelerator, the 600 MeV Synchrocyclotron (SC), in 1957,
which accelerated particles by repeatedly applying a moderate voltage as a particle came
around in its circular orbit [3, 4]. For more than 70 years, CERN has constructed six
synchrotrons, a type of circular accelerator, for High Energy Physics (HEP) research: the
Proton Synchrotron (PS), the PS Booster, the Intersecting Storage Rings (ISR), the Super
Proton Synchrotron (SPS), the Large Electron-Positron Collider, and the Large Hadron
Collider (LHC). Additionally, CERN has built five synchrotrons for particle beam accu-
mulation and preparation: the Antiproton Accumulator (AA), the Antiproton Cooler, the
Low Energy Ion Ring (LEIR), the Antiproton Decelerator (AD), and the Extra Low ENergy
Antiproton ring (ELENA). Most of these synchrotrons remain in use today, as shown in
Figure 1.1 (p. 2) [5, 4].
The largest and most powerful accelerator in the world is CERN’s LHC, which uses super-
conducting magnets to accelerate particles to almost the speed of light [1, 6]. It is located
100 m underground, has a circumference of 27 km, and hosts four main experiments: AT-
LAS, CMS, ALICE, and LHCb [7]. ATLAS and CMS are general-purpose detectors, ALICE
focuses on heavy-ion physics, and LHCb specializes in the study of bottom quarks [1].
ATLAS and CMS are larger, with ATLAS being the world’s largest particle detector [8].
The ATLAS codebase consists of at least 4 million lines of code, developed over 15 years
by more than 3000 contributors from around the world [9, 10].
Each operational year, the LHC dedicates one month to heavy-ion collisions, with the
remaining time focused on proton-proton collisions [11]. To fill the LHC with protons,
CERN burns hydrogen gas to extract them [1]. The LHC relies on a sequence of smaller
accelerators, including the Linear Accelerator (LINAC) 4, the PS, the PS Booster, and the
SPS, to provide protons at 450 GeV, which are then injected into the LHC [4]. Since these
accelerators are smaller than the LHC, the process is repeated multiple times until the LHC
beam is filled with proton bunches [1]. A collection of protons is called a bunch, where
each bunch contains approximately 1011 protons. The bunches are separated by 25 ns,
which allows for around 40 million collisions per second. The beam contains multiple
bunches of protons, and in the LHC the beam’s capacity is around 2,800 proton bunches.
Once the beam reaches a peak energy of around 7 TeV, the experiments begin recording

1

Chapter 1. Introduction

Figure 1.1: CERN’s accelerator complex [5].

data, continuing until the beam has deteriorated [1].
The LHC has been operational since 2010 and has operated in phases, also known as runs.
Between runs, there are long shutdown periods during which upgrades can be made to
the LHC. Run 1 lasted from 2010 to 2013, Run 2 lasted from 2015 to 2018, and Run 3 began
in 2022 and is expected to continue until 2026. Run 4, also known as the High Luminosity
LHC (HL-LHC), is scheduled to begin in 2030 and last until 2033 [12, 13, 14].
Luminosity is a measure of a collider’s performance, with higher luminosity correspond-
ing to a greater number of collisions. It increases with higher beam intensity — that is
the number of particles in the beam — which leads to higher collision frequency but can
also be enhanced by squeezing the beam into a smaller cross-section, thereby raising the
probability of collisions [1]. With the HL-LHC, the luminosity is anticipated to increase by
a factor of 5, which means an even larger amount of data is expected to be generated by
the LHC [1].
Each collision in the LHC is recorded as an event, which is stored and processed by the
different experiments. However, with 40 million collisions occurring every second in the
detectors, it is impossible to store the full volume of data produced. To address this
challenge, a system known as the trigger has been developed, where both ATLAS and
CMS have independently designed their own trigger systems [15, 16]. The ATLAS trigger
system operates in three stages: Level-1 (L1), Level-2 (L2), and the event filter. The L1 is the

2

Chapter 1. Introduction

ATLAS
Detector

(Raw Data)

Data
Acquisition

System

Trigger System

TTree
(Storage)

Event Analysis

Figure 1.2: ATLAS’ event data flow.

first and fastest filtering step. It uses only basic detector data to make quick decisions and
can handle up to 75,000 events per second. The event processing time for the L1 must not
exceed 2.5 µs, a requirement met using custom-built hardware. The L2 uses more detailed
detector information to refine event selection, and it focuses on specific regions of interest
identified by the L1. The L2 reduces the event rate to below 3,500 events per second with
an average event processing time of 40 ms. The event filter uses the full granularity of the
detector information to decide which events to store. It reduces the data rate further to
about 200 events per second, with each event taking around four seconds to process [15].
The Data Acquisition System (DAQ) collects event data from the detector at the rate set
by the L1. It sends specific data to the L2 when requested, focusing on regions of interest
identified by the L1. If an event passes the L2 selection, the DAQ assembles the full event
and transfers it to the event filter. Events that pass this final selection step are then saved
for further analysis [15].
Events are stored in the TTree format, a data format for HEP developed by ROOT [17].
In HEP, data from an event is structured as a record containing multiple collections of
related information. For example, a single event may include a collection of particles, each
with properties such as momentum and energy; a collection of jets, which are clusters of
particles moving in a similar direction; and a collection of tracks, representing the paths
particles take through the detector [18]. ROOT’s TTree format supports a columnar data
layout for nested sub-records and collections, which is ideal for HEP analysis that often
requires access to many events, but only a subset of the information stored in them [18, 19].
Figure 1.2 (p. 3) illustrates the data flow within ATLAS, from the initial collision detection
to the final storage format used for physics analysis.
To archive data, CERN uses the Worldwide LHC Computing Grid (WLCG), which is a
global collaboration of computer centers and universities that provides the necessary com-
puting resources for the experiments at CERN. The WLCG is divided into three tiers:
Tier0, Tier1, and Tier2. The Tier0 center is located at CERN and is responsible for the coor-
dination of the overall grid, where it must be able to handle the data streams coming from
the experiments in the LHC. The incoming data must be archived on tape for long-term
storage, and a second copy must be made at a Tier1 center. Tier1 centers receive a portion

3

Chapter 1. Introduction

of both raw and reconstructed data from Tier0 for long-term storage, while also provid-
ing storage for simulated data. Additionally, they provide data-intensive analysis facilities
that support large-scale processing tasks. Each Tier2 center, which serves as a dedicated
analysis facility for a single experiment, is associated with a Tier1. The Tier2 centers also
provide computing resources for simulations, where the simulated data is sent to Tier1 for
storage [20, 21].
The total global storage capacity of the WLCG is around 1.65 exabyte, with around 40% of
it being on disk and 60% on tape [21]. The WLCG has multiple different storage software
systems, where two of these are called EOS Open Storage (EOS) and CERN Tape Archive
(CTA), and they are both used at the Tier0 site [22, 21, 23]. The EOS is a disk-only storage
system and has around 650 petabytes of storage capacity from over 60,000 hard drives.
It is designed to be a low-latency file system that is used for physics analysis [21]. The
CTA is a tape storage system, implemented as an EOS backend. It relies on dedicated EOS
instances to manage temporary disk storage and the movement of files between the disk
pools and the tape library [24].
The TTree format has been a reliable way to store HEP data for over 20 years, with more
than 1 exabyte of data stored in this format. However, it was developed before modern
hardware and storage technologies like NVMe SSDs and object stores existed and thus
does not fully exploit their capabilities [19]. With the HL-LHC upgrade and the expected
increase in data, a new data format is needed. To meet this need, ROOT has developed
a new data format called RNTuple, which is the new columnar data format that should
replace the TTree format in the long term for the experiments at LHC. RNTuple is built
to take full advantage of modern hardware and storage technologies. Its implementation
leverages new features available in recent C++ standards like smart pointers to enforce
clear ownership and lifetime management of objects. This contributes to lower runtime
overhead and results in simpler, more maintainable code [19, 25].
RNTuple improves I/O performance and reduces the storage size of data on persistent
storage media [19]. One of the ways it achieves this is by using little-endian encoding for
integer and floating-point numbers, aligning with the byte order of most popular archi-
tectures. This enables direct memory mapping of the data, improving data compression
[19]. Before the RNTuple can become the main data format in Run 4 for ATLAS, it must
be implemented in the ATLAS software [26].
Athena is part of the ATLAS offline software and is designed to process events from the
trigger and the DAQ, deliver the processed data to physicists for analysis, and provide
the necessary tools for conducting that analysis. To achieve this, technical requirements
have been established, such as constraints on processing time and memory consumption
per event to remain within financial limits. Additionally, physicists’ requirements encom-
pass the ability to accurately reproduce details of the underlying processes based on data

4

Chapter 1. Introduction

collected by the detector [27].
Athena is responsible for nearly all production workflows in ATLAS, including event gen-
eration, digitization, simulation, and reconstruction [26, 27]. This results in a huge code-
base, as well as a high level of complexity, necessitating a modular, robust, and flexible
design [26, 27]. Athena follows a component-based model, where the software is con-
structed using plug-in components defined by configuration files. These components can
be replaced or adapted as requirements evolve throughout the lifetime of the experiment
[27].
To prepare for Run 4, work has been carried out towards ensuring that the TEvent class
— an interface for handling event data — supports data in not just the TTree format but
also the RNTuple format. Additionally, an RAuxStore has been created to provide auxiliary
storage support for the RNTuple. The RAuxStore has been created based on the TAuxStore

— the auxiliary store that uses the TTree format — and offers the same functionality, but
specifically for RNTuples [28].

5

Chapter 2. Problem Definition

2 — Problem Definition

In our previous work, we created the RAuxStore, the RNTuple implementation of TTrees’
TAuxStore [28]. Here, we conducted a benchmark experiment to show the performance
of the RAuxStore whilst comparing its performance to that of the TAuxStore. Given that
RNTuple leverages modern technologies to achieve better I/O performance and lower
runtime overhead, we expected the RAuxStore to outperform the TAuxStore. However,
the results showed that the TAuxStore had the best overall performance [28]. Although
the implementation of the RAuxStore along with unit tests for it has been merged with
the ATLAS repository, the benchmark code is only available in our fork of the ATLAS
repository1, along with optimizations made for the RAuxStore.
We, therefore, aim to investigate why RAuxStore did not perform as expected. Through
performance measuring, we will identify performance bottlenecks and assess whether the
observed differences are due to inefficiencies in the RAuxStore implementation itself or po-
tential inefficiencies within ROOT’s handling of RNTuples. We will then improve upon the
possible inefficiencies for the RAuxStore. Otherwise, if the problems lie with the RNTuple,
we will inform and work with ROOT to try to solve them. To ensure that our optimiza-
tions are effective, we will design a well-defined benchmark to measure and validate the
impact of our improvements.
This leads us to our problem statement:

How can we identify bottlenecks and improve the performance of the RAuxStore, and
how can we validate these improvements through a well-defined benchmark?

1https://gitlab.cern.ch/mads/athena

6

Chapter 3. Related Work

3 — Related Work

In this chapter, we examine work related to the analysis of the RAuxStore and benchmark-
ing, including comparing the performance of other parts of the RNTuple and the TTree, as
well as investigating the benchmarking of computer systems.

3.1 Comparing the Performance of the RNTuple to the TTree

A multitude of papers have compared the performance pertaining to RNTuples. Most of
these papers, however, compare the performance of the RNTuple to the TTree [29, 30, 26,
18], as opposed to comparing the performance of an implementation of an element that
uses the RNTuple/TTree as we did in our previous research with the RAuxStore [28].
[26] benchmarks the storage efficiency of RNTuple and TTree in ATLAS software. They
use files with event data stored in either TTree or RNTuple format, where the ones in the
RNTuple format are around 20% smaller than the corresponding ones in TTree format.
[29] provides both a qualitative and an experimental comparison of RNTuple, TTree, and
two other I/O libraries: HDF5 and Apache Parquet. In the qualitative comparison, they
examine the support for different compression algorithms. While all libraries support
some form of compression, the availability of native compression algorithms varies sig-
nificantly. [29] finds that the required compression methods they need are supported by
TTree and are under development for RNTuple. In the experimental comparison, they fo-
cus on throughput and compression by analyzing file size. Throughput was tested with a
file that fits within the I/O library on an HDD, SSD, and CephFS — a distributed file sys-
tem. The results show that the RNTuple outperforms all other libraries, with particularly
high performance on SSDs. For data compression, they find that the RNTuple achieves the
best results, producing the smallest file sizes among all tested libraries.
[30] and [18] both compare throughput and storage efficiency for the RNTuple and the
TTree, showing significant improvements for the RNTuple. Additionally, these experi-
ments have been conducted with realistic benchmarks mimicking actual analysis scenar-
ios.

3.2 Benchmarking of Computer Systems

[31] looks at the importance of standardizing techniques for benchmarking computer sys-
tems. They mention reproducibility, a main principle of the scientific method, to help

7

Chapter 3. Related Work

validate claims. They explain that a program’s performance depends on various factors,
including the input, the compiler, the runtime environment, the hardware, and the mea-
surement techniques. If any of these aspects are missing or inadequately described in an
experimental design, the results cannot be reproduced. In such cases, the findings may
be incorrect or even misleading as verification becomes impossible. To address this, the
concept of interpretability is introduced, which is less strict than reproducibility. An ex-
periment is considered interpretable if it provides enough information for other scientists
to understand it and draw their own conclusions [31].
To evaluate the state of benchmarking in research, the authors analyzed 120 papers from
three top conferences, selecting 10 random papers from each conference in the years from
2011 to 2014. Their findings indicate that while most papers report hardware details,
software environments are often omitted. Additionally, they find that most papers are
hard to interpret and easy to question, because measurement techniques and reporting
methods are poorly described [31].
To address these shortcomings, a set of rules is proposed. If applicable, these should
be followed to help researchers, reviewers, and readers in designing, conducting, and
evaluating empirical studies. The rules are categorized into four key areas: state of the
practice, analyzing experimental data, experimental design, and reporting results [31].
Regarding the state of the practice, they encourage authors to report units unambiguously.
For instance, they recommend following the PARKBENCH [32] committee recommenda-
tions using B for bytes and b for bits. Similarly, base-2 units should follow the IEC standard
to avoid confusion with base-10 units, which adds the prefix i e.g. MiB for mebibytes. Fur-
thermore, they stress the importance of not cherry-picking results but instead reporting all
of them, even if they do not support the desired conclusion [31].
When analyzing experimental data, careful consideration should be given to how results
are summarized. Deterministic outcomes can be described using simple algebraic meth-
ods, whereas with nondeterministic data, statistical approaches are more appropriate.
Moreover, they state that execution time is often the most meaningful metric for perfor-
mance assessment due to its undebatable meaning [31].
Experimental design should prioritize reproducibility or, at the very least, interpretability.
Significant setup parameters must be explicitly stated, and the measurement environment
should minimize interference to reduce variability in results. Some programs establish
their working state on demand, and thus, the first run of a program can be slower than the
following runs, in which case, a warmup run should be considered. Additionally, if the
program is small and executed repeatedly, the impact of a warm vs. cold cache should be
considered. A small program’s data may fit entirely in the cache, artificially accelerating
execution and yielding performance results that do not reflect real-world conditions [31].
When presenting results, the goal should be to communicate system behavior clearly and

8

Chapter 3. Related Work

enable the reproduction of results. They encourage the use of visual representations, such
as graphs. Careful thought should go into what is being shown in the graph as well as
how it is presented. As a general rule, sufficient data should be included to ensure a
comprehensive understanding, and lines connecting measurements should only be used
when trends are evident [31].

9

Chapter 4. Background

4 — Background

4.1 TTree

The TTree data structure is specifically designed to store large collections of objects of the
same class. It is optimized to minimize disk usage while maximizing data access speed
because the most common task for data access in HEP is the selective, sparse scanning of
data [33, 34]. In addition to TTrees, ROOT provides the TNtuple class, a specialized form
of TTree that stores only floating-point values. In contrast, a TTree can accommodate a
wide range of data types, including simple data types, arrays, and objects [33]. The TTree
and TNtuple classes form the foundation of the tree system. The goal with the tree system
was to provide a unified data model, allowing the same language and query style to be
used across all experiments [17]. A visual representation of the TTree data structure can
be seen in Figure 4.1 (p. 10). A TTree consists of branches, where the structure of branches
allows data to be organized in a way that optimizes access patterns based on expected
usage. When two variables are independent and unlikely to be accessed together, they
should be stored in separate branches. Vice versa, when variables are closely related, such
as the coordinates of a point, storing them within the same branch improves efficiency. A
branch contains individual data elements, known as leaves, which hold the actual values
[33].
TTrees support flexible storage by allowing branches to be written to separate files. By
default, each branch is written into a separate buffer within the file. This allows efficient
iteration over a branch’s data by requiring only the reading of its associated buffer [34].
Branches can also be split into sub-branches. If the number of branches becomes too
high, adjusting the buffer size is necessary to maintain performance. In terms of reading,

TTree

Branch 1

Leaf 1.1 Leaf 1.2

Branch 2

Leaf 2.1 Leaf 2.2

Branch 3

Leaf 3.1 Leaf 3.2

TFile 1

TFile n

... TChain (Logical TTree)

Figure 4.1: TTree data structure for a tree with a depth of two.

10

Chapter 4. Background

split branches offer faster access since variables of the same type are stored consecutively,
avoiding redundant type lookups. However, for writing, split branches are slightly slower
due to the additional overhead [33].
As the volume of data increases, a TTree instance can be distributed across multiple TFile

instances. These TFiles can later be combined into a single logical object, known as a
TChain, enabling seamless access to distributed data. Because a TChain inherits from
a TTree, it maintains the same benefits in terms of optimized data access, even when
spanning multiple files [34].

4.2 RNTuple

The RNTuple data format is designed to overcome the limitations of the TTree data format
while preserving its fundamental advantages [35]. It breaks backward compatibility to
provide the flexibility needed for greater space savings, increased I/O speeds, and a more
robust data access API [35, 36].
The RNTuple provides the best performance for typical HEP workloads, aiming to closely
match the I/O speed of modern hardware. It achieves 2-5 times better single-core per-
formance than the TTree and is designed to scale with higher core counts. It is con-
ditionally thread-safe, meaning it avoids static and global variables and is designed for
multi-threaded environments. Compared to TTree, RNTuple produces up to 25% smaller
files due to improved handling of nested collections and other optimizations [35].
RNTuple implements a four-layered architecture consisting of the storage layer, the prim-
itives layer, the logical layer, and the event iteration layer. The storage layer abstracts
underlying storage systems and, optionally, provides packing and compression function-
ality. It is responsible for the storage and retrieval of byte ranges organized into clusters
and pages. A page contains a sequence of values for a specific column, whereas a cluster
encompasses pages storing data for a defined row range. The primitives layer organizes
elements of simple types into pages and clusters. The logical layer converts complex C++

types into columns of simple types. For instance, a vector of floats becomes an index
column and a value column. At the lowest level, the event iteration layer provides stan-
dardized interfaces for iterating over events [19].

4.3 Auxiliary Store

The ATLAS Event Data Model (EDM) is the framework that organizes and structures event
data within the ATLAS experiment. It defines how data from proton-proton collisions is
represented, stored, and accessed throughout different stages of processing, from raw
detector readings to high-level physics objects used in analysis. The EDM is built within

11

Chapter 4. Background

the Athena framework and follows a blackboard style architecture [37].
The blackboard architecture is a design pattern named after the metaphor of experts col-
laboratively solving a problem by sharing information on a common blackboard. This
pattern consists of three primary components: the blackboard, which serves as a shared
data structure; knowledge sources, which are independent specialized modules that inter-
act with the blackboard performing specific tasks; and a control component that manages
the knowledge sources and coordinates them. The blackboard enables asynchronous com-
munication between knowledge sources, allowing them to interact through the shared
blackboard without directly referencing each other. Each source simply reads from and
writes to the shared blackboard, while simultaneously maintaining the current state of the
system and providing a centralized representation of all relevant information [38].
An advantage of the blackboard architecture is its modularity, making it straightforward
to add new knowledge sources without disrupting existing components. Furthermore,
the architecture offers flexibility in execution flow, as it is not constrained to either top-
down or bottom-up processing. Instead, knowledge sources can be activated dynamically
based on the current information on the blackboard [38]. These characteristics align with
Athena’s principles of modularity and flexibility as described in Chapter 1 (p. 5).
ATLAS uses a multi-tiered data format hierarchy that begins with raw data being collected,
which contains direct detector readouts and trigger decisions. This is processed into Event
Summary Data (ESD), the first reconstructed data format that structures detector informa-
tion into more meaningful physics objects while retaining most detector details. Analysis
Object Data (AOD), which is derived from ESD, provides a reduced dataset optimized for
physics analysis and contains physics objects and other elements of analysis interest [37].
While Run 1 of the LHC was a success, the design of the ATLAS EDM revealed limitations
[39]. The data structures used were highly complex and relied on costly C++ features. This
complexity made direct writing to the ROOT format impractical, necessitating a conversion
before the data could be used. While functional, this approach introduced overhead and
created a dependency problem, as files written with the ATLAS EDM required access to
the complete ATLAS software release. Consequently, ATLAS physicists would convert
data samples using the full EDM to ones using a simplified format that could be read
by ROOT. This led to duplication of data and made it difficult to maintain analysis tools,
because they had to work on both the full ATLAS EDM and on ROOT. As a result of this,
during the 2013-2014 LHC shutdown, ATLAS introduced the xAOD format as an evolution
of the AOD structure to enhance usability and performance. A key feature of the xAOD is
its use of an auxiliary store, where object properties are stored separately from the objects
themselves [39].
The objects handled by the auxiliary store may be any arbitrary type and are stored as
such. However, for containers of objects, the store uses a ROOT specific derivation of the

12

Chapter 4. Background

Auxiliary
store 1 · · · Auxiliary

store n

RNTuple

AUXid1 AUXid2 AUXid3 · · · AUXidn

Entry1 42.3 1 {1} · · · 3.14
Entry2 19.5 39 {3, 4, 5} · · · 2.71

...
...

...
...

. . .
...

Entrym 51.8 100 {8, 4} · · · 1.62

Provides
columnar data

Provides
columnar data

Columnar Data Structure

Organizes into

Consist of Consist of
Consist of

Figure 4.2: The RNTuple’s relationship with its auxiliary stores and how the stores provide columnar data.

std::vector called DataVector. The DataVector acts as a container that holds pointers
to its elements, while each element maintains a reference back to the container and its
position within it. The auxiliary store is then responsible for managing the corresponding
object properties, which are stored as vectors of simple data types. This organization
allows the system to retrieve specific properties without loading entire objects into memory
[39].
Each EDM class includes a static auxiliary store containing variables treated as class mem-
bers and a dynamic auxiliary store to manage additional user-defined data. If a requested
variable is not found in the static store, the request is forwarded to the dynamic store,
allowing users to extend objects with new variables as needed. The dynamically added
variables follow a structured naming convention and are identified by having the same
name as the store but with a Dyn suffix [39].
The TTree has an implementation of the auxiliary store, which is what the physicists are
currently using when performing analysis. In our previous work, we implemented the
auxiliary store for RNTuples in Athena, and it is now available in the ATLAS software
release [28]. The hierarchical structure of RNTuple, consisting of auxiliary stores, and its
data organization can be seen in Figure 4.2 (p. 13).

13

Chapter 4. Background

4.4 Benchmark

Benchmarking is a structured process designed to compare the performance of one sys-
tem against another in a deterministic and reproducible manner [40, 41]. Traditionally,
benchmarking has been used to evaluate performance in terms of work done relative to
time and resource consumption. However, its scope has expanded to evaluate additional
factors such as system reliability, security, and energy efficiency. A benchmark consists
of three key components: workload, metrics, and measurement methodology. The work-
load represents the set of tasks a system is expected to perform, serving as the basis for
performance evaluation. The metrics determine which values should be extracted from
measurements to generate meaningful benchmark results. The measurement methodol-
ogy defines the complete process for executing the benchmark, collecting measurements,
and generating results [41].
Designing an effective benchmark requires meeting certain, sometimes conflicting, qual-
itative criteria to ensure meaningful results. These criteria can be defined as: relevance,
reproducibility, fairness, verifiability, and usability [42].
Relevance is perhaps the most important criterion for a benchmark, as even a perfectly de-
signed workload is of little value if it does not provide meaningful insights. In benchmark
design, relevance refers to ensuring that the benchmark aligns with its intended use and
provides useful information for that domain. Assessing relevance and workload involves
two key dimensions: the breadth of applicability and the degree to which the workload is
relevant for the area. For example, an XML benchmark is highly relevant for evaluating
XML processing performance but would not be suitable for assessing CPU performance.
Additionally, benchmarks that are highly relevant to a specific domain tend to have narrow
applicability, while those designed for broader use often sacrifice specificity and relevance
for any particular area [42].
A benchmark satisfies reproducibility when repeated executions under identical test con-
figurations yield consistent results, ensuring reliability and trust in its measurements.
Here, descriptions of the environment of the benchmark, including both the software and
hardware, are necessary [42].
Fairness ensures that different test configurations are evaluated based on their intrinsic
performance rather than artificial constraints. One key aspect is seeking input from experts
in the field to avoid unintentionally skewing results. Since benchmarks are inherently
simplified representations of real-world scenarios, constraints should be introduced in the
test environment to prevent results from being artificially inflated due to this simplicity.
The test environment itself should be appropriately configured and include components
that align with the specific requirements of the benchmark. Finally, it is important to
assess whether the software executing the benchmark is also simplified, as stripped-down

14

Chapter 4. Background

versions may achieve higher performance by omitting essential features, such as security
functionalities [42].
Verifiability requires the benchmark to provide clear evidence and documentation that
supports the accuracy of its measurements, allowing users to confirm that the results truly
reflect system performance. This includes self-validation, like the use of configuration
options that allow the user to alter the settings of the benchmark to verify the results.
These configuration options should be controlled by the benchmark and should preferably
be included together with the results. Functional verification supports verifiability, which
is about verifying the output of the benchmarks by detecting when incorrect results are
produced. To improve verifiability further, more detailed results showing elements not
strictly necessary to verify the result could be included. Inconsistencies within these results
may show problems for the actual benchmark results [42].
Finally, usability is about increasing ease-of-use for a benchmark. This means building
proper environments for executing the benchmark. It should not be difficult for the user to
acquire the necessary components to execute the benchmark. Similarly, it should be clear
to the user that the benchmark is running correctly and producing valid results without
requiring extensive verification [42].
To evaluate the performance of a system, the system must execute a benchmark, which can
be one of four types: a synthetic benchmark, a microbenchmark, a kernel benchmark, and
an application benchmark. Synthetic benchmarks are artificial programs designed to sim-
ulate specific application behaviors; while flexible, they may not fully capture real-world
complexities. Microbenchmarks focus on isolated system components, such as processors
or memory, revealing peak performance but not overall system behavior. Kernel bench-
marks extract critical code segments from applications, highlighting frequently executed
operations; they are portable but may not stress all system components realistically. Ap-
plication benchmarks use real-world applications, offering the most accurate performance
assessment, though often with reduced input datasets for practicality [41].

4.5 Performance Measurement Techniques

To monitor changes in a system’s state, different measurement techniques can be used. To
measure how much time a system spends in certain states and to understand the system’s
behavior, performance profiling can be used [41].
There are various techniques for measuring the execution time, each involving a trade-off
between resolution, accuracy, granularity, and difficulty. Resolution defines the small-
est measurable time interval, while accuracy determines how closely the recorded time
reflects the actual time. Granularity describes the level of detail in measurement, with
coarse-grained approaches capturing execution times of larger program structures, such

15

Chapter 4. Background

as functions, and fine-grained approaches focusing on individual instructions. The diffi-
culty, although subjective, reflects the effort required to obtain meaningful results [43].
Beyond these attributes, the software’s design can significantly impact the ability to mea-
sure execution time. Although not classified as a formal attribute, since it cannot be quan-
tified or qualified in every case, poor design choices can make profiling more challenging.
Software structured in an ad-hoc manner presents particular difficulties, as inconsistent or
poorly defined entry and exit points make it difficult to determine precise start and stop
times, making accurate measurements nearly impossible [43].
When selecting a method for measuring execution time, thought should be given to what
should be obtained from the measurement. Some of the most common reasons include
code optimization, real-time performance analysis, and debugging timing errors. De-
pending on what we optimize for, optimizing code could use both coarse-grained and
fine-grained methods. For global-scale optimizations, a coarse-grained method of timing
entire routines is sufficient. However, for local optimization, where we are fine-tuning an
application, a fine-grained method would be more appropriate [43].
There are different methods for measuring execution time, differing in their granularity
level. One tool to perform coarse-grained measurement is to use the time command, which
is available on UNIX systems by prefixing a command with time. This command is exe-
cuted in the terminal and can thus only be used to time the entire application. However,
it not only accounts for the time taken to execute the application but also includes the
time consumed by the system and the user. For a fine-grained measurement technique,
an embedded software timer can be used. Here, the measurements can be added directly
into a function, and multiple code segments can be tested within a single execution. This
method works by reading the initial value of the timer at the beginning of the code seg-
ments’ execution and again after they are executed. The difference between these values
represents the number of timer ticks that have elapsed. To obtain meaningful results, it is
necessary to determine the duration of a single timer tick and ensure that the accuracy is
sufficient [43].

16

Chapter 5. Benchmark Analysis

5 — Benchmark Analysis

In this chapter, we analyze the benchmark code from our previous work [28] and apply the
theory described in the previous chapter to suggest ways in which the benchmark could
be improved.
To aid in the understanding of the analysis, Figure 5.1 (p. 18) illustrates the relationship
between the different components within our benchmark code. The benchmark code is
organized into three primary components: a setup component, which prepares the en-
vironment; a warmup phase, which, if performed, is performed prior to the benchmark
phase; and a benchmark phase. Both phases require the initialization of store objects.
Within the benchmark phase, one or more tests are executed, where each test is defined
by a combination of a specific auxiliary store type and a percentage of the auxiliary IDs
to pick. Each test consists of one or more runs, each being a single timed execution. The
warmup phase also consists of a single run — performed with different entries to the
benchmark phase — where the timing is discarded.

5.1 Analyzing the Benchmark Code

In this section, we analyze the results from the benchmark we performed in our previous
work. Here, we tested the RAuxStore’s performance compared to the TAuxStore, on an
SSD, by conducting two variations of benchmark experiments — one with a warmup
phase and one without. In our previous work, we used a machine, which we no longer
have access to, and we thus use a different one for this project. The machine we use in this
project has the following specifications:

• OS: Fedora Linux 41 (Workstation edition)

• CPU: AMD Ryzen 7 5700X

• Memory: 4 × 16GB DDR4-3200 MT/s

• M.2 NVMe SSD: Kingston SNV2S2000G

• HDD: Seagate ST500DM002

• Compiler: GCC 14.2.1

• ROOT Version: 6.34.06

17

Chapter 5. Benchmark Analysis

Benchmark Code

Benchmark Phase
Setup

Warmup Phase

Test(s)

Run(s)

Run

Initialization
of Store Objects

Initialization
of Store Objects

Figure 5.1: Euler diagram illustrating the relationship of the different components within our benchmark
code.

Executing the same benchmark as we did in our previous work on our new machine yields
the results seen in Table 5.1 (p. 18) and Table 5.2 (p. 19).

Benchmarking with a warmup phase

% of auxiliary IDs RAuxStore TAuxStore Difference

10% 2445 ms 930 ms 1515 ms
40% 3918 ms 2009 ms 1909 ms
75% 5906 ms 3317 ms 2589 ms
100% 7407 ms 4218 ms 3189 ms

Total Time 19,676 ms 10,474 ms 9202 ms

Table 5.1: Benchmarking tests comparing the throughput of the RAuxStore compared to the TAuxStore. Each
test performs 20 runs.

While not identical to the results from our previous work, the overall results are similar,
where the TAuxStore is faster than the RAuxStore when a warmup phase is performed
and slower when it is not.
To help us analyze these results, as well as the results from our previous work, we con-
ducted additional experiments, the results of which can be seen in Table 5.3 (p. 20). In
our previous work, we conducted two experiments; one where we performed a warmup

18

Chapter 5. Benchmark Analysis

Benchmarking without a warmup phase

% of auxiliary IDs RAuxStore TAuxStore Difference

10% 1134 ms 916 ms 218 ms
40% 2525 ms 3862 ms 1337 ms
75% 4654 ms 5178 ms 524 ms
100% 6030 ms 6119 ms 89 ms

Total Time 14,343 ms 16,075 ms 1732 ms

Table 5.2: Benchmarking tests comparing the throughput of the RAuxStore compared to the TAuxStore. Each
test is run 20 times in separate executions.

phase and one where we did not [28]. The warmup phase was performed to avoid over-
heads unrelated to the reading process. Performing the warmup phase resulted in the
RAuxStore being slightly faster and the TAuxStore being significantly slower. However,
when looking into the specifics of the slowdown of the TAuxStore, it appeared that an
issue arose the first time we encountered a given type. A particular section of the function
responsible for setting up the input data for the TAuxStore, specifically the part where
a branch is connected to the input tree, typically takes a few microseconds. However,
when encountering the type std::vector<std::vector<ElementLink<DataVector<xAOD

::IParticle>>>>> for the first time, this operation took multiple seconds. In the bench-
mark files we used, an auxiliary ID of this type appeared in 176 out of the 213 total
auxiliary stores.
The result for the first test configuration shows the result of executing the benchmark
without a warmup phase, with 20 stores selected from the remaining 37 stores. Here, the
TAuxStore is faster than the RAuxStore.
However, when executing the benchmark with a single auxiliary store that does contain an
auxiliary ID of the problematic type, we get the results seen in the second test configura-
tion. Here, the TAuxStore is more than 10 times slower than the RAuxStore. This is down
to the aforementioned issue of the TAuxStore operation taking multiple seconds when en-
countering the type of std::vector< std::vector< ElementLink< DataVector< xAOD::

IParticle>>>>>. Here, this operation accounts for almost the entirety of the benchmark
for the TAuxStore.
If benchmarking with the same constellation, but with a warmup phase, we get the results
in the third test configuration. Here, the RAuxStore result remains mostly the same, but
the TAuxStore result is now very similar to the RAuxStore result, with the overhead of the
encounter with the problematic type being in the warmup phase, and thus not timed.
In our original benchmark, which we reproduced in Table 5.2 (p. 19), we are performing

19

Chapter 5. Benchmark Analysis

Test Configuration RAuxStore TAuxStore

Scenario 1: 20 Stores Without Problematic Type

1 No Warmup Phase 6060 ms 3278 ms

Scenario 2: 1 Store With Problematic Type

2 No Warmup Phase 140 ms 2021 ms
3 With Warmup Phase 139 ms 129 ms
4 No Warmup Phase (Avg. of 20 Runs) 211 ms 224 ms

Table 5.3: Benchmark comparison of RAuxStore and TAuxStore performance across different test config-
urations (with around 20,000 entries and 100% of the auxiliary IDs within the auxiliary stores are used).
Problematic Type refers to the type std::vector<std::vector<ElementLink<DataVector<xAOD::IParticle

>>>>>. For all configurations, we perform 20 separate executions and report the average execution time.
The fourth configuration additionally performs 20 runs within a single test and calculates the average
time across all runs. For scenario one, all stores containing IDs with the problematic type are filtered
out, and 20 stores are selected from the remaining stores. For scenario two, a store with the name:
AntiKt10TruthSoftDropBeta100Zcut10JetsAux is picked. This store contains 10 auxiliary IDs, and one of
them is of the problematic type.

a single run for each execution of the application. As the first run of the TAuxStore

is significantly slower if the problematic type is encountered, we are taking the average
of these initial slow runs, which result in the TAuxStore appearing much slower than
it generally is. Comparing TAuxStore in Table 5.2 (p. 19) with Table 5.1 (p. 18), this
slowdown only appears when using 40%, 75%, and 100% of the auxiliary IDs. For 10% of
the auxiliary IDs, the time taken is more or less identical with or without a warmup phase
for the TAuxStore. This is due to the problematic type not being present in this subset of
the auxiliary IDs.
Performing the benchmark as it was performed in configuration two, but averaging the
results over 20 runs within a single benchmark phase, yields the results seen in test con-
figuration four. This is essentially the same as averaging the 19 runs of test configuration
three and a single run of test configuration two. Here, the average time for the TAuxStore

is much lower as it now contains the one run taking several seconds, but in addition to
that, it also contains the faster runs that even out the time. Performing more runs would
thus result in the fast runs gradually compensating for the slow run, and with enough
runs, the results of TAuxStore would approach that of test configuration three.
While this explains the slowdown of the TAuxStore when not performing a warmup phase,
it does not show why the RAuxStore is faster without a warmup phase. Executing the
benchmark and looking at the individual runs, those performed without a warmup phase
are all generally 500 ms faster than when performing one.

20

Chapter 5. Benchmark Analysis

Additionally, when comparing the RAuxStore times in configuration two with those of
configuration four, we can see that the results become slower when performing additional
runs. More specifically, if we execute the benchmark with the same specification as we
did in our previous work [28] (same auxiliary stores, same entries, 20 runs within one
benchmark phase), we get different results for different runs. Here, the first run is about
1000 ms faster than the remaining 19 runs. This is true both with and without a warmup
phase, and results in the average time being significantly slower.

5.2 Applying the Benchmark Theory

Based on the background of benchmarking described in Section 4.4 (p. 14), we analyze the
benchmark conducted in our previous work [28]. There are three necessary components
for a benchmark: workload, metrics, and measurement methodology [41]. The workload
is, in our case, the methods of the RAuxStore and TAuxStore that we call in order to get
data from the stores. The metric we use for this benchmark is the time it takes to perform
these methods. Here we perform multiple runs, where for each run we start the time at the
beginning and stop it at the end, and the average of these runs is our benchmark result.
Finally, our codebase, consisting of the TAuxStore, the benchmark code, and our altered
RAuxStore, can be considered the measurement methodology.
Three out of the five benchmark criteria mentioned in [42] have been at least partially
fulfilled: relevance, reproducibility, and usability. We consider the benchmark relevant
because it tests methods that a user can encounter while reading event data. Specifically,
we have tested the performance of the RAuxStore and the TAuxStore, where we deem the
benchmark to have narrow applicability but provide meaningful insights into what we
want to measure, making the benchmark relevant.
Modern computers introduce many complexities that can affect benchmark variability, in-
cluding physical disk layout, network conditions, and user interactions. To ensure repro-
ducibility, we have designed our benchmark to run on a stable machine with no external
user interaction during execution. Additionally, we have documented the hardware and
software components of the machine, allowing others to replicate the benchmark on an
equivalent machine for consistent results. Our benchmark has high usability, as we have
set up a simple environment that allows users to execute it with minimal effort. It can also
be executed on most consumer hardware, as it requires minimal computational resources.
We deem the two remaining criteria, fairness and verifiability, not fulfilled in our case.
Ensuring fairness in a benchmark requires careful consideration of multiple factors. How-
ever, fairness was not a primary focus in the design of our benchmark, as we considered
it less critical for our research.
Our benchmark has limited verifiability, as we have predefined what to test and how to test

21

Chapter 5. Benchmark Analysis

it without offering a lot of configuration options that other users might use to verify the
results. For example, we have only tested with a single file, where we have hardcoded the
auxiliary store names directly in the code, meaning that the results cannot be verified on
different files, as they would not necessarily have the same store names. Furthermore, we
only provide one number — which is the final result — for each test, which does not allow
for a detailed analysis. Where more configuration options could improve verifiability, it
could also decrease usability when providing too many options for the user to interact
with.
There are several ways to improve the verifiability of our benchmark. We should dynami-
cally load the store names from the file, allowing the benchmark to be executed with arbi-
trary files rather than relying on hardcoded values. Providing more detailed results than
strictly necessary can enhance verifiability by offering greater transparency. Functional
verification could also be done to handle the inconsistent results regarding the problem-
atic type described in Section 5.1 (p. 17).
The benchmark conducted in our previous work [28] was a synthetic benchmark. However,
we attempted to represent the actual usage of the RAuxStore. While we do create instances
of the RAuxStore, set it up, and read data from it, our way of accessing the data may not
represent that of a realistic scenario. Doing it in this synthetic way means that the end
result may not be representative of the actual usage of the application, and in this way, we
are not sure if the issues we got were issues that would occur for ATLAS physicists.

22

Chapter 6. Performance Measuring

6 — Performance Measuring

To understand the performance issues of the RAuxStore, we conducted performance mea-
surements, comparing it with the TAuxStore. In our previous work [28], we identified
a factor that affected this slowdown, specifically when loading an entry for a field. This
occurs in the getEntry function when using the overloaded operator for an RNTupleView

instance, which is implemented by ROOT.
To analyze the performance of this in both the RAuxStore and the TAuxStore, we use the
C++ library function std::chrono::high resolution clock for precise timing measure-
ments. Here, we start a clock just before loading an entry, in the getEntry function, and
then stop it after we have loaded the entry — this results in a duration. As mentioned
in Section 4.5 (p. 15), the accuracy of such a tool must be verified to use the results from
it. Here, the timing function reported a precision of 1 femtosecond, which is more than
sufficient for our experiments.

6.1 Analyzing Performance Bottlenecks

For this analysis, we use six different files, representing three datasets, each available in
two formats: TTree and RNTuple. The files in TTree format are obtained from the CERN
Open Data Portal1. The corresponding RNTuple files were generated by converting the
files with TTree data into files with RNTuple data using the same Python script as we
did in our previous work [28]; this process preserves the event data entries. The first two
datasets contain simulated event data and consist of the same auxiliary stores but differ in
the number of entries, where one has 110,000 entries and the other has 150,000 entries. For
these, we use all available entries. The final dataset consists of actual event data from the
ATLAS detector recorded during Run 2. It features different auxiliary stores and contains
slightly more than 600,000 entries, and we use the first 600,000 entries of the dataset. For
all three datasets, we use a single auxiliary store containing one auxiliary ID and perform
a single timed execution, preceded by a warmup phase. All runs are executed on an SSD.

1File 1: mc20_13TeV:DAOD_PHYSLITE.37620494._000018.pool.root.1 is available at https://opendata.c
ern.ch/record/80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZnunu_file

_index.json_0

File 2: DAOD_PHYSLITE.37620499._000012.pool.root.1 is available at https://opendata.cern.ch/record/
80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZqq_file_index.json_0

File 3: DAOD_PHYSLITE.37001693._000015.pool.root.1 is available at https://opendata.cern.ch/record/
80000/files/data15_13TeV_Run_00276147_file_index.json_14

23

https://opendata.cern.ch
https://opendata.cern.ch
https://opendata.cern.ch/record/80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZnunu_file_index.json_0
https://opendata.cern.ch/record/80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZnunu_file_index.json_0
https://opendata.cern.ch/record/80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZnunu_file_index.json_0
https://opendata.cern.ch/record/80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZqq_file_index.json_0
https://opendata.cern.ch/record/80017/files/mc20_13TeV_MC_aMcAtNloPythia8EvtGen_MEN30NLO_A14N23LO_ttZqq_file_index.json_0
https://opendata.cern.ch/record/80000/files/data15_13TeV_Run_00276147_file_index.json_14
https://opendata.cern.ch/record/80000/files/data15_13TeV_Run_00276147_file_index.json_14

Chapter 6. Performance Measuring

Dataset Size RAuxStore TAuxStore Difference

110,000 entries 359 ms 90 ms 269 ms
150,000 entries 639 ms 131 ms 508 ms
600,000 entries 718 ms 485 ms 233 ms

Table 6.1: Results from conducting the benchmark on datasets of varying sizes.

Figure 6.1: The time taken to load an entry for a field for both the RAuxStore and TAuxStore for individual
event data entries. The plot uses a dataset with 150,000 entries.

The overall results from these configurations can be seen in 6.1
These results follow the same pattern as observed in our previous work [28], with the
TAuxStore being significantly faster than the RAuxStore when a warmup phase is per-
formed. However, for the dataset of actual event data, the difference between the RAuxStore
and TAuxStore is less prevalent. To analyze the reason for the improved efficiency of the
TAuxStore, we experiment on the durations obtained from the getEntry function. The
results of these experiments can be seen in Figure 6.1 (p. 24).
This figure shows all time durations for the RAuxStore and TAuxStore, as well as high-
lighting the 30 slowest entries for both auxiliary stores. Here, we observe a repeating
pattern for both RAuxStore and TAuxStore. To identify this pattern, we use the DBSCAN
algorithm from scikit-learn [44]. DBSCAN is a clustering algorithm that identifies dense
regions based on a minimum number of neighbors, minPts, within a specified radius, ϵ.
Clusters that satisfy this density requirement are considered core points and form part of a
cluster. The goal of DBSCAN is to detect high-density areas separated by regions of lower
density [45].
In our case, DBSCAN looks for clusters in the slowest 30 highlighted entries with an ϵ value
of 2000 and a minPts value of 5, which means that we are looking for clusters that have
at least five entries within a radius of 2000 µs. For the RAuxStore, two clusters emerged

24

Chapter 6. Performance Measuring

in both datasets, where one cluster consists of times significantly slower than the other
cluster.
In Figure 6.1 (p. 24), we see that the slow cluster is repeating in a pattern approximately
every 9,000 entries, from entry 12,000 to 150,000. The getEntry time in this cluster ranges
from 5069.04 µs to 6770.77 µs, with an average of 6012.31 µs. An outlier also appears at
around entry 3000, fitting with the previous pattern, but due to it having a value of only
2429.41 µs, it is not part of the cluster.
For the TAuxStore, all values are in the same time cluster, as all durations are under 100 µs.
This cluster encapsulates the 30 slowest entry values, which range from 12.74 µs to 74.79 µs,
with an average of 18.37 µs.
Results for the two other datasets were also plotted, revealing different patterns, as shown
in Figure A.1 (p. 46) and Figure A.2 (p. 46). Despite their differences, they share a key
similarity: the RNTuple forms two clusters, one with significantly slower times than the
other cluster, while the TTree forms only a single cluster. These findings suggest a repeat-
ing pattern of slow entries in RAuxStore that does not appear in TAuxStore. While this
pattern is pretty consistent within a single file, the pattern is different depending on the
file.

6.2 Why RAuxStore is Faster Without a Warmup Phase

In Table 5.2 (p. 19) and Table 5.1 (p. 18), the RAuxStore is around 37% faster when not
performing a warmup phase beforehand. Looking at the durations obtained from the
getEntry, we can see that they are similar when comparing the runs with and without a
warmup phase. However, the number of entries being loaded is different.
While the RAuxStore and TAuxStore are independent, they both use an auxiliary type
registry, which is a singleton. Thus, updating the registry for the TAuxStore results in it
being updated for the RAuxStore and vice versa. In our implementation of the RAuxStore,
we did not implement the setup of an auxiliary field correctly, meaning if the auxiliary
field did not exist in the registry, it would not be added correctly.
In the experiment, we use 20 stores, where one of them is the store with the name
EventInfoAux, which contains 55 auxiliary IDs. Due to this incorrect implementation
of setting up the auxiliary field, if we initialize the RAuxStore instances before initializ-
ing the TAuxStore instances, the registry is not updated correctly, and for that particular
instance, we only find 10 auxiliary IDs. If the initialization of the TAuxStore instances is
done first, the initialization of the RAuxStore instances finds the correct number of IDs as
they are now available in the registry. Our benchmark code is executed in the order shown
in Figure 6.2 (p. 26), where we execute the RAuxStore benchmark before the TAuxStore

one.

25

Chapter 6. Performance Measuring

Performs
Warmup

Phase

RAuxStore

Initialize

RAuxStore

Warmup Run
TAuxStore

Initialize

TAuxStore

Warmup Run

RAuxStore

Initialize
RAuxStore Runs

TAuxStore

Initialize
TAuxStore Runs

True

False

1.

2. 3. 4. 5.

6. 7. 8. 9.

Figure 6.2: The order in which the benchmark is executed, based on whether or not we perform a warmup
phase.

If we perform a warmup phase, this is done prior to the benchmark runs of both the
RAuxStore and TAuxStore. Thus, when not performing the warmup phase, the RAuxStore

instances are not correctly initialized, and the correct number of IDs for the aforemen-
tioned store is not available for the runs of the experiment. When we do perform a warmup
phase, the RAuxStore instances are not correctly set up for the warmup phase, meaning we
use the wrong number of auxiliary IDs in the warmup phase. However, after the warmup
phase, we initialize the TAuxStore instances and update the registry. Therefore, when we
initialize the RAuxStore instances for the benchmark phase, they can get the auxiliary fields
from the registry. Overall, this means that in Table 5.1 (p. 18), we load more entries for the
fields than in Table 5.2 (p. 19). Looking at the results when picking 100% of the auxiliary
IDs, we load around 1.1 million entries for fields when benchmarking with a warmup
phase. This number is reduced to around 200,000 when not performing a warmup phase.
While this problem affects Table 5.1 (p. 18) and Table 5.2 (p. 19) as well as the results from
our previous work [28], it does not affect the other experiments in this thesis. This is be-
cause we updated the benchmark code by, among other things, making it more dynamic,
where instead of hardcoding the store names used, we get them dynamically. When get-
ting them dynamically, we only add stores that contain at least one auxiliary ID. To ensure
this, we initialize the TAuxStore instances and check how many IDs they have. Doing this
initialization means that the registry is updated at the beginning of the application.
While this technically solves the problem, ideally, the RAuxStore should be altered to set
up auxiliary fields in the registry correctly. To this end, changes have been made to the
RAuxStore. The auxFieldType function should retrieve the correct type information for an
auxiliary field. Our previous implementation did not do this and simply returned null.
When initializing the RAuxStore in the setupAuxField function, we use the type known
from the registry if possible, otherwise, we use the auxFieldType function. When using

26

Chapter 6. Performance Measuring

Test Configuration Run 1 Run 2-20 Avg. Overall Avg.

RAuxStore With a Warmup Phase 7033 ms 7768 ms 7728 ms
RAuxStore Without a Warmup Phase 9193 ms 7902 ms 7968 ms

TAuxStore With a Warmup Phase 4314 ms 4241 ms 4245 ms
TAuxStore Without a Warmup Phase 5649 ms 4189 ms 4262 ms

Table 6.2: Benchmark results comparing execution times for RAuxStore and TAuxStore with and without a
warmup phase, after modifications done to the RAuxStore.

this function to get the type information, we exit the setupAuxField early and return a
success status code if the type information is not found. This meant that if the field is not
in the registry, it would not be correctly set up.
Additionally, when executing the benchmark and getting the data from the stores, the
setupInputData function is used to connect an auxiliary ID to an auxiliary field in the
file. For this purpose, we need to check if the field is a primitive type or a composite type
and set it up accordingly. Our previous implementation of setupInputData did not work
correctly for some auxiliary stores, such as the store with the name EventInfoAux, which
meant that some types were set to be neither primitive nor composite. This resulted in the
store not getting the correct number of IDs associated with it.
With the changing of the auxFieldType function to get the correct type information and
ensuring that the setupInputData sets up the correct number of auxiliary IDs, we get the
results seen in Table 6.2 (p. 27) when performing the same benchmark as in Table 5.1 (p.
18), only with 100% of the auxiliary IDs.
Now, the RAuxStore is no longer faster without a warmup phase, and when the first
run is excluded, the execution times with and without a warmup phase are similar. The
results for the RAuxStore now resemble the results for the TAuxStore, where the first
run without a warmup phase is significantly slower. Looking at the durations obtained
from the getEntry function, the results are generally the same for the RAuxStore with
and without a warmup phase. The cause of the slow time is actually the same as the
one causing the slow time for the first run for the TAuxStore without a warmup phase as
described in Section 5.1 (p. 17).

6.3 First RAuxStore Run is Faster

In Section 5.1 (p. 17), we saw that for the RAuxStore, the first run for each test was faster
than the other ones. When testing with 100% of the auxiliary IDs and not performing a
warmup phase, the median time of the durations obtained from the getEntry function
remains nearly the same across all runs. However, the mean is significantly lower for

27

Chapter 6. Performance Measuring

the first run compared to the other ones, by around 150 ns. Additionally, the other runs’
maximum times are about five times higher, suggesting that some extreme values skew
the result in favor of the first run.
Looking into the location of these extreme values, it seems that almost all of them appear
specifically for entry 3722. Excluding all rows where the entry is 3722, the median remains
unchanged, but the mean is now much more similar, differing only by about 20 ns. While
the exclusion of this entry lowers the mean execution time for subsequent runs, it also
leads to a slight reduction in the time observed for the first run. In Section 6.1 (p. 23), the
execution times for specific entries also appeared to be slow. While entry 3722 was not
one of those slow entries there, these experiments were conducted with different auxiliary
stores and entries. As such, the issue with why the first RAuxStore run is faster may be
related to the issue discovered in that section.

6.4 SSD vs. HDD

To evaluate how the storage medium affects the performance of RAuxStore and TAuxStore,
we conducted the previously performed benchmarks with the same files on the same
machine on an HDD. The results from these experiments can be seen in Appendix B (p.
47). Table 6.3 (p. 29) shows the results from one of these experiments performed on an
HDD compared to the same experiment performed on an SSD. Appendix C (p. 49) presents
additional results comparing experiments conducted on an HDD with those performed on
an SSD.
In the experiments that were performed with a warmup phase as well as with multiple
stores and a large number of entries — resulting in longer execution times — the auxiliary
stores are in all but one case faster on an SSD compared to an HDD. The RAuxStore is
more affected by this slowdown on the HDD than the TAuxStore is.
In Table 6.3 (p. 29), in particular, the overall percentage decrease is 6.4% slower on the
HDD for the RAuxStore and 1.1% slower for the TAuxStore, resulting in the RAuxStore

being 5.3 percentage points slower than the TAuxStore on an HDD. The results from the
experiments performed without the warmup phase — still with multiple stores and a large
number of entries — are an exception to this trend of the HDD being slower. Here, the
SSD is in most cases slower than the HDD for both auxiliary stores, particularly for the
TAuxStore.
The results from the remaining experiments have been performed on a single store and
thus result in overall lower execution times. It is unclear whether the auxiliary stores
perform better on the SSD or the HDD, as their performance varies, being faster on the
HDD in some cases and slower in others.
While the percentage difference might differ a lot, the absolute difference is rather low.

28

Chapter 6. Performance Measuring

Benchmarking With a Warmup Phase

% of RAuxStore TAuxStore Percentage
Auxiliary IDs SSD HDD SSD HDD Decrease

10% 2445 ms 2612 ms 930 ms 947 ms
R: HDD 6.8% slower
T: HDD 1.8% slower

40% 3918 ms 4223 ms 2009 ms 2026 ms
R: HDD 7.8% slower
T: HDD 0.8% slower

75% 5906 ms 6266 ms 3317 ms 3350 ms
R: HDD 6.1% slower
T: HDD 1.0% slower

100% 7407 ms 7841 ms 4218 ms 4269 ms
R: HDD 5.9% slower
T: HDD 1.2% slower

Total Time 19,676 ms 20,942 ms 10,474 ms 10,592 ms
R: HDD 6.4% slower
T: HDD 1.1% slower

Table 6.3: Performance comparison between RAuxStore (R) and TAuxStore (T) on an SSD and an HDD with
a warmup phase. Created using Table 5.1 (p. 18) and Table B.1 (p. 47).

Thus, the difference does not seem significant and may simply be some overhead of the
test.
Overall, the RAuxStore generally benefits more from using an SSD as a storage medium
than the TAuxStore does. However, this trend is not entirely consistent, as in some cases,
there are minimal differences between storage media. As all previous experiments in this
thesis have been conducted on an SSD, we are essentially experimenting with the storage
medium that benefits the RAuxStore the most. Despite this, the TAuxStore achieves better
performance than the RAuxStore, suggesting that the performance is less dependent on
the storage medium used.

6.5 Impact of Different Seeds

In the experiments performed, a seed is used to ensure randomness when choosing aux-
iliary stores, auxiliary IDs, and entries. We, therefore, want to test how different seeds
affect the results. To this end, we have generated three random seeds between 1 and 1000
using the std::mt19937 from C++. These three seeds are: 396, 570, and 721. As the seed
determines which auxiliary stores we select, and some stores contain a single auxiliary
ID, whereas others contain a multitude of them, the choice of seed can affect the overall

29

Chapter 6. Performance Measuring

Seed RAuxStore TAuxStore Difference
Performance

Ratio

15 1776 ms 649 ms 1127 ms 2.74

396 1652 ms 557 ms 1095 ms 2.97
570 1747 ms 591 ms 1156 ms 2.96
721 1847 ms 633 ms 1214 ms 2.92

3 3053 ms 1418 ms 1635 ms 2.15

Table 6.4: Performance comparison between RAuxStore and TAuxStore across different seeds. The difference
is calculated as RAuxStore time minus TAuxStore time. Performance ratio indicates how many times slower
RAuxStore is compared to TAuxStore.

runtime of the benchmark. We, therefore, also run the benchmark with seed 3, where the
benchmark with this seed contains the auxiliary store with the most auxiliary IDs, namely
the store called AnalysisMuonsAux.
In this experiment, we compare the result of these seeds to a baseline result, obtained by
executing the benchmark with seed 15; that is the seed used in previous experiments. This
experiment was conducted with 10 stores, 10,000 entries, 100% of the auxiliary IDs, and 20
runs. The results from the experiment can be seen Table 6.4 (p. 30).
We compare the value between the RAuxStore and the TAuxStore through the difference
between these values as well as through a performance ratio of how slow the RAuxStore is
compared to the TAuxStore, expecting these values to be similar across the selected seeds.
Generally, the performance ratio is very similar for the results for the randomly picked
seeds, differing only slightly from the result for the baseline seed. The difference also does
not vary much, with the gap between the highest and lowest result being slightly more
than 100 ms.
For the random seeds, the times for the RAuxStore and TAuxStore only vary slightly,
where the TAuxStore results differ by less than 100 ms and the RAuxStore by less than
around 200 ms.
For seed 3, this is not the case, as the execution times are noticeably higher compared to
the execution times of the other seeds. However, the difference does not vary significantly
compared to how much the actual times differ. Similarly, while the performance ratio for
this result deviates from the others, the gap is not substantial. So, overall, the seed value
has an impact on the results, but the relationship between the results for the RAuxStore

and TAuxStore within a benchmark is generally similar.

30

Chapter 6. Performance Measuring

TTree Throughput RNTuple Throughput

All entries 1316.73 entries/s 3007.73 entries/s
Slow entries 38.70 entries/s 4.08 entries/s
Random entries 34.08 entries/s 6.97 entries/s

Table 6.5: Throughput comparison between TTree and RNTuple for three tests. Each test is run in five separate
executions.

6.6 RNTuple Throughput

In Chapter 3 (p. 7), we saw that the throughput for reading an RNTuple should be sig-
nificantly higher compared to reading a TTree. However, in our experimentation of the
RAuxStore, it underperformed relative to the TAuxStore. For the RNTuple, certain en-
tries appear to be particularly slow to read when using the RAuxStore. To check if these
entries are only a problem for the RAuxStore or if the reading of the RNTuple itself is
affected by them, we perform experiments on the throughput of the RNTuple on an SSD.
Using ROOT’s TStopwatch class, we time the throughput of the RNTuple and TTree in our
dataset with 110,000 entries in three cases:

• Reading all 110,000 entries

• Reading the 8 slow entries discovered in Section 6.1 (p. 23)

• Reading 8 random entries2

The results for this experiment can be seen in Table 6.5 (p. 31).
When reading all entries of the event data, the RNTuple has double the throughput com-
pared to TTree. When reading fewer entries, the throughput generally decreases for both
TTree and RNTuple. Here, the RNTuple suffers the most, with throughput being several
magnitudes lower when reading the slow entries or the random entries compared to when
reading all entries. For the slow entries in particular, the RNTuple is almost 10 times
slower than the TTree. Similarly, for the random entries, it is almost 5 times slower.
The RNTuple is slower at reading the slow entries, with its throughput being approximately
30% lower compared to when reading random entries. For the TTree, the throughput is
higher with the slow entries compared to the random ones by around 12%.
This could help explain why the RAuxStore is affected by these specific entries, as the
RNTuple itself also reads them more slowly.

2These entries were randomly generated with std::mt19937 and with a seed of 15 and are: 93370, 84494,
19678, 65049, 5980, 12208, 39769, and 90048.

31

Chapter 7. Benchmark Improvements

7 — Benchmark Improvements

7.1 Initial Improvements

As mentioned in Section 6.2 (p. 25), we updated the benchmark code from its initial version
to be more dynamic. Here, we altered the code to retrieve the store names dynamically
with the getStoreNames function, which handled some issues, as explained in Section 6.2
(p. 25). In addition to this, we made the benchmark code more intuitive by changing the
way we handle entries.
Previously, we implemented an approximate 50/50 split of the entries entered into the
benchmark. Thus, if a user entered n entries, around n

2 entries would be chosen. This
approach was not very user-friendly, as the number of entries set by the user was not the
actual number of entries used by the benchmark code. The actual number would also not
be displayed to the user, and they could only assume that around half of the inputted
entries would be used. This random selection was implemented using a random number
generator and initialized with a fixed seed for reproducibility. Here, we iterated over
the selected entries, and for each entry, we randomly assigned a value of 0 or 1. This
value determines whether this entry should be included in the list of entries for which we
execute the benchmark. Additionally, if the user entered more entries than were available
in the file, errors would be thrown. After deciding on the entries to read, the warmup
entries were selected such that they did not overlap with the benchmark entries. We used
1000 warmup entries, and if they could not be unique from the benchmark entries, the
warmup phase would use all the remaining available entries. This meant that the warmup
phase might not use the expected number of entries and could, if there were no unique
entries available, even be executed without any entries.
The updated implementation now selects the exact number of entries requested by the user
— up to the total number of entries available — providing a predictable selection process.
If the user enters more entries than there are available in the file, the number of entries
is set to the maximum number of entries available. These entries are selected randomly,
shuffling the indices of the entries, selecting the first n entries from the shuffled list, and
saving them to a new list. This new list is then sorted in ascending order, producing a
final list of entries to read that mirrors our previous approach. In addition to selecting n
random entries, we also added the option to select all entries up to the nth entry.
The updated implementation now also verifies whether there are enough distinct entries
available for the warmup phase. If not, it first uses all available distinct entries, then fills

32

Chapter 7. Benchmark Improvements

the remaining slots by sequentially selecting entries from the beginning of the dataset.

7.2 Redesigned Benchmark

Based on the analysis of our previous benchmark implementation and the criteria outlined
in Section 5.2 (p. 21), we have redesigned our benchmark. The new version addresses some
of the limitations identified in our original implementation while focusing on improving
usability, verifiability, and reproducibility.
To this end, we introduce a dedicated configuration file. This allows users to set all options
in one place instead of modifying the benchmark code, abstracting over the implementa-
tion details. The configuration file can be divided into five categories: flags, benchmarking
parameters, store parameters, entry selection parameters, and filepaths. All configuration
options and a description of them can be seen in Table 7.1 (p. 34).

Flags

We have added several flags to the benchmark, allowing users to customize its behavior.
This includes a verbose flag that, when enabled, causes warnings to be printed if any are
encountered. Previously, it was not possible to execute the code without a warmup phase
unless the user explicitly commented out code, as the warmup phase was part of the main
function. We have moved the warmup code into its own function, and it is only executed if
the user enables the warmup flag. To provide more precise information, we have introduced
the writeToCSV flag, which means the duration of loading a specific entry is logged and
the data is written to a CSV file. Similarly, we have added the printIntermediateResults

flag. If this flag is enabled, the duration of each individual run within a test is shown to
the user, and if some runs are significantly faster or slower than the median, the user is
shown an info message. The printWarmupResults flag can be enabled, which results in
the warmup times being printed in the same format as the benchmark times.
In our previous implementation, entries could only be selected randomly, but we have
added the functionality to select entries sequentially, and this can be done by disabling
the selectEntriesRandomly flag. If a user wants to perform the warmup phase with the
same entries as in the benchmark phase, we have implemented this functionality, which
can be toggled using the warmupEntriesSameAsBenchmarkEntries flag.

Benchmarking Parameters

To better control how the benchmark phase is performed, we have added several bench-
marking parameters. The parameter percentagesOfAuxIdsToPick accepts a comma-separated
list of percentages indicating the proportion of the auxiliary IDs to use in the benchmark.

33

Chapter 7. Benchmark Improvements

Option Description

Flags
verbose Warnings are printed.
warmup A warmup phase is performed.
writeToCSV Results for loading each entry are written to a CSV

file.
printIntermediateResults Shows duration for each benchmark run.
printWarmupResults Shows the result for the warmup run.
storeNameFiltering Filters out stores with problematic auxiliary IDs.
selectEntriesRandomly Entries are selected randomly.
warmupEntriesSameAs-

BenchmarkEntries

Set the warmup phase to use the same entries as the
benchmark phase.

Benchmarking Parameters
nRuns Number of runs for each test.
auxStoreToRun The store type to use (RAuxStore, TAuxStore, or

Both).
seed The seed used for randomness.
percentagesOfAuxIdsToPick The different percentages of the auxiliary IDs to use

for the benchmark tests.

Store Parameters
nStores Number of stores to use.
minAuxids Minimum number of auxiliary IDs each store must

have.
storeNamesWithProblematic-

Auxids

Store names to exclude when filtering.

storeNames Optional: list of specific stores to run with.

Entry Selection Parameters
nEntries Number of entries to use for the benchmark phase.
nWarmupEntries Number of entries to use for the warmup phase.
File Paths
treeFilepath File path to the input TTree.
ntupleFilepath File path to the input RNTuple.
logDirPath Output directory for CSV files.

Table 7.1: Configuration parameters for the benchmark, classified by category.

34

Chapter 7. Benchmark Improvements

Each specified percentage corresponds to a separate benchmark test, allowing performance
to be evaluated across different auxiliary ID usage levels. The benchmark can be config-
ured to perform with a specific auxiliary store type using the auxStoreToRun parameter,
implemented as an enum, which configures the benchmark to use either the RAuxStore

(0), the TAuxStore (1), or both (2). The nRuns parameter allows the user to specify the
number of runs for each test. Finally, the user can set the seed parameter for the random
number generator, ensuring deterministic behavior and reproducibility of the results.

Store Parameters

The store parameters allow the user to easily configure the auxiliary stores used in the
benchmark. The nStores parameter specifies the number of stores to include. If a user
requests more stores than there are available, the benchmark will use all the stores in the
file, and, if the verbose flag is enabled, print a warning informing the user of this. When
testing with different percentages of the auxiliary IDs, one might expect different auxiliary
IDs to be picked. However, some of the stores contain only a single auxiliary ID, and no
matter the percentages picked, this will be the only auxiliary ID used for that store by the
benchmark. As such, the user can specify the minimum number of auxiliary IDs a store
must contain using the minAuxids parameter. When verbose is enabled, a warning will
also be printed if this value exceeds the number of IDs present in the store containing the
highest number of IDs.
As mentioned in Section 6.2 (p. 25), there is a problematic type that takes a long time
to read the first time it is encountered. A majority of the auxiliary stores in the dataset
contain auxiliary IDs of this problematic type, meaning there is a good chance that a test
will encounter this type. To allow the user to perform the benchmark phase without that
type, we have implemented a function that filters out the store names with IDs of that type.
Here we have identified that store names beginning with AnalysisTrigMatch contain them.
Additionally, depending on the files used, other stores may contain them as well. Here,
we have added the storeNamesWithProblematicAuxids parameter, where the user can
specify a list of the remaining store names that contain auxiliary IDs of this problematic
type.
Instead of specifying the number of stores and the minimum number of auxiliary IDs con-
tained in the stores, the user can specify specific names of stores to use in the benchmark
with the optional storeNames parameter. This will override the number of stores specified
by the nStores parameter and disregard the value assigned to the minAuxIds, issuing a
warning to the user if either of these parameters is ignored.

35

Chapter 7. Benchmark Improvements

Entry Selection Parameters

To make the entry selection more straightforward and intuitive, two similar parameters,
nEntries and nEntriesForWarmup, have been added. This allows the user to specify
the number of entries to be used in the benchmark phase and the warmup phase, re-
spectively. If the user requests more entries than are available, the benchmark will use
all available entries, and, if the verbose flag is enabled, display a warning. Unless the
warmupEntriesSameAsBenchmarkEntries flag is enabled, the warmup entries should be
distinct, but if there are not enough distinct entries, the remaining entries are selected. If
this is the case, and if the verbose flag is enabled, a warning will inform the user that
not enough distinct entries for the warmup are available, along with the number of non-
distinct entries to use.

File paths

To enhance configurability and portability, all file path settings have been moved into
the configuration file, centralizing them in a single location. For the benchmark, we use
two files, one for the TTree (treeFilePath) and one for the RNTuple (ntupleFilePath).
Additionally, a file path must be specified using the logDirPath, which is the directory
where the CSV files are saved when the writeToCSV flag is enabled. If the user specifies a
directory that does not exist, an option will be given to create that directory.

36

Chapter 8. Discussion

8 — Discussion

In this paper, we set out to identify the performance issues of the RAuxStore that we
initially discovered in our previous work [28], and, if possible, handle these issues. These
issues were discovered with a benchmark that compared the performance of the RAuxStore
to that of the TAuxStore. While this benchmark did help validate these performance
improvements, we set out to make a well-defined benchmark that followed standardization
for benchmarks and made experimentation easier.
Extensive experimentation has allowed us to better identify the issues in the RAuxStore. In
our previous work, we concluded that without a warmup phase, the RAuxStore was faster
than the TAuxStore. However, we found that this conclusion was based on a flawed setup
of the benchmark experiment, where we performed only a single run of the application
multiple times. This made the TAuxStore appear slower due to an issue appearing the first
time it encountered a specific type. We also discovered various issues regarding specific
entries of the event data, which were present for the RAuxStore but not for the TAuxStore.
In addition to timing the entire execution of our benchmark, we also performed a kernel
benchmark on a particular part of the code for the auxiliary stores, namely, when an
entry was loaded for a specific field/branch. Here, we saw that some durations for the
RAuxStore were much slower than the median, by a factor of up to 1000, majorly affecting
the performance. These slow durations appeared at regular intervals within different files,
though the specific interval differed from file to file. Similarly, when performing multiple
runs in a benchmark test, specific entries containing durations with high values in later
runs were not as prevalent in the first run.
We also performed some experiments that had less of an impact on the issues we were
looking at. We found that while the performance for both RAuxStore and TAuxStore was
generally slightly better on an SSD, the storage medium did not have much impact on
the overall performance. Similarly, we experimented with different seed values, which,
though impacting the overall results, favored neither the RAuxStore nor the TAuxStore.
Overall, we identified some issues, mainly regarding specific entries of the event data.
Though we discovered the existence of these issues, we did not find the cause for why
they were so slow. One issue we discovered and afterwards dealt with was the fact that
the RAuxStore did not set the stores up correctly and was dependent on the TAuxStore

populating a singleton shared between the stores with the correct data. Solving this is-
sue by altering the RAuxStore, however, created a new issue similar to the issue that the
TAuxStore had with the first time it encountered a specific type.
In addition to updating the RAuxStore, we also updated the benchmark code itself to

37

Chapter 8. Discussion

better align with the theories discussed in this thesis. We improved the usability of the
benchmark by handling the entries in a more intuitive way. Additionally, we improved re-
producibility by adding various functions that set up elements used in the benchmark. Pre-
viously, the functionality of these functions was either not implemented or implemented in
arbitrary places throughout the code, which may not be run in certain experiments. Doing
this, thus, also improved the overall usability of the benchmark. To support verifiability,
our main change is the addition of a configuration file, separating the configuration of
the benchmark from the implementation. Additionally, we have implemented functional
verification to support verifiability by alerting the user if a given run deviates significantly
from the other runs.
We have also followed the recommendations from [31] as outlined in Section 3.2 (p. 7). We
believe that this has made our benchmark both interpretable and reproducible for other re-
searchers. To ensure interpretability, we clearly describe our measurement techniques and
report all results, including those that did not align with our expectations. Furthermore,
reproducibility is supported by providing information about the hardware and software
environment, along with a configuration file, enabling other researchers to replicate and
verify our findings.
We did not create an application benchmark and instead only used a synthetic benchmark
and a kernel benchmark. Creating an application benchmark where more of Athena’s
software is included is an interesting experiment to do, and it could tell us if the RAuxStore
being slower than the TAuxStore is an actual issue for the ATLAS workflow. One way in
which it would not be an issue is if the RAuxStore is rarely used in physics analysis, and
therefore, the performance of the RAuxStore being slower than the TAuxStore is not worth
the resources it takes to optimize it.
Evaluating the real-world impact is complicated by the nature of the Athena codebase
itself. Athena is a huge project with a lot of active contributors changing the code daily,
which meant that to make the benchmarks in this thesis, we had to make a snapshot of
the code at a specific point in time. Since creating our snapshot, there have been more
than 3500 commits to the Athena repository. The constant change in the codebase has also
affected the RAuxStore, and major changes have been made since we created our snapshot.
This means that the benchmarks we have performed in this thesis are not representative of
the current state of the RAuxStore, and because of the change, we cannot just execute the
benchmarks on the current RAuxStore to see if the performance has improved. To be able
to test the RAuxStore, we would need to port our benchmark code to the current state of
the RAuxStore, which would require major changes to our benchmark code and is out of
the scope of this thesis.

38

Chapter 9. Conclusion

9 — Conclusion

Our problem statement is as follows:

How can we identify bottlenecks and improve the performance of the RAuxStore, and
how can we validate these improvements through a well-defined benchmark?

In conclusion, this thesis identified multiple bottlenecks in the RAuxStore, primarily oc-
curring from specific entries within the event data. We have identified these bottlenecks
through the use of a synthetic benchmark as well as a kernel benchmark. Our main con-
tribution is the development of the synthetic benchmark, which we refined by applying
established benchmarking theory to improve upon the version from our previous project.
We have thus ensured that the benchmark aligns better with this theory by making it ver-
ifiable, usable, and reproducible. Furthermore, we have made it interpretable such that
other researchers can draw their own conclusions from our results.
However, as Athena is undergoing constant change, and the RAuxStore and the TAuxStore

have had major changes since we started working on this thesis, there is a possibility that
the problems we have identified no longer exist.

39

Chapter 10. Future Work

10 — Future Work

This chapter looks at elements of the thesis that should be addressed if more time were
available. This includes the introduction of a new benchmark designed to more accurately
reflect the actual ATLAS workflow. It also includes refactoring the benchmarks to use the
updated RAuxStore in Athena rather than our version.

10.1 Application Benchmark

At the moment, we have a synthetic benchmark that simulates the behavior of the ATLAS
workflow. While this provides valuable insight into the behavior of the implementation, it
may not capture the complexity of the actual workflow. As such, an application benchmark
could be made. Implementing this would require consultation with experts at ATLAS to
ensure that the benchmark aligns with typical use cases.

10.2 Refactoring Our Benchmark

The version of RAuxStore that we experiment on in this thesis is based on a snapshot
taken at a specific point in time of what the code looked like. Since then, significant
changes have been made to both the RAuxStore as well as the TAuxStore. This means that
the circumstances regarding the performance issues may not be present in this updated
version. However, since we have only performed experiments on the snapshot we have
taken of the auxiliary stores, this is not something we can confirm until experiments on
the new implementation of the auxiliary stores have been performed. Thus, to ensure that
the benchmark results we have achieved remain relevant, the benchmarking code should
be updated to support the latest implementations of the auxiliary stores.

40

Bibliography

Bibliography

[1] V. Ziemann, Beams. Springer Cham, 2018, isbn: 978-3-031-51852-2. doi: 10.1007/978
-3-031-51852-2. [Online]. Available: https://doi.org/10.1007/978-3-031-5185
2-2.

[2] H. Wiedemann, Particle accelerator physics. Springer Nature, 2015. doi: 10.1007/978
-3-319-18317-6. [Online]. Available: doi.org/10.1007/978-3-319-18317-6.

[3] E. M. McMillan, “A history of the synchrotron,” Physics Today, vol. 37, no. 2, pp. 31–
37, Feb. 1984, issn: 0031-9228. doi: 10.1063/1.2916080. eprint: https://pubs.aip.o
rg/physicstoday/article-pdf/37/2/31/8293379/31_1_online.pdf. [Online].
Available: https://doi.org/10.1063/1.2916080.

[4] O. Brüning, M. Klein, S. Myers, and L. Rossi, “70 years at the high-energy frontier
with the cern accelerator complex,” Nature Reviews Physics, vol. 6, no. 10, pp. 628–637,
Oct. 2024, issn: 2522-5820. doi: 10.1038/s42254-024-00758-5. [Online]. Available:
https://doi.org/10.1038/s42254-024-00758-5.

[5] E. Lopienska, “The CERN accelerator complex, layout in 2022. Complexe des
accélérateurs du CERN en janvier 2022,” 2022, General Photo. [Online]. Available:
https://cds.cern.ch/record/2800984.

[6] J. Resta-López, Long-term future particle accelerators, 2022. arXiv: 2206 . 08834

[physics.acc-ph]. [Online]. Available: https://arxiv.org/abs/2206.08834.

[7] C. L. Smith, “The large hadron collider,” Scientific American, vol. 283, no. 1, pp. 70–77,
2000, issn: 00368733, 19467087. [Online]. Available: http://www.jstor.org/stable
/26058791 (visited on 03/25/2025).

[8] L. Tavian, “Latest Developments in Cryogenics at CERN,” CERN, Geneva, Tech.
Rep., 2005. [Online]. Available: https://cds.cern.ch/record/851586.

[9] M. Boisot, “Generating knowledge in a connected world: The case of the atlas exper-
iment at cern,” Management Learning, vol. 42, no. 4, pp. 447–457, 2011. doi: 10.1177
/1350507611408676. [Online]. Available: https://doi.org/10.1177/135050761140
8676.

[10] G. Stewart and W. Lampl, “How to review 4 million lines of ATLAS code,” CERN,
Geneva, Tech. Rep. 7, 2017. doi: 10.1088/1742- 6596/898/7/072013. [Online].
Available: https://cds.cern.ch/record/2248494.

41

https://doi.org/10.1007/978-3-031-51852-2
https://doi.org/10.1007/978-3-031-51852-2
https://doi.org/10.1007/978-3-031-51852-2
https://doi.org/10.1007/978-3-031-51852-2
https://doi.org/10.1007/978-3-319-18317-6
https://doi.org/10.1007/978-3-319-18317-6
doi.org/10.1007/978-3-319-18317-6
https://doi.org/10.1063/1.2916080
https://pubs.aip.org/physicstoday/article-pdf/37/2/31/8293379/31_1_online.pdf
https://pubs.aip.org/physicstoday/article-pdf/37/2/31/8293379/31_1_online.pdf
https://doi.org/10.1063/1.2916080
https://doi.org/10.1038/s42254-024-00758-5
https://doi.org/10.1038/s42254-024-00758-5
https://cds.cern.ch/record/2800984
https://arxiv.org/abs/2206.08834
https://arxiv.org/abs/2206.08834
https://arxiv.org/abs/2206.08834
http://www.jstor.org/stable/26058791
http://www.jstor.org/stable/26058791
https://cds.cern.ch/record/851586
https://doi.org/10.1177/1350507611408676
https://doi.org/10.1177/1350507611408676
https://doi.org/10.1177/1350507611408676
https://doi.org/10.1177/1350507611408676
https://doi.org/10.1088/1742-6596/898/7/072013
https://cds.cern.ch/record/2248494

Bibliography

[11] R. Bruce et al., “First results of running the lhc with lead ions at a beam energy of
6.8 z tev,” Journal of Physics: Conference Series, vol. 2687, no. 2, p. 022 001, Jan. 2024.
doi: 10.1088/1742-6596/2687/2/022001. [Online]. Available: https://dx.doi.org
/10.1088/1742-6596/2687/2/022001.

[12] M. Lamont, Operational Experience from LHC Run 1 & 2 and Consolidation in View of
Run 3 and the HL-LHC. World Scientific, 2024. doi: 10.1142/9789811278952_0004.
[Online]. Available: https://www.worldscientific.com/doi/abs/10.1142/978981
1278952_0004.

[13] A. Borga et al., “The atlas readout system for lhc runs 2 and 3,” Journal of Instrumen-
tation, vol. 18, no. 08, P08022, Aug. 2023. doi: 10.1088/1748-0221/18/08/P08022.
[Online]. Available: https://dx.doi.org/10.1088/1748-0221/18/08/P08022.

[14] R. Tomás et al., “Operational scenario of first high luminosity lhc run,” Journal of
Physics: Conference Series, vol. 2420, no. 1, p. 012 003, Jan. 2023. doi: 10.1088/1742-6
596/2420/1/012003. [Online]. Available: https://dx.doi.org/10.1088/1742-6596
/2420/1/012003.

[15] The ATLAS Collaboration and G. Aad, “The atlas experiment at the cern large
hadron collider,” Journal of Instrumentation, vol. 3, no. 08, S08003, Aug. 2008. doi:
10.1088/1748-0221/3/08/S08003. [Online]. Available: https://dx.doi.org/10.10
88/1748-0221/3/08/S08003.

[16] T. C. Collaboration and S. Chatrchyan, “The cms experiment at the cern lhc,” Journal
of Instrumentation, vol. 3, no. 08, S08004, Aug. 2008. doi: 10.1088/1748-0221/3/08
/S08004. [Online]. Available: https://dx.doi.org/10.1088/1748-0221/3/08/S080
04.

[17] R. Brun and F. Rademakers, “Root — an object oriented data analysis framework,”
Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrom-
eters, Detectors and Associated Equipment, vol. 389, no. 1, pp. 81–86, 1997, New Com-
puting Techniques in Physics Research V, issn: 0168-9002. doi: https://doi.org/1
0.1016/S0168-9002(97)00048-X. [Online]. Available: https://www.sciencedirect
.com/science/article/pii/S016890029700048X.

[18] Blomer, Jakob, Canal, Philippe, Naumann, Axel, and Piparo, Danilo, “Evolution of
the root tree i/o,” EPJ Web Conf., vol. 245, p. 02 030, 2020. doi: 10.1051/epjconf/202
024502030. [Online]. Available: https://doi.org/10.1051/epjconf/202024502030.

[19] López-Gómez, Javier and Blomer, Jakob, “Exploring object stores for high-energy
physics data storage,” EPJ Web Conf., vol. 251, p. 02 066, 2021. doi: 10.1051/epjcon
f/202125102066. [Online]. Available: https://doi.org/10.1051/epjconf/2021251
02066.

42

https://doi.org/10.1088/1742-6596/2687/2/022001
https://dx.doi.org/10.1088/1742-6596/2687/2/022001
https://dx.doi.org/10.1088/1742-6596/2687/2/022001
https://doi.org/10.1142/9789811278952_0004
https://www.worldscientific.com/doi/abs/10.1142/9789811278952_0004
https://www.worldscientific.com/doi/abs/10.1142/9789811278952_0004
https://doi.org/10.1088/1748-0221/18/08/P08022
https://dx.doi.org/10.1088/1748-0221/18/08/P08022
https://doi.org/10.1088/1742-6596/2420/1/012003
https://doi.org/10.1088/1742-6596/2420/1/012003
https://dx.doi.org/10.1088/1742-6596/2420/1/012003
https://dx.doi.org/10.1088/1742-6596/2420/1/012003
https://doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://dx.doi.org/10.1088/1748-0221/3/08/S08003
https://doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/10.1088/1748-0221/3/08/S08004
https://dx.doi.org/10.1088/1748-0221/3/08/S08004
https://dx.doi.org/10.1088/1748-0221/3/08/S08004
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/https://doi.org/10.1016/S0168-9002(97)00048-X
https://www.sciencedirect.com/science/article/pii/S016890029700048X
https://www.sciencedirect.com/science/article/pii/S016890029700048X
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1051/epjconf/202024502030
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1051/epjconf/202125102066
https://doi.org/10.1051/epjconf/202125102066

Bibliography

[20] I. Bird, “Computing for the large hadron collider,” Annual Review of Nuclear and
Particle Science, vol. 61, no. Volume 61, 2011, pp. 99–118, 2011, issn: 1545-4134. doi:
https://doi.org/10.1146/annurev-nucl-102010-130059. [Online]. Available:
https://www.annualreviews.org/content/journals/10.1146/annurev-nucl-10

2010-130059.

[21] EOS, Eos description, 2022. [Online]. Available: https://cernbox.cern.ch/pdf-vie
wer/public/Kl0hxpeA5bFQ4Ho/publications/eos-description-2022.pdf.

[22] Adye, T et al., “Xrootd third party copy for the wlcg and hllhc,” EPJ Web Conf.,
vol. 245, p. 04 034, 2020. doi: 10.1051/epjconf/202024504034. [Online]. Available:
https://doi.org/10.1051/epjconf/202024504034.

[23] T. Mkrtchyan et al., “Dcache integration with cern tape archive,” EPJ Web of Confer-
ences, vol. 295, May 2024. doi: 10.1051/epjconf/202429501016.

[24] M. C. Davis, V. Bahyl, G. Cancio, E. Cano, J. Leduc, and S. Murray, “CERN Tape
Archive - from development to production deployment,” EPJ Web Conf., vol. 214, A.
Forti, L. Betev, M. Litmaath, O. Smirnova, and P. Hristov, Eds., p. 04 015, 2019. doi:
10.1051/epjconf/201921404015.

[25] A. Naumann et al., Root for the hl-lhc: Data format, 2022. arXiv: 2204.04557 [hep-ex].
[Online]. Available: https://arxiv.org/abs/2204.04557.

[26] A. S. Mete, M. Nowak, and P. Van Gemmeren, “Persistifying the complex event data
model of the ATLAS Experiment in RNTuple,” CERN, Geneva, Tech. Rep., 2024.
[Online]. Available: https://cds.cern.ch/record/2905189.

[27] T. Åkesson et al., “Atlas computing: Technical design report,” CERN, Tech. Rep.
ATLAS TDR-017; CERN-LHCC-2005-022, 2005. [Online]. Available: https://lup.lu
b.lu.se/search/files/5842745/941311.

[28] M. L. Hansen and N. K. Krogh, Further work on rntuples in atlas, Dec. 2024. [Online].
Available: https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/
a7me0f/alma9921964558505762.

[29] J. Lopez-Gomez and J. Blomer, “Rntuple performance: Status and outlook,” Journal
of Physics: Conference Series, vol. 2438, no. 1, p. 012 118, Feb. 2023. doi: 10.1088/1742
-6596/2438/1/012118. [Online]. Available: https://dx.doi.org/10.1088/1742-65
96/2438/1/012118.

[30] Blomer, Jakob et al., “Root’s rntuple i/o subsystem: The path to production,” EPJ
Web of Conf., vol. 295, p. 06 020, 2024. doi: 10.1051/epjconf/202429506020. [Online].
Available: https://doi.org/10.1051/epjconf/202429506020.

43

https://doi.org/https://doi.org/10.1146/annurev-nucl-102010-130059
https://www.annualreviews.org/content/journals/10.1146/annurev-nucl-102010-130059
https://www.annualreviews.org/content/journals/10.1146/annurev-nucl-102010-130059
https://cernbox.cern.ch/pdf-viewer/public/Kl0hxpeA5bFQ4Ho/publications/eos-description-2022.pdf
https://cernbox.cern.ch/pdf-viewer/public/Kl0hxpeA5bFQ4Ho/publications/eos-description-2022.pdf
https://doi.org/10.1051/epjconf/202024504034
https://doi.org/10.1051/epjconf/202024504034
https://doi.org/10.1051/epjconf/202429501016
https://doi.org/10.1051/epjconf/201921404015
https://arxiv.org/abs/2204.04557
https://arxiv.org/abs/2204.04557
https://cds.cern.ch/record/2905189
https://lup.lub.lu.se/search/files/5842745/941311
https://lup.lub.lu.se/search/files/5842745/941311
https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921964558505762
https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921964558505762
https://doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1088/1742-6596/2438/1/012118
https://dx.doi.org/10.1088/1742-6596/2438/1/012118
https://dx.doi.org/10.1088/1742-6596/2438/1/012118
https://doi.org/10.1051/epjconf/202429506020
https://doi.org/10.1051/epjconf/202429506020

Bibliography

[31] T. Hoefler and R. Belli, “Scientific benchmarking of parallel computing systems:
Twelve ways to tell the masses when reporting performance results,” in Proceedings
of the International Conference for High Performance Computing, Networking, Storage and
Analysis, ser. SC ’15, Austin, Texas: Association for Computing Machinery, 2015,
isbn: 9781450337236. doi: 10.1145/2807591.2807644. [Online]. Available: https:
//doi.org/10.1145/2807591.2807644.

[32] D. Bailey et al., “Parkbench report - 1: Public international benchmarks for parallel
computers,” Scientific Programming, vol. 3, no. 2, pp. 101–146, 1994, issn: 1058-9244.

[33] T. R. team, ROOT: an object-oriented data analysis framework: users guide 4.04. Geneva:
CERN, 2005.

[34] I. Antcheva et al., “Root — a c++ framework for petabyte data storage, statistical anal-
ysis and visualization,” Computer Physics Communications, vol. 180, no. 12, pp. 2499–
2512, 2009, 40 YEARS OF CPC: A celebratory issue focused on quality software
for high performance, grid and novel computing architectures, issn: 0010-4655. doi:
https://doi.org/10.1016/j.cpc.2009.08.005. [Online]. Available: https://www
.sciencedirect.com/science/article/pii/S0010465509002550.

[35] A. Naumann et al., Root for the hl-lhc: Data format, 2022. arXiv: 2204.04557 [hep-ex].
[Online]. Available: https://arxiv.org/abs/2204.04557.

[36] de Geus, Florine, López-Gómez, Javier, Blomer, Jakob, Nowak, Marcin, and van
Gemmeren, Peter, “Integration of rntuple in atlas athena,” EPJ Web of Conferences,
vol. 295, p. 06 013, May 2024. doi: 10.1051/epjconf/202429506013. [Online]. Avail-
able: https://doi.org/10.1051/epjconf/202429506013.

[37] P. van Gemmeren and D. Malon, “The event data store and i/o framework for the
atlas experiment at the large hadron collider,” in 2009 IEEE International Conference on
Cluster Computing and Workshops, 2009, pp. 1–8. doi: 10.1109/CLUSTR.2009.5289147.

[38] H. Velthuijsen, “The nature and applicability of the blackboard architecture,” En-
glish, Ph.D. dissertation, Maastricht University, Jan. 1992, ch. 1, isbn: 9072125347.
doi: 10.26481/dis.19920924hv.

[39] A. Buckley et al., “Implementation of the atlas run 2 event data model,” Journal of
Physics: Conference Series, vol. 664, no. 7, p. 072 045, Dec. 2015. doi: 10.1088/1742-6
596/664/7/072045. [Online]. Available: https://dx.doi.org/10.1088/1742-6596
/664/7/072045.

[40] K. Kanoun and L. Spainhower, Dependability Benchmarking for Computer Systems.
Wiley-IEEE Computer Society Pr, 2008, isbn: 978-0-470-23055-8.

44

https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644
https://doi.org/10.1145/2807591.2807644
https://doi.org/https://doi.org/10.1016/j.cpc.2009.08.005
https://www.sciencedirect.com/science/article/pii/S0010465509002550
https://www.sciencedirect.com/science/article/pii/S0010465509002550
https://arxiv.org/abs/2204.04557
https://arxiv.org/abs/2204.04557
https://doi.org/10.1051/epjconf/202429506013
https://doi.org/10.1051/epjconf/202429506013
https://doi.org/10.1109/CLUSTR.2009.5289147
https://doi.org/10.26481/dis.19920924hv
https://doi.org/10.1088/1742-6596/664/7/072045
https://doi.org/10.1088/1742-6596/664/7/072045
https://dx.doi.org/10.1088/1742-6596/664/7/072045
https://dx.doi.org/10.1088/1742-6596/664/7/072045

Bibliography

[41] S. Kounev, K.-D. Lange, and J. von Kistowski, Systems Benchmarking: For Scientists
and Engineers, 1st ed. Springer Cham, 2020, pp. 3–21, 131–147, isbn: 978-3-030-41705-
5. doi: 10.1007/978-3-030-41705-5. [Online]. Available: https://doi.org/10.10
07/978-3-030-41705-5.

[42] J. v. Kistowski, J. A. Arnold, K. Huppler, K.-D. Lange, J. L. Henning, and P. Cao,
“How to build a benchmark,” in Proceedings of the 6th ACM/SPEC International Con-
ference on Performance Engineering, ser. ICPE ’15, Austin, Texas, USA: Association for
Computing Machinery, 2015, pp. 333–336, isbn: 978-1-450-33248-4. doi: 10.1145/26
68930.2688819. [Online]. Available: https://doi.org/10.1145/2668930.2688819.

[43] D. B. Stewart, “Measuring execution time and real-time performance,” Embedded
Systems Conference, Sep. 2006. [Online]. Available: https://citeseerx.ist.psu.edu
/document?repid=rep1&type=pdf&doi=e255041e179f96a46f772c7959e381710a6a5

a94.

[44] F. Pedregosa et al., “Scikit-learn: Machine learning in python,” Journal of Machine
Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011. [Online]. Available: http://j
mlr.org/papers/v12/pedregosa11a.html.

[45] E. Schubert, J. Sander, M. Ester, H. P. Kriegel, and X. Xu, “Dbscan revisited, revisited:
Why and how you should (still) use dbscan,” ACM Trans. Database Syst., vol. 42, no. 3,
Jul. 2017, issn: 0362-5915. doi: 10.1145/3068335. [Online]. Available: https://doi
.org/10.1145/3068335.

45

https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1007/978-3-030-41705-5
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688819
https://doi.org/10.1145/2668930.2688819
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e255041e179f96a46f772c7959e381710a6a5a94
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e255041e179f96a46f772c7959e381710a6a5a94
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e255041e179f96a46f772c7959e381710a6a5a94
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335
https://doi.org/10.1145/3068335

Appendix A. Performance Measuring

A — Performance Measuring

Figure A.1: The time taken to load an entry for a field for both the RAuxStore and TAuxStore for individual
event data entries. The plot uses a dataset with 110,000 entries.

Figure A.2: The time taken to load an entry for a field for both the RAuxStore and TAuxStore for individual
event data entries. The plot uses a dataset with 600,000 entries.

46

Appendix B. Benchmark Tables on HDD

B — Benchmark Tables on HDD

Benchmarking With a Warmup Phase

% of Auxiliary IDs RAuxStore TAuxStore Difference

10% 2612 ms 947 ms 1665 ms
40% 4223 ms 2026 ms 2197 ms
75% 6266 ms 3350 ms 2916 ms
100% 7841 ms 4269 ms 3572 ms

Total Time 20,942 ms 10,592 ms 10,350 ms

Table B.1: Benchmarking tests comparing the throughput of the RAuxStore compared to the TAuxStore. Each
test performs 20 runs.

Benchmarking Without a Warmup Phase

% of Auxiliary IDs RAuxStore TAuxStore Difference

10% 1081 ms 914 ms 167 ms
40% 2584 ms 3829 ms 1245 ms
75% 4607 ms 5163 ms 556 ms
100% 6166 ms 6100 ms 66 ms

Total Time 14,438 ms 16,006 ms 1568 ms

Table B.2: Benchmarking tests comparing the throughput of the RAuxStore compared to the TAuxStore. Each
test is run 20 times in separate executions.

47

Appendix B. Benchmark Tables on HDD

Test Configuration RAuxStore TAuxStore

Scenario 1: 20 Stores Without Problematic Type

1 No Warmup Run 6585 ms 3345 ms

Scenario 2: 1 Store With Problematic Type

2 No Warmup Run 137 ms 2009 ms
3 With Warmup Run 135 ms 106 ms
4 No Warmup Run (Avg. of 20 Runs) 217 ms 200 ms

Table B.3: Benchmark comparison of RAuxStore and TAuxStore performance across different test config-
urations (with around 20,000 entries and 100% of the auxiliary IDs within the auxiliary stores are used).
Problematic Type refers to the type std::vector<std::vector<ElementLink<DataVector<xAOD::IParticle

>>>>>. For all configurations, we perform 20 separate executions and report the average execution time.
The fourth configuration additionally performs 20 runs within a single test and calculates the average
time across all runs. For scenario one, all stores containing IDs with the problematic type are filtered
out, and 20 stores are selected from the remaining stores. For scenario two, a store with the name:
AntiKt10TruthSoftDropBeta100Zcut10JetsAux is picked. This store contains 10 auxiliary IDs, and one of
them is of the problematic type.

Dataset Size RAuxStore TAuxStore

110,000 entries 383 ms 92 ms
150,000 entries 627 ms 124 ms
600,000 entries 719 ms 485 ms

Table B.4: Results from conducting the benchmark on datasets of varying sizes.

Test Configuration Run 1 Run 2-20 Avg. Overall Avg.

RAuxStore With a Warmup Phase 6952 ms 7979 ms 7927 ms
RAuxStore Without a Warmup Phase 8969 ms 7972 ms 8022 ms

TAuxStore Without a Warmup Phase 4338 ms 4266 ms 4269 ms
TAuxStore Without a Warmup Phase 5612 ms 4170 ms 4242 ms

Table B.5: Benchmark results comparing execution times for RAuxStore and TAuxStore with and without a
warmup phase, after modifications done to the RAuxStore.

48

Appendix C. Comparison Tables

C — Comparison Tables

Benchmarking Without a Warmup Phase

% of RAuxStore TAuxStore Percentage
Auxiliary IDs SSD HDD SSD HDD Decrease

10% 1134 ms 1081 ms 916 ms 914 ms
R: SSD 4.9% slower
T: SSD 0.2% slower

40% 2525 ms 2584 ms 3862 ms 3829 ms
R: HDD 2.3% slower
T: SSD 0.9% slower

75% 4654 ms 4607 ms 5178 ms 5163 ms
R: SSD 1.0% slower
T: SSD 0.3% slower

100% 6030 ms 6166 ms 6119 ms 6100 ms
R: HDD 2.3% slower
T: SSD 0.3% slower

Total Time 14,343 ms 14,438 ms 16,075 ms 16,006 ms
R: HDD 0.7% slower
T: SSD 0.4% slower

Table C.1: Performance comparison between RAuxStore (R) and TAuxStore (T) on an SSD and an HDD
without a warmup phase. Created using Table 5.2 (p. 19) and Table B.2 (p. 47).

49

Appendix C. Comparison Tables

Test Configuration RAuxStore TAuxStore Percentage
SSD HDD SSD HDD Decrease

Scenario 1: 20 Stores Without Problematic Type

1 No Warmup Phase 6060 ms 6585 ms 3278 ms 3345 ms
R: HDD 8.7% slower
T: HDD 2.0% slower

Scenario 2: 1 Store With Problematic Type

2 No Warmup Phase 140 ms 137 ms 2021 ms 2009 ms
R: SSD 2.2% slower
T: SSD 0.6% slower

3 With Warmup Phase 139 ms 135 ms 129 ms 106 ms
R: SSD 3.0% slower
T: SSD 21.7% slower

4
No Warmup Phase
(Avg. of 20 runs)

211 ms 217 ms 224 ms 200 ms
R: HDD 2.8% slower
T: SSD 12.0% slower

Table C.2: Performance comparison between RAuxStore (R) and TAuxStore (T) on SSD and HDD. Created
using Table 5.3 (p. 20) and Table B.3 (p. 48).

Dataset Size
SSD

Total Time
HDD

Total Time
Difference

Percentage
Decrease

RAuxStore

110.000 entries 359 ms 383 ms 24 ms HDD 6.7% slower
150.000 entries 639 ms 627 ms 12 ms SSD 1.9% slower
600.000 entries 718 ms 719 ms 1 ms HDD 0.1% slower

TAuxStore

110.000 entries 90 ms 92 ms 2 ms HDD 2.2% slower
150.000 entries 131 ms 124 ms 7 ms SSD 5.7% slower
600.000 entries 485 ms 485 ms 0 ms No difference

Table C.3: Performance comparison between an SSD and an HDD with varying dataset sizes. All experiments
are performed using a single auxiliary store. Created using Table 6.1 (p. 24) and Table B.4 (p. 48).

50

Appendix C. Comparison Tables

Configuration
SSD

Overall Avg.
HDD

Overall Avg.
Difference

Percentage
Decrease

RAuxStore With Warmup 7728 ms 7927 ms 199 ms HDD 2.6% slower
RAuxStore Without Warmup 7968 ms 8022 ms 54 ms HDD 0.7% slower

TAuxStore With Warmup 4245 ms 4269 ms 24 ms HDD 0.6% slower
TAuxStore Without Warmup 4262 ms 4242 ms 20 ms SSD 0.5% slower

Table C.4: Benchmark results comparing an SSD and an HDD execution times for RAuxStore and TAuxStore

with and without warmup, after modifications done to the RAuxStore. Created using Table 6.2 (p. 27) and
Table B.5 (p. 48).

51

	Front page
	Title Page
	Contents
	Summary
	1 Introduction
	2 Problem Definition
	3 Related Work
	3.1 Comparing the Performance of the RNTuple to the TTree
	3.2 Benchmarking of Computer Systems

	4 Background
	4.1 TTree
	4.2 RNTuple
	4.3 Auxiliary Store
	4.4 Benchmark
	4.5 Performance Measurement Techniques

	5 Benchmark Analysis
	5.1 Analyzing the Benchmark Code
	5.2 Applying the Benchmark Theory

	6 Performance Measuring
	6.1 Analyzing Performance Bottlenecks
	6.2 Why RAuxStore is Faster Without a Warmup Phase
	6.3 First RAuxStore Run is Faster
	6.4 SSD vs. HDD
	6.5 Impact of Different Seeds
	6.6 RNTuple Throughput

	7 Benchmark Improvements
	7.1 Initial Improvements
	7.2 Redesigned Benchmark

	8 Discussion
	9 Conclusion
	10 Future Work
	10.1 Application Benchmark
	10.2 Refactoring Our Benchmark

	Bibliography
	A Performance Measuring
	B Benchmark Tables on HDD
	C Comparison Tables

