
Project Summary

This thesis investigates how memory safety can be enforced in C++ by restricting the language to a safe subset
and applying static analysis. Modern C++ provides features and guidelines that encourage safer programming
practices, but these are optional and not enforced by compilers. As a result, developers can still write code that
compiles but violates safety principles, such as accessing invalid memory. This project aims to mitigate this by
statically enforcing memory safety through a tool-supported analysis.

The proposed solution introduces a safe subset of C++, which disallows unsafe constructs like pointer dereferenc-
ing, new and delete, union field access, and certain type casts. Instead, it encourages the use of lvalue-references
and smart pointers to manage resource ownership and lifetimes. This approach echoes the Resource Acquisition
Is Initialization principle already prevalent in idiomatic and modern C++. By limiting language features in
this way, the project makes it easier to perform safety analysis.

To enforce safety, a static analysis algorithm called Safety Analysis was developed. It ensures two main prop-
erties: that resources are not used after being moved or deallocated (lifetime analysis), and that accesses to
resources are mutually exclusive (borrow checking). These checks are performed using control-flow and an
auxiliary pointer analysis, and executed on a Control-Flow Graph.

The tool implementing Safety Analysis is called CPlusPlusty. It is built as a Clang plugin and can be used with
existing C++ code bases compiled with Clang, without changing the language. Violations are detected early in
the compilation process, preventing unsafe code from compiling. Developers can annotate types and functions to
guide CPlusPlusty, similar to how Rust uses the unsafe keyword to isolate code that requires manual reasoning.
Safety Analysis and CPlusPlusty are conservative and may disallow safe code, but this ensures that no unsafe
code is erroneously accepted.

CPlusPlusty was evaluated through a series of small test programs and a larger real-world C++ project. The
smaller programs were used to validate that CPlusPlusty correctly enforces the safe subset and detects violations
from Safety Analysis, including some over-approximations like partial moves. The tool was also applied to a
larger code base originally implemented in both C++ and Rust. With minor changes, the C++ version was
made compatible with CPlusPlusty, demonstrating the feasibility of enforcing safety in practical applications.

Compared to other efforts such as ‘Safe C++’, Cpp2, and library-based borrow checkers, this project differs by
not adding to the language or requiring a new frontend. Instead, it restricts the use of unsafe constructs and
performs analysis directly on standard C++.

While Safety Analysis currently over-approximates and does not support polymorphism or exceptions, it lays a
strong foundation for bringing Rust-like safety to C++. Future work includes refining Safety Analysis to handle
more language features, improving precision with flow- and context-sensitive pointer analysis, and expanding
testing to ensure scalability. This thesis demonstrates that memory safety can be enforced in C++ without
changing the language itself, using tools that analyze and constrain standard, modern C++ code.
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of the language and applying static analysis. While
modern C++ offers features and guidelines that support
safer programming practices, these are not enforced by
compilers and remain optional.

To address this, the project introduces a static analysis,
that detects lifetime violations and enforces mutual
exclusive access to resources, similar to Rust’s borrow
checker and lifetime model. This analysis is accompa-
nied by a proof-of-concept implementation, CPlusPlusty,
as a Clang plugin.

The approach restricts unsafe constructs by default
and uses an over-approximating analysis to ensure
soundness. CPlusPlusty demonstrates that memory
safety guarantees can be retrofitted onto modern C++
code. The results suggest that such guarantees can be
achieved without major language extensions or alter-
native frontends, merely by applying static analysis and
enforcing safer usage patterns within standard C++.
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1. Introduction

As concluded in [1], C++ can in fact be a safe language. However, due to the size and many constructs it has
acquired over the years, some of which are unsafe, only a subset of C++ can actually be qualified as safe. As
Bjarne Stroustrup, creator of C++, has stated: “Inside C++, there is a much smaller and cleaner language
struggling to get out.” [2]. In [3], he also states that developers should use modern C++, as that is safe an valid.
While, he is definitely correct, that using modern constructs and patterns will lead to memory safe code, the
fact the language does not force or even really encourage this, makes the language unsafe.

Following the guidelines [4] will make your C++ code modern, and safe. However, that is just a guide, not
anything a C++ compiler will ensure by default, and following it will still not give the same safety guarantees
as Rust gives. Take the example in Listing 1.1, this is obviously invalid and dangerous code, but allowed in any
C++ compiler. In Rust, this would be caught by the borrow checker, because of their mutual exclusive access
rule.

As described in [1], the U.S. government are explicitly demanding that their suppliers switch from C/C++ to a
memory safe language. No doubt that more companies and organizations will demand their suppliers to move
away from C++, and use a safe language, such as Rust, instead. Therefore, some changes to C++ are needed to
make arguments for the usage C++ in the future. The example in Listing 1.1 illustrates that the solution is not
just to prohibit pointers and other unsafe constructs, but to add analysis to the language, regarding resources.

Rust has two main differences compared to C++ when discussing memory safety: lifetime of references, and
no data races. Lifetime of references ensures no use after freeing, no dangling references, and no use after
move. Rust ensures no data races by executing their borrow checker that ensures mutually exclusive access to
resources. These two aspects are not present in any possible subset of C++, meaning these analyses should be
added, to match the safety guarantees of Rust.

This project will tackle this exact issue. Throughout this report, I will define a conservative, modern, and
safe subset of C++, followed by an algorithm called Safety Analysis, designed to achieve the same two safety
guarantees previously mentioned. The defined subset and analysis will have an accompanying proof-of-concept
implementation, called CPlusPlusty. The result will be a new, modern C++, that achieves the same guarantees
as Rust does, with some over approximations. This will, however, require a new way to program in C++, a
way much like Rust.

1 void f()
2 {
3 std::vector<int> v(10);
4 int& p = v[5];
5 v.push_back(99); // could reallocate v's elements
6 int x = p; // BAD: potentially invalid reference
7 }

Listing 1.1: Invalid reference, modified version of example from [4, ES.65].

1



1.1 RelatedWork

This section will dive into other projects, that, like this project, aims at making C++ a safer language.

1.1.1 Borrow Checker As a Library

While this project defines Safety Analysis, that contains a borrow checker-like analysis, and an implementation
of it, C++ developers may not appreciate the language changing and only want to have the analysis done on
explicitly stated parts. This could for example be done through a library. GitHub user Jaysmito101 has made a
library called rusty, which provides a borrow checker to C++, along with some Rust-like types such as Option
and Result. The drawback of this approach is that everything you want to have analyzed must be wrapped in
the provided type Val, which may prove too cumbersome and divert developers from using it. Additionally, if
it is easier to write unsafe code than safe, there will most likely be more unsafe code than vice versa.

1.1.2 Safe C++

‘Safe C++’ is a proposal (currently draft) from Sean Baxter, scientific programmer and author of Circle C++1,
and Christian Mazakas, software engineer at The C++ Alliance, about a safer C++ [5]. Like this project, the
goal of ‘Safe C++’ is to introduce a borrow checker into C++, and guarantee memory safety at compile time.
Their approach to this is through a safe, opt-in environment, safe, the compiler can guarantee no undefined
behavior. Where this differs from this project is the scale and mindset. ‘Safe C++’ wants to add elements to
C++ (additional reference type, with lifetime annotation) and make safety opt-in, whereas this project tries to
restrict the language to its safe subset, and make safety opt-out.

‘Safe C++’ feels like a new, safe C++ frontend, whereas this project aims at solving the same problem, but
within C++.

1.1.3 Cpp2 & Cppfront

Herb Sutter, convener in the C++ committee, has created a new frontend for C++ called Cpp2, along with
a compiler for it called Cppfront2. In his own words, this project is a way to “make writing ordinary C++
types/functions/objects be much simpler and safer, without breaking backward compatibility”. Besides the new
syntax, we now get a bunch of safety improvements, such as bounds and null checks injected and type correctness
requirements in operations, along with some unchecked functions (functions named with an unchecked prefix)
for performance.

This project suffers from the same problems as ‘Safe C++’; this is a frontend solving a problem that is solvable
from C++ itself.

These projects either expands C++, or creates something beyond it. This project differs in the approach,
mainly that it solves the problem by restricting the language, and analyzing that.

1https://www.circle-lang.org/site/index.html – Accessed 16. January 2025
2https://hsutter.github.io/cppfront/welcome/overview/ – Accessed 5. December 2024
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2. The Safe Subset

This chapter outlines the subset Safety Analysis will consider. First, some argumentation for how I deem it
best to re-design an unsafe language to only allow the safe parts (by default). Then, a short description of
the subset, along with what has been left out for now. The main concern with this project is memory safety,
specifically for pointing datatypes, meaning the created subset may not be exhaustive.

C++ has been around for close to half a century, while being actively maintained and expanded upon. This
has the obvious effect that it has grown to be an extremely large language, consisting of a lot of new constructs
with modern (and arguably better) practices, that coexists with the older and (potentially) unsafe constructs.

As concluded in [1], C++ has the capability to be a memory safe language, however, it needs to restrict
itself to the safe, modern constructs and disallow the unsafe constructs by default, allowing to use those only
through an opt-in approach. Identifying what is and is not included in safe subset, along with deciding on
potentially contradicting features to include, can be a difficult task, and would most likely require a lot of
studying and understanding of the language. The approach taken in this project is to start with a potentially
overly conservative subset, allowing for expansion. With this conservative subset, we can apply some safety
analyses, and from there expand the language by including elements in said analyses.

This is the idea used throughout the report, apply conservative analysis that may over approximate, but can
be extended/modified to be less conservative, and/or include additional constructs from the language.

2.1 Removals and Disregards

[1] describes some unsafe constructs in C++, along with what the difference between safe and unsafe Rust is.
The restrictions for the same subset mirrors that of Rust’s, and the following is therefore prohibited in the safe
subset of C++:

• Dereferencing of pointers.
• Accessing fields in unions.
• new- and delete-expressions.
• Use of labels and goto.
• reinterpret_cast-expressions.
• const_cast-expressions.
• C-style cast expressions

Creating pointers is still allowed, mainly for using unsafe Application Programming Interfaces (APIs), but
utilizing them is prohibited. This is because, unlike with lvalue-references, pointers can represent so much.
Pointers can be constructed from any arbitrary integer (by casting), can be nullptr, can more easily point to
deallocated data, and finally, pointers may or may not own the data it points to, without any way to convey this
other than the documentation of the API. Following this argumentation, constructing unions is still allowed,
but accessing them is prohibited, since unions are inherently type unsafe.

new- and delete-expressions are prohibited, because they create/delete an owning pointer, which should only
be done through smart pointers. If using an API that takes an owning, raw pointer, that should be done through
the std::unique_ptr::release method (if the API is deallocating it with free, a safe malloc-wrapper smart
pointer is needed). If receiving an owning, raw pointer, that should immediately be wrapped in a smart pointer.
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1 struct Obj {
2 virtual AnyType &method(...) = 0;
3 }
4

5 void some_function(Obj &v) {
6 auto &value = v.method();
7 }

Listing 2.1: Example of pure virtual function with an lvalue-reference return type.

Using labels and (explicit) gotos are also removed, since these can be used to move the execution to some
arbitrary point in the control flow. However, the safe variants (return, break, continue) are still allowed.

The three potentially unsafe casting-expressions are prohibited. Notably, static_cast- and dynamic_cast-
expressions are still allowed. These are considered safe, though static_cast can be unsafe in polymorphic
contexts, if not used with caution. However, polymorphism is not considered in Safety Analysis, making
static_cast perfectly safe.

Polymorphism (specifically subtype polymorphism through class inheritance) is not considered in this analysis
to follow the method described above with starting small and expanding, and because pure virtual functions
returning lvalue-references will demand too much to be analyzed. Take the example in Listing 2.1, where
method may take any number of arguments of any type, and returns some lvalue-reference, it’s impossible to
know whether the returned value points to some field on the type, a function argument, a global object, or
something it allocates on the stack. Currently, there is no way for developers to specify this, whereas Rust uses
lifetimes to accomplish this. Either, some assumptions would have to be made and verified with regards to
what object the returned lvalue-reference is associated with, or developers should have to specify this. Either
way, these are out of the scope of this project and is considered future work. Abstract classes and virtual
functions are not prohibited, but Safety Analysis does not consider them. Additionally, exceptions are also not
considered (or more specifically, not prohibited) in the safe subset, along with lambda expressions.

2.2 The Safe Subset

The actual safe subset would consist of the remaining of the C++ language. Considering references/pointers
in this subset, there are only two: lvalue-references and smart pointers. Lvalue-references are non-owning
references to some value, and smart pointers are owning pointers, storing the data on the heap. This follows
the Resource Acquisition Is Initialization (RAII) principle by default, since smart pointers ensures deallocating
the data when it is no longer used, and lvalue-references cannot own what they point to.

With this model, dynamically-allocated resources can only be created through smart pointers, and using those
resources through lvalue-references, can only be done by dereferencing the smart pointer.
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3. Analysis Design

This chapter outlines and explains the analysis, called Safety Analysis, that is used to achieve memory safety
for the safe subset of C++. The goal of Safety Analysis is twofold: Ensure that all resources (and references to
them) are always live, meaning the resource has not been moved or deallocated when used (Lifetime analysis),
and ensure mutually exclusive access to all resources (Borrow checking). Mutually exclusive access is the same
rule that Rust’s borrow checker achieves.

The overall design of Safety Analysis is loosely inspired by [6]; the result from an auxiliary pointer analysis,
AUX, is supplied to two dataflow analysis algorithms. The result from AUX represents owning and non-
owning references/pointers, distinguished by the type of the variable, I.E. whether it’s an lvalue-reference, or a
smart pointer. The implementation created for this project will use an Andersen style pointer analysis [7], and
is described in Chapter 4.

Safety Analysis is composed of two algorithms, which are described in the following sections. They are both are
executed on the Control-Flow Graph (CFG). A CFG is a directed graph that represents the flow of a program [8].
It has an entry- and exit-node, and may be cyclic (due to loops). Each node has a set of preceding nodes, and
a set of succeeding nodes. A node in a CFG represents a basic block, which is a linear sequence of instructions,
with exactly one entry and one exit.

3.1 Lifetime

The lifetime check is two-fold: Check that a variable has not been moved before a usage, and check that all
potential pointees has at least one live owner. A variable ’var’ is moved if it is used as the argument in a
std::move function call (std::move(var)). The lifetime check is run on all uses of all variables.

The move-check involves going back up through the CFG to check whether a move exists before any potential
re-assignment, in any preceding path. Re-assignments are only applicable for non-lvalue-references, because
lvalue-references are bound to the data they initialized with, and cannot be re-assigned afterwards to reference
another object [9], making them similar to Single Static Assignment (SSA) form [10, ch. 1.1].

The live-owner-check checks whether all pointees has not been moved, and has at least one live owner. This
check is only done on non-parameter variables. This is because since we can only have lvalue-references and
smart pointers. Lvalue-references can only be constructed from variables or by copying another lvalue-reference,
meaning any invalid construction will be caught when calling the function, and if the parameter is a smart
pointer, it will own the resource and is therefore valid. A resource can have multiple owners thanks to smart
pointers (specifically std::shared_ptr), but only in cases where the pointee is a heap-allocated resource. In
many cases, the owners will resolve to a set with a single element of a stack variable. The move-part of this
check is like the move-check described previously. The live-owner-part checks whether any of the owners are in
the scope of the current CFG, and that they have not been moved.

The overall lifetime check can be generalized this formula:

∀v∈V ARS .∀s∈USES(v).¬MOV ED(v, s) ∧ LIV E_OWNER(v, s)

MOV ED(v, s) =


false IS_ASSIGNMENT (v, s)

true IS_MOV E(v, s)

∨
s′∈PREDS(s)

MOV ED(v, s′) otherwise
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1 void copy_parm(int &p)
2 {
3 int &a = p;
4 a;
5 }
6

7 int main()
8 {
9 int vv = 10;

10 copy_parm(vv);
11 }

Listing 3.1: Parameter copy.

LIV E_OWNER(v, s) = ¬IS_PARM(v) =⇒ ∀p∈PTS(v).¬MOV ED(p, s) ∧ ∃o∈OWNERS(p).IS_LIV E(o, s)

IS_LIV E(v, s) = IS_DECLARED_IN_SCOPE(v, s) ∧ ¬MOV ED(v, s)

where Safety Analysis will fail if this is not satisfied.

3.1.1 Over approximations

This definition currently does not handle partial moves (moving a field). If a partial move is met, for example
std::move(var.field), this will be elevated to be a move of the variable itself, std::move(var). This is an over
approximation to ensure no false positives. Likewise, a partial assignment, for example var.field = value,
will be ignored completely for the same reasons.

Additionally, the IS_LIV E check has an over approximation. Since it checks for owners within the same scope,
lvalue-references created by copying a parameter will cause an error. Take the code in Listing 3.1, this code
would produce an error because a points to vv because it is copied from p. And since vv is not in the scope of
copy_parm, Safety Analysis would produce an error.

3.2 Borrow Checking

The borrow checking check is to ensure that mutable access to a resource is exclusive within its region, described
in Section 3.2.1.

This check only considers mutable variables. If the variable is mutable, a check for exclusivity must be performed,
comparing every potential shared pointer, acquired through SHARED_PTS. SHARED_PTS returns every
potential common pointer of the given resource. That is, if the variable v is an lvalue-reference, all other lvalue-
references pointing to the same resource will be included in the result, and if it is not an lvalue-reference, all
lvalue-references pointing to v will be included. We include nested cases, because it is still possible to have an
lvalue-reference-field. Say, we have type A with field int &p, we can have an lvalue-reference to a variable of type
A, where its p-field holds an lvalue-reference to v. Likewise, if v contains fields, and some other lvalue-reference
points to that field, it will also be included.

The exclusivity check depends on the order of declarations. This is because, we want to ensure that no usages
of the outer-most variable of the two being compared, is used in the inner-most variables region. Similar to the
lifetime-check, this can also be expressed in a formula that must be satisfied for a safe program:

∀v∈V ARS .MUTABLE(v) =⇒ ∀v′∈SHARED_PTS(v).


skip v = v′

EXCLUSIV E(v, v′) DECL_AFTER(v′, v)

EXCLUSIV E(v′, v) DECL_BEFORE(v′, v)

EXCLUSIV E(INNER,OUTER) = ∧
u∈us

NEXT_USES(u, INNER) = ∅

where us = NEXT_USES(DECL(INNER), OUTER)

6



1 int p = 10; // PUSH p -- stack: [p]
2 int &d = p; // PUSH d -- stack: [d, p]
3 int &x = d; // PUSH x -- stack: [x, d, p]
4 use(x); // NO OP -- stack: [x, d, p]
5 use(d); // POP 1 -- stack: [d, p]
6 use(d); // NO OP -- stack: [d, p]
7 use(p); // POP 1 -- stack: [p]
8 // No empty stack, meaning no error

(a) Stack borrowing success.

1 int p = 10; // PUSH p -- stack: [p]
2 int &d = p; // PUSH d -- stack: [d, p]
3 int &x = d; // PUSH x -- stack: [x, d, p]
4 use(d); // POP 1 -- stack: [d, p]
5 use(d); // NO OP -- stack: [d, p]
6 use(p); // POP 1 -- stack: [p]
7 use(x); // POP n -- stack: []
8 // Error thrown: `POP`-op on empty stack

(b) Stack borrowing failure.
Listing 3.2: Stack borrowing examples.

1 std::vector<int> v{1};
2 int &p = v[0];
3

4 for (int i = 1; i <= 100; i++) {
5 use(p);
6 v.emplace_back(i*2);
7 }

Listing 3.3: Looping error.

EXCLUSIV E checks that all of the next uses of the outer-most variable (after the inner-most variable’s
declaration), does not lead to any uses of the inner-most variable. NEXT_USES(p, V AR) will search the
succeeding paths after program point p and return the first use(s) of V AR. If DECL(V AR) is met, make an
early return with ∅. This is because, that would indicate a loop, where the declaration of V AR is within the
loop.

This check creates a similar concept as stacked borrows (mentioned in [11], formalized in [12]), where the idea
is that accesses to resources happens through a stack. If a declaring a variable v to point to p, it is the only
way to access the resource, and when a usage of p is met, pop the stack until the peak of the stack is p. If it
ends up popping the entire stack, it means that there is no exclusive access. Listing 3.2 illustrates this.

3.2.1 Regions

A region is all statements from a variable declaration and its uses, to every use of the same variable, without
the declaration between. This definition is based on the paths on a CFG and will, ensure that the entirety of
a variables usage, is exclusive. The reason for this definition, is to ensure exclusive access within loops as well.
Take the code in Listing 3.3, here p is pointing to the first element of v. In the loop, v is expanded, which may
(in this exacts scenario, will) demand the vector to expand, and therefore re-allocate memory. If this happens,
and another iteration of the loop is executed, p will point to de-allocated memory.

This definition is an over approximation for non-lvalue-reference variables, since they can be re-assigned to
another value. However, because AUX has no restrictions regarding its precision (described in detail in Sec-
tion 3.3), the definition of a region must be over approximating. Generally, region can be viewed as a variable’s
lifetime from Rust, but over approximating, except code in SSA-form (and by extension, lvalue-references).

3.3 Precision of AUX

The more precise the AUX’s algorithm is, the more precise Safety Analysis is. For example, using a context-
insensitive analysis will yield a less precise result than using a context-sensitive algorithm. Take the example
in Listing 3.5. Here, a context-insensitive pointer analysis may result in {ap → {a, b}, bp → {a, b}}, because it
merges all function calls, whereas a context-sensitive will result in {ap → {a}, bp → {b}}, since it utilizes the
context of each call. With this example, a borrow checker would fail if the region from first and last use of ap and
bp were completely disjoint or encapsulated, if it used the context-insensitive result. This is because a borrow
checker needs exclusive access in the region a mutable variable is used. However, using the context-sensitive
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1 int a; // Region start -+
2 .... // |
3 .... // |
4 .... // |
5 a; // Region end ---+
6 ....
7 ....

(a) Basic region. One declaration, one use.

1 int a; // Region start -+
2 .... // |
3 if (cond) { // |
4 .... // |
5 a; // Region end ---+
6 .... //
7 } else { // +
8 .... // |
9 a; // Region end ---+

10 ....
11 }

(b) Branch region. One declaration, two uses.

1 int a; // Region start -+
2 .... // |
3 while (cond) { // |
4 .... // |
5 a; // |
6 .... // |
7 .... // Region end ---+
8 }

(c) Loop region. One declaration, one use.

Listing 3.4: Region examples.

1 void use(int &) { }
2 int &id(int &i) { return i; }
3

4 int main() {
5 int a = 10;
6 int b = 20;
7 int &ap = id(a);
8 int &bp = id(b);
9 use(ap);

10 }

Listing 3.5: id-function and usage.

result, it would know that ap and bp will not point to the same value.

Using a context-insensitive pointer analysis may cause some over-approximated errors in code. For example, in
Listing 3.5, because both ap and bp may point to the same while being mutable, ap needs exclusive access in
the region from its declaration to last use. But because we use the one of the potential pointees of ap between
its declaration and usage, Safety Analysis will fail.

Likewise, using a flow-sensitive analysis will yield more precise results than using a flow-insensitive, because re-
assignments are handled instead of merged. With a flow-insensitive analysis, a resource would require exclusive
access from declaration to final use for all the resources it can potentially point to, whereas with a flow-sensitive,
it would only be required from each assignment to the last use before the next.

However, because of lvalue-references are SSA-like, and because a flow-insensitive analysis executed on code
in SSA form produces a flow-sensitive result, the gains from a flow-sensitive analysis are only applicable to
smart pointers. This means that if smart pointers are frequently re-assigned, this more precise analysis will be
beneficial, however, if they are not, there is not much to gain from using a flow-sensitive AUX.

Both context- and flow-sensitive AUX will most likely require some results-formatting that may affect a concrete
implementation for Safety Analysis. A context- and flow-insensitive would simply map a variable to all a
conservative points to set. However context-sensitive (call-sensitive) result, would map the variable along with
the context to a points-to set, and a flow-sensitive would map a variable and program point to a points-to set.
These would require some handling when traversing the CFG.
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4. Implementation

This chapter describes the proof-of-concept implementation of Safety Analysis described in Chapter 3, called
CPlusPlusty. First, Clang plugins will be described, as this is what CPlusPlusty is implemented as, which
allows it to be used with the Clang compiler on existing C++ code. Then, the concrete implementation will be
described. CPlusPlusty uses the Andersen pointer analysis [7] as AUX.

4.1 Clang Plugin

Clang plugins1 are dynamic libraries that Clang can utilize to run code transformations and/or analysis during
the compilation process. There are multiple ways to execute code transformation and/or analysis through
Clangs ecosystem, for example using Clang Tidy2, Static Analyzers3, and Clang LibTooling4, all with their pros
and cons. Clang Plugin was preferred over the other options, because of their reasons specified5, specifically
that I want to make or break a build, and I want full control over the Abstract Syntax Tree (AST).

Working with Clang Plugins, you are mainly working on the Clang AST6, but have access to much of the Clang
(and LLVM) library, such as their internal, highly optimized data structures, attributes parsing and creation,
and their CFG representation.

Working with the AST, there are two approaches: Using their RecursiveASTVisitor class7, or AST match-
ers8. RecursiveASTVisitor is a class you can derive from and override the relevant methods for visiting the
relevant parts of the AST, but can make extracting specific patterns more cumbersome, partially due to the
size and complexity of the AST Clang provides, and C++ as a whole. AST matchers are effectively com-
posite functions that match on patterns in the AST. They are used extensively in Clang Tidy checks, and
does not require much to match on the needed patterns in the AST, but each matcher is disjoint meaning
shared data/behavior may require them to be defined within the same abstraction. For this implementation,
both are actually used, however, RecursiveASTVisitor is the main part of the pointer analysis implemented.
RecursiveASTVisitor was chosen because the documentation for Clang Plugins (and FrontendActions) were
exclusively using RecursiveASTVisitor, and because RecursiveASTVisitor provides more intuitive control
over the AST. That is not to say that one is better than the other, in fact, based on the documentation of AST
matchers (and the extensive usage of them in Clang Tidy checks), it appears that they would be the best way to
go, going forward. Github user banach-space has made a project with examples of multiple kinds of plugins9.
This project has been a great help at showing how to make the fundamentals of CPlusPlusty, and getting this
project started.

To register a plugin in the compilation pipeline, users need to supply Clang with the dynamic library by
-fplugin=/path/to/plugin Clang plugins also can also parse commandline arguments, those are supplied by
adding the arguments -fplugin-arg-REGISTERED_PLUGIN_NAME-ARG, which supplies the plugin registered with
the name REGISTERED_PLUGIN_NAME with the argument ARG.

1https://intel.github.io/llvm/clang/ClangPlugins.html – Accessed 07. May 2025
2https://clang.llvm.org/extra/clang-tidy/ – Accessed 07. May 2025
3https://clang-analyzer.llvm.org/ – Accessed 07. May 2025
4https://intel.github.io/llvm/clang/LibTooling.html – Accessed 07. May 2025
5https://clang.llvm.org/docs/Tooling.html – Accessed 07. May 2025
6https://clang.llvm.org/docs/IntroductionToTheClangAST.html – Accessed 07. May 2025
7https://clang.llvm.org/docs/RAVFrontendAction.html – Accessed 07. May 2025
8https://clang.llvm.org/docs/LibASTMatchers.html – Accessed 07. May 2025
9https://github.com/banach-space/clang-tutor – Accessed 15. May 2025
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4.2 CPlusPlusty

The implementation of CPlusPlusty effectively supplies two frontend actions combined into one solution, reg-
istered under the name safety_analysis: A registry for a new attribute on function- and type-declarations,
and the safety analysis. The attributes supplied can be used to mimic how Rust’s unsafe works, as well as
easily defining your own smart pointers. The overall attribute given is called safety, and has a handful of
specifications that can should applied:

• none – Omit analysis within the function this is attribute applied to.
• smart_ptr – Tell CPlusPlusty that the type the attribute is applied to is a smart pointer.
• smart_factory – Tell CPlusPlusty that the function this attribute is applied to, is a smart pointer factory

(for example make_unique).
• smart_clone – Tell CPlusPlusty that the function this attribute is applied to, is a smart pointer cloning

function (for example a copy-constructor).
• smart_deref – Tell CPlusPlusty that the function this attribute is applied to, is a dereference of a smart

pointer, and returns the heap-allocated value.
Functions with any of these these attributes do not have Safety Analysis executed on them, as operations regard-
ing smart pointers will most likely require some pointer dereferencing, and other unsafe operations. With these
attributes, one can easily make a custom smart pointer by annotating their class with safety(smart_ptr). For
example, if my type A is a smart pointer, it should be attributed like class [[safety(smart_ptr)]] A {...};
In the same fashion, a wrapper around a C-API may need to be annotated with safety(none) if pointer derefer-
ence is needed. safety(smart_ptr) can only be applied to record types, and the remaining attributes can only
be applied to functions/methods. Any misuse will cause an error, and the program will not compile. Throughout
visiting the AST, some predefined types and functions are annotated (such as unique_ptr and make_unique)
with the relevant specifications from above. Based on the annotations, some declarations that are not annotated
by the user, are also annotated by inference. For example, if a type is annotated with safety(smart_ptr),
and it overloads a dereference operator (*, ->, and []), those methods will get the safety(smart_deref)
annotation. The same for copy-constructor and -assignment operator overloads, they will be annotated with
safety(smart_clone), and any other constructor will be annotated with safety(smart_factory). If using a
library, or any code that you cannot annotate yourself, CPlusPlusty provides a few commandline arguments to
tell the tool what functions and namespaces to ignore (effectively applying a safety(none), and a way to add
additional smart pointers.

The safety analysis part of CPlusPlusty, is executed before the main action of the compiler, which is code
generation, and after the inputted code has been parsed and analyzed by the default analyses. This means that
the analysis can take advantage of the fact that whatever code it is supplied with, is indeed correct. For example,
if a copy-constructor for a class is deleted, and it is used in the code, the analysis will not be executed due to
other preceeding errors. The safety analysis visits a great number of different kinds of nodes in the AST, though
the most relevant for pointer analysis would be VarDecl and BinaryOperator/CXXOperatorCallExpr, where
the operator is an assignment. VarDecl is when a variable is declared (and usually initialized), if the variable
being declared is re-assigned later, the node will be a BinaryOperator or CXXOperatorCallExpr (depending
on the type) instead. From each of these, some constraints are generated for the expressions in each. If the
left-hand side is an lvalue-reference, and it is its declaration, either a copy- or addr-constraint is generated.
It will be a copy-constraint if the right-hand side is also an lvalue-reference (or a function that returns one),
and it will be an addr-constraint if it is not. Later assignments will be store- or loadstore-constraint due to
lvalue-references’ SSA form, and instead updates the values in their pointees. For Safety Analysis, CFGs are
generated for each function, and the formulas are checked for each of those. The analysis only considers trivially
reachable basic blocks, meaning if a given block is breaking the analysis, but it is unreachable (for example the
else-branch in an if (true)), the code will still compile.

CPlusPlusty follows the formulas show in Chapter 3, and outputs diagnostics for the variables that fails
a formula, rather than a general error it the entire formula fails. For example, the code shown in List-
ing 4.1a will produce the error shown in Listing 4.1b. To use CPlusPlusty, simply use the command: clang++
-fplugin=/path/to/plugin /path/to/file, and the analysis will be executed, and only produce an exe-
cutable if it passes.
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1 int main()
2 {
3 int d = 10;
4

5 int &p1 = d;
6 int &p2 = d;
7 p1;
8 }

(a) Failing code.

1 /path/to/file.cpp:5:5: error: Borrow checker
2 5 | int &p1 = d;
3 | ^~~
4 | Conflicting mutable access: `p1` and `d` have overlapping regions.
5 /path/to/file.cpp:6:5: note: Inner var use
6 6 | int &p2 = d;
7 | ^~~
8 | This use of `d`
9 /path/to/file.cpp:7:5: note: Outer var use

10 7 | p1;
11 | ^~
12 | Has path to use of `p1`
13 1 error generated.

(b) Diagnostic.
Listing 4.1: Erroneous code and its diagnostic.

4.2.1 Limitations

For this implementation, all types and functions within system headers (meaning the standard library) are
ignored. This was done because the standard library has not been written with the safe subset described in
Chapter 2 or Safety Analysis in mind, and would most likely cause several errors. If the C++ language adopted
the subset and analysis described in this report (or some variant of it), the standard library would need some
re-writing, or at least annotate the unsafe parts. Additionally, this implementation may, unknowingly, omit
some edge cases from C++. This is only solvable by a very well-defined subset and analysis, along with a big
test suite, testers, coders, and code reviewers to catch all cases.

This plugin completely disregards all functions annotated with any of the previously mentioned attributes, which
is unlike Rusts unsafe. Rust still analyze code in unsafe blocks or functions, but just allows some operations
to be performed. This way, error such as multiple mutable borrows and use after move are still caught. Ideally,
CPlusPlusty should, like Rust, still analyze the annotated functions, but simply ignore the subset described in
Chapter 2. This would, however, demand that all of the code being analyzed is written with the safe subset
and Safety Analysis in mind, therefore still demanding system headers to be omitted or re-written.
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5. Test

This chapter describes how CPlusPlusty has been tested. The testing is two-fold: A suite of small, toy programs
to illustrate the different cases CPlusPlusty may encounter, and then CPlusPlusty executed on a larger program.

5.1 Test Suite

The test suite consists of over 60 small programs, each covering its own construct to show what Safety Analysis
prohibits, and what it allows. The tests mostly contains under 50 lines to setup and execute the test, and
the entire suite is executed through ctest. A small bash script gets the path to the file, and an expected
status (success or failure), and executes the program, reporting if the test has failed or not. Some of the
over approximations mentioned throughout the report are also tested, and, as expected, they do in fact over
approximate.

The test suite was written with the subset in mind, however, it may miss a few cases with more exotic C++
code. For example, code with large amounts of templates and concepts has not been tested, along with variadic
templates. These are cases where CPlusPlusty relies on Clang’s AST. A test for the id-function shown in
Listing 3.5 was made that shows it fails, but a test case with generics and differing types for a and b (along with
their lvalue-reference variants) does compile, thanks to C++ monomorphism, and that the Clang AST clearly
and easily differentiates those.

Something that should be considered is a more complex test suite, with auto-generated test cases, and perhaps
some mutation testing. Implementing mutation testing could ensure that the program catches different cases,
such as mutating an lvalue-reference to a pointer (and subsequently all uses of the variable as dereferences), and
see if CPlusPlusty will catch the use of the unsafe constructs. The control Clang provides over the AST makes
it easy to modify an input program. The procedure to ensure correct mutations just needs to be defined.

5.2 Larger Code Base

CPlusPlusty has been tested on the C++ program developed in [1]1. This actually caught a few instances of a
bad practice, namely allocating through new expressions. These were then saved in a std::unique_ptr, meaning
one should simply use std::make_unique to allocate the required memory. After this fix, CPlusPlusty showed
some over-approximation regarding the CFG. CPlusPlusty caused an error for the code shown in Listing 5.1.
The error occurs because there is a path from the move of engine on line 2, to the usage of the variable on
line 22. We as developers can clearly see that the only path to line 22, is the path where engine is re-assigned,
however, without any additional analysis to mark some paths in the CFG as unreachable, there are multiple
paths to line 22. This implementation was made to, stylistically, be similar to the Rust implementation2 that
uses match. A simple fix to ensure the analysis passes, is to omit the switch, and simply check the two error
cases in two ifs, follow by the re-assignment. This fix is shown in Listing 5.2.

Using CPlusPlusty initially, it was commanded to ignore all functions within the gsl namespace. This was
done for the same reasons as CPlusPlusty by default ignores system headers, because the gsl library was not

1Pull request with the changes to make it compile can be found here: https://github.com/t-lohse/MicroProfileEngine/pull/2
2https://github.com/t-lohse/micro-profile-engine-rs
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1 while (engine.getState() != ProfileState::Done) {
2 auto newEng = std::move(engine).step();
3 bool dip = false;
4 switch (newEng) {
5 using T = EngineStepResult<DummySensorState>;
6 case T::Next:
7 engine = std::move(newEng).getNext();
8 break;
9 case T::Finished:

10 dip = true;
11 break;
12 case T::Error:
13 std::cout << "No stages in profile!!! Error: `" << std::move(newEng).getError()
14 << "`" << std::endl;
15 return 1;
16 }
17 if (dip)
18 break;
19

20 const long SLEEP_TIME = 50;
21 std::this_thread::sleep_for(std::chrono::milliseconds(SLEEP_TIME));
22 std::cout << "The engine is in state: " << engine.getState() << std::endl;
23 if (engine.getState() == ProfileState::Brewing) {
24 const double PISTON_CAP = 100;
25 *pistonPos = std::min<double>(*pistonPos + 1, PISTON_CAP);
26 std::cout << "Piston: " << *pistonPos << std::endl;
27 }
28 }

Listing 5.1: Original code.

1 while (engine.getState() != ProfileState::Done) {
2 auto newEng = std::move(engine).step();
3 using T = EngineStepResult<DummySensorState>;
4 if (newEng == T::Finished) {
5 break;
6 } else if (newEng == T::Error) {
7 std::cout << "No stages in profile!!! Error: `" << std::move(newEng).getError()
8 << "`" << std::endl;
9 return 1;

10 }
11 engine = std::move(newEng).getNext();
12

13 const long SLEEP_TIME = 50;
14 std::this_thread::sleep_for(std::chrono::milliseconds(SLEEP_TIME));
15 std::cout << "The engine is in state: " << engine.getState() << std::endl;
16 if (engine.getState() == ProfileState::Brewing) {
17 const double PISTON_CAP = 100;
18 *pistonPos = std::min<double>(*pistonPos + 1, PISTON_CAP);
19 std::cout << "Piston: " << *pistonPos << std::endl;
20 }
21 }

Listing 5.2: New code.
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written with the safe subset and Safety Analysis in mind, and would most likely cause some error. However, the
library was not used that much, so the program was changed such that usages of gsl was removed or changed
to lvalue-references. This new implementation still compiled with CPlusPlusty, and resulted in the same as
before the changes.
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6. Discussion

This chapter will discuss the safe subset of C++, Safety Analysis, and CPlusPlusty, mainly regarding short-
comings and changes to improve scalability.

6.1 The Subset

The subset currently prohibits dereferencing pointers as the only restriction on pointer operations, meaning
pointer arithmetics is technically allowed. This generally echoes what Rust allows for pointers. However, we
may not have to completely disregard pointers, because of the ergonomics of lvalue-references. Once an lvalue-
reference has been created, it can never point to something else. This is different compared to references from
Rust, that essentially are re-assignable lvalue-references, with some static analysis attached to them. This
makes Rust somewhat more capable, and forces C++ developers using the safe subset and Safety Analysis
to create code in SSA form (when using lvalue-references). In Rust, the simplicity of using and re-assigning
references, along with the guarantees of a live pointee, makes using them feel like a very high level language
without pointers, but with the performance of a lower level language with pointers. Expanding the subset to
include pointers in some capacity may be desirable, if C++ should be more like Rust, or simply keeping it
as is, and letting C++, and how to program in it, adapt. A clear distinguishment between a safe and unsafe
pointing-construct makes code a lot easier to understand and comprehend. Rust’s references are more ergonomic
regarding their safety analysis, because they were designed to be safe, C++’s lvalue-references were not.

The subset currently does not consider both polymorphism and exceptions. Especially polymorphism, is crucial
for strong, generic programming and some object oriented design patterns, such as the visitor pattern. The
problem regarding polymorphism is that, as explained in Section 2.1, C++ either needs some sort lifetime
annotation, or have some assumptions regarding returned lvalue-references and what they are allowed to bind
to. If a lifetime-like annotation is needed, it may be wise to learn from Rust, and potentially use something
different than an arbitrary lifetime (if a return value has lifetime 'a, that notion is completely arbitrary and
has no easily understandable meaning), and instead use a origin1. With this proposal, given a lvalue-reference
return value, you specify what input or static variables it will have its lifetime associated with, making code
more readable and understandable compared to Rust’s lifetimes.

Regarding exceptions, using them is a taste preference. Inherently, they are not unsafe, however, they can make
code both harder to read and understand, and considering them in analysis can be very difficult, since they
create edges from every statement to the exit-node in a CFG. Given a language where exceptions is the default
way to handle errors, compared to a more functional approach, utilizing APIs from the former may require
more care than the latter. Take the example in Listing 6.1, here we see two comparable function signatures of a
function for getting the first element of a vector. The C++ version has no information in the function signature,
meaning developers are required to have knowledge regarding error handling from the function (meaning what
exceptions it can throw), either through documentation, intuition, or inspection of the concrete implementation.
In the Rust example, the information regarding the different ways the function can cause an error is, more or
less, embedded in the signature (specifically the return type). Developers can see that the function may or may
not return a value, and they have to handle the case where it cannot (or explicitly ignore), whereas with C++,
you have to explicitly opt in for error handling, through try-catch. This is a very trivial example, but it is not
hard to imagine more nuanced cases where there are multiple different kinds of failures. In Rust, those would
be represented in a Result, where the error-type is either an enum or trait object, whereas in C++, it would

1https://smallcultfollowing.com/babysteps/blog/2024/03/04/borrow-checking-without-lifetimes/, section “Replacing a
lifetime with an origin” – Accessed 15. May 2025
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1 template <typename T>
2 const T& head(const std::vector<T> vec&);

(a) C++ version

1 fn head<T>(vec: &Vec<T>) -> Option<&T>;

(b) Rust version

Listing 6.1: Example of head-API, meaning getting the first element of a vector.

1 struct A {
2 int x = 10;
3 int y = 20;
4 };
5 int main() {
6 A val{};
7 std::move(val.x); // invalidates `val`
8 use(val.y); // causes error
9 }

Listing 6.2: Partial move over approximation example.

most likely be several different exceptions.

A suggestion may be to treat exceptions like panics from Rust or exceptions from Haskell, meaning not a part
of the control-flow, but (generally) unrecoverable errors. With this treatment, analysis will be easier and APIs
will be more clear, while code generally being more robust and reliable. The bad side regarding this, is that
when actually recovering from these errors (like through catch_unwind in Rust), developers are responsible for
the state of the program that caused the panic. [13, ch. 7.1] explains this well, demanding exception safety
in unsafe code. A good example of missing exception safety is doing an operation that can cause a panic,
while having an owning, not-smart pointer. This pointer will simply be removed, but the pointee will not be
deallocated, causing a memory leak. The safe subset actually accomplishes this by disallowing new and other
ways to allocate memory that is not held through a smart pointer, though, like with Rust’s Box, there is a safe
way to leak the data from a std::unique_ptr.

Regarding lambda expressions, a naive approach to include them would be to treat them as any lvalue-reference
variable: the variables captured by reference in the capture list, would be in a lambda variables points-to set.

6.2 Safety Analysis

As stated in Section 3.1.1, Safety Analysis currently over approximates partial moves. This will invalidate parts
of a data structure that is still valid to use. The effect is illustrated in Listing 6.2, where we can see that that
moving a field will cause an error if using a separate field. Even if a re-assignment of val.x was in between line
seven and eight, the over approximation demands a re-assignment of val for val.y to be valid. The desired
effect would be for a move to cause the field moved, its subfields, and its super-components to be invalidated,
until that, or a super-component, is reassigned. The section also mentions the over approximation regarding
lvalue-references created by copying a parameter. While it would be unintuitive to have two lvalue-references
to the same object within the same scope, there is no reason to prohibit it. Some re-work of the check should
be done to ensure that this over approximation will not happen.

Safety Analysis currently work on the uses of variables, which will catch the potential errors. However, if a
function is created that may cause an error, but is never used, that error is never caught. For example, the
function shown in Listing 6.3 shows the function get_zero that returns an lvalue-reference from a function,
where the reference is bounded to a stack variable, meaning the returned lvalue-reference is unusable. If line
eight is uncommented, the analysis will cause an error, however, because v is never used in this version, this
passes Safety Analysis, and compiles. The only way to catch these kinds of errors is if developers are testing
their code. With this, it is possible for a badly written API to cause compile errors for the users code base.

While Safety Analysis has its flaws, it shows potential. It is possible to make static analysis of C++ code, that
can catch the same errors as the Rust compiler, and Safety Analysis lays a good foundation for more precise
analysis of C++ in the future.
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1 int &get_zero()
2 {
3 int a = 0;
4 return a;
5 }
6 int main() {
7 auto &v = get_zero();
8 // v;
9 }

Listing 6.3: Bad function get_zero.

6.3 CPlusPlusty

CPlusPlusty is made as a proof-of-concept, and is not scalable. Regarding the pointer analysis implementa-
tion, [14] has found that storing constraints from Andersen’s pointer analysis [7] in Binary Decision Diagrams
(BDDs) can be very efficient memory-wise, and scalable to larger programs. This is echoed in [6], though for a
flow-sensitive, context-insensitive pointer analysis. In CPlusPlusty, some expressions are going through multiple
checks to analyze the characteristics of the expressions (if the expression is a plain variable, smart pointer deref-
erence, function call, etc.), and some of these checks perform the same sub-checks, meaning duplicate checks.
Optimizing these may improve performance. Additionally, some constraints may be produced twice, which adds
to the first iteration of the worklist algorithm for the pointer analysis, though will not propagate through the
rest. As mentioned in Section 4.2, the input code is actually traversed twice, once for the pointer analysis, and
once for Safety Analysis. This could (and should) be optimized away to only need one traversal of the input.
When performing analysis on the CFG, there may be some duplicate computations (for example, that one basic
block leads to another). If memory allows for it, these results should be cached and used to improve the runtime
of the compiler.

CPlusPlusty’s AUX should be a more precise pointer analysis, specifically that it should be context-sensitive,
and for maximum precision, flow-sensitive for smart pointers. Reasons for this is explained in detail in Sec-
tion 3.3.

As mentioned in Section 4.2.1, system headers are not analyzed currently, since the standard library would
require a re-write and/or review to ensure it conforms with Safety Analysis. Additionally, CPlusPlusty does not
analyze functions annotated with any of the described attributes. This should be changed to behave much like
Rusts unsafe, such that it only allows the users to use the prohibited parts of C++, but still analyzes the code.

The current implementation handles containers (std::vector, std::set, std::map, etc.) as smart pointers.
This behavior is not wrong since these containers are smart pointers that allocate the resources on the heap.
However, due to the implementation of the smart pointer operations, CPlusPlusty may over approximate with
regards to containers. safety(smart_clone) annotated functions (or copy-constructors on safety(smart_ptr)
types) will be treated like a std::shared_ptr, meaning it will be like two pointers, pointing to the same. This
distinction is correct with the classical smart pointers, though not with containers as they perform a deep copy
of the data, meaning they do not point to the same heap-allocated resource. A way to distinguish between
classical smart pointers and containers is needed for full precision and no over approximation.

Range-for loops in C++ is syncatic sugar for iterating over a container. Allowing these in CPlusPlusty is quite
useful, as these loops are used frequently (and recommended by the guidelines [4, ES.71]). However, the way
they are expanded causes an over approximation for CPlusPlusty. An example is shown in Listing 6.4. This is
because, in CPlusPlusty, __begin1 has a ”forced” copy-constraint with vector. And since __begin1 is mutable
(otherwise ++__begin1 would fail), CPlusPlusty views it as a mutable borrow. This means that, even when
vector is const and __begin1 cannot provide a mutable reference to anything in vector, if vector is present
anywhere in stmts, there will be a borrow checker error, as the loop leads to another use of __begin1, without
its decl in between. Therefore, the borrow checker will make an error on vector and __begin1, and not i since
that has a declaration in the path.

2https://en.cppreference.com/w/cpp/language/range-for – Accessed 16. May 2025
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1 for (const auto &i : vector) {
2 /* stmts */
3 }

(a) Range-for loop.

1 auto &&__range1 = vector;
2 auto __end1 = __range1.end()
3 auto __begin1 = __range1.begin()
4 for (; __begin1 != __end1; ++__begin1) {
5 const auto &i = *__begin1;
6 /* stmts */
7 }

(b) Approximate expansion2.
Listing 6.4: Range-for loop and its expansion.

6.4 Testing

Regarding testing CPlusPlusty, a test suite was created to check the edge cases, and CPlusPlusty was executed
on a larger project. Regarding the test suite, one can never have too many tests, and having to explicitly
define all tests can be a limiting factor. As mentioned in Section 5.1, adding some generation of test cases,
and/or mutation testing, can be beneficial, in combination with a lot of explicitly defined edge cases, may catch
outlying cases, since every test suite may be unique. If this was implemented, one would only need to report
the programs that cause an error, fix the error, and use said program as a part of the explicitly defined test
suite.

For larger programs, CPlusPlusty was tested against a single program, that was written as a C++ variant of
a Rust program. CPlusPlusty accepts the program, after a few small changes. However, a single, larger code
base does not necessarily prove correctness. Ideally, a suite of larger projects will help testing the scalability of
CPlusPlusty, as well as correctness on code that most likely is a combination of all the cases from the test suite.

The issue in the code shown in Listing 4.1, is likely an effect of creating code stylistically similar to Rust,
something C++ was not designed to be. The more native way to fix this in C++ is with labels and gotos.
Instead of having a variable to check if the flow should break out of the loop, it would be much simpler to have a
label after the loop, and a goto within the case T::Finished:-block, as well as making the analysis work. But,
in the subset defined in this project, labels and gotos are prohibited. This leads to the question whether the safe
subset is too restrictive, and maybe it should allow labels and gotos in some capacity. Otherwise, it could also
be solved if C++ had labeled-loops, that you could break from, meaning the statement break outer_loop;
would break out of the loop with the outer_loop label, no matter where the statement is. If the language
decides to change even further by adding tagged unions and pattern matching, the code could be almost exactly
like its Rust counterpart that uses a match expression.
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7. Conclusion

Chapter 1 presented the issue of safety in C++, and that it has the capability to be safe, though only a subset
of it. C++ allows for a lot of code that [4] will call bad practice and unsafe, but compilers will at best warn
for such scenarios. Even if developers restrict themselves to the safe subset, use-after-free and other errors are
still possible. Therefore, C++ needs to make the unsafe parts hidden and opt-in, and add some safety analysis.
There exists other projects aiming to solve the same problem, however, none of those are solving it by restricting
C++, but instead expanding or recreating it.

In Chapter 2, a conservative subset was defined to enforce safe, modern C++. Here, some language constructs
was prohibited, such as dereference of pointers and some casting-expressions. Though some safe and modern
features has been omitted from this project, such as exceptions and polymorphism, mainly to start with a small,
conservative, and expandable subset.

Chapter 3 outlined the algorithm Safety Analysis, which is an algorithm comprised of two dataflow analysis
algorithms: a lifetime analysis, and a borrow checker-like analysis. Safety Analysis uses the result of an auxiliary
pointer analysis, AUX, to have knowledge of the ownership of the variables, along with ensuring mutual
exclusivity.

Chapter 4 presents the implementation of Safety Analysis, called CPlusPlusty. CPlusPlusty is implemented as
a Clang Plugin, meaning it can easily be used on existing code, along with utilizing existing, state-of-the-art
constructs (such as their large AST and CFG) from a real-world compiler. CPlusPlusty uses Andersens pointer
analysis [7] as its AUX, and provides some attributes for users to specify code to avoid analysis (corresponding
to unsafe in Rust), and to specify smart pointers and some operations regarding them. With CPlusPlusty, it
is possible to test and execute Safety Analysis on existing C++.

In Chapter 5, test of CPlusPlusty is outlined, presenting two aspects: the test suite of over 60 programs, and a
test on a larger project. CPlusPlusty behaves as expected, and found a few flaws with the larger project, that
were easily fixed.

Chapter 6 discusses aspects of the project that are lacking, and leaves some aspects to be desired. For the
safe subset, inclusion of polymorphism is a must for the future. For Safety Analysis, some over approximations
should be fixed to provide the most precise analysis possible. For CPlusPlusty, some performance optimizations
and a more precise AUX is needed to make it more precise and scalable. And regarding the testing, generation
of tests and mutation testing can prove beneficial, along with testing on additional larger projects, will provide
more confidence of the correctness of CPlusPlusty.

This thesis defined a conservative safe subset of C++, and introduced a static analysis, Safety Analysis, along
with a proof of concept tool, CPlusPlusty, capable of enforcing key memory safety guarantees. Inspired by
Rust’s borrow checker and lifetimes, the analysis statically prevents dangling references and ensures mutually
exclusive access, achieving many of the same safe guarantees as Rust has, at compile-time. With this, it is
proved that C++ in fact has the capability to be as safe as Rust.

Compared to related work, this approach requires no new language frontend or compiler. Instead, it operates
directly on standard C++ code, restricting unsafe constructs and enabling safety as a default, opt-out model.
While the analysis currently over-approximates certain behaviors and excludes polymorphism and exceptions,
it demonstrates a promising direction for fitting memory safety into the future of C++.
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7.1 FutureWork

While this project proves that C++ can in fact have additional safety analysis performed on it, there are
several aspects left to be desired. Many of the points from Chapter 6 should be considered implemented. For
the safe subset, extensive research and argumentation should be done to expand the subset to include as much
of current C++ as possible. The main points to take away are whether pointers are well-fitted, and how to
include polymorphism, whether some assumptions should be made regarding virtual methods, or whether to
introduce some lifetime-like construct to the language.

Extending Safety Analysis to include partial moves and assignments and not over approximate, as described in
Section 6.2 should be done. To accommodate this, a naive approach would be to add an additional check called
PARTIAL_MOV E that, for each field in a variable (included nested fields), checks if it is moved. Another
approach would be to extend how a variable and its uses are embedded, such that we register specific fields,
meaning V ARS includes member expressions like var.nested.field. That way, we could use more or less the
same definition, only including checks for the parent variable(s) additionally in the IS_ASSIGNMENT and
IS_MOV E cases, like:

MOV ED(v, s) =


false ∃v′∈COMPONENTS(v).IS_ASSIGNMENT (v′, s)

true ∃v′∈COMPONENTS(v).IS_MOV E(v′, s)

∨
s′∈PREDS(s)

MOV ED(v, s′) otherwise

where COMPONENTS returns the set of the identifiers/components used in the member expression (giving
var.nested.field would return {var, nested, field}). The error caused by copying an lvalue-reference
parameter should also be fixed, as stated in Section 6.2. This fix would involve re-working the analysis, or
include some additional condition that checks if an lvalue-reference was not constructed by copying a parameter.

Likewise, CPlusPlusty should go through iterations of improvement performance-wise to increase the scalability
of it, along with a more precise AUX. Some points regarding this has been discussed in Section 6.3.

Additionally, Rust claims to be Thread Safe [15], meaning multi-threaded applications are perfectly safe. Rust
attributes a lot of their thread safety to their type system and ownership model [16, ch. 16][15], which is
something Safety Analysis mimics. Assuming the previous future work has been implemented regarding a
stronger analysis, C++ can most likely also claim to thread safe, something Herb Sutter has stated they also
want to work on, but memory safety takes priority [17] The missing part is to tell what types are thread
safe, meaning what types can be sent and synced between threads. Introduction of a ’thread safe type’-notion
demands changes to the C++ language (more specifically, some additions). Rust currently has the traits Send
and Sync, but C++ does not have a trait-like type system, meaning users would have to specialize some type
(much like with std::hash) to tell whether a type is safely sent over threads. Another thought regarding this
could be to extend the types of constructors for classes to include ’thread safe constructor’ (or ’send constructor’
and ’sync constructor’).
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