Summary

This thesis is on the extension of Lagois connections for secure information flow from two actors
to an arbitrary amount. A Lagois connection, due to Melton et al., is a poset system (P, f, g, Q)
such that

® p<(go f)(p) forall p: P (LC1),

® g<(fog)(q) forall ¢: Q (LC2),

e (fogof)(p)=f(p) for all p: P (LC3), and
® (gofog)(q)=g(q) for all ¢: Q (LC4).

For the purpose of studying information flow we limited ourselves to poset systems over finite
inhabited lattices as prescribed by Denning. In regards to information flow, a poset system
(P, f,g9,Q) is interpreted in the following manner, as prescribed by Bhardwaj and Prasad: P
is a collection of labels belonging to some organization Op (analogous for Q). Information is
allowed to flow via the lattice structure of P and @, i.e., information with label p: P can flow
to something/someone with label/clearance p’ : P if p < p’ (analogous for Q). Additionally,
information is allowed to flow from p : P to ¢ : Q if f(p) < ¢ (analogous for g) and via
the transitive closure of the relations just described. Then LC1 and LC2 ensure that the
connection is secure, and LC3 and LC4 give the connection some convenient properties.

The current method for extending Lagois connections to an arbitrary number of organiza-
tions, due to Bhardwaj and Prasad, is achieved by chaining several connections together. This,
in some situations incurs a loss of label precision. Further, the proposition that these chains
are secure is stated in terms of the endpoints of the chain and not the chain as a whole. This
motivates us to study arbitrary networks of Lagois connections.

We formulate several definitions of security for these networks. In particular, we formulate
security in a manner similar to Nielson et al: Like the case with two organizations the network
induces a flow relation = such that information can flow from p to ¢ if p = ¢ where p and g might
reside in separate lattices in the network. We then say that a network is secure whenever given
a lattice P in the network and for all pairs of labels within this lattice p p’ : P if p = p’ then
p <p'. Said in a more informal manner: A network of organizations is secure if organizations
within the network never observe a violation of their policies. The other definitions are more
technical but logically equivalent, to keep the summary brief we do not cover them here. We
develop several useful tools for reasoning about networks of the kind discussed above, notably,
an induction principle on derived self connections within the network.

We show that several subtypes of networks are always secure, in particular: Networks that
behave as if they had forest topology are secure, and thus as a corollary to this fact networks
with forest topology are also secure. Further, we also show that networks that are forests of
secure subnetworks are also secure, essentially a higher order version of the prequel.

We connect this framework of secure networks to an operation model similar to the one
that Nielson et al. presents, i.e., a small steps semantics for a distributed system over the
networks discussed herein with interleaved execution and synchronized communication. We
define noninterference and progress-insensitive noninterference for this operational model in a
manner similar to Askarov and Chong: The definition is parametric in an attacker located
at one of the organizations. The attacker has access to the code of the programs running at
all organizations, and can observe the value of variables that he as access to at the program
running at the organization where he resides. The goal of the attacker is to infer the initial
configuration of the memory for the program that he is partially observing. The strength of

the attacker may vary, and thus programs can be secure against some attackers but not others.
Noninterference is defined in terms of the attackers knowledge or rather what he is allowed to
learn. The attacker may only learn in accordance to the local policy, i.e., they may never learn
more than they would by observing the parts of the initial configuration for which they had
access. We do not provide a soundness result, i.e., we do not show that a distribuited program
running in a secure network provides noninterference whenever individual processes observe
noninterference in isolation.

The thesis is concluded by considering the viability of the framework and by examining
avenues for future work besides the prequel point. To this extend, we note the generality of
the framework, i.e., the framework is generalizable to infinite networks of Lagois connection
over partial orders when identification of organizations is decidable. Further, results herein do
no depend on LC3 and LC4, and we discuss their inclusion/exclusion in a short note. The
posiblity of adapting Nielson et al. type system to our setting is conjectured to be possible. We
discuss extending the framework with dynamism of organizations and dynamism of policies,
i.e., the ability of organizations to drop and establish new connections and to update their
policies, respectively. To model this we propose to use a special type of function, in this regard
we provide a cursory note on the matter. Finally, we consider that one can arrive at different
notions of noninterference by tweaking the assumptions placed on the attacker.

The theory within the thesis has been developed in a type theoretic setting and its content
has largely been proved in the proof assistant Coq without assuming any additional axioms.
Notably, the fact that forest behaved networks are secure and the fact that networks with forest
topology are secure has been proven in Coq.

Extending Lagois Connections for
Secure Information Flow to n Organizations

Casper Stahl

Aalborg University, Aalborg, Denmark
cstahl20@student.aau.dk

Abstract

In this paper we extend the framework of Lagois connection for secure information
flow to an arbitrary number of organizations. In particular, we extend the framework
to arbitrary network topologies such that the communication of connected organizations
respects a Lagois connection. We identify several definitions of a secure network and show
that these are all logically equivalent. Not all networks are secure, in this regard we
identify several subtypes of secure networks. In particular we show that: Networks with
forest topology, networks that behave as if they were a forest, and networks that are a
forest of secure subnetworks are secure. We attach our framework to a operational model
and define noninterference and progress-insensitive noninterference in a suitable manner.
We do not provide an enforcement mechanism and neither do we prove a soundness result,
but we conjecture that both are possible.

1 Introduction

Lagois connections provide a framework for secure, precise and converging connections between
two organizations wishing to engage in secure communication with respect to noninterference
[2, 3]. The framework is fairly developed for two organizations communicating in isolation
and there are extensions that allow for an arbitrary finite amount of organizations to connect
securely [2, 3]. However, as we will show in Section 3, current methods have a flaw in how they
are proved to be secure and more importantly they have a problem with label inflation, or from
another perspective loss of label information.

In this paper we seek to rectify the problems mentioned in the prequel by studying arbitrary
networks of organizations that are pairwise connected in a secure manner by a Lagois connection.
The security of such networks is decidable and can generally be determined in cubic time. More
interestingly, certain networks turn out to always be secure. In particular, networks with forests
topology, networks that behave as if they were a forest, and secure subnetworks connect in a
forest turn out to always be secure. Further, we have proved formally in Coq that forest- and
forest behaved networks are secure. Definition and results that have not been formalized in
Coq are marked with an “*” throughout the paper. We make strides to establish a soundness
proof with respect to noninterference by connecting our framework to an operational model and
establishing a suitable definition of noninterference. However, we do not provide a soundness
result, i.e., we do not prove that a secure network of programs all exhibiting noninterference
in isolation guarantees noninterference of the distributed program as a whole. Neither do we
provide an enforcement mechanism, but we conjecture that both are possible.

In Section 2 we cover the preliminaries required to understand the rest of the paper, in par-
ticular dependent type theory, order theory and graph theory. In Section 3 we further specify
the problem with current methods for extension. In Section 4 we extend Lagois connection to
arbitrary networks beyond two organizations and we develop a suitable notion of security. Not
all graphs turn out to be secure, and thus we develop methods for determining if a network

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

is secure in the same section. In Section 5 we identify subtypes of networks that are secure,
specifically those discussed above. In Section 6 we connect our framework to an operational
model and define a suitable definition of noninterference. In Section 7 we cover notable high-
lights from the Coq formalization. In Section 8 we outline related works, specifically [2, 3, 6,
8, 9]. Finally, in Section 9 we conclude the paper.

2 Preliminaries

The issues presented in the previous section are quite technical in their nature. For this reason,
before we can begin to precisely state the issue and develop a solution, we need to cover some
preliminaries.

2.1 Dependent Type Theory

The theory within this paper has in large been developed natively in Coq, and thus in an
intensional type theoretic setting. The “informal” presentation given in this paper closely
mimics the formalization, and thus we present the type theory needed to understand the paper
here. The presentation given here is mainly based on chapter 1 of [10].

A type A is a collection of objects freely generated by the constructors of A. If a was
freely generated by the constructors of A we denote it a: A and say that a is an inhabitant of
A. The constructors of a type is a collection of (dependent) functions into the type. Several
types are ubiquitous in dependent type theory and need description, but before we can describe
these we need to describe the universe of types Y. Although U is usually a hierarchy of types
U0):U(1): ..., for the purpose of understanding this paper it is enough to consider U as just
the type of types.

If A and B are types then A - B is the type of functions from inhabitants of A to inhabitants
of B. Thusif f: A— Band x: Athen f(z): B. Wecall P: A - U a type family. For some type
A and a type family P : A - U the dependent function type [](,.4) P(z) is the type of functions
that maps an inhabitant = : A to an inhabitant in P(z). In particular, if f : [T(,.4) P(z) then
f(z) : P(x). By the Curry-Howard correspondence, types can be seen as propositions and
inhabitants of a type as a proof of that proposition, thus if A : U then A is a proposition and
if x : A then z is a proof of A. In this reading, a type family P : A — U is a predicate of
inhabitants in A, in particular if P(z) is inhabited for some x : A we might say that P is true
for z. Further, we can read [](,.4) P(x) as “P is true for all z inhabiting A”. Similarly, A — B
can be understood as “A implies B”.

For some type A and a type family P : A - U we let ¥ (,.4) P(z) denote the dependent
product. The dependent product has one constructor exists : [T(z:a) P(2) = X (g:a) P(x) but
we will denote exists(w,y) as (z,y). As the name of the constructor hints at, ...y P(%)
can be understood as the constructive equivalent of “there exists = : A such that P(z)”. An
inhabitant (y,2) : ¥ (;.4) P(z) is thus an object y and a proof that y satisfies P in particular
the proof z : P(y). The dependent product has two important functions The first projection
pry : (X(za) P(x)) > A and the second projection

pra : H P(pri(p))

(Piz(x:A) P(z))

that respectively return the first and second element of a dependent pair. For some type B, we
denote ¥ (,.4) B as Ax B or An B. When read as a proposition A A B denotes “A and B”.

2

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

For two types A and B we let A+ B or Av B denote the coproduct type, with constructors
inl:A—> A+ B and inr: B> A+ B. When read as a proposition A v B denotes “A or B”.

Within this paper we usually denote constructors as inductive definitions. For example, for
some types A, B and type families P: A->U,Q:B—->U and R: A-> B->U

P(z) Q(y)
R(z,y)

would give rise to a constructor cons : [T, 4y [1(y:5) P(2) = Q(y) = R(z,y).
We do not assume the axiom of functional extensionality, and thus we need to rely on the
notion of homotopy of functions instead:

(cons)

Definition 1 (Homotopic). f: A - B and g : A - B are said to be homotopic whenever
[(z:a) f(z) = g(x), denoted f ~g.

We do not assume the axiom of exclude middle, or any variation thereof, but at times it is
useful to assume it conditionally. Thus for some proposition P we say that P is decidable if
P v -P where -P := P - 0 and 0 denotes falsehood, i.e., the type with no constructors.

We regard a set over some type A to be a type family S: A - U, such that for x : A we have
x € S if S(x) is inhabited. Thus {m | E} denotes Am.FE, and subset, union, and intersection
are defined in the expected manner.

2.2 Order Theory

The definition of a Lagois connection relies on several concepts from order theory, in particular
partial orders, monotonic functions and poset systems, thus we describe these here.

Definition 2 (Partial order). A type A is a partial order when it is equipped with a decidable
relation < such that

® [T(p:a) @ <z (< s reflexive),
o [Msyoay<y—>y<z—x<z (<is transitive), and
o [Tz ya)yz <y —>y<x—>x=y (<is antisymmetric).

Definition 3 (Monotonic function). For two partial orders P and @, a function f: P — @ is
monotone whenever p < p’ implies f(p) < f(p').

Definition 4 (Posest system). A poset system is two partial orders P and () with monotonic
functions f: P> @ and g: @ — P, denoted (P, f,g,Q).

Security with respect to information flow is typically described in terms of lattices, as
prescribed by Denning [4].

Definition 5 (Lattice). A lattice is a partial order A equipped with a join operator —u—: A —
A - A and a meet operator —-n—-: A - A - A such that

® [[(zy-a)yrUy<z«—>w<2zAy<z and
4 H(aﬁyz:A)zSyﬂz(_’xSy/\SCSZ.

In regards to information flow, the lattices are assumed to be finite and inhabited, i.e., for
a lattice A a least upper bound and greatest lower bound can be determined decidedly for any
set over a A. Taking Dennings perspective, for a lattice A information is allowed to flow from
something labeled x : A to something labeled y : A if < y. This something with label x could
for example be a document, and the other something labeled y could be an employee. Typically
the somethings are program variables in an empirical programming language.

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

2.3 Graph Theory

As we explain in Section 1 we are motivated to study arbitrary network topologies. In our
formalism we model network topologies as graphs and we rely one some “standard” definitions,
therefore we cover these here.

Definition* 6 (Graph). A type G with decidable equality is a graph if it is equipped with a
decidable edge relation denoted » where:

e v - v is false for all v: G,
e if v > v’ then v' > v for all v v’ : G,
Ji.e, the edge relation is irreflexive and symmetric.

If v: G, we will say that v is a vertex of G. Further, if v = v/, we say that there is an edge
between v and v'. The graphs under consideration are undirected in the sense that their edge
relation is symmetric. Further, these graphs contain no loop edges because their associated
edge relation is irreflexive.

Definition* 7 (Path). The type of paths — ~ - : G - G — U in a graph G is inductively
defined by

! A 1
V> v o~
(e), 77 (pcons).
(RS RS
Equivalently v; ~ v, is the type of sequences vq,vs,...,v, where v; » v;;1 which we will

denoted vy = vy > ... > vy, i.e., the proofs that v; = v;;1 are kept implicit. We will mainly be
working with two operations on paths, reversal and concatenation. For some vertices v v' : G,
reversal has type:
i) - (), (1)
and is intuitively defined as
(V1 = vy > ... 0y) T IE U, L Uy > U1 (2)

Formally it is defined by recursion on the path. For some vertices v v’ v" : G, concatenation
has type

—x =i (v) > (V") > (00" (3)
and is intuitively defined as

! ! n ._ ! "
T S R T S L) B T S) (4)

Formally it is defined by recursion on the left path. I will also be convenient to know the length
of a path |-|: (v ~v") = N. For some vertices v v" : G and a path f:v ~ v, |f| is intuitively
determined by counting the number of edges appearing in f.

Penultimate, certain paths turn out to be useful, namely simple paths and loops.

Definition* 8 (Simple path). A path f:v ~ v’ is simple if each vertex within is distinct.

For all v : G, we call a path f:v ~ v aloop. The only simple loop in v ~ v is €, as otherwise
v would appear twice: At the beginning of the sequence and at the end.
Finally, certain graphs, in particular forests, turn out to be of special interest.

Definition* 9 (Forest). A graph G is called a forest if for all two points all simple paths
between are unique, i.e., if f g:v ~ 0" are simple then f =g for all vv': G.

Remark 1. As explained in Section 7, the Coq formalization does not contain a direct represen-
tation of the mathematical object presented within this subsection. Instead the formalization
only contains their extension to Lagois graphs as presented in Section 4.

4

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

3 Motivation

With the preliminaries covered, we can now state the problem at hand in a precise manner.
Imagine two organizations v and v’. Both v and v' employ a security lattices, L(v) and L(v")
respectively, to enforce their local policy for secure information flow as prescribed by Denning [4].
Now v and v’ wish to communicate in a secure manner as not to violate their local policy with
back and forth communication. Lagois connections, as presented by Bhardwaj and Prasad [2, 3],
provide such a framework.

Definition 10 (Lagois connection [6]). A poset system (P, f, g, Q) is called a Lagois connection
whenever:

p<(gof)(p) forallp:P, (LC1)
a<(fog)(g) for all ¢: @, (LC2)
fogof~f, and (LC3)
gofog~g. (LC4)

We can view a Lagois connection (L(v), f,g,L(v")) as a secure, precise and converging
transformation/translation between the labels of the two lattices, that is, we can use f: L(v) —
L(v") and g : L(v") - L(v) to move somewhat freely between L(v) and L(v") [2, 3]. Equivalently
we can see a Lagois connection (L(v), f, g, L(v")) as a policy for cross communication between
v and v'. In particular, information in v labeled p : L(v) is allowed to flow as specified by
the lattice L(v) but also from p to ¢ : L(v") whenever f(p) < ¢ (analogous for g), and via the
transitive closure of the two prequel relations. LC1 and LC2 ensure that the connection is
secure:

p<(gof)(p) foralp:P (SC1)
g<(fog)(q) forall q:Q (SC2)

Intuitively, translating a label back and forth will not violate the local policy or equivalently
sending a piece of information back and forth will never accidentally declassify it. Our devel-
opment is strictly concerned with security and does not depend on LC3 and LC4, therefore
for the purpose of this paper they are of little interest. We include and justify them here for
completeness. Appendix A contains a discussion of the inclusion/exclusion of LC3 and LC4.
The addition of LC3 and LC4 ensures that the connection is precise:

f) =g " (p) for all pe g[Q] (PC1)
9(q) =] f " (q) for all g€ f[P] (PC2)

Where ¢g71(p) denotes the preimage of p with respect to g and g[Q] denotes the image of Q
with respect to g. Further, LC3 and LC4 ensures that the connection is converging:

9(f(p))=p" = g(f(p)) =p for all pp": P (ccy)
fg(@)) =d — f(9(d") =¢ forall g¢": Q (CC2)
Ezample 1. The figure below displays a poset system (P, f,g,@) that is a Lagois connection.

P and @ are shown as their Hasse diagram. f is indicated by arrows going from P to) and
vice versa for g.

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

- T~ //\
- ~ \
’ AN / \
’ N / \
/ \ ! \
/ T \ T T \
/
|
I
! |
', M ‘ I
T
I l r ! ,omo
\ ! \ |
\ ! | I
\ ! \ I
\ / | I
\ 1 + 1

Communication rarely occurs between two organizations in isolation, therefore we wish to
extend the framework of Lagois connection for secure information flow to an arbitrary (finite)
number of organizations. Bhardwaj and Prasad propose composition of Lagois connections as
a method for such an extension [3]. Composition of Lagois connections is defined as:

(P,f,9.Q)0(Q,f,3,R) = (P, fof,gog,R) (5)

In this regard Bhardwaj and Prasad presents the following theorem originally derived by Melton
et al. [3, 6].

Theorem* 1 (Theorem 11 in [3]). Let (P, f,g,Q) and (Q,f,g,R) be Lagois connections. Then
(P.fof,gog,R) is secure iff go fo f[P]< f[P] and fogog[R]c g[R]

Bhardwaj and Prasad mischaracterize the original theorem (theorem 3.22 in [6]): The un-
derlined “secure” originally stated “Lagois connection” in the version by Melton et al. While
technically correct this misses an important point, indeed, the composition of secure connections
is always secure (at least in the sense that Bhardwaj and Prasad present):

Proposition* 1. Let (P, f,g,Q) and (Q,f,g,R) satisfy LC1 and LC2. Then (P,fOf,gog,R)
satisfies LC'1 and LC2.

Proof. Fix a p: P. Have f(p) < (jo fo f)(p) by LC1 on (Q, f,§, R). Then, by monotonicity
of g and LC1 on (P, f,9,Q) we have p< (go f)(p) < (gogo fo f)(p) ie. LC1. The proof of
LC2 is analogous. O

The notion that (P,fo fyg03,R) is secure if (P, f,g,Q) and (Q,f,{],R) are secure is a bit
dubious, at least in the way it is presented in Theorem 1 and Proposition 1: Consider that @’s
order might be violated by the traffic it mediates. This turns out not to be the case, but the
results stated in the prequel do not directly reflect this.

More importantly, this way of chaining Lagois connections to connect mulitple organizations
securely also has an unintended side effect as each translation of a label has the potential to
incur a loss of label information. Consider the three lattices P, and R seen in Figure 1.

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

T T T

b b

l/ l Y \
\ N %

1 1 1

o

(a) Lattice P. (b) Lattice Q. (c) Lattice R.

Figure 1: Three lattices with similar structure.

If we establish the most precise Lagois connection between P, @ and between @, R, denoted
(P, f,9,Q) and (Q, f,§, R) respectively, i.e., the ones where f[P] and f[Q] (or equivalently
g[Q] and g[R]) are as large as possible. Then, the derived poset system (P, f o f,g o g, R)
depicted in Figure 2, is not as precise as possible, essentially we would want (f o f)(b) = b and
(g §)(b) = b but this is lost due to having R as an intermediate and we get (f o f)(b) = T and
(gog)(b) =T instead.

\ N /

;J—‘

Figure 2: A misbehaved chain of Lagois connections.

For the lattices P,@ and R discussed here, swapping the order of the chain does not help
either, observe Figure 3. Here the same problem occurs but for the point I.

N

1 > | <

Figure 3: Another misbehaved chain of Lagois connections.

Essentially we want to bypass the intermediate lattice when possible, this motivates us to
study graphs where each point has an associated lattice, and when two points are connected
in the graph their underlying lattices are connected by some Lagois connection. Continuing

7

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

our example, Figure 4 shows such a graph. Here P, and R can communicate directly with
each other, without incurring a loss of label information caused by an intermediate. Is this
secure'? In this case the pattern of communication is secure, but generally this is not the case?.

Therefore we seek to identify which graphs are secure.

Figure 4: A Lagois graph.

4 Lagois Graphs

Here we define formally the concept described at the end of Section 3.
Definition 11 (Lagois graph). A Lagois graph is a finite graph G where:

e Each v: G vertex has an associated finite inhabited lattice denoted L(v),

e cach edge v = v has an associated monotonic function f : L(v) — L(v") denoted v RA v,
and

e for each pair of symmetric edges v L o', v' 5 v it is the case that (L(v), f,9,L(v")) is a
Lagois connection.

For some Lagois graph G we can view each v : G as an organization, actor, system, etc. who

wishes to communicate securely with other v’ : G. Each organization v : G has an associated
security lattice L(v) that specifies their local policy. When two organizations v v’ : G are
connected in the graph we assume that they have negotiated a policy for secure information
exchange forming a Lagois connection (L(v), f,g,L(v")) for some f : L(v) - L(v") and g :
L(v") - L(v).
FEzample 2. The diagram below displays a Lagois graph G. The graph contains three elements
v1 vg v3 : G which are drawn as the innermost three nodes in the diagram. The lattices
L(v1),L(v2),L(vs) are displayed around the graph, and the functions inducing the Lagois
connections are indicated by the arrows.

1See Definition 13 for a definition of security.
2See Example 2 for a graph that is not secure.

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

For a Lagois graph two notions of security arises: One akin to the one presented in [8, 9].
And one akin to SC1 (or SC2). As we will later show, these two notions turn out to be logically
equivalent.

The first notion of security is described in terms of a flow relation that is induced by the
lattices and by the connections that the graph is equipped with.

Definition 12 (Flow relation). Each Lagois graph G induces a flow relation for v v’ : G and
p: L(v),q: L(v") with judgments (v,p) = (v',q) which is inductively defined as follows:

__p=d (flowle), v (flowlc)
(v,p) 3 (v,9) (v,p) 3 (v, f(p))
(v,p)3 (W) (V,r)3 ("9 (flowtran).

(v,p) 3 (v".q)
For (v,p) = (v, q) we drop v,v” when they can be inferred from the context, giving judgments

P3q.

Rule flowle tells us that information is allowed to flow according to local policies. Rule flowlc
allows information to flow via the Lagois connections established by the Lagois graph. And
rule flowtran is the transitive closure. We can now define a notion of security similar to [8, 9].

Definition 13 (Flow secure). A graph G is said to be flow secure if for all v: G and p p’ : L(v)
it is the case that p = p’ implies p < p'.

Essentially, a graph G is flow secure if for all vertices v : G all flows that start and end at
v respects v’s local policy as specified by L(v). As stated in Section 1, not all graphs are flow

9

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

secure, the graph displayed in Example 2 is a witness to this fact. Observe that by rule flowlc
My, 3 Loy, Ly, 3 Lyg, Loy 3 Ly, and thus by rule flowtran m,, = 1,, which violates the local
policy of vy because m,, £ 1,,. By a similar argument as the one put forward in [8], we can
determine if a graph is flow secure in cubic time.

We will now develop the second notion of security which is similar to SC1 (or SC2). This
notion of security turns out to be a stepping stone towards further results and as we will show
is also logically equivalent to flow security. Before we can define this type of security we need
extend the notion of a path inside a Lagois graph. A path in a Lagois graph vy » v »> ... =

Uy U1 ~ Uy is additionally extended with the monotonic functions that appear along its edges

f g h f g h
denoted v1 > vg = ... > v, 1 v ~ v, A path vy > vy > ... > v, : v] ~ v, can thus be coerced

to a function ho---ogo f: L(vy) » L(v,) with the empty path ¢: v ~ v being coerced to the
identity function id : L(v) — L(v). Formally the coercion is defined by recursion on the path.
From now on the coercion will be implicit when this causes no confusion. We can now state
the second notions of security.

Definition 14 (Loop secure). A loop f:v ~ v is loop secure whenever p < f(p) for all p: L(v).
A vertex v : G is loop secure if for all f: v ~ v, f is loop secure. A Lagois graph G is loop
secure if for all v: G, v is loop secure.

As mentioned previously a graph being flow secure is logically equivalent to it being loop
secure, as the following lemma and proposition shows.

Lemma 1. If p 3 q for some p: L(v), q: L(v"), then there exists f :v ~ v such that f(p) < q.
Proof. By induction on the derivation of p = q. O
Proposition 2. A graph is flow secure iff it is loop secure.

Proof.

—: Fixv:G, f:v~wvandp: L(v). Because there is a loop f : v ~ v there is a flow p = f(p).
Thus by our assumption that flow is secure we have p < f(p).

«: Fixv:G,pp’: L(v) and assume that p 3 p’. By Lemma 1 there exists f : v ~ v such that
f(p) <p’. Thus we have p < f(p) < p’ by our assumption that all loops are secure.

O

From now on, when it does not cause confusion, we will refer to a graph as secure if it is
either flow secure or loop secure, as they are logically equivalent. This notion of secure loops
is not very nice for practical use, as a non-trivial graph induces an infinite number of loops.
However it allows us to proceed by a particular type of induction, induction on loops.

Theorem 2 (Loop Induction). For P : [](.q)(v ~ v) = U to prove P(v, f) for allv:G and
f v~ it suffices to prove:

1. P(v,€) forallv: G,

2. P(v,pcons(f,g)) for allvv : G, f:v L v’ g v ~ v such that g is simple, and

3. P(v, f1* f2) and P(v', g) implies P(v, fyxg* f2) for allvv' : G, fi:v~ v g: v~ fo:
v~ 0.

10

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

Proof. Fix v and f:v ~ v. Either f =€ or f = pcons(g,h) for some g: v Lo’ and hiv' ~ .
Case f =e: By assumption 1.
Case f =pcons(g,h): Either h is simple or it is not.

Case h is simple: By assumption 2.

Case h is not simple: In this case we can decompose h = hq * hg * hs such that hs : 0" ~ v’ is
a nonempty loop, thus f can be decomposed into f = pcons(g, h1) * ha * hs. Clearly
lpcons(g, k1) * hs| < |f| and |he| < |f] and thus by mathematical induction we can
assume P(v,pcons(g,h1) » hg) and P(v', hy) and therefore by assumption 3 we have

P(v, f).
O
(a) Case 1.) Case 2.) Case 3.

Figure 5: The three different cases of loop induction.

The three different cases appearing in loop induction are depicted diagrammatically in
Figure 5. Empty paths are indicated by a dashed edge, paths that are a single edge are
indicated by a smooth arrow with a tail, simple paths are indicated by a smooth arrow, and
general paths are indicated by a squiggly arrow. We can now derive a third notion of security,
that again will turn out to be logically equivalent to our other notions of security.

Definition 15 (Simply secure). A Lagois graph G is simply secure whenever for all pairs of
vertices v v’ : G and for all simple paths f:v ~ v' and g : v’ ~ v between these it is the case
that f » g is secure.

This notion might seem superfluous, but in the next section we will use it to prove that
certain graph topologies are always secure without resorting to loop induction. The following
lemma and proposition, as we hinted at in the prequel, show that security and simple security
are logically equivalent.

Lemma 2. A path f:v ~ v is always monotonic.

Proof. By induction on f. O
Proposition 3. A graph is simply secure iff it is secure.

Proof.

«: A secure graph is simply secure because all of its loops are secure.

11

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

—: Fix a loop f. We proceed by loop induction on f.

Case f =e: € is trivially secure.

Case f = pcons(g, h) such that h is simple: If h is simple then f is secure because g is
simple and because the graph is simply secure.

Case f = f1 » g » fo: By the inductive hypothesis we can assume g is secure, from which
we can derive f1(p) < (f1 * g)(p). Then by monotonicity of paths and the inductive
hypothesis that fi1 * fo is secure we have p < (f1 * f2)(p) < (f1 * g * f2)(p).

O

It is probably the case that Proposition 3 can be derived without resorting to loop induction,
even if this is the case we believe that loop induction might be useful for proving other properties
of Lagois graphs and similar structures. We now have the tools at hand to show that a variety
of graphs are secure, which we will do in the next section.

5 Secure Types of Graphs

We will now define the first type of Lagois graph that is always secure.

Definition 16 (Virtual Lagois forest). A Lagois graph G is a virtual forest whenever for all
vertices v v’ : G and for all simple paths f:v ~ v" and g:v ~ v’ it is the case that f ~ g.

Essentially a virtual Lagois forest is a Lagois graph in which for all v v’ : G, all simple paths
from v to v’ have the same extensional behavior when seen as functions. Said otherwise, if you
go from v to v’ via a simple path it doesn’t matter which simple path you take. Before we can
prove that such graphs are secure, we need to prove the following lemma.

Lemma 3. f « f~! is secure for all f :v ~v' and allvv': G.

Proof. By induction of f: O

Lemma 3 intuitively says that a flow of information is secure as long as it returns exactly
the way it came. We can now prove that virtual Lagois forests are secure.

Theorem 3. A virtual Lagois forest is secure.

Proof. Fix a graph G, by Proposition 3 it is enough to consider all pairs of simple paths
fiv~0, g:v ~ v for all pairs of points v v’ : G. We have f~! ~ g because G is a virtual
forest. f = 7! is secure by Lemma 3 and therefore f x g is also secure because f~! ~ g. O

It immediately follows as a corollary that Lagois forests are secure, i.e., a Lagois graph that
is a forest is secure.

Corollary 1. A Lagois forest is secure.

Proof. A virtual Lagois forest are secure by Theorem 3 and a Lagois forest is a virtual Lagois
forest because f = g implies f ~ g. O

12

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

We can now prove a kind of stronger version of Proposition 1 by observing that a chain of
composed Lagois connections is essentially a Lagois graph that is a path graph, and that a path
graph is a forest which is secure as we have just showed. Further, Corollary 1 is interesting
because it tells us that a Lagois graph can be determined to be secure by looking at the structure
of the graph alone. Taking another view, security of an entire network can emerge from security
ensured entirely between organizations in isolation.

Certain composite graphs can also be shown to be secure assuming its parts are secure. In
particular, consider for two Lagois graphs G and G’, vertices v : G and v' : G’ and a Lagois
connection (L(v), f, g, L(v") the composite graph Gﬁ:g,G' that is defined as depicted below.

f

() X

Formally we define Gﬁ:z’G' as a graph with vertices G + G’ where L(inl(v1)) = L(vy) for
all v1 : G (analogous for all vy : G'), and an edge relations such that

e inl(vy) N3 inl(vg) «— vy N vy for all h and v1 vs : G,
o inr(v)) R inr(vh) «— v} L vy for all A’ and v} ve : G, and

e inl(v) RA inr(v') and inr(v) > inl(v) with no other edges across.

Theorem* 4. If G and G’ are secure graphs then for all v : G, v' : G and f,g such that
(L(v), f,g,L(v")) is a Lagois connection then G{;‘Z G' is secure.

Proof. By Proposition 3 it is enough to consider all pairs of simple paths h : v1 ~ v, h* 1 vy ~ vq
for all pairs of points vy v3 : G i:Z’G’. If each point resides exclusively within G then h and h*
must also be contained within G, because if either h or h* where to pass over into G’ it must
have been through ey : inl(v) A inr(v") (and eg :inr(v") % inl(v) on the way back) contradicting
the fact that they are simple (analogous for vertices residing exclusively within G”). If vy resides
within G and v, resides within G” we can decompose h = hy x ey x hiy and h* = h}’ x e, * hj such
that hy,hs are contained within G and hi, h]" are contained within G’, as depicted below.

Fix a p: L(v1), now (h1 *ey)(p) < (h1 x ey « hy » hi")(p) because hy » b}’ is secure by virtue
of being a loop contained within G’. Then hy(p) < (h1 *ef xey)(p) < (h1 xef x hy x hi x eg)(p)

13

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

by security of ef x e, and monotonocity of e,. Finally,

p < (h1*h3)(p)
< (hy xep* by« by’ x eg » h3)(p)

= (hx17")(p)
because hy * h3 is secure by virtue of being contained within G and because h3 is monotone
(analogous when v; resides in G' and vq resides in G). O

Essentially, Theorem 1 tells us that if a graph G is a forest of secure subgraphs G1,Gs,...G,
then G is a secure graph. Theorem 4 is thus a higher order version of Corollary 1, in this regard
we conjecture that Corollary 1 can be derived from Theorem 4 instead of Theorem 3.

6 Towards Soundness (with respect to Noninterference)

Our current framework is entirely detached from any kind of operational model. Although we
consider this a strength of the approach, it also means that we can not establish a soundness
result in regards to noninterference. In this section we will work towards such a result. We
could proceed in a manner similar to Bhardwaj and Prasad [2, 3], but as we will also mention
in Section 8 the programs that they consider are rather restricted, that is to say that we
wish to consider several programs that communicate in a synchronized but nondeterministic
manner and that communication can occur within arbitrary program constructs. Further,
we wish to express soundness in general terms, i.e., not conditioned on the approval of some
enforcement mechanism. For the operational model our approach is to define a network of
programs over a Lagois graph G by a function S : G — Stmt where Stmt are the type of programs
under consideration. For v : G we say that S(v) is the program running at v. We will define
the semantics of this network of programs in a manner similar to [8] minus the dynamism of
relocating agents. Our notion of noninterference is parametric in the attacker, and is defined in
terms of what an attacker may or may not learn as prescribed by Askarov and Chong [1]. We will
not derive a soundness result and neither will we provide an enforcement mechanism, however
we conjecture that both are possible. To be clear, by soundness we mean that a distributed
system can be show to exhibit noninterference when communication respects the underlying
Lagois graph and when each program in isolation exhibits noninterference. By enforcement
mechanism we mean a type system, monitor, etc. that would ensure noninterference. Of course
such an enforcement mechanism could also be shown to be sound. Soundness and enforcement
mechanism are further discussed in Section 9.

6.1 Abstract Syntax

In this section we define the abstract syntax for the programs that will run at each node in a
network. Take n to range over the natural numbers N, take x to ranger over a type of variables
Var equivalent but distinct to N, and take ¢ to range over a type of channels Ch equivalent but
distinct to N and Var. We take e to range over expressions Exp, and we take s to range over
statements Stmt which we define in the following manner.

ex=n|zle;+ey]|er—ex|e;r=ex|-e (6)

su=skip|z:=e|cle|c?x|if ethen s; else sy |while edo s|s1;82 (7)

14

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

Like [8, 9] we take ¢! e to denote that a program wishes to send e on channel ¢, and ¢ ? =
denotes that a program wishes to receive on channel ¢ and store the result in variable z.

6.2 Small Step Semantics

In this section we will define the small step semantics of a distributed network with a network
topology as described by some Lagois graph G. Generally the execution of individual programs
are interleaved and communication is synchronized but nondeterministic. In a manner similar
to [8, 9], we define the type of local signals Sig ranged over by ¢ as

pu=clu(z)|eln|e?,x (8)

¢ indicates no signal, u(x) indicates a signal that variable x has been assigned to, ¢! n signals
that the program has sent value n on channel ¢, and ¢ 7,, = signals that a program has received
value n on channel ¢ and is assigning the value to x.

We define Mem := Var — N to be the type of memories ranged over by m. For an expression
e we let m(e) = n denote that e evaluates to n in environment m. We take st to range over local
state i.e. the type Stmt x Env. Further, we take f[z — n] to be the function mapping x to n
but all other values y to f(y). We then define the semantics of local execution with judgments
st =, st’ inductively below. The judgment st =, st’ should be read as: State st can in one
step go to st’ emitting signal .

m(e) =n (ex_assign)
(z = e,m) = () (skip,m[z = n]) ’
m(e) =n
(c¢le,m) =¢1p (skip,m) (ex-out),
(ex-in),

(c?x,m) =2, » (skip,m[z — n])

m(e) =0

(if e then s1 else so,m) =>¢ (s2,M)

(ex_ifelse_ff),

0<m(e)

(if e then s1 else sa,m) = (s1,m)

(ex_ifelse_tt),

ex_while),
(while e do s,m) =, (if e then (s;while e do s) else skip,m) ()

(s1,m) = (s1,m")

ex_seque_cont
(SI;SQam) :><P (8,1;82,7’71,) (a)7

R _skip).
(skipis.m) =e (5.1m) (ex_seque_skip)

In a manner similar to [1], we will define the type of events Ev ranged over by « as:

o=l u(v,z) (9)

15

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

¢ is regarded as no event occurring and wu(v,z) as the event that x was assigned to in the
program at v.

We take St to range over the type of states of a network G — Stmtx Env, such that St(v) = st
is the state of the program running at v : G. Judgments take the form St =, St’ which should be
read as St can in one execution-step go to St’ emitting the observable event o. The judgments
are inductively defined as:

St(v) = st st =, st
St =. St[v > st']

(exsp),

St(v) =st st =y st
St =(0,2) St[v — st']

(exIp),

/

V; A v; St(v;) = st; St(v;) = st; st; =c1p st stj =cv, o St

ex_exch).
St =4y (0, ,2) St[vi = stj, v = st}] ()

The choice that v; and v; must be directly connected by an edge, i.e. v; A v; for some
f, is somewhat arbitrary. We could alternatively require that v; and v; were connect by a
path f:v; ~ v; or we could drop the requirement entirely and relegate it to be handle by an
enforcement mechanism.

6.3 Traces

In this section we define traces, informally a trace is a sequence of distributed states observable
by an omniscient observer from program execution.

Definition 17 (Trace). The type of traces from St to St’ denoted St =* St’ is inductively
defined by:

St =* St’ St =, St"”

_refl
(eXS re)’ St :>* St”

(exs_trans).

St =* St

Said otherwise, an element of ¢ : St; =* St,, is a sequence of states St; fori=1...n—1 such
that Sti =a; Sti.'.l

From now on we fix loc : G, level [vl : L(loc), and security mapping A : Var — L(loc). loc
should be interpreted as the location of the attacker, and vl the maximum security label that
the attacker is allowed to observe given A\. More specifically, the attacker can observe variable
x if A(z) < lvl.

Take St; := Av.pry(St(v)) and Sty := Av.pry(St(v)). And let [] : seq(A) be the empty
sequence and —:: —: A —> seq(A) — seq(A) the sequence constructor for some type A. Further,
let [x] denote the sequence x :: [].

Let PMem := Var — N denote the type of partial memories ranged over by p. For a memory
m we define the partial memory observable by the attacker obs(m) : PMem as:

m(z) if A(z) <lvl

. . (10)
nothing otherwise

obs(m) :=)\x.{

16

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

For a trace t we define the observable trace for the attacker Obs(t) to be a sequence of
partial memories observable by the attacker:

Obs(ex_refl(St)) := [obs(Sta(loc))] (11)
Obs(ex_trans(St, St', e, St" t,_)) := Obs(t) (12)

obs(St(loc)) = Obs(t) if loc=v A A(z) < vl

13
Obs(t) otherwise (13)

Obs(ex_trans(St, St', u(v,z), St" t,.)) = {

We let St || us denote that St can emit the sequence of partial states us that are observable
by the attacker and formally define it by:

St ps:=), Y. Obs(t) = ps (14)

(St") (t:St=*St")

6.4 Attacker

As [1] our notion of noninterference is parametric in the attacker. We define an attacker in the
following manner:

Definition 18 (Attacker). An attacker is a type X equipped with
e an initial state g;,¢ : X, and
e a transition function § : ¥ — PMem — .

Similar to [1], we denote the state of an attacker after observing a sequence of partial
memories ps as A(us) and define it as:

A([]) = oinie (15)
A(p s ps) = 0(A(ps), p) (16)

From now on fix an attacker A. We define the knowledge of an attacker as:

k(S o) = {m

>0 St psaSty(loc) =m A A(t) =0 A (H Sta(v) = S(U))} (17)
(5t) (us) (v)

Essentially k(S, o) is the set of environments A considers possible knowing that S is the program
running on the distributed system and o is A’s current state.
Further we define the knowledge of an attacker that has observed progress as

k*(S,0) = {m

Yo > St (e ps) ASta(loc) =m A A(t) = o A (H Sta(v) = S(v))}
(5t) (ps) (1) (v) 1s)

We define a lower bound on the environments that the attacker is allowed to deduce as
[m] :={m' | m ~m'} over the following relation:

m~sm':= [] A@) <l >m(z)=m(z") (19)
(@:Var)

Said otherwise [m] is a lower bound on the confusion of the attacker: The attack must never
learn such that he is unconfused enough that he can begin to distinguish between elements in

[m].

17

]
2
3
4
5

11

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

6.5 Noninterference
We are now in a position to define noninterference in a manner closely resembling that of [1].

Definition 19 (Noninterference). A distributed program over a Lagois graph G with initial
state St exhibits noninterference against attacker A with location loc: G and level lvl : L(loc)
with respect to security mapping A : Var - L(loc) whenever for all pus and p such that St ||
(= ps) one has:

k(St1, A(p = ps)) 2 k(Sty, A(us)) n[Sta(loc)]. (20)

Essentially, an initial state St exhibits noninterference with respect to an attacker A if at
each step observable to the attacker the attacker only learns in accordance to the lower bound
on his confusion. Said otherwise, the attacker must never learn more than what they would by
observing the parts of the initial memory for which they had access. As with [1] this notion of
noninterference is progress sensitive and we can thus define a progress insensitive version (as
Askarov and Chong do):

Definition 20 (Progress-insensitive noninterference). A distributed program over a Lagois
graph G with initial state St exhibits noninterference against attacker A with location loc: G
and level [vl : L(loc) with respect to security mapping A : Var - L(loc) whenever for all us and
w such that St || (u = ps) one has:

k(St1, A(p = ps)) 2 k*(Sty, A(us)) n[Sta(loc)]. (21)

Essentially, the attacker is able to learn more than the lower bound on his confusion, as long
as it is due to observing progress.

7 Formalization

As mentioned in Section 1, the majority of this paper has been formalized in Coq. In particular,
definitions, theorems, lemmas, etc. that have not been formalized are marked with “*”. Built
upon Mathematical Components (and Hierarchy Builder), mainly for its development of order
theory, the formalization does not depend on any additional axioms besides uniqueness of
identity proofs (UIP) for a very specific type of identity. However, a few points within the
formalization are worthy of discussion, in particular: The Lagois graph structure, the inclusion
of UIP, and the proof of the loop induction principle (Theorem 2). We will cover these two in
this section.

The definition of a Lagois graph is of particular interest, because the formalization contains
no underlying notion of a graph:

HB.mixin Record IsLagoisGraph V of Equality V := {
lattice : V - {d & porderType d};
edge v v’ : option (
Lagois.type (projT2 (lattice v)) (projT2 (lattice v’)));
edge_irefl v : edge v v = None;
edge_sym v v’ fg : edge v v’ = Some fg -
{gf | edge v’ v = Some gf A fg.1 = gf.2};
}.

HB.structure Definition LagoisGraph :=

18

S N O S

W N =

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

{T of IsLagoisGraph T & Equality T}.

Notation "L(v)" := (projT2 (lattice v)).

. £
Notation "v » v’" :=

(edge v v’ = Some f) (at level 70, f at level 60).
Axiom squash_edge
forall (G : LagoisGraph.type) (v v’ : G)

£
f (ee’” : v>v’), e = ¢e’.

Essentially, a Lagois graph is a type V equipped with a function lattice that maps points
in V to their respective lattices. edge is the edge relation, and should be interpreted in the
following manner: If edge v v’ = None then there is not an edge between v and v’. However,
if edge v v’ = Some fg, then fg is a pair of functions fg.1 and fg.2 that form a Lagois
connection over the respective lattices belonging to v and v’. This means that there is an edge
from v to v’ that has an associated function fg.1 and that the edge going in the opposite
direction has an associated function £g.2 which is enforced by edge_sym. In this regard a proof

of edge v v’ = Some fg for some fg is considered an edge which we denote vy, edge_irefl
enforces that there are no immediate self loops. The definition in the formalization is also more
general, i.e., instead of points having a associated lattice they are only required to have an
associated partial order. Further, we do not require that the underlying type that represents
the vertices in the graph is finite, only that it has decidable equality.

Notice the axiom squash_edge which is essentially UIP for identity proofs of the form
edge v v’ = Some fg. We take this axiom to ensure that equality of paths behave as expected.
Given the definition of a path in the formalism:

Reserved Notation "v ~ v’" (at level 80).

Reserved Notation "v ~ v’ :> G".

Inductive path (G : LagoisGraph.type) : G - G — Type :=
| path_empty v : v~v

| path_cons v v’ v’’ f : v>{>v’ = Vv > vy
where "v ~ v’" := (path v v’)
and "v ~ v’ :> G" := (@path G v v’).
Notice that two path £ g : v ~v’ for some v v’ : G might take the exact same paths

but contain differing proofs of their edge relations, i.e. £ and g are not equal. In this case
squash_edge makes things right by enforcing that edge relation proofs be unique, and thus
giving £ = g. All proofs in the formalization still work out if you drop squash_edge, but the
notion of a path that one expects becomes wonky.

The proof of the loop induction principle in the formalization is particularly scary looking
and thus we cover it here:

Fixpoint loop_ind_aux
(P : forall v : G, v ~ v - Prop)
(bc_1 : forall v : G, P v (&))

(bc_2 : forall (v v’ : G) g’ (g : v 5v) (b v o~ v),
uniqg h - P v (g * h))
(ic : forall (v v’: G) f1 f2 h,
Pv’ h->Pv (f1 » f2) - P v (f1 » h » f2))
v (f : v ~ v)
(ACC : Acc lelooplen (existT _ v f£)) {struct ACC} : P v f :=

19

R R e e e e e e e
XN = O 0T U e WN = O

~

NN NN DN
S Ot

[\]
o

29

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

match loopdecomp’ f with
| or_introl f_eq_e => eq_rect ¢
| or_intror rest =>
match rest with
| or_introl f_imm =>
let: ex_intro v’ (
ex_intro g’ (
ex_intro g (
ex_intro h (
ex_intro un_h f_imm)))) := f_imm in
eq_rect (g * h) _
(bc_2 v v’ g g h un_h) f (esym f_imm)
| or_intror f_dup =>
let: ex_intro v’ (
ex_intro f1 (
ex_intro g (
ex_intro f2 (
conj f_eq (

(bc_1 v) f (esym f_eq_¢€)

conj glef fi1fllef))))) := f_dup in
let Pg :=
loop_ind_aux bc_1 bc_2 ic (Acc_inv ACC glef) in
let Pf1f2 :=

loop_ind_aux bc_1 bc_2 ic (Acc_inv ACC fifllef) in
eq_rect (f1 x g » £f2) _
(ic v v’ f1 f2 g Pg Pf1f2) f (esym f_eq)
end
end.

Definition loop_ind

(P : forall v : G, v ~vVv :> G — Prop)

(bc_1 : forall v : G, P v (&))

(bc_2 : forall (v v’ : G) g’ (g : v R v’) (h @ v’ ~ v),
uniq h - P v (g x h))

(ic : forall (v v’: G) f1 f2 h,
Pv’ h—->P v (f1 » £f2)-» P v (f1 » h x £2))

v(f :v~v) :PviE:=

loop_ind_aux bc_1 bc_2 ic (subloopwf (existT _ v f)).

The function, i.e. the proof, is derived with the method prescribed by [5] and the informal
proof of Theorem 2. The function is first written as a general recursive function, which is
generally not allowed in Coq. Then we add the assumption that f is accessible through the
strict ordering of loops based on their length i.e. ACC. In the recursive case this allows us to do
structural recursion on ACC, which is allowed in Coq, giving us the function loop_ind_aux. We
can get rid of the assumption ACC by proving that the ordering of loops based on their length
is well founded, i.e., all loops are accessible through the ordering just described. This is the
case, given a type A, a relation R(xz,y) := f(x) < f(y) with f: A - N is always well founded.
In this particular case, A is the type of loops in a graph and f(x) is the length of loop z. With
ACC eliminated we can finally derive the complete induction principle as seen in the function
loop_ind.

20

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

As a final aside, the formalized proof of Theorem 3 is by loop induction instead of resorting
to Proposition 3. Some of the obvious proof steps in the informal proof become quite involved
when formalized, for example the fact that if f: v ~ v’ for some v v’ : G is simple then f! is
also simple. On the contrary, the inductive proof takes up quite a lot of space when written
out informally. This discrepancy is immaterial, insofar as we are not proving things about our
proofs.

8 Related Work

The mathematical structure that is the Lagois connections is originally due to Melton et al. as
presented in their seminal work [6]. In this article Melton et al. present several results that are
analogous, though most not directly, to results derived from Galois connections.

The idea to use Lagois connections as a framework for secure information flow is due to
Bhardwaj and Prasad as originally presented in [2]. Along with the framework, Bhardwaj and
Prasad present several results from [6] that are relevant for secure information flow. Further,
they develop a type system that is sound with respect to noninterference for secure information
flow between two organizations. While the threat model is fairly permissive the assumptions
placed on the programs are severely limiting: The two programs running at each organization
are synchronized and communication can only occur outside of conditionals and loops.

In [3], Bhardwaj and Prasad extend the seminal work presented in the prequel. Firstly, the
article covers how to establish and update secure connections based on the Lagois connection
framework, for this purpose many results from [6] are again used. In this regard, they cover
the extension from two actors to an arbitrary amount, as discussed in Section 3. Secondly,
they prove that Lagois connections can be used to establish a secure connection with two
organizations using the decentralized label model due to Myers [7].

In [8], Nielson et al. present an alternative to Bhardwaj- and Prasads type system. Most
importantly, the type system can deal with an arbitrary number of actors/organizations out of
the box. Further, actors are not restricted in the way they are connected, i.e., they do not have
to be connected in a chain and can move between clusters of interconnected actors provided
that they drop all information that is not already public before moving. The programs under
consideration are also not limited in the fashion that those considered by Bhardwaj and Prasad
are. However, the security of the system is described in terms of a condition similar to our
Definition 13, it is thus unclear how strong the noninterference guarantees are.>

In [1], Askarov and Chong present an alternative definition of noninterference in terms of the
change in knowledge of an attacker. Their definition is parametric in the attacker, and programs
can be secure against some attacker but not others. In this regard they identify a collection
of relevant attackers, in particular the perfect attacker that remembers everything it sees and
the “i’th event only” attacker that only observes the ¢’th event. They show that a program
that is secure against an “i’th event only” attacker for all 7 is also secure against the perfect
attacker. They use this fact to develop enforcement mechanisms, both static and dynamic, that
are secure against the perfect attacker. Askarov- and Chongs framing is quite different from
ours: They are concerned with only a single program and security of input channels/streams
to this program. Further, the flows that are legal can dynamically change and the attacker is
only able to observe a single channel as opposed to several variables.

319], also by Nielseon et al., covers much of the same material as [8] but with a worked example. The ability

for actors to move between clusters is however not covered.

21

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

9 Conclusion

As we mentioned in Section 3, the main motivation for studying arbitrary graphs of Lagois
connections instead of chains of Lagois connections was to bypass connections incurring label
loss. We have mitigated this problem to some degree, but it is inherently the case that the graph
must be forest shaped if we want ensure security without peeking into the Lagois connections
underlying the graph and in the worst case computing and checking the flow relation. Thus if
we want to bypass an imprecise connection we can not determine a Lagois graph to be secure
by looking at the graph structure alone, although Theorem 4 tells us that we only have to check
the parts of the graph that do not have the structure of a forest. More precisely, Theorem 4 tells
us that if we can securely bypass imprecise connections locally forming of secure connections,
then these knots can be connected in a forest of knots that will be secure. Said otherwise, if a
graph can be decomposed into a forest of secure subgraphs then it is secure.

The theory presented within this paper has several artificial constraints that are essentially
imposed because they are considered sound assumptions in the “real world” of cyber security.
First, we expect that networks and therefore Lagois graphs are finite because all real world
distributed systems have a finite number of agents. In this regard, our theory actually extends
to arbitrary graphs as long as identification of vertices is decidable. Secondly, we assume
that each point in the graph has an associated finite inhabited lattice, because these represent
security labels and how they behave. In this regard, our theory is actually generalizable to
arbitrary partial orders. Thirdly, as noted in Section 3, our development does not depend on
LC3 and LC4. This is in and of itself an interesting result because as Melton et al. states:
“without them (referring to LC3 and LC4) the resulting concept appears to be too weak to
be of general interest”. It appears that we have added enough structure to make poset systems
satisfying only LC1 and LC2 interesting. I, the author, is conflicted about the inclusion of
LC3 and LC4 for the purposes of studying secure connections. An extended discussion of the
inclusion/exclusion of LC3 and LC4 is included in Appendix A.

As mentioned in Section 9, we do not bridge the gap between our framework and a soundness
result with respect to the operational model presented herein, however we conjecture that it is
possible. In terms of an enforcement mechanism we expect that the type system presented by
Nielson et al. [8, 9] could be adapted to our operational model. As mentioned in Section 8,
Nielson et al. do not provide a soundness results but we conjecture that a type system similar
to theirs applied to our setting could be proven sound with respect to progress-insensitive
noninterference when the underlying graph is secure. One foreseeable challenge with porting
over the type system presented by Nielson et al. is the labeling of communication channels.
Nielson et al. assume that all agents agree on security labels, their structure, and the labeling
of channels. In our framework agents only partially agree on labels, their structure, and thus
the labeling of channels. At the moment it is not clear to us how one would deal with this
discrepancy.

Two concepts that our framework does not account for is dynamism of agents and dynamism
of policies. By dynamism of agents we mean: The ability of agents to move about in the network
and in the process dropping old connections and establishing new ones. For example [9] has
dynamism of agents: Agents can move between clusters of agents via a primitive relocate(l)
command, that relocates agent v to cluster [when executed at agent v. By dynamism of policies
we mean: The ability of policies to change during runtime. For example [1] has dynamism of
policies: A programs can update its information flow policy via a setPolicy(E) primitive for

22

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

some reflexive relation . We propose that such dynamism can be modeled by functions of type

G-gG =1 > L) -L). (22)
(v:G) (v:G")
For F: G »g G' and v : G we would then interpret F'(v) as v moving to or becoming pry (F(v))
and v’s lattice transforming as specified by pro(F(v)). More specifically (pra(F(v)))(p) = p’
would denote label p becoming label p’. We provide a cursory discussion of the notion in
Appendix B.

The notion of noninterference that we develop in Section 6 assumes an attacker A residing
at v that is trying to learn about the initial memory at v beyond what he is allowed by some
security labeling A and the local policy L(v) by continually observing the state of the variables
he is allowed to. Additionally, the attacker knows the code running on the entire distributed
network. One could obtain different notions of noninterference by tweaking the assumptions
placed on the attacker. For example, one could imagine an Attacker A, residing at v that is
trying to learn about the initial value of variables in the memory of v’ for v # v. Or, an attacker
A, could be observing a channel ¢ instead of a set of variables and so on.

A On the inclusion/exclusion of LC3 and LC4

As mentioned in Section 3 and Section 9, LC3 and LC4 are never appealed to in a proof step
within this development. This is somewhat natural, as none of our results deal with precision
of any kind. Thus for the sake of security alone, we in the best case consider LC3 and LC4
nice to have and in the worse case needlessly restrictive. Consider the original justification for
the inclusion of LC3 and LC4 as provided by Bhardwaj and Prasad [2, 3]: To enforce precision
and convergence of the connection, i.e. PC1, PC2 and CC1, CC2 respectively. Consider now
that for two very large and complex lattices P and () with top elements Tp: P and Tg : () that
the following Lagois connection is perfectly valid:

(P, f,9,Q) where f(p) = Tq and g(¢) :=Tp (23)

Precision, in the sense of the size of (go f)[P] (or (fog)[Q]), is completely lost, and convergence
is necessarily achieved but only because we immediately overinflate labels to the topmost level.
The problem arises from the fact that in a Lagois connection (P, f,g,Q) it is the case that f
and g uniquely determine each other (Theorem 3.9 in [6]), a property that is otherwise nice.
This problem also occurs in the opposite direction: For a Lagois connection (P, f,g,Q) if f is
precise then g is forced to assume an equivalent level of precision as specified by PC2 (vice
versa for PC1 if g is precise). If we for two organizations v and v with a Lagois connection
(L(v), f,g,L(v")) view f as v’s understanding of L(v") in terms of L(v) and vice versa for
g then LC3 and LC4 enforces that v and v’ agree in their understanding. Or from another
perspective one organization is forced to assume the worldview of the other.

B Lagois Graph Transformations

Like [8, 9] we wish to reason about agents relocating, but within the framework that we have
developed. Further, similar to [1], we would like to reason about actors updating their policies.
Let G denote the type of Lagois graphs. We model such changes as an inhabitant of the
instantiation of the type family - -g —: G - G — U defined as

GogG=1] 3 L) -LE). (24)
(v:G) (v:G7)

23

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

For graphs G and G’ we see F : G —g G’ as a description of an atomic transformation of
the graph G into G’ in the sense that pry(F(v)) = v' expresses that v in G becomes v’ in G’.
Further, pro(F(v))(p) = p’ expresses that security level p in L(v) becomes security level p’ in
L(v").

We will now develop a notion of security of transformations that in some sense, that is
to be specified, falls short of the mark. This notion of security will be used as a stepping
stone towards a more satisfactory definition. For some graphs G and G’ and a transformation
F : G »g G' we define a new flow relation with judgments (v,p) 2’ (v/,¢) similar to the one
given in Definition 12:

pP<q

—(U,p) S (0.0) (flowle),

0.0 = (P praFEN) o

4

v (Flowlc) (v,p) 2" (V',r) ', =z (v, q)
(v,p) 3" (v, f(p)) ’ (v,p) 3" (v",9)

(flowtran).

As before we drop v and v from (v,p) 3’ (v',q) granting judgments p =’ ¢ when this
causes no confusion. Essentially we allow flows to occur within G and G’ as before, but also
via the transformation F' by the rule flowts. We can now define a (somewhat) suitable notion
of security.

Definition 21 (Atomically secure transformation). For two Lagois graphs G and G’ a trans-
formation F : G —»g G’ is atomically secure whenever G and G’ are secure with respect to =’
and

p3q—pra(F(v))(p) <q (25)
(:G) (p:L(v)) (@:L(pr, (F(1))))

Essentially because v in G is regarded as pry (F(v))) in G’ and because p : L(v) is regarded
as pro(F'(v))(p) we have to check that that a flow from p: L(v) to ¢ : L(pry(F(v))) is secure
modulo F.

We will now show a critical flaw in this notion of security. Consider two Lagois graph
transformations F': G -g G’ and H : G' »g G" for G G’ G" : G as seen in the figure below.

24

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

Ty, «<——> T, Tog

G My

Lo
113

< > Ty
2 U3

GII m,ug

1, 1y < > Lo
U1 U2 Vs

The Lagois graphs G, G’ and G” are depicted as in Section 1 and separated by the dashed
line. Here F' and G are denoted by the double lines, the direction of the transformation is from
top to bottom. In this situation F' and H are both atomically secure, but it is also the case
that H o F': G >g G" atomically secure if we define

HoF:=v.((HyoFy)(v),H(Fi(v))2 0 F(v)2) (26)

where Fy := Av.pry(F(v)) and F(v)3 := pra(F(v)). But intuitively the composition should not
be secure. See that information can flow from m,, to L.y, which is insecure in some sense
because m,, should be regarded as m,y according to the transformation H o F'. Essentially
normal function composition obscures the information flows that occur while G’ is the current
state of the system. This is why we refer to Definition 21 as atomically secure, i.e., because
for residing in an intermediate state may not be secure. Instead we want to inquire about a
sequence of atomic transformations F; : G; g G41 for i = 1...n. We thus update the rule
flowts to account for this change in the following manner:

(v,p) 3" (pr, (Fi(v)), pry(Fi(v))(p)) (flowts”)

And define security as:

Definition 22 (Secure sequence of transformations). A sequence of transformations Fy, : G, —¢
Gy for k=1...n is said to be secure whenever for all i=1...n and j =4...n one has

[T TII [1 p3'q—pry((Fjo-0F;)(v))(p) <q. (27)
(0:G2) (DL (0)) (@ L(pry ((FyowoF3) (1))

25

Extending Lagois Connections for Secure Information Flow to n Organizations C. Stahl

References

(1]

[10]

26

Aslan Askarov and Stephen Chong. “Learning is change in knowledge: Knowledge-based
security for dynamic policies”. In: 2012 IEEE 25th Computer Security Foundations Sym-
posium. IEEE. 2012, pp. 308-322.

Chandrika Bhardwaj and Sanjiva Prasad. “Only connect, securely”. In: Formal Techniques
for Distributed Objects, Components, and Systems: 39th IFIP WG 6.1 International Con-
ference, FORTE 2019, Held as Part of the 1/th International Federated Conference on
Distributed Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark, June
17-21, 2019, Proceedings 39. Springer. 2019, pp. 75-92.

Chandrika Bhardwaj and Sanjiva Prasad. “Secure information flow connections”. In: Jour-
nal of Logical and Algebraic Methods in Programming 127 (2022), p. 100761.

Dorothy E Denning. “A lattice model of secure information flow”. In: Communications
of the ACM 19.5 (1976), pp. 236—243.

Xavier Leroy. “Well-founded recursion done right”. In: CogPL 2024: The Tenth Interna-
tional Workshop on Coq for Programming Languages. 2024.

Austin Melton, Bernd SW Schroder, and George E Strecker. “Lagois connections—a coun-
terpart to Galois connections”. In: Theoretical Computer Science 136.1 (1994), pp. 79—
107.

Andrew C Myers and Barbara Liskov. “A decentralized model for information flow con-
trol”. In: ACM SIGOPS Operating Systems Review 31.5 (1997), pp. 129-142.

Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson. “Adaptive security
policies”. In: Leveraging Applications of Formal Methods, Verification and Validation:
Engineering Principles: 9th International Symposium on Leveraging Applications of For-
mal Methods, ISoLA 2020, Rhodes, Greece, October 20-30, 2020, Proceedings, Part II 9.
Springer. 2020, pp. 280-294.

Flemming Nielson, René Rydhof Hansen, and Hanne Riis Nielson. “Benign Interaction
of Security Domains”. In: Protocols, Strands, and Logic: FEssays Dedicated to Joshua
Guttman on the Occasion of his 66.66 th Birthday. Springer. 2021, pp. 312-331.

The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of
Mathematics. Institute for Advanced Study: https://homotopytypetheory.org/book,
2013.

https://homotopytypetheory.org/book

	Introduction
	Preliminaries
	Dependent Type Theory
	Order Theory
	Graph Theory

	Motivation
	Lagois Graphs
	Secure Types of Graphs
	Towards Soundness (with respect to Noninterference)
	Abstract Syntax
	Small Step Semantics
	Traces
	Attacker
	Noninterference

	Formalization
	Related Work
	Conclusion
	On the inclusion/exclusion of LC3 and LC4
	Lagois Graph Transformations

