
Deformation and Bearing 
Capacity of Bucket 

Foundations in Sand
Master Thesis

M.Sc. Structural and Civil Engineering
School of Engineering and Science
Aalborg University

Bjørn Staghøj Knudsen
Martin Underlin Østergaard 10th of June 2013





School of Engineering and Science
Sohngaardsholmsvej 57, 9000 Aalborg

Telefon: 9940 8530
http://civil.aau.dk

Master Thesis

Title:
Deformation and Bearing Capacity of Bucket Foundations in Sand

Written by:
Bjørn Staghøj Knudsen
Martin Underlin Østergaard

M.Sc. Structural and Civil Engineering
School of Engineering and Science
Aalborg University

Supervisors:
Professor Lars Bo Ibsen
Associate Professor Johan Clausen

Project Period: 2012.09.01 - 2013.06.10 (Long Thesis)

Completed: 10th of June 2013

Copies printed: 5

Number of pages: 140

Number of Appendices: 10

Bjørn Staghøj Knudsen Martin Underlin Østergaard

The content of the report is freely available, but publication (with source reference) is only allowed with agreement by
the authors.
The frontpage picture is from the test installation of two bucket foundations at Dogger Bank, 2013.





Regulation

This report is the Master Thesis for the M.Sc. in Structural and Civil Engineering at the
School of Engineering and Science at Aalborg University. The thesis is a long thesis of
45 ECTS, and has been executed in the period from 1st of september 2012 to 10th of june
2013.

The project has involved laboratory work at the Geotechnical Laboratory at Aalborg
University. In the connection with the laboratory work, the group would like to thank
the technical staff, especially Jan Laursen, for valuable help regarding the set up. The
tests have been executed in cooperation with Ph.D. fellow Søren Kjær Nielsen, whose
help and guidance is appreciated.

Reading instructions

References during the main report are collected in a bibliography in the back of the
report. In the main report, the references are listed by the Harvard Method so a reference
in the text appears as [Last name, Year] when used passively and as Last name [Year]
when used actively in the text. If the reference contains more than two author, the
reference is specified by the first last name and then ’et al.’. In the bibliography, books
are specified by author, title, edition and possibly publisher. Websites are specified by
author, title and the date when the website is downloaded.

References during the articles are collected in the same matter as the main report,
however references used in the articles are only listed in the end of the relevant article.

Figures and tables are numbered according to the chapter in which they occur.
Therefore, the first figure in chapter 7 has number 7.1, the second figure has number 7.2
and so on. Describing text for figures is placed beneath the figure, while describing text
for the tables is placed above the given table. The figures and tables are made by the
project group itself if the reference is not specified. Equations are specified by a number
in a bracket and they are numbered like the figures and the tables. Therefore, the first
equation in chapter 7 has number (7.1), the second equation has number (7.2) etc.
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Summary

The market for offshore wind turbines has been growing rapidly in the last decade, with
over 1.2 GW of new effect installed in 2012 worldwide. There are many advantages
to installing wind turbines offshore as opposed to onshore, however the total cost of
offshore turbines per installed effect is still larger than onshore. Still the advantages
regarding wind climate, visual impact, planning issues and noise are so important, that
offshore development is being done on a large scale in especially Europe. Popularly
said, most people like wind turbines if they obey the not-in-my-backyard-concept.

Due to the political demand for offshore wind farm development, great effort is put into
trying to reduce the overall cost of the wind production in the whole lifetime. This has
resulted in many suggestions to constructions, installation, operation, maintenance and
decommissioning that can reduce the total expenses. One of the largest overall expenses
is the foundation of the wind turbines, since the offshore environment causes a complex
combination of loads from wind, wave, ice and operation.

The bucket foundation is a new foundation concept developed during the last decade
at Aalborg University that is meant to greatly reduce the cost of the foundation during
the whole lifetime. The bucket foundation is a cylindrical steel caisson, open in the
bottom and closed at the top with a skirt length to diameter ratio between 0.5 and
1.0. The foundation is installed by applying suction inside the caisson, and can thus be
installed using no heavy equipment. When installed, the foundation is a hybrid between
a monopile and a gravitational foundation, utilizing both the weight of the soil in the
caisson and the soil pressure on the outside of the skirt.

As the suction bucket concept is new, great effort is put into validation of the design
process, with the goal of getting it approved by independent risk evaluation and
classification organizations such as Det Norske Veritas. This master thesis is a part of
the research work done involving the bucket foundation, and is in some parts a further
development of work done previously at Aalborg University. The overall theme of this
project is thus the bucket foundation concept.

An analytical tool used to determine the ultimate capacity of a cylindrical pile
foundation is the p− y curves, which were developed using experiments done on very
slender cylindrical piles with a length to diameter ratio of 34.4. These p− y curves have
been used for monopile foundations as well, with a length to diameter ratio around
5, however this application is problematic, due to the large difference in slenderness,
causing the behaviour of the foundation to be inconsistent with the original p − y
experiments. The inconsistency is even greater with the bucket foundation, and can
therefore not be applied.

The first part of this thesis uses 18 numerical finite element models of the bucket
foundation in saturated sand in the drained condition with varying soil strength and
geometry to calculate the soil response for a horizontal displacement needed to develop
a new p− y formulation, which is valid for the bucket foundation. From the 18 models
it has been possible to calibrate a generalized mathematical model, which allows for
easy calculation of the soil response for a drained sand with a given angle of friction
and geometry under a given horizontal displacement. The mathematical model is a first
draft, and further work should be done to better validate and calibrate the model.

In the research work in geotechnics, experimental model testing is often used. To
validate the experimental results it is often attempted to recreate the test results via
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numerical modeling. With scaled models the stress level in the soil is however scaled
accordingly as well. This is problematic, since the behaviour of the soil is not linear at
small stress levels as predicted by the Mohr-Coulomb failure criterion. This causes the
failure load obtained in a scaled experiment to be larger than predicted by the numerical
modeling. This is naturally also a big challenge in relation to the research done with the
bucket foundation.

The solution to this problem could be to use a material model that takes the stress-
dependent behaviour of the soil into account. This is achieved by implementing a stress-
dependent strength material model in PLAXIS 3D, which is a widely used commercial
finite element code. After calibrating the material model to Aalborg University Sand
No. 1, the material model exhibited correct behaviour and is able to predict results from
triaxial at low confining pressures. When comparing the results from the material model
to actual bucket foundation test results, it is obvious that the finite element model needs
more work, although compared to the widely used Mohr-Coulomb model, the material
model predicts a larger failure moment, just as expected.

One of the disputes of the bucket foundation design is the behaviour of the foundation
when subjected to impulsive loads. These loads can occur offshore under a number
of scenarios such as breaking waves, freak waves or emergency stops of the turbine.
The approach today is to find the ultimate capacity in drained and undrained condition
and then take the lowest value. For a dense sand, often encountered offshore, the
drained capacity will in most cases be lower than the undrained. Previous research
at Aalborg University has shown that the approach is very conservative, when dealing
with impulsive loads, as the behaviour of the foundation for a high loading rate is
close to fully undrained. As a forced displacement of a high velocity is applied, a
significant pore pressure build up takes place inside and around the caisson, which
greatly increases the capacity of the foundation.

The previous tests investigating the behaviour with different loading rates have been
executed with equipment capable of applying a forced displacement at 10 mm/s with
a range of 40 mm. Since then new equipment has been installed, making it possible
to displace the bucket foundation with velocities up to 500 mm/s over a range of 500
mm. The third part of this thesis involves the first four succesful tests with this new
equipment. Great work has gone into installing and setting up the new equipment,
which has lead to a lot of good experience to be used in the further research.

5 The results from the four tests with 150 mm of forced displacement at rates from
0.1 mm/s to 100 mm/s showed the same trend as found in previous test. A strength
increase from the slowest to the fastest test of more than 20 times was observed, while
the build up of pore pressure reached values close to the cavitation limit of the setup at
-290 kPa. The pore pressure distribution, which is a picture of the failure mechanism,
showed negative pressure development at all measuring points, with the largest change
inside the caisson.
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Summary in Danish (Sammendrag)

Markedet for offshore vindmøller har været i stor vækst det seneste årti med over 1.2
GW ny-installeret effekt i 2012 på verdensplan. At anvende havbaserede vindmøller
giver mange fordele i forhold til landbaserede, dog er de totale omkostninger i levetiden
for havvindmøller noget større pr. installeret effekt end tilsvarende møller på land.
Fordelene ved offshore vindmøller, såsom højere basisvindhastighed, færre nabogener
og lettere planlægning er dog så store, at udvikling af offshore vindmølleparker sker i
meget høj grad i Europa. Populært sagt er de fleste mennesker positivt stillet overfor
vindmøller, så længe de ikke står i deres egen baghave.

Den politiske efterspørgsel for offshore udvikling af vindmølleparker har medført en
stor indsats for at formindske omkostningerne ved energiproduktion vindmøllernes
fulde levetid. Udviklingen har medført mange nye koncepter til fremstilling,
installation, drift, vedligeholdelse og nedtagning efter endt levetid, som kan reducere
den totale pris. En af de største udgifter for offshore vindmøller er fundamentet, da
klimaet offshore giver meget store laster fra vind, bølger, is og selve driften.

Bøttefundamentet er et nyt funderingskoncept, som er udviklet over det seneste årti på
Aalborg Universitet, og som har til formål at nedbringe omkostningerne ved fundering
gennem hele levetiden. Bøttefundamentet er en cylindrisk stålbeholder, der er åben i
bunden og lukket i toppen og som har et længde-diameter forhold på omkring 0.5-
1.0. Fundamentet installeres ved at påføre et undertryk inde i bøtten, mens den står
på havbunden, hvorved fundamentet kan installeres uden brug af stort maskineri.
Det installerede bøttefundament opfører sig som en hybrid mellem en monopæl og
et gravitationsfundament, med udnyttelse af både vægten af den indkapslede jord og
jordtrykkene på ydersiden af skørtet.

Eftersom konceptet med bøttefundamentet er nyt, bliver der brugt meget energi på
at få valideret designproceduren med det overordnede mål at få den godkendt af
uafhængige risiko- og klassificeringsvirksomheder såsom Det Norske Veritas. Dette
afgangsprojekt er en del af forskningsarbejdet med bøttefundamentet, og er på nogle
punkter en videreførsel af tidligere udført forskning på området. Det overordnede tema
for projektet er dermed bøttefundamentet som funderingskoncept.

p − y kurver er et analytisk værktøj til at bestemme bæreevnen af en cylindrisk pæl
i brudgrænsetilstanden, som blev udviklet ud fra eksperimenter med pæle med et
slankhedsforhold på 34.4. Kurverne har været anvendt til monopæle, som har et
slankhedsforhold på omkring 5. Dog er denne anvendelse problematisk, da dette er
meget langt fra den oprindelige forsøgsgeometri, hvilket betyder at brudmekanismen
for fundamentet er noget anderledes end de meget slanke pæle. Problematikken er
endnu større for bøttefundamentet, hvorfor de originale p− y kurver ikke kan anvendes.

Den første del af projektet anvender 18 numeriske finite element modeller af
bøttefundamentet i vandmættet sand i drænet tilstand med varierende jordparametre
og geometri til at udregne jordens respons ved en horisontal flytning til at udvikle en
ny p − y formulering, som er gyldig for bøttefundamentet. Ud fra de 18 modeller er
det lykkedes at kalibrere en matematisk model, som gør det muligt at udregne jordens
respons med en given friktionsvinkel, geometri og horisontal flytning. Den matematiske
model er et første udkast og bør derfor finpudses og valideres med flere numeriske
modeller med flere variationer over inputparametrene.

Indenfor det geotekniske forskningsområde bruges eksperimentelle modeller i høj grad.
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For at validere modeltests forsøges det ofte at genskabe resultaterne vha. numerisk
modellering. Ved brug af skalamodeller opnås meget lavere spændingsniveauer i jor-
den, hvilket er problematisk da jordens opførsel ikke skalerer lineært med spændingerne,
som forudsagt af Mohr-Coulomb brudkriteriet. Dette betyder, at brudlasten ved et
skalaforsøg ofte er meget forskellig fra den brudlast, der findes i numeriske modeller.
Denne udfordring er naturligvis også tilstedeværende i forsøgsarbejdet med bøttefun-
damentet. Løsningen til dette problem kan være at benytte en materialemodel, der tager
højde for jords spændingsafhængige opførsel. Dette kan opnås ved at implementere en
materialemodel med spændingsafhængig styrke i PLAXIS 3D, som er en meget udbredt
kommercial finite element kode. Efter at have kalibreret materialemodellen til Aalborg
Universitet Sand nr. 1, udviser materialemodellen korrekte egenskaber, og den er i stand
til at forudsige resultater fra triaksial forsøg ved lavt kammertryk. Når materialemod-
ellen sammenlignes med faktiske resultater fra skalerede bøtteforsøg, er det tydeligt, at
finite element modellen skal forbedres, selvom materialemodellen sammenlignet med
den traditionelle Mohr-Coulomb model giver et større brudmoment, ganske som for-
ventet. Et af diskussionspunkterne omkring designmetoden af bøttefundamentet er
responsen overfor impulsive laster. Denne lasttype kan opstå under en række forskel-
lige scenarier såsom brydende bølger, freak waves eller nødstop af vindmøllen under
brug. Fremgangsmåden i dag er at bestemme brudkapaciteten i sand for både drænet
og udrænet tilstand, og så vælge den laveste af de to kapaciteter. For en tætpakket
sand, som oftest findes på offshore sandbanker, vil den drænede kapacitet i de fleste
tilfælde være lavere end den udrænede. Tidligere forskning med bøttefundamentet har
vist at denne tilgang er meget konservativ, når det omhandler impulsive laster, da re-
sponsen for høj lasthastighed har vist sig at være meget tæt på fuldstændigt udrænet.
Ved en tvunget flytning påført med en høj hastighed har det vist sig, at der sker en
signifikant opbygning af poretryk indeni og omkring bøttefundamentet, hvilket giver
en stor forøgelse af bæreevnen af fundamentet.

De tidligere udførte forsøg med bøttefundamentet har været lavet med udstyr, der har
kunnet påføre en flytning med en hastighed på maksimalt 10 mm/s med en slaglængde
på 40 mm. Siden da er nyt udstyr blevet installeret, hvilket gør det muligt at påføre
flytninger på op til 500 mm med en hastighed på 500 mm/s. Den tredje del af dette
projekt indeholder resultaterne fra de første fire succesfulde forsøg med det nye udstyr.
En stor arbejdsindsats har været lagt i at installere og tilpasse det nye udstyr, hvilket
har givet mange brugbare erfaringer til det videre arbejde med forsøgsopstillingen.

Resultaterne fra de fire forsøg med 150 mm flytning påført med hastigheder fra 0.1
mm/s til 100 mm/s har udvist samme tendenser som de tidligere udførte forsøg. En
forøgelse i brudkapaciteten på over 20 gange fandt sted fra den langsomste til den
hurtigste test, mens poretryksopbygningen i den hurtigste test nåede værdier tæt på
kavitationsgrænsen i tryktanken på ca. -290 kPa. Poretryksfordelingen, som giver
et billede af brudmekanismen, viste negative udviklinger ved alle målepunkter med
peakværdier fundet indeni bøttefundamentet.
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1 Introduction

The production from and demand for renewable energy sources has rapidly increased
during the last few decades. Wind energy from wind turbines has been a large part of
this development. As the number of installed wind turbines has increased, the trend has
gone from primarily land based turbines to a large number of turbines being erected
offshore. This is especially the case in Europe, where 90% of all new offshore capacity
in 2012 was installed, cf. Global Wind Energy Council [2012]. Offshore wind turbines
are however still only a small fraction of the total number of newly erected turbines as
only 1293 MW of the total installed effect of 44711 MW installed in 2012 was offshore
turbines.

As the demand for installed wind effect increases, the average size of the wind turbines
increase as well. The average installed wind turbine offshore is approximately 4.0 MW,
with the Siemens 3.6 MW turbine, as seen in figure 1.1, being the most used model.
The larger wind turbines causes the stress on the whole structure and especially the
foundations to be greater and greater, making it an important area of research.

Figure 1.1. The Siemens 3.6 MW wind turbine used at Horns Rev 2 in Denmark. [DONG Energy,
2009]

Installing wind turbines offshore has many obvious advantages, such as higher mean
wind velocity, fewer noise problems under operation and less visual impact. For many
countries the environmental impact on the surroundings of a wind turbine park has
made offshore wind energy the preferred choice as the space onshore is scarce. There are
however some challenges as well and these are mainly related to a more harsh climate
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causing the construction cost to be significantly higher. One of the large costs involved
is the foundation of the turbine, which has therefore been subject to a lot of effort trying
to reduce the overall expenses. The suction bucket foundation is one of the proposed
concepts meant to decrease both the production, installation and decommission cost of
the foundation.
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Figure 1.11 Bucket foundation after installation in Nov. 2002. 

The wind turbine is located in area where it was possible to dam the area 
around the location during installation, see Figure 1.11 and Figure 1.12. After 
assembling of the tower the area was once again flooded. Prior to the 
installation a set of experiments on installing a 4 meter bucket foundation with 
an embedment ratio equal 1 was performed using suction at the same test site 
during the summer and fall of 2002.  

Figure 1.2. Installed bucket foundation at Frederikshavn Havn. [Larsen, 2008]

The suction bucket differs from the name wise similar suction caisson used together
with jacket structures for oil platforms, as the suction caisson are often used in groups
of four, creating a static system that ensure only vertical loads. The suction bucket
concept is with only one large caisson, and will therefore be subjected to both vertical,
horizontal and moment loading. The concept is still being developed, however it has
has been proven to work at a number of test installations. One of these is the 3 MW
Vestas turbine installed at Frederikshavn Havn in 2002, cf. figure 1.2. The bucket
foundation has the capability of being installed at everything from near shore to 40
meters depth, making it feasible for 80-90 % of all offshore parks planned in Europe.
It has the potential to decrease the total used steel weight with up to 50 %, making
the production a lot cheaper as the steel cost is a big part of the total cost. The
installation of the bucket foundation is easier, and does not require large equipment
as the foundation is installed by applying suction inside the caisson, which drives the
foundation into the seabed. Furthermore the foundation can be decommissioned by
reversing the installation procedure allowing for reusage of the steel. [Ibsen et al., 2008]

The main challenges in the further development of the bucket foundation is to validate
the design process and convince the certification agencies of the properties of the
foundation. This master thesis is a contribution to this work.

1.1 The Aim of the Thesis

This thesis consists of three scientific papers of three different subjects regarding the
research of the bucket foundations. The three subjects will be explained in the following.
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1.1.1 Development of p− y Curves for the Bucket Foundation

The technology used to build offshore structures originates in the oil industry, where
platforms have been used since the early 1900s. The expertise gathered from the oil
industry has been extrapolated to the offshore wind sector, since this was the best
knowledge available. An example of this is the p − y formulations that are used
for embedded offshore piles. The p − y curves is an expression of the relationship
between soil reaction and displacement of cylindrical piles. Today, as recommended
in Det Norske Veritas [2007], the p − y curves can be used to determine the lateral
ultimate limit state capacity. The development of the p − y relationships were done
using very slender cylindrical piles with a length to diameter ratio of approximate 34.
The bucket foundation typically has a length to diameter ratio between 0.5-1.0 and
is thus expected to behave significantly different than a slender pile [Brødbæk et al.,
2009]. The first article in this thesis aims at developing a new p − y relationship for
the bucket foundation using numerical finite element calculation in PLAXIS 3D with
an advanced material model for the soil. The investigations are done with sand in the
drained condition, but development to other soil types and drainage conditions should
be further examined.

1.1.2 Implementation of a User Defined Soil Model in PLAXIS 3D

Within geotechnical research, a lot of scaled model tests are used, since full scale testing
is very expensive and complicated to carry out. In order to validate the experimental
work, numerical models can be used to recreate the results through finite element
modeling. This is however often not possible, as the commercially implemented soil
models are designed and developed for full scale models with a certain stress level in
the soil. This is a problem, since sand has shown to exhibit higher strengths at low
stress levels, which are present in the scaled models, cf. Krabbenhøft et al. [2011]. The
strength increase which is unaccounted for in the typical soil models such as the Mohr-
Coulomb and the Hardening Soil models causes the capacity of the scaled models in
the numerical calculations to be greatly underestimated.

The second article is an implementation of a user defined soil model, which can take into
account the relative strength increase at low stress levels by using a curved version of the
Mohr-Coulomb failure criterion. The parameters of the failure criterion are calibrated
using a number of triaxial tests done at back pressure levels from 5 kPa to 800 kPa. The
soil model is implemented in PLAXIS 3D through the FORTRAN code language, and is
then tested against existing test results with the scaled bucket foundation.

1.1.3 Small-scale Tests of a Bucket Foundation Subjected to Transient
Loading

In the certification of the bucket foundation, one of the points of discussion has been
the capacity during transient loading of varying loading rate. During the loading of the
foundation in a dense saturated sand a pore pressure build up will occur if it cannot
dissipate fast enough. The distribution and magnitude of the pore pressure build up
is a question of discussion, and has been a subject of research during the last couple
of years at Aalborg University, cf. Sjelmo et al. [2012] and Foglia et al. [2013]. It has
been shown that the capacity of the foundation is highly dependent of the loading rate,
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but until now the test setup has not been able to handle sufficiently large deformations,
velocities and forces.

A new test setup has been installed since the last tests were executed, and the last part
of this thesis covers the very first test done with this setup. In the tests a scaled bucket
foundation with a 500 mm diameter and 250 mm skirt length is subjected to loading
rates from 0.1 mm/s to 100 mm/s with a range of 150 mm. The last article in the thesis
deals with the new test setup, the execution of the tests and the results from the first
four successful tests.

1.2 Structure of the Report

The main textual content of the report is the three articles that directly follows this
introductional chapter,

1. Determination of p-y Curves for Bucket Foundations in Sand Using Finite Element
Modeling

2. Implementation of a Stress-dependent Strength Material Model in PLAXIS 3D
3. Small-scale Testing of Bucket Foundations in Sand

After the articles the main conclusion of the project follows. Ind the end a number of
appendices are appended, where additional explanations, results and derivations are
shown.
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Determination of p-y Curves for Bucket Foundations in Sand Using
Finite Element Modeling

Bjørn S. Knudsen1 Martin U. Østergaard1 Lars Bo Ibsen2 Johan Clausen3

Department of Civil Engineering, Aalborg University

Abstract

Cylindrical offshore wind turbine foundations, such as bucket foundations and monopiles, have up till now been designed
using analytical methods based on experiments done with piles much more slender than the ones used in today’s industry.
Compared to the widely used monopile foundation, the suction bucket has a much smaller ratio between length and
diameter, and the suction buckets will thus act more as a rigid object during rotation in the soil. To improve the design
of suction buckets through analytical methods, the soil pressure needs to be calculated more precisely since currently
available p− y curves, linking displacement and soil pressure, are based on more slender cylindrical structures. Using
finite element methods, the p− y curves for suction buckets will be determined as a function of the internal angle of
friction of the soil, the diameter and the skirt length of the suction buckets, which can in turn be applied in determination
of soil pressures for analytical design methods of suction bucket foundations.

1 Introduction

The aim of this study is to determine the soil pressure re-
sponse p in drained sand as a function of a displacement
y for a set of bucket foundations with different diame-
ter D and skirt length L embedded in soils of varying
strength determined by the internal angle of friction ϕ .
The p− y curves are found by using finite element mod-
eling in PLAXIS 3D. PLAXIS 3D is used mainly within
the fields of geotechnics since it has several advanced
soil material models incorporated, e.g. the Hardening
Soil Small Strain model that will be used in this inves-
tigation. The method used to obtain the soil response p
and the displacement y is explained in the following.

1. A prescribed uniform horizontal displacement is
applied to all parts of the bucket foundation. The
soil reaction pressure p builds during this step, and
p is extracted from PLAXIS 3D.

2. The horizontal displacement is removed from the
bucket foundation so that only irreversible (i.e.
plastic) deformations remain. This plastic deforma-
tion y is extracted from PLAXIS 3D.

3. This procedure is repeated for an increasing lateral
displacement.

4. To increase usability of the results outside the finite
element method, p and y are normalized to elimi-

1M.Sc. Student, Department of Civil Engineering, Aalborg Univer-
sity, Denmark

2Professor, Department of Civil Engineering, Aalborg University,
Denmark

3Associate Professor, Department of Civil Engineering, Aalborg
University, Denmark

nate variation in depth and a function is fitted to al-
low for a fast computation of the soil reaction pres-
sure p for varying bucket diameter, skirt length and
soil strength (through the internal angle of friction
ϕ).

2 Theory

Traditionally, soil response has been treated as a
2D-problem, described thoroughly for plane strain
problems, e.g. sheet pile walls. With the introduction
of monopiles as a solution to offshore foundation of
e.g. wind turbines, the soil response of such cylindrical
structures has increased the demands for knowledge
within the field of 3D soil interaction. For a bucket foun-
dation however, the existing knowledge regarding p− y
response curves for slender structures in 3D cannot be
employed since buckets behave nearly rigid, cf. figure
1. Thus, the geometry has to be taken into account. The
traditional 2D-theory provides a good offset for the un-
derstanding of displacement and soil response. Figure 2
shows how the active and passive earth pressure develop.

It can be seen that to mobilise the full passive soil
pressure requires a larger displacement than to mobilise
the full active pressure. The illustrated principle is
valid for 2D but the same principle applies for 3D. To
examine the 3D-effect, the soil pressure found in the
numerical calculation will be compared to the 2D-soil
pressure found by Rankine’s soil pressure theory. By
doing so, any added soil pressure obtained for a given
displacement in a given soil compared to the 2D-case
will be caused by this 3D-effect. Since the Rankine
pressure is easily calculated, the results in the following
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will mainly focus on determining the factor that the
3D-soil pressure is larger than the corresponding 2D-soil
pressure.

3 Material Model

The applied material model in the finite element code is
the Hardening Soil Small Strain material model (HSs-
mall). HSsmall includes the stress-dependent behaviour
of the Hardening Soil Material Model (HS) where the
current stress state is taken into account when calculating
the stiffness, but HSsmall has a more realistic behaviour
towards small strains. The HSsmall model is more de-
manding calculationwise, however the extra calculation
time is well spend, as the results are closer to real-life
behaviour. Additional stiffness at very small strains has
long been known to occur in the field of soil dynamics,
but has only recently been implemented in static calcu-
lations (Ovesen et al., 2009). By not using the HSsmall
model there is a significant risk of overestimating the
deformations in the soil and thus underestimating the
stresses. Since the objective of this article is to find a
link between the displacement y and the resultant soil
pressure p, the HSsmall model is highly relevant. As the
name implies the HSsmall model incorporates hardening
in the soil, causing the stiffness parameters to change as a
function of the current stress state. This is done by using
a power law to describe the development of the moduli
of elasticities and the shear moduli. The power laws for
the different stiffness moduli follow the same form, e.g.
the development of E50 is given by,

E50 = Ere f
50

(
σ3 + c cot(ϕ)
σref + c cot(ϕ)

)m

. (1)

The model incorporates a multi-surface yield criterion
with isotropic hardening. The shape of the yield crite-
rion is similar to that of the Mohr-Coulomb hexagonal
cone, however the surface is bound by a cap in the direc-
tion of the hydrostatic stress axis. A sketch of the yield
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Figure 1: The difference between the behaviour of slender and non-
slender piles when subjected to horisontal load. The non-
slender pile rotates as a rigid body. (Brødbæk et al., 2009)
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Figure 2: The relation between the displacement away from the soil δa
and the active pressure pa and the displacement towards the
soil δp and the passive soil pressure pp. The soil pressure at
rest is p0. (Ovesen et al., 2009)

surface in the principal stress space is shown in figure 3.
Compression is positive, tension is negative.

4 Determination of Soil Strength and Stiff-
ness Parameters

The internal angle of friction ϕ is commonly used as
a design parameter for sands since it is used in Mohr-
Coulomb yield criterion and also resembles a physical
property of the material. Therefore, ϕ is also the main
parameter in this study, and all other strength and stiff-
ness parameters of the sand are linked to ϕ . The used re-
lations in the following are taken from Det Norske Ver-
itas (1992), Jensen et al. (2009) and Brinkgreve et al.
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Figure 3: The yield surface of the HSsmall model. (Brinkgreve et al.,
2012)

12



(2012) and the sand is assumed to be of the type Fred-
erikshavn Sand which characteristics are typical for an
offshore sand. The relative density ID is an important
parameter since it indicates how much the soil is com-
pacted. The terms ’loose’, ’medium’ or ’dense’ referring
to the degree of compaction, is often used in empirical
formulas in geotechnical engineering. ID is linked to ϕ
through,

ϕ = ϕ ′crit +3◦IR−3◦ID−∆ϕ1, (2)

where the critical internal of friction ϕ ′crit = 33◦, ∆ϕ1 =
2◦ for 5-10 % content of silt and IR is calculated from,

IR = ID

(
Qmin− ln

p′

1 kPa

)
, (3)

where the representative mean normal stress is p′ =
100 kPa and Qmin = 10 for quartz sand. IR and Qmin
are both dependent on mineralogy of the grain material.
Poissons ratio ν is linked to ϕ through,

ν =
1− sinϕ
2− sinϕ

. (4)

The elastic modulus E50 is determined from,

E50 =
1−ν−2ν2

1−ν
Eoed, (5)

with Eoed found by,

Eoed = m
√

σ ′σa, (6)

where m as a function of ID is shown in figure 4. The
values here are used commonly for Norwegian inor-
ganic sands, which are assumed similar to Frederik-
shavn Sand. In equation (6), the atmospheric pressure is
σa = 100 kPa and the reference pressure σ ′ = 100 kPa.
This is used along with figure 4 to compute Eoed. For
computing the unloading and reloading response, the un-
loading/reloading elastic modulus Eur is calculated from,

Eur = 3E50. (7)

20 30 40 50 60 70 80 90 100
50

100

150

200

250

300

350

400

I
D
 [%]

m
 [
-] L
o

o
se

M
e

d
iu

m

D
e

n
s
e

Figure 4: Approximation of m as a function of ID. (Det Norske Veritas,
1992)

Table 1: Strength and stiffness parameters for sand used in the numer-
ical model.

ϕ [◦] 30 35 40

ψ [◦] 0 5 10
Qmin [-] 10.00 10.00 10.00
∆ϕ1 [◦] 2.00 2.00 2.00
ID [%] 15.17 53.09 91.02
ν [-] 0.33 0.30 0.26

E50 [MPa] 4.92 14.06 28.54
Eoed [MPa] 7.39 18.87 35.15
Eur [MPa] 14.77 42.17 85.62
e [-] 0.99 0.83 0.68

G0 [MPa] 65.23 82.30 103.49
γ0.7 [mm/m] 0.22 0.18 0.14
K0 [-] 0.50 0.43 0.36
c′ [kPa] 0.10 0.10 0.10

In HSsmall extra parameters compared to HS need to be
determined to model the stress dependency of the shear
stiffness and the shear modulus dependency of the strain.
The initial shear modulus G0 is determined from equa-
tion (8) and the reference shear strain from equation (9).

G0 =
33(2.97− e)2

1+ e
, (8)

γ0.7 =
2c′ (1+ cos(2ϕ ′))−σ ′1 (1+K0)sin(2ϕ ′)

9G0
, (9)

where the effective cohesion c′ = 0.1 kPa and the co-
efficient for soil pressure at rest K0 = 1− sin(ϕ). The
effective cohesion in the soil is set to 0.1 kPa to ensure
numerical stability as recommended in Brinkgreve et al.
(2012). emin = 0.64 and emax = 1.05 are used for the
Frederikshavn Sand to determine e through,

ID =
emax− e

emax− emin
. (10)

Table 1 contains the material parameters used in the nu-
merical modeling in PLAXIS 3D.

5 Modeling in PLAXIS 3D

The finite element tool used to compute p− y curves for
the bucket foundation is PLAXIS 3D. The bucket is built
using different geometries to determine the influence of
the diameter D and the skirt length L on the p− y re-
sponse. The third changeable parameter is the internal
angle of friction ϕ . Table 2 shows the models that are
tested in PLAXIS 3D. The bucket itself is constructed of
steel plate elements. The steel material is chosen thicker
than steel ordinarily used for bucket foundations to in-
crease the bending stiffness and to avoid any deforma-
tion in the steel structure itself. This is done since the
main interest of this investigation is the soil response. To
further avoid any bending in the bucket steel structure,

13



the displacement is applied to all parts of the bucket pro-
ducing a lateral displacement of the entire bucket instead
of the more realistic rotational behaviour. This does not
influence the results, since only the lateral soil response
is of interest.

5.1 Boundaries, Convergence and Meshing

The boundaries of the model domain are chosen so that
the failure mechanism has enough room to develop fully
without being influenced by the edges of the model. The
size of the model domain is seen in figure 6. Along the
bottom of the skirt, stress concentrations will arise due
to the abrupt change in geometry. To even this concen-
tration out and reduce the effect of it, an extended inter-
face is introduced as recommended in Brinkgreve et al.
(2012). The interface is extended both vertically and
horizontally. The length of the extension is Lext = 0.2D
based on Vaitkunaite (2012). To ensure the results close
to the bucket, where the strain and stress gradients are

Table 2: Overview of the tested models.

Model no. D [m] L [m] ϕ [◦]

1 10 5 30
2 10 5 35
3 10 5 40
4 10 10 30
5 10 10 35
6 10 10 40
7 15 7.5 30
8 15 7.5 35
9 15 7.5 40

10 15 15 30
11 15 15 35
12 15 15 40
13 20 10 30
14 20 10 35
15 20 10 40
16 20 20 30
17 20 20 35
18 20 20 40

Figure 5: An example of the mesh of the FE model.

Table 3: Phases in the models.

Phase Name Action(s)

0 Initial K0-procedure, soil activated
1 Installation Plates, interfaces activated
2 Nil-step Equilibrium reestablished

3,5,7... Load Displacement activated
4,6,8... Unload Displacement deactivated

large, are modeled with a sufficient accuracy, the mesh
is refined in a volume close to the bucket itself. The size
of this refined volume is shown in figure 6. The meshing
facility in PLAXIS 3D allows for a relative meshing size
to be chosen. Firstly the overall mesh density is selected,
after which a linear mesh refinement factor is applied to
the volume containing the bucket. A convergence analy-
sis has been carried out, to ensure a sufficient mesh qual-
ity. An example of the mesh can be seen in figure 5.

5.2 Phases in the Calculation

The model has five basic phases. The first two being
the initial phase (phase 0) and installation phase (phase
1). In the nil-step phase, equilibrium is reestablished af-
ter the installation of the bucket and all deformations are
reset because only the displacement from phase 3 and
onwards is of interest. Phase 3 is a loading phase where
the prescribed displacement is applied to all parts of the
structure. Phase 4 is an unloading phase where the pre-
scribed displacement is removed. Because of the elasto-
plastic behaviour of the soil, the elastic deformations
from phase 3 will be rolled back and only the plastic
part of the deformation will remain. This pattern, plastic
loading followed by elastic unloading, is continued for
an increasingly large deformation until the soil body col-
lapses or the maximum applied displacement has been
reached.

5.3 Integration of Stresses

In order to determine the soil reaction pressure, the
stresses on the bucket skirt are examined. From PLAXIS
3D it is possible to extract stresses in the soil, the plate
elements of the bucket and the interface between soil and
bucket. From Hansen et al. (2012) the method with ex-
traction of stresses from the interface provided more re-
liable results and this method will be used in the follow-
ing. In short, the method uses the normal σ ′N stress and
the shear stresses τ1 and τ2 from the interfaces to com-
pute a total soil pressure on the surface of the structure
bucket foundation skirt as,

Fy =
∫

A
(σN sinθ + τ1 cosθ)dA. (11)

The shear stress τ1 acts along the circumference and τ2
acts vertically along the skirt of the bucket. For deter-
mining the soil reaction pressure p, τ2 is disregarded.
The pressures acting on the bucket skirt during the hori-
zontal displacement are shown in figure 7.
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Figure 6: Size of model domain shown with black lines. The bucket itself is shown with blue lines, the volume with refined mesh is shown with
pink lines and the extended interfaces are shown with red lines.

1 N

Figure 7: Principal sketch of the normal stress σN and the shear stress
τ1 when the bucket foundation is displaced horizontally
(de Place, 2012).

The bucket is divided into layers with the depth and
each layer is divided into slices as seen in figure 8 where
two areas, the blue and the red, have been highlighted
as an example. In each of these areas, the average stress
is found which is multiplied by the specific area to get
the force acting on the specific area. The resulting soil
reaction p for a given layer is then found as the sum of
the average forces of all areas in this layer divided by the
height of the layer.

6 Results

The results from the models shown in table 2 will be
visualized through the following procedure.

1. Raw results from the model are plotted in a p− y
diagram.

Figure 8: Areas for integration of surface stresses.

2. The soil pressure p is normalized by the Rankine
pressure pR. The displacement y is normalized by
the bucket diameter D.

3. The results are trimmed so edge effects in the skirt
top and bottom are removed.

4. A tanh-function is fitted to the data.

6.1 Plotting of p-y Curves

The p−y data extracted from model 9 is plotted in figure
9. There is a p−y curve for each of the depth layers. The
z-value in the legend is taken as the depth of the middle
of each layer. The pressure increases with depth as ex-
pected. To better visualize the results, the depth param-
eter z is sought to be eliminated through normalization.
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Figure 9: Step 1 - Raw results from the model are plotted in a p− y
diagram. This data have already been trimmed, cf. section
6.3.

6.2 Normalization of Soil Pressure

To eliminate the depth dependency of the p− y curves,
the soil pressure p is normalized by the Rankine pres-
sure pR which is a linear function of the depth z. The
displacement y is normalized by the bucket diameter D.
The Rankine pressure is calculated as,

pR = γ ′zD(K p
γ −Ka

γ ) (12)

= γ ′zD
(

1+ sin(ϕ)
1− sin(ϕ)

− 1− sin(ϕ)
1+ sin(ϕ)

)
,

where γ ′ is the specific soil weight, z is the depth and ϕ is
the internal angle of friction of the soil. By normalizing
the pressure p by the Rankine pressure that is a linear
function of the depth z, the p− y curves for each depth
layer will turn into one curve, if the pressure p is also a
linear function of z.

6.3 Trimming and Fitting of Data

It is evident from investigating the data, that the normal-
ization by the Rankine pressure is not suitable in the top
and the bottom of the bucket. These variations are con-
sidered to be edge effects and are disregarded. After the
data has been trimmed, the results are fitted with a func-
tion of the type,

p
pR

= β1 tanh
(

β2
y
D

)
(13)

+β3 tanh
(

β4
y
D

)
+

K0

K p
γ −Ka

γ
,

where β2 and β4 are shape coefficients of the fitting func-
tion that controls the climb rate of the function in the
initial part and towards the ultimate soil pressure. From
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Figure 10: Step 3 and 4 - The results are trimmed so edge effects in the
skirt top and bottom are removed. The best fit is shown.
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Model 1, D = 10, L = 5, φ = 30

Model 4, D = 10, L = 10, φ = 30

Model 7, D = 15, L = 7.5, φ = 30

Model 10, D = 15, L = 15, φ = 30

Model 13, D = 20, L = 10, φ = 30

Model 16, D = 20, L = 20, φ = 30

Figure 11: Best fit for models with ϕ = 30◦.

equation (13) it is evident that,

p
pR
→ β1 +β3 +

K0

K p
γ −Ka

γ
for

y
D
→ ∞, (14)

meaning that β1 and β3 control the maximum relative
soil pressure. The fitting function consists of three terms,
the first two enabling the fitting function to fit both the
initial and end slope, while the third term involving K0
takes into account the soil pressure at rest at y = 0. The
trimmed data with the fitted function is shown in figure
10. This procedure is done for all 18 models, and the
fitted functions are gathered - one diagram for ϕ = 30◦,
ϕ = 35◦ and ϕ = 40◦. These results are shown in figures
11, 12 and 13. From this initial study of the p−y curves
and the best fit, it seems like models with L/D= 0.5 have
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Figure 12: Best fit for models with ϕ = 35◦.
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Model 3, D = 10, L = 5, φ = 40

Model 6, D = 10, L = 10, φ = 40

Model 9, D = 15, L = 7.5, φ = 40

Model 12, D = 15, L = 15, φ = 40

Model 15, D = 20, L = 10, φ = 40

Model 18, D = 20, L = 20, φ = 40

Figure 13: Best fit for models with ϕ = 40◦.

a bigger initial stiffness than models with L/D = 1. This
is evident for all values of ϕ . Figures 11, 12 and 13 show
the best fit, meaning that the parameters β1, β2, β3 and
β4 are free to attain an arbitrary value. In the following,
these parameters are sought to be described as a function
of the three basic parameters, D, L and ϕ .

7 Mathematical Model

In order to put the results from the numerical exami-
nation into real-life application, a mathematical model,
that can be used to evaluate the soil response of an arbi-
trary bucket geometry and soil strength, is sought. The
method for obtaining this mathematical expression is to
examine the dependency of the parameters β1 to β4 of
the geometrical parameters D and L and the soil strength
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Figure 14: Examination of β1 +β3 as a function of ϕ
L .

Table 4: Coefficients in the fit of β1 and β3.

a1 a2 b1 b2[m
◦
]

[−]
[m
◦
]

[−]
0.041 2.050 0.107 0.560

parameter ϕ . Ultimately, the goal is to express the earth
pressure through D, L and ϕ .

7.1 Investigation of β1 and β3

The parameters β1 are β3 are investigated as a pair, since
they both contribute to the limit value for y/D going to-
wards infinity as described in section 6.3. The investiga-
tion of β1 and β3 is done by plotting the sum β1+β3 and
the product β1β3 against the basic parameters D, L and ϕ
to discover any trend in the data. To get the actual values
for β1 and β3, two equations with two unknowns have to
be solved. In this particular case, it is seen that the sum
and product could be described as linear functions of the
types,

β1 +β3 = a1
ϕ
L
+a2, (15)

β1 β3 = b1
ϕ
L
+b2. (16)

Figures 14 and 15 show the data and the best linear fit.
The coefficient for the two linear functions are seen in

table 4.

7.2 Investigation of β2 and β4

Subsequently to examining the linear fit of β1 and β3,
these two parameters are locked in the non-linear fitting.
This means that the non-linear fit is done again, this time
only for β2 and β4. The slope parameters β2 and β4 are
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Figure 15: Examination of β1 β3 as a function of ϕ
L .
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Figure 16: Examination of β2 +β4 as a function of ϕ
L .

examined using the same procedure as for β1 and β3,
using the sum and the product. From the examination, it
is found that the best fit for β2 and β4 are found to be a
polynomial fit in the form,

β2 +β4 = c1

(ϕ
L

)2
+ c2

(ϕ
L

)
+ c3, (17)

β2 β4 = d1

(ϕ
L

)2
+d2

(ϕ
L

)
+d3, (18)

Again, the coefficients of the fit are found. They can be
seen in table 5. The actual plot of the data and the best
quadratic fit can be seen in figures 16 and 17.
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Figure 17: Examination of β2 β4 as a function of ϕ
L .

Table 5: Coefficients in the fit of β2 and β4.

c1 c2 c3 d1 d2 d3[(m
◦
)2
] [m

◦
]

[−]
[(m
◦
)2
] [m

◦
]

[−]

8.900 -13.12 66.24 936.5 -4579 5989

7.3 Assessment of Mathematical Model

After developing the mathematical model it is compared
to the best fit done by non-linear curve fitting. Figure 18
shows the two functions and the original data. It shows
relatively good coherence between the best fit and the
mathematical model. The quality of the fit based on the
mathematical model of course varies, but in general the
quality is good. The worst results are gained from the
models with ϕ = 30◦. Obviously, greater effort could
be put into the development of this mathematical model
- especially regarding the connection between the basic
parameters, D, L and ϕ , and the fitting parameters, β1,
β2, β3 and β4. In this case, the fitting parameters were
examined as a function of D, L, ϕ , ϕ/D and ϕ/L, and
as shown, the coherence was best in the case of ϕ/L.
No significant trend based on the bucket diameter D was
found. This matter should be examined further. Ulti-
mately, the mathematical model is rather simple even
though it uses ten fitted parameters as input. A more
precise model could possible be developed, but it would
without any doubt involve substantially more complex
expressions. The user should assess whether this formu-
lation is adequate for use in the specific case.

8 Conclusion

From the numerical analysis of the lateral displacement
of the bucket foundation and the corresponding soil re-
sponse in the drained condition, a general expression
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Figure 18: Comparison between best fit with free parameters and the
mathematical model.

for obtaining the soil pressure is given for an arbitrary
bucket diameter, bucket skirt length and internal angle of
friction of the surrounding soil. This enables fast compu-
tation of the soil pressure to be used in analytical design
models. When designing numerous bucket foundations
for e.g. an offshore wind turbine park, it is important that
the stabilising pressures on the skirt sides can be calcu-
lated readily but still accurately enough to provide a safe
but still efficient design.

9 Further Work

In the formulation of the mathematical model, ten em-
pirical parameters were necessary. Further calibration
of these parameters by doing more models with varying
geometry and strength parameters is a straight-forward
expansion of the investigations and could help increase
the validity of the formulation. The numerical tests done
in this project have all been drained tests for a typical
offshore sand. A natural way to expand the work and ob-
tain further results, would be to perform the same tests
in the undrained condition. In nature, the behaviour of
the bucket foundation will be much influenced by the
build up and dissipation of pore pressure in and around
the bucket skirts. However, in nature neither completely
drained or undrained conditions can be assumed - this
depends solely on the nature of the loading. A more
probable scenario is that the actual behaviour is some-
where in between completely drained and undrained -
namely partially drained. The partially drained state will
be examined in a scaled experiment in the pressure tank
at Aalborg University in the Spring 2013. This project
will try to clarify the behaviour of the bucket foundation
when subjected to loading with varying velocity.
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Implementation of a Stress-Dependent Strength
Material Model in PLAXIS 3D

Bjørn S. Knudsen1 Martin U. Østergaard1 Johan Clausen2

Department of Civil Engineering, Aalborg University

Abstract

To perform tests on bucket foundations, full-scale testing is rarely used since it is rather expensive. Instead small-scale
testing is done to examine the static and dynamic behaviour of such structures. In the laboratory at Aalborg University,
small-scale testing of offshore support structures can be performed in a pressure tank, where a pressure can be applied
in order to simulate deep water situations. Since the test set-up is downscaled 15 to 30 times compared to real-life
structures, stresses and strains will be downscaled too. For soils, normally a Mohr-Coulomb failure criterion is used,
and in the region of small stresses, a non-linear behaviour is observed - unlike the linear behaviour normally assumed
in Mohr-Coulomb. To better model this non-linearity, a stress-dependent model for the strength of the soil material is
sought to be implemented in PLAXIS 3D through FORTRAN to improve the computational accuracy of small-scale
tests.

1 Introduction

Small-scale testing in geotechnical engineering is very
often used to simulate or clarify behaviour of support
structures of various kind. Because of the scaling of
these structures, it is often hard to make an accurate
model - analytical or numerical - since the behaviour
of the soil is very dependent on the stress state inside
the soil volume. This fact has long been well known cf.
Krabbenhøft et al. (2011), but traditional geotechnical
models have not been able (or not needed) to take
this into account when designing these structures. To
ease the burden for geotechnical designers, tools such
as PLAXIS 3D have been developed. Contained in
PLAXIS 3D are the most commonly used material
models - none of which have the ability to simulate
small-scale experiments where low stresses increase the
relative soil strength.

This article aims to successfully implement in PLAXIS
3D a user defined soil model (UDSM) that through
stress-dependent strength in a better way reproduces
real-life behaviour of soil. Firstly, a mathematical
formulation is presented based on Krabbenhøft et al.
(2011). After this, it is outlined how to implement this
model into PLAXIS 3D using the PLAXIS 3D-interface
and calculation engine. The application of the model is
then tested firstly by fitting the parameters in the failure
surface of the mathematical formulation to results
gained from triaxial tests on Aalborg University Sand
No. 1 (Ibsen and Bødker, 1994). Afterwards it is tested

1M.Sc. Student, Department of Civil Engineering, Aalborg Univer-
sity, Denmark

2Associate Professor, Department of Civil Engineering, Aalborg
University, Denmark

through comparisons between the new formulation
and the existing Mohr-Coulomb formulation within
PLAXIS 3D and small-scale tests performed on bucket
foundations.

2 Theory

The soil mechanics concerning the UDSM will be out-
lined in the following. The UDSM has the ability to cal-
culate the strength based on the current stress state.

2.1 Failure Surface

The formulation of the failure surface is based on
Krabbenhøft et al. (2011). Even though the implementa-
tion aims towards PLAXIS 3D, the default geotechnical
formulation is used where tension is negative and com-
pression is positive, which is contrary to the common
finite element formulation. The failure surface f is for-
mulated as,

f = k0σ3−σ1 + sc0

(
1− exp

(
−a

σ3

sc0

))
= 0, (1)

where σ1 and σ3 are the largest and the smallest principal
stresses respectively, k0 defines the slope of the asymp-
tote, sc0 defines the intersection with the σ1-axis and a
defines the curvature. Equation (1) can then be reformu-
lated into,

σ1 = k0σ3 + sc0

(
1− exp

(
−a

σ3

sc0

))
. (2)

The formulation of the criterion goes towards an asymp-
tote, when σ3 goes towards a very large positive value,
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e.g. very high compression. Thus the formulation be-
comes,

σ1 = k0σ3 + sc0 , σ3→ ∞. (3)

In geotechnics the soil strength is often described by the
triaxial angle of friction, since this parameter resembles
a physical characteristic and is a parameter in the Mohr-
Coulomb failure formulation. To link the parameters de-
scribed in this failure surface to the triaxial angle of fric-
tion, it is used that,

k =
dσ1

dσ3
= k0 +a exp

(
−a

σ3

sc0

)
=

1+ sinϕ
1− sinϕ

, (4)

and thus, the triaxial angle of friction is linked to the
parameters of the failure surface from equation (1).

2.2 Plastic Potential

The plastic potential g is, as opposed to the yield sur-
face, governed by the internal angle of dilation ψ . In
associated plasticity, where ψ = ϕ , this results in g = f .
Assuming associated plasticity results in a much simpler
theoretical solution, but in reality, associated plasticity
does not resemble the behaviour of soils. In this particu-
lar case, the plastic potential is given as seen in equation
(5) again assuming no cohesive behaviour,

g = m0σ3−σ1 + sc0

(
1− exp

(
−b

σ3

sc0

))
= 0. (5)

From this, two new parameters are introduced, m0 and b.
It is assumed that it is possible to compute the internal
angle of dilation ψ from the relative density ID and σ3
as,

ψ = 0.195 ID +14.9
(
σ ′3

)−0.0976−9.95. (6)

Similarly to equation (4), m can be described by the in-
ternal angle of dilation ψ as,

m = m0 +b exp
(
−b

σ3

sc0

)
=

1+ sinψ
1− sinψ

, (7)

where the parameters m0 and b related to the dilative be-
haviour can be fitted to the data set calculated from equa-
tion (6). The value of sc0 needs to remain the same in
both situations. (Ibsen et al., 2009)

2.3 Fitting of Failure Criterion

The criterion can be calibrated to be used with any
material exhibiting Mohr-Coulomb-like behaviour. In
this study the criterion is fitted to be used with Aalborg
University Sand no. 1. In order to calibrate the pa-
rameters a series of triaxial tests are used, in which the
backpressure is varied to give failure points at different
stress levels. The data from these tests can be seen in
table 1. Since the curvature of the criterion is dominant
at low stress levels, a series of tests including very low
back pressures are used. The tests are carried out at the

Table 1: Test data used for fit.

Test no. ID [%] σ3 [kPa] qfailure [kPa]

9301 12 78 5 45
9301 11 81 10.1 64
9301 10 81 20.1 102
9301 04 81 39.9 189
9301 02 81 100.2 412
9301 03 80 160.7 632
9301 07 79 320.1 1218
9301 08 78 640.2 2251
9301 32 79 800.2 2714

Table 2: Parameters of the failure criterion.

k0 [-] sc0 [kPa] a [-] m0 [-] b [-]

4.3584 75.1295 2.9954 1.5507 0.31118

Geotechnical Laboratory at Aalborg University and are
available in the data report by Ibsen and Bødker (1994).

The calibration is done by fitting equation (2) to
the failure points of each triaxial tests, represented
by the coordinate set

(
σ f ailure

3 , σ f ailure
1

)
. The three

remaining unknown constants of equation (2) are found
by a non-linear least squares regression algorithm.
The data points and the fitted expression are shown in
figures 1 and 2. Similarly, the parameters associated to
the plastic potential are fitted through a non-linear fit.
This is done by assuming that m can be described in a
manner similar to k, comparing equations (4) and (7).
The parameters for Aalborg University Sand no. 1 at
ID ≈ 80% are listed in table 2. By using equation (4),
the equivalent angle of friction can be plotted for the
different stress levels, which is shown in figure 3 and by
using equation (7) for the equivalent angle of dilation in
figure 4. In figure 4 the data points for each of the tests
are shown as well. The internal angle of dilation for
these data points have been calculated using equation
(6).

3 Implementation in PLAXIS 3D

To make use of the UDSM with stress-dependent
strength along with the user interface and calculation
engine in PLAXIS 3D, a certain procedure must be fol-
lowed. The procedure will be outlined in the following.

Basically, PLAXIS 3D provides all necessary in-
puts for the UDSM, and it must be able to handle three
objectives.

1. Initialization of needed state variables

2. Calculation of stresses using a constitutive model

3. Creation of elastic and effective stiffness matrices
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Figure 1: Fit of failure criterion to (σ3,σ1)-data.
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Figure 2: Zoom of figure 1. From this it is apparent that for small values
of σ3, the non-linear behaviour is important.

In this particular case, no state variables are used, how-
ever this could be e.g. the mean stress p′. The creation of
the elastic stiffness matrix is done readily based on mate-
rial parameter input done in the user interface in PLAXIS
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Figure 3: Internal angle of friction as a function of σ1.
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Figure 4: Internal angle of dilation as a function of σ1.

3D. The creation of the effective stiffness matrix is per-
formed by a stress return algorithm that calculates an al-
lowable stress state for the soil, if the stress is outside the
failure surface. The mechanics of these algorithms will
not be of further subject in this paper.

4 Application of Material Model

In the following section, the application of the material
model is tested. This is done in various ways as de-
scribed below. The general method is to compare the
actual test data with the results from various PLAXIS
3D models done with the linear Mohr-Coulomb model
already implemented in PLAXIS 3D and the recently im-
plemented non-linear Mohr-Coulomb model.

• The SoilTest-function in PLAXIS 3D is used to
perform a triaxial test of the implemented material
model with the fitted parameters on a soil volume,
which is compared to triaxial tests that the mate-
rial model parameters have been fitted against, and
to SoilTest-results with the linear Mohr-Coulomb
model.

• PLAXIS 3D is used to model a small-scale test
of a bucket foundation and the results of this are
compared to the actual test results. The PLAXIS
3D-model is done using both the traditional linear
Mohr-Coulomb failure envelope and the non-linear
Mohr-Coulomb failure envelope.

4.1 Comparison between SoilTest and Triaxial Tests.

In order to make use of the SoilTest-function in PLAXIS
3D that is able to perform triaxial tests, elastic parame-
ters (E,ν) are needed apart from the fitted parameters
defining the failure (k0,sc0,a,m0,b).

Since the implemented model is a linear elastic-
perfectly plastic model with non-linear Mohr-Coulomb
failure criterion, the elastic path will not be portrayed
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Figure 5: Plot of q f for different σ3 for all three approaches to determine
failure.
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Figure 6: Zoom of figure 5. From this it is clear that the Linear MC
underestimates the failure load, and that the Non-linear MC is
almost similar to the test data.

properly in any case. That means in fact that only the
stress at failure will be of interest.

The deviatoric stress at failure q f ailure will be ex-
amined for five triaxial tests at different σ3. The
non-linear Mohr-Coulomb has five input parameters for
the failure criterion and two elastic parameters. The
linear Mohr-Coulomb has three input parameters - the
effective cohesion c′ = 0 for non-cohesive materials,
the internal angle of friction ϕ , and the internal angle
of dilation ψ - and two elastic parameters. Since only
q f ailure is of interest, the elastic parameters will not be
mentioned any further. As the linear Mohr-Coulomb
model only allows for constant values of ϕ and ψ ,
the asymptotic value of these will be used, which is
ϕasymp = 38.8◦ and ψasymp = 12.6◦ according to the
fitted expression, see also figures 3 and 4, respectively.

Figures 5 and 6 show the comparison of the differ-
ent approaches to determine the deviatoric stress at
which failure occurs. It is evident from the results that
the linear Mohr-Coulomb underestimates q f ailure in
general. The same thing applies to some degree for the
non-linear Mohr-Coulomb, especially for very low σ3.
This underestimation is caused by the fact that the fitted
model underestimates ϕ , cf. figure 2. For σ ≥ 5 kPa the
non-linear Mohr-Coulomb shows to accurately estimate
q f ailure.

4.2 Comparison between PLAXIS and Small-scale Test

In the previous section, it was shown that the non-linear
Mohr-Coulomb provides a better estimate of the failure
stress for a triaxial test at low backpressure than the
traditional linear Mohr-Coulomb. In the following,
an actual small-scale test done on a bucket foundation
in the laboratory will be examined. The goal is to
model the scaled bucket test in PLAXIS 3D using both
the linear and the non-linear Mohr-Coulomb criterion

and compare the results of the failure moment to the
small-scale test results.

The static small-scale test that will be examined is
described in Larsen (2008a) and documented in detail
in Larsen (2008b). The test setup consists of a sandbox
in which the bucket foundation is installed. Through
a loading frame, vertical load can be applied. The
horizontal load is applied at a distance above the sand
surface to exert the bucket foundation to a moment.
The test setup is seen in figure 7. All tests described in
Larsen (2008a) are performed on Aalborg University
Sand No. 1. In each test performed, the relative density
ID is measured. Since the failure criterion for the
non-linear Mohr-Coulomb model is calibrated against
triaxial tests at a certain relative density, the sand used
in the small-scale test must be of similar relative density
compared to the triaxial tests.

Experimental test setup (Laboratory tests)  23

The loading tests are carried out on dense saturated sand in a special designed 
test box, see Figure 2.3. The construction of the test box is described in the 
following sections. 
 

 
Figure 2.3 Test box used for loading tests on bucket foundations. 

 

2.1.1. Construction of the test box 
The test box used to investigate the behaviour of bucket foundations has been 
improved in connection with this work. The structure of the test box is 
illustrated in Figure 2.4. By redesigning the drainage system in the bottom of 
the test box, the depth of the sand sample has increased by approximately 100 
mm to 530 mm.  
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Geotextile

Drainage pipe

20mm free water surface

 
Figure 2.4 Structure of the test box used for the small scale loading tests. 

Loading frame 

Test box 

Figure 7: Test setup for scaled bucket foundations. (Larsen, 2008a)

Bucket Test No. 0104.1701

The basis for this comparison is ’Bucket test no.
0104.1701’ (Larsen, 2008b). Two similar tests have been
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PAGE 2 BUCKET TEST NO. 0104.1701
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Figure 9: Moment-rotation curve for ’Bucket test no. 0104.1701’.
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executed as well, ’Bucket test no. 0104.901’ and ’Bucket
test no. 0104.1901’. These tests were done for a bucket
with diameter D = 300 mm, skirt length L = 300 mm
and with no vertical load. The horizontal load was ap-
plied in a height of 2610 mm. The relative density in
the specific test is ID = 86%. This in turn means that
the parameters in the non-linear Mohr-Coulomb crite-
rion have been calibrated against a looser soil. Force and
displacement are tracked in the test, which makes it pos-
sible to compute moment and rotation at sand surface.
Since non-linear elasticity is not implemented in neither
of the two materials models, only failure moment is ex-
amined. A schematic display of the test setup is shown in
figure 8. The setup is duplicated in the numerical model
using both linear and non-linear Mohr-Coulomb failure
criterion. Since it is not always obvious when a finite
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Figure 8: Test setup for ’Bucket test no. 0104.901’. (Larsen, 2008b)

element has failed, a point of failure normally needs to
be chosen. In this case, the rotation of the bucket will
be examined, and the failure moment will be chosen as
the moment at a rotation of θfailure = 1.11◦, which is the
rotation at failure in ’Bucket test no. 0104.1701’. Fig-
ures 9 and 10 show the actual moment-rotation for the
test and the finite element models, respectively.

At a rotation of θfailure = 1.11◦, table 3 shows the mo-
ment at failure. It is evident that the failure moment for
the test is higher than the linear Mohr-Coulomb model
as expected, since the linear Mohr-Coulomb model does

Table 3: Comparison of failure moment at θfailure = 1.11◦.

Test 0104.1701 Linear MC Non-linear MC

213773 Nmm 197063 Nmm 284612 Nmm

not take the strength increase for low stresses into ac-
count. The non-linear Mohr-Coulomb model does how-
ever take this into account, and it was expected that this
model would come closer to test results, although still
underestimating failure moment because the non-linear
failure criterion was calibrated against a looser soil than
the one used in ’Bucket test no. 0104.1701’. The rea-
son this is not the case, could perhaps be that the fail-
ure moment in the test is too low because the sand was
loosened from raising the water level from the bottom
of the sand container after leveling the sand. It is evi-
dent from Larsen (2008a) that this was done for some
tests, while in others the water level was raised from
the top of the sand container. It is however not clear
in which tests, which approach was used. It could be ar-
gued that the non-linear Mohr-Coulomb model has not
failed for a rotation of 1.11◦, since the M−θ -diagram at
that point does not tend towards the asymptotic moment.
Although the FE-results were not completely in line with
the test results, the non-linear Mohr-Coulomb model still
exhibits higher strength for low stresses present in small-
scale setups like the one examined. This proves that
the non-linear Mohr-Coulomb failure criterion behaves
as expected. Regarding the comparison with the test
results, more work should go into the modeling of the
small-scale test in PLAXIS 3D.

5 Conclusion

The main goal of this study was to successfully imple-
ment a material model with stress-dependent strength
in PLAXIS 3D. The stress-dependent strength was ob-
tained through a non-linear Mohr-Coulomb failure cri-
terion. This objective was achieved without encoun-
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tering severe problems. From the implementation in
PLAXIS 3D, the material model was tested in several
ways, against existing test results and the linear Mohr-
Coulomb failure criterion. These comparisons showed
that the non-linear MC-model accurately depicted the
deviatoric failure stress for a series of triaxial tests with
varying backpressure. The model seemed to be less
accurate for a static bucket foundation test performed
in small-scale at Aalborg University (Larsen, 2008a),
but the non-linear MC-model exhibited the correct be-
haviour compared to the linear MC-model. It was con-
cluded that more effort should go into the built of the FE-
model. Ultimately, the stress-dependent material model
was implemented with success and ongoing work re-
garding the implementation of non-linear stiffness will
result in a material well-suited for predicting the be-
haviour of small-scale tests.

6 Further Work

In recent years, computational methods such as the finite
element method have moved to become an essential tool
for every geotechnical engineer or scientist. The demand
within the fields of offshore geotechnical research calls
for the use of small-scale models or computer models,
meaning that the demand for accurate soil models is
increasing. For soils in general, the stress state within
the soil volume is of great importance, which has been
a well known fact for many years. In this study, the
goal has been to implement a soil material model that
takes the stress-dependent strength of non-cohesive
soils into account into PLAXIS 3D. PLAXIS 3D has
since it was published been widely used within the field
of geotechnical engineering. PLAXIS 3D has been
developed and improved during the years, adding more
soil material models, but not a single model able to
take the stress-dependent strength into account has been
added.

Through a non-linear Mohr-Coulomb relationship,
the stress-dependent strength is taken into account
in a linear elastic-perfectly plastic soil model. The
implementation has proven to be successful, and after
calibration of the failure criterion of the model, the
comparison with the test results showed that more work
needs to be put into the FE-model of the small-scale
test. The non-linear MC-model did however behave
just as expected and the comparison to the triaxial
test results supports this. To further improve the soil
material model, non-linear elasticity needs to be imple-
mented. This should enable the material model to take
stress-dependent stiffness into account. This will enable
a better representation of the path towards failure, since
the currently implemented model only predicts failure.
Another addition of the soil model is hardening and
softening.

In this study, the material parameters have been

calibrated towards nine triaxial tests for a certain sand,
Aalborg University Sand No. 1. Further studies should
include the calibration of the failure parameters towards
more different types of sand. Since no general descrip-
tion of the material parameters have been developed,
a general description could aim to take the relative
density, the maximum or minimum void ratio, or the
average grain size into account, so material model
parameters could be determined in ways other than
calibration towards triaxial tests.
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Small-scale Testing of Bucket Foundations in Sand

Bjørn Staghøj Knudsen1 Martin Underlin Østergaard1 Lars Bo Ibsen2

Department of Civil Engineering, Aalborg University

Abstract

For offshore foundation structures, the loads are of varying nature both in magnitude and duration. For the bucket
foundation the dissipation of the pore pressure is highly relevant since it greatly affects the strength of the structure. The
build up of pore pressures with varying loading rate is therefore a highly relevant research subject. In computational
models, e.g. FE-models, normally either a drained or an undrained behaviour is assumed. In real life, the behaviour is
partially drained, which calls for a time-dependent model. Especially, the tracking of pore pressures in and around the
bucket skirt will provide valuable information of the quasi-static behaviour. For a number of small-scale tests performed
in the laboratory at Aalborg University, a bucket foundation will be loaded with varying velocity to investigate the
dissipation and general behaviour of bucket foundations used as offshore support structures for wind turbines.

1 Introduction

The suction bucket concept for offshore foundation
of wind turbines, which is illustrated in figure 1, has
been extensively researched for the last decade, among
other places at the Geotechnics Department of Aalborg
University (AAU). The design procedure and validation
of the foundation dimensions have to be verified by risk
assessment organizations such as Det Norske Veritas. In
the current verified design method the ultimate capacity
of the bucket foundation is calculated both in the drained
and undrained condition whereafter the lowest capacity
is chosen. In dense cohesionless soil the response in
the drained case will often be significantly lower than
the undrained, causing the capacity to be low. As the
ultimate limit state loads on offshore structures are
often of impulsive nature, i.e. a very large load over a
small period of time, arising from emergency stop of
the turbine, freak waves or breaking waves in general,
this article aims to investigate the behaviour of the
foundation as a function of the loading rate. The thesis
is that for large loading rates, the drained condition is
an underestimation of the capacity of the foundation,
causing the design dimension to be overestimated.

The thesis has previously been investigated by
conducting tests in the pressure tank at the Geotechnics
Laboratory at AAU, cf. (Sjelmo et al., 2012) and (Foglia
et al., 2013) among others. The thesis was in these tests
validated, however the test setup was not able to conduct
the test to a satisfactory degree, mainly due to a limited
displacement range of 40 mm of the piston, cf. figure

1M.Sc. Student, Department of Civil Engineering, Aalborg Univer-
sity, Denmark

2Professor, Department of Civil Engineering, Aalborg University,
Denmark

Figure 1: An illustration of a wind turbine on a bucket foundation.
(Universal Foundation A/S, 2013)

4. Since the before mentioned tests were conducted, the
test setup has been thoroughly upgraded. The upgrade
involves a new actuator, new bucket foundations with
greater steel thickness and an addition of five extra pore
pressure gauges. Furthermore new control hard- and
software has been installed. With the new setup it is
possible to exert much larger forces at greater velocities
over a larger displacement range. In this article the
results of the first four successful tests with the new
setup will be analyzed and compared to the previously
obtained results.
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2 Theory

The sand in the pressure tank is Aalborg University Sand
no. 1, which is thoroughly documented from triaxial
tests. The sand resembles sand types commonly en-
countered offshore. For the calculation of failure sand
is defined as being in either a drained or undrained state,
representing the two extremes of drainage behaviour. In
the tests it is investigated what happens as a transition
from fully drained conditions at low loading velocity
to a potentially partial or fully undrained behaviour at
high loading velocities occurs. A partially undrained be-
haviour can be experienced when a pore pressure build
up is not able to dissipate, which makes the behaviour a
function of the drainage conditions and the permeability
of the soil.

2.1 Development of Pore Pressures

Sand under drained conditions can act both compres-
sional with ∆εV < 0 and dilatational with ∆εV > 0 under
loading. The change between the two states is called the
characteristic state and is characterized by,

δεV

δε1
= 0. (1)

The point of the characteristic state for different density
indices and stress combinations can be plotted in a p′−q
diagram where they form a straight line. This line is
called the characteristic line, cf. (Ibsen and Lade, 1997).
Sand with stress states below the line thus exhibits com-
pression and stress states above exhibits dilatation. The
slope of the characteristic line is called the characteristic
angle φcl, and this angle has for Aalborg University Sand
no. 1 been found to be independent of the density index,
cf. Ibsen and Lade (1998). A schematic overview of the
drained behaviour can be seen in figure 2. For the sand
to behave fully drained the effective stress path (ESP)
and the total stress path (TSP) have to be coincident, as
seen in figure 2. This only takes place if the excessive
pore pressure formed during volume change of the sand
is able to dissipate, which in turn requires the loading
rate to be low.

Figure 2: The characteristic state in drained sand. (Ibsen and Lade,
1997)

Figure 3: The phase transformation state in undrained sand. (Ibsen and
Lade, 1997)

For sand in the undrained state a similar property
is seen as the point at which the pore pressure devel-
opment ∆u changes from being positive to negative.
This change is associated with compression and dilation
of sand in drained behaviour. The state at which the
transition takes place is called the phase transformation
state, cf. (Ibsen and Lade, 1997). As with the drained
case the phase transformation line is a straight line in a
p′− q diagram, cf. figure 3. The phase transition point
is defined as the point at which the ESP has a vertical
tangent, since the point of maximum pore pressure umax
and minimum effective mean stress does not completely
align, cf. figure 3. Once the pore pressure increment is
negative the effective pressure state will increase, thus
giving the soil extra strength. A sand with a highly
dilatational behaviour will therefore have a higher
strength. The negative pore pressure increment prevents
the sand from dilating as long as the pore pressure is
positive, once the pore pressure turns negative, the sand
starts to dilate and is no longer fully undrained. As the
pore pressure nears the point of cavitation the failure is
controlled by the drained failure envelope.

Since the failure point of dense undrained sand oc-
curs once the pore pressure reaches the cavitation limit,
the value of the pore pressure in the initial state is
important for the total strength. In the undrained state it
is thus the total stress state p′+u0 that is relevant for the
strength, and not the effective stress as for the drained
case. The combination of u0 and p′ is furthermore not
relevant, only the sum. As a consequence for the sand in
the pressure tank, the undrained ultimate capacity will
be greatly increased due to the pressure applied, even
though the effective stresses are not changed. (Nielsen
et al., 2013)

Whether or not the sand will act drained or undrained is
a function of the drainage conditions, the permeability
of the sand and the loading rate. It has often been found
that a high loading rate in saturated sand will cause a
dramatic strength increment, sometimes denoted the
boot effect, originating from trying to pull a boot out
of mud. The investigation in this article will clarify if
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this effect is present with the bucket foundation, which
is expected. The development of pore pressure will
furthermore be a function of the failure mechanism,
a point where some uncertainties exist in the design
methods.

2.2 Scaling Effects

In a model test consideration has to be taken, since the
investigated phenomenon is a scaled down version of
the real-life phenomenon. Using similarity laws along
with continuum and fluid mechanics scaling parameters
can be derived for the scaling of length, time, force,
stress, velocity and time for both the sand and the pore
water. The similarity laws state that both geometric,
kinematic and dynamic similarity need to be obeyed, for
the scaling to be correct. Often the dynamic similarity
is the hardest to obtain, since it involves scaling of
physical entities such as gravity and viscosity. (Larsen
and Brorsen, 2009)

In the model of this article, the primary object is
to investigate the influence of the loading velocity on the
development of pore pressures and load bearing capacity
under horizontal loading. The scaling of the sand and
fluid is done without obeying the scaling laws, as e.g.
the grain size in the sand is not scaled properly. The
consequence of the wrong scaling is that the numerical
values of the measured forces and pressures cannot be
directly extrapolated from model to real size. This is
however acceptable, since investigation of the nature of
the phenomenons is the goal of this article.

3 Test Setup

The quality of the test setup is the key to achieve reliable
results from any experiment, scaled or not. The tests de-
scribed in this document are all scaled experiments per-
formed in the pressure tank at Aalborg University. The
reason that the experiments are performed in a pressure
tank is that it is possible to apply a pressure, simulating
that the foundation is situated below water and allowing
a larger decrease in pore pressure before cavitation takes
place. In the pressure tank at Aalborg University, it is
possible to apply a maximum of 1000 kPa of pressure.
An overview of the setup in the pressure tank is seen in
figure 4.

3.1 Test Setup Overview

The test setup consists of multiple components which
will be outlined in the following.

Actuator and Control System

The force is delivered from a hydraulic actuator which
is controlled through a test control unit coupled with a
computer. The actuator can be either displacement or
force controlled. The actuator can deliver 100 kN of

PT

Water
inlet

Air
pressure

inlet

Pressure tank

Piston

Displacement
control

uh1

uh2

u
v1

u
v2

Force
measurement

P13

P10

P12

P9

P11

P8

P3

P6 P2

P5 P1

P4P7

Sand

Gravel

Geotextile canvas

6
0
0

2200

Figure 4: Overview of the pressure tank.

force, it has 500 mm of free range and a maximum ve-
locity of at least 0.5 m/s. The movement of the actuator
is controlled through a piece of computer software. In
the software, it is possible to monitor movement of the
actuator, force through a weight cell connected to the ac-
tuator and all the pressure transducers. The test control
system also works as data acquisition software.

Bucket, Tower and Wire

The model bucket is made of stainless steel and has a
diameter of 500 mm, a skirt length of 250 mm and a
tower height of 610 mm, cf. figure 5. The tower is a
galvanized RHS 180 × 100 mm steel profile reinforced
at the bottom with two steel plates welded to the flanges.
A round plate is mounted on the bottom of the tower to
transfer the forces between the tower and the bucket lid
via eight bolts. The model is a further development of
a previous model, where the steel thickness of the skirt
proved to be too small to withstand the development of
earth pressures during the loading. In the new model the
steel thickness is 10 mm in the lid and 5 mm in the skirt.
Between the actuator and the piston a demountable steel
wire is used to transfer the force. The whole setup is
designed to be able to withstand a force of 100 kN at an
eccentricity of 500 mm above the lid.

Measurements

13 pore pressures are measured on the bucket, cf. figure
5, to track the development during loading. Four dis-
placement transducers are used to track the vertical, hor-
izontal and rotational displacement. The displacement
transducers are ASM wire transducers, which are care-
fully mounted before each test to ensure that the wire
are respectively perfectly horizontal or vertical in the ini-
tial phase. The force applied via the piston is measured
with a 100 kN force cell. The force cell is zeroed before
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Figure 5: Sketch of the bucket.

each test is started, as it is affected by both the tighten-
ing of the wire and the pressure in the tank. This does
to some degree cause the numerical value of the mea-
sured force to be wrong, but it is however comparable
between the tests. The pressure in the tank is measured
to ensure that the 200 kPa pressure is applied. The mea-
surements are obtained using both the MOOG system
and an older HBM Spider8 system, both are connected
to a computer.

4 Preparation of Test Setup

Before each test is carried out a procedure for prepar-
ing the test setup is followed. The main purpose is to
ensure that all the physical and geometrical parameters
of the setup are identical in all the tests. The procedure
has been investigated and documented in Fisker and Kro-
mann (2004). The procedure is briefly explained in the
following.

4.1 Preparation of Sand

The sand is prepared by following the points below,

1. Loosening of sand with water gradient

2. First vibration of sand

3. Second loosening of sand with water gradient

4. Second vibration of sand

5. Adjustment of water level in tank

The loosening of the sand is done by applying an up-
wards gradient of water, causing the effective stress in
the sand to be reduced and thus loosening the grains from
each other. The effective stress is calculated by,

σ ′ = (γm− γw± i γw)z, (2)

where γm and γw are the unit weights of respectively sand
and water, i is the gradient of water flow and z is the
depth below the surface. As an upwards gradient of wa-
ter flow is negative, the effective unit weight is reduced
and the sand is loosened. A gradient of i = 0.9 is ap-
plied, which is equivalent to a pressure height difference
of 0.54 m. The gradient is applied for a period of 5 min-
utes, whereafter the water surface in the tank is 5-10 cm
above the sand surface. The following vibration is car-
ried out using a vibrator rod that is lowered slowly into
the sand until it is approximately 5 cm above the geotex-
tile cover and then pulled slowly out. The slow velocity
and the water layer above the sand surface minimizes the
risk of creating air pockets in the sand. Before the level-
ing of the sand the water can be drained to make it easier
to do, afterwards the water level is adjusted to approxi-
mately 6 cm above the sand.

4.2 CPT Testing

Prior to the installation of the model-bucket in the
pressure tank CPT-tests are carried out in the prepared
sand. This is done to ensure homogeneity in the soil
volume. The tests are done using a mini-CPT cone,
which is driven into the sand with constant velocity
using a hydraulic piston. The CPT cone is mounted
on an steel girder that can rotate 360◦ in the tank
and allows for radial adjustment making CPT testing
possible everywhere in the tank. Five CPT tests are
done prior to each test at respectively the middle and
at 90◦ intervals around the tank at 40 cm from the centre.

The sand in the tank is the Aalborg University Sand no.
1. This sand has been used extensively in the research
at the Geotechnics Laboratory at Aalborg University,
and its properties are thus very well documented.
Using a series of triaxial tests performed with varying
backpressure and relative density, a set of formulas has
been derived to determine soil parameters from the cone
resistance in a mini-CPT test (Ibsen et al., 2009). The
following parameters can be determined from the CPT
testing,

• Relative density ID

• Angle of friction ϕ

• Angle of dilatency ψ

• Void ratio e

• Unit weight of the soil γ

The relative density is related to the cone resistance and
the effective vertical in-situ stress through,

ID = 5.14
(

σ ′v0
q0.75

c

)−0.42

, (3)

where σ ′v0 is the effective vertical in-situ stress and qc is
the measured cone resistance. ID is generally defined as,

ID =
emax− e

emax− emin
, (4)
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Figure 6: Cone resistance of five cone penetration tests.

with emax, emin and e as the maximum, minimum and
current void ratios respectively. The effective in-situ
stress can be found from the effective unit weight γ ′ and
the depth z with,

σ ′v0 = γ ′ z, (5)

using the effective unit weight of the soil from,

γ ′ =
ds−1
1+ e

, (6)

where ds is the characteristic density of the soil equal
to 2.64 for Aalborg University Sand no. 1. With the
equations (3) to (6) an iterative procedure can be used
to find γ ′, ID and e. Empirical formulas to determine
the triaxial angle of friction and dilatation fitted from a
series of triaxial tests are seen in equations (7) and (8),

ϕtr = 0.152 ID +27.39
(
σ ′h0

)−0.2807
+23.21, (7)

ψtr = 0.195 ID +14.86
(
σ ′h0

)−0.09764−9.946, (8)

where σ ′h0 = σ ′v0 (1− sin(ϕtr)), ID is in percent and
stresses are in kPa. With the presented set of formulas
it is thus possible to achieve an estimate of specific
soil parameters at each CPT location, which can be
compared. Often the greatest difference will be present
in the measure of relative density, where a difference
between the CPTs of maximum 0.05 is accepted. If
the difference is greater than 0.05 a third vibration
procedure must be applied.

An example of the results of five CPT tests is shown
in figure 6, where the cone resistance is plotted against
the depth. During the preparation of the four tests
presented in this article, some technical difficulties
were encountered, meaning no usable CPT tests were
done before test 2 and 3. Since the same preparation
procedure has been used every time, and the results
hereof have been good, the soil properties are assumed
to be within the acceptable range. The results are thus
treated similar for all tests.

Figure 7: Picture of the bucket ready for testing.

4.3 Installation of Bucket

When the sand is prepared and the CPT results are ac-
cepted, the bucket is installed in the centre of the tank
using the hydraulic piston also used for the CPTs. The
installation will cause disturbance in the sand volume,
and is thus carried out step-wise to allow for dissipation
of excess pore pressure to minimize the effects of the
disturbance. As the speed of the installation piston is not
changeable, the procedure is not optimal. It is however
the same procedure for all tests, and should as such not
have an influence on the validity of the results. Upon
finishing the installation of the bucket all the measuring
equipment is fitted and the horizontal hydraulic actuator
is attached with a steel wire. The bucket equipped and
ready for test can be seen in figure 7.

4.4 Applying Pressure to the Tank

After the installation the tank is sealed off and the com-
pressor is set to 200 kPa of pressure relative to the atmo-
spheric pressure. The build up of pressure is monitored
with the MOOG system until an equilibrium at approxi-
mately 200 kPa is found and is then left overnight for the
pressure state in the entire sand volume to stabilize. The
test setup is thus fully prepared for testing.
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Table 1: Overview of loading velocity for the tests.

Test no. 1 2 3 4

Velocity [mm/s] 0.10 1.00 10.0 100

5 Overview of Tests

A total of four successful tests are used for the results in
the article. All of the tests are carried out with a hori-
zontal displacement of the actuator of 150 mm applied
at varying velocities. Table 1 shows the different test ve-
locities. In the previous tests in Sjelmo et al. (2012) it
was investigated if a very low loading rate (0.01 mm/s)
behaved as drained condition, which was the case. A test
with this loading rate is therefore not redone.

6 Results

In the following selected results from the four tests are
shown. A very large quantity of data is produced in the
tests, and only relevant results for underlining the points
made are shown. All the test data is however treated, and
the trend shown in this article is a picture of the general
trends. Earlier analyses of similar tests have been made
in Sjelmo et al. (2012) and Foglia et al. (2013), and these
results will be compared with the new tests.

6.1 Force and Displacement

The recorded displacements v1, v2 and h1 are all
transformed to the resultant horizontal (H), vertical (V)
and rotational (θ ) displacements of the bucket with
reference to the middle of the bucket lid. This reference
point is used, as the actual rotation point of the bucket
moves during loading and thus is not suitable. The
procedure is iterative as the elongation of the wires
in the transducers are influenced by all displacement
components. In the iteration algorithm it is assumed that
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the displacements of the bucket can be divided into the
three separate components that are mutually dependent
on each other. The four monotonic loading tests differ
only in loading velocity and consequently also duration.
For all four tests the development of the force as a
function of the actuator displacement and rotation of the
bucket is shown in figures 8 and 9.

From the results it can be seen that as the displacement
rate increases the measured necessary force to apply the
displacement increases as well, which was expected. It
is evident that the bearing capacity is highly rate depen-
dent. In contrary to the previous tests done in Sjelmo
et al. (2012), all the models have reached failure within
the span of the displacement. While test 1, 2 and 3 reach
an easily determinable peak, the fastest test 4 reaches a
maximum force, which is then constant the rest of the
loading phase. This indicates that the cavitation limit
is reached at which no more capacity is available in the
pore water. For all the tests the maximum force and the
piston displacement and rotation of the bucket at the
maximum points are shown in table 2. It is seen that the
higher the displacement rate, the larger the rotation is
before the maximum capacity is reached.

The vertical, horizontal and rotational displacement of
the tests shown together with the force development is
seen in figure 10. The difference between the resultant
final horizontal displacement in the four tests is most
pronounced, as it decreases with each increment in

Table 2: Maximum force, displacement of piston dp and rotation θ of
the bucket.

Test Max Force [N] dp [mm] θ [◦]

0.10 mm/s 538.6 22.8 1.9
1.00 mm/s 1168.8 38.6 2.6
10.0 mm/s 3399.4 63.1 4.6
100 mm/s 12741.9 91.7 6.5
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Figure 10: Displacement and force for all four tests. Test 2, 3 and 4 are zoomed in on the loading period.

the loading rate. The resultant vertical and rotational
displacement also decrease with increasing loading rate,
however the change here is not as large. In test 2 the
vertical displacement first increases during the loading
but then goes back to zero in the end of the loading. This
effect is not clearly present in any of the other models,
and can perhaps be a measurement error. Generally
the displacements of the bucket decrease in magnitude
as the loading rate increases. An explanation for this
phenomenon is that the slower the loading rate, the
easier it is for the pore water to dissipate, thus causing
an increase in effective stresses which then cause a
deformation in the soil. This effect is especially evident
in test 1, as the vertical displacement here is very large
compared to the other tests. The upwards vertical
displacement is greatly influenced by the dissipation
of negative pressure inside the bucket, i.e. pore water
flowing from outside the bucket to the inside. With the
low loading rate the change in pore pressure is almost
balanced by the inflow of pore water.

6.2 Initial Stiffness

While it has been shown in the previous section that the
lateral response of the bucket foundation is highly de-
pendent on the loading rate when it comes to large dis-

placements and ultimate capacities, it has earlier been
shown, e.g. in Foglia et al. (2013) that the initial stiff-
ness is independent on the loading rate. This is of inter-
est, since the vast majority of the environmental loading
will be small loads where the initial stiffness is impor-
tant. The initial stiffness is furthermore interesting in dy-
namic investigation, which is however outside the scope
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Figure 11: The force exerted in the first 10 mm of applied displace-
ment.
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of this article. The force exerted in the first 10 mm of
applied displacement for all four tests is shown in figure
11. The response of test 1 is somewhat different than
the other three tests, which is attributed to the very low
loading rate. Tests 2-4 all show a very similar response
for the first part of the applied displacement, with slopes
of the force-displacement curve being similar. This is
in good correlation with earlier findings, and the results
from this article further verifies this phenomenon.

6.3 Pore Pressure Development

The pore pressure was recorded during all the tests in
the locations shown in figure 5. As an example, the pore
pressure development over time plotted together with
the force development for test 3 is shown in figures 12
and 13. The pressure measurements are divided in the
seven gauges inside of the bucket in figure 12 and the
six gauges on the outside of the bucket in figure 13.

The build up of suction is as expected directly
correlated with the applied force caused by the dis-
placement. The build up is considerably larger inside
the bucket, which is caused by flow-barrier effect
from the impermeable skirt. A few of the pressure
gauges show some irregularities in the results. This
is namely P5 on the inside, which was expected to be
somewhere between P4 and P6, and P7 which differ
significantly from the two other gauges at the top P4
and P11. The irregularity in the results of P7 has
been observed in all of the tests and could be caused
by a slightly different method of instrumentation,
as this gauge is placed directly under the mounting
of the tower and therefore has a long and soft tube
from the measuring point to the pressure transducer.
Another, perhaps more likely, explanation is that the
rotation point of the bucket is placed close to P7, causing
the displacement of the bucket in this point to be smaller.
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Figure 12: Pore pressure inside bucket during test 3.
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Figure 13: Pore pressure outside bucket during test 3.

The gauges away from the loading direction show
the largest change in pressure, gauges P11, P12 and P13,
however the top gauges P4 and P11 show very similar
results, indicating a uniform pressure distribution on the
lid if P7 is ignored. From the gauges on the outside, the
trend is not as clear. The gauges closest to the surface
P1 and P8 show the smallest pressure change, which is
due to the very short drainage path.

From figure 10 it was shown that a significant strength
increase takes place as the loading rate grows. This is
an indication that while the drained condition might be
suitable to calculate the capacity at low loading rates,
it is not the case for a quite high loading rate. This is
backed up by the results of test 3 examined in figure 12
and 13, which is not even the fastest loading rate.

The maximum pore pressure build up in all four
tests is shown together in figures 14 to 16. The distribu-
tion on the lid, cf. figure 14 is similar in all four tests.
The two side gauges P4 and P11 show almost the same
maximum value, while P7 reaches only approximately
65 % of the maximum value in tests 2-4. As earlier
pointed out, this could mean that the measurement is
partly errorneus. In the execution of the tests problems
with the P7 gauge occured, especially due to difficulties
with fully saturating the transducer and connecting tube.
Another conclusion is that the pressure distribution is
not constant on the lid. In the tests done in Sjelmo et al.
(2012) this phenomenon was not clearly visible.

The pressures along the back skirt, i.e. away from
the loading direction, are seen in figure 15. These results
can be compared to the results in Sjelmo et al. (2012),
as the test setup herein had pressure gauges in the same
positions on the back skirt. The outside pressures show
a pressure distribution that is increasing non-linearly
with the depth, which is consistent with previous results.
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The magnitude of the pressures significantly increases
with the growth in loading rate as expected from the
force measurements. The magnitude in the 100 mm/s
test is 241.1 kPa at the bottom, which is below the
cavitation limit. The fastest previous test was 10 mm/s,
however this test did not show failure due to a very short
loading distance, and the maximum pressures are thus
not comparable.

The pressures on the inside of the back skirt are
all larger than the corresponding pressures on the
outside. Both the bottom point on the inside and outside
are P10, as the pressure is recorded at the tip of the skirt.
The pressure is slightly larger at P13 in all the tests,
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Figure 15: Force measurement as a function of the displacement of the
piston.

however a discontinuity in the pressure at P12 as found
in Foglia et al. (2013) is not present. The pressure at
P13 is the maximum measured pressure, which is close
to the cavitation limit of approximate -290 kPa.

The pressures on the front skirt of the bucket, cf.
figure 16, during loading have not been investigated
earlier, and can therefore not be compared with previous
results. The pressure on the outside is increasing
with depth from P1 to P2, while the pressure at P3 is
significantly lower. This could be caused by the rotation
of the bucket, indicating the location of the rotation
point being close in depth to P3. The pressures inside
the front skirt follow a different trend compared to the
back skirt. Firstly the magnitude of the pressures are
smaller, but also a discontinuity is present at P5 2/3 up
the skirt, before the pressure increases to that of the
lid. As proposed in Foglia et al. (2013), a discontinuity
could be caused by the drainage pattern.

In figure 17 the absolute pressure difference for
P13 is shown for all four tests, with the time normalized
with respect to the loading time. P13 is chosen since it
shows the maximum measurements for all tests and it
has one of the most distinct developments. For test 1 the
response is very low, and can thus be considered almost
completely drained. For test 2 and 3 an increment in
pore pressure is seen, which does however become
constant after respectively 0.2 and 0.4 of the normalized
time. These tests can therefore be classified as partially
drained, as the pore pressure cannot be increased
indefinitely.

Test 4 shows an increase in pressure that is almost
linear up to a plateau of around 275 kPa after which
the increase is slightly slower. This test is therefore
classified as substantially undrained, if not completely.
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Figure 16: Force measurement as a function of the rotation of the
bucket.
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Figure 17: P4 for all tests with time normalized to loading time.

The absolute value of the pressure is below the cavita-
tion limit, however the decrease in slope indicates that
the limit is close. For high loading rates and relatively
large displacements the response can according to these
results be classified as significantly more resistant to
applied load than what the drained condition predicts.

6.4 Capacity as Function of Loading Rate

From the four different loading rates, it is investigated if
the increase in ultimate capacity can be expressed with
a mathematical expression. Firstly the failure load, cf.
table 2, is normalized with the failure load of the slowest
test, as it is assumed to be the drained capacity. A power
function,

Fnorm = a vb
l , (9)

where Fnorm is the normalized force, vl is the loading
rate and a and b are fitting parameters, is fitted to the
data points. The data points and the fit are seen in figure
18. It is evident that the development follows a power fit
for the range of tests performed. It is expected that the
strength increase reaches a plateau at around the level of
the fastest test caused by the cavitation limit. Whether
this is the case needs further investigation in future tests.
The parameter of the fit is seen in table 3.

6.5 Non-dimensional Analysis

It was in Foglia et al. (2013) investigated whether the
test results could be fitted to a non-dimensional function.
The results are made non-dimensional by assuming a re-
lationship,

∆p ∝
(

1
k
,

1
TL

, Ld , γw

)
, (10)

where k [m/s] is the permeability of the soil, TL [s] is the
loading period, Ld [m] is the drainage length assumed
proportional to the skirt length L and γw [N/m3] is the
unit weight of the soil. While the loading period TL, and
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Figure 18: The normalized failure loading plotted against the loading
rate.

the unit of it, is a term from dynamic loading, it is as-
sumed that the loading rate can be used instead, despite
having a wrong unit. The non-dimensional group is thus,

∆p
γw L

= f
(

L
k TL

)
. (11)

The function f is unknown, and a fit with a power func-
tion is examined,

∆p
γw L

= c
(

L
k TL

)d

. (12)

With the parameters c and d being fitting parameters.
The data from pressure gauges P4 and P11 are used,
since these gauges show the maximum response under
the lid. For each of the four tests the maximum value
is chosen from the dataset, making the non-dimensional
group an expression of the maximum obtained pressure
difference for a given soil, loading rate and geometry.
With the two gauges chosen there are thus eight data
points in total with four different loading rates. In fig-
ure 19 the data points are shown together with the fitted
function. The fitted parameters are seen in table 3. The
fitted power law follows the data points quite good and
is somewhat an indication that a function of this type is
suitable. More test data should be used before a final
function can be fitted to the data.

7 Conclusion

The new test equipment in the pressure tank has been
implemented and four successful tests have been ex-
ecuted. The displacement rates used ranged from 0.1

Table 3: The fitted parameters of equations (9) and (12).

a b c d

1.848 0.553 1.033 ·105 −0.654
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Figure 19: Non-dimensional analysis of maximum pore pressure de-
velopment.

mm/s to 100 mm/s. The results showed a significant
increase in the bearing capacity from approximate 0.5
kN in the slowest test to 12.7 kN in the fastest test. From
the displacements gauges it was seen that the overall
displacement of the bucket foundation decreased as the
loading rate increased. An explanation for this is the
lack of sufficient seepage of pore water allowing for
deformations with the fast loading rates.

The pore pressure development was tracked by 13
pressure gauges during all four tests. For the slowest test
a very low pore pressure change occurred, indicating
almost fully drained conditions. As the loading rate
increased, the measured pore pressures increased,
indicating partially undrained conditions. For the
fastest tests the build up of pore pressures increased
throughout the entire loading sequence pointing to
substantially undrained conditions. There was a clear
correlation between the faster loading rates, the build up
of pore pressures and the rise in lateral capacity of the
foundation.

The pressure distribution of the bucket foundation
was found to be similar to earlier investigations, albeit
without a discontinuity on the inside of the back skirt.
The shape of the distribution was almost identical in all
four tests, further proving the reliability of the results.
All gauges showed a negative development of pore
pressure, meaning suction occurred around the entire
bucket under loading.

The initial stiffness of the lateral response was in-
vestigated by looking at the first 10 mm of applied
displacement. Apart from the slowest test all tests
showed a similar response with similar slopes of the
force-displacement curve. This proves earlier findings,
where the initial stiffness has been found to be indepen-
dent on the loading rate.

The capacity of the bucket foundation increased
with the loading rate in a manner that could be fitted
with a power law, more test data is needed to determine
whether this trend continues beyond the test rates of
this article. Lastly the results from two of the pressure
gauges were analyzed using a non-dimensional group.
It was found that the development of pore pressures can
also be described using a power law, although more test
data with different geometries is needed to improve the
reliability of the findings.

Overall the initial thesis of the article proved to be
verified by all the findings in the treatment of the
results.

8 Further Work

The results put forward in this article are a product
of the very first tests with the new test-setup in the
pressure tank at the Geotechnics Laboratory at Aalborg
University. During the work in the laboratory several
useful experiences with the setup and new equipment
were made, which continuously leads to optimization
of the whole setup. In time this will lead to better tests,
which can further validate the points presented in this
article.

During the analysis of the test results it was found
that the signals from the transducers were polluted with
noise to a quite large degree. The noise present was
of varying amplitude for the various signals, and could
indicate problems with the wiring and soldering of the
cables and plugs. Further work could involve trying to
minimize this noise.

The tests 1 to 4 showed in the article are all done
with a foundation with L/D = 0.5. Further work in the
laboratory involves similar testing with suction buckets
of other dimensions, already now tests with a L/D = 1.0
bucket are planned. Furthermore the test setup is able to
handle cyclic loading and two-way loading, which can
further be used to analyze the behaviour of the suction
bucket foundation type.
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2 Conclusion

This thesis has been a research study related to different aspects regarding the bucket
foundation, an offshore foundation concept developed at Aalborg University. The
concept has proven to be feasible in comparison to other types of offshore substructures
like the monopile. Research is however still done regarding especially the design and
verification of the bucket foundation, and this thesis has been a contribution to that
ongoing work. The thesis has dealt with three different areas regarding the bucket
foundation, and the results from the investigations will be summarized in the following.

The p− y curves developed for slender embedded piles have long been the preferred
method of designing monopiles, although the behaviour of such structures cannot be
compared to the original test piles. For the bucket foundation, which is even less slender
than the monopile, a new formulation of p− y curves is needed to readily and easily
design bucket foundations for use in offshore wind farms. The numerical tool PLAXIS
3D was employed in order to determine the soil response for a given displacement.
18 different combinations of geometry and soil strength were examined, ultimately
determining ten coefficients for a mathematical model, which can be used to determine
the soil response for an arbitrary geometry and soil strength. Although 18 models were
examined, the mathematical model needs to be further improved before it is introduced
in design tools, since only two different embedment ratios were examined.

An important part of the verification of the bucket foundation has been scaled model
tests. An issue in relation to small-scale testing is correct scaling that enables the results
from the small-scale test to be used to assess the structure in real life. For soils, this
fact is important since the behaviour of the soil is influenced by the stress state within
the soil. A material model that takes this fact into account has been developed, and the
goal to implement this model in the commercial geotechnical finite element software
PLAXIS 3D has been reached. PLAXIS 3D is a widely used tool in both the predesign,
the design and the verification phase, and the implementation of the strength dependent
material model enables PLAXIS 3D-users to model small-scale tests in which the higher
strength of soils under low stress is taken into account. The material model needs
input calibrated towards a specific type of sand, and in this case the material model has
been calibrated for Aalborg University Sand No. 1. The material model utilizes a non-
linear Mohr-Coulomb criterion that when tested produces better results than the linear
Mohr-Coulomb model for low stress ranges. The non-linear Mohr-Coulomb model is
tested for triaxial tests and small-scale bucket foundation tests performed at Aalborg
University. In future research, a non-linear elastic behaviour should be implemented,
as well as examining the input parameters for the failure criterion for different types
of soil. A general expression based on the soil characteristics, such as maximum void
ratio, minimum void ratio and average grain size, could be developed.

One key attribute that separates the bucket foundation from traditional foundational
solutions, is the fact that suction is utilized - during installation, service and
decommissioning. At sea, the bucket foundation has to endure a variety of loading
situations, ranging from slow moving tidal motions to impulsive loads such as freak
waves or emergency stops. The bearing capacity of the bucket foundation is dependent
on the loading rate, as it has a higher resistance towards impulsive loads which can
be characterized as nearly undrained. To quantify the bearing capacity in the near-
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undrained state, a series of tests was conducted with a bucket foundation exerted to
different loading rates. The tests showed that the phenomenon does indeed exist and
the bearing capacity seemed to increase with the loading rate following a power law. The
results also showed that the pore pressure recorded under the bucket lid were almost
constant even during high loading rates. This is somewhat contrary to the general
conception which is that the suction under the lid will be eliminated through internal
dissipation, which does not seem to be the case. Since these tests are important in order
to prove and verify the bucket foundation during extreme loading, more tests at higher
loading rates should be carried as well. Bucket foundations with different embedment
ratios should be examined as well, since only a bucket foundation with L/D = 0.5 was
examined for this thesis.

56



References

Brinkgreve, Engin, and Swolfs, 2012. R.B.J. Brinkgreve, E. Engin, and W.M. Swolfs.
Manual for PLAXIS 3D 2012, 2012.

Brødbæk, Møller, Sørensen, and Augustesen, 2009. K.T. Brødbæk, M. Møller, S.P.H.
Sørensen, and A.H. Augustesen. Review of p-y relationships in cohesionless soil. 2009.

Det Norske Veritas, 2007. Det Norske Veritas. Design of Offshore Wind Turbine
Structures, 2007.

DONG Energy, 2009. DONG Energy. DONG Energy Horns Reef 2. URL:
http://www.dongenergy.com/hornsrev2/DA/Pages/Index.aspx, 2009.
Downloaded: 09-06-2013.

Santos and Correia, 2001. J. A. dos Santos and A. G. Correia. Reference threshold shear
strain of soil. Its application to obtain an unique strain-dependent shear modulus curve for
soil. Proceedings of the Fifteenth International Conference on Soil Mechanics and
Geotechnical Engineering, Istanbul, Turkey, 27-31 August 2001. Volumes 1-3 2001 pp.
267-270., 2001.

Foglia, Ibsen, Nielsen, and Mikalauskas, 2013. A. Foglia, L.B. Ibsen, S.K. Nielsen, and
L. Mikalauskas. A Preliminary Study on Bucket Foundations under Transient Lateral
Loading. 2013.

Global Wind Energy Council, 2012. Global Wind Energy Council. Global Wind Statistic
2012. URL: http:
//www.gwec.net/wp-content/uploads/2013/02/GWEC-PRstats-2012_english.pdf,
2012. Downloaded: 01-06-2013.

Ibsen and Bødker, 1994. Lars Bo Ibsen and Lars Bødker. Data Report 9301: Baskarp
Sand No 15, 1994.

Ibsen, Liingaard, and Nielsen, 2008. L.B. Ibsen, Morten Liingaard, and Søren A.
Nielsen. Bucket Foundation, a status. 2008.

Karstunen, 2012. Minna Karstunen. Hardening Soil Model - Presentation, University of
Strathclyde. URL: https://noppa.aalto.fi/noppa/kurssi/rak-50.3149/
materiaali/Rak-50_3149_l._l12-_hardening_soil_model.pdf, 2012.
Downloaded: 12-11-2012.

Knudsen, Østergaard, and Ibsen, 2013a. Bjørn Staghøj Knudsen, Martin Underlin
Østergaard, and Lars Bo Ibsen. Small-scale Testing of Bucket Foundations in Sand. 2013.

Knudsen, Østergaard, Ibsen, and Clausen, 2013b. Bjørn Staghøj Knudsen,
Martin Underlin Østergaard, Lars Bo Ibsen, and Johan Clausen. Determination of p-y
Curves for Bucket Foundations in Sand Using Finite Element Modeling. 2013.

Krabbenhøft, 2002. Kristian Krabbenhøft. Basic Computational Plasticity, 2002.

Krabbenhøft, Clausen, and Damkilde, 2011. Sven Krabbenhøft, Johan Clausen, and
Lars Damkilde. The Bearing Capacity of Circular Footings in Sand: Comparison between
Model Tests and Numerical Simulations Based on a Nonlinear Mohr Failure Envelope.
Advances in Civil Engineering, Volume 2012, Article ID 947276, 10 pages,
doi:10.1155/2012/947276, 2011.

57

http://www.dongenergy.com/hornsrev2/DA/Pages/Index.aspx
http://www.gwec.net/wp-content/uploads/2013/02/GWEC-PRstats-2012_english.pdf
http://www.gwec.net/wp-content/uploads/2013/02/GWEC-PRstats-2012_english.pdf
https://noppa.aalto.fi/noppa/kurssi/rak-50.3149/materiaali/Rak-50_3149_l._l12-_hardening_soil_model.pdf
https://noppa.aalto.fi/noppa/kurssi/rak-50.3149/materiaali/Rak-50_3149_l._l12-_hardening_soil_model.pdf


Larsen, 2008. Kim André Larsen. Static Behaviour of Bucket Foundations, vol. 1, 2008.

Ovesen, Fuglsang, and Bagge, 2009. Niels Krebs Ovesen, Leif Fuglsang, and Gunnar
Bagge. Lærebog i Geoteknik. 978-87-502-0961-4. Polyteknisk Forlag, 2009.

Schanz, Vermeer, and Bonnier, 1999. T. Schanz, P.A. Vermeer, and P.G. Bonnier. The
hardening soil model: Formulation and verification. Beyond 2000 in Computational
Geotechnics - 10 years of PLAXIS International., 1999.

Sjelmo, Mikalauskas, Ibsen, and Foglia, 2012. Å. Sjelmo, L. Mikalauskas, L.B. Ibsen,
and A. Foglia. Soil-Structure Interaction in Cohesionless Soils due to Monotonic Loading.
2012.

58



Part II

Appendices

59





A Convergence and Test of

Physical Domain in PLAXIS 3D

The PLAXIS 3D models used for the p − y curve determination are tested for both
convergence with respects to the mesh quality and sufficient physical domain size of
the model. The method and results of this will be explained in the following. Since the
mesh quality affects the physical domain requirements and vice versa, the procedure of
investigating both is iterative.

A.1 Element types

PLAXIS 3D does not offer any possibilities as far as choosing the type of element used in
the model. However, an overview of the applied element types is given in the following
based on Brinkgreve et al. [2012].

A.1.1 Soil element

To discretize the soil volumes a 10-noded tetrahedral element is used. This type of
element has 10 nodes and 4 Gauss points (integration points). It has three degrees
of freedom per node corresponding to a translation in each of the three coordinate
directions, ux, uy and uz. The shape functions for this type of elements are of second
order. Figure A.1 shows the 10-noded tetrahedral element.

Figure A.1. 10-noded tetrahedral element with 10 nodes (dots) and 4 Gauss points (crosses).

A.1.2 Plate element

For the plate elements, a 2D 6-noded triangular element is used. It has 6 nodes and 3
Gauss points. Each node has six degrees of freedom corresponding to three translational
degrees of freedom (ux, uy and uz) and three rotational degrees of freedom (φx, φy and
φz). The shape functions are of second order. Figure A.2 shows the 6-noded triangular
element.
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Figure A.2. 6-noded triangular element with 6 nodes (dots) and 3 Gauss points (crosses).

A.1.3 Interface element

The elements used for the interfaces between soil and plate is in principle identical
to the 6-noded triangular element used for the plates in the model. The difference
is that the interface element consists of 8 pairs of nodes with an internal distance of
0. Each node has three translational degrees of freedom (ux, uy and uz). The degrees
of freedom for two nodes in a pair is not the same meaning that this element can
have differential displacement between nodes in pairs. Figure A.3 shows the 16-noded
triangular element.

Figure A.3. 16-noded triangular element with 8 nodepairs (dots) and 9 Gauss points (crosses).

A.2 Convergence analysis

In order to ensure that the mesh quality does not influence the results of the finite
element analysis (FEA), convergence analyses are carried out. Since a total of 18 different
models are used, with varying geometry and soil parameters, the required mesh quality
will be different from model to model. This could lead to the conclusion that a
convergence analysis of every single model is neccessary, however some simplifications
are made. First of all, the geometry only yields six different models, which with three
sets of material properties gives a total of 18 models. If the skirt-length variation is
taken out, by only examining the buckets with L = D since the failure mechanism will
be largest, this results in 9 unique models.
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The deciding factor in the material models is the effective friction angle, with values
of 30◦ to 40◦. A higher friction angle of the soil will cause the failure mechanism to
expand further and at the same time increase the complexity of solving the numerical
system. Therefore it can be assumed that the highest friction angle will require both
the highest mesh quality and the largest physical domain. If only the largest friction
angle is investigated, only 3 models remain to be tested. These three models will be
representative, and on the conservative side, for the buckets with respectively 10, 15
and 20 meters in diameter.

The soil domain is divided into two main sections; a proximity volume and a
surrounding volume, cf. figure A.4. In the proximity volume the mesh is refined, since
large stress gradients are expected in this area. The diameter of the half-cylinder, i.e.
the proximity volume, is three times the diameter of the bucket and the height is twice
the length of the skirt. In the convergence analysis, the mesh of the soil in the proximity
volume is changed, and the result is tracked.

Surrounding volume

Proximity volume

Figure A.4. Division of domain. Figure A.5. Example of mesh.

The meshing facility in PLAXIS is highly automated, leaving only a few parameters
to control. Generally the element size is determined relative to the domain size, with a
choice of coarseness of the overall mesh varying from very coarse to very fine. The models
are meshed by chosing an overall mesh density of coarse and then refining the proximity
volume relative to this. The refinement is applied by chosing a mesh refinement factor,
which if equal to 1 gives the same element size as the overall and half the size if equal
to 0.5.

The convergency analysis is done by applying a prescribed displacement to the bucket.
The reaction force towards this displacement is tracked in the analysis. When the model
is converged this value should not vary for an increasing number of elements in the
mesh. The result from the three analyses are seen in the next sections.
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A.2.1 Convergence of Model 6

This model represents the diameter of 10 m. The convergence graph is seen in figure
A.6.

0 1 2 3 4 5 6 7

x 10
5

1.665

1.67

1.675

1.68

1.685

1.69

1.695

1.7

1.705

1.71

1.715
x 10

4

n
DOF

 [−]

R
e
a
c
ti
o
n
 f
o
rc

e
 [
k
N

]

Model 6

Figure A.6. Division of domain.

The following table contains the values from the graph.

Fineness factor nDOF Fy

1.000 10545 17103.520
0.800 16038 16919.244
0.500 32805 16815.987
0.400 36516 16823.753
0.300 68421 16894.040
0.250 107268 16905.334
0.200 189417 16835.700
0.175 277029 16816.560
0.150 481251 16700.630
0.125 680268 16677.000

Table A.1. Model 6 - convergence results. Fineness factor in proximity volume.

The model is considered to be converged at a fineness in the proximity volume of
0.150, even though the reaction value still changes as the relative fineness increases.
The change is however small enough to be neglectable.
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A.2.2 Convergence of Model 12

This model represents the diameter of 15 m. The convergence graph is seen in figure
A.7.
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Figure A.7. Division of domain.

The following table contains the values from the graph.

Fineness factor [-] nDOF Fy [kN]

1.000 5586 50126.183
0.800 15906 49762.100
0.500 32541 49678.350
0.300 68262 49602.777
0.250 107637 49965.248
0.200 190026 49724.805
0.175 277086 49682.053
0.150 477423 49343.000
0.125 678852 49292.000

Table A.2. Model 12 - convergence results. Fineness factor in proximity volume.

As Model 6, Model 12 is considered to be converged at a fineness in the proximity
volume of 0.150.
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A.2.3 Convergence of Model 18

This model represents the diameter of 20 m. The convergence graph is seen in figure
A.8.
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Figure A.8. Division of domain.

The following table contains the values from the graph.

Fineness factor [-] nDOF Fy [kN]

1.000 10776 108703.821
0.800 15828 107488.725
0.500 33705 107395.621
0.400 38286 107191.079
0.300 72921 107427.351
0.250 105186 107727.049
0.200 186555 107235.105
0.175 276795 107107.880
0.150 473193 106472.000
0.125 678882 106319.000

Table A.3. Model 18 - convergence results. Fineness factor in proximity volume.

As the previous models, Model 18 is considered to be converged at a fineness in the
proximity volume of 0.150.

As a conclusion a fineness factor of 0.150 has shown to be sufficient for all three models.
The fineness factor of 0.150 in the proximity volume will therefore be used for all the
models in the p-y investigation.
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A.3 Model Domain

The boundaries of the physical domain should be far enough away from the bucket
to not have any influence on the results, however the larger the domain the more
degrees of freedom the model will have, which directly increases the calculation time. A
general rule of thumb is implemented, stating that at the boundaries a maximum stress
increment of 10% of the stress increment right next to the bucket should be present. This
is tested by doing horisontal cuts in the soil volume and comparing contour curves of
the stress at respectively a nil-step, i.e. a step with no external loads or displacements,
and the final load-step. Examples of such two horizontal plots are shown in figure A.9
and A.10.

Figure A.9. σ′yy in a nil-step. Horisontal cut at z = -7.5 = L/2.

Figure A.10. σ′yy in a load-step. Horisontal cut at z = -7.5 = L/2.
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For each of the three investigated models, a total of 3 horizontal cuts are made at L
4 , L

2
and 3 L

4 . The model boundaries found to be sufficient are shown in figure A.11.

Figure A.11. Dimensions of the model relative to diameter D and skirt length L of the bucket.
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B Additional p-y Results

This appendix contains the results of all 18 models used in the determination of new
p− y curves for the bucket foundation in sand in the drained condition. The physical
properties of each model can be seen in the figure header.

The results are shown with the best fit of the filtered data in the second figure of each
model. Appendix C - Mathematical Formulation of the New p-y Curves contains figures
with the general mathematical model.

B.1 Model 1
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Figure B.3. p− z data
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B.2 Model 2
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Figure B.5. p− y data
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Figure B.7. p− z data
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B.3 Model 3
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B.4 Model 4
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Figure B.15. p− z data
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B.5 Model 5
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Figure B.17. p− y data
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Figure B.19. p− z data
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B.6 Model 6
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Figure B.21. p− y data
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Figure B.23. p− z data
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B.7 Model 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

Model 7, D = 15, L = 7.5, φ = 30 

y [m]

p
 [

k
N

/m
]

 

 

z = 2.25

z = 2.75

z = 3.25

z = 3.75

z = 4.25

z = 4.75

z = 5.25

z = 5.75

z = 6.25

Figure B.25. p− y data
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Figure B.27. p− z data

0 0.5 1 1.5 2 2.5
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Model 7, D = 15, L = 7.5, φ = 30 

p/p
rankine

 [−]

z
/L

 [
−

]

 

 

y = 0.0053982

y = 0.013688

y = 0.022966

y = 0.033357

y = 0.044111

y = 0.056291

y = 0.068343

y = 0.080454

y = 0.092338

y = 0.1045

y = 0.11613

y = 0.12674

y = 0.13571

y = 0.14791

y = 0.15963

y = 0.17075

y = 0.18202

y = 0.19366

y = 0.20505

y = 0.21503

y = 0.23646

y = 0.25899

y = 0.2821

y = 0.30685

y = 0.33289

y = 0.35654

y = 0.3801

y = 0.406

y = 0.43066

y = 0.45637

y = 0.48233

y = 0.50772

Figure B.28.
p

pR
− z

L
data

75



B.8 Model 8
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Figure B.29. p− y data
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Figure B.31. p− z data
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B.9 Model 9
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Figure B.33. p− y data
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Figure B.35. p− z data
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B.10 Model 10
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Figure B.37. p− y data
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Figure B.39. p− z data
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B.11 Model 11
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Figure B.41. p− y data
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Figure B.43. p− z data

0 0.5 1 1.5 2 2.5
−0.9

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

Model 11, D = 15, L = 15, φ = 35 

p/p
rankine

 [−]

z
/L

 [
−

]

 

 

y = 0.013762

y = 0.034023

y = 0.055918

y = 0.076891

y = 0.098702

y = 0.12085

y = 0.14422

y = 0.16506

y = 0.18806

y = 0.21244

y = 0.23563

y = 0.25797

y = 0.28181

y = 0.30715

y = 0.33292

y = 0.35601

y = 0.38178

y = 0.40552

y = 0.45419

y = 0.47735

y = 0.50231

y = 0.52943

y = 0.55454

y = 0.58016

y = 0.63104

y = 0.65638

y = 0.68237

Figure B.44.
p

pR
− z

L
data

79



B.12 Model 12
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Figure B.45. p− y data
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Figure B.47. p− z data
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Figure B.49. p− y data
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Figure B.51. p− z data
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Figure B.53. p− y data
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Figure B.55. p− z data
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B.15 Model 15
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Figure B.57. p− y data
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Figure B.59. p− z data
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B.16 Model 16
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Figure B.61. p− y data
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Figure B.63. p− z data
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Figure B.65. p− y data
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Figure B.67. p− z data
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Figure B.69. p− y data
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Figure B.71. p− z data
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C Mathematical Formulation of

the New p-y Curves

Based on the results of the 18 PLAXIS 3D models, a proposal of a new mathematical
formulation of p− y curves for the bucket foundation in drained sand has been made
in Knudsen et al. [2013b]. The formulation of the model is a sum of two hyperbolic
tangent terms and a constant term based of the soil pressure at rest.

p
pR

= β1 tanh
(

β2
y
D

)
+ β3 tanh

(
β4

y
D

)
+

K0

Kp
γ − Ka

γ

(C.1)

p Soil pressure [kN/m]
pR Resultant Rankine pressure [kN/m]

β1 − β4 Fitting parameters [-]
y Displacement [m]
D Diameter of bucket [m]
K0 Coefficient of soil pressure at rest [-]
Kp

γ Passive Rankine pressure
Ka

γ Active Rankine pressure

As the displacement y goes towards infinity, the absolute pressure is obtained,

p
pR
→ β1 + β3 +

K0

Kp
γ − Ka

γ

for
y
D
→ ∞, (C.2)

In order to find the coefficients βi for a arbitrary sand and geometry of the bucket, the
following equations should be solved simultaneous in pairs,

β1 + β3 = a1
φ

L
+ a2 (C.3)

β1 β3 = b1
φ

L
+ b2 (C.4)

β2 + β4 = c1

(
φ

L

)2

+ c2
φ

L
+ c3 (C.5)

β2 β4 = d1

(
φ

L

)2

+ d2
φ

L
+ d3 (C.6)

All the constants ai, bi, ci and di are found in table C.1.

a1 a2 b1 b2 c1 c2 c3 d1 d2 d3[m
◦
]

[−]
[m
◦
]

[−]
[(m

◦
)2
] [m

◦
]

[−]
[(m

◦
)2
] [m

◦
]

[−]

0.041 2.050 0.107 0.560 8.900 -13.12 66.24 936.5 -4579 5989

Table C.1. Constants used to find β1 to β4 in the general mathematical expression.

The model can be used with an arbitrary set of L, D and φ, however since the model is
derived from models with L ∈ [5,20], D ∈ [10,20] and φ ∈ [30,40] it cannot be expected
to be valid outside this range. In the following the results from the models, the best fit
and the mathematical model are shown together.
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Figure C.1. Model 1
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Figure C.2. Model 2
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Figure C.3. Model 3
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Figure C.4. Model 4
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Figure C.5. Model 5
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Figure C.6. Model 6
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Figure C.7. Model 7

0 0.01 0.02 0.03 0.04 0.05
0

0.5

1

1.5

2

2.5

3

Model 8, D = 15, L = 7.5, φ = 35 

y/D [−]

p
/p

ra
n
k
in

e
 [
−

]

 

 

z = 2.25

z = 2.75

z = 3.25

z = 3.75

z = 4.25

z = 4.75

z = 5.25

z = 5.75

z = 6.25

z = 6.75

Best fit

Mathematical model

Figure C.8. Model 8
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Figure C.9. Model 9
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Figure C.10. Model 10
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Figure C.11. Model 11
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Figure C.12. Model 12
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Figure C.13. Model 13
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Figure C.14. Model 14
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Figure C.15. Model 15
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Figure C.16. Model 16
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Figure C.17. Model 17
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Figure C.18. Model 18
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D Hardening Soil Small Strain

material model

In the investigation of p-y curves for the bucket, the Hardening Soil Small Strain
(HSsmall) material model is used. In this appendix an outline of the mechanics of
this model is given. Firstly the Hardening Soil (HS) model is explained, whereafter the
small strain part is added.

The model is chosen as it is a well suited model for investigating soil response at low
stress levels and because it is able to handle unloading-reloading problems as the one
used in this project. The HS model gives a formulation of the stiffness parameters as
a function of the stress state in the soil, while the failure of the soil is governed by the
Mohr Coulomb (MC) failure criterion.

The HSsmall model requires a relatively large number of soil parameters, requiring
detailed information about the soil to be modelled. An important fact is thus that the
model is never better than the input-parameters. In this project standard well-tested
expressions and relations between the soil parameters are used, all based on the friction
angle and the minimum and maximum void ratio of the soil.

D.1 Mohr-Coulomb criterion in 3D

The ultimate failure of the soil is governed by the Mohr-Coulomb criterion, using the
friction angle ϕ and the cohesion c as the material strength parameters. It can be
expressed explicitly in the principal stresses as,

±σ1 − σ2

2
=

(
σ1 + σ2

2

)
sin(ϕ)− c cos(ϕ), (D.1)

±σ2 − σ3

2
=

(
σ2 + σ3

2

)
sin(ϕ)− c cos(ϕ), (D.2)

±σ3 − σ1

2
=

(
σ3 + σ1

2

)
sin(ϕ)− c cos(ϕ). (D.3)

In the principal stress space, the yield surface can be visualised as seen in figure D.1.
Tension is negative in this formulation, compression is positive.
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Figure D.1. The Mohr-Coulomb failure surface in the three dimensional principal stress space.
[Brinkgreve et al., 2012]

D.2 The HS model

The HS model provides a formulation to calculate the strain development in the
soil using a stress-dependent stiffness. The model uses different stiffness models in
respectively virgin loading and un- and reloading. This makes the model suitable for
this project. The model is formulated based on classical theory of plasticity, and an
outline will be given in the following.

The HS model uses a hyperbolic relationship between the stresses and strains, which is
observed during primary triaxial loading. The relationship is examplified in figure D.2.
In the figure, the two of the stiffness moduli used in the model are also shown.

ε1

q

q

q

a

f

1

urE

1
50E

1
iE

0.5 q
f

Figure D.2. The relationship between stresses and strain in primary deviatoric loading. The
deviatoric failure stress is q f , the deviatoric asymptotic stress is qa, the initial stiffness is Ei, the
secant stiffness through the half of the deviatoric failure stress q50 is E50 and the unloading-
reloading stiffness is Eur. [Schanz et al., 1999]
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The HS model incorporates hardening in the soil once the stress-state has reached the
present yield surface. As the stress state reaches the yield surface, the material will start
hardening as the yield surface expands. The yield surface of the HS model is a so-called
multisurface yield criterion, causing two different kinds of hardening to take place.

The two types of hardening are shear hardening and compression hardening. Shear
hardening occurs as a function of deviatoric loading, i.e. q = σ1 − σ3 increases. When q
increases, so does the shear stress in the soil, hence the name shear hardening. The yield
envelope with respect to deviatoric loading, resembles the hexagonal cone of the MC
yield surface. As the material hardens, the cone expands untill it reaches the ultimate
state given by the MC criterion. The hardening is illustrated in figure D.3.

epolevne-CM

p´

q

Increasing plastic
shear strains

q

MC-envelope

Elastic

Plastic

Figure D.3. Deviatoric hardening shown in p-q (mean stress-deviatoric stress) and γ-q (shear
strain-deviatoric stress) diagram. [Schanz et al., 1999] [Karstunen, 2012]

As the deviatoric loading is increased, the yield surface expands while an increasing
amount of plastic strains develop.

The other type of hardening is compression hardening, which occurs as the mean stress
increases, e.g. isotropic compression, and plastic strains develop. The hexagonal yield
surface, cf. figure D.1, does not account for this type of strain development, as the
hydrostatic stress axis, i.e. σ1 = σ2 = σ3, does not intersect the yield surface in the
compression regime. To cope with this a cap is introduced to the yield surface closing off
the elastic region in the direction of the p− axis. The cap has the same hexagonal shape
as the MC criterion, while its dimensions are determined from the pre-consolidation
stress pc, the coefficient of lateral earth pressure K0 and the modulus of elasticity for
oedometer loading Eoed. The cap and the different hardening zones are shown on figure
D.4.
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Figure D.4. The multisurface yield surface in p-q space. The four possible stiffness zones are
shown. [Schanz et al., 1999]

In the three dimensional stress space, the multi-surface yield locus is a hexagonal cone
with a hexagonal cap. The shape is illustrated in figure D.5.

3

2

1

p

Figure D.5. The yield surface in 3d stress space. [Schanz et al., 1999]

The stiffness moduli incorporated in the model, such as E50, Eoed and Eur are all
dependent on the stress state in the soil. The values are input at a given reference
stress σ3 = σref, from which values at other stress states are calculated. The expression
for E50 is given in equation (D.4).

E50 = Ere f
50

(
σ3 + c cot(ϕ)

σref + c cot(ϕ)

)m

. (D.4)

In equation (D.4) the parameter m is the shape parameter of the curve, which is an
input parameter for the HS model. In figure D.6 the development of E50 is shown with
varying m values.
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Figure D.6. Plot of the development of E50 as a function of the σ3 and the shape parameter m for
Ere f

50 = 14.56 MPa, c = 0.1 kPa, ϕ = 35◦ and σref = 100 kPa.

All the curves on figure D.6 intersects at the value of (σ′3,re f ; Ere f
50 ). The value of m is

dictated by the soil type, and it is usually recommended to use around 1.0 for soft clays
and 0.5 for sand and silt. m = 0.5 is used in this project. Similar expression as equation
D.4 exists for Eur and Eoed. [Brinkgreve et al., 2012].

D.3 The HSsmall model

At small strains, i.e. below 10−6, empirical data has shown stiffness of soil to be
a lot higher than at the strain amplitudes normally used in laboratory tests. The
stiffness of the soil then decreases as the amplitude of the applied strains increase.
This larger stiffness was at first experienced in soil dynamics, as the strains in relation
to propagating waves in the soil volume are very small. Due to this, a dynamic stiffness
of the soil has previously been used. This dynamic stiffness is equal to the small strain
stiffness in the formulation of the HSsmall model called respectively E0 and G0. Figure
D.7 shows an illustration of the development of the ratio of the present shear modulus
to the initial shear modulus.
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Figure D.7. The ratio of G/G0 as a function of strain amplitude. [Brinkgreve et al., 2012]

Various formulations of the development of G/Gs have been proposed, and PLAXIS
uses a formulation suggested by dos Santos and Correia [2001]. The additional stiffness
at small strains is incorporated through the parameters G0 and γ0.7, which are the initial
shear modulus and the value of the strain strain where G/G0 ≈ 0.7. The shear stiffness
found in laboratory tests is the secant shear modulus Gs, which is used to formulate the
stress-strain relationsship,

τ = Gsγ =
G0γ

1 + 0.385
γ

γ0.7

. (D.5)

Differentiating this relationsship gives the tangent shear modulus in equation (D.6),
which is the current shear stiffness used in HSsmall at a shear strain ratio γ

γ0.7
.

Gt =
G0(

1 + 0.385
γ

γ0.7

)2 , Gt ≥ Gur. (D.6)

The reduction of Gt has effect both in the elastic and plastic region, and is cut off at
a lower bound equal to Gur. Equation (D.7) and (D.8) provide relations between the
different stiffness parameters.

Gt =
Et

2(1 + νur)
, Et ≥ Eur, (D.7)

Gur =
Eur

2(1 + νur)
. (D.8)

For primary loading scenarios, the HSsmall model then uses the same formulations as
the HS model, with Eur and Gur replaced by Et and Gt.

In the HS model the unloading/reloading path is assumed to be linearly elastic, i.e. the
slope of the stress-strain curve is constant at a value of Eur. This property of the soil
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is however not realistic, when the change in strain is large. In other words, it is not
possible for the soil to recover from strains totally, unless the applied strains are very
small. The unloading reloading in the HSsmall model takes this into account, which is
illustrated in figure D.8.

Figure D.8. The unloading-reloading relationsship in the HSsmall model. [Brinkgreve et al.,
2012]

This is done by monitoring the loading history of the soil, and taking this into account
before each strain increment is calculated.
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D.4 On the significance of using small strain hardening soil

The HSsmall model introduces additional calculation complexity, as the stiffness
parameters vary not only due to hardening but also due to the additional small
strain stiffness. Furthermore the monitoring of loading history also requires additonal
calculation, all in all causing the use of the HSsmall model to be more demanding. It is
however justified to do so, since the model often yield results that are closer to the real
case.

By not accounting for the additional small strain stiffness of the soil, the deformations
of the soil body may be overestimated and as a consequence the stresses will be
underestimated. This is both the case when comparing to the HS model, and of course
even more severe compared to the MC model. In the investigations of this project, the
deformations and stresses even at very small loads are important, since the objective is
to define the p-y relationsship all the way from a very small deformation to the ultimate
failure case. Not using HSsmall would thus give a less stiff, and less realistic, response
at small deformations.

Another advantage of the HSsmall model is that it is less sensitive to the boundaries
of the FEM domain, as parts with small straining are very stiff. The following figure
is taken from a comparison HS and HSsmall, when calculation settlements of a simple
foundation.

Figure D.9. Comparison of settlements calculated with a HS, a HSsmall and a hypoplastic model.
As can be seen, the HSsmall model gives smaller vertical displacements. [Karstunen, 2012]
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E Implementation of a UDSM in

PLAXIS

This chapter deals with the methodology and principles of creating a User Defined
Soil Model (UDSM) and using it together with the interface and calculation engine of
PLAXIS 3D. The goal of the process is to implement a soil model where the strength is
dependent on the stress level in the soil. A model like this is not currently available in
PLAXIS.

In the next sections the emphasis for using such a soil model is given along with a
description of the mechanics of the model. The UDSM is programmed in Fortran,
and a detailed hands-on description of the necessary steps needed to do the actual
implementation in PLAXIS is presented. Furthermore the FEM calculation procedure is
outlined, to give an understanding of what tasks are carried out by PLAXIS and what
is done in the UDSM.

E.1 Emphasis for using a UDSM

Even though several advanced soil models are available in the PLAXIS 3D software,
not all aspects of soil mechanics can be calculated properly using the existing models.
In the field of geotechnics at Aalborg University a very large degree of the research
conducted is done using experimental methods. In the experimental approach scaled
models are used, mainly due to practical and economical possibilities. With scaling of
models comes the usage of scaling laws, however an appropriate method of scaling soil
mechanic properties is not available.

It has been observed through various triaxial tests of soil that both the stiffness and
strength parameters of the soil are not constant nor simply linearly varying with the
mean stress state p = (σ1 + σ2 + σ3)/3. While the variation of the stiffness parameters
are accounted for by the Hardening Soil (HS) model in PLAXIS, the change in strength
parameters are not. At very low mean stress levels, such as those occurring in scaled
laboratory tests, the friction angle of non-cohesive materials has been observed to be
significantly higher than at higher levels of p, where it becomes close to constant.
[Krabbenhøft et al., 2011].

In figure E.1 the variation of the angle of friction using both experimental methods and
calculations with Boltons formula is shown. The increase in friction angle is clearly seen
at low confining pressures.
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Figure E.1. The variation of the friction angle from tests and from Boltons formula. [Krabbenhøft
et al., 2011]

With a material model that takes the significant increase of strength at low stress level
into account, it will be possible to better reproduce and verify the experimental results
using numerical methods. This is the main emphasis for implementing a UDSM in
PLAXIS.

E.2 The soil mechanics of the UDSM

In this section the mechanics of the applied soil model is explained. Throughout the
section the sign convention is such that compression is positive and tension is negative.
This is opposite of the general finite element approach. The geotechnical approach
however, is to have the sign convention as used in this description.

E.2.1 The failure criterion

The failure criterion used is a non-linear Mohr-Coulomb criterion. The non-linear part
of the criterion is used to model the observation of higher relative strength at low stress
levels. The formulation of the criterion is,

f = k0σ3 − σ1 + sc0

(
1− exp

(
−a

σ3

sc0

))
= 0. (E.1)

The shape of the criterion is controlled by the three constants k0, sc0 and a. The
formulation of the criterion goes towards an asymptote, when σ3 goes towards a very
large positive value, e.g. very high compressions. Thus the formulation becomes,

f = k0σ3 − σ1 + sc0 , σ3 → ∞, (E.2)

which is identical to the Mohr-Coulomb criterion. Due to the nature of the mathematical
formulation, the material constants are not directly comparable to any of the commonly
used soil parameters. The slope of the asymptote is determined by k0, and is thus
comparable to the normally used friction parameter k, which is directly a function of
the friction angle. The intersection with the σ1 axis of the asymptote is given by the
parameter sc0, and is thus comparable to the cohesion of the soil. The parameter a
controls the curvature of the criterion, which is dominant at small stress levels.

The criterion can be calibrated to be used with any material exhibiting Mohr-Coulomb-
like behaviour. In this project the criterion is fitted to be used with Aalborg University
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Sand no. 1. In order to calibrate the parameters a series of triaxial tests are used, in
which the back-pressure is varied to give failure points at different stress level. Since
the curvature of the criterion is dominant at low stress levels, a series of tests including
very low back pressures are used. The tests are carried out a the Geotechnics Laboratory
at Aalborg University and are available in the data report by Ibsen and Bødker [1994].

E.3 The contents of the UDSM

The PLAXIS calculation engine allows for usage of user-defined soil models, making
it possible to implement any desired constitutive model for the soil. The constitutive
model defines the relation between the strain and stress increments, and if needed also
the time dependency, of the soil material. In principle the tasks of the UDSM is to
calculate the current stress state based on strain and time increments and the previous
stress state, which are all given by PLAXIS. As the implemented constitutive model is
independent of time, no more references will be given to time dependency of the UDSM
implementation in the following.

The UDSM has to be made in a programming language and compiled into a DLL-
file (Dynamic Link Library), which is then read by PLAXIS. The implementation here
is done using the Fortran programming language and the Intel Visual Fortran (IVF)
compiler, however another language could be used if desired. The source-code for the
UDSM is given in appendix F - Source Code for UDSM.

The UDSM programmed in Fortran must be a subroutine named User_Mod, which can
handle the following objectives,

• Initialisation of any needed state variables.
• Calculation of stresses using a constitutive model.
• Creation of the elastic and effective material stiffness matrices.

To execute the above mentioned objectives, the subroutine needs to be able to execute
six different tasks called by the integer variable IDTask. A thorough description of all
variables used will be given later. The six tasks are as follows, where the enumaration
follows the variable IDTask = [1..6],

1. Initialize state variables in StVar0.
2. Calculate effective stresses and excess pore pressure in Sig and Swp.
3. Calculate effective material stiffness matrix D.
4. Output number of state variables nStat.
5. Output matrix properties NonSym, iStrsDep, iTimeDep and iTang.
6. Calculate elastic material stiffness matrix De.

The exchange of information between PLAXIS and the UDSM happens using a number
of input and output variables listed in table E.1.
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Variable In/Out Type Description

IDTask, iMod,
iStep, iTer, iEl, Int

In I Task number, model number, calculation step,
iteration step, element number, integration
point.

IsUndr In I Indicating whether the soil is drained (= 0) or
undrained (= 1).

X, Y, Z In R Global coordinates of stress integration point.
Time0, dTime In R Time at end of last step and time increment.
Props In R(:) Array containing material proporties.
Sig0, Swp0, dEps In R(:) Stress and excess pore pressure from last step

and strain increment.
iPrjDir, iPrjLen In I Integers used for debugging.
StVar0 In/Out R(:) Initial value of state parameters, output in first

step and input in all others.

D Out R(:,:) Stiffness matrix effective if IDTask = 3 or
elastic if IDTask = 6.

BulkW Out R Bulk modulus of water for stress point.
Sig, Swp, StVar Out R(:) Stress state, excess pore pressure and state

variables.
iPl Out I Plastic indicator. 0 = No plasticity, 1 = MC

failure, 2 = Tension cut-off, 3 = Cap hardening,
4 = Cap friction, 5 = Friction hardening.

nStat, iAbort Out I Number of state variables and abort parameter
(1 = abort).

NonSym,
iStrsDep,
iTimeDep, iTang

Out I D matrix attributes: Symmetric,
stress-dependent, time-dependent, tangent
stiffness. 1 = true and 0 = false.

Table E.1. Variables used in the exchange of information between PLAXIS and the user defined
subroutine. I = Integer, R = Real value, R(:) = Real value array.

In Fortran all variables used have to be declared, and for the subroutine to function
with PLAXIS, the data type of the variables need to correspond exactly to table E.1. All
the variables are listed and explained in detail in the PLAXIS material model manual
Brinkgreve et al. [2012]. The calling sequence of the subroutine is,

1 subroutine User_Mod(IDTask, iMod, IsUndr, iStep, iTer, iEl, Int, X, Y, Z,
Time0, dTime, Props, Sig0, Swp0, StVar0, dEps, D, BulkW, Sig, Swp,
StVar, ipl, nStat, NonSym, iStrsDep, iTimeDep, iTang, iPrjDir,
iPrjLen, iAbort)

The order of the variables is essential for the exchange of information to work properly.
In the subroutine, local variables can furthermore be freely used to do calculations.

The 6 tasks of the subroutine are explained in detail along with the variables used in
each task in the following subsections.
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E.3.1 IDTask = 1 - Initialising state parameters

In the first task the state parameters of the UDSM are initialised in the array StVar0,
which is thus an output from task 1. This task is only called by PLAXIS in the first load
step, since it defines the starting point for the state variables. An example could be the
effective mean stress p′ or the deviatoric stress q. All PLAXIS calculations begin with an
initial phase, where the in-situ stress state is established, e.g. through a K0-procedure
or gravitational loading. In this initial phase the state variables are not established, as
they are dependent of the material model, whereas the initial phase calculation is not.
Therefore, if p and q are needed in the material model, they need to be calculated in the
first load step. A code example is shown below.

1 If (IDTask == 1) Then ! Initialize state variables
2 p = (Sig0(1) + Sig0(2) + Sig0(3))/3 ! Compression is negative
3 StVar0(1) = p
4 End If ! IDTask = 1

All variables need to be defined in the beginning of the subroutine, here the local
variable p is a real value. Note that everything written after an exclamation mark is
ignored by the compiler, and can therefore be used to input comments.

In all load steps after the first one, the StVar0 vector contains the state variables from
the previous steps and thus turns into an input given from PLAXIS.

E.3.2 IDTask = 2 - Calculating stress and pore pressure

In this task the main part of the subroutine calculation takes place. The main goal of
the task is to provide a stress state that obeys the material model from a given strain
increment. The main input arrays used in task 2 is the previous stress state in Sig0, the
material properties in Props and the stress increment dEps. The stress update procedure
is as follows,

• Calculation of elastic stress predictor based on Sig0, dEps and the elastic stiffness
matrix De.

• Test of predicted stress state against the yield criterion applied.
• If the stress state is elastic, the elastic predictor stress is the updated stress state

used as output Sig.
• If the stress state is plastic, the stress state is returned to the yield surface using a

return algorithm and the stress state is output as Sig.
• If the model is undrained the excess pore pressure is calculated using a very large

bulk modulus for water and the strain increment dEps.

An example of the main code for the task, where a Mohr-Coulomb model is used is
given below.

1 If (IDTask == 2) Then ! Calculate stresses based on elastic predictor
and then stress-update

2

3 ! Calculating elastic stiffness matrix
4 call DlinElas(E,nu,nsigma,De,Dinv)
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5

6 ! Elastic stress predictor
7 Do j = 1,6
8 Sig_p(j)=Sig0(j)
9 Do i = 1,6

10 Sig_p(j) = Sig_p(j) + De(j,i)*dEps(i)
11 end do
12 end Do
13

14 ! Stress return algorithm
15 call

MohrCoulombStressReturn(Sig_p,nsigma,PlasPar,De,Dinv,Sig,Depc,region)
16

17 ! Plasticity indicator iPl
18 if (region == 0) then
19 ipl = 0
20 else
21 ipl = 1
22 end if
23

24 If (IsUndr == 1) Then ! If undrained, a large bulk modulus of
water is calculated to find excess pore pressure

25 g = E/(2*(1+nu)) ! Shear modulus
26 Nu_U = 0.495 ! Undrained Poissons’ ratio
27 Fac = (1+Nu_U)/(1-2*Nu_U) - (1+nu)/(1-2*nu)
28 Fac = 2*g/3 * Fac
29 BulkW = Fac
30 dEpsV = dEps(1) + dEps(2) + dEps(3) ! Volumetric strain

increment
31 dSwp = BulkW * dEpsV
32 Swp = Swp0 + dSwp
33 Else
34 BulkW = 0 ! If drained, bulk modulus is zero
35 Swp = Swp0 ! And no change in pore pressure
36 end if
37

38 End If ! IDTask = 2

The subroutines DLinElas and MohrCoulombStressReturn are used to perform the main
calculations of the task.

E.3.3 IDTask = 3 - Effective stiffness matrix and bulk modulus

In task 3 the effective stiffness matrix should be calculated and given to the program.
Several different stiffness matrices can be used, e.g. the full elastoplastic or the purely
elastic matrix. The standard procedure used in PLAXIS however is to simply use the
elastic stiffness matrix, which is easily calculated. This implies using more iteration
steps the establish equilibrium, compared to using the full elastoplastic matrix. The
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coding of the UDSM is shorter and simpler using the elastic matrix which is often
preferable. In the code the subroutine DLinElas is thus simply called and the bulk
modulus of water is calculated.

1 If (IDTask == 3) Then ! Calculated effective D and bulk modulus of water
2

3 ! Calculating elastic stiffness matrix
4 call DlinElas(E,nu,nsigma,D,Dinv)
5

6 If (IsUndr == 1) Then ! If undrained, a large bulk modulus of
water is calculated to find excess pore pressure

7 g = E/(2*(1+nu)) ! Shear modulus
8 Nu_U = 0.495 ! Undrained Poissons’ ratio
9 Fac = (1+Nu_U)/(1-2*Nu_U) - (1+nu)/(1-2*nu)

10 Fac = 2*g/3 * Fac
11 BulkW = Fac
12 Else
13 BulkW = 0 ! If drained, bulk modulus is zero
14 end if
15

16 End If ! IDTask = 3

E.3.4 IDTask = 4 - Return number of state variables

This task simply tells PLAXIS how many state variables are used in the model, and thus
are to be transfered from one load increment to the next.

1 If (IDTask == 4) Then ! Initialize state variables
2 nStat = 2 ! Equal to two, if p and q are used
3 End If ! IDTask = 4

E.3.5 IDTask = 5 - Matrix attributes

In task 5 the matrix attributes of the effective stiffness matrix are given to the calculation
kernel in PLAXIS. The attributes determine the kind of iteration procedure used. When
using a purely elastic stiffness matrix, the code is as shown below.

1 If (IDTask == 5) Then ! Matrix attributes
2 NonSym = 0 ! 1 for non-symmetric D-matrix
3 iStrsDep = 0 ! 1 for stress dependent D-matrix
4 iTang = 0 ! 1 for tangent D-matrix
5 iTimeDep = 0 ! 1 for time dependent D-matrix
6 End If ! IDTask = 5

E.3.6 IDTask = 6 - Elastic stiffness matrix

Task 6 is simply giving PLAXIS the elastic stiffness matrix, which makes it identical to
task 3 in the described case.

107



E.4 Calculation Procedure in PLAXIS

As described earlier, the USDM enables PLAXIS to perform calculations using soil
material models not readily available in PLAXIS. However, regardless of the material
model, PLAXIS uses the same calulation procedure and have equal demands to what
the material model needs to deliver. This procedure will be explained in the following
based on Krabbenhøft [2002].

E.4.1 General Procedure

In general finite element theory, the systems of equations can be formulated as equation
(E.3).

f = K u (E.3)

The stiffness matrix is given as seen in equation (E.4).

K =
∫

Ω
BT Dep B dΩ (E.4)

Since the constitutive matrix Dep depends on the current stress state, the stiffness matrix
K is non-linear. Because of this fact, the load is applied in increments utilizing instead
the tangent stiffness matrix Kt as seen in equation (E.5) compared to equation (E.3).

∆f = Kt ∆u (E.5)

From this approximation of the real elasto-plastic behaviour, the residual forces can be
calculated. To have equilibrium, the residual forces must be r = 0, meaning that the
internal forces q must be balanced by the externally applied load f. If this is not the
case, the residual forces r are applied as an external load which will cause another
strain increment and a corresponding stress increment. This iterative procedure must
be repeated until the residual forces are sufficiently small, and can be carried out by
means of a Newton-Raphson scheme.

E.4.2 Iteration Procedure

In order for PLAXIS to determine a solution for the given problem, it utilizes a iterative
solution scheme known as Newton-Raphson. Unlike explicit methods like the Forward
Euler-method, the Newton-Raphson solution involves iteration to find equilibrium in
each load step. The Newton-Raphson scheme can be formulated in different ways
depending on the number of times, the stiffness is updated.

1. Full Newton-Raphson: Stiffness is updated in each iteration. Results in high
convergence (and thus few iterations) but each iteration is very time consuming.

2. Modified Newton-Raphson: Stiffness is updated in each load step. Results in
lower convergence (and thus more iterations) but each iteration is much less time
consuming.

3. Initial Stiffness Newton-Raphson: The stiffness is never updated, ie. the initial
stiffness is used all the way through. Results in low convergence (and thus many
iterations) but each iteration is even less time consuming.
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In PLAXIS, the Full or Modified schemes are used depending on the properties of
the constitutive matrix (or material stiffness matrix, as it is named in PLAXIS) Dep.
Considering table E.1, iStrDep = 1 determines that the material stiffness matrix is stress-
dependent and thus must be decomposed in each load step considering the current
stress state. This is utilized in the Modified Newton-Raphson scheme. iTang = 1
determines that the material stiffness matrix is a tangent stiffness matrix to be used in a
Full Newton-Raphson scheme [Brinkgreve et al., 2012].

E.4.2.1 Arc-length control

A way of improving the iteration within a Newton-Raphson scheme is to utilize an
arc-length method. The arc-length method is applied as default in PLAXIS. The way
arc-length control works is to constrain the residual force in the force-displacment space
by a circular arc. This constraint enables the scheme to converge towards equilibrium
much faster. The principle is shown in figure E.2.

• Arc-length control 
• Residual force is 

constrained by a 
“circular” arc in the 
displacement–force 
space 

• The usual solution 
scheme is applied 

• Used in Plaxis—an 
FEA code made for 
geotechnical 
analysis 

27/10/2011 Material Modelling in Civil Engineering - Part 3 - Lecture 3 30 

Arc-length methods 

Figure E.2. The principle of arc-length control.

E.4.2.2 Over-relaxation

At each iteration the equilibrium error of the system of equations is used to calculate
the load/displacement of the next iteration. By applying the error in each iteration, the
system slowly converges to the exact solution. Over-relaxation is an overestimation of
the equilibrium error, with the purpose of faster reaching the correct load/displacement.
The over-relaxation is controlled by the over-relaxation factor, which is by default set to
1.2. The concept of the over-relaxation method can be seen in figure E.3. [Brinkgreve
et al., 2012]
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Figure E.3. A normal iteration procedure on the left and the iteration procedure with over-
relaxation used on the right. [Brinkgreve et al., 2012]

E.4.2.3 Line-search

The line search algorithm can be seen as a further development of the over-relaxation
method. The exact algorithm is not thoroughly explained in the PLAXIS documentation,
however the concept is that the correction used in the next iteration is a scaled version
of the equilibrium error, such that the system converges faster. The scaling is however
not constant, as in the over-relaxation method.

The method is recommended in Brinkgreve et al. [2012] to be used only in problems
without severe non-linearities. The method has with success been applied in all models
of this project.
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F Source Code for UDSM

This appendix contains the source code for the PLAXIS 3D implementation of the user
defined soil model. The code contains only the subroutine User_mod, and not the entire
source code used in the material model. The inclusion of the source code is meant as a
help for future projects involving a UDSM implementation in PLAXIS 3D.

1 subroutine User_Mod(IDTask, iMod, IsUndr, iStep, iTer, iEl, Int, X, Y, Z,
Time0, dTime, Props, Sig0, Swp0, StVar0, dEps, D, BulkW, Sig, Swp,
StVar, ipl, nStat, NonSym, iStrsDep, iTimeDep, iTang, iPrjDir,
iPrjLen, iAbort)

2 !
3 ! Mohr-Coulomb curved criterion linear-elastic-perfectly-plastic user

defined soil model for PLAXIS 3D
4 ! Material-model written by Johan Clausen and ported to PLAXIS
5 ! by Martin Underlin Østergaard and Bjørn Staghøj Knudsen as a part of a

Master Thesis
6 ! Aalborg University Civil and Structural Engineering 2013
7 !
8 ! Depending on IDTask, 1 : Initialize state variables
9 ! 2 : Calculate stresses,

10 ! 3 : Calculate material stiffness matrix
11 ! 4 : Return number of state variables
12 ! 5 : Inquire matrix properties return, switch for

non-symmetric D-matrix, stress/time dependent matrix
13 ! 6 : Calculate elastic material stiffness matrix
14 ! Arguments:
15 ! I/O Type
16 ! IDTask I I : see above
17 ! iMod I I : model number (1..10)
18 ! IsUndr I I : =1 for undrained, 0 otherwise
19 ! iStep I I : Global step number
20 ! iter I I : Global iteration number
21 ! iel I I : Global element number
22 ! Int I I : Global integration point number
23 ! X I R : X-Position of integration point
24 ! Y I R : Y-Position of integration point
25 ! Z I R : Z-Position of integration point
26 ! Time0 I R : Time at start of step
27 ! dTime I R : Time increment
28 ! Props I R() : List with model parameters, defined in useradddf.f90
29 ! Sig0 I R() : Stresses at start of step
30 ! Swp0 I R : Excess pore pressure start of step
31 ! StVar0 I R() : State variable at start of step
32 ! dEps I R() : Strain increment
33 ! D I/O R(,) : Material stiffness matrix
34 ! BulkW I/O R : Bulkmodulus for water (undrained only)
35 ! Sig O R() : Resulting stresses
36 ! Swp O R : Resulting excess pore pressure
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37 ! StVar O R() : Resulting values state variables
38 ! ipl O I : Plasticity indicator
39 ! nStat O I : Number of state variables
40 ! NonSym O I : Non-Symmetric D-matrix ?
41 ! iStrsDep O I : =1 for stress dependent D-matrix
42 ! iTimeDep O I : =1 for time dependent D-matrix
43 ! iAbort O I : =1 to force stopping of calculation
44 ! iPrjDir I I : Input from PLAXIS, not used
45 ! iPrjLen I I : Input from PLAXIS, not used
46

47 implicit none
48 ! Defining variables
49 ! Arrays
50 real(8) :: Props(8), Sig0(20), dEps(12) ! Input
51 real(8) :: StVar0(1) ! In/Output depending on value of IDTask
52 real(8) :: D(6,6), Sig(6), StVar(1), Depc(6,6) ! Out
53 ! Integers / Reals
54 integer :: iMod, IDTask, istep, iter, iel, isundr, Int, iPrjLen, iPrjDir

! Input
55 integer :: iPl, nstat, nonsym, istrsdep, itang, itimedep, iAbort ! Output
56 real(8) :: x, y, z, time0, dtime, swp0 ! Input
57 real(8) :: bulkw, swp ! Output
58 ! Local variables
59 real(8) :: E, nu, nu_U, fac, dEpsV, dSwp, c0, k0, m0, a1, b1, apex, g
60 real(8), parameter :: pi = 3.1415926535897932_8
61 real(8) :: Dinv(6,6), Sig_p(6), De(6,6), PlasPar(6)
62 integer :: i, j, nsigma, region, npar
63 character*8 PlasType
64

65 ! Debug variables
66 integer :: debug, IsOpen, ios
67 character*255 :: fName, filename
68 ! Logical IsOpen
69 Data IsOpen / 0 /
70 Save IsOpen
71

72 ! DLL Export declaration
73 !DEC$ ATTRIBUTES DLLExport, stdcall, reference :: User_Mod
74

75 !---- Explicit interfaces ----------------------------------
76 interface
77 subroutine

CurvMCStressReturn(Sigma,nsigma,nu,PlasPar,D,Dinv,Sigma_up,Depc,region)
78 integer(4), intent(in) :: nsigma
79 real(8), intent(in) :: Sigma(nsigma), PlasPar(6),

nu
80 real(8), intent(in) :: D(nsigma,nsigma),

Dinv(nsigma,nsigma)
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81

82 real(8), intent(out) :: Sigma_up(nsigma),
Depc(nsigma,nsigma)

83 integer(4), intent(out) :: region
84 end subroutine CurvMCStressReturn
85 !---
86 subroutine DlinElas(E,nu,nsigma,D,Dinv)
87 integer(4), intent(in) :: nsigma
88 real(8), intent(in) :: E, nu
89

90 real(8), intent(out) :: D(nsigma,nsigma)
91 real(8), intent(out), optional :: Dinv(nsigma,nsigma)
92 end subroutine DlinElas
93 end interface
94 !-----------------------------------------------------------
95

96 iAbort = 0 ! Do not abort
97 nsigma = 6 ! 3D stress state
98

99 ! Defining material parameters
100 ! The Curved Mohr-Coulomb criterion is defined by
101 ! f = k0*sigP(1) - sigP(3) - c0*(1 -

exp(a1*(sigP(1)-apex)/c0)) - apex*(k0-1) = 0
102 ! and the corresponding plastic potential
103 ! g = m0*sigP(1) - sigP(3) - c0*(1 - exp(b1*(sigP(1)-apex)/c0))
104

105 E = Props(1) ! Modulus of elasticity
106 nu = Props(2) ! Poissons ratio
107 k0 = Props(3) ! Friction parameter
108 c0 = Props(4) ! Cohesive parameter
109 a1 = Props(5) ! Curvature parameter
110 apex = Props(6) ! Apex position, apex = 0 for non-cohesive material
111 m0 = Props(7) ! Friction parameter in plastic potential
112 b1 = Props(8) ! Curvature parameter in plastiv potential
113

114 PlasPar = [k0, c0, a1, apex, m0, b1]
115

116 Select Case (iMod) ! Selecting Material model
117 Case (1) ! MC
118

119 ! Following procedure from PLAXIS manual
120 If (IDTask == 1) Then ! Initialize state variables
121 ! Nothing to do here *flies away*
122 End If ! IDTask = 1
123

124 If (IDTask == 2) Then ! Calculate stresses based on elastic predictor
and the stress-update

125 ! Building stiffness matrices
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126 call DlinElas(E,nu,nsigma,De,Dinv)
127

128 ! Elastic stress predictor
129 Do j = 1,6
130 Sig_p(j)=Sig0(j)
131 Do i = 1,6
132 Sig_p(j) = Sig_p(j) + De(j,i)*dEps(i)
133 end do
134 end Do
135 ! Calling stress return algoritm using elastic predictor
136 call

CurvMCStressReturn(Sig_p,nsigma,nu,PlasPar,De,Dinv,Sig,Depc,region)
137

138 ! Plasticity indicator iPl
139 if (region == 0) then
140 ipl = 0
141 else
142 ipl = 1
143 end if
144

145 If (IsUndr == 1) Then ! If undrained, a large bulk modulus of water
is calculated to find excess pore pressure

146 g = E/(2*(1+nu)) ! Shear modulus
147 Nu_U = 0.495 ! Undrained Poissons’ ratio
148 Fac = (1+Nu_U)/(1-2*Nu_U) - (1+nu)/(1-2*nu)
149 Fac = 2*g/3 * Fac
150 BulkW = Fac
151 dEpsV = dEps(1) + dEps(2) + dEps(3) ! Volumetric strain increment
152 dSwp = BulkW * dEpsV
153 Swp = Swp0 + dSwp
154 Else
155 BulkW = 0 ! If drained, bulk modulus is zero
156 Swp = Swp0 ! And no change in pore pressure
157 end if
158

159 End If ! IDTask = 2; get stresses
160

161 If (IDTask == 3) Then ! Calculate effective stiffness matrix
162 ! The effective matrix can be either the elastic or the full

elastoplastic matrix. Here the elastic is used
163 call DlinElas(E,nu,nsigma,D,Dinv)
164 If (IsUndr == 1) Then ! If undrained, a large bulk modulus of water

is calculated to find excess pore pressure
165 g = E/(2*(1+nu)) ! Shear modulus
166 Nu_U = 0.495 ! Undrained Poissons’ ratio
167 Fac = (1+Nu_U)/(1-2*Nu_U) - (1+nu)/(1-2*nu)
168 Fac = 2*g/3 * Fac
169 BulkW = Fac
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170 Else
171 BulkW = 0 ! If drained, bulk modulus is zero
172 end if
173

174 End If ! IDTask = 3; get D^ep and Bulkw
175

176 If (IDTask == 4) Then ! Number of state parameters
177 nStat = 0 ! No state parameters are used in the LE-model
178 End If ! IDTask = 4
179

180 If (IDTask == 5) Then ! Matrix attributes
181 NonSym = 0 ! 1 for non-symmetric D-matrix
182 iStrsDep = 0 ! 1 for stress dependent D-matrix
183 iTang = 0 ! 1 for tangent D-matrix
184 iTimeDep = 0 ! 1 for time dependent D-matrix
185 End If ! IDTask = 5
186

187 If (IDTask == 6) Then ! Elastic stiffness matrix
188 call DlinElas(E,nu,nsigma,D,Dinv)
189 End If ! IDTask = 6
190

191 End Select ! End selection of material model
192

193 End Subroutine ! End subroutine
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G Laboratory Details

In this appendix various subjects regarding the laboratory work will be presented.

G.1 Laboratory setup

In this section the laboratory setup will be explained in detail.

G.1.1 Model Bucket

The model bucket used in the tests is shown with dimensions in figure G.1.

Figure G.1. Sketch of the bucket used in the tests, shown with dimensions.

The bucket is a further development of an original model, where the steel thickness
proved to be too small to withstand the pore pressures during a fast loading sequence
causing the bucket skirt to deform heavily. From the earlier experiences two model
buckets were produced with a diameter of 500 mm and a skirt length of respectively
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250 and 500 mm. The latter is not used in the test in this project due to shortage of time
in the laboratory.

The tower is designed to be able to withstand a force of 100 kN at an eccentricity of 500
mm, i.e. a moment of 50 kNm. A 180x100 mm RHS profile is used for the tower. At the
bottom the flanges are reinforced by an extra plate of 10 mm thickness welded to the
short side of the profile. The bottom of the tower is a 40 mm round steel plate with 8
holes for bolts used to attach the tower to the bucket itself.

The lid of the bucket is a 10 mm thick steel plate and the skirt is of 5 mm thickness.
On the bucket 13 pore pressure gauges are installed at different relevant positions. The
pressure gauges are from HBM and have a range of either ±5 or ±10 bar. 6 gauges are
placed on the outside of the skirt on the plane of attack for the force. Three are placed
on the side closest to and three are placed farthest from to the point of attack for the
force. The outside gauges are placed at respectively 83.3 mm, 166.7 mm and 250 mm
depth from the lid. Inside the bucket 7 gauges are placed at respectively 0 mm, 83.3
mm and 166.7 mm from the lid. The last gauge is placed directly beneath the middle of
the tower. Refer to figure G.1 for the positions. A picture of the bucket with the tower
installed is seen in figure G.2.

Figure G.2. The model bucket with the tower installed.
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G.1.2 Schematic overview

Figure G.3 contains an overview of the entire test setup.

Figure G.3. Overview of the test setup.

The setup is controlled by a computer connected with a Test Control Unit (TCU) from
MOOG. The TCU controls the hydraulics in the piston through either displacement up

or via force Fp. In the used setup, only displacement control is used. The piston is
connected to the tower of the bucket with a removable steel cable.

A total of 14 pressure gauges are used in the setup, these are named PP01-PP13 and PT
and are all connected to the TCU, which is also used to sample data. The first 13 pressure
gauges are placed on different places on the bucket and are used to measure the pore
pressure in the sand. The PT gauge measures the air pressure inside the pressure tank,
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and is used to confirm the absolute air pressure applied via the compressor. Besides the
force measurement, displacement of the piston and the 14 pressure gauges an additional
horizontal displacement sensor uh2 is connected to the TCU. This measurement is used
to synchronize the time step between the TCU and the HBM Spider.

The three remaining displacements uh1, uv1 and uv2 are all connected to a HBM Spider
data acquiring box also connected to a computer. It was not possible to do data
acquiring of all signals with the TCU, which is why the HBM Spider was used as a
secondary unit. Furthermore the HBM Spider is also used when performing the mini-
CPT tests to measure the depth d and the cone resistance qc. A total list of measured
entities are shown in table G.1.

Pressure gauges [kPa] Displacement sensors [mm] Forces [N]

PT uh1 Fp

PP01 uh2 qc

PP02 uv1

PP03 uv2

PP04 up

PP05 d
PP06
PP07
PP08
PP09
PP10
PP11
PP12
PP13

Table G.1. Table of measured signals in the setup

The air pressure inlet is controlled via two gauges placed next to a small buffer tank.
The first gauge is set to 200 kPa (2.0 bar) and the compressor builds up the pressure
in the buffer tank. From the buffer tank another gauge controls the pressure let
into the pressure tank, this gauge is also set to 200 kPa but is adjusted using the
TP measurement. The build up takes approximately 1 hour in which the pressure is
constantly monitored by the PT measurement. Due to the large amount of tubes with
signal wires connected through small holes in the tank, the setup is not completely
hermetic and small volumes of air is able to escape the tank. After a while an
equilibrium is formed and the pressure in the tank is stable. The pressure is left in
the tank over night, for a completely homogeneous pressure state in the sand volume to
be obtained.

The water inlet is used to loosen the sand after a test before compacting it again with
the vibrator. The water inlet is connected to a large water tank placed approximately
1.5 meters higher than the the sand surface in the tank. The height difference makes
it possible to produce a flow through the bottom of the tank with a certain gradient,
adjusted by opening a valve untill the needed gradient is obtained. The gradient used
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when loosening the sand is i = 0.9 based on experience from earlier tests.

i =
∆h

dsand
. (G.1)

i Gradient of water flow [-]
∆h Difference in pressure height [m]

dsand Greatness of sand layer = 0.60 m

∆h is measured by a vertical tube at the inlet to the tank, and should from equation
(G.1) be equal to 0.55 m. The loosening is done over a period of 5 minutes.

G.2 Model laws - Scaling parameters

When performing model tests, some considerations need to be done regarding the
scaling effects, as it is often not possible to do testing on full-size models. In order
to do correct scaling of physical phenomenons, three basic rules must be obeyed,

1. Geometric similarity
2. Kinematic similarity
3. Dynamic similarity

These three rules will be explained and using general physical considerations, the
scaling factors are derived in the following. Generally a scaling factor is on the form
shown in equation (G.2).

XN = λXXM. (G.2)

XN Physical entity in the nature
XM Scaled physical entity in the model
λX Scaling factor of entity X

G.2.1 Geometric similarity

Geometric similarity means direct similarity between every geometric quantity in the
model and in nature. This can be expressed as,

LN = λLLM. (G.3)

LN Lengths in the nature [m]
LM Scaled lengths in the model [m]
λX Length scale [-]

From this the area scale and the volume scale can be directly derived as λ2
L and λ3

L
respectively. For every geometric entity, this scaling factor must be the same for the
similarity rule to be valid. In the model the bucket foundation has a diameter of 0.5
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meter, which compared to a nature-size foundation of 15 m gives a scaling factor of
λL = 30.

In principle the geometric similarity applies for all geometric entities, and as such the
grain size should also be scaled properly for the principle to be valid.

G.2.2 Kinematic Similarity

The kinematic similarity requires similarity between the velocity vectors of the model
and the nature phenomenon. This applies both to the magnitude and the directionality
of the velocity. All velocity vectors at similar points between the model and nature
should as a consequence be parallel. The velocity scale can be defined analogous to the
length scale as,

~vN = λV~vM. (G.4)

~vN Velocity in the nature [m/s]
~vM Scaled velocity in the model [m/s]
λV Velocity scale [-]

By using both geometric and kinematic similarity, the time scale can be defined
including the definition of velocity as,

λT =
tN

tM
, (G.5)

~v =
d~x
dt

⇒ d ~xN

dtN
= λV

d ~xM

dtM
, (G.6)

⇒ d ~xN = λLd ~xM ⇒ λLd ~xM

dtN
= λV

d ~xM

dtM
, (G.7)

⇒ dtN

dtM
=

λL

λV
= λT. (G.8)

tN Time period in the nature [s]
tM Scaled time period in the model [s]
λT Time scale [-]

G.2.3 Dynamic similarity

Dynamic similarity is the principle of similar scaling of all forces. A particle subjected
to a force at a certain in the model and in nature should thus be scaled similar between
all particles. As the other scales, the force scale is defined as,

λF =
FN

FM
. (G.9)

FN Force in the nature [N]
FM Scaled force in the model [N]
λF Force scale [-]
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G.2.4 Scaling considerations

In scaling a geotechnical experiment, both the soil and the water in the pores of the
soil volume should be considered. The soil can be considered as being a continuum in
which motion takes places, and is thus subject to obey Newtons 2nd law. The water
in the pore is a flow problem, where the permeability and the viscosity of the fluid
needs to be investigated. For the soil continuum, the scaling factors of the forces and
stresses can be found via the Cauchy’s Stress equations. The following formulation can
be derived by taking equilibrium of a continuum element and applying Newtons 2nd
law,

∂σij

∂xj
+ ρ gi − ρ

∂2ui

∂t2 = 0. (G.10)

Equation (G.10) can be formulated both in the model and in nature,

∂σij,N

∂xj,N
+ ρN gi,N − ρN

∂2ui,N

∂t2
N

= 0, (G.11)

∂σij,M

∂xj,M
+ ρM gi,M − ρM

∂2ui,M

∂t2
M

= 0. (G.12)

Introducing the stress scale λσ, the gravity scale λg and the density scale λρ analogous
to the other scales equation (G.11) is rewritten to,

∂σij,M λσ

∂xj,M λL
+ ρN λρ gi,M λg − ρN λρ

∂2ui,M λ2
L

∂t2
M λ2

T
= 0, (G.13)

⇒ ∂σij,M

∂xj,M
+

λL

λσ
λρ λg ρN gi,M −

λL

λσ
λρ

λL

λ2
T

ρN
∂2ui,M

∂t2
M

= 0. (G.14)

Comparing equations (G.12) and (G.14), a relation between the scaling factors can be
made,

λL

λσ
λρ λg = λρ

λL

λσ

λL

λ2
T
= 1. (G.15)

From equation (G.15) the stress scale and thereby the force scale can be derived as,

λσ = λρ λg λL ⇒ λF = λσ λ2
L = λρ λgλ3

L. (G.16)

The earlier defined time and velocity scale in equation (G.8) can be further expanded by
using equation (G.15),

λL

λσ
λρ λg = λρ

λL

λσ

λL

λ2
T
⇒ λT = λ

− 1
2

g λ
1
2
L , (G.17)

λV =
λL

λT
= λ

1
2
g λ
− 1

2
L . (G.18)

All the scaling factors derived from assuming the soil is a continuum is summarized in
table G.2.

The dissipation of pore water in the sand is a flow problem, and is thus characterized by
the permability of the soil and the viscocity of the fluid. Water flow through a medium
is described by Darcy’s law [Ovesen et al., 2009],

v = k i. (G.19)
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v Velocity of water flow [m/s]
k Hydraulic conductivity [m/s]
i Gradient of flow [-]

The hydraulic conductivity is a measure of the ability of certain fluid at a certain
temperature to flow through the soil with a certain permeability. The hydraulic
conductivity is a function of the geometric parameters of the soil and the viscocity
of the fluid,

k = K
γw

η
, η =

µv γw

g
⇒ k = K

g
µv

. (G.20)

K Permeability of soil [m2]
γw Unit weight of water [kN/m2]
µv Kinematic viscosity of water [N s/m2]
g Acceleration of gravity [m/s2]

The relation in equation (G.20) is valid as the flow in the soil is assumed to be
laminar, which causes the flow resistance to be proportional with the kinematic viscosity.
The kinematic viscocity of water is highly dependent of the temperature, and since
laboratory tests are often conducted at approximately 20◦C, whereas the groundwater
in nature is typically 7-10◦C, the difference in the viscosity of around 40% should be
considered. From equation (G.20) Darcy’s law can be written both for the nature and
the model,

vN = KN
gN

µv,N
, (G.21)

vM = KM
gM

µv,M
. (G.22)

Introducing the velocity scale for the water flow λV,f and the definition of the time scale
from equation (G.8),

vN = λV,f vM ⇒ λV,f =
λK λg

λµv

, (G.23)

λT,f =
λL

λV,f
=

λµv λL

λK λg
. (G.24)

The summary of all the derived scaling parameters are shown in table G.2.
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Parameter Derived scaling Used scaling

Length λL λL

Time λ
− 1

2
g λ

1
2
L λ

1
2
L

Velocity λ
1
2
g λ
− 1

2
L λ

− 1
2

L

Force λρ λgλ3
L λ3

L
Stress/pressure λρ λgλL λL

Time (flow)
λµv λL

λK λg
λL

Velocity (flow)
λK λg

λµv

1

Table G.2. Scaling parameters for the soil continuum and the pore water flow.

In table G.2 the derived scaling parameters and the actually used scaling parameters
differ from each other. In order to do a correct scaling of the results, it should be possible
to scale the acceleration of gravity, which is only possible in a centrifuge. Furthermore
the viscosity of the water and the grain size distribution and density of the sand is
not scaled correctly, which causes the scaling parameters of these to be neglected. The
consequence of the incorrect scaling is that the results from the lab tests can not be
directly extrapolated from the model to nature. This is however acceptable, since the
primary object of the tests is to investigate the pore pressure development and load
bearing capacity as a function of the loading velocity and not the numerical values of
either the pressure or the load capacity.
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H Step-wise Description of

Laboratory Work

This chapter contains a step-wise description of the laboratory work. The aim of the
chapter is to make it easy to re-create the tests later on. The chapter will contain both
descriptions and pictures of the phases in conducting the experiment.

H.1 Preparation of the sand volume

H.1.1 Applying a gradient

The first step of the test setup is to prepare the sand in the tank. To get the sand back
to a zero-state an upwards gradient of 0.9 is applied by letting water flow from a tank
situated above the water surface in the tank. The gradient is controlled with a nozzle as
shown in figure H.1.

Figure H.1. Controlling the gradient via a nozzle.

Since the sand layer has a thickness of approximately 600 mm a gradient of 0.9 equals
a pressure height of 0.55 m. At the nozzle a ruler is placed to measure this pressure
height. The measurement is relative to the actual water level in the tank, which is shown
when the nozzle is closed. To let water into the tank, the three nozzles in the bottom
of the tank needs to be opened as well. After the loosening of the sand the water level
in the tank should be approximately 60-70 mm above the sand. The water level can
be adjusted by either letting water flow out with the bottom valves or letting water in
through the side of the tank above the sand surface. When the water is let in above the
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surface of the sand a metal plate is placed on top of the sand to avoid washing away
sand at the inlet.

H.1.2 Vibration of the sand

The goal of the vibration procedure is to create a sand volume that is densely packed,
i.e. a relative density at around ID = 0.85. This is achieved by vibrating the sand in a
pattern previously determined by tests. 4 wooden plates are inserted into the tank, these
plates have circular holes numbered 1 and 2. Firstly all number 1 holes are vibrated,
secondly the number 2 holes. See figure H.2.

Figure H.2. The wooden plates used to control the vibration pattern.

The vibration is done with a vibration rod that is inserted slowly into the sand until a
depth marked on the cable of the vibration rod. The rod is then slowly pulled up from
the sand again. It is important that this is done slowly, in order to avoid pockets of air
in the sand. See figure H.3.

Figure H.3. Vibrating the sand.
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The gradient and vibration procedure may need to be redone twice, to thoroughly
prepare the sand. In this project it was found that applying a gradient, then vibrating
the 13 holes closest to the center, applying a gradient again and then vibrating all holes
showed good results.

H.1.3 CPT testing

After the vibration procedure 5 CPT tests are conducted. These tests are done both to
ensure the sand is vibrated properly both also to obtain the material parameters. From
the tests the soil parameters can be calculated as explained in Knudsen et al. [2013a].
The main parameter varying in the test is the relative density. The difference between
this should between all five CPTs not be greater than 0.10 and between 0.82 and 0.92. If
this is not the case, another gradient and vibration procedure must be carried out.

Figure H.4. The piston used for CPT and installation of the bucket.

The CPT is done using a piston mounted to the top of the tank, cf. figure H.4. The
piston is driven by a movable hydraulic compressor, cf. figure H.5. On the shaft of the
piston a rotatable girder is mounted, making it possible to conduct CPTs everywhere
in the sand volume. The first four CPTs are done in four positions at 90◦ intervals at
a radial distance of approximately 40 cm from the center. The last CPT is done in the
center of the tank. When conducting the CPT great care needs to be taken in order to
ensure that the CPT probe penetrates the soil completely vertical. In the test the position
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of the probe, i.e. the penetration depth, and the cone resistance is measured using the
Spider data acquisition box and the HBM Catman software.

Figure H.5. The hydraulic compressor.

The CPT probe mounted inside the tank is seen in figure H.6

Figure H.6. The CPT equipment mounted and ready for test in the center of the tank.
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H.1.4 Installation of the bucket

After the sand preparation is approved, the next step is to install the bucket and connect
all the transducers to the data acquisitions boxes. Firstly the bucket is lowered onto a
aluminum plate placed on top of the sand, this plate serves to distribute the weight of
the bucket and ensure no penetration happens. All the cables from the pore pressure
transducers are then lead through the holes off the tank, cf. figure H.7 and H.8. The
cables are tightened both inside and outside the tank with an o-ring and a bolt to ensure
the connections are hermetically sealed.

Figure H.7. The bucket placed on the aluminum plate, cables ready to be lead out of the tank.

Figure H.8. The holes in the tank for signal cables seen from the outside.

Once all the cables are tightened, the bucket is installed in the soil. This is done using
the same piston used to do the CPTs. Firstly the bucket is lifted off the aluminum plate,
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which is then removed, and then slowly step-wise installed into the sand. It is important
that the direction is adjusted, to make sure the direction of the tower is aligned with the
direction of attack of the actuator. The last few centimeters of the installation is crucial,
as the whole bucket is below the water surface. To avoid a large overpressure in the
pore water, the installation is done approximately one centimeter at the time. When the
installation is done, the tower is mounted as seen in figure H.9.

Figure H.9. Mounting the tower on the installed bucket.

When the tower installation is complete, the four displacement transducers are mounted
and connected to the Spider and the MOOG box. The bucket fully installed and
instrumented is shown in figure H.10.
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Figure H.10. The installed bucket with the displacement transducers visible.

H.1.5 Closing the tank and applying pressure

The last step of the setup is to seal off the tank and apply the 200 kPa of pressure.
Both hatches are attached with a rubber membrane, to ensure they are pressure proof.
The pressure is applied via a buffer tank, in which the pressure can be controlled. The
pressure in the tank is monitored until stable at approximately 200 kPa. The pressure is
then kept overnight, before the test can be conducted.

H.2 Test procedure

All the tests are conducted in the same manner, which is explained in the following
enumeration.

1. The actuator is in position +100 mm from the installation procedure.
2. The actuator is moved to position +50, for the wire to be tensioned and ready to

apply the forced displacement.
3. Dependent on test number, the forced displacement is applied at a certain velocity

with a total displacement of 150 mm. This leaves the actuator in position -100 mm.
4. The actuator is kept in position -100 mm for 5 minutes while the pore pressures

dissipate.
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5. After the 5 minutes, the actuator is moved forward to position -70 mm to release
the tension in the wire. The test is hereby concluded.

During the whole process all the signals are recorded with both the HBM Spider and
the MOOG TCU.
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I Correction of Displacements

This sections explains the calculations used to find the horizontal H, vertical V and
rotational displacement θ of the bucket from the three measured displacements v1, v2

and h1.

The movement of the bucket is assumed to be divided into three independent
components, namely a vertical, a horizontal and a rotational displacement. All the
three displacements will have a contribution on the measurements v1, v2 and h1. The
contributions are divided into the components to describe the geometric influence. This
will be explained in the following. In all the calculations the origin is positioned at O,
which is also the reference point of the displacements. The definition of sign is such that
an upwards vertical, a right-wise horizontal and a clockwise rotational displacement is
positive.

I.1 Influence with regards to rotation

The contributions to v1, v2 and h1 from rotation are explained using figure I.1. The
corrections are all found using vector algebra and simple trigonometry.

Figure I.1. Contribution from rotation only.

The front-most vertical measurement v1 in the initial state is the length of the line IB.
After the rotation θ the length increases to the length of ID. The length increment is a
part of the measurement from the transducer. The coordinates of B and I are known,
so the only unknown is the coordinates of D. As the length of OB is equal to OD, the
position of D can be found as,

Dx = |OB| cos(θ), (I.1)

Dy = −|OB| sin(θ). (I.2)
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The elongation v1,θ equal to |IB| − |ID| is found as,

v1,θ = |IB| −
√
(Ix − Dx)2 + (Iy − Dy)2. (I.3)

The same principle is used for v2. The position of the new point C is found as,

Cx = −|OA| cos(θ), (I.4)

Cy = |OA| sin(θ). (I.5)

The elongation v2,θ equal to |HA| − |HC| is found as,

v1,θ = |HA| −
√
(Hx − Cx)2 + (Hy − Cy)2. (I.6)

The calculation of the horizontal contribution is a bit more complicated. The point
F moves to G under the rotation θ. The movement has a vertical and a horizontal
component, which is found by inserting a coordinate system (x′,y′) where |OF| is
coincident with the y′-axis. The system (x′,y′) is a rotated version of (x,y) around
the origo with the angle α,

α = arctan
( |Fx|

Fy

)
. (I.7)

The absolute value is used, since the value of Fx is negative. The line OG has the same
length as OF, and the coordinates in the new system can thus be calculated using the
rotation of the bucket,

Gx’ = |OF| sin(θ), (I.8)

Gy’ = |OF| cos(θ). (I.9)

To get the coordinates in the (x,y) system a rotation formula is used,

Gx = cos(α) Gx’ − sin(α) Gy’, (I.10)

Gx = sin(α) Gx’ + cos(α) Gy’. (I.11)

The points E, F and G are now known. With the coordinates found the elongation h1,θ

equal to |EG| − |EF| is found as,

h1,θ =
√
(Ex − Gx)2 + (Ey − Gy)2 − |EF|. (I.12)

I.2 Influence with regards to vertical displacement

The influence is found using figure I.2.

136



A O B

IH

E F

J K

L

V

Figure I.2. Contributions to displacements from a vertical displacement only.

A vertical displacement of the bucket will have a direct influence on the vertical
displacement measurements. The horizontal displacement measurement will be affected
as shown in figure I.2. The length |EL| and the influence h1,V is found as,

|EL| =
√
|EF|2 + V2 ⇒ h1,V =

√
|EF|2 + V2 − |EF|. (I.13)

I.3 Influence with regards to horizontal displacement

The influence of the horizontal displacement is depicted in figure I.3.

A O B

IH

E F

M N

P

H

Figure I.3. Contribution from horizontal displacement only.
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The vertical measurements are affected by an elongation analog to the horizontal
displacement in the previous case. The lengths |HM| and |IN| and the influences v1,H

and v2,H is found as,

|HM| =
√
|HA|2 + H2 ⇒ v1,H =

√
|HA|2 + H2 − |HA|, (I.14)

|IN| =
√
|IB|2 + H2 ⇒ v2,H =

√
|IB|2 + H2 − |IB|. (I.15)

(I.16)

I.4 Summary of displacements

The derived expressions in the previous sections are put together to form a set of
equations that can be used to find H, V and θ.

h1 = H + h1,θ + h1,V (I.17)

v1 = V + v1,θ + v1,H (I.18)

v2 = V + v2,θ + v2,H (I.19)

The system involves three unknowns, namely the displacements H, V and θ. All the
equations are dependent on each other and are therefore solved by iteration. The
procedure is,

1. Establish a starting point of the displacements H0, V0, and θ0. Here they are set to
0.

2. Calculate updated displacements based on the initial values.
3. Evaluate the change in the values of H, V and θ. If change is below 10−3, the

iteration is done, otherwise repeat point 2.

The iteration used approximately 10-15 steps for each measurement.

The assumption that the corrections can be done component wise is in fact not entirely
accurate. As an example the horizontal wire transducer can be used. When a vertical
displacement has taken place, the wire is no longer completely horizontal and a change
in H will not directly give the same change in h1. The problematics is assumed to give
an error of approximately 1-2 %, which is deemed acceptable.
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J Additional Laboratory Results

This appendix will contain additional results compared to the ones showed in Knudsen
et al. [2013a]. The results are meant to supplement the findings in the article, and will
as such not be commented upon.

J.1 All Pressure Gauges for all Tests

The results are grouped in the inside and outside pore pressure gauges, with two plots
per tests.
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Figure J.1. Inside gauges test 1.
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Figure J.2. Outside gauges test 1.
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Figure J.3. Inside gauges test 2.
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Figure J.4. Outside gauges test 2.
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Figure J.5. Inside gauges test 3.
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Figure J.6. Outside gauges test 3.
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Figure J.7. Inside gauges test 4.
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Figure J.8. Outside gauges test 4.

140


	Titlepage
	Summary
	Summary in Danish (Sammendrag)
	Table of contents
	Main Content
	Introduction
	Article 1 - Determination of p-y Curves for Bucket Foundations in Sand Using Finite Element Modeling
	Article 2 - Implementation of a Stress-dependent Strength Material Model in PLAXIS 3D
	Article 3 - Small-scale Testing of Bucket Foundations in Sand
	Conclusion
	References

	Appendices
	Appendix
	Convergence and Test of Physical Domain in PLAXIS 3D
	Additional p-y Results
	Mathematical Formulation of the New p-y Curves
	Hardening Soil Small Strain material model
	Implementation of a UDSM in PLAXIS
	Source Code for UDSM
	Laboratory Details
	Step-wise Description of Laboratory Work
	Correction of Displacements
	Additional Laboratory Results


