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This master thesis deals with air per-
meable concrete as a promising passive
cooling solution for office buildings, of-
ten requiring cooling in daytime and heat-
ing during night. Thermal mass can be
used to equilize the loads, store heat and
dampen temperature fluctuations, how-
ever traditional concrete not very effi-
ciently due to poor heat transfer at the
surface, poor heat conduction in the ma-
terial and a short cycle period. Permit-
ting air transport through the material is
seen as a promising approach towards en-
hancing the heat transfer and utilising the
entire thermal mass.

Measurement of fundamental properties
were conducted on several concrete speci-
mens with reference to a parameter vari-
ation - density, compressive strength and
permeability. From the results two well-
performing cases were subjected to energy
performance measurements - thermal con-
ductivity, specific heat capacity and heat
exchanger efficiency. The main finding
was the result of the heat exchanger effi-
ciency, which states that this type of con-
crete is suitable for operating in daily cy-
cles in an office building. A numerical
model was developed to predict the tem-
peratures profiles in the concrete over time
and to compare with the measurements.
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Synopsis:

The following master thesis presents a study of
traffic-induced vibration problems. The main
body of the thesis consists of three articles.
The first article, A fully coupled finite-element
model for prediction of traffic-induced vibration
in buildings, presents methods for constructing a
finite-element model for estimating vibration in
buildings caused by traffic. The finite-element
model includes a two-storey frame building, a soil
body and a moving vehicle. Different approaches
for coupling of the systems are presented and an
example is provided.
The second article, Parameter studies of traffic-
induced vibration using a finite-element model,
contains the outcome of a parameter study using
the finite-element model described in the first
article. The study presents an analysis of how
different parameters such as surface composition,
vehicle properties and soil stratification influence
the generation of vibrations.
The third article, Considerations concerning
finite-element modelling of traffic-induced vibra-
tion, concerns aspects regarding dynamic inter-
action effects and quantifies the consequences of
treating the systems as decoupled. Futhermore
a three-dimensional finite-element model is con-
structed and a qualitative comparison is made
with the two-dimensional model.
The three articles are accompanied by a project
review and a background report containing the
main considerations during construction of the
models.

Content of the report is freely available, but publishing
with source references only allowed after agreement with the authors.





Preface and reading guide

The thesis is divided into three parts: an article collection, a project review and a background
report. The background report is meant as an appendix and contains considerations made during
the construction phase. Each of the three articles can be read independently of the others. Hence,
some repetitions may be expected.

Within the articles, background report and project review, references will appear, and these will
be collected in a bibliography in the back of each paper. Sources are presented when it is relevant
using the Harvard method, where a source in the text is referred to as [Surname, Year]. If there is
more than two authors, the first is mentioned while the remaining are indicated by ’et al.’. If the
same author appears several times, the surnames will also be alphabetically ordered. A reference
leads to the bibliography, where books are listed with author, title, edition and possible publishers,
while websites are indicated by author, title and the date where it is used.

Figures and tables are numbered according to sections/chapters. Thus, the first figure in Section 3
is number 3.1, the second is number 3.2, etc. Explanatory text for figures and tables, can be found
under and above the given figures and tables, respectively. Formulas, equations and expressions
are indicated by number in parentheses, where the numbering is similar to figures and tables. All
written material can be found in the enclosed DVD.

Kristian Smedegaard Bach Morten Møller Elmholt Michael Vigsø
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Abstract

Traffic-induced vibration in an urban environment can be an issue for neighbouring buildings and
residents. Modifications in the pavement or construction of speed bumps may induce inconvenient
vibration and in rare cases cause damage in buildings. Today’s methods, used for estimation of
vibration from traffic, are mainly based on empirical knowledge and are relatively insecure. In
the literature several examples can be found in which traffic-induced vibration and the response
in nearby buildings are modelled numerically. However, no distinct consensus appears in the way
the models are constructed, and the uncertainties are generally significant. The following master
thesis with the title Numerical Analysis of Traffic-Induced Vibration deals with the construction
of a dynamic finite-element model for simulation of traffic-induced vibration. The model includes
a vehicle, a road, a soil body and a building.

A plain two-dimensional finite-element model of a soil body with absorbing boundary conditions is
constructed and a two-storey building is attached. A generic vehicle model is developed in which
the wheels and the suspension system are modelled as discrete spring-dashpot-mass systems. Two
types of surfaces are considered for the road: a plane surface with different types of speed bumps
and a cobblestone pavement defined by stochastic parameters. The interface between the vehicle
and the soil body is modelled using Mindlin beam elements supported by interface elements and
Kelvin foundations.

A key issue in the project is to examine the interaction effects between vehicle and soil body and
between soil body and building. The interaction between vehicle and soil body is modelled in
the time domain using three different time integration schemes: A decoupled, an explicit and an
implicit scheme. The interaction between soil body and building is modelled by including the
finite-element model of the soil body and the building in the same system.

The parameters included in the model are calibrated for a reference case in which a three-axel
vehicle similar to a Scania City bus runs across a soil of silty clay. A parameter study is conducted
in order to clarify, which parameters are essential for the magnitude of the vibration in the building.
Studies are performed for both speed bumps and cobblestone pavements. The necessity of coupling
between the individual sub parts of the model is examined by conducting simulations for both a
coupled and a decoupled model. Ultimately a three-dimensional model is developed for comparison
in order to investigate whether a two-dimensional model is applicable for simulation of the three-
dimensional vibration problem.





Resumé

Vibrationer fra trafik i bymiljøet kan belaste de omkringliggende bygninger og genere beboere.
Ændringer af vejbelægning eller etablering af fartbump har i visse tilfælde vist sig at skabe
uhensigtsmæssige vibrationer eller i specielle tilfælde forårsaget skade på bygninger. De nuværende
metoder til at estimere belastningen fra trafikvibrationer baserer sig i høj grad på empiri og
er relativt usikre. I litteraturen findes flere eksempler på, hvordan trafikvibrationer og disses
indvirkninger på bygninger kan modelleres numerisk. Der ses dog ikke nogen konsensus omkring
metoder for at opstille disse modeller, samtidig med at usikkerheden i modellerne er relativ stor.
Dette afgangsprojekt med titlen Numerisk Analyse af Trafikinducerede Vibrationer omhandler
derfor opstillingen af en koblet dynamisk finite element model med køretøj, vej, jordlegeme og
bygning for beregning af vibrationer fra trafik.

En plan finite element model af et jordlegeme med absorberende randbetingelser opstilles med en
bygning modelleret som en toetages rammekonstruktion, hvor fundamentet er sammenkoblet med
jorden. En generisk køretøjsmodel opstilles, hvor både hjul og affjedringssystem modelleres med et
diskret fjeder, dæmper og masse system. Vejbelægningen kan opbygges som enten en flad overflade
med flere typer af fartbump, konstrueret efter Vejdirektoratets anvisninger eller som en stokastisk
model af en brostensbelægning. Grænsefladen mellem vejbelægning og jordlegeme opbygges af
bjælkeelementer, som understøttes delvist interfaceelementer og Kelvin-understøtninger.

En central del af projektet omhandler koblingen mellem køretøj og jordlegeme og mellem
jordlegeme og bygning. Interaktionen mellem køretøj og jordlegeme evalueres i tidsdomænet
ved hjælp af tre forskellige fremgangsmåder: en dekoblet, en eksplicit og en implicit metode.
Interaktionen mellem jordlegeme og bygning modelleres ved at koble bygningens fundament
sammen med jordlegemet.

Parametrene der indgår i modellen kalibreres til et referencetilfælde, hvor en treakslet Scania bus
passerer et jordlegeme af siltet ler. Et parameterstudie udføres for at belyse hvilke parametre,
der er essentielle for ændringer i det oplevede vibrationsniveau på første sal af en bygning, når
en bus passerer et fartbump eller en brostensbelægning foran bygningen. Nødvendigheden af at
modellere koblingen mellem de forskellige dele af modellen undersøges ved at dekoble de enkelte led
af modellem og sammenligne resultaterne med den samlede model. En tilsvarende tredimensionel
model af problemet opstilles for at undersøge begrænsningerne i at anvende en todimensionel
model.
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Introduction

Sound and vibration is one of the major fields within civil engineering. Mechanics, signal processing
and electrical engineering are only a part of the subjects in which the theory of waves and
propagation constitute the principal matter. The majority of vibration propagating around us
are insensible to human beings due to the frequency of the waves. Typically, the acoustic range
is defined from 20 Hz to 20 kHz, and frequencies below and above are denoted infrasound and
ultrasound, respectively. Especially ultrasound is utilized in a wide range of applications such as
human medicine and ultrasonic testing, see Figure 1.

The detection of sound and vibration depends on both the frequency and the magnitude of the
oscillations. The magnitude of oscillations is typically described based on a reference value using
the decibel scale. For sound, a decibel level of 40 is comparable to the noise of rain drops, while a
decibel level of 110 can be experienced at a rock concert [Grand, 2013]. The perception of sound
and vibration is highly depended on the affected person. However, for extreme cases such as in
Figure 2, the oscillations are generally unpleasant.

Vibrations from earthquakes are unusual events in the northern part of Europe. In Denmark,
vibration problems are typically caused by construction work such as pile driving or from heavy
vehicle traffic. Traffic-induced vibrations can be generated if a vehicle crosses an irregularity in the
road. Irregularities such as man holes, speed bumps and cobblestones are the most common causes
of vibrations. In practical engineering, issues regarding vibration from traffic and construction work
are typically dealt with in a non-precautions manner. The procedure is to monitor the vibration
of nearby structures and take action if the vibrations exceed a critical level.

The method is generally inexpedient as a vibration problem may not be discovered before the
relevant project is completed. The cobblestone pavement at Boulevarden in Aalborg is an
example of this. In 2005 the asphalt pavement was replaced by a relatively expensive cobblestone
pavement from China, see Figure 3. Boulevarden is used for public transportation and the bus
transport induced vibrations in the surrounding shops and cafes. The municipality received several
complaints from the residents of neighbouring buildings, and after some time the problems were
described and discussed in the local media. In 2008 the cobblestones were removed for most of the
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Figure 1. Application of ultrasound: (left) medical scanning of fetus [UPMC, 2013], (right)
ultrasonic testing of pipeline [NDT, 2013].
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Figure 2. Extreme oscillations: (left) jet plane breaking the sound barrier [US, 2013], (right)
consequences from earthquake in the philippines [NBC, 2012].

stretch and the asphalt pavement was reconstructed [Nordjyske, 2012]. The expenses connected to
the episode were comprehensive and could possibly have been avoided if a dynamic analysis of the
problem had been conducted in the design phase. The case from Aalborg has served as inspiration
for the following project description.

Project Description

The project investigates traffic-induced vibration through road and soil, and analyses the effect for
persons in neighbouring buildings. A two-dimensional dynamic finite-element model is constructed
to include vehicle, soil and building in a single coupled model in order to investigate the interaction
effects between the different modules. Different litterature, current models and practice are
outlined and compared with the finite-element model in order to examine whether or not, it is
necessary to use a coupled model, or the different modules, vehicle, soil and building can be
modelled separately.

Figure 3. Photo from Boulevarden in Aalborg.
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Project Review

The following chapter provides a brief review of the project based on the individual parts including
three articles, a background report and electronic material. The articles are reproduced in this
paper, while the background report can be read from the enclosed DVD along with the electronic
material. Although the three articles can be read separately, the following order is recommended
in order to achieve a chronological impression.

Article # 1

The article denoted A fully coupled finite-element model for prediction of traffic-induced vibration
in buildings contains a detailed description of the model developed for simulation. The three-
dimensional problem is simplified to a two-dimensional model containing a vehicle, a road, a soil
body and a building, see Figure 4. Each sub part of the model is described and the selected element
types are outlined.

Figure 4. (left) Plane view of the 3D problem, (right) Simplified 2D model used for simulation.

The vehicle travels with constant velocity across the surface of the road and it is therefore
insufficient to assemble a single system matrix. The simplest method, to implement the motion
of the vehicle, is to use two separate independent systems in which forces from the vehicle are
inserted as external forces on the road. Consequently, the simple method does not account for
interaction between the moving vehicle and the deforming road. In order to evaluate the effect of
interaction, two time integration schemes are developed. An explicit scheme using two interacting
system matrices and an implicit scheme in which the system matrices are updated continuously.

Two types of surface irregularities are considered in the articles. Three different types of speed
bumps, described deterministically, and a cobblestone pavement, described stochastically are
analysed. In the first article, the speed bumps are considered and it is found that a trapeze
shaped speed bump causes higher vibrations in neighbouring buildings compared to sinus and
circle bumps. The sinus bump resulted in lower vibrations in the building but also in the vehicle,
whereby the bump is less effective as a speed limiting precaution. In Figure 5 a snapshot is given
from a simulation with the trapeze bump.
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Figure 5. Snapshot from simulation with trapeze bump.

Article # 2

In the article denoted Parameter studies of traffic-induced vibration using a finite-element model
the model described above is used to quantify the influence on vibration for different parameters. In
order to quantify the vibrations, simulations are conducted in which accelerations at the first floor
of the building are measured. Residents in the building will be exposed to whole-body vibrations
which can cause discomfort at high levels. The maximum transient vibration value based on the
frequency weighted running root mean square acceleration is used as a quantitative measure of the
vibration.

The surface profile of a cobblestone pavement is considered in the study. Due to similarity of
the cobblestones, resonance can occur in both the vehicle and in the building. Simulations are
conducted in which the velocity of the vehicle is calibrated to match different critical frequencies,
e.g. the natural frequency of the floor division in the building or the frequency causing resonance
in the axels of the vehicle. The studies demonstrate that parameters such as the variation in
cobblestone length and the damping ratio of the vehicle are essential to the amplification of
vibration while the properties of the soil body have a secondary influence.

Article # 3

The third article Considerations concerning finite-element modelling of traffic-induced vibration
deals with the validity of the finite-element model. Several simplifications are made when the
real-case scenario is approximated by the model in Figure 4. Some of the more comprehensive
simplifications are the assumptions regarding soil behaviour and homogeneity, the lack of shell
elements in the building and the transition from three to two dimensions. The effect of the
simplifications can in most cases be diminished by increasing the complexity of the model at the
cost of computation time.

An improvement is made compared to similar studies as the effects of interaction are implemented.
Interaction between vehicle and road has shown to be significant in case of wide span bridges but
in the case of a soil-supported road the effects have shown to be negligible. Deviations between the
interaction method and the simple method using separate systems only appear for unrealistically
soft soil. However, the interaction effects between the soil body and the building have proven to
be significant, especially for soft soil types.

In the second part of the article, a three-dimensional (3D) model is constructed to simulate the
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Figure 6. 3D model used for evaluation of the 2D model.

vibration problem, see Figure 6. In general the 3D model requires a vast amount of computational
power compared to the two-dimensional (2D) model and it is therefore unsuitable for parameter
studies. The scope of the study has been to evaluate the deviations between the two models and
to assess whether or not the 2D model is applicable for simulation of traffic-induced vibration.
Based on simulations of similar cases in both models it has been found that the amplitudes of the
vibrations are overestimated significantly in the 2D model. However, the change in vibration due
to a change in a parameter is comparable for the two models, whereby the 2D-model is applicable
for parameter studies.

Background Report

The primary scope of the background report is to validate the individual sup parts of the finite-
element model and to elaborate the theory behind it. The chapters in the report and the content
within are outlined in the following.

Vehicle Model

The system matrices for the vehicle are derived and relevant assumptions are described. The
procedure for implementation of movable supports are explained and a simulation is conducted.

Vehicle-Road Interaction

The system matrices for the Bernoulli beam finite-element are presented and the procedure for
nodal interpolation is explained. A numerical model of a simply supported beam is constructed and
static deformation and frequencies of eigenvibrations are compared to analytical expressions. The
use of a surface profile is introduced and the computational procedure for modelling the contact
surface between wheel and road is described. The two methods of implementing the interaction
are explained and a simple example is conducted for a single-degree-of-freedom vehicle crossing a
bridge.

Soil-Building Interaction

The chapter contains a detailed description of the simulations supporting the first part of article
3. Deviations between the interaction procedures are quantified for different soil properties.
Three different procedures for evaluating the natural frequencies of the building are presented



and evaluated. Simulations are conducted in which the soil body and the building are modelled
both coupled and decoupled.

Two-dimensional elements

The properties and the system matrices for the quadrilateral eight-noded continuum elements
used in the model are presented. To validate the elements a cantilever beam is modelled and static
deformation and frequencies of eigenvibrations are compared to analytical expressions. A more
complicated case is set up in which a harmonic line load acts at the top of a soil body. The same
analysis is performed in Plaxis and the results are compared both with and without transmitting
boundary conditions.

Transmitting Boundary Conditions

The theory behind transmitting boundary conditions in a finite-element model is explained and
the procedure for implementation during assembly of the system matrices is described. The
functionality of the boundaries is tested using simple models in which pure shear and pure pressure
waves are generated. A model with layered soil is created and the reflection at the stratum interface
is compared to expectations based on the impedance mismatch.

Frequency Domain Solution

The procedure for solving dynamic problems in the frequency domain is outlined. An analysis is
conducted in which the response of a simply supported beam is calculated in the time domain and
in the frequency domain. A soil body subjected to a harmonic load is evaluated in the frequency
domain as an additional validation of the boundary conditions.

Road Elements

The road is supported by Kelvin supports and interface elements. The analytical solution for the
Kelvin foundation is compared to a numerical model with transmitting boundary conditions. A
similar model is constructed in which the Kelvin supports are replaced by interface elements. The
stiffness matrix for the three-noded Mindlin element is derived and validated using a convergence
analysis.

Three-dimensional elements

The system matrices for the 26-noded quadrilateral element are presented. A cantilever beam
is constructed and the static response is compared to analytical expectations. A study of the
geometrical dissipation of waves is performed. The setup for simulation of the traffic-induced
vibration problem is described.

Evaluation of Vibrations

The concept of frequency weighting of vibrations is explained and the procedure for application of
one-third octave bands is presented.

Electronic Material

The electronic material can be found in the enclosed DVD at the back of the report. The main
part of the material consists of the program codes for the two-dimensional finite-element model.
Additional independent programs are included as well, such as programs for evaluation of vibration,
calculation in the frequency domain and simulation using the three-dimensional finite-element
model. An overview of the main program and some of the independent programs is included in
the Program Review.
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A fully coupled finite-element model for prediction of
traffic-induced vibration in buildings

Kristian S. Bach Michael Vigsø Morten M. Elmholt
Lars V. Andersen

Department of Civil Engineering, Aalborg University, Aalborg, Denmark

Abstract

In practical engineering, issues regarding vibration caused by traffic or construction work are usually dealt with in a non
precautious manner. Vibration monitors are attached to the foundations of sensitive structures and alarms are activated
at high accelerations. The method is unsafe due to the chronology of events and the necessary number of monitors
may be comprehensive in densely populated areas. In order to estimate the vibrations from traffic, a two-dimensional
finite-element model is constructed, containing models of a vehicle, a road, a soil body and a building. The interaction
between the vehicle moving with constant velocity and the road beneath can be implemented in two ways: An explicit
method where the two systems are treated separately with a time shift and an implicit method where the system matrices
are joined and updated for each time step. Relevant assumptions and considerations are discussed and examples are
presented with a three-axel bus passing different speed bumps.

1 Introduction

Vibrations from traffic can be generated from vehicles
crossing speed bumps or rough pavements. The vibra-
tions propagate in the surrounding soil and cause excita-
tion in structures, and in critical cases the exitations can
be uncomfortable for residents or cause damage to struc-
tures. Several studies, experimental as well as analytical,
have been performed in order to quantify the issue of vi-
bration.

In the article by Watts and Krylov, (1999), field studies
of different vehicles crossing speed bumps are compared
to analytical predictions in order to develop recommen-
dations for the design and positioning of speed bumps.
The article focuses on ground vibrations only, while a
study by Hunaidi et al., (2000) includes the propagation
in the structure as well. The article presents a field study
in which the dynamic pavement loads and vibrations are
measured for two transit buses with different characte-
ristics. The experiments revealed that, even though the
dynamic pavement loads and the frequency response for
loads in the ground were different for the two vehicles,
the vibration response in the structure was less signifi-
cant.

Figure 1: Illustration of problem with traffic-induced vibration.

A pure analytical approach is applied in the article by
Mhanna et al., (2011). A four-degrees-of-freedom vehi-
cle runs across different speed bumps whereafter the load
response at the surface is applied to a three-dimensional
(3D) finite-difference model. A parametric study is con-
ducted, revealing that low vehicle speed, a moderate
slope on the speed bump and an elastic suspension sy-
stem can reduce the vibrations. The model, however,
does not include a structure. In the study by Fiala et
al., (2006) a numerical model is constructed to simulate
the vibrations from a high speed train passing a multi-
story portal frame office building. Forces from the vehi-
cle are transmitted to the soil which is modelled using a
3D boundary element formulation. The building is mod-
eled separatly by applying deformations at the founda-
tion. The model is used to evaluate the effect of different
isolation types.

Except for the field study by Hunaidi et al., (2000),
the studies described make use of decoupled systems,
in which the vehicle, the soil and the structure are con-
sidered separately. However, in the article by Hunaidi
et al., (2000), it was demonstrated that the interaction
between the soil and the structure had a significant in-
fluence for the response. In an article by Henchi et al.,
(1997) regarding bridge vibrations it is explained how a
coupled system in which the bridge and the moving ve-
hicle interact can be constructed. The model revealed
that differences between the coupled and the uncoupled
system occurred at low vehicle velocities. In the study
by Fiala et al., (2006) it is stated that decoupling of soil
body and building is an appropriate simplification solely
for cases, in which the soil body is significantly stiffer
than the building.

The aim of this article is to construct a finite-element

1



(FE) model in which a moving vehicle, a soil body and a
structure are included and interact. Each sub part of the
model will be presented in Section 2 and possibilities of
variation are discussed. In Section 3 two methods to in-
clude the interaction will be explained and implemented
with the necessary precautions. The vibrations are ge-
nerated due to irregularities in the surface profile. Two
profile types, speed bumps and cobblestone pavements,
are implemented and will be described in Section 4. To
demonstrate the use of the model, examples with three
different speed bumps are conducted. The setup for the
simulations are described in Section 5 and the results are
analysed in Section 6. In other words the aim of the arti-
cle is to model the problem illustrated in Figure 1.

2 The Finite Element Model

The model is programmed in MatLab and consists
of one- and two-dimensional finite elements assuming
plane strain in the ground and beam bending in the road
and building. The problem is dynamic due to the moving
vehicle as illustrated in Figure 2. The model is intended
for a parametric study and therefore contains a range of
variation possibilities. The depth of the soil body, the
road and the building is set to one meter out of the plane.
In general a significant error is made regarding the wave
propagation when the three-dimensional problem is sim-
ulated using a two-dimensional model. The influence of
the error is discussed in Section 6.

2.1 The Vehicle

The vehicle model is constructed with inspiration from
Henchi et al., (1997). Each axel is modelled using two
pairs of viscoelastic springs and dashpots representing
the mechanics of the tyres and the suspension system,
respectiely. The rest of the vehicle is modeled as a rigid
rectangular body which can rotate a translate vertically,
see Figure 3. The vehicle moves horizontally at a con-
stant speed, i.e. without acceleration.

The number of axels is denoted A and the mass of the
system is lumped. All tyres are assumed to have the
same properties k1 and c1 and the same assumption is
made for the suspension system. In the case with a three-

Figure 2: Finite-element model of the problem in Figure 1.
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Figure 3: Dynamic model of three-axel vehicle.

axel vehicle, the system matrices are given by:

Mv =




m1 0 0 0 0
0 m1 0 0 0
0 0 m1 0 0
0 0 0 m2 0
0 0 0 0 J




, (1)

Kv =




k1 + k2 0 0 −k2 k2 · r1
0 k1 + k2 0 −k2 k2 · r2
0 0 k1 + k2 −k2 k2 · r3

−k2 −k2 −k2 3 · k2
3
∑

i=1
−k2 · ri

k2 · r1 k2 · r2 k2 · r3
3
∑

i=1
−k2 · ri

3
∑

i=1
ri · k2 · ri


 . (2)

The damping matrix Cv is constructed similar to the
stiffness matrix. Generalization to more complex vehi-
cles, e.g. with more axels, is straightforward. The pa-
rameters in the system matrices can be determined ex-
perimentally for the individual vehicle. If no informa-
tion is available concerning the stiffness and damping
coefficients, the parameters can be calibrated from the
following assumptions:

1. The value of k1 is five times higher than the value
of k2.

2. The damping matrix is stiffness proportional.

3. The vehicle has a damping ratio of 0.40 in the first
eigen mode.

4. The driver will experience an acceleration of 0.65 g
when the vehicle crosses a speed bump at the nom-
inal speed.

The damping ratio for a vehicle is typically in the range
of 0.20 - 0.80 according to (Dixon, 2007). A high damp-
ing ratio improves the handling, while a low damping ra-
tio makes the ride more comfortable. It is assumed that
the lower edge of the tyre is connected to the surface at
any time. Hence, the external forces on the vehicle can
be calculated from:

Mvẍ+Cvẋ+Kvx = CvUẏ(t)+KvUy(t), (3)

where y(t) and ẏ(t) denote the surface elevation and
the rate of change in surface elevation at the three ax-
els, respectively. U expresses the quasi-static response
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Figure 4: Eight noded quadrilateral elements and TBC.

to movement of a support and will be a five times three
matrix in the case with five degrees of freedom and three
movable supports.

If the surface is considered to be fixed, the vehicle-
road interaction forces (surface forces) can be calculated
from the relative compression and rate of compression
of the tyres:

fi = k1 (xi− yi)+ c1 (ẋi− ẏi) , i = 1,2, ..,A. (4)

In case of a movable surface, the relative movement of
the surface is included in the equation, see Section 3.

2.2 The Soil Body

The vibrations generated by the vehicle will propagate
in the soil and into the structure. The soil is modelled
using rectangular eight-noded quadrilateral elements as
illustrated in Figure 4. Transmitting boundary conditions
(TBC) are applied at the submerged boundaries to simu-
late the properties of an infinite half space. The proce-
dure described by Lysmer and Kuhlmeyer, (1969) is used
to implement the boundaries and it is assumed that waves
propagate perpendicular to the boundaries. Hereby, the
accuracy of the boundaries depends of the position of the
vehicle. However, it is found that the reflection is gene-
rally insignificant.

The effect of the boundaries are illustrated in Figure
5. A harmonic vertical line load is applied at the center
of the surface of a rectangular soil body. The stationary
response is calculated from the frequency domain solu-
tion with and without transmitting boundary conditions.

2.3 The Road

In order to simulate the effect of pavement and subgrade,
a beam layer is constructed supported by springs and

f = 1 Hz f = 5 Hz f = 10 Hz

W
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C

W
ith

ou
t
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B

C

Figure 5: Stationary response at different load frequencies.

dashpots. As illustrated in Figure 2, soil elements are
included at the center of the model only, while the road
is extended in both directions. The length of the road is
increased to ensure that initiation effects in the vehicle
are removed before the vehicle reaches the building. By
reducing the soil body in the model, the computational
cost is reduced and it is estimated that the vibrations ge-
nerated outside the modelled soil body are negligible.

The subgrade outside the soil body is supported by a
Kelvin foundation, cf. Andersen, (2006). The properties
of the Kelvin foundation are calibrated to approximate
the properties of the soil body. This is done by adding
stiffness and mass to the road corresponding to a soil
column with a height of h/2, where h is the height of the
soil body. The simplification is inaccurate but in general
the properties of the Kelvin foundation are insignificant
in connection to the vibration in the building. At the
soil body the forces generated by the vehicle are trans-
mitted to the soil through interface elements. The inter-
face elements each contain six nodes with vertical de-
grees of freedom only. As illustrated in Figure 6, linear
and quadratic shape functions are used in the vertical and
horizontal directions respectively. An issue arises as the
interface elements in contrast to the Kelvin foundation
does not contribute to the rotational stiffness. The prob-
lem, however, can be diminished by refining the mesh.
A spurious mode may occur when nonconforming beam
elements of cubic order are connected to continuum el-
ements with quadratic shape functions as illustrated in
Figure 7. The spurious mode can be prevented by apply-
ing Mindlin beam elements with quadratic shape func-
tions cf. Cook et al., (2002). Mindlin beams are derived
by separating the stiffness matrix in a contribution from
bending and a contribution from shear:

Us =
∫ ∫ L

0

1
2

Gγ2
zxdx dA, (5)

Ub =
∫ ∫ L

0

1
2

Eε2
x dx dA. (6)

U denotes the element strain energy while E and G de-
note the elasticity and shear modulus respectively. The
mass matrix is derived in the same manner as for the
Bernoulli beam elements.

At both edges of the road, transmitting boundaries are
applied according to Andersen, (2006). Section forces

Linear int.

Quadratic int.

Figure 6: Six noded interface element.
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Bernoulli Mindlin

Figure 7: Spurious mode occurring with Bernoulli beam elements
(left) but prevented with Mindlin beam elements (right).

are applied to represent the external beams. The bound-
ary section forces are defined by:

[
Qb(t)
Mb(t)

]
= Kb

[
ub(t)
θb(t)

]
+Cb

[
u̇b(t)
θ̇b(t)

]
. (7)

Here, ub and θb represent the displacement and rotation
at the boundaries, respectively. The boundary stiffness
and damping matrices are calibrated to a circular load
frequency ω1. Partial reflection will occur at circular fre-
quencies differing from ω1.

2.4 The Building

The building is constructed using Bernoulli beam ele-
ments and in consideration of a future parametric study,
a number of variation possibilities are incorporated. The
geometry, the material properties of different sections
and the structural system can be adjusted. Due to the
relatively high stiffness of the foundation compared to
the soil it has been found that spurious modes are un-
likely to occur in the connection between soil body and
building.

3 Model Interaction

The simplest way to implement a moving load is to con-
sider the vehicle and the soil separately by running the
vehicle across a fixed surface and afterwards apply the
reaction forces to the road. This method, however, does
not account for movements in the road which may influ-
ence the response of the vehicle. The interaction can be
implemented by an explicit or implicit procedure.

3.1 Explicit Time Scheme

In the explicit scheme the vehicle and the road models
are considered separately but the original surface is up-
dated in every time step. The procedure is described in
the following six steps:

1. The original surface profile is used in the first time
step.

2. The equation of motion is solved for the vehicle
model.

3. The reaction forces on the road are calculated.

4. The equation of motion is solved for the stationary
part of the model, i.e. the road, the soil body and
the building.

5. The displacement of the road is added to the origi-
nal surface profile.

6. Steps 2 - 5 are repeated for the next time steps using
the updated surface profile.

The procedure is relatively simple to implement in
a time integration scheme, and shape functions can be
used to interpolate nodal reaction forces or internal dis-
placements for time steps, in which the axels are posi-
tioned between element nodes. The main disadvantage
of the procedure is that a time shift occurs as the re-
sponse of the vehicle is calculated before the displace-
ment of the road is known, which in some cases causes
instability in the calculations. Furthermore the evalua-
tion of shape functions in every time step can increase
the computation time significantly.

3.2 Implicit Time Scheme

In the implicit scheme the vehicle and the road are con-
sidered as a connected system whereby the two system
matrices are joined. The unification of the system matri-
ces is straightforward for the mass matrix:

M =
[

Ms 0
0 Mv

]
. (8)

The subscript s refers to the stationary part of the model.
The interaction between the systems is represented in the
stiffness matrix which can be separated into two parts in
which the second array contains the interaction:

K =
[

Ks 0
0 Kv

]
+
[

NT k1N −NT k1
−Nk1 0

]
, (9)

where, N is the shape function for the road elements.
N is evaluated for the position of every axel in the cur-
rent time step. The damping matrix can be assembled
in a similar manner. As in the explicit scheme shape
functions are used to calculate the contribution to the
stiffness matrix when an axel is positioned between ele-
ment nodes. The system matrices change as the vehicle
crosses the surface and need to be updated by evaluating
N in every time step. The external forces in the system
are determined from the surface roughness:

f(t) =
[
−NT (k1 ·y(t)+ c1 · ẏ(t))
KvU ·y(t)+CvU · ẏ(t)

]
. (10)

The implicit scheme operates with a single system ma-
trix whereby the issue regarding the time shift is elim-
inated and the method has generally shown to be more
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stable than the explicit scheme. For models consisting
of a limited amount of degrees of freedom, e.g. a vehi-
cle on a bridge, the computational time is significantly
reduced compared to the explicit time scheme. How-
ever, when applying a soil body, the computation time
increases substantially. The reason is that inversion of
the system matrices is used in the Newmark time inte-
gration algorithm and has to be repeated in every time
step as the system matrices change. This operation has a
high computational cost for large matrices.

In general the implicit time integration scheme is as-
sessed to be more reliable and elegant compared to the
explicit scheme.

4 Surface Profile

Vibrations are generated as the vehicle crosses an un-
even surface. The unevenness may be a result of speed
bumps, cobblestones or simply small irregularities in the
road due to lack of maintenance and cracks, as described
by Nielsen and Kirkegaard, (1999). In articles such as
(Kønigsfeldt, 2005), (Sønderup, 2008) and (Grønvald,
2013) it is described how vibrations due to the mentioned
surface profiles have caused discomfort and sleep dis-
turbances for residents. The surface profiles for speed
bumps and cobblestone pavement are included in the
program.

4.1 Speed Bumps

The implemented speed bumps are designed accord-
ing to Danish regulations. Proclamations are given in
(Retsinformation, 2002) while recommendations for ap-
proved speed bumps can be found in (Vejdirektoratet,
2009). The circle, the sinus and the trapeze bump are
considered to be the most frequently used and will be in-
cluded. The design of the speed bump is modified to the
desired speed limit and in Figure 8 the three bump types
are illustrated for a speed limit of 40 km/h. Details on
the geometry of the speed bumps can be found in Table
1. The curve of the sinus bump corresponds to half a
period.

If the contact surface between the wheel and the road
is assumed to be a point, the vehicle will be subjected
to unrealistically high accelerations at the beginning of
the bump, due to the high gradient. In reality the contact
surface is likely between 10 and 20 cm depending on the
size of the tyre and the level of inflation. In order to
account for this effect, the surface profile is smoothened
using a moving average filter. The effect of a 15 cm filter

Table 1: Geometrical values of the speed bumps.

Bump type Circle Sinus Trapeze

Height 0.1 m 0.1 m 0.1 m
Width 6.5 m 6.5 m 7.4 m
Slope - - 5.9 %
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Figure 8: Different bump types implemented in the model.
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Figure 9: Effect of contact surface for circle bump.

is illustrated in Figure 9 for the circle bump.
As illustrated, the effect of the contact surface is dif-

ficult to identify when considering the elevation alone
while the difference is significant when evaluating the
derivatives of the elevation.

4.2 Cobblestone Pavement

The surface profile of a cobblestone pavement has a sig-
nificant variation depending on the location and the traf-
fic direction. Each brick is unique, and based on field
studies it is assessed that a realistic estimate of the pro-
file can be determined by considering the length and
height of each brick and the gap between as normally
distributed stochastic variables. The surface of a cobble-
stone is assumed to be circular. The presumed stochastic
parameters are given in Figure 10. A lower limit has
been implemented for the cobblestone height to prevent
negative values.

A realization of a cobblestone pavement is illustrated
in Figure 11 along with the result from the average filter
procedure. It should be noticed that the filtered surface
profile has been displaced 10 cm for visual purposes.
Alternatively the contact between road and tyre can be
modelled more accurately using methods described by
Pacejka, (2006).

Brick length

μ = 20 cm

σ = 3 cm

Gap length

μ = 2.0 cm

σ = 5 mm

Brick height

μ = 1 cm

σ = 3 mm

Limit = 0 mm

Gap drop

d =  1 cm

Figure 10: Stochastic description of cobblestone pavement.
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Figure 11: Realization of cobblestone pavement with and without fil-
tering.

Table 2: Vehicle properties based on Scania A/S and calibration.

Parameter Symbol Unit Value

Vehicle mass m2 ton 17
Axel mass m1 ton 1.0
Tyre stiffness k1 kN/m 3000
Tyre damping c1 kN s/m 727
Suspension stiffness k2 kN/m 600
Suspension damping c2 kN s/m 145
Contact surface w m 0.10

5 Simulation Setup

In order to evaluate the consequences of the different
speed bumps with respect to vibrations, simulations are
conducted for each of the three surface profiles illustra-
ted in Figure 8. A reference case is set up to substantiate
a comparision. The geometry of the reference case is
illustrated in Figure 12.

Based on product specifications for a three axel bus
provided by Scania A/S, the properties listed in Table 2
are assumed for the vehicle.

The geometry of the bus is illustrated in Figure 13.
The position of the driver is essential when evaluating
the vertical accelerations used to assess the usability of a
speed bump.

The values of stiffness and dampers are calibrated ac-
cording to the procedure in Section 2. The damping ratio
of the vehicle is set to 1.00. The parameters can be veri-
fied by performing a simulation where the bus crosses a
sinusoidal speed bump with a velocity of 25 km/h. The
acceleration of the driver is given in Figure 14. Minor
time shifts are added to the acceleration series for visual
purposes.

Element size: 1 m x 1 m

3.5 m

3.5 m

10 m

5 m5 m

10 m

1.0 m

10 m
16 m

40 m

2.0 m 2.0 m

Figure 12: Geometry of model used for simulation.

3.0 m

12.0 m

1.1 m5.8 m1.5 m
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CM

Figure 13: Geometry of vehicle used for simulation.

As illustrated in the figure it is not possible to calibrate
the vehicle to satisfy the regulations in (Retsinformation,
2002) for all three bump types. The sinusodial shaped
speed bump has a more gentle curve if it is designed ac-
cording to Vejdirektoratet, (2009), and will always in-
duce smaller accelerations. The selected properties are
assesed to give the best fit. Furthermore it should be no-
ticed that large negative vibrations are generated when
the trapeze bump is used due to discontinuities in the
slope.

Soil parameters such as density and Poisson’s ratio are
obtained from recommendations by Ovesen et al., (2009)
and Zhu, (2012). A linear visco-elastic soil model is
employed which is an appropriate simplification in case
of small strains. A Poisson’s ratio of ν = 0.3 is as-
sumed for unsaturated/draned conditions, while a ratio
of ν = 0.495 is used for saturated/undrained conditions.
The dynamic stiffness of soil is considerably larger com-
pared to static loading conditions and the stiffness of
each material is therefore calibrated based on wave prop-
agation velocities

cp =

√
λ +2µ

ρ
, cs =

√
µ
ρ

, (11)

λ =
νE

(1+ν)(1−2ν)
, µ =

E
2(1+ν)

, (12)

where, λ and µ are Lamé constants. Typical propaga-
tion velocities based on the soil type can be estimated
from (KTH and Engineering, 1979). Material damping
in soil is described by Kramer, (2007) and for relatively
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Figure 14: Acceleration of driver for different speed bumps.
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Table 3: Soil and interface properties.

Parameter Symbol Unit Value

Material - - Silty clay
Density ρ kg/m3 1600
Poissons ratio ν - 0.3
Young’s modulus E MPa 300

Table 4: Road properties.

Parameter Symbol Unit Value

Material - - Asphalt
Height hroad m 0.30
Density ρ kg/m3 2400
Young’s modulus E GPa 5.0
TBC freq. ω1 rad/s 6.28

small shear strains the damping ratio will be in the range
of 0 – 5 %. A damping ratio of 0 will be used in the
simulations. The soil properties are given in Table 3.

The road is modelled as a beam layer of asphalt and
the properties are based on (Tarefder et al., 2010). The
Kelvin supports representing the soil volume at the edges
of the model are calibrated to approximate the proper-
ties of the soil body. The transmitting boundaries ap-
plied to the road can be calibrated to a single frequency
only, though traffic loads are generally described in a
broad range of frequencies. In lack of better estimates
a frequency of 1 Hz is selected and simulations have
shown that the reflection from the boundary is insignifi-
cant. The road properties are given in Table 4.

The structural system and the material properties of
the building have a substantial influence for the dynamic
respons. However, in this case the scope is to evaluate
whether or not a change in the surface profiles changes
the overall response, whereby the building is of lesser
importance. The properties of the building are given in
Table 5. The building is assumed to be stiffness propor-
tionally damped with a damping ratio of ξ1 = 1% for the
first eigen mode. Linear viscous damping is employed.

6 Simulation Results

Simulations are conducted for each of the speed bumps.
In order to quantify the vibrations, a point at the floor

Table 5: Properties of the building.

Parameter Symbol Unit Value

Material - - Concrete
Beam height

Superstructure hsuper m 0.40
Foundation h f ound m 0.40

Density ρ kg/m3 2500
Young’s modulus E GPa 50
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Figure 15: Frequency response for 1/3 octave bands.

division 2.5 metres from the left wall is considered.
The object is to evaluate the human exposure which is
done according to the procedure described in (ISO 2631,
1997). The vibrations generated from traffic are mainly
occasional shocks and in such case it is recommended to
use the running root-mean-square (r.m.s.) method:

aw(t0) =





1
τ

t0∫

t0−τ

[aw(t)]2 dt





1
2

, (13)

where aw(t0) is the instantaneous frequency-weighted
acceleration for the observation time t0, and τ is the in-
tegration time for running averaging and is set to one
second. The frequency-weighting is performed based on
one-third octave bands. The weighting functions and a
guide for principal weightings are stated in (ISO 2631,
1997) as well.

The frequency response for the vertical direction in
the observation point is illustrated for one-third octave
bands in Figure 15. The response is unweighted and the
entire time serie is considered. In general the different
speed bumps induce accelerations at the same frequency
bands though the amplitude is higher for the trapeze
bump. According to Miljøstyrelsen, (1997) the limit
level for noticeable vibrations is 71 – 72 dB whereby
vibrations in the 10th – 17th one third octave bands may
be noticed.

The running r.m.s. method is conducted for both ver-
tical and horizontal direction and the maximum transient
vibration value (MTVV) is determined from:

MTVV = max(av(t)) t ∈ [τ;T ] , (14)

av(t) =
√

k2
x a2

wx(t)+ k2
y a2

wy(t), (15)

where kx and ky are multiplication factors stated in
(ISO 2631, 1997). The multiplication factors depend
on the perception type (health, comfort or motion sick-
ness) and are often higher for cross-spinal vibrations.
The maximum transient vibration value for each bump
is stated in Table 6.

As indicated in Figure 15 the trapeze bump induces
larger vibrations in the building. The MTVV for the
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Table 6: Maximum transient vibration value for simulations.

Bump type Sinus Circle Trapeze

MTVV [m/s2] 0.09 0.11 0.20

trapeze bump is approximately twice as high compared
to the circle bump even though the acceleration of the
driver, and hereby the effectivity of the bump, is almost
the same. The sinus bump and the circle bump induce
approximately the same acceleration but it should be no-
ticed that the sinus bump causes smaller vibrations for
the driver, as illustrated in Figure 14. Drivers may there-
fore tend to cross the sinus bump at higher velocities
whereby the vibration level will increase.

The perception of vibration is difficult to assess as
the perception depends on the expectations of the re-
sident. Guidelines for comfort levels are suggested in
(ISO 2631, 1997) in which it is stated that vibration lev-
els less than 0.325 m/s2 are usually not experienced as
uncomfortable. However, two assumptions have to be
considered when evaluating the magnitude of the vibra-
tion. First of all, the speed bumps in the simulations are
located around 10 – 11 metres from the building, and
real-life situations may exist for which the distance is
significantly shorter. Secondly the geometrical damp-
ing is underestimated when the problem is simplified to
a two-dimensional case. The deviations between two-
and three-dimensional simulations are studied by Vigsø
et al., (2013). Conclusively it can be summarized that
the model is applicable for comparision of different sce-
narios while the actual magnitude of vibration should be
considered with some skepsis.

7 Conclusion

The construction of a two-dimensional finite element
model to evaluate vibrations generated from traffic has
been presented in the article. The four sub parts of the
model (a vehicle model, a road, a soil body and a build-
ing) have been presented, and relevant assumptions re-
garding boundary conditions, element types etc. have
been discussed in Section 2. Two solution methods for
implementing the interaction between the stationary part
of the model and the moving vehicle have been pro-
posed in Section 3. It has been found that the implicit
method with continuous updating of the system matrices
is more reliable compared to the explicit method with a
time shift. Deterministic surface profiles have been set
up for three different speed bumps and stochastic pro-
files for cobblestone pavements have been implemented
in Section 4. Furthermore the effect of the tyre contact
surface is described.

The model has been used to analyse the vibrations
generated at the floor division in the building from a
three axel bus crossing different speed bumps. The
calibration of parameters such as the vehicle system
matrices, the soil stiffness and the dynamic properties of

the building are explained in Section 5 and a reference
case is set up. The simulations are conducted in Section
6 and it has been found that the largest vibrations are
generated from the trapeze formed speed bump. The
effectivity of a speed bump depends on the acceleration
experienced by the driver and in this regard the trapeze
and the circle bump caused approximately the same
acceleration while the sinus bump caused smaller
accelerations. Drivers may therefore tend to cross the
sinus bump at higher velocities. All together the circle
bump is assesed to be the most beneficial bump type.
None of the three speed bumps induced vibrations large
enough to cause discomfort for residents in the building
but for speed bumps located closer to the building
vibrations will be higher and may cause discomfort.
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Abstract

Noise and vibration caused by heavy vehicles in populated areas have in several cases proven to cause discomfort for
nearby residents. Airborne noise may be transmitted directly via window and door openings in the facade, or in the form
of ground and structure borne vibrations as discussed in this paper. More specifically a parameter study is conducted
using a two dimensional finite-element model containing a vehicle, a road, a soil body and a building. The scope of the
study is to examine how parameters such as surface composition, vehicle properties and soil stratigraphic influence the
generation of vibrations. A brief description of the finite-element model is included and a reference case is set up in
order to relate the results of the parameter study.

1 Introduction

Traffic-induced vibration can be generated when heavy
vehicles cross surface irregularities. Irregularities such
as speed bumps, rough pavements or manhole covers
cause vertical accelerations of the vehicle whereby re-
action forces are applied to the surface. The induced en-
ergy propagates through the underlying soil waves into
nearby buildings. Several cases can be mentioned in
which vibrations have caused discomfort for residents in
Danish cities such as Aalborg (Sønderup, 2008), Aarhus
(Grønvald, 2013) and Copenhagen (Kønigsfeldt, 2005).

In practical engineering the issue of vibration is usu-
ally dealt with by monitoring acceleration levels on
buildings in risk of impact. The method can be expen-
sive if several gauges are required and it does not ensure
that vibration levels will be acceptable. A useful sup-
plement to the method would therefore be to construct a
scientific model to simulate and predict the generated vi-
brations prior to the exposure. Several models have been
suggested as described by e.g. Mhanna et al., (2011) and
Lombaert et al., (2000).

Common for these articles is that the sub parts of the
model are treated separately. Hence, the vibrations are
calculated without considering the interaction between
vehicle, soil body and building. However, field studies
conducted in (Hunaidi et al., 2000) have indicated that
especially the interaction between soil and building may
be important.

The aim of this article is to conduct a parameter study
using a finite-element model which contains all three sub
parts and accounts for the interaction. An illustration of
the problem can be found in Figure 1.

A detailed description of the model is given by Bach
et al., (2013), while the main structure including the se-
lection of a reference case is summarized in Section 2.

Figure 1: Illustration of problem with traffic-induced vibration.

The vibrations occurring in the building are evaluated
according to the procedure in (ISO 2631, 1997) with re-
spect to comfort, and the main principles are presented in
Section 3. In Section 4 a parameter study is performed
in which the vehicle is considered separate and the in-
fluence of vehicle velocity and damping ratio is inves-
tigated. The soil body and the building are included in
Section 5 and different critical combinations are simu-
lated and compared. In Section 6 the influence of the
soil is analysed and a stratum is introduced to generate
reflection. Each simulation is compared to the reference
case in order to give a quantitative estimate of the influ-
ence of the given parameter.

2 The Reference Case

The finite-element model used in the simulations is illu-
strated in Figure 2 and can be devided into sub parts. The
external forces are generated by a vehicle model with
four or more degrees of freedom depending on the num-
ber of axels. The vehicle travels with constant velocity
across an irregular surface profile, e.g. a speed bump or a
cobblestone pavement. The geometry of the speed bump
will be deterministic while a stochastic description is im-
plemented for the cobblestones. The vehicle model used
in the following study is illustrated in Figure 3.
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Figure 2: FE model of the problem in Figure 1.
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Figure 3: Dynamic model of three-axel vehicle.

The vehicle is supported by Mindlin beam elements
cf. Cook et al., (2002) which are connected to the soil
body through interface elements. The road is extended
at both sides of the soil body, which is done in order to
diminish initialization effects in the vehicle. Outside the
soil body the road elements are supported by a Kelvin
foundation. In reality the vehicle will pass the build-
ing with some distance in between which in this case
is assumed to be 2 metres. In order to account for this
effect the road elements beneath the building and two
metres from it are supported by Kelvin foundations as
well. When the vehicle is located on the Kelvin founda-
tions, the surface loads will not be transmitted directly
to the soil body. The Kelvin foundation is calibrated to
approximate the properties of the soil body. This is done
by adding stiffness and mass to the road corresponding
to a soil column with half the height of the soil body in
Figure 2. In (Bach et al., 2013) it is stated that the inac-
curacy of the simplification is insignificant in connection
to the vibration in the building.

The soil body is modelled using quadrilateral eight-
noded continuum elements and transmitting boundary
conditions are applied at the submerged boundaries
to simulate the infinite half space, cf. Lysmer and
Kuhlmeyer, (1969). The building consist of Bernoulli
beam elements and all connections are rigid.

In a paper by Bach et al., (2013) a simulation is con-
ducted in which a bus crosses a speed bump. The same
setup will be used as a reference case in the parameter
study. The amount of variables is comprehensive but

Table 1: Selected parameters for reference case.

Parameter Symbol Unit Value

Vehicle
Length lveh m 12
Height hveh m 3
Total mass Mveh t 20
Number of axels A - 3
Tyre stiffness k1 kN/m 3000
Suspension stiffness k2 kN/m 600
Eigenfreq. 1, 2 f12 Hz ≈ 1.4
Eigenfreq. 3, 4, 5 f345 Hz ≈ 9.6

Road
Height hroad m 0.30
Density ρ kg/m3 2400
Young’s modulus E GPa 5.0

Soil and interface
Density ρ kg/m3 1800
Poisson’s ratio ν - 0.3
Young’s modulus E MPa 300
Material damping none - -

Building
Height hbuild m 7.5
Width wbuild m 10.0
Beam height hbeam m 0.4
Density ρ kg/m3 2500
Young’s modulus E GPa 50
Eigenfreq.

Mode 2 fb2 Hz 13.9
Mode 4 fb4 Hz 16.5
Mode 6 fb6 Hz 39.3

Damping ratio ξ1 - 0.01

some of the most descriptive parameters are presented
in Table 1.

Only two eigenfrequencies are stated for the five-
degree-of-freedom vehicle as eigenfrequency 1 and 2
and eigenfrequency 3, 4 and 5 are coinciding. Mode
1 and 2 relate to motion of the vehicle chassis while
mode 3 to 5 relate to motion of the individual axels, see
Figure 4. The eigenfrequencies of the building are de-
termined using the complete system matrices including
both the building and the soil. As described by Vigsø et
al., (2013), considerable deviations may occur if the sy-
stem matrices of the building are used separately. Sev-
eral eigenfrequencies can be estimated for the building
and three have been selected for the parameter study in

Figure 4: First and third eigenmode of the three axel vehicle.
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Figure 5: Eigenmodes 2, 4 and 6 of the building selected for parameter
study.

Section 5, see Figure 5.
One exception is made compared to the setup de-

scribed by Bach et al., (2013) regarding the damp-
ing properties of the vehicle. Simulations have shown
that the assumption of stiffness proportional damping
is unsuitable when surface irregularities in the form of
cobblestone pavement is introduced. Stiffness propor-
tional damping induces damping in the tyre which causes
extensive forces when the surface elevation changes
rapidly. According to Kim et al., (2006) the damping ra-
tio of a vehicle tyre is in the range of 0.01 - 0.09. In this
case a simplification is made assuming that the damping
constant of the tyres is c1 = 0. The damping constant
of the suspension system, c2, can then be calibrated to
a given damping ratio of the first eigenmode ξ1 using
modal decoupling:

ΦT
1 CΦ1 = 2ξ1ω1ΦT

1 MΦ1, (1)

where Φ1 and ω1 are the eigenvector and the angular
eigenfrequency for the first mode, respectively. In Table
2 corresponding values of c2 and ξ1 are given.

3 Evaluation of Vibrations

The vibration generated from the simulations in Sec-
tions 5 and 6 are evaluated according to the procedure
in (ISO 2631, 1997). A reference point located at the
floor division 2.5 meters from the left wall will be used
for comparison. Eigenvibrations of the structure will
be visible at the reference point according to the mode-
shapes. Traffic-induced vibration occurs occasionally
and the running r.m.s. method is used to determine the
instantaneous frequency-weighted acceleration:

aw(t0) =





1
τ

t0∫

t0−τ

[aw(t)]2 dt





1
2

, (2)

where t0 is the observation time and τ is the integration
time set to one second as recommended in (ISO 2631,
1997). The frequency-weighting is performed for one
third octave bands using the weight functions illustrated
in Figure 6.

Table 2: Corresponding values of ξ1 and c2 for c1 = 0.

ξ1 0.01 0.10 1.00
c2 1.76e3 Ns 1.76e4 Ns 1.76e5 Ns
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Figure 6: Weight-functions for evaluation of vibrations.
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Figure 7: Snapshot from simulation of the reference case. The defor-
mations are scaled by a factor of 5000. Total dof = 2911.

Wk and Wd will be used for vertical and horizontal
vibration respectively. Wf is used to weight vibrations
causing motion sickness. The instantaneous acceleration
is calculated for both directions, whereafter the maxi-
mum transient vibration value (MTVV) is determined
from:

MTVV = max(av(t)) , t ∈ [τ;T ] , (3)

av(t) =
√

k2
x a2

wx(t)+ k2
y a2

wy(t), (4)

where kx and ky are multiplication factors set to 1.0 cf.
(ISO 2631, 1997) and T is the simulation time. The
following study focuses on the cobblestone pavement
which is defined uniquely in each simulation due to the
stochastic describtion. In order to account for the ran-
domness at least three simulations will be conducted for
each parameter combination and the mean value is pre-
sented. In order to determine a reference MTVV, a time
series from the reference case is considered. The simu-
lation is conducted using the properties listed in Table 3,
where vveh denotes the vehicle velocity while Vbrick is the
covariance of the brick length, see Section 4. A snapshot
from the simulation can be found in Figure 7.

The vertical and horizontal acceleration of the node at
the reference point is illustrated in Figure 8. As illustra-
ted, the vertical accelerations are dominant compared to

Table 3: Parameters for reference case.

vveh Vbrick ξ1 E
25 km/h 15% 1.00 300 MPa
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Figure 8: Acceleration time series at the reference node.
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Figure 9: Parameters used for the description of a cobblestone pave-
ment.

the horizontal. At the right side of the model, the road
elements are supported by Kelvin supports, cf. Bach et
al., (2013), and at these elements the surface force is not
transmitted to the soil body. The first wheel enters the
Kelvin part after 4.3 seconds, while the last wheel enters
after 5.3 seconds at which time the accelerations tend to
decrease.

The MTVV of the acceleration series in Figure 8 is
0.22 m/s2, but due to stochastic variation of the cob-
blestone pavement additional simulations are conducted
and the mean MTVV is calculated:

MTVVre f = 0.21 m/s2. (5)

4 Vehicle Analysis

The following study is conducted using only the vehicle
and a non-movable surface profile. A brick pavement
will be considered and it is assumed that the surface pro-
file can be described by the parameters in Figure 9. The
parameters are modelled as stochastic using the values
given in Table 4. All parameters are assumed to be nor-
mally distributed.

It is unlikely that the tyre will be squeezed into the
gap and the influence of the gap drop has therefore been
eliminated. The surface profile is smoothened due to the
tyre contact surface as described by Bach et al., (2013).

The vehicle velocity is an essential parameter when
evaluating the reaction forces applied to the surface. Ini-
tially a simulation is conducted with a vehicle travelling

Parameter Mean Std. dev. Lower limit

Brick length 20 cm 3 cm 10 cm
Brick height 1.0 cm 0.3 cm 0.0 cm
Gap length 2.5 cm 0.5 cm 1.0 cm
Gap drop 0.0 cm 0.0 cm 0.0 cm

Table 4: Stochastic parameters for brick pavement.
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Figure 10: Excerpt of surface forces time series at the front tyre.
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Figure 11: Frequency response for surface forces at the front tyre.

at 25 km/h and the reaction force at the first tyre f1(t) is
calculated using the relative compression of the tyre:

f1(t) = k1 (x1(t)− y1(t)) , (6)

where x1(t) is the displacement of the first axel and y1(t)
is the surface elevation at the first tyre. The vehicle is
assumed to have a damping ratio of ξ1 = 0.01 for the first
eigenmode. An excerpt of the surface force time series is
illustrated in Figure 10 and the frequency response of the
reaction force is illustrated in Figure 11 using one third
octave bands.

The reaction force response is plotted along with the
eigenfrequencies of the vehicle and the mean frequency
of the bricks, fbrick, which is calculated from:

fbrick =
vveh

µbrick + µgap
≈ 32 Hz, (7)

where vveh is the vehicle velocity. As illustrated the re-
sponse contains peaks at both the eigenfrequencies and
the brick frequency, and resonance may occur if the vehi-
cle velocity is reduced. A parameter study is conducted
to evaluate the influence of the vehicle velocity using the
following procedure:

1. The vehicle is set to run across 200 bricks at a given
velocity.

2. A zero down-crossing analysis is performed in
which the wave heights in the surface force time
series are identified.

3. The mean absolute surface force is determined as
the average wave height.
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Figure 12: Variation in surface force due to vehicle velocity.

4. The procedure is repeated 100 times with a new sur-
face generation.

5. Mean value, 5% and 95% quantiles are calculated.

6. Steps 1 – 5 are repeated with a new velocity.

An ideal vehicle can be assumed to have a damping ratio
of 1.0 in the first eigenmode, while the damping ratio
is likely decreased in a worn city bus. The procedure
is therefore conducted using damping ratios of ξ1 = 1.0
and ξ1 = 0.01 and the results are illustrated in Figure 12.

The dashed lines above and below the curves indicates
95% and 5% quantiles, respectively. As illustrated the
damping ratio of the first mode has a high influence when
the vehicle travels at resonance velocities v12 and v345:

v12 = (µbrick + µgap) f12 = 0.31 m/s (8)

v345 = (µbrick + µgap) f345 = 2.1 m/s (9)

Resonance velocities are hardly noticeable for the cri-
tically damped vehicle while the mean force is approxi-
mately ten times higher for the under critically damped
vehicle at v345 and v12. Both vehicles converge towards
the same surface force of 20 - 22 kN at high veloci-
ties. The convergence value corresponds to complete
compression of the tyre for the average elevation of the
smoothened cobblestone surface profile µη of 0.69 cm:

Fconv = k1 µη ≈ 21 kN (10)

The average elevation of the smoothened surface profile
can be calculated from wave counting. The possibility
of dynamic amplification due to resonance is dependent
on the variability of the pavement as well as the vehi-
cle velocity. As illustrated in Figure 13 the individual

    

Figure 13: Covarince of cobblestones, (left) high cov (right) low cov.
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Figure 14: Variation in surface force due to covariance of brick length.

bricks in a pavement can be almost identical or deviate
significantly. In order to evaluate the effect of deviation a
simulation is conducted for the under critically damped
vehicle ξ1 = 0.01 in which the covariance of the brick
length, Vbrick, is increased stepwise. The frequency ve-
locity v345 is selected and the surface force is given in
Figure 14.

The dashed lines mark the 5% and 95% quantiles
while the red line indicate the covariance based on data
listed in Table 4. As illustrated, the deviation in brick
length disturbs the resonance, whereby the surface force
is reduced. The declination is mainly occurring in the
interval Vbrick = 0 – 0.30 in which the surface force
decreases by 4% in average when the covariance is in-
creased by 0.01.

All together it has been found that a vehicle travelling
at resonance velocity with poor damping properties on a
pavement with identically sized cobblestones can induce
forces up to 20 times as high compared to the reference
case. In reality, however, the situation mentioned is an
extreme case and in Table 5 ratios are stated for more
probable situations.

According to Dixon, (2007) passenger cars are usually
designed to have a damping ratio between 0.2 and 0.8. A
low damping ratio ensures a comfortable ride, whereas a
high ratio improves the handling, which is preferred in
sport and racing cars. Due to excessive damper wear or
damage to the suspension system, the damping ratio may
drop below 0.1 in which case the vehicle is considered
unsafe. The paper by Dixon, (2007) does not provide
any information regarding heavy vehicles but it seems
fair to assume that transit busses are mainly designed for
comfort. As demonstrated in Table 5, the surface force
is highly dependent on the damping ratio while the co-
variance of the brick length is relatively insignificant es-
pecially for high damping ratios.

Table 5: Mean surface force ratios for combinations at resonance ve-
locity vveh = 2.1 m/s.

F /Fconv ξ1 = 0.45 ξ1 = 0.30 ξ1 = 0.15

Vbrick = 0.15 1.15 1.28 1.81
Vbrick = 0.10 1.17 1.31 1.89
Vbrick = 0.05 1.16 1.31 1.93

5



m
vveh = 50 km/h

Observation point

Silty clay

cRayleigh = 235 m/s

1 m

Figure 15: Setup for demonstration of Doppler effect.

1.6 1.65 1.7 1.75 1.8 1.85 1.9 1.95 2

-0.4
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
0.4

Time [s]

D
ef

or
m

at
io

n 
[m

m
]

Figure 16: Compression and elongation of the wave period due to
Doppler effect.

5 Resonance Effect

Using the results from Section 4 a series of critical cases
are set up and compared to the reference case. Different
resonance velocities are applied to match eigenfrequen-
cies of the vehicle and the building. Some considera-
tions have to be made regarding the Doppler effect when
calibrating the frequency of the load from the moving
vehicle to the eigenfrequency of the building. The in-
fluence of the Doppler effect can be demonstrated using
the simulation in Figure 15. A single-degree-of-freedom
vehicle is run across a sinusoidal-shaped road and, the
deformations are measured in the observation point (O).

The vehicle is initiated at x = 0 and the observation
point is located at x = 25. The vehicle passes the ob-
servation point at t = 1.80 s and the vertical deforma-
tions are plotted in Figure 16. The period of the waves
is slightly different before and after the vehicle passes
the observation point, which is evident when comparing
the magnitude of deformation at t = 1.6 s and t = 2.0 s.
Similarly, the frequencies before and after the vehicle
has passed differ due to compression and elongation of
the wave length. In Table 6 values of the response fre-
quencies from the simulation are compared to theoreti-
cal values based on the vehicle velocity and the Rayleigh
wave velocity.

The frequency in column one is the frequency per-
ceived in the building. Heavy vehicles are likely to have

Table 6: Changes in frequency due to Doppler effect.

Before O After O Vehicle

Simulation 14.8 Hz 13.2 Hz 13.9 Hz
Theoretical 14.7 Hz 13.1 Hz 13.9 Hz

Table 7: MTVV ratios for critical combinations.

vveh [m/s] 2.1 3.06 3.63 8.65
f345 fb2 fb4 fb6

ξ = 1.00
Vbrick = 0.15 0.76 1.80 1.38 1.01
ξ = 1.00
Vbrick = 0.05 0.76 2.82 2.09 0.95
ξ = 0.10
Vbrick = 0.15 1.52 3.03 2.08 1.28
ξ = 0.10
Vbrick = 0.05 1.62 4.47 2.15 1.43

a velocity between 5 – 40 km/h when crossing a cobble-
stone pavement; hence, the increase in load frequency
will be between 0.5% and 4%. Taking account of the
Doppler effect, simulations are conducted using varia-
tions of the following parameters:

• Vehicle velocity,

• Damping ratio of the first eigenmode of the vehicle,

• Covariance of the brick length.

The results of each simulation are evaluated according
to Section 3, and the ratio of the weighted running r.m.s.
acceleration compared to the reference case is stated in
Table 7. The parameters and the MTVV of the reference
case are stated in Table 3.

The simulations, in which the vehicle travels at its own
resonance velocity with a damping ratio of 1.00, provide
a lower MTVV compared to the reference case. As il-
lustrated in Figure 12, resonance effects are eliminated
due to the high damping ratio causing the magnitude of
the surface forces to be similar. The vehicle travels at a
lower velocity compared to the reference case whereby
the damping in the building has a higher influence and
ultimately the vibrations are reduced. When the damp-
ing ratio is reduced to 0.1, resonance in the vehicle be-
comes significant and the MTVV is approximately 50%
higher compared to the reference case.

In columns 2 – 4 results are given for vehicle veloc-
ities causing resonance in the building. The MTVV ra-
tios indicate that a velocity of 3.06 m/s is the most criti-
cal. As illustrated in Figure 5, the modeshape associated
with fb1 causes the first floor to deform similar to the
first mode of a double fixed beam while the deforma-
tions associated with fb2 and fb3 is comparable to the
second mode of a double fixed beam. Consequently the
deformations and hereby the vibrations are largest for
the first mode. Similarly, larger rotations in the walls are
required to generate the third mode compared to the sec-
ond, whereby the MTVV-ratios are smaller in the third
column.

Comparison of column 1 and columns 2 – 4 reveals
that vehicle velocities causing resonance in the building
are critical compared to velocities causing resonance in
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Figure 17: Setup for simulation of resonance reflection.

the vehicle. Additionally it has been found that reso-
nance velocities of the vehicle are generally below 10
km/h given the assumed surface description even if ve-
hicle parameters such as mass, stiffness and axel distance
are varied by up to 50%. Despite the possibility of fre-
quent stops the vehicle is likely to travel at higher ve-
locity for most of the time whereby vehicle resonance is
improbable.

It should be noticed that the conclusions made above
are based solely on vibrations in the reference point at
the first floor. Vibrations at other locations, e.g. at the
walls or in the vehicle, may provide a different impres-
sion.

6 Soil Parameters

The following study examines the influence of the soil
properties. The following two aspects are analysed:

• The influence of a rigid sub layer,

• The influence of soil stiffness in the top soil.

A rigid limestone layer is implemented at a depth d
beneath the surface with the properties E = 15 GPa,
ν = 0.3 and γ = 2000 kg/m3. Due to the impedance
mismatch between the limestone layer and the silty clay
layer, waves will be reflected at the stratum border. The
implementation of a limestone layer has two contradict-
ing effects:

• Deformations and hereby vibrations are reduced
due to higher stiffness below the stratum border.

• Vibrations are contained in the system due to reflec-
tion at the stratum interface.

The reflection of waves can be estimated using wave
progation equations, cf. Andersen, (2006). However,
for the complex situation with a moving vibration source
the calculations are comprehensive. To demonstrate the
effect of a stratum interface, a simple simulation is con-
ducted as illustrated in Figure 17. A sinusoidal load with
a frequency of 100 Hz is applied to the surface for 5 mil-
liseconds, corresponding to half a period. The response
is recorded at observation points along the surface. In
the figure, ςp denotes the impedance mismatch related
to pressure waves, and Er is the energy reflection coeffi-
cient for pressure waves.
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Figure 18: Wave amplitude for different stratum interfaces.
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Figure 19: Snapshot from simulation with a limestone layer at depth
d = 4 m. The deformations are scaled by a factor of 5000.

Three simulations are conducted for increasing values
of d. The maximum amplitude at each simulation point
is determined and plotted in Figure 18. A limit case is in-
cluded as well in which the limestone layer is removed.
As illustrated the simulations deviate from the limit case
at different locations and as expected the deviation point
is closer for small values of d. Deviating peaks in the
response can be identified as reflected waves using wave
velocities and analytical expressions for wave propaga-
tion in soil.

The deviation distance can be useful when evaluat-
ing whether direct Rayleigh waves will interfere with
reflected pressure or shear waves. However, as illustra-
ted, both negative and positive interference is occurring
at the surface and it is therefore difficult to estimate, how
a rigid sub layer will influence the magnitude of vibra-
tions in a more complex situation.

In order to examine the effect of reflection for a ve-
hicle crossing a cobblestone pavement, simulations are
conducted in which a stratum interface is implemented
in the reference case, cf. Section 2. A snapshot from a
simulation with d = 4 m is presented in Figure 19. The
dashed black line indicates the stratum interface and it is
evident that deformations are occurring in the silty clay
layer while the limestone layer is unaffected. The depth
of the interface d is varied and the results are given in
Table 8 in terms of the MTVV-ratio.

Table 8: MTVV-ratios for implementation of rigid sublayer.

Stratum interface d = 4 m d = 6 m d = 8 m
MTVV-ratio 0.89 1.19 1.11
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Figure 20: MTVV-ratios for variation in soil stiffness.

As mentioned the influence of a rigid sub layer is dif-
ficult to estimate due to the complexity of the model
and the moving vibration source. The results in Table
8 do not provide a distinct impression of the influence,
though, the magnitudes of the MTVV-ratios indicate that
the influence of the limestone layer is negligible com-
pared to, e.g., the influence of the vehicle velocity and
the vehicle damping ratio described in Section 5.

In order to evaluate the effect of soil stiffness, sim-
ulations are conducted in which Young’s modulus is
changed. Wave velocities are highly dependent on Pois-
son’s ratio and two values 0.495 and 0.30 are applied
representing saturated and unsaturated conditions re-
spectively. The results in terms of MTVV-ratio are given
in Figure 20.

The maximum transient vibrations appear to decrease
approximately linear for exponentially increasing values
of Young’s modulus. The magnitude of vibration tends
to be larger for ν = 0.495 which is expectable, as Pois-
son’s ratio influences the shear modulus,

G =
E

2(1+ν)
. (11)

In Figure 21 the MTVV-ratio is plotted as a function of
the shear modulus. As illustrated the results form a rel-
atively straight line which indicate that the vibration is
more properly described in terms of the shear modulus.

7 Conclusion

A parameter study of traffic-induced vibrations in build-
ings has been presented in the article. The study is
conducted using a two-dimensional finite-element model
consisting of a moving vehicle, a road, a soil body and a
building. In order to quantify the influence of different
parameters, a reference case is set up in Section 2. The
vibration is evaluated with respect to the perception of
residents in the building using the procedure described in
Section 3. In Section 4 the influence of vehicle velocity,
vehicle damping ratio and surface variation is evaluated
with respect to the reaction forces generated by the vehi-
cle. A surface profile of cobblestones is considered and
it is found that the reaction forces are increased signifi-
cantly if the frequency of the cobblestones matches the
eigenfrequency of the vehicle. However, the resonance
effect is eliminated if the vehicle is critically damped.
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Figure 21: MTVV-ratios for variation in shear modulus.

For a vehicle moving at resonance velocity, it has been
found that the damping ratio of the vehicle has a higher
influence compared to the covariance of the individual
cobblestone lengths with respect to the reaction force.

In Section 5 simulations are conducted in which the
soil body and the building are included. Critical cases
are set up in which the vehicle travels at resonance ve-
locities of either the building or the vehicle itself. Based
on the simulations it has been found that the vibrations
at the floor division are generally larger if the vehicle
travels at velocities causing ressonance in the building.
Furthermore, the simulations demonstrate that the ampli-
fication of vibrations due to resonance in the building is
higher for the lower frequencies. Ultimately it has been
found that the vibrations can be approximately 4.5 times
higher if a poorly damped vehicle crosses a monotonous
cobblestone pavement at resonance velocity compared to
the reference case.

In Section 6 the influence of the soil body is inves-
tigated. A relatively stiff stratum is introduced causing
part of the wave energy to reflect at the interface. Due to
the moving vibration source it is difficult to predict the
influence of the reflection. The simulations do not pro-
vide a distinct indication of the influence and the changes
in vibration level are relatively small. Finally, the effect
of the soil stiffness has been evaluated and it is found
that the vibration decreases linearly when the stiffness is
increased exponentially.
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Abstract

Ground-borne vibration due to heavy traffic has in many cases shown to cause discomfort for nearby residents. Vibra-
tions can be caused by vehicles passing uneven pavements or road humps. However, the prediction of vibration levels
prior to road design is, if any, based on experience and rule of thumb and the need for improved estimation models is
obvious. This paper deals with dynamic response of a two story frame building due to passing of a three-axle bus on
uneven pavement. The model accounts for interaction effects at the interface between the moving vehicle and the soil,
and between the building and soil. A fully coupled three dimensional finite-element model requires a comprehensive
amount of computer power and it is examined in which cases simplification to a plane model and neglecting of dynamic
interaction can be advantageous.

1 Introduction

Traffic-induced vibration has frequently been reported
for causing discomfort for residents of surrounding
buildings (Sønderup, 2008). Vibration from traffic can
be generated from heavy vehicles passing uneven pave-
ments or speed bumps. In rare cases vibrations from ve-
hicles has even shown to cause damage of neighboring
buildings (Lombaert and Degrande, 2001). Several stud-
ies indicate that vibration due to traffic is of high impor-
tance and precautions must be taken during design.

In the work by Fiala et al., (2006) building vibration
generated by a high speed train is modelled using nu-
merical computation. A weak coupling between the in-
cident wave field and the structure is assumed, meaning
that the structure has no influence on the load genera-
ted from the train. The receiving model is a multi-storey
office building resting on a soil body in which the struc-
tural response is examined for different coupling of the
two parts.

Studies regarding dynamic response of buildings due
to traffic-induced wave fields are described by François
et al., (2007). The paper shows that neglecting of the
interaction effects between structure and soil can have
important consequences for vibration induced damage
to buildings. The effect of interaction depends on the
rigidity of the foundation compared to the stiffness of
the underlying soil body. The model does not account
for interaction between soil and vehicle, since it is as-
sessed that the effect is minimal.

In the two papers by Bach et al., (2013) and Elmholt
et al., (2013) a plane finite-element (FE) model is con-
structed in which a moving vehicle, a soil body and a
structure are included and interact. The vehicle, a Scania
City bus, is modelled as a multi-degree-of-freedom sy-

stem that generates vibrations as it passes uneven pave-
ments such as speed bumps and cobblestones. In the
article by Bach et al., (2013) methods for constructing
a fully coupled finite-element model for prediction of
traffic-induced vibration in buildings are described. The
article presents three different approaches for modelling
the moving vehicle, in which two account for the dy-
namic interaction effects. Elmholt et al., (2013) used the
same FE model to conduct a parameter study to identify
sensitive parameters for vibration issues. The difference
between a coupled and a decoupled model is not quan-
tified in the studies. The scope of the following study
is to analyse and quantify the methods and assumptions
used by Bach et al., (2013). Interaction at the interface
between the soil and vehicle will be analysed in Section
4 while the soil-structure interaction will be examined in
Section 5. Considerations regarding the building model
are presented in Section 5.1, in which issues regarding
eigenfrequencies of coupled and decoupled models are
described. One of the most pervasive assumptions made
in the model is that the vibration problem sketched in
Figure 1 can be simplified into a plane problem. In Sec-
tion 6 the deviations between a two-dimensional (2D)
and a three-dimensional (3D) model are quantified by
constructing a full 3D model for comparison.

Figure 1: Illustration of problem with traffic-induced vibration.
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The FE model is made using a mix of beam and con-
tinuum finite-elements with an overall geometry similar
to the model used by Bach et al., (2013). A comparison
is made regarding the consequence of simplification and
computational cost.

2 Model Description

The 2D finite-element model used by Bach et al., (2013)
and Elmholt et al., (2013) will be described in the follow-
ing section. The same model composition will be reused
in Sections 4 to 6 with minor deviations.

The finite-element model is illustrated in Figure 2 and
can be divided into sub parts. The external forces are ge-
nerated by a five-degree-of-freedom vehicle model with
three axels. The vehicle travels with constant velocity
across an irregular surface profile. The vehicle model is
illustrated in Figure 3.

The vehicle is supported by Mindlin beam elements
cf. Cook et al., (2002) which are connected to the soil
body through interface elements. Outside the soil body
and beneath the building, the road is supported by a
Kelvin foundation. The Kelvin foundation is calibrated
to approximate the properties of the soil body. This is
done by adding stiffness and mass to the road corre-
sponding to a soil column with half the height as seen
in Figure 2. It was proven by Bach et al., (2013) that the
inaccuracy of the simplification is insignificant in con-
nection to the vibration in the building. The soil body is

Figure 2: FE model of the problem sketched in Figure 1.
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Figure 3: Dynamic model of three-axel vehicle.

Table 1: Parameters for reference case.

Parameter Symbol Unit Value

Vehicle
Length lveh m 12
Height hveh m 3
Total mass Mveh t 20
Tyre stiffness k1 kN/m 3000
Suspension stiffness k2 kN/m 600
Tyre damping c1 kNs/m 0
Suspension damping c2 kNs/m 176
Eigenfreq. 1, 2 f12 Hz ≈ 1.4
Eigenfreq. 3, 4, 5 f345 Hz ≈ 9.6

Road
Height hroad m 0.30
Density ρ kg/m3 2400
Young’s modulus E GPa 5.0

Soil and interface
Density ρ kg/m3 1800
Poisson’s ratio ν - 0.3
Young’s modulus E MPa 300
Material damping none - -
Mesh size - 1×1 m

Building
Height hbuild m 7.5
Width wbuild m 10.0
Beam height hbeam m 0.25
Density ρ kg/m3 2500
Young’s modulus E GPa 30
Damping ratio ξ1 - 0.01

modelled using quadrilateral eight noded continuum ele-
ments and transmitting boundary conditions are applied
at the submerged boundaries to simulate the infinite half
space, cf. Lysmer and Kuhlmeyer, (1969).

The building consists of Bernoulli beam elements and
all connections are rigid. For most of the following
study, the properties presented by Elmholt et al., (2013)
will be used. The complete amount of variables is com-
prehensive but the most descriptive parameters are pre-
sented in Table 1.

Only two eigenfrequencies are stated for the five-
degree-of-freedom vehicle as eigenfrequency 1 and 2
and eigenfrequency 3, 4 and 5 are coinciding. The eigen-
frequencies of the building are described in details in
Section 5.1.

3 Model Interaction

The interaction between soil body and building is sim-
ply implemented by connecting the continuum elements
in the soil with the beam elements of the building. How-
ever, the interaction between the vehicle and the deform-
ing road is more complex as the vehicle moves during
the simulation. Three different methods are considered
by Bach et al., (2013) and are summarized below.
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3.1 Separate Approach

The simplest option is to neglect the interaction effects
and consider the vehicle and the road as two decoupled
systems. Initially the five-degree-of-freedom vehicle is
run across a fixed surface profile. The vehicle-road in-
teraction forces (surface forces), fi, from each axel can
be calculated from the relative compression and rate of
compression of the tyres:

fi = k1 (xi− yi)+ c1 (ẋi− ẏi) , i = 1,2,3, (1)

where, yi, as a function of time, contains the surface el-
evation at each axel. Next, a simulation is conducted in
which the surface forces are applied to the stationary part
of the model (the soil body, the road and the building).

3.2 Explicit Time Scheme

In the explicit time scheme the, two parts are still consi-
dered separately, but information is exchanged between
the two models in every time step. In each time step,
initially the response is calculated for the vehicle model.
Next, the surface force is applied to the stationary model
and an updated surface profile is generated from the de-
formation of the road. The updated surface profile is
used in the second time step for the vehicle and so forth.
The surface forces are calculated using,

fi = k1 (xi− yi− zi)+ c1 (ẋi− ẏi− żi) , i = 1,2,3, (2)

where, zi contains the deformation of the road for each
axel. Consequently a small time shift is created between
the two parts depending on the time step ∆t. In general,
it has been found that the explicit time scheme becomes
unstable if the value of ∆t is too high which occurs par-
ticularly in cases of very soft soil or very stiff tyres.

3.3 Implicit Time Scheme

In the implicit time scheme the two parts are coupled into
a single system matrix. In order to account for the move-
ment of the vehicle, the system matrices are updated in
every time step based on the position of the vehicle ax-
els. Since the mass of the vehicle is lumped and located
separately from the stationary part, the complete mass
matrix becomes,

M =
[

Ms 0
0 Mv

]
, (3)

where the subscripts s and v refer to the stationary part
and the vehicle model, respectively. The complete stiff-
ness matrix can be separated in a contribution from the
decoupled models and a contribution from the interac-
tion between the vehicle axels and the road,

K =
[

Ks 0
0 Kv

]
+
[

NT k1N −NT k1
−Nk1 0

]
, (4)

where N is the shape function matrix for the beam el-
ements used in the road. The damping matrix can be

Figure 4: Reference case for evaluation of vehicle-road interaction.

assembled in a similar manner. In general, the implicit
time scheme has proved to be more stable and reliable
compared to the explicit scheme. However, the compu-
tation time is significantly higher for large system matri-
ces.

4 Evaluation of Vehicle–Road Interaction

In general, the interaction between the vehicle and the
soil body is expected to be more important for soft soil
types compared to stiff soil types, e.g. limestone. The
interaction effect can be quantified by comparing the re-
sponse of the explicit and separate approaches to the re-
sponse of the implicit method for different soil types. A
reference case is set up with the geometry illustrated in
Figure 4.

It should be noticed that the building has been re-
moved for simplification. The vehicle is set to cross a
sinusoidal road surface with an amplitude of 1 cm and a
wavelength of 1 m at a velocity of 25 km/h. The response
of the soil in the reference node is compared for varia-
tions of Young’s modulus in the soil body for the diffe-
rent solvers. Except for Young’s modulus, the properties
presented in Section 2 are used. The reference node is
located midway at a depth of 2 m as illustrated in Figure
4.

Figure 5 shows the resulting response for the three
different approaches for two cases with widely different
stiffness. The response is illustrated on a logarithmic
scale to emphasize the deviation between the different
approaches for very soft and stiff soil types. As ini-
tially expected, the deviation is larger for small values
of Young’s modulus, while it is difficult to see the dif-
ference between the three approaches for high values of
the stiffness.
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Figure 5: Deformation time series for very soft and stiff soil using dif-
ferent solvers. Note the logarithmic scale.
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Figure 6: NRMSD of deformation in reference node as function of soil
stiffness.

The normalized root-mean-square deviation,

NRMSD =
1

Ŷmax− Ŷmin
·
√

1
n

n

∑
i=1

(
Ŷi−Yi

)2 (5)

is used to quantify the difference between the three ap-
proaches for varying Young’s modulus. The explicit and
separate responses, Ŷ , are compared to the implicit ap-
proach, Y , by the NRMSD, see Figure 6.

For the reference case and for normal soil types as
sand and clay the NRMSD is around 1%, when using ei-
ther the explicit solver or applying the vehicle response
separatly without accounting for interaction. The ex-
plicit scheme is in general seen to deviate more from the
implicit scheme compared to the separate approach. This
is in particular distinct for soft soil types due to time step
shifting in the explicit approach, which to some extent
can be reduced by lowering the time step.

5 Evaluation of Building-Soil Interaction

In the model presented in Section 2 the building and the
soil body are coupled. In other studies, such as (Fiala
et al., 2006), a decoupled model is used, in which the in-
teraction is neglected. In the following study, the effects
of the interaction is evaluated by comparing the response
from a coupled and a decoupled model. A reference case
is set up with the geometry illustrated in Figure 7. The
properties presented in Section 2 are used. The vehicle
is set to cross a sinus bump at a nominal speed of 25
km/h. The effects of interaction between the soil body
and the building are first evaluated for the response in the

6.5

Figure 7: Reference case where building interaction is evaluated.

soil body behind the building and then for the response
at the floor division of the building. The two reference
points are illustrated in Figure 7. A dominating param-
eter for the building-soil interaction is the kinematics of
the building. Hence a more detailed analysis the natural
frequencies of the building is enforced.

5.1 Building Eigenfrequencies

The natural frequencies of the building depend on the
mass and the stiffness of both the structure and the soil
body. The soil stiffness determines the degree of clamp-
ing of the building foundation. In the reference case
from Section 2, the building is supported by a one meter
deep foundation, which is connected to the continuum
soil body elements. The material and geometric proper-
ties of the building, see Table 1, are calibrated to fit a typ-
ical two-storey concrete structure, in which the stiffness
is adjusted to fit the range of typical eigenfrequencies
according to Andersen (2006). The undamped eigenfre-
quencies fi and eigenvectors Φi of the model are deter-
mined by solving the general eigenvalue problem:

(
K−ω2 M

)
Φ = 0 (6)

The degrees of freedom in the soil elements allow a num-
ber of eigenvalues, in which all the energy is located in
the soil body. Due to transparent boundary conditions
employed in terms of viscous dashpots rigid-body modes
appear as well. In order to identify eigenfrequencies
of the building, eigenmodes of the complete model are
compared to the two simplified models of the building in
Figure 8.

The part of the eigenvector corresponding to the house
in model (a) are compared with model (b) by the Modal
Assurance Criterion cf. Allemang, (2003):

MAC(Φ1,Φ2) =

∣∣ΦT
1 Φ2

∣∣2
∣∣ΦT

1 Φ1
∣∣ ∣∣ΦT

2 Φ2
∣∣ (7)

The MAC value will go to unity if the two eigenvectors
Φ1 and Φ2 are identical. To sort out the modes of interest
a threshold for the MAC value is set to 0.80, when com-
paring the modes of model (a) with model (b). Figure 9
shows the graphical representation of the MAC-values
for the first six eigenmodes of the building compared
with all the eigenmodes of the original model. Note that
mode three is included with a threshold of only 0.45.

Figure 9 shows that for most of the eigenmodes mul-
tiple modes exist in the original model (a), which match

Building and soil body
(a)

Building and foundation
(b)

Building fixed
(c)

Figure 8: Modelling of building supports.
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Figure 9: MAC between building and soil body and building and foun-
dation.

the eigenmodes of the building. The explanation is that
several possible modes can occur in the soil body simul-
taneously with movement of the same mode in the build-
ing. For mode three, it is necessary to lower the thres-
hold of the MAC to 0.45 to find an estimate of the mode.
In Figure 10 the third mode of model (b) is compared
with the first two corresponding modes in the building
for model (a). f11 is assessed to be the best estimate of
the third mode based on Figure 10 even though the MAC
is slightly higher for f9.

In Table 2, the eigenfrequencies of the building are
listed for the first six eigenmodes for model (a), (b)
and (c). The chosen frequencies are based on the high-
est MAC values in Figure 9, while the frequency for
mode three is based on engineering judgment. The mode
shapes of the first six eigenmodes are illustrated in Fig-
ure 11. It is seen that the natural frequency of the build-
ing increases with the level of clamping of the founda-
tion corresponding to changing the model from (a) to (b)
and (c). For the sixth mode a drop in frequency is ob-
served in Table 2 when going from model (a) to (b). This
is due to the movement of the soil with little variation in
modal shape of the building. As seen in Figure 9 three
candidates appear for the sixth mode with the frequen-
cies of 38.5, 39.2 and 40.1 Hz respectively. When using
the simplified models for determining the eigenfrequen-
cies a risk of changing the order of modes is present.
This issue is seen in the case of mode two and three.

In the procedure above the material and geometric
properties of the building are calibrated so the distribu-
tion of mass and stiffness result in reasonable eigenfre-
quencies and modes of the building. The connections be-
tween the walls and the floor divisions are assumed to be
rigid, which is a simplification. A more realistic model

f3 f11f9

Figure 10: Comparison of eigenmode three of building.

Table 2: Eigenfrequencies for building.

Model (a) Model (b) Model (c)

f1 4.1 Hz 4.5 Hz 5.7 Hz
f2 13.3 Hz 13.6 Hz 13.8 Hz
f3 12.7 Hz 15.4 Hz 16.0 Hz
f4 16.7 Hz 17.3 Hz 20.7 Hz
f5 33.6 Hz 37.2 Hz 40.5 Hz
f6 40.1 Hz 39.6 Hz 44.5 Hz

f1

f4

f2 f3

f5 f6

Figure 11: First six eigenmodes of building.

with adjustable clamping of the floor divisions could be
included in a further work.

5.2 Effects of Interaction in the Soil Body

The effects of interaction between the building and the
soil body are investigated for two cases, one with the
reference case illustrated in Figure 7, and one without
the building. The corresponding responses are shown in
Figure 12 in the reference point at ground surface with
and without the building. Only the horizontal response
is presented in the following as a similar response is ob-
tained in the vertical direction.

The deviation between the two simulations is evident
at the end of the time series. As indicated, the soil con-
tinues to vibrate in the simulation in which the building
is applied. This is due to eigenvibrations in the build-
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Figure 12: Horizontal deformation at the surface 3 metres behind
building.

5



-20
-10
0

10
20
30
40
50
60
70

A
cc

el
er

at
io

n 
[d

B
]

1/3 octave band
20100

Decoupled
Coupled

100 101 102

Frequency [Hz]

Figure 13: Horizontal acceleration at surface 3 m behind building.

ing transmitting forces to the ground. The frequency re-
sponses for the two simulations are plotted in one-third
octave bands in Figure 13. As seen in Figure 13, the
energy of the acceleration time series for the lower fre-
quencies are reduced when the building is added to the
model thus, the building serves as a damper or barrier
regarding vibration behind it. However, the presence of
eigenvibration in mode one at the frequency shown in
model (a) in Table 2 is seen in band no. five and six for
the coupled model.

5.3 Effects of Interaction on the Building

In contrast to the coupled model (a) in Figure 8, an-
other common approach to model vibrations of buildings
caused by either traffic-induced ground motion or earth-
quakes is to monitor the response from either real life
measurements on the building foundation or to simulate
similar response of the ground motions in a FE model.
The response of the ground motions is then applied to
a FE model of the building alone, model (c), modelled
with movable supports as described by Nielsen, (2004).
The quasi-static response x(0)(t) of the building is given
by:

x(0)(t) = Uy(t) (8)

where y(t) is the deformation time series of the movable
supports and U is the influence matrix that links the re-
sponse of the movable supports to the quasi-static move-
ment of the remaining degrees of freedom. y(t) has six
rows, the first three correspond to the first building sup-
port, while the last three correspond to the second sup-
port. By introducing a coordinate system z(t) relative to
the moving supports, where x(t) is the total displacement
of the building,

z(t) = x(t)−x(0)(t), (9)

it is possible to rewrite the equation of motion of the
building according to Nielsen, (2004):

Mz̈(t)+Cż(t)+Kz(t) =−Mẍ(0)(t). (10)

After solving equation (10) by applying the external
forces from the right-hand side, the response in global
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Figure 14: Horizontal deformation at the middle of the 1st floor for
silty clay.

coordinates is achieved by adding the ground motions
from equation (8). Figure 14 shows the time series of
the horizontal deflection at the middle of the 1st floor in
the building for the coupled and the decoupled models.
In the decoupled model, the two rotation degrees of free-
dom are obtained by linearization between two nodes in
the foundation. The third curve, denoted ”indirect cou-
pling”, shows the results of a simulation made for vali-
dation of the procedure. Here the ground motion at the
foundations is firstly obtained with a model that includes
the building. This ground motion is subsequently used
as input in a model of the building but without the soil.
Thus the difference from the decoupled model lies in the
ground motion used as input for the building.

The simulation made for validation of the procedure
indicates that the method of obtaining rotations from ad-
jacent nodes is adequate. Hence the difference in re-
sponse between the coupled and decoupled model must
be assessed genuine. The response seems to damp out
more rapidly in the coupled model even though the peak
deflection in the floor is higher for the coupled model.
Figure 15 shows the horizontal acceleration plotted in
one third octave bands for the two models (a) and (c).

It is seen that the acceleration response is reduced for
most of the octave bands. The first eigenmode is clearly
seen to move up in frequencies from band 5-6 to 7-8
due to the stiffer fixed supports in model (c) compared
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Figure 15: Horizontal acceleration at the middle of the 1st floor for
silty clay.
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Table 3: Acceleration rms ratio between decoupled and coupled
model.

Peat Silty Clay Limestone

arms ratio 4.7 3.4 1.2

to model (a), which is in agreement with the previously
calculated eigenfrequencies listed in Table 2. The effect
of interaction for soft soil is illustrated in Figure 16, in
which the response in the reference nodes are plotted for
peat. As seen in the response, the building frequency for
the coupled model (a) is lowered compared to Figure 14.
The soil-structure interaction dependency on soil types
are quantified in Table 3, in which the root-mean-square
(r.m.s.) acceleration is listed as a ratio between the de-
coupled and coupled model. In general the interaction
between the soil body and the building is seen to be sig-
nificant, especially for soft soil types.

6 Effects of Spatial Dimension

The vibration problem shown in Figure 1 has so far been
considered as a plane problem as illustrated in Figure
17. The purpose of the following study is to estimate the
effect of the simplification. In order to do so, a 3D model
of the problem is constructed. As illustrated in Figure 18
the 3D model can account for distance between the road
and the building. In order to compare results from the
2D and the 3D model, a common reference case is set up.
The 2D model is constructed according to the description
in Section 2 with the properties given in Table 1 and the
geometry defined in Figure 17.

6.1 Construction of 3D FE model.

In the 3D model the soil body is discretized using 26-
noded isoparametric hexahedrons. As for the 2D model,
transmitting boundary conditions are applied at the sub-
merged boundaries to simulate the properties of an infi-
nite half space as described by Lysmer and Kuhlmeyer,
(1969). The system matrices for the elements are derived
using full Gauss quadrature to avoid spurius modes. The
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Figure 17: Plane view of the reference case.
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Figure 18: Top view of reference case.

building is constructed using 3D Bernoulli beam ele-
ments. The geometry and the static system of the build-
ing is illustrated in Figure 19. In the walls spanning in
zy-plane, a cross has been implemented to add additional
stiffness. Same principle is applied at the floor and roof
of the building. An increase of stiffness in the given di-
rections will lead to dynamic behavior more similar to
the 2D building presented in Section 5.1. The element
stiffness and mass of the building are calibrated to ap-
proximate the lower eigenfrequencies of the 2D build-
ing.

The road is modelled using Mindlin elements cf.
Cook et al., (2002). The Mindlin elements are derived
assuming quadratic shape functions and are therefore
well suited to connect on top of the brick elements. The
elements are aligned in a grid as shown in Figure 20 to
provide bending stiffness in two directions. The bending
stiffness of the road in the 2D model is defined as stiff-
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Figure 19: Model of house, total dof = 456.

7



0 5 10 15 20 25 30 35 0
5

10
150

5

10

15

y
x

z

Figure 20: 3D FE model, total dofs = 14436.

ness per meter. In the 3D model the road is two metres
wide and the road is calibrated to have a bending stiff-
ness corresponding to a one meter wide road in the 2D
model. Material and cross-section properties of the road
and the building in the 3D FE model are given in Table
1. The vehicle and the soil parameters are the same as
for the 2D model.

Due to extent of the computational effort the mesh re-
finement is less delicate for the 3D model compared to
the 2D model presented in Section 2. When evaluating
the inverse system matrices used for the time integration
scheme, large matrices induce a comprehensive com-
putation time and requires a large amount of memory.
The soil body is meshed with element sizes increasing
with depth. The top row of elements has the size of
x×y×z = 2 m×2 m×1 m in order to satisfy the geome-
try of the building. The underlying elements are larger in
size to add more distance to the artificial boundary with-
out increasing the size of the computational problem.

Based on the soil properties and the expected wave
frequency in the following analysis the wave length for
the Rayleigh wave is approximately 10 metres. The en-
ergy in the Rayleigh wave decreases exponentially from
the surface and approximately two wave length below
the surface the relative amplitude of the Rayleigh wave
is below one percent. The depth of the model is nine me-
tres whereby some of the energy will be absorbed at the
boundaries. However, the geometry is similar to the ge-
ometry of the 2D model, whereby the error is compara-
ble for the two models. In general, it is recommendable
to use four elements per wave length, but due to com-
putational limits the recommendation is only fulfilled in
the x- and y-direction.

The mesh is illustrated in Figure 20. The eigenfre-
quencies of the building are calculated using the reduced
system matrices as illustrated in Figure 8 (b). The first
six modes are sketched in Figure 21 and the associated
frequencies are listed in Table 4. The first eigenmode is
identical to the 2D model with oscillation in the zx-plane
while mode 3 for the 2D model can be seen as mode 4 in

Table 4: Eigenfrequencies.

f1 f2 f3 f4 f5 f6

4.55 9.01 11.04 12.87 15.07 19.41

f1 f2 f3

f4 f5 f6
xy

z

Figure 21: The first six eigenmodes of the three-dimensional building.
Notice that crosses have been removed for visual purposes.

the 3D model.

6.2 Load

The load is generated from the same three-axel bus with
five degrees of freedom as described in Section 4. The
load from each axel is applied on the road uniformly dis-
tributed in the y-direction as illustrated in Figure 22 and
afterwards extrapolated to the nodes using shape func-
tions. The vehicle and the rest of the model are modelled
as two decoupled systems. In Section 4 it was demon-
strated that a decoupling causes negligible deviations for
stiff soils, like the soil presented in Table 1 while the
computational effort is highly reduced. Simulations are
conducted with load generated from a vehicle passing
a speed bump and a cobblestone pavement. The bump
used for simulation is a circle bump designed according
to Vejdirektoratet, (2009) for heavy vehicles moving at a
velocity of 25 km/h.

6.3 Wave Propagation

The main difference between the 2D model and the 3D
model is related to the wave propagation in the soil. The
amplitude of the vibration in the 3D model will be di-
minished compared to the 2D model due to out of plane
dissipation of energy. A simple illustration of the issue
is given in Figure 23. Assuming that the amplitude of
deformation will decay proportional to the geometric ex-
pansion of the surface for the hemisphere and semicircle,
respectively.

x
Position of vehicle axel

1/6

2/3

1/6

yz

Figure 22: Load distribution on road.
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Figure 23: Wave propagation in 2D and 3D.

A2 = A1
R2

1

R2
2
, for the hemisphere, (11)

A2 = A1
R1

R2
, for the semicircle, (12)

where A is the amplitude and R is the distance from the
source. For the simulation with the two models, it is
more complex to predict the deviation due to geometric
damping as the induced wave field does not propagate
from a perfectly well defined point. Furthermore the ge-
ometric dissipation depends on the type of waves. How-
ever, the order of magnitude can still roughly be esti-
mated for the illustration in Figure 18. It is assumed that
the source of vibration is the center of the speed bump
and that the energy transmitted into the building is pro-
portional to percentage area of the foundation compared
to the surface of the hemisphere and semicircle. Hereby,
the acceleration in the 3D model should be in the order
of 1 – 10% of the 2D model.

6.4 Results

Simulations are conducted for different cases for the 2D
model as well as the 3D model. In order to quantify
the difference between the models, the vibration at the
first quarter point of the floor division is considered. For
the 3D model the vibration in the beam at first floor fac-
ing the road is chosen for comparison. Since the object
is to evaluate the human exposure to vibration, the ac-
celerations are weighted according to the procedure de-
scribed in (ISO 2631, 1997). The vibrations generated
from traffic are mainly occasional shocks and in such
case it is recommended to use the running root mean
square method:

aw(t0) =





1
τ

t0∫

t0−τ

[aw(t)]2 dt





1
2

, (13)

where aw(t0) is the instantaneous frequency-weighted
acceleration for the observation time t0. τ is the inte-
gration time for running averaging and is set to one sec-
ond. The frequency weighting is performed based on
one-third octave bands. The weighting functions and a
guide for principal weightings are stated in (ISO 2631,
1997) as well. The results for the two models are given
in terms of vertical acceleration and plotted in one-third
octave bands in Figures 24 and 25 for the circle bump
and in Figure 26 and Figure 27 for cobblestones.

-20
-10
0

10
20
30
40
50
60
70

A
cc

el
er

at
io

n 
[d

B
]

Unweighted
Weighted

1/3 octave band
20100

100 101 102

Frequency [Hz]

Figure 24: Vertical acceleration at the reference point at the first floor
in the 2D model. Simulation for circle bump with a vehicle
velocity of 25 km/h.
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Figure 25: Vertical acceleration at the reference point at the first floor
in the 3D model. Simulation for circle bump with a vehicle
velocity of 25 km/h.
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Figure 26: Vertical acceleration at the reference point at the first floor
in the 2D model. Simulation for cobblestone pavement with
a vehicle velocity of 25 km/h.
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Figure 27: Vertical acceleration at the reference point at the first floor
in the 3D model. Simulation for cobblestone pavement with
a vehicle velocity of 25 km/h.
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Figure 28: MTVV ratio at the reference point at the first floor in the
3D model.

As seen in Figures 24 – 27 the acceleration amplitude
is highly reduced for the 3D model. The overall spec-
trum shows similarities with a peak in acceleration in
the bands containing the building’s eigenfreqencies. The
spectrum of the 3D model shows lack in description of
the higher frequencies. This may be due the fact that the
mesh description is less fine for the 3D model compared
to the plane model.

More simulations are performed in order to estimate
if variation in parameters done in the 2D model can be
used to identify critical cases prevalent for the full 3D
model. The comparison for the analysis is given in terms
of the maximum transient vibration value, MTVV, ob-
tained from (ISO 2631, 1997).

MTVV = max(av(t)) t ∈ [τ;T ] , (14)

av(t) =
√

k2
x a2

wx(t)+ k2
y a2

wy(t)+ k2
z a2

wz(t), (15)

where, kx, ky and kz are multiplication factors and set to
1.0 cf. (ISO 2631, 1997) and T is the total simulation
time. The vehicle is run across the uneven pavement by
shape of a circle bump and cobblestones, respectively,
for different velocities. The cobblestone pavement used
for the above analysis is generated using a stochastic de-
scription given by the parameters listed in Table 5. The
results in terms of MTVV are normalized with respect
to a reference velocity of Vveh = 15 km/h and plotted in
Figure 28. Figure 28 indicates that the 2D model to some
extent can be used for assessing the impact of choosing
different speed reduction measures as bumps or cobble-
stones. However, only the ratios in changes can be used

Table 5: Stochastic parameters for cobblestone pavement.

Parameter Mean Std. dev. Lower limit

Brick length 20 cm 3 cm 10 cm
Brick height 1.0 cm 0.3 cm 0.0 cm
Gap length 2.5 cm 0.5 cm 1.0 cm

Table 6: Parameters for pavement description.

Cobblestones

Length Height
Parameter µL σL µH σH

Case 1 0.20 0.03 0.01 0.003
Case 2 0.20 0.03 0.015 0.003
Case 3 0.20 0.05 0.01 0.003
Case 4 0.30 0.03 0.01 0.003

Speed bump

Parameter Type Distance

Case 5 Circle 15 m
Case 6 Sinus 15 m
Case 7 Trapeze 15 m
Case 8 Circle 10 m

for assessing different designs while it must be kept in
mind that the absolute values of accelerations are incom-
parable.

More simulations are conducted to conclude if the 2D
model is suitable for a parameter study. Different types
of cobblestones and speed bumps are used, all with a ve-
hicle velocity of 30 km/h. The cobblestones are varying
in brick height and the standard variation are varied lead-
ing to 4 pavement cases constructed from the stochastic
parameters given in Table 6. The gab length between the
cobblestones is the same as presented in Table 5. Results
from the analysis are presented in Figure 29 and normal-
ized with respect to Case 1.

Similar simulations are conducted for three types of
speed bumps. The three speed bumps used for simula-
tion are initially located with the same centre distance to
the building as shown in Figure 18, all designed accord-
ing to Vejdirektoratet, (2009). The results for the speed
bumps are given in Figure 30 and normalized with re-
spect to Case 5. Note that one simulation is conducted
for the circle bump at a distance closer to the building.

In general a good coherence is observed between the
models in the normalized domain. A change in the 2D
model leading to an increased level of vibration is recip-
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Figure 29: Comparison for different cobblestone pavement.
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Figure 30: Bump types and position.

rocal in the 3D model. Only in Case 4, a high devia-
tion between the models is observed. The cobblestones
in this case have an increased mean value of the length
forming a mean load frequency of

f =
Vveh

µL + µGab
= 25.64 Hz. (16)

According to Section 5.1, no eigenmodes near this fre-
quency was found for the 2D model. When evaluating
the eigenmodes for the 3D model at higher order, the
11th mode is found at a frequency of 25.23 Hz. The
eigenmode is illustrated in Figure 31. This example il-
lustrates the importance of the kinematics of the build-
ing. The 3D model has a higher modal density than the
plane model. Hence, the chance of resonance is higher
when forming the cobblestone pavement.

7 Conclusion

A study of the dynamic response of a two-storey frame
building exposed to gound-borne vibrations caused from
passing of heavy vehicles has been conducted. The re-
sponse has been analysed under consideration of diffe-
rent assumptions and levels of interaction between the
systems. The observations has lead to the following con-
clusions:

• The influence of interaction effects at the interface
between the moving vehicle and the soil can be ne-
glected for common occurring soil types. The mag-
nitude of deviation depends on the stiffness of the
soil and the properties of the vehicle. The analysis
presented in this paper is carried out for one ref-
erence vehicle and shows that the deviation is at a

25303540
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Figure 31: Mode 11 at 25.23 Hz.

magnitude less than 2% for soil types commonly
found in Denmark. The decoupling of systems re-
duces the computational cost markedly.

• When constructing a FE model to predict the level
of traffic-induced vibrations at neighbouring build-
ings, an essential parameter is the dynamic mod-
elling of the building. The dynamic response of
the building is sensitive to assumptions regarding
clamping of the foundations, and a decoupling from
the soil may lead to major deviations in response.
The presence of a heavy building has shown to give
a coupling back to the soil body in terms of both
amplitude and frequency. Hence, ground measure-
ments at bare fields cannot be directly applied in a
model without considerations regarding interaction
effects from the structure back to the soil.

• A 3D FE model has been constructed to estimate
the deviation between the 2D and the 3D model.
In general the 3D model requires a vast amount
of computational power compared to the 2D-model
and it is therefore unsuitable for parameter studies.
Hence it was examined if the plane model is appli-
cable for this purpose. Simulations were conducted
in which different sets of cobblestones and speed
bumps were included. In general it was seen that a
change in the 2D model was recognized in the 3D
model.

• When comparing the two models, a highly dom-
inant parameter is kinematics of the building. In
Section 6.4 it was demonstrated how crucial effect
a change in parameter can cause if only one of the
models is experiencing resonance. Based on the
analysis conducted during this study it seems that
the 2D model to some extent is applicable for a pa-
rameter study. However, it should be kept in mind
that some 3D effects are neglected when evaluating
the eigenmodes for the building and that the ampli-
tudes of vibration deviate significantly.

In Section 5 it was seen how the presence of a building
can influence the vibrations in the soil. A natural field of
study is to examine how the change grows with increased
number of building. In the same section when interaction
effects are examined, only one type of foundation is con-
sidered and an interesting point of view would be to ex-
amine the influence of e.g., a basement. It was found that
a dominating parameter is the kinematics of the building.
Since the house used in this study is a very crude simpli-
fication, a more detailed modelling of the building would
be an obvious choice of further work.
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Program Review

A main part of the master project consists of constructing a total finite-element (FE) model for
modelling traffic-induced vibration. The model includes a moving vehicle, a continuum soil body
and a building. All parts are connected and interact with different interfaces. The main model
is two-dimensional (2D), while a simplified comparable three-dimensional (3D) model is made for
comparison. Along with the main 2D program several additional programs are developed in order
to evaluate and validate methods, assumptions and results.

All the programs are made in MATLAB (Matrix Laboratory), which is a numerical computing
environment developed by MathWorks. In the following sections, the structure of the main program
and some selected additional programs are presented. For technical description of the program
refers to the background report and Article # 1. Variables and symbols will not be explained in
the review, but are explained in the background report and in the articles. The different programs
can be found on the attached DVD.

Main Program

The general structure of a FE model consists of three parts; preprocessing, processing and post
processing. The first part defines the material, geometry, topology, load and boundary conditions.
The second part assembles the finite-elements in a total model and solves the selected problem. The
third part is processing of results from e.g. nodal displacements to Gauss points or displacements
to strains and stresses. The overall structure of the 2D FE model is illustrated in Figure 7.

Main

Pre-processing Processing Post processing

Topology

Soil

House

Road

Load

Vehicle

Road pavement

Static 
solution

Assembly

Dynamic

Time domain 
solution

Frequency 
domain 
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Frequency 
weighting
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Boundary 
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Figure 7. Overall structure of 2D FE model for modelling traffic-induced vibration.

The program is run through the main.m file, in which a current setup is loaded by the input.m
file as illustrated in Figure 7. In the following, the highlighted (blue) boxes are elaborated.



Input

The input.m file assembles almost all information of the model in the two global structs listed in
Table 1. All other parts of the FE model use the two structs to access the necessary information
for the further computation.

Output Description

Info Geometry, materials, model parts and solution type
Input Load and boundary conditions

Table 1. Variables in input.m.

Topology

Defines the topology and discretizes the mesh of the total model with the selected model parts
(vehicle, road and building) based on the information in the info struct. The output variables
contain subvariables for the different model parts.

Input Description

Info Geometry, materials, model parts and solution type

Output Description

NodeCoor Nodal coordinates
NodeDof Nodal degree of freedom numbering
ElemNode Node numbers in elements
ElemDof Element degree of freedom
ElemMat Element material
Info Updating info with information of mesh

Table 2. Input and output variables in Topology.m.

Load

The load.m file is chosen by the input struct, and can in principle define a variety of different loads
cases as e.g. static or dynamic loads.



Input Description

m1, m2, k1, k2, c1, c2 Vehicle properties, e.g. mass, stiffness and damping
r1, r2, r3, hv, bv Vehicle geometry
vveh, dt, T Time description
Surface type Surface description (cobblestone or speed bumps)

Output Description

Mv, Cv, Kv, U Vehicle system matrices
s, y, dy Road description vectors

Table 3. Input and output variables in Load_Vehicle.m.

The standard load.m file, however, contains the vehicle passing different road surface types. The
load.m file is an input file as the one denoted input.m, with the difference that the load.m file
defines and computes the vehicle and road properties.

Assembly

The assemble.m file is evaluated in the main.m file under the processing part, as illustrated in
Figure 7. The assemble script is divided into the following four parts.

Assemblence of:

• Soil body elements
• Building elements
• Interface elements
• Road elements

where, the subvariable info.modelpart determines which parts that have to be evaluated. Each
part contains a loop over the different element types, where the variable ElemDof determines the
position in the global matrices, where the local element matrix is inserted.

Output Description

Ms, Cs, Ks Global matrices for stationary part

Table 4. Output variables in assemble.m.

The assemble file is not written as a function, but as a script. In this way all the global variables
needed for assembling the global system matrices are accessible. This is e.g. the topology variables,
material and geometry of elements, model- and element parts. If the transparent boundary
conditions are applied in a dynamic analysis, they will be executed as a contribution to the global
damping matrix.

Time Domain Solution

The dynamic time domain options are evaluated in the processing part of the main.m file based
on the subvariable info.SolType. Three different solvers are available, all based on the Newmark



time integration algorithm, in which the difference is the method of coupling the moving vehicle
to the stationary part of the FE model. The output of the solvers are in general the time series
for the deformation, velocity and acceleration for all degrees of freedom in the model.

Input coupled solver Description

NodeCoor, ElemNode and ElemDof Topology
Ms, Cs, Ks System matrices for stationary part
Mv, Cv, Kv System matrices for vehicle
t, s, y and dy Road surface
Info Everything else

Input decoupled solver Description

Ms, Cs, Ks System matrices for stationary part
F Vehicle reaction forces (from Load_Vehicle.m)
t, dt Time description

Output Description

u, v and a Response time series

Table 5. Input and output variables in Time_domain_solution

Graphical User Interface

The graphical user interface (GUI) collects a range of different plots and visualisation functions for
evaluating the computed results. The GUI allows visualisation of time domain response of vehicle
wheels and chassis, road, soil body and building as illustrated in Figure 8. In addition to this, the
nodal response of the different parts, vehicle, road, soil body and building can be plotted in terms
of deformation, velocity or acceleration as illustrated in Figure 9 for a deformation time series at
the first floor in the building.

Figure 8. Example of time domain response in GUI.



Figure 9. Example of nodal response evaluation in GUI.

Additional Programs

Along with the main 2D model, several additional programs are developed. The most
comprehensive is a 3D model equivalent to the main 2D program, while the other additional
programs are minor programs used in the validation process of the main 2D program or to analyse
the results from the 2D and 3D program for the articles. The additional programs are listed in
the following, while some selected programs are elaborated afterwards.

• 3D FE program
• 2D FE program of building
• Acceleration evaluation
• Frequency domain solution
• Kelvin model
• Mindlin elements
• Spurious mode
• Vehicle model

3D FE Program

The structure of the 3D program is in general similar to the main 2D program as shown in Figure
7. However, some simplifications are made in the 3D program. The inputs for a simulation are
made directly in the main3D.m file, while the vehicle load is computed in the same way as for the
2D program. It is possible to analyse the static and dynamic response or examine the eigenmodes.
A set of new post processing plot functions are added to evaluate the time response of the soil
body and the building in three dimensions.

2D FE Program of Building

The purpose of the program is to evaluate the response of the building due to ground vibrations
applied on movable supports. The structure of the program follows the general FE program
structure illustrated in Figure 7. The model setup is made in the main_building.m file such as
geometry, material, load and boundary conditions. Time series of ground motions from the main



2D program can be applied as loads on the supports of the building using an influence matrix, in
which the response of the movable supports are linked to the quasi-static movement of the building.

Vehicle Model

The program is developed to construct and test the vehicle model separately and to develop the
interaction algorithms for the vehicle passing a simply supported beam. Besides the necessary input
parameters for the vehicle and beam, different functions for speed bumps are used to construct
time series for the road surface elevation. The response of the vehicle chassis and suspension system
or the interpolated response of the beam surface are visualised using different plot functions.

After testing and validation of the program, it has been incorporated in the main 2D FE model.
The vehicle model is build in as the Load_Vehicle.m file, while the speed bumps are incorporated as
road-input functions. The different interaction algorithms are incorporated in the main 2D program
under the processing part to account for interaction between the vehicle and the soil body. The
vehicle plot functions are refined and incorporated in the GUI under the post processing part of
the main 2D program.
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Discussion

The master thesis project outlined in the previous chapters includes the construction and utilisation
of a two-dimensional finite-element model to simulate traffic-induced vibrations. The construction
of the model, a parameter study and considerations regarding the essential assumptions are
described in three articles intended for publication. The usability of the model and considerations
regarding improvements and further work are discussed in the following.

The main thesis in the project is inspired by an episode in Aalborg at Boulevarden in which
the municipality had to remove an expensive cobblestone pavement due to vibration in nearby
buildings. The episode may have been avoided if a dynamic analysis had been performed in the
design phase. The finite-element model proposed in Article 1 can be used to perform such analysis.
However, as described in Article 3 the two-dimensional simplification fails to provide reliable
estimates regarding the magnitude of vibration, mainly due to the issue of three-dimensional wave
propagation. Instead the model is applicable to clarify the differences between different designs,
e.g. by conducting a parameter study such as the study in Article 2. As demonstrated in Article 3,
the changes in response achieved by a two-dimensional model due to a modification of the design
are comparable to the changes, predicted by a three-dimensional model.

In connection to further developments of the model it would be reasonable to conduct a field
study. Several assumptions and simplifications are made in both the three-dimensional and the
two-dimensional models, and measurements from a suitable experiment could help clarify, whether
these assumptions are comparable to reality. For example, an experiment could be conducted
in which the vibration in a building is monitored as a bus passes a nearby speed bump. Initial
examinations could be used to determine the dynamic properties of the vehicle and the building.
Comparisons could then be made between the experimental results and results from a simulation
conducted using the two-dimensional finite-element model.

Another obvious way to improve the two-dimensional model is to expand it into a three-dimensional
model as described in Article 3. However, due to the capacity of today’s computers three-
dimensional models are highly time consuming and inapplicable in parameter studies. In a design
situation a recommendable procedure would therefore be to estimate a reasonable design from a
parameter study using the two-dimensional model, where after the expected magnitude of vibration
can be calculated using a three-dimensional model.
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Prologue

The following paper serves as a background report for the models and theories that are
utilised in the project. The aim is to elaborate methods and assumptions and to validate
the individual parts of the finite-element model. The background report shall mainly
be considered as an appendix and it may be difficult to identify the common thread
throughout the report. The individual chapters are arranged in a more or less chronological
order but some exceptions must be expected.

.

"Mama always said life was like a box of chocolates.
You never know what you’re gonna get."

- Forrest Gump
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Chapter 1

Vehicle model

A key aspect of the project is to set up a model for the vehicle which due to track
irregularities will induce dynamic loads to the soil beneath. The following chapter
describes how the vehicle is modelled as a multi-degree-of-freedom (MDOF) system and
contains explanations of relevant theory and assumptions.

1.1 System Model

Vehicles causing problems due to vibrations are usually heavy vehicles such as a bus
illustrated in Figure 1.1.

Surface roughness

Figure 1.1. Illustration of a typical city bus.

The vehicle is modelled as a MDOF system with inspiration from [Henchi et al., 1997]
and [Kima et al., 2005]. The load from the vehicle shell including interior and passengers
is supported by sets of springs and dampers (suspension systems) connected to the axels.
Due to compressibility of the air inflated tyres the wheels are modelled with a set of springs
and dampers as well, see Figure 1.2.
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m1 m1 m1

k1

k2

c1

c2

x2 x1x3

x4

m2, J
θ 

m Mass

Spring

Damper

Center of gravity

a1

ac

a2

Figure 1.2. Dynamic model of the city bus.

Some assumptions are made when establishing the dynamic model:

• The problem is simplified to a two dimensional problem.
• The shell of the vehicle is assumed to be rigid.
• Horizontal effects are neglected.
• The stiffness and damping is the same for all tyres and for all suspension systems.
• Dampers and springs are assumed to behave linearly.

In the following sections the three axel system above will be used as a case study, however,
the program is configurated to work for more than three axels. In addition to the
geometrical values presented in Figure 1.2 the following are used:

a =

 0
a1

a2

 b =

[
a(2)− a(1)
a(3)− a(2)

]
c = ac − a (1.1)

1.2 System Matrices

The system in Figure 1.2 have five degrees of freedom, one for each axel and two for
vertical movement and rotation of the vehicle shell. The mass matrix is given as:

M =


m1 0 0 0 0
0 m1 0 0 0
0 0 m1 0 0
0 0 0 m2 0
0 0 0 0 J

 (1.2)

The stiffness matrix is derived by applying a unit displacement in each degree of freedom
and calculate the force response. The procedure is illustrated in Figure 1.3 for a unit
displacement in the first degree of freedom.
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x2 = 0x3 = 0

θ = 0 

c(1)

x1 = 1

x4 = 0

x1 = 1

f = k2

f = k2

f = k1

Figure 1.3. Method to derive the stiffness matrix.

The stiffness matrix is given as:

K =



k1 + k2 0 0 −k2 k2 · c(1)
0 k1 + k2 0 −k2 k2 · c(2)
0 0 k1 + k2 −k2 k2 · c(3)

−k2 −k2 −k2 3 · k2

3∑
i=1
−k2 · c(i)

k2 · c(1) k2 · c(2) k2 · c(3)
3∑
i=1
−k2 · c(i)

3∑
i=1

c(i) · k2 · c(i)


(1.3)

Notice that the matrix is symmetric and it can be shown, that it is positive definite as
well. The stiffness matrix above reveals a certain pattern and it is quite simple to set up
a general description that is valid for any number of axels. The eigenmodes of the system
is calculated based on M and K and if realistic values of stiffness, mass and axel distance
is used the first three modes will typically look as illustrated in Figure 1.4.

Direction of movementCompressionElongation

Figure 1.4. Typical mode shapes for mode 1, 2 and 3.

The vehicle is assumed to be critically damped in the first mode based on experience.
Stiffness proportional damping is assumed and the damping matrix can hereby by
expressed as:

C = a1 K (1.4)

The coefficient a1 above should not be confused with the geometrical value from Figure
1.2. According to [Nielsen, 2004] the coefficient a1 can be related to the modal damping
ratio of the first mode ξ1 using:

a1 =
2 · ξ1
ω1

(1.5)
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1.3 Vehicle Vibrations

Vibrations of the vehicle are induced by the rough surface which will cause the surface of
the tyre to move vertically as the vehicle crosses. It is assumed that the bottom of the
tyre will always be connected to the road surface, corresponding to a vertical movement
at the bottom of the lower springs in Figure 1.2. The problem is treated in [Nielsen, 2004]
where the following equation of motion is derived:

Mẍ + Cẋ + Kx = Cẋ(0)(t) + Kx(0)(t) (1.6)

The expression on the right of the equation denotes the force induced by movable supports.
x(0)(t) refer to the quasi static deformation due to the movable support and can be
expressed as:

x(0)(t) = Uy(t) (1.7)

y(t) describes the movement of a given support in time and U is a vector indicating the
quasi-static motion from a unit deformation of the associated support. U is set up by
applying a unit deformation at the relevant support whereafter the response is derived
using vertical force and moment equilibrium and geometrical conditions. The procedure
is illustrated in T Figure 1.5 for a unit deformation of the first support.

Direction of movement

Compression

ElongationΔx1

Δx2

Δx3

Δx4

Δx5

Δx6

Figure 1.5. Procedure for derivation of the U-matrix.

The derivation is found to be easier if the compression of the spring ∆xi is considered.
The following equations are set up:

∆xi·2 · k1 −∆xi·2−1 · k2 = 0 for i = 1,2,3 (1.8)

3∑
i=1

∆xi·2−1 · k2 = 0 (1.9)

3∑
i=1

∆xi·2−1 · k2 · c(i) = 0 (1.10)
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(1−∆x1 −∆x2)− (−∆x3 −∆x3)
b(1)

=
(−∆x3 −∆x4)− (−∆x5 −∆x6)

b(2)
(1.11)

The last equation is a geometrical condition from the rigid rotation of the bus shell. This
condition is the only one that changes when a unit displacement of the second support
is applied. By studying the equations above, general expressions can be derived for an
arbitrary number of axels. In practical the equations are set up on matrix form and solved
by row-reduction. The values of ∆xi are used to calculate the U-matrix.

1.4 Simulation

The vehicle is assumed to cross a rough surface described by the curve y(s). In this
example the curve is assumed to be sinusoidal with the following values:

y(s) = A sin
(

2 π
s

L

)
(1.12)

A Road amplitude
L Sinusoidal wave period
s Position

The position s can be calculated from the vehicle speed v and the time t. The vibrations
of the vehicle are calculated by subjecting the surface displacement y(t) to each axel with
a time difference determined from the internal axel distance, b. In Figure 1.6 the results
for movement of the first degree of freedom is given along with the surface profile.

0 0.5 1 1.5 2 2.5 3 3.5

-0.1

-0.05

0

0.05

0.1

Time [s]

D
is

p
la

c
e

m
e

n
t 

[m
]

 

 

Road surface

1.st degree of freedom

Figure 1.6. Results from simulation on sinusoidal road.

As illustrated the movement of the axel is closely related to the shape of the surface
with a minor phase shift. The difference between the surface shape and the movement of
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the axel is used to calculate the compression of the lower spring (the tyre) and from the
compression and the rate of compressibility the force on the track due to surface roughness
can be calculated.
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Chapter 2

Vehicle-Soil Interaction

In this chapter the vehicle model from Chapter 1 on page 1 is set to interact with the road
and surface irregularities. Initially a simple method for modelling the contact surface
between tyre and road is presented. Next two integration schemes for modelling the
interaction between vehicle and road is explained. Finally the effect of interaction is
evaluated using simulations.

2.1 Road Surface model

The surface profile described in Equation (1.12) is unlikely in reality. In the three articles,
cobblestone pavements and speed bumps are constructed according to Sterner [2009].
Three different types of speed bumps, a circle bump, a sinus bump and a trapeze bump
are set up. Common for all the surface profiles is that they are described at discrete points
with steps of ds in order to fit the velocity of the vehicle:

ds = vveh dt (2.1)

In order to account for the contact surface w between the wheel and the road, a moving
average filter is applied to the initial discrete surface irregularities or speed bump elevation
as illustrated in Figure 2.1.

Time t

Position s

Elevation y(s)

Discretization

Beam model 1

L1

2

L2

x1 x2

1 2 3 4 5 6

Elevation y(s)

nn-1n-2 n+1

Average filter

ds

Wheel contact, w

Points to average over: 
N = w/ds+1

Figure 2.1. Moving average filter to account for wheel contact on speed bumps.

The initial time series for the surface elevation is averaged as illustrated in Figure 2.1
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using the moving average filter in Equation (2.2).

y(n) =
1
N
x(n+ 1) +

1
N
x(n) +

1
N
x(n− 1) +

1
N
x(n− 2) (2.2)

The effect of the average filter is illustrated in Figure 2.2 where a two-wheeled car crosses
a circle speed bump at rated speed of 40 km/h. In this case, the vertical acceleration felt
by the car should be in the order of 0.65-0.75 g. It is seen that it is possible to adjust the
vertical acceleration felt by the car by passing the speed bump to the expected range by
increasing w.

0 5 10 15 20 25
-0.5

0

0.5

1

1.5

2

Road length [m]

V
er

tic
al

 a
cc

el
er

at
io

n 
[G

]

 

 
Initial speed bump
Average, w = 0.2m
Average, w = 0.4m
Average, w = 0.5m

Figure 2.2. Two-wheeled car passage of circle speed bump at rated speed of 40 km/h.

It should be noticed that w is another parameter that should be chosen along with realistic
mass, spring stiffness and damping of tyre and suspension in order to get realistic results.

2.2 Bernoulli Euler Beam

The step length ds will typically be relatively small due to the size of the time step
dt. The computational cost will be comprehensive if beams are applied for every step.
Instead, interpolation is used to estimate nodal forces and nodal displacements for forces
applied between nodes. The procedure will be described for the Bernoulli Euler beam
element. The element has two nodes, with one rotational degree-of-freedom (dof) and one
translational dof in each node as illustrated in Figure 2.3.

Page 8



2. Vehicle-Soil Interaction

1

0.72

3 8 15
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Static

d/dt=1

d/dt=0
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0.9
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p/pu

Cyclic

Static

0.9

d

A

Cyclic
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(3 - 0.8d/D) = 0.9

3

1

2

3

4

Figure 2.3. Bernoulli Euler beam element with 4 dof.

The Bernoulli Euler beam element uses the following cubic shape functions to interpolate
nodal displacement according to Cook et al. [2002].

N =
[
1− 3x2

L2 + 2x3

L3 x− 2x2

L + x3

L2
3x2

L2 − 2x3

L3 −x2

L + x3

L2

]
(2.3)

The strain interpolation matrix B is found as the second derivative of the shape functions
N:

B =
d2

dx2
N
[
− 6
L2 + 12

L3 − 4
L + 6

L2
6
L2 − 12

L3 − 2
L + 6

L2

]
(2.4)

2.2.1 System matrices

The system matrices for the beam element are given in the following based on Cook et al.
[2002].

The stiffness matrix is given as:

K =
∫ L

0
BTEIB dx = EI


12
L3

6
L2 − 12

L3
6
L2

6
L2

4
L − 6

L2
2
L

− 12
L3 − 6

L2
12
L3 − 6

L2

6
L2

2
L − 6

L2
4
L

 (2.5)

The mass matrix is given as:

M =
∫ L

0
NTρAN dx =

ρAL

420


156 22L 54 −13L

22L 4L2 13L −3L2

54 13L 156 −22L

−13L −3L2 −22L 4L2

 (2.6)

The damping matrix can be calculated from the stiffness and mass matrix using a Rayleigh
damping model as given in formula 2.7.

C = αM + βK (2.7)

The coefficients α and β in Equation (2.7) are linked to the damping ratio ξ by Equation
(2.8).

α+ βω2
i = 2ωiξi (2.8)

It is possible to adjust the coefficients α and β to fit two specific modes of interest exactly,
or just to fit the damping ratio ξ for a single mode as done in Equation (1.5).

Page 9



2. Vehicle-Soil Interaction

2.2.2 Interpolation

In order to demonstrate the principle of interpolation, an example with a simply supported
beam with two elements is conducted. The situation is illustrated in Figure 2.4.

Time t

Position s

Elevation y(s)

Discretization

Beam model 1

L1

2

L2

x1 x2

1 2 3 4 5 6

Figure 2.4. Discretisation of time and surface roughness for vehicle and for beam model.

The geometric and material properties for the current example are listed below:

• Load at mid point, p = -1 kN
• Beam length, L = 1 m
• Beam height, h = 0.1 m
• Beam width, b = 0.1 m
• Young’s Modulus, E = 210 GPa

The static system response u for the example with 2 elements and a point force at the
mid node is given by:

uT =
[
0 −0.0036 −0.0119 0 0 0.0036

]
(2.9)

The interpolated response at global discretisation si for the current example is given by
Equation (2.10) and is shown on the blue curve in Figure 2.5.

u(si) =

{
Nx1(si),L1

· u([1 2 3 4]) for element 1
Nx2(si),L2

· u([3 4 5 6]) for element 2
(2.10)

It is also possible to interpolate the point load p at discretisation si, to the corresponding
beam nodes. This is done for the same beam with just one beam element by Equation
(2.11) and the results is shown with the red curve in Figure 2.5.

f([1 2 3 4]) = Nx1(si),L1
· p(si) for element 1 (2.11)

The results for the static interpolated deflection from Formula (2.10) is shown in Figure
2.5 with the blue curve and it gives the exact results compared with the analytical solution
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for a simply supported Bernoulli Euler beam with a point load at the middle. The red
curve shows the deflection for only one beam element, where the point load at the middle
is interpolated to the end nodes. This gives the exact deflection/rotation at the end nodes,
but underestimates the maximum deflection at the middle of the beam when the deflection
u is interpolated within the beam.
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ef
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1 Element
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2 Elements
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Figure 2.5. Static interpolated deflection.

The green curve shows the deflection, when three beam elements are used with nodes at
0, 2, 7 and 10 m. The point load at the middle is again interpolated to corresponding
nodes, and it is seen that the deflection/rotation is exact in the nodes. The interpolated
deflection is also exact in the first and third beam element, but the maximum deflection
at the middle of the beam is again underestimated. The above examples in Figure 2.5
shows that in order to get the right results of the deformation in a given point of interest,
a node should be placed, in the point of interest or a node should be placed where the
force is applied.

2.2.3 Eigenfrequency Evaluation

The eigenfrequencies from the FE beam model are calculated by solving the eigenvalue
problem given by formula (2.12). The system matrices SysK and SysM are the reduced
system matrices, where the fixed dof at the boundaries have been removed.(

K− ω2 M
)

Φ = 0 (2.12)

For a simply supported beam with two elements, this gives four dof, which makes it
possible to find four eigenfrequencies and four related eigenmodes. In Figure 2.6 the four
modeshapes are plotted using shape functions.

The eigenfrequencies for different numbers of elements for the simply supported beam are
shown in Table 2.1 along with the analytical results for the first five eigenfrequencies. As
expected, it is seen that the first half of the frequencies corresponds well to the analytical
results.
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Figure 2.6. Beam modeshapes for simply supported beam with two elements.

Elements 1 2 3 4 5 Analytic

f1 [Hz] 2.58 2.34 2.33 2.32 2.32 2.32
f2 [Hz] 11.82 10.48 9.36 9.33 9.32 9.30
f3 [Hz] 25.18 23.50 21.29 21.14 20.93
f4 [Hz] 47.26 42.77 41.26 39.39 37.19
f5 [Hz] 110.93 65.58 62.31 58.14

Table 2.1. Eigenfrequencies for simply supported beam for different element numbers.

Another way to illustrate the effect of the number of beam elements is to let the
simply supported beam vibrate freely. The problem is solved in the time domain by
time integration using the Newmark algorithm. A Fourier transformation of the results
shows the power spectrum density in Figure 2.7. The shape functions are again used to
interpolate both loads and the response used for the Fourier transformation.
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1 element
2 elements
3 elements
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Figure 2.7. Frequency spectrum for different number of elements.
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It is evident, as shown in Table 2.1, that by using two elements instead of one, it is possible
to find all four eigenfrequencies in the frequency range plotted in Figure 2.7. Adding even
more elements moves the peaks in the frequency spectrum closer to the right results, that
can be obtained from the analytical solution.

2.3 Vehicle-Beam Interaction

The vehicle model from Chapter 1 is now set to interact with the beam model. Two
methods for modelling vehicle-beam interaction are presented in the following section.

2.3.1 Explicit Time Integration

The interaction between the two models (vehicle and beam) is solved in the time domain
using the Newmark integration scheme with a time shift of dt between the response of the
two models, as illustrated in Figure 2.8.

k1 c1

KbusMbus Cbus

ẍ(t)·Mbus + ẋ(t)·Cbus + x(t)·Kbus = Fbus(t)

Fbus(t) = Kbus·U·yres(t)+Cbus·U·ẏres(t)

Solving response of bus

Force from surface on bus

Froad(t)=k1·( x(t) - yres(t) )+c1·( ẋ(t) - ẏ(t)res )

Reaction from bus on road

ÿ(t)·Mroad + ẏ(t)·Croad + y(t)·Kroad = Froad(t)

Solving response of road

F = k1·xres + c1·ẋres

KroadMroad Croad

yori(t) 

ẏori(t)

Original surfacey(t) 

t

yres(t) = y(t) + yori(t)

ẏ(t)res = ẏ(t) + ẏori(t)

Resulting surface elevation

For all time steps

Figure 2.8. Principle for modelling the interaction using an explicit time integration scheme.
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2. Vehicle-Soil Interaction

The force from the surface irregularities and speed bumps acting on the vehicle can be
expressed by Equation (2.13) according to the illustration in Figure 2.8.

Fbus(t) = Kbus u · (yori(t) + y(t− dt)) + Cbus u · (ẏori(t) + ẏ(t− dt)) (2.13)

By applying the loads to the vehicle system it is possible to solve the response x(t) for
the vehicle for the current time step. The reaction force acting on the beam can now be
calculated by Equation (2.14) according to the illustration in Figure 2.8.

Froad(t) = k1 · (x(t)− yori(t)− y(t− dt)) + c1 · (ẋ(t)− ẏori(t)− ẏ(t− dt)) (2.14)

The reaction force Froad(t) is now applied on the beam system and the response y(t) is
found. This procedure is continued for all time steps. The procedure described above for
solving the interaction between the vehicle and the beam has a time shift of dt between
the response of the beam and the vehicle. If the time step is to large or if the stiffness of
the beam is to soft, the solution will be inaccurate.

2.3.2 Implicit Time Integration

Another way to solve the interaction problem in the time domain is to use an implicit time
integration scheme. In this approach the two systems (vehicle and beam) are collected in
a single global system and the interaction forces between the vehicle and the beam are
equalized as added stiffness and damping in the global system. In short form the global
system is described by:

Mü + (C + ∆C)u̇ + (K + ∆K)u = F(t) (2.15)

For a SDOF vehicle system with mass m1, damping c1 and stiffness k1 interacting at a
single beam element with shape functions N, the global system matrices can be reduced
to:

For the global mass matrix:

M =

[ [
Mb

]
0

0 m1

]
(2.16)

For the global damping matrix:

C =

[ [
Cb

]
0

0 c1

]
+

[
NT c1N −NT c1
−Nc1 0

]
(2.17)

For the global stiffness matrix:

K =

[ [
Kb

]
0

0 k1

]
+

[
NTk1N −NTk1

−Nk1 0

]
(2.18)

The corresponding force vector:

F(t) =

[
−NT (k1 · y(t) + c1 · ẏ(t))

k1 · y(t) + c1 · ẏ(t)

]
(2.19)
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2. Vehicle-Soil Interaction

In the general case with i beam elements and a vehicle model as described in Chapter 1
with j axels it is more complicated, but the overall structure is the same. The stiffness
matrix will in general be:

K =

 [ Kb

]
0

0
[

Kv

] +

[
NTk1N −NTk1

−Nk1 0

]
(2.20)

The additional stiffness have to be added for every axel with different shape functions
corresponding to the actual position of the wheels in the beam element. The structure
of the damping matrix is the same as for the stiffness in Equation (2.20), while the force
vector becomes:

F(t) =

[
−NT (k1 · y(t) + c1 · ẏ(t))

Kvuy(t) + Cvuẏ(t)

]
(2.21)

2.3.3 Test of Vehicle-Beam Interaction

In order to test the two methods for solving the interaction between the vehicle and the
beam in the time domain, the following setup is considered. The vehicle is modelled with
three axels (0 m, 2 m, 3 m) and is driving with a velocity of 10 m/s across a simply
supported beam with a length of 10 m. The surface of the beam consists of a sinus bump
designed for nominal speed of approximately 5 m/s. The material properties of the vehicle
and the beam are chosen in order to make the response of the beam in the same order as
the elevation of the speed bump. In this way the interaction effects between the vehicle
and the beam should be significant.

In Figure 2.9 the response of the beam and the vehicle wheels are shown for both
integration methods, without interaction, meaning that the vehicle affects the beam, but
the resulting response of the beam is not affecting the vehicle. In this way it is only the
original surface elevation, in this case the sinus bump, that affects the vehicle.
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Figure 2.9. Three-wheeled vehicle passing speed bump without interaction.
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2. Vehicle-Soil Interaction

It is seen in Figure 2.9, that the two methods for solving the problem give exactly the
same results, when interactions effects are not considered. It is also clear that only the
original surface elevation affect the response of the vehicle wheels.

In Figure 2.10 the same situation is shown where interaction effects are taken into account.
The results are only shown for the implicit integration method, because in this case, the
explicit method explodes due to either to large time step or to soft material properties of
the beam.
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Figure 2.10. Three-wheeled vehicle passing speed bump with interaction.

The response of the beam at the midpoint (blue) is compared with the similar response
without interaction (red) and it is seen that the vehicle acts as a kind of damper on the
beam, when interaction is taken into account, which in this case makes the maximum
deflection slightly smaller. The response of the beam along with the original surface
elevation correspond also well to the first wheel for the first half of the time series and to
the second and third wheels for the second half of the time series, as expected because the
beam response is evaluated at the midpoint.
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2. Vehicle-Soil Interaction

2.4 Vehicle-Soil Interaction

After validating the different interaction algorithms, the beam elements in the above
section are now replaced with road elements supported by a soil body. The scope of the
following study is to investigate the influence of interaction effects for a road supported
by soil. A reference case, illustrated in Figure 2.11, is used with a three-axle bus passing
a sinusoidal surface elevation with wavelength of 1 m. The surface roughness height is
initially set to 0.1 m corresponding to the road hump height, and afterwards to 0.01 m
corresponding to the approximate height of the cobblestone pavement.

Figure 2.11. Reference case for evaluation of vehicle-soil interaction.

The two different integration schemes in Section 2.3 are compared for different soil types
with and without interaction effects included. The results are compared with a simplified
model in which the vehicle loads are calculated and applied separately as external forces
for the whole time series.
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Figure 2.12. Vehicle interaction for soft peat with surface roughness of 0.1m. Note log scale.
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Figure 2.13. Vehicle interaction on clay with surface roughness of 0.1m. Note log scale.
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Figure 2.14. Vehicle interaction on limestone with surface roughness of 0.1m. Note log scale.

Figure 2.12 to 2.14 show the displacement on a log scale 2 m below the soil surface at the
middle of the model, as function of time for soft peat, clay and limestone, respectively.
It is seen in the figures that the explicit and implicit integration schemes give the same
response as if the vehicle loads are applied separately. It should also be noted that the
response looks very similar for clay and limestone, while some deviation is seen for the soft
peat. This indicates that the interaction effects only are important for very soft soil, where
the displacement of the soil is relatively large. The deviation in the explicit response with
interaction at the beginning is caused by the vehicle wheels when they are passing from
the road element into the continuum soil body elements. Figure 2.15 show the coherence
between the stiffness of the soil (Young’s Modulus) and the normalized root-mean-square
error (NRMSE, see Equation (2.22)) of the displacement for the explicit and the separate
method compared to the implicit method. Figure 2.16 shows the coefficient of variation
of the RMSE which is calculated from Equation (2.23).

NRMSE =
RMSE

Ymax − Ymin
=

1
Ymax − Ymin

·
√

1
n

∑(
Ŷi − Yi

)2
(2.22)

CV(NRMSE) =
RMSE
Ȳ

(2.23)
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Figure 2.15. NRMSE compared with implicit integration scheme for different roughness.
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Figure 2.16. Coefficient of variation of the RMSE in Figure 2.15.

Figure 2.15 and 2.16 show the trend that the error decreases with increasing stiffness of
the soil, which was also indicated in the Figures 2.12 to 2.14. The NRMSE for dynamic
values of Young’s Modulus corresponding to real soil types is around 5–7% for soft soil
types as peat, while it is around 1–3% for sand and clay and below 1% for limestone and
rocky soils. The increase of NRMSE for the explicit solver with roughness of 0.1 m for
the stiffer soil is probably due to the fact, that the explicit solver for every time step is
alternating around the implicit solution.

It can be concluded that for the reference case with sandy clay and in most other cases
with real soil types, and with surface roughness in the order of 1–10 cm, it is valid to
use the separate method of applying the vehicle loads to the soil, because the NRMSE is
around or below 1%. This is also recommended because of the saving in computational
cost, by using the separate method compared with the implicit method.
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Chapter 3

Soil-Building Interaction

In the total FE model of vehicle, soil body and building, it is possible to model a building
with several possible options for both geometry and material properties. The foundation is
modelled to follow the surrounding soil body, and in this way transfer the response from the
soil to the structure. Another common approach to model vibrations of buildings caused
by either traffic induced ground motions or earthquakes is to monitor the displacement and
rotation components from either real life measurements on the foundation of a building
or to simulate similar response of the ground motions in a FE model. The response of
the ground motions is then applied to a FE model of the structure alone, modelled with
movable supports as in [Nielsen, 2004].

3.1 Natural Frequencies of the Building

The natural frequency of the building depends on the location of mass and stiffness in the
model of the structure. The building in the reference case is supported by a one meter
deep foundation, which is connected to the continuum soil body elements. Hereby, the
natural response of the building depends on the stiffness of the soil body as well, because
the soil stiffness determines the degree of clamping in the foundation of the building.

The material properties of the soil are calibrated according to real values of weight and to
fit approximate speeds of P- and S-waves in clay and sandy soil. The material properties
for the building is calibrated to fit a typically two storey concrete structure, where the
stiffness is adjusted to fit the range of typical eigenfrequencies illustrated in Figure 3.1 by
[Andersen, 2006].
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Soil dynamics – Examples of application
�Vibrations in buildings are frequency dependent
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Soil dynamics – Examples of application
�Mitigation of vibrations from surface railways

Figure 3.1. Typical eigenfrequencies and eigenmodes for buildings. Andersen [2006]

The eigenmodes and eigenfrequencies are found by solving the general eigenvalue problem
as described in ( 4.8 on page 30), using the system matrices in the FE model. Because of
the complexity of the total FE model, three cases are set up with different assumptions
for the supports of the building as illustrated in Figure 3.2. The eigenfrequencies of the
total model is then chosen based on a comparison with the model of only the building
and foundation. The corresponding first four eigenmodes for the three different models
are shown in Figures 3.3 to 3.6.

House and soil body House and foundation House fixed

Figure 3.2. Support cases for building, when calculating eigenfrequencies.

The corresponding eigenfrequencies for the first six modes of the building are listed in Table
3.1, and it is seen that the eigenfrequencies fit well with the typical values illustrated in
Figure 3.1 for the first modes.
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3. Soil-Building Interaction

Mode House and soil body House and foundation House fixed supports

f1 Building 1 4.1 Hz 4.5 Hz 5.7 Hz
f2 Roof 1 13.3 Hz 13.6 Hz 13.8 Hz
f3 Floor 1 12.7 Hz 15.4 Hz 16.0 Hz
f4 Building 2 16.7 Hz 17.3 Hz 20.7 Hz
f5 Roof-floor 2 33.6 Hz 37.2 Hz 40.5 Hz
f6 Roof-floor 2 40.1 Hz 39.5 Hz 44.5 Hz

Table 3.1. Eigenfrequencies for building for different types of supports.
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Figure 3.3. First eigenmode of building for different types of supports.
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Figure 3.4. Second eigenmode of building for different types of supports.
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Figure 3.5. Third eigenmode of building for different types of supports.

Page 23



3. Soil-Building Interaction

0 5 10 15 20 25 30 35 40

-5

0

5

10

15

20

5 10 15 20 25 30

0

5

10

15

20

0 2 4 6 8 10

0

1

2

3

4

5

6

7

8

Figure 3.6. Fourth eigenmode of building for different types of supports.

Mode three on Figure 3.1 can be compared with the analytical solution for a fixed beam
which has the eigenfrequencies of 18.4 Hz. Due to the fact that mode three of the
building with the moving floor is a little more flexible compared to the fixed beam, the
eigenfrequency of mode three in the building is smaller compared to the beam.

The results in this section demonstrate that the eigenfrequencies depend on the degree of
clamping in the foundation of the building. When the interaction effects are investigated
on a building alone with movable supports and compared with the building and soil body
it is important to have in mind that the eigenfrequencies will be a little different in the
two cases.

3.2 Vibrations due to Movable Supports

An easy and very practical way to model vibration of buildings caused by the dynamic
motion of the foundation is to model the building with movable supports according to
[Nielsen, 2004]. This approach presupposes that a known time series of the ground
motion of the movable foundations of the building exist for either real life measurement of
accelerations or similar. The response of the movable foundation is collected in the vector
y(t) or ÿ(t) of dimension six (Three dof at each foundation).

The quasi-static response x(0)(t) of the movable supports is calculated by Equation (3.1)
and it is seen that the quasi-static response ignores the inertial and damping forces.

x(0)(t) = Uy(t) (3.1)

The matrix U is called the influence matrix of dimension n × m and it gives the quasi-
static response of the building for each of the m = 6 dof in the movable supports when
they are exposed to a unit deformation independent of each other. Figure 3.2 shows the
quasi-static motion from unit deformation of the left support.
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Figure 3.7. Quasi-static motion from unit deformation of left support of building.

The equation of motion for the structure with movable supports can then be written in
the following form according to [Nielsen, 2004]:

M ẍ(t) + Cẋ(t) + Kx(t) = Cẋ(0)(t) + Kx(0)(t) = CU ẏ(t) + KUy(t) (3.2)

Or if the relative coordinates z(t) are introduced as:

z(t) = x(t)− x(0)(t) (3.3)

The equation of motion is then written on the form:

M z̈(t) + C ż(t) + Kz(t) = −M ẍ(0)(t) = −MU ÿ(t) (3.4)

Equation (3.2) and (3.4) can be solved in the time domain using a standard time
integration scheme as e.g. Newmark, with the external dynamic load represented on
the right hand side of the equations based on the ground motions y(t).

3.3 Example of Soil-Building interaction

The soil-building interaction is evaluated for the reference case shown in Figure 3.8, where
a three-axel Scania bus is crossing a speed bump with 25 km/h. The soil properties
correspond to silty clay.

The response for the reference case with the total model, along with the response for two
simulations of the building using movable supports are shown in Figure 3.9 and 3.10. The
green curves show the results of the ground motion of the foundation points in a model
corresponding to Figure 3.8 without the building applied to a fixed model, modelled
with movable supports. The rotational degrees-of-freedom are obtained by linearization
between the two points in the foundation. The red curve, shows the effect of linearization
compared to using the original rotation in the foundation of the reference case illustrated
in Figure 3.8.
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Figure 3.8. Reference case for evaluating soil-building interaction.
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Figure 3.9. Horizontal deformation at the middle of 1st floor of the building.
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Figure 3.10. Vertical deformation at the middle of 1st floor of the building.

The two Figures 3.9 and 3.10 show that the computed response changes significantly when
the ground motion of a soil body without a building is applied to a fixed model of the
building, modelled with movable supports, compared to the response of the total FE
model. The change in the period between the two cases corresponds well to the difference
in eigenfreqency for the first eigenmode of the two cases, as seen in Table 3.1. In general it
can be concluded that the interaction between the soil body and the building is important
for soft soils.
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Chapter 4

2D elements

The elements used for the soil body are plane continuum elements. Isoparametric eight-
noded elements are used for this purpose. Shape functions can be found in [Cook et al.,
2002]. The element stiffness matrix is derived by evaluating following expression by use
of Gauss integration:

K =
∫
A

B(x,y)T D B(x,y) t dA (4.1)

The integration over the area of a distorted element can be difficult. Hence, an
isoparametric formulation is used.

B = H J−1
expDN,exp (4.2)

The inverse expanded Jacobian J−1
exp relates the displacement derivatives in the two

coordinate systems.

∂ux
∂ξ
→ ∂ux

∂x
(4.3)

For further explanation refer to [Cook et al., 2002] or Section 8.1.

4.1 Element Testing

To verify the element stiffness matrix K and mass matrix M a simple bar system is made
as shown in Figure 4.1. The geometry of the model is: L = 4 m and h = 0.01 m. The bar
is modelled by use of 40 Q8 elements distributed in one column as shown on Figure 4.1
leading 406 degees-of-freedom (dof) in the system. The material properties are given in
Table 4.1. Beams are usually treated with plane stress assumptions and the model created
by 2D elements are also calculated using plane stress. Note that all calculations in the
following are done per meter depth.

E ν ρ

210e9 Pa 0.3 8000 kg/m3

Table 4.1. Material properties for beam model.
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Figure 4.1. Cantilever beam model

The static boundary conditions are as follows: all the dof associated with the nodes at
y = 0 are fixed in both vertical and horizontal direction.

4.2 Static deformation

The cantilever beam is subjected to a point load of Q = 100 N in the top mid node. The
analytical Bernoulli-Euler deflection for a cantilever beam with a point load can be found
as

u =
1
3
Q h3

E I
(4.4)

= 0.1219 m

In the FE model the deformation measured in the x-direction for the top middle node is

unum = 0.1217 m (4.5)

4.3 Eigenfrequencies

The circular eigenfrequencies can for a beam with linear elastic material and constant
cross section be found as

ωn =
K

l2

√
E I

µ
n = 1,2,3... (4.6)

Here µ is the distributed mass. Using the tables in Teknisk Ståbi [Jensen, 2012] for the
values of K following values for the eigenfrequencies associated with the first 4 eigenmodes
are (in Hz)

f0 = [ 0.52 3.30 9.08 17.80 ] (4.7)

The eigenfrequencies from the FEM model are obtained by solving the eigenvalue problem(
K− ω2 M

)
Φ = 0 (4.8)
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Here, M and K are the reduced global matrices only containing values from the free
degrees of freedom. The four lowest values of the eigenfrequencies are given as

f0,num = [ 0.52 3.25 9.09 17.81 ] (4.9)

On Figure 4.2 the modeshapes for the first four eigenfrequencies are shown.
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Figure 4.2. Modeshapes for the cantilever beam.

To verify that the response from the time integration scheme is correct, an impulse
load is applied at the same node as shown on Figure 4.1. The beam is then left to
vibrate freely without any damping of the system. The nodal displacement in the x
direction is extracted from the displacement matrix U at the same node and a Fourier
transformation is performed. The frequency spectrum is plotted in Figure 4.3 along with
the four analytical values of the eigenfrequencies.
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Figure 4.3. Absolute values of the frequency spectrum.

4.4 Comparison with Plaxis

In order to verify the behaviour of the dynamic FE model, a comparison study is
made where a simple rectangular model is compared with Plaxis. The geometry and
discretisation for the FE model are shown in Figure 4.4 along with the placement of
the dynamic load. The upper boundary is free, while the rest are fixed perpendicular
to the boundary. The geometry for Plaxis is the same, with standard fixities, while the
elements in Plaxis are 15 noded isoparametric triangles instead of 8-noded isoparametric
quadrilateral elements in the Matlab model.
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Figure 4.4. Discretisation of mesh and placement of load.

The material parameters for both models are shown in Table 4.2. The material models
are linear elastic plane strain for both cases.

Young’s modulus E 50 MPa
Poisson’s ratio ν 0.3
Density ρ 2000 kg/m3

Table 4.2. Material properties for analysis.

The dynamic load is applied as two sine curves with at frequency of 10 Hz for the lineload
shown in Figure 4.4 over a length of 2 metres. The boundary load vector fb for the line
load is assembled from the surface pressure q over the surface S with thickness t. Cook
et al. [2002]

fb =
∮
S
NTq t dS (4.10)

The distributed load on the surface can be decomposed into a component in the x- and
the y-direction as illustrated in Figure 4.5. The angle θ in Equation (4.11) is measured
from a horizontal line and up to the surface load vector q.
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Figure 4.5. Distributed surface load on top of Q8 element.

q =

[
qx
qy

]
=

[
|q| · cos θ
|q| · sin θ

]
(4.11)

For the 8-noded isoparametric quadrilateral element with a line load on top over the
thickness t as illustrated in Figure 4.5 this gives the equivalent boundary load vector
given in Equation (4.12).

fb =
[
0 0 0 0 0 0 0 0 1

6qx
1
6qy

2
3qx

2
3qy

1
6qx

1
6qy 0 0

]T
· t · s (4.12)

In Plaxis the load is applied on top of a plate with stiffness corresponding to concrete.
After the load is applied additional steps are calculated in order to evaluate how the waves
propagate through the model. The time series for the load is shown in Figure 4.6.
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Figure 4.6. Dynamic load.

The displacement for a point at the surface 10 m from the middle of the dynamic load
at x = 30 m are shown in Figure 4.7 for both Plaxis and Matlab. It seems that the
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Matlab FE model fits very well to the Plaxis model until the waves are reflected at the
boundaries. Figure 4.8 shows the same results from Plaxis with transmitting boundary
conditions (TBC).
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Figure 4.7. Displacement at x = 30 m for Plaxis and Matlab model with standard BC.
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Figure 4.8. Displacement at x = 30 m for Plaxis and Matlab model with TBC.

The phase speed for primary waves can be calculated by:

cP =

√
λ+ 2µ
ρ

(4.13)

λ Lamé constant, see Eq. (4.14) and (4.15)
µ Lamé constant µ = G (Shear modulus)

For three-dimensional cases and for plane strain the first Lamé constant is given by:

λ =
νE

(1 + ν)(1− 2ν)
(4.14)

While it for plane stresses is given by:

λ̄ =
νE

1− ν2
(4.15)
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The secondary phase speed for shear waves is given by:

cS =
√
µ

ρ
(4.16)

The Rayleigh wave speed cannot be given explicitly, but only in terms of cP and cS :(
2− c2R

c2S

)2

= 4
(

1− c2R
c2P

) 1
2
(

1− c2R
c2S

) 1
2

(4.17)

The wave speeds for the different wave types and the arrival time for different distances
are shown in Table 4.3. The arrival times correspond well with the results in Figure 4.7
in which the disturbance from the boundary starts after approximate 0.22 s, which is the
arrival time for the first and second reflected P-waves.

wave speed t (s = 10 m) t (s = 30 m) t (s = 40 m)

cP 183.4 m/s 0.055 s 0.164 s 0.218 s
cS 98.1 m/s 0.102 s 0.306 s 0.408 s
cR 90.9 m/s 0.110 s 0.330 s 0.440 s

Table 4.3. Wave speeds and arrival time for P-, S- and Rayleigh wave.
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Chapter 5

Transmitting Boundary Conditions

In a finite-element analysis infinite soil volumes are usually modelled using artificial
boundary conditions. In a static analysis Neumann and Dirichlet boundary conditions
are used to simulate fixities and the results will be accurate if the boundaries are located
sufficiently far from the point of interest. In a dynamic analysis, however, complications
arise as Neumann and Dirichlet boundary conditions will cause reflection of waves. Instead
so-called transmitting boundary conditions (TBC) are applied.

5.1 Impedance Boundary Conditions

In [Andersen, 2012] a geometrical and a mechanical method to simulate TBC are described.
The geometrical method is to include buffer elements at the transmitting boundaries with a
high material damping, while the mechanical method make use of the impedance condition.
The last method is used in most commercial software like Plaxis [R.B.J. Brinkgreve, 2011]
and will be implemented in the program. The concept or impedance boundary conditions
is illustrated in Figure 5.1.

V+

V-

Figure 5.1. Impedance boundary condition.

As indicated a series of artificial dampers is applied along the transmitting boundary to
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5. Transmitting Boundary Conditions

absorb the energy from P- and S-waves. The value of the dampers depends on the wave
speeds, the Lamé constants and the direction of the incoming wave as described by the
following expression from [Andersen, 2006]:

cij =
1
cP

(
λ−n+

i pj + 2µ−n+
k pkpipj

)
+
µ−

cS

(
pin

+
j + n+

k pkδij − 2n+
k pkpipj

)
(5.1)

cij Damping per meter boundary
p Unit direction vector for wave propagation
n Normal vector to the boundary

Notice that the indices (+) and (-) relate to the internal and the external soil volume,
respectively. The expression above is valid for a fixed coordinate system, hence the
propagation direction is the same for both P- and S-waves. Generally the vector p can
only be determined uniquely for very simple cases. In most situations a boundary will be
affected by waves from several different directions due to e.g. reflection or moving loads.
For now the following simplification is done:

• The waves propagate perpendicular to the boundary: p = −n

The nodal forces acting on the internal soil volume from the external volume can be related
to the damping on the boundary and discretised using the following expression [Andersen,
2006]:

f+b (t) =
∫
S0

NT
i cijNi dS u̇+

b (t) = −C−bbu̇
+
b (t) (5.2)

The index b refers to the degrees of freedom in connection with the boundary. The matrix
C−bb is denoted the impedance matrix and can be determined by eliminating the nodal
velocities from the expression.

5.2 Implementation in FEM

The impedance boundary condition is implemented by adding the impedance matrix to
the system damping matrix. In practice this will be done during the assemblance of the
system matrices. For simplification, only square volumes are considered where the sides
are numerated according to Figure 5.2.
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V+
V-

1

2

3

4

Direction of propagation

Figure 5.2. Numeration of boundaries.

A vector is set up in the load input denoted SysAb with a value of one for each TBC and
zero for non-TBC. For the example above the equation is:

SysAb = [1 1 0 1] (5.3)

A matrix P storing the wave propagation directions is defined as well. The propagation
vectors are inserted as columns:

P =

 0 1 0 −1
−1 0 0 0
0 0 0 0

 (5.4)

Notice that the third column describing the non-TBC is set to zero in order to ensure
that no contribution will be made to the system damping at this boundary. All three
dimensions are included in the calculation of cij whereafter the relevant part is extracted.
For each element a four step loop is performed, one step for each side where the numeration
for the local element follow the global numeration in Figure 5.2. The procedure in the
assemblance is described by the following points:

1. Is the side of the element on the boundary? E.g. ylocal = yglobal.

No: Start over with the next side.

Yes: Continue
2. Calculate cij using the associated wave propagation vector p.
3. Perform a one-dimensional Gauss integration:

Determine integration coordinates (Gauss points) for variable direction.

Determine integration coordinates for constant direction, e.g. y = ymin.

Determine the weight values.

Calculate the local impedance matrix according to (5.2).
4. Ad the local impedance matrix to the global system matrix.

Page 39



5. Transmitting Boundary Conditions

5.3 Verification

In order to validate the procedure described above two simple cases are considered, see
Figure 5.3. In both cases a sinusoidal load of one period is applied and the response is
measured in a node near the boundary. No damping is applied to the model and the
material parameters are of no significant importance to the validation.

Transmitting boundary condition

Equally distributed load proces

Figure 5.3. Models used for validation.

The two models represent special cases where pure pressure and shear waves are generated
respectively. The line loads are applied at the surface and distributed to the nodes
according to the shape functions. In order to illustrate the propagation of the two wave
types, plots of the deformed mesh for both models are given in Figure 5.4.
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Figure 5.4. L. Deformation from pressure wave, R. Deformation from shear wave.

In order to verify that the TBC function properly a time series is plotted for a node close
to the boundary, see Figure 5.5. In Figure 5.5 plots are made for the model with pure
pressure wave both with and without the TBC. In the case without TBC the bottom
boundary is fixed against vertical movement in order to prevent stiff body motion.
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Figure 5.5. L. Node displacement with TBC (pressure), R. Node displacement without TBC
(pressure).

A similar analysis can be done for the model with pure shear wave, see Figure 5.6
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Figure 5.6. L. Node displacement with TBC (shear), R. Node displacement without TBC
(shear).

As illustrated in the figures the TBC’s are functioning properly for the special cases.

5.4 Soil layering

For a wave travelling through layered material with different impedance, part of the energy
is reflected at the interface while a part is transmitted. For the one dimensional case the
reflection and transmission coefficients, Cr and Ct, regarding particle velocities are given
as: [Andersen, 2006]

Cr =
vr(t)
vi(t)

= 1− Ct (5.5)

Ct =
vt(t)
vi(t)

=
2z1

z1 + z2
(5.6)

In Matlab a model is constructed to see if the portion of wave energy is transmitted and
reflected as expected considering (5.5) and (5.6). The model is sketched in Figure 5.7.
The model is loaded uniformly from one side forming a pure pressure wave moving in the
y-direction.
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Transmitting boundary condition Equally distributed load proces
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Figure 5.7. Matlab model for analysis

The model is made using 800 squared elements. It is made from two different materials
given by Tabel 5.1. Assuming plane strain condition the wave speed for the pressure wave
in the two materials is calculated from (4.13):

cP1 = 35.81 m/s (5.7)

cP2 = 61.15 m/s (5.8)

Evaluating (5.5) and (5.6) with the material parameters given in Table 5.1 shows the
expected reflection and transmission coefficients regarding the particle velocity.

Cr = 0.1883 (5.9)

Ct = 0.8117 (5.10)

Material 1 Material 2

ν E ρ ν E ρ

0.3 2e6 Pa 2100 kg/m3 0.3 5e6 Pa 1800 kg/m3

Table 5.1. Material properties.

Plotting the particle velocities at point a (5, 10) and b (5, 60) as a function of time leads
following results:
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Figure 5.8. Particle velocity at point a
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Figure 5.9. Velocity at point b

From Figure 5.8 it is seen that the wave, when it hits the material interface, reduces its
amplitude without change in sign as it is reflected. In Figure 5.9 it is seen how a part of
the wave energy is transmitted into material 2 and dissipates into the absorbing boundary.

The peak velocities at point a shown in Figure 5.8 are vy = 1.33 m/s and vy = 0.25 m/s
while as the peak velocity at point b is vy = 1.08 m/s.

Calculating the reflection and transmission coefficients based on the velocities observed.

Cr =
vr(t)
vi(t)

=
0.25 m/s
1.33 m/s

= 0.1880 (5.11)

Ct =
vt(t)
vi(t)

=
1.08 m/s
1.33 m/s

= 0.8120 (5.12)

The results obtained from this analysis shows a good resemblance to the analytical results
presented in (5.9).
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Chapter 6

Frequency Domain Solution

Instead of solving dynamic problems in the time domain, the analysis can be carried out in
the frequency domain. The procedure for doing so is described in the following. First the
load f (t) is transformed into the frequency domain by use of Fast Fourier Transformation
(FFT). Then (6.1) is solved for every value of ω each forming a vector in U. M, C and
K are the reduced system matrices containing the free dofs. [Andersen, 2006](

−ω2
j M + i ωj C + K

)
Uj = Fj (6.1)

where

ωj = 2π (j − 1) /T, j = 1,2...J (6.2)

The velocity and acceleration can be obtain from the U matrix.

U̇j = i ωj Uj (6.3)

Üj = −ω2
j Uj (6.4)

Next, the solution is transformed back into the time domain by inverse Fast Fourier
Transformation ifft.

6.1 Simply supported beam

To illustrate the procedure a simply supported beam with a point load acting at midspan is
analysed in both the time domain and the frequency domain. The beam is analysed using
Bernoulli Euler theory with Rayleigh viscous damping with the following beam properties:

I E A ρ

0.01 m4 2e9 MPa 0.5 m2 7000 kg/m3

Elements Span α β

40 20 m 0.1 0.1

Table 6.1. Beam properties.

The time is discretized in the following way
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• dt = 0.001 s;
• t = 0 : dt : 25 s;

The load is set to vary in time as a harmonic sinusoidal function with a period of 0.5 s
and an amplitude of 400 N. Solving (6.1) for U and plotting the vertical component for
the frequency which leads the biggest response in U.
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Figure 6.1. Components in U

By conducting an ifft the result is transformed back into the time domain. In Figure 6.2,
6.3 and 6.4 the deformation, velocity and acceleration are plotted respectively along with
the the response obtained by use of a Newmark scheme with the integration parameters
as γ = 1/2 and β = 1/4. It is seen that the initial disturbance from the load is damped
out in time for the Newmark solution and approaches the stationary response obtained
from the frequency domain solution.
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Figure 6.2. Node deformation
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Figure 6.3. Node velocity
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Figure 6.4. Node acceleration

6.2 Plane elements

Since the frequency domain provides the stationary solution to a harmonic load it is good
for illustrating the validity of the absorbing boundary conditions described in Chapter 5.
A local harmonic loading is set to act at the top mid of the model shown in Figure 6.5 on
the following page. The nodal deformation is plotted for different loading frequencies. It
is evident that for the model with transmitting boundary conditions the waves propagates
as expected, while as for the model with fixed boundaries, the waves are reflected back
into the system causing a lot of interference.
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Figure 6.5. Wave propagation in a plane elastic model.
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Chapter 7

Road Elements

The following chapter contains a description of the road model and the associated
assumptions. The road can be devided in two parts: beams and so-called interface
elements. Relevant theory will be presented and verifications of the models are performed,
when it is possible.

7.1 The Kelvin Model

The purpose of the road is to connect the vehicle model with the soil volume beneath and
to include the possibility of changing parameters such as the stiffness of the pavement.
The road model is constructed with inspiration from the Kelvin-Pasternack foundation
described in [Andersen, 2006]. A Kelvin-Pasternack foundation consist of a shear layer on
top of vertical spring and damper supports. The shear layer will not be included in the
model, hence, the "Pasternack" part is eliminated. The model is illustrated in Figure 7.1.

p(t) Q(x,t)

M(x,t)

γ κ 

E, I, m

x

Figure 7.1. Bernoulli-Euler beam on Kelvin foundation.

One of the benefits of the model is that it can be analysed both numerically and
analytically whereby the analytical solution can be used to verify the numerical model.
The dynamic equation of motion to the problem is written below:

E I
∂4u

∂x4
+m

∂2u

∂t
+ γ

∂u

∂t
+ κu = f (7.1)
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EI Bending stiffness of the beam
m Beam weight per length
κ Spring stiffness per length
γ Damping constant per length

u(x,t) Vertical displacement relative to equilibrium
f(x,t) Applied force

An analytical solution to the equation can be found if the load is considered harmonic
f = f(ω) , located at x = 0. The solution is obtained using Fourier transformation and the
sign convention from [Andersen, 2002] is adopted. Since the load is considered harmonic
the fundamental solution set to Equation (7.1) can be written on the form:

un(x,t) = Un expi(knx−ωt), n = 1,2,3,4 (7.2)

Un Amplitude of wave component at x = 0
kn Angular wave number
ω Force frequency

The wavenumber kn is likely complex and due to the sign convention the real part and the
imaginary part represent the wave propagation and attenuation respectively. The concept
is illustrated in Figure 7.2.
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Figure 7.2. Attenuation and propagation.

For a non-moving load considered from a fixed coordinate system the solution to (7.1) is:

k4
n +

κ−mω2 − iωγ
EI

= 0 (7.3)

Four roots are calculated and these are divided in waves propagating at each side of
the force according to [Andersen, 2002]. In most cases the wavenumbers can be sorted by
considering the imaginary part, where a negative value is associated with wave propagating
to the left of the force (k1 and k2) and vica versa. Once the wavenumbers are sorted the
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associated wave amplitudes can be determined from:
−1 −1 1 1
−ik1 −ik2 ik3 ik4

−(ik1)2 −(ik2)2 (ik3)2 (ik4)2

−(ik1)3 −(ik2)3 (ik3)3 (ik4)3



U1

U2

U3

U4

 =


0
0
0
P
EI

 (7.4)

In the matrix above P refers to the amplitude of the harmonic load. The displacement
field can be calculated from the sum of the components in the solution set:

u(x,t) =

{
U1(ω) exp−k

a
1x+i(k

p
1x−ωt) +U2(ω) exp−k

a
2x+i(k

p
2x−ωt) for x ≤ 0

U3(ω) exp−k
a
3x+i(k

p
3x−ωt) +U4(ω) exp−k

a
4x+i(k

p
4x−ωt) for x > 0

}
(7.5)

The analytical solution will be used in an example later on.

7.2 Numerical Kelvin model

The problem described above can be treated using a numerical model as well. In a
numerical model a finite part of the infinite beam is modelled and boundary conditions
are applied at the ends to simulate the missing part. In this problem, only vertical
deformation and rotation is considered and the boundaries can hereby be simulated by
applying section forces Qb(t) and Mb(t) corresponding to the forces in an infinite beam,
see Figure 7.3.

p(t) Qb
+

Mb
+

γ κ 

E, I, m

x

Qb
-

Mb
-

Figure 7.3. Numerical model of the Kelvin foundation problem.

The finite part of the beam is modelled using Bernoulli beam elements with a contribution
from the elastic foundation. The contribution is calculated by integrating over the shape
functions as it was done for the transmitting boundary conditions. The element matrices
are calculated from:

M =
∫ x+

e

x−e

ΦTmΦdx (7.6)
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C =
∫ x+

e

x−e

ΦTγΦdx (7.7)

K =
∫ x+

e

x−e

∂2ΦT

∂x2
EI

∂2Φ
∂x2

+ ΦTκΦdx (7.8)

The limits xe refer to the element end points. At the boundaries additional stiffness and
damping is added to the system to equivalate the section forces:[

Qb(t)
Mb(t)

]
= Kb

[
ub(t)
θb(t)

]
+ Cb

[
u̇b(t)
θ̇b(t)

]
(7.9)

The boundary stiffness and damping matrix are calculated from the frequency response
matrix, denoted B(ω) in [Andersen, 2006]:

Kb = <(B(ω1)), Cb = − 1
ω1
=(B(ω1)) (7.10)

In this method, the interface is calibrated for one frequency only ω1 and if the response
has a different frequency some reflection will occur. The frequency response matrix relates
the amplitude of the deformation to the amplitude of the section forces and at the right
side of the model the frequency response matrix is calculated from:

B(ω1) = L+
1 (L+

0 )−1 for xb > 0 (7.11)

L+
0 =

[
1 1

ka3 − ikp3 ka4 − ikp4

]
, L+

1 = −EI
[

(ka3 − ikp3)3 (ka4 − ikp4)3

(ka3 − ikp3)2 (ka4 − ikp4)2

]
(7.12)

A similar expression can be obtained for the left side of the beam. The 2 × 2 boundary
matrices are added to the global system matrix at the associated degrees of freedom.

7.3 Model validation

In order to validate the boundary conditions a relatively large model is compared to a
small section of the same model with transmitting boundary conditions. The concept is
illustrated in Figure 7.4.

40 m 40 m20 m

Modelled part of beam

Figure 7.4. Model for validation of TBC.

Page 52



7. Road Elements

The properties of the beam, the foundation etc. is irrelevant to the validation. Initially
the analytical solution is calculated and for t = 0 the displacement field is given in Figure
7.5.
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Figure 7.5. Analytical solution for the displacement field at t = 0.

If the total beam is modelled with fixed supports, some reflection will occur at the
boundary, but due to damping in the foundation, the reflected waves will not influence the
central part of the beam. A 100 meter long model with fixed supports should therefore
give the same result as a similar 20 meter beam with TBC, if the model is correct. Both
models are computed and the vertical displacement at the boundary of the small section is
plotted in Figure 7.6. The section is modelled with free boundaries as well for comparison.
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Figure 7.6. Vertical deformation at section end node.
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As illustrated the deformation is the same for the 100 m beam and the 20 m section with
TBC and it can hereby be concluded that the model is accurate when the boundaries are
calibrated to the load frequency.

7.4 Interface elements

In the global FE model the road will partially be supported by Kelvin supports and
partially by interface elements. The Kelvin supports are used at location where a direct
transmission of loads in the road to the soil is undesirable, e.g. right beneath the building.
The location of Kelvin supports and interface elements are illustrated in Figure 7.7.

Interface element

Kelvin foundation

Road elements

Figure 7.7. Location of Kelvin foundations and interface elements.

The interface elements will be designed to uphold the same properties as the Kelvin
foundation in order to secure continuity in the road. The Kelvin foundation consists of
linear vertical supports and the elements are therefore designed with six nodes and six
degrees of freedom, see Figure 7.8.

1 2

364

5

Linear interpolation

Quadratic interpolation

Figure 7.8. Six noded element with vertical degrees of freedom only.

The combination of linear and quadratic shape functions can be obtained by eliminating
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shape function 6 and 8 from the quadrilateral eight noded element. Each shape function
will still be one at the associated node and zero at the other nodes as illustrated in Figure
7.9.

Figure 7.9. L. Interpolation value of N1, R. Interpolation value of N5.

The derivation of the element matrixes is similar to the procedure for the eight noded
element except for the fact that the constitutive matrix is reduced to one parameter; the
modulus of elasticity. It will be necessary to relate the parameters E and κ which can be
done by considering the height and the width of the foundation, see figure 7.10.

p [N/m]

κ [N/m/m] 

σ [N/m2]

h [m]

b [m]

E [N/m2] 

Figure 7.10. Equivalence between κ and E.

The following equations are valid:

∆h =
p

κ
ε =

∆h
h

σ =
p

b
σ = Eε ⇒ κ =

Eb

h
(7.13)

7.5 Element validation

The Kelvin model is now constructed using Bernoulli beam elements supported by
interface elements, see Figure 7.11.
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40 m 40 m20 m

Modelled part of beam

Interface element

Figure 7.11. Bernoulli beam supported by interface elements.

The same assumption for harmonic load, material parameters and boundary conditions are
used and a simulation is performed. The deformation of the right end node is illustrated
in Figure 7.12 along with the previous results.
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Response for long beam

Response without TBC

Response with TBC

Response with interface elements

Figure 7.12. Response for Bernoulli beam on interface elements.

Evidently the response from this model is identical to the response from the Kelvin model.
However, an issue arises when calibrating κ and E in the global FE model as the continuum
elements below the interface elements are two dimensional. If κ is calibrated to the
interface elements alone larger deformations are likely to appear at locations where the
road is supported by interface and continuum elements.
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7.6 Mindlin elements

The internal deformations in the continuum elements are interpolated using quadratic
shape functions while the Bernoulli-Euler beam elements use cubic shape functions. When
the two element types are connected, e.g. at the house-soil connection or at the road-
interface connection, an issue occur as the elements may overlap or seperate between the
nodes. The problem can be solved in different manners:

• Finer discretisation to reduce the error.
• Derivation of cubic shape functions for continuum elements.
• Derivation of quadratic shape functions for beam elements.

The last method will be treated using the so-called Mindlin elements. The Mindlin theory
is mainly used in derivation of plate and shell elements but the theory is applicable for
beams as well. The main concept is to separate the stiffness into a contribution from
bending and a contribution form shear. The beam element stiffness matrices are derived
according to [Cook et al., 2002]:

Ub =
∫ ∫ L

0

1
2
Eε2xdx dA =

∫ L

0

1
2
EIψ,2xdx =

1
2
{d}T [kb] {d} (7.14)

Us =
∫ ∫ L

0

1
2
Gγ2

zxdx dA =
∫ L

0

1
2
GAs (w,x − ψ)2 dx =

1
2
{d}T [ks] {d} (7.15)

The different terms in the equations above are described in [Cook et al., 2002]. The
deformations w and the rotations ψ are written in terms of the nodal values d and the
associated shape functions N:

w = N1d ψ = N2d (7.16)

As an example the derivation of the shear stiffness is given below.∫ L

0

1
2
GAs (w,x − ψ)2 dx =

∫ L

0

1
2
GAs

(
w,2x + ψ2 − 2w,xψ

)
dx =∫ L

0

d

dx
N1d

1
2
GAs

d

dx
N1d + N2d

1
2
GAs N2d− 2

d

dx
N1d

1
2
GAs N2d dx =∫ L

0
dTBT

1

1
2
GAs B1d + dTNT

2

1
2
GAs N2d− 2dTBT

1

1
2
GAs N2d dx (7.17)

By comparison of equation (7.15) and (7.17) an expression for the shear stiffness can be
derived:

ks =
∫ L

0
BT

1 GAs B1 + NT
2 GAs N2 − 2 BT

1 GAs N2 dx (7.18)

A similar derivation can be made for the bending stiffness and the result is given below:

kb =
∫ L

0
BT

2 EI B2 dx (7.19)

In theory any kind of shape function can be inserted as long as the fundamental properties
are met.
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7.7 Element validation

In order to test the Mindlin beam elements two cases are considered, as illustrated in
Figure 7.13.

h = 0.1 m

h = 0.01 m

L = 10 m L = 1 m

Figure 7.13. Models used for validation of Mindlin elements.

In the first model the contribution from shear is neglectable while shear deformation is
likely to influence the second model. Three elements will be compared:

• Bernoulli Euler beam element
• Two noded Mindlin element with linear shape functions
• Three noded Mindlin element with quadratic shape functions

In order to demonstrate the difference between the three elements a plot is made for the
first model in Figure 7.13 where the beam is discretized in four elements, see Figure 7.14.
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Figure 7.14. Beam deformation using four elements of different kinds.

The Bernoulli beam element provides the same result regardless of the discretisation. This,
however, is not the case for the Mindlin elements and a convergence analysis is performed
for both models, see Figure 7.15. The deformation of the center node is considered.

Page 58



7. Road Elements

20 40 60 80 100 120 140 160

0.1

0.105

0.11

0.115

0.12

0.125

Degrees of freedom [-]

D
e

fl
e

c
ti
o

n
 a

t 
m

id
p

o
in

t 
[m

]

 

 

Bernoulli beam

Quadratic shape function

Linear shape function

20 40 60 80 100 120 140 160
1.05

1.1

1.15

1.2

1.25

x 10
-8

Degrees of freedom [-]

D
e

fl
e

c
ti
o

n
 a

t 
m

id
p

o
in

t 
[m

]

 

 

Bernoulli beam

Quadratic shape function

Linear shape function

Figure 7.15. Convergence analysis for Mindlin elements L. model 1, R. model 2.

From the convergence analysis for model 1 it is evident that the two-noded element with
linear shape functions converges faster than the three-noded element which contain two
extra degrees of freedom per element. In model 2 shear deformation is significant and the
Mindlin elements converge to a higher value than the Bernoulli element, which is expected.
Furthermore it appears that the three-noded element perform better than the two-noded
when shear deformation is significant.
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Chapter 8

3D model

The global FE model is now expanded into a full 3D model and this chapter will briefly
describe the considerations made during the construction of the model.

8.1 Three-dimensional continuum elements

The soil body is discretized by use of brick elements. The elements used are isoparametric
hexahedrons with 26 nodes. The numbering of the nodes is illustrated in Figure 8.1.

B.2 Three-dimensional continuum elements 201

B.2.1 Hexahedron with 18 nodes

φ 1 = 1
8 (ξ2
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B.2.2 Hexahedron with 26 nodes
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Figure B.2 Hexahedral continuum Þnite element with (a) 18 nodes and (b) 26 nodes.

August 2, 2002

Figure 8.1. Illustration of the node ordering. [Andersen, 2002]

8.1.1 Stiffness and mass matrix

Due to the 26 nodes in the element the element stiffness matrix becomes 78× 78. As for
the 2D elements described previously the stiffness matrices are derived by use of shape
functions. Shape functions can be found in [Andersen, 2002].

Ke =
∫
V

BT D B dV (8.1)

The strain interpolation matrix B is found from.

B = H J−1
exp DN,exp (8.2)
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The strain definition is made according to Huebner et al. [2001], hence the H matrix
becomes

ε =



εx
εy
εz

2εxy
2εxz
2εyz


=



1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0





∂ux
∂x
∂ux
∂y
∂ux
∂z
∂uy

∂x
∂uy

∂y
∂uy

∂z
∂uz
∂x
∂uz
∂y
∂uz
∂z


(8.3)

The DN,exp matrix is linking the partial derivatives from the parent domain to the nodal
deformations in the global domain by use of shape functions.

DN,exp =



N1,ξ1 0 0 . . . N26,ξ1 0 0
N1,ξ2 0 0 . . . N26,ξ2 0 0
N1,ξ3 0 0 . . . N26,ξ3 0 0

0 N1,ξ1 0 . . . 0 N26,ξ1 0
0 N1,ξ2 0 . . . 0 N26,ξ2 0
0 N1,ξ3 0 . . . 0 N26,ξ3 0
0 0 N1,ξ1 . . . 0 0 N26,ξ1

0 0 N1,ξ2 . . . 0 0 N26,ξ2

0 0 N1,ξ3 . . . 0 0 N26,ξ3


(8.4)

The Jacobian matrix relates the displacement derivatives in the two coordinate systems.

J =


∂x
∂ξ1

∂y
∂ξ1

∂z
∂ξ1

∂x
∂ξ2

∂y
∂ξ2

∂z
∂ξ2

∂x
∂ξ3

∂y
∂ξ3

∂z
∂ξ3

 = DN [X Y Z] (8.5)

The expanded Jacobian matrix Jexp is a 9× 9 zero matrix containing J on the diagonal.
Equation (8.1) is evaluated by use of Gauss integration. For all analysis full integration
is used, hence at least 27 Gauss points are needed to derive the element stiffness matrix.

8.2 Path test

A path test is conducted to verify the stiffness matrix by use of 8 elements aligned as shown
in Figure 8.2. In Figure 8.2 note that the node in the center of the model is disorientated
compared to the overall grid. This is done in order to verify the Jacobian matrix.
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Figure 8.2. Deformed geometry
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Figure 8.3. Kinematic BC

The cube is subjected to a pressure load acting on the top surface with a magnitude of
Q = 100 Pa acting in the negativ z-direction. The cube has following material properties:
E = 1 · 1010 Pa and ν = 0.3

The deformation obtained from the static analysis in matlab is found as: change in height
∆z = −2.0 · 10−8 m, change in width ∆x = ∆y = 6.0 · 10−9 m.

From an analytical approach the deformation of the cube is found as:

∆z = (Q/E) · 2 m = −2.0 · 10−8 m (8.6)

and in the lateral direction:

∆x = ∆y = (Q/E) ν · 2 m = 6.0 · 10−9 m (8.7)

It is seen that the deformations obtained from the Matlab model matches the ones from
the analytical calculations. Based on the results above and a graphical inspection of the
deformed mesh it is concluded that the system stiffness is correct.

8.3 Convergence

A cantilever beam with the dimensions x = 0.1, y = 0.1 and z = 5 with a surface load at
the top acting in the y direction is analyzed with different distribution of the elements,
see Figure 8.4. The load magnitude and material properties are the same as in the above
example.
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Figure 8.4. Cantilever beam

The convergensce analysis is performed with different mesh delicacy for the cross section
and for the longitudinal direction. One model has 1× 1 elements in the cross section and
the other has 2 × 2. Both models have increasing elements in the longitudinal direction
from 1 to 100 elements and a convergence analysis is conducted. The results for the
vertical deflection is plotted in Figure 8.5.

Variation 1

numel =


x : 1
y : 1
z : 2

total : 2

 increasing to


x : 1
y : 1
z : 100

total : 100

 (8.8)

Variation 2

numel =


x : 2
y : 2
z : 2

total : 8

 increasing to


x : 2
y : 2
z : 100

total : 400

 (8.9)
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Figure 8.5. Convergence analysis of a cantilever beam model

The above example shows that refinement of the mesh in the x and y direction doesn’t
improve the accuracy of the calculations, but only increases the computations. In general
a good result is obtained for he ≈ we ≈ de

8.3.1 Geometrical dissipation

To exam the propagation of waves in three dimensions a model is set up with a point
source as illustrated in Figure 8.6. Due to symmetry only half of the soil body is created
in the FE model, however, some might suggest that one quarter would be sufficient. The
source of deformation is a sinusoidal load equally distributed on the face of one element.
Transmitting boundary conditions are applied on four sides of the model while lateral
deformations are constrained in the x -axis on the symmetry plane.

Figure 8.6. Spreading of waves in three dimensions.

Observation points at the surface along the x-axis are considered. The amplitude of the
deformation in each point is plotted in Figur 8.7. The figure demonstrates how the energy
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dissipates. In Figure 8.7, along with the data from the FE model, an expected decay
model is plotted based on geometrical expansion of an hemisphere, see Figure 8.8. The
expected decay in amplitude is then found as:

A2 = A1
R2

1

R2
2

, (8.10)

for 3D and

A2 = A1
R1

R2
, (8.11)

for 2D.
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Figure 8.7. Deformation amplitude decay.

R
R

A = 2πR2

O = πR

Figure 8.8. Spreading of waves.

8.4 Construction of Global 3D FE model

The model is constructed using brick elements as soil body. 3D Bernoulli beam elements
are used for the building and the road is constructed using 2D Mindlin elements distributed
in a grid as shown in Figure 8.9. The model in Matlab is constructed using the geometric
inputs in Figure 8.9.
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Figure 8.9. Global 3D FE model.

The road is constructed by use of Mindlin elements aligned in a grid as shown in Figure
8.10. The elements are provided with 6 degrees of freedom - two for each node. Hence the
elements do not provide axial or torsional stiffness.
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Figure 8.10. Road elements.

The three parts are assembled into the global system matrices in following order: Soil,
Building, Road. Figure 8.11 illustrates where in the global stiffness matrix contribution
from the different parts are located. Note that the road and building elements also share
dofs with the soil and will add stiffness in some of the "blue points" as well. Regarding
the road, only the rotational degrees of freedom are presented in the figure, while all the
dof associated with translation are shared with the soil elements.
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Figure 8.11. Representation of non-zero values in SysK.

8.5 Transmitting Boundary Conditions

The transmitting boundary conditions are created in accordance to Chapter 5. Changes
are minor as the same principles are applied. The input vector for the absorbing boundary
conditions is

SysAb = [1 1 1 1 1 0] (8.12)

with side numbering according to Figure 8.12. The remaining steps are roughly the same
as in Chapter 5 with exception to step 3, where a two dimensional Gauss integration over
the boundary surface is performed.

h w

d

r1

r2

w1 w2

h2

h3

w3 w4

xy
z

x
y z

2

3
4

5

6

1

Figure 8.12. Side numbering used for boundary conditions.
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Chapter 9

Evaluation of Vibrations

The scope of the following chapter is to clarify, how the vibration from traffic is evaluated
and compared to the recommendations in [ISO, 1997]. The general procedure is to perform
a frequency weighting to account for human response where after the root mean square of
the acceleration can be used for comparison.

9.1 Frequency Weighting

In order to demonstrate the procedure a time series from a simulation and a simple time
series of two sinus curves are considered. The frequency, the amplitude and the phase of
the two sinus curves are:

• f1 = 1 Hz A1 = 2 Φ1 = 0
• f2 = 0.2 Hz A2 = 4 Φ2 = π/2

The two time series are illustrated in Figure 9.1.
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Figure 9.1. L. Time series from simulation, R. Fictive simple time series.

The accelerations are weighted according to the frequency weight functions given in [ISO,
1997]. The mathematical expressions for the three principal weighting functions are given
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in the appendix of the standard and plotted in Figure 9.2.
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Figure 9.2. Frequency weight functions for different response types.

The weight function is selected based on the response type and the direction of vibration.
In general the weight functions Wk and Wd refer to health and comfort response for the z-
axis and the x- and y-axis respectively, whileWf is used for motion sickness. As illustrated
the weight function for motion sickness induce a narrowing of the frequency spectrum as
motion sickness occurs in a frequency range of 0.1 – 0.5 Hz only. The weight function is
expressed in decibel calculated from:

∆La[dB] = 20 log10

aw
a

= 20 log10W[−] (9.1)

aw denotes the weighted acceleration while ∆La[dB] expresses the change in acceleration
due to frequency weighting. The weight is frequency depended and the time domain
description of the accelerations are therefore converted to a frequency domain description
using the following expression from [Pierce, 1994]:

â(ω) =
1

2π

∫ ∞
−∞

a(t) expiωt dt (9.2)

The inverse transformation is given as:

a(t) =
∫ ∞
−∞

â(ω) exp−iωt dω (9.3)

The weighted and unweighted accelerations of the time series from Figure 9.1 are plotted
in Figure 9.3.
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Figure 9.3. L. Frequency domain for simulation, R. Frequency domain for simple time series.

The frequency domain solution can be validated by calculating the variance of the time
series, which can be done in both the frequency and the time domain:

σ2
ω =

∫ ∞
0

a(ω)dω σ2
t =

1
N

N∑
i=1

(xi − µ)2 (9.4)

The variance is calculated for both time series using both methods, see Table 9.1. It should
be noticed that a(ω) can be a complex number, whereby the integration is conducted
multiplying the complex number and its complex conjugated.

Time serie Simulation Simple

Time domain 0.32 m/s2 10 m/s2

Frequency domain 0.32 m/s2 10 m/s2

Table 9.1. Variance of the two time series calculated from frequency and time domain.

As demonstrated, the same results are obtained in both the time domain and the frequency
domain.

9.2 Frequency Bands

In acoustic and vibration engineering it is common to present vibration using frequency
bands. By using bands the frequency spectrum is averaged over a range of frequencies,
whereby the results are significantly easier to interpret compared to the graphs in Figure
9.3. Octave bands have the property that the ratio between the last and the first frequency
of a band is 2, which cause the width of each band to be the same when a logarithmic scale
is applied. One third octave bands are commonly used and have the following properties:

f1 = 2−1/6f0 f2 = 21/6f0 f2 = 21/3f1 (9.5)
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f0 denotes the center frequency of the band while f1 and f2 denote the lower and
upper range respectively. One third octave bands are beneficial as the ratio between
the centerfrequencies of band bi and band bi+10 is approximately 10. The acceleration
content of each band ab can be calculated from,

ab(ω0)2 =
∫ ω2

ω1

a(ω)dω, (9.6)

where, ω0 is the angular center frequency of the band from ω1 to ω2. The acceleration
level for each band Lab

is evaluated using,

Lab
= 20 log

ab
∆ωb aref

, (9.7)

where, ∆ωb is the band width. aref is an acceleration reference level stated as 10−6 m/s2

in [Sound et al., 2013]. Both time series are separated in bands and the acceleration level
has been calculated, see Figure 9.4.
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Figure 9.4. Frequency one-third octave band content for (left) Simulation, (right) Simple time
series.

9.3 Maximum Transient Vibration Value

Vibration from traffic can usually be considered as occasional shocks and in such case it
is recommended to evaluate the vibration using the maximum transient vibration value
(MTVV) according to [ISO, 1997]. The MTVV is calculated from,

MTVV = max (av(t)) t ∈ [τ ;T ] , (9.8)

av(t) =
√
k2
x a

2
wx(t) + k2

y a
2
wy(t), (9.9)

aw(t0) =

1
τ

t0∫
t0−τ

[aw(t)]2 dt


1
2

, (9.10)
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As indicated a running r.m.s. value is used in which τ is set to one second according to
[ISO, 1997]. The expression for calculation of aw(t0) is only useful if the frequency weighted
acceleration is transformed back into the time domain. This operation is unnecessary since,

a2
r.m.s. = µ2

a + σ2
a. (9.11)

The mean value of the acceleration is zero whereby the r.m.s. of the acceleration is equal
to the standard deviation. Ultimately the frequency weighted r.m.s. acceleration aw(t0)
can be calculated from:

aw(t0) =

[∑
i

(Wiai)
2

] 1
2

(9.12)
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