




Summary

This project continues the work done in [7], where an indoor space model
was defined and a prototype system, to extract and interpret indoor data
from IFC files, was developed. The indoor space model defined in [7] cap-
tures connectivity and accessibility, including doors, elevators, stairs, and
rooms in all shapes. Based on this model, extraction and interpretation
processes were implemented in the prototype, which would make it possible
to autonomously interpret relationships between indoor elements. The pro-
totype was developed with a UI to view and edit the extracted indoor data,
such that the data could be used to create the indoor space model of the
building represented in the IFC file from which the data had been extracted.

The topic for this project is to bridge the gap between IFC files and in-
door navigation, using the indoor space model and prototype developed in
the preceding project. Through analysis of the prototype developed in [7],
several shortcomings were found, which led to the improvements and exten-
sions made in this project. For the data extraction and interpretation part,
this includes a correct implementation for extracting building elements, and
a generic mapping approach that is not limited to handle partitions with
specific shapes. The prototype database is updated to utilise spatial data
types, queries, and indices. The UI has been improved and extended with a
functionality to connect partitions to the outdoor area in order to obtain a
complete topology of the indoor space. Furthermore, a functionality to in-
sert access points between partitions has also been added to the UI. Several
techniques, to improve data management, has been added, including decom-
position of partitions, which has been implemented by refining an existing
approach to facilitate application on real world data.

To prove that indoor navigation can be made possible, through use of
the data extracted by the prototype, an app with routing functionality has
been developed. The routing algorithm used to implement this functionality,
makes use of intra-partition distances between access points. In order to cal-
culate these distances, a novel solution is proposed. Through experimental
evaluation, this solution is proved to provide better results than calculating
these distances by applying Dijkstra’s algorithm.
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Preface

This report is the documentation of a Master Thesis project, made by group
sw105f13, at the Department of Computer Science, Aalborg University. The
project started at the 1st of February 2013, and ended at the 7th of June
2013.
Conventions used in the report are as follows:

• Citations are indicated by square brackets.

• Abbreviations appear in their extended form in the first use and short
in the following appearances. Some abbreviations are deemed so con-
ventional that presenting them in their extended form is unnecessary.

• In order to improve the readability of the report, pronouns are used
irrespectively of gender. For instance, “he” refers to he/she.

• The terms “computation” and “calculation” are used interchangeably.

• The term “line segment” is used for a line that is bounded by to
distinct points and has the length equal to the Euclidean distance
between those points.

• The term “polyline” is used for a continuous line composed of one or
more line segments.

• References to the “prototype system” or “prototype” refers to the
whole system, including the back-end and front-end.

Appendices are attached at the end of the report and the digital version of
the report will be available for other students on the AAU digital library:
http://projekter.aau.dk/projekter/
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Chapter 1

Introduction

The need for indoor navigation systems is increasingly being observed and
emphasized [9], [2], [4]. Navigation inside indoor spaces is helpful for people
that are not familiar with the structure of the building or are in a hurry to
get from one place to another, e.g., from check-in to a specific gate at an
airport. Such an indoor navigation system requires an appropriate model
that represents the indoor space topology. On the other hand, indoor spaces
are described in architecture industry formats like the Industry Foundation
Classes (IFC) where the geometric representation for doors and rooms is the
focus but indoor topology is only implicit or even incomplete.

This report presents a prototype system that is intended to bridge the
gap between the widely used industry standard IFC and practical indoor
navigation systems. The prototype extends previous work, documented in
[7]. This includes improvements to existing features, new designs and tech-
niques for spatial data management, and navigation features that utilise the
indoor space data extracted by the prototype.

The report includes the following chapters: A project analysis to reca-
pitulate the extend of the work done previously on the prototype and to
explore and elaborate possible modifications and extensions. A project def-
inition to state the problem defined by this project, including delimitations.
As a solution to this problem, the prototype is explained in detail, with
emphasis on the modifications and extensions made in this project. The
implementation and evaluation of an indoor routing algorithm is presented.
Finally, the development of an app, which utilises the indoor data and the
routing algorithm, is presented as the link between indoor navigation and
the data extracted by the prototype.
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Chapter 2

Project Analysis

This chapter contains an analysis of the project domain, and begins with a
brief recapitulation of the work done in [7]. Based on this, possible modifi-
cations and extensions to the prototype system are described.

2.1 Previous Work

In the project analysis of [7, p. 15-16], the idea for an indoor navigation solu-
tion is created, by researching existing navigation solutions created for out-
door spaces, to form a basis for the project development. Described briefly,
the idea is to develop a prototype to extract data from digital representa-
tions of buildings, creating indoor space models to be used for navigational
purposes. The back-end developed in [7] concerns extraction of data, from
IFC files, needed to create an indoor space model of the building represented
by the file. The indoor space model for this purpose is also proposed in [7].
Delimitations were made to strengthen the focus of the project, discarding
3D support, restricting the supported building representation file format
to IFC, and choosing Java as the programming language for the prototype
system.

The indoor space model in [7, p. 24-28] includes partitions, access points,
and connectors. This makes it possible to represent connectivity between
partitions on the same floor and different floors. The model also defines
directional accessibility rules, which represents accessibility. Furthermore,
it supports calculation of distances between access points inside partitions,
which in turn can be used for shortest-path routing.

The development of the back-end in [7] required a thorough analysis
of the IFC file structure, in order to extract building elements correctly.
Implementation of topological mappings, e.g. between partitions and ac-
cess points, was found necessary, since such relationships are not explicitly
available in the IFC file.

The design used to create the database was purely relational, and was
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CHAPTER 2. PROJECT ANALYSIS

based on the hierarchical structure of IFC files and the indoor space model.

An evaluation of the extraction and interpretation process was performed
to highlight possible problems with performance, number of entities ex-
tracted, different representations of IFC elements, and mapping of access
points to partitions. Only the mapping process showed significant flaws,
and sources of error were pointed out.

2.2 Possible Modifications & Extensions

Based on the work of [7], the general idea of an indoor navigation system
still holds for this project. It can, however, be narrowed down to create
a more concrete problem statement. To do this, the possible development
directions for this project are reviewed in this section.

As concluded through the evaluation of the back-end system in [7, p. 57-
58], modifications can be made to increase the accuracy of the mapping
functionality. Furthermore, several parts in other areas of the prototype
can be improved or extended to enhance the overall quality.

In this section, the most relevant of the possible modifications and ex-
tensions are revised shortly, in order to provide an overview and a basis for
choosing among them.

2.2.1 Mapping

The implementation of the mapping functionality is limited to handle access
points on partition edges parallel with the x- and y-axis. Furthermore,
mappings of more than two partitions to the same access points can occur
with the implementation made in [7]. An improvement to this functionality
is to make it support edges with any direction and to ensure that no more
than two partitions can be mapped to an access point.

2.2.2 Enhanced Data Extraction

During the evaluation of the back-end, several sources of error were found
in the data extraction and interpretation process. These include inverted
partitions, partitions with odd directions, and flaws in the IFC file. To
improve the data extraction, the first two of the sources of error should be
eliminated. The last source of error, concerning flaws in the IFC, is outside
the scope of what is handled by the back-end and should be eliminated in
the creation or maintenance of the IFC file.

2.2.3 Spatial Database

The data extracted through the back-end system is stored in a PostgreSQL
relational database. This makes it possible to maintain a hierarchical struc-
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2.2. POSSIBLE MODIFICATIONS & EXTENSIONS

ture of indoor entities and to maintain topological relationships. However,
spatial data is also extracted, such as polygons to represent the shape of
a partition, and such data can be stored in a more efficient way by using
a spatial database. To support spatial data, the PostGIS spatial extension
can be applied to the PostgreSQL database. This will also give access to
various spatial queries, which can improve performance of the interpretation
process, as mentioned in [7, p. 62], as well as future implementations.

2.2.4 Decomposition of Partitions

If the spatial extension PostGIS is used, spatial indices are created using
an R-tree, which utilises the minimum bounding rectangles (MBRs) of the
geometric shapes stored in the database. The shape of a partition varies
and while some might be almost rectangular, others can be short in one
dimension and long in the other, or even be concave. As such, a high
amount of dead space can occur in the MBR of a tree node in the R-tree,
degrading the query performance of the tree.

Reducing the amount of dead space can be considered a general improve-
ment to any system using a spatial database. As proposed by [5], this can be
handled by decomposing partitions with irregular regions into sub-partitions
with smaller, regular regions. However, the decomposition algorithm pro-
posed in [5] has several shortcomings, which means that solutions to these
must be found in order to implement decomposition of partitions.

2.2.5 Indoor Distance Support

Indoor distances can be utilised in a routing functionality, using shortest-
route calculation, and with an indoor navigation app, this feature is evident
to be implemented. Although the support for indoor distances is included
in the indoor space model, it is only described briefly in [7, p. 26-28]. A
thorough and detailed description of how indoor distances are computed is
necessary if indoor routing is to be implemented.

2.2.6 Indoor Navigation App

As mentioned in [7, p. 29-47], the development of a smartphone app, as a
front-end for the prototype, requires that all the data needed by such an
app is provided by the back-end. As such, this app would also be a valuable
extension to the prototype system in that it would demonstrate the use of
the data generated by the back-end. Together with back-end part of the
prototype it would bridge the gap between IFC files and indoor navigation,
while visualising a contextual use of the data.

18



CHAPTER 2. PROJECT ANALYSIS

2.2.7 Positioning & Tracking

If an indoor navigation app is developed, it would be desirable to be able to
position an object in the indoor space and possibly track it in case it moves
over time. Several solutions to this have been proposed, which are described
in [7, p. 19-20]. These solutions are based on different technologies such as
WiFi, Bluetooth, RFID, or a hybrid of these.

2.2.8 Back-end UI

The back-end user interface (UI) makes it possible for a user to use the
data management features available, in order to view and edit the extracted
data. However, as stated in the delimitation in [7, p. 22], development of
the UI was limited to provide a proof of concept, rather than a detailed,
fully developed UI.

In order to increase the usability of the back-end UI, various improve-
ments could be made to the graphical part of the UI, as well as redesigning
the user workflow for each feature. As stated in [7, p. 63], issues were en-
countered when designing some of the back-end UI features which enables
the user to edit the extracted data. A thorough analysis of these issues
could result in solutions, that, together with the previously mentioned gen-
eral improvements to the UI, would create a basis for implementing these
features.

2.2.9 3D Support

As mentioned in [7, p. 17-20], modelling the indoor space in 3D can be useful
in some cases. It would be easier to manage and represent obstacles and
elevated areas in the indoor space if the prototype system is extended to
support 3D. 3D support is especially useful if the system to be developed is
meant for disabled people as their movement patterns are much dependent
on obstacles and elevated areas.

2.2.10 Object-Relational Mapping

As described in [7, p. 62-63], implementation of an object-relational map-
ping (ORM) framework would enhance the prototype system in terms of
extensibility and persistency. Future work that includes changes made di-
rectly to the database or database transactions, would be easier to perform.
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Chapter 3

Project Definition

Based on the overview of possible modifications and extensions to the project
prototype, stated in Section 2.2, the project definition is specified and de-
scribed in this chapter. As a result of the analysis of the work done in
the preceding project, possible improvements were found in different ar-
eas of the prototype. Regarding the extraction and interpretation process,
some building elements are not extracted correctly and a more complete
implementation of the mapping between building elements can be made.
Furthermore, the back-end UI has room for improvement in terms of both
functionality and usability. To empirically show the usefulness of the data
generated by the back-end of the prototype, an app can be developed to
use the data by providing navigation features. The importance of such an
addition to the prototype is evident, in that it displays the purpose of the
data extraction process.

3.1 Problem Definition

As previously mentioned, this project is a continuation of [7]. A recapitula-
tion of the work done previously to this project has been made and based
on this, the problem definition is:

To finish the development of the prototype system, such that it produces
the data necessary to generate an indoor space model of a given building rep-
resentation. Furthermore, the prototype system should incorporate a front-
end that utilises this data through indoor navigation features.

3.2 Project Delimitation

To tighten the focus of this project, a project delimitation is made. The
modifications and extensions described in 2.2 are revised and those that do
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CHAPTER 3. PROJECT DEFINITION

not directly contribute to solve the problem of the project, or are considered
outside the project scope, are excluded.

Although an implementation of an ORM framework would increase the
quality of the code in various ways, it is considered to be too far from the
project scope. Such an implementation would require significant work to be
done, in terms of changes to the database communication wrapper, and is
therefore left for future improvements, in order to concentrate the workload
of this project on the implementations necessary to solve the problem.

Making the prototype support 3D representation of an indoor space
would be an interesting feature, as it would give a different, and possibly
better, user experience, especially in regard to the navigation app, com-
pared to a 2D representation. It is, however, not prioritised to be within the
scope of this project as it would not add significant value in terms of new
functionality over a 2D representation in the prototype system.

Indoor positioning and tracking is considered an interesting direction for
this project. However, the effort required to implement such a feature is con-
sidered to be enough to create another project solely based on this feature.
Additionally, numerous research papers exist in this field, and to contribute
with a novel solution would require thorough analysis and research.

Elevators and stairs in IFC files are, as mentioned in [7, p. 32-33],
defined for representation and not for capturing the relationship between
the floors they connect. Through an analysis of several different IFC files,
no general representation has been found for either stairs nor elevators.
This hinders the implementation of these building elements in the extraction
process. An alternative solution, to capture this information, is to enable
users to add it through the back-end UI. However, this solution is expected
to be a comprehensive task if it is to include a reasonable level of usability.
The development of such a solution is not within the project scope, and as
a result, stairs and elevators, and thereby connectors in the indoor space
model, have been excluded in the following parts of the development in
this project: The data extraction process of the back-end because of the
aforementioned reasons and the navigation functionalities of the front-end
because it uses, and is tested with, the extracted data.

3.3 Contributions

The premises for this project is the work done in [7], which can be sum-
marised to the following:

• An indoor space model, capturing indoor topology and accessibility

• A back-end system to extract and interpret indoor space data from
IFC files, based on the indoor space model

• A back-end UI to view and manage the extracted data
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3.4. ARCHITECTURAL OVERVIEW

To solve the problem stated in Section 3.1, this project aims to contribute
with the following:

• Improvements to existing back-end features

– The mapping functionality (Section 2.2.1)

– Data extraction and interpretation (Section 2.2.2)

– Utilisation of spatial data types and queries (Section 2.2.3)

– The data management UI (Section 2.2.8)

• New back-end features

– Decomposition of partitions to avoid irregular or imbalanced shapes
that could degrade query performance using spatial indices (Sec-
tion 2.2.4)

– Calculation of indoor distances to support shortest-path routing
in the navigation app (Section 2.2.5)

• Development of a navigation app that utilises the extracted indoor
data (Section 2.2.6)

3.4 Architectural overview

An overview of the basic architecture of the prototype is illustrated in Fig-
ure 3.1. Communication between the back-end and front-end parts of the
prototype system is to be handled through a client-server architecture, which
is described in Section 7.1.

Figure 3.1: An overview of the prototype system architecture.
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Chapter 4

Decomposition

As described in Section 2.2.4, decomposition of irregular or imbalanced par-
titions is done to reduce the amount of dead space in the MBRs of the poly-
gons representing the partitions, since dead space can degrade the query
performance in the R-tree index of the spatial database.

This chapter describes the decomposition algorithm proposed in [5] and
its shortcomings. Solutions are proposed to these and a refined decomposi-
tion algorithm is given. In addition, two requisite data cleansing steps are
introduced. Finally, a description of how data persistence is assured during
decomposition is given.

Partition decomposition affects several parts of the prototype system,
and the description of it is therefore given first to avoid reference and read-
ability issues.

4.1 Original Decomposition Algorithm

The implementation of decomposition is based on the work of [5], which
presents the pseudo algorithm for decomposition seen in Algorithm 3 in
Appendix B. To decompose concave partitions, turning points are used. A
turning point in a partition is a point that creates an internal angle greater
than 180 degrees. When a concave partition is decomposed, it is split by a
line segment drawn perpendicular to the longer dimension of the partition
through the turning point closest to the middle of the partition. This is
done recursively until no more turning points exist. Convex partitions are
decomposed if the lengths of their dimensions are imbalanced, i.e. the ratio
between the width and height exceeds a predefined threshold, Tshape. Here,
the partition is split by a line segment drawn perpendicular to the longer
dimension through the middle point on that dimension. This is also done
recursively until the partition is balanced.

Through analysis and testing, a number of shortcomings has been found
in the original decomposition algorithm. This has led to a redesign of the
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4.2. RECALCULATION OF TURNING POINTS

algorithm before its implementation in the prototype. The modifications
are described in the following sections.

4.2 Recalculation of Turning Points

In Algorithm 3, the set of turning points is given as a parameter in the
function. When decomposing using turning points, the set of turning points
is updated by removing the turning point on which the split was made. This
way of managing turning points can cause problems, which is illustrated by
the examples in Figure 4.1. The first problem is shown in Figure 4.1a. In
this example, the partition is decomposed into the sub-partitions A and B
through turning point tp1. When sub-partition A is examined to find out if
it should be decomposed or not, the set of turning points will contain turning
point tp2 which is incorrect as tp2 is not a turning point of sub-partition A.

Another problem is shown in Figure 4.1b. In this example, the partition
is also decomposed into sub-partitions A and B through turning point tp1.
Here, the problem appears after the decomposition, where tp2 no longer is
a turning point, as it has been eliminated as a result of the partition split.
However, according to the algorithm, only tp1 is removed as it was the
turning point which the split was made through. To avoid these problems,
the set of turning points needs to be recalculated for each decomposition
that involves turning points.

Figure 4.1: Two examples of partitions where recalculation of turning points is
necessary.

4.3 Dead Space Threshold

After testing the decomposition algorithm with real world data, special sce-
narios, where decomposition could be considered inappropriate, were dis-
covered. Two of these examples can seen in Figure 4.2. In Figure 4.2a,
the decomposition creates many small sub-partitions. In Figure 4.2b, the
decomposition creates a very imbalanced partition, i.e. a partition with
significantly longer width than height. Further decomposition of this sub-
partition involves multiple dimensional splits, again resulting in many small
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CHAPTER 4. DECOMPOSITION

sub-partitions. The amount of small sub-partitions created scales inversely
proportional with the percentage of dead space in the MBR, which, in prac-
tice, can cause memory problems. Considering the small amount of dead
space removed and the large amount of small sub-partitions created, decom-
position on these kinds of partitions is considered unnecessary. Therefore, a
threshold, Tdeadspace, is introduced to ensure that partitions are not decom-
posed unless they have a minimum predefined percentage of dead space in
their MBRs.

Figure 4.2: Two examples of partitions where decomposition is inappropriate.

4.4 Best Split on Turning Point

In the original algorithm, splitting the partition using turning points is per-
formed perpendicular to the longer dimension. However, this will not always
result in a split where the sub-partitions created are most balanced, i.e. the
ratio between the width and height is closest to equal. Sometimes, a split
made perpendicular to the shorter dimension can result in a more balanced
split than a split made perpendicular to the longer dimension.

An example of this can be seen in Figure 4.3. The two scenarios shown
in the figure are identical apart from how the split is performed. As it
can be seen, the height of the partition exceeds the width and the split
should, according to the original algorithm, be performed perpendicular to
the height, as illustrated in Figure 4.3a. This, however, creates a large
and a small sub-partition, where the small partition is imbalanced. If the
split is performed perpendicular to the width of the partition, as seen in
Figure 4.3b, more balanced and evenly sized sub-partitions are created. As
such, the solution to this problem is to find and use the split which creates
the most balanced sub-partitions.

4.5 Alignment on Dimension Split

Decomposition of imbalanced convex partitions works as intended in the
original algorithm. However, when introducing the dead space threshold,
described in Section 4.3, there is a possibility that the partition still con-
tains turning points and therefore is concave. This can cause problems when
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4.5. ALIGNMENT ON DIMENSION SPLIT

Figure 4.3: An example of a partition split performed on either dimensions.

making the dimensional split, i.e. the split perpendicular to the longer di-
mension through the middle point on that dimension. An example of this
is shown in Figure 4.4, where the partition is decomposed into two sub-
partitions A and B. By examining the partition before it is decomposed, it
can be seen that it does contain a turning point. However, assuming that
the percentage of dead space does not exceed the threshold, the partition is
not decomposed using turning points. After the dimensional split, the per-
centage of dead space in sub-partition A may exceed the threshold, allowing
for decomposition using the turning point. Using the best split solution,
described in Section 4.4, would create a small sub-partition in the upper
right corner of sub-partition A. This small sub-partition becomes more im-
balanced the closer the dimensional splitting line is to the turning point,
possibly resulting in multiple dimensional splits, i.e. the same problem as
described in Section 4.3.

The solution to this problem is to search the partition for turning points
when making the dimensional split. If any turning point in the partition
is within the distance of a predefined threshold, Talign, the splitting line is
aligned with the turning point, eliminating the aforementioned problem.

Figure 4.4: An example of a dimensional split that results in an imbalanced sub-
partition.
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4.6 Refined Decomposition Algorithm

The solutions described in Section 4.2 - 4.5 have been used to refine the origi-
nal decomposition algorithm, and the result can be seen in Algorithm 1. The
highlighted line numbers in the algorithm mark the parts of the algorithm
which have been in refined in this project.

The refined algorithm takes as input the partition region r and three
threshold values: Tshape, Tdeadspace, and Talign. First, in Line 2, the set
of turning points is found for r. This is an improvement to the original
algorithm, as explained in Section 4.2. Next, in Line 3, a check is made to
see if r is concave and the amount of dead space in r exceeds Tdeadspace, as
described in Section 4.3. If that is the case, r is decomposed using turning
points in Line 4-9. Here, the turning point t closest to the middle of r is
used to create two splitting lines. The splitting line that results in the best
split, described in Section 4.4, is used to divide r into two or more regions,
{ri}. The decomposition algorithm is then run recursively on each of those
regions.

If the check in Line 3 is not valid, another check is performed to determine
if r is imbalanced, as seen in Line 12. If that is the case, r is decomposed
using dimensional split, which can be seen in Line 13-22. Here, the middle
point m on r’s longer dimension is used to create a splitting line s. Then
s is aligned with any nearby turning point using the threshold Talign, as
described in Section 4.5. Finally, r is divided into two or more regions, {ri},
and the decomposition algorithm is run recursively on each of those regions.

Algorithm 1 Refined Decomposition

1: function Refined Decompose(region r, threshold Tshape, Tdeadspace, Talign)
2: find set of turning points P for r;
3: if r is concave and deadspace(r) > Tdeadspace then
4: select a turning point t ∈ P on r’s boundary, such that t is closer to the middle of r;
5: create two splitting lines, one for both dimensions, to find the best split;
6: use the best splitting line to divide r into two or more regions: {ri};
7: for each ri in {ri} do
8: Decompose(ri, Tshape, Tdeadspace, Talign);
9: end for

10: else
11: let R(r) be the MBR of r;

12: if
min(len(R(r)1,len(R(r)2)
max(len(R(r)1,len(R(r)2))

< Tshape then

13: find the middle point m on r’s longer dimension d;
14: create a splitting line s perpendicular to d through m;
15: if a turning point t ∈ P is within Talign of s then
16: align s to cut through t;
17: end if
18: use s to divide r into two or more regions: {ri};
19: for each ri in {ri} do
20: Decompose(ri, Tshape, Tdeadspace, Talign);
21: end for
22: end if
23: end if
24: end function
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4.7 Data Cleansing

Besides the modification made to the decomposition algorithm, two data
cleaning steps have been implemented to run before the decomposition. Real
data testing resolved in irregularities with some polygon representations of
partitions, which led to inappropriate decompositions. By performing the
data cleansing, the geometric representation becomes less precise. However,
this is a reasonable trade-off when generating data for the indoor space
model. Furthermore, if such precision is required, e.g. for a graphical rep-
resentation of the indoor space, the original geometric data can be stored
separately.

4.7.1 Proximity Points

The first data cleansing step is removal of proximity points, i.e. points that
are in proximity to each other. The reason for introducing this cleansing
step originates from experience with partitions that contain small irregulari-
ties. Whether these irregularities are intentional or design flaws is unknown,
but for the purpose of indoor navigation, they are considered inappropriate
to include in the data, as they do not alter the shape of a partition signifi-
cantly nor serve any purpose to any navigation features. Apart from being
unnecessary in general, the data makes decomposition of such partitions
complicated and often results in inappropriate decompositions.

An example of a partition that contains proximity points can be seen in
Figure 4.5. The process of removing these points is as follows: Go through
each point of the polygon and remove a point if it is within a predefined
distance of the previous point.

Figure 4.5: An example of a partition that contains proximity points.

4.7.2 Grid alignment

The second data cleansing step is grid alignment. The reason for implement-
ing this step originates from experience with partitions, where some points
have almost identical x- or y-values. An example of such a partition can be
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seen in Figure 4.6, where turning points tp1 and tp2 have almost identical
y-values. However, when drawing the splitting line from tp1, the problem
described in Section 4.3 and 4.5 occurs, eventually resulting in many small
sub-partitions. The solution to this problem is to align points of a partition
with each other if they exists within a predefined threshold to each other in
one dimension.

Figure 4.6: An example of a partition where grid alignment is necessary.

4.8 Decomposition & Data Persistence

Subsequent to decomposing a partition, each sub-partition created is stored
and mapped to the original partition. Additionally, every relationship be-
tween any access point and the original partition must be used to create
similar relationships for the sub-partitions created to ensure persistent data.
This is done by reconnecting each access point, connected to the original
partition, to the sub-partition closest to the access point.

Furthermore, the connectivity between sub-partitions must be captured.
This is done by creating virtual access points between any two sub-partitions
that touch each other, i.e. have intersecting walls. The geometrical repre-
sentation of a virtual access point is a line segment with the length of the
mutual part of the intersecting walls. An example of creating virtual ac-
cess points after a decomposition is shown in Figure 4.7, where the two
dashed line segments represent the virtual access points created between
sub-partition A and B, and B and C.

Figure 4.7: An example of sub-partitions connected by virtual access points.
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Chapter 5

Back-end Improvements

This chapter describes the enhancements made to the existing features in
the back-end of the prototype system. This includes improvements to the
database, the data extraction and interpretation, and the data management
and representation UI.

5.1 Database

In this project, several modifications have been made to the database. These
include the requirements set by the implementation of partition decomposi-
tion, a redesign to represent the relationship between partitions and access
points in the indoor space model, and a spatial extension to utilise spa-
tial data types and queries. These changes have led to a new ER-diagram,
which is illustrated in Figure 5.1. The database and ER-diagram changes
are explained in the following sections.

5.1.1 Decomposed Partitions

The implementation of partition decomposition, described in Chapter 4, re-
quires the ability to store sub-partitions including their relationship with
their original partition. This is done by representing sub-partitions as Par-
tition entities and introducing a link table to represent the one-to-many
relationship between an original partition and any number of sub-partitions.

Another solution could be to add a self-referencing foreign key to the Par-
tition entity, which would represent the relationship to an original partition.
However, original partitions do not have this relationship, thus resulting in
NULL values in the foreign key column for each existing original partition.
This is considered bad practice, which is why the link table solution is pre-
ferred, as seen in the renewed ER-diagram in Figure 5.1

Furthermore, the type column has been added to the AccessPoint entity,
due to the introduction of virtual access points, as mentioned in Section 4.8.
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Assigning types to access points is done to distinguish different types of
access points.

Figure 5.1: The renewed ER-diagram for the prototype database.

5.1.2 Indoor Space Model Representation

As mentioned in Section 3.2, extraction of stairs and elevators is not a part
of the project scope. However, in order to support future incorporation of
stairs and elevators, connectors are still a part the database design. The rep-
resentation of connectors in the database is renewed by using a Connector
entity instead of the ConnectorPart entity used in [7]. This is done to create
a solution that directly represents connectors from the indoor space model.
The Connector entity inherits from the AccessPoint entity and extends it
with three attributes: upperFloor, upperPoint, and upperLine. Thus, as in-
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tended, the many-to-many relationship between access points and partitions
is also inherited by the Connector entity.

A review of the AP-Edge entity solution from [7], which was used to
represent edges in the indoor space model, revealed a problem: The entity
does not capture directionality as intended, which is essential to represent
an edge. In order to capture directionality, both partitions connected by
a given access point must be represented in the same entity. If this is the
case, the foreign key columns can be used to reflect which direction a row
represents, e.g. a from and a to foreign key referencing the Partition entity.

This solution creates a row for each edge in the model, which can be
considered redundant in terms of connectivity, and since only accessibility
rules require indication of directionality, another design is considered: Intro-
ducing a boolean attribute to the AccessRule entity which indicates which
direction the rule is to be applied on, e.g. true for part1 to part2 and false
for part2 to part1. This solution requires only one row for each access point
in the Connectivity entity.

The Connectivity entity could be considered a replacement for the link
table APtoPart. However, during the process of back-end data management,
it is expected that some access points are mapped to one or zero partitions
due to missing data, incorrect data, or outdoor connectivity, which would
result in NULL values in the columns of the Connectivity table. For this
purpose, the link table, APtoPart, is maintained in the design. The columns
in the Connectivity entity are given NOT NULL constraints, and a trigger is
implemented to insert a row in the Connectivity table if two rows, with the
same access point reference, exist in the APtoPart table. The SQL code for
the trigger can be seen in Appendix D. This solution separates the entities
used for the back-end data management and the indoor navigation features
using the indoor space model, but maintains data persistence.

5.1.3 Spatial Data Types

The spatial extension, PostGIS, is applied to the PostgreSQL database to
enable spatial capabilities. Through the use of PostGIS, the spatial data
types, point, line, and polygon, can be utilised. This allows for a redesign of
the original ER-diagram, presented in [7], in terms of representing geomet-
rical information. As a result, the location of access points and connectors
is represented by the spatial data type, point, as seen in the ER-diagram.
Additionally, as described in Section 5.2.3, access points are represented by
a line which is also a spatial data type. Partitions are represented by the
polygon data type. These changes eliminate the use of the Coordinate and
Polyline entities from the original ER-diagram, since the geometric infor-
mation for partitions, access points, and connectors is now a part of their
database entities.

In addition to simplifying the database design, the usage of spatial data
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types makes it possible to apply spatial indices on the entities using them.
In PostGIS, R-Trees are used as spatial index structures, which use the
MBRs of the geometric features. As mentioned in Chapter 4, this is the
background for implementing partition decomposition, in order to ensure
that the search speed of queries that uses spatial indices is not degraded by
significant amounts of dead space in MBRs.

5.2 Data Extraction & Interpretation

This section describes the improvements made to the data extraction and
interpretation. This includes removal of intermediate points, correction of
the errors described in Section 2.2.2, and the mapping procedure.

5.2.1 Intermediate points

As described in [7, p.50], the purpose of removing intermediate points is to
avoid false positives when mapping access points to partitions. However, the
implementation from [7] is limited to remove intermediate points on edges
parallel to either the x or y-axis. A solution to this limitation, allowing
removal of intermediate points on every edge, has been implemented in this
project. Checking whether a point is an intermediate point is done by cre-
ating a line through the previous and following point to see if they intersect.
If they do, the point must be intermediate, and can therefore be removed.
This implementation is facilitated through the use of a spatial database, as
it uses the spatial query ST Intersects.

5.2.2 Error Corrections

Several sources of error, resulting in wrong data interpretation, are described
in [7, p. 58-61]. These sources are divided into errors in the extraction
and interpretation implementation and errors in the making of the IFC file.
The first type encompasses inverted partitions and partitions represented
by an incorrect direction. These errors have been removed by adjusting
implementation in this project.

5.2.2.1 Inverted Partitions

This error is caused by a formerly unknown variable in the extraction of
partitions, that affects calculations with the offset in the y-dimension. Even
though substantial analysis of this problem has resulted in a solution, that
makes the extraction correct, no practical reason for the introduction of such
a variable has been found.
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5.2.2.2 Incorrect Directions

The extraction of partitions in [7] is limited to handle directions aligned
to the x- and y-axis. However, other directions are possible in partition
representations, which require the implementation of a more general and
complete solution. To handle all directions, the implementation has been
altered to use linear transformation [3] to rotate the coordinates according
to the direction.

5.2.3 Mapping of Indoor Elements

The procedure of mapping access points to partitions, described in [7, p. 33-
37], is based on a threshold value to adjust the size of the area in which to
search for partitions that are to be mapped to a given access point. However,
as concluded in an evaluation of this procedure [7, p. 53-61], the threshold
value must be individually set for each access point to avoid incorrect or
insufficient mapping. Furthermore, this mapping procedure is limited to
involve partitions with walls parallel to the x- or y-axis. Instead of devel-
oping a method to include individual threshold settings, a generic mapping
approach is proposed in order to achieve better mapping results.

A fundamental difference, in the data representation of access points used
in this project, is that the geometric shape of an access point, represented
by a line segment, is extracted from the IFC file. It is assumed, that an
access point is part of a wall, and that any partitions connected to an access
point must intersect with a line segment drawn perpendicular to the line
segment representing the access point. This assumption is used to create a
generic mapping procedure which can handle partitions that are not parallel
to the x- or y-axis. The mapping process implemented in this project can
be described by two steps.

The first step is a coarse filtering step to quickly prune the search space to
a small amount of candidate partitions while keeping the computational cost
low. This is done by creating a line perpendicular to the line representing
the access point with a predefined range. The spatial query ST Intersects
is then performed on this line and each partition on the same floor as the
access point, where non-intersecting partitions are removed as candidates.
This filtering step can be seen in Figure 5.2a where the partitions A, C, E
and G are eliminated as candidates as they do not intersect with the created
line.

The second and final step is only run if more than two partitions are
found in the first step. In this step, all the walls in the remaining candidate
partitions are inspected and if a wall intersects with the line introduced in the
first step, the partition the wall belongs to is stored along with the shortest
distance from the wall to the access point. The two partitions containing
the walls with the shortest distances to the access point are assumed to
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Figure 5.2: An illustration of the two steps performed during the mapping of
indoor elements.

be the partitions connected by the access point and are thus mapped to
it. This step is shown in Figure 5.2b, where the walls intersecting with the
line created in step two are highlighted. The two walls highlighted in green
represent the two walls that have the shortest distance to the access point.
As the two walls highlighted in green belong to partitions D and F , those
are the partitions mapped to the access point.

5.2.3.1 Re-evaluation of Mapping

An evaluation of the proposed mapping procedure is made to compare it
with the procedure used in [7] in terms of mapping results. The evaluation
is performed on the same IFC files as used in [7] and the results for both
procedures are shown in Table 5.1. As it can be seen, no access points are
being mapped to more than two partitions with the proposed procedure.
The reason for this, is that the final step in the mapping procedure only
selects the best two of the candidate partitions.

The error corrections described in Section 5.2.2 alter the data used to
perform the proposed mapping compared to data used in [7]. It is assumed
that the error corrections affect the mapping results positively, but only for
a few access points in some IFC files.

The mapping results are significantly better for every file with the pro-
cedure proposed in this project. However, some data irregularities still exist
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File name Procedure (threshold)
Partitions mapped

0 1 2 >2

“AC11”

old (100) 5 72 0 0
old (200) 5 70 2 0
old (400) 0 5 72 0

new (n/a) 0 1 76 0

“Office A”

old (100) 49 53 0 0
old (200) 20 41 40 1
old (400) 19 38 44 1

new (n/a) 0 15 87 0

“Nem-FZK”

old (100) 2 3 0 0
old (200) 2 3 0 0
old (400) 1 1 3 0

new (n/a) 0 2 3 0

“Cassio”

old (100) 64 364 5 0
old (200) 44 112 276 1
old (400) 36 95 300 2

new (n/a) 12 86 335 0

“Clinic”

old (100) 121 127 1 0
old (200) 54 98 92 5
old (400) 47 98 95 9

new (n/a) 2 21 226 0

“Dds”

old (100) 2 72 32 0
old (200) 2 22 82 0
old (400) 2 11 89 4

new (n/a) 0 8 98 0

“HITOS”

old (100) 48 135 15 0
old (200) 24 75 98 1
old (400) 21 74 102 1

new (n/a) 1 16 181 0

“Statsbygg”

old (100) 31 65 28 0
old (200) 20 23 80 1
old (400) 13 41 69 1

new (n/a) 0 1 123 0

Table 5.1: The test results of mapping access points to partitions. The test results
from [7] are included, indicated by the procedure “old”, for easy comparison with the
test results from the procedure proposed in this project, indicated by the procedure
“new”.
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in the extracted data which affect the mapping results.

Each file has one or more access points that are intended to connect a
partition with the outdoor space, but these access points are only mapped
to one partition, since outdoor mapping is performed through the back-end
UI.

For Office A and Clinic, bathroom stall doors are represented as access
points, but these access points are only mapped to the bathroom partition,
since the stall is not represented as an individual partition. These access
points could be considered useless in terms of indoor navigation and could
be removed through the back-end UI.

Some windows in the IFC files Cassio and Clinic are represented as
access points, and are therefore extracted as such. These kinds of access
points can lead to mapping with only one partition, but should be removed
through the back-end UI either way.

The Cassio file contains various missing partitions, which causes many
access points to be mapped to only one or zero partitions, as seen in the
results.

As mentioned in [7, p. 60-61], HITOS and Statsbygg include partitions
within partitions, which is not supported by the mapping procedures. How-
ever, after reviewing the mapping results graphically, only a few incorrect
mappings occur because of this.

5.3 Data Management UI

The main contribution to the back-end UI in this project is two new features:
Outdoor connectivity and connecting partitions. Besides these features,
various small changes and improvements have been made throughout the
continued development of the back-end UI. Although the back-end UI has
been updated in this project, it still exists as a proof of concept in terms of
data management and representation.

5.3.1 Outdoor Connectivity

In [7, p. 55], an analysis of the evaluation results shows that some access
points are only mapped to one partition because of outdoor connectivity.
Such mapping violates the indoor space model, as all access points must
be mapped to exactly two partitions. To solve this, an outdoor partition is
introduced, which can be used to capture the outdoor connectivity. Since
it is not possible to determine if an access point with only one mapped
partition represents outdoor connectivity or not, the option of assigning
outdoor connectivity to access points is given to the user. This feature
is implemented, such that if a user selects an access point with only one
mapped partition, the option of connecting that access point to the outdoor
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partition is present. An example of this feature can be seen in Figure C.2
in Appendix C.

5.3.2 Connecting Partitions

As part of the development of the prototype, many different IFC files has
been reviewed, and it has been discovered that the occurrence of partitions
without any nearby access points is frequent. While some files have one
or two partitions of this kind, other have many. An example of this can
be seen in Figure C.1 in Appendix C. Whether leaving the partitions in-
accessible is intentional or if access points are simply missing in the IFC
is unknown. However, since there is a possibility that access points are
missing, the feature of inserting access points through the back-end UI is
considered important, and is therefore implemented in this project.

The feature allows a user to select a partition and view any nearby
partitions that can be connected to the selected partition. An example of
this is shown in Figure C.3 in Appendix C. The list of possible connections is
created using a spatial range query on the partitions on the same floor. The
user can then select a partition from the list and click the Connect Partition
button to create an access point between the two partitions. The created
access point will then connect the two partitions, as shown in Figure C.4
in Appendix C. The position and orientation of the created access point is
computed through various geometrical calculations and comparisons using
the position and shape of the two partitions. This procedure will not be
described in greater detail in this report.
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Indoor Distances & Routing

To demonstrate a use of the data extracted through the back-end, by adding
a routing functionality to the navigation app, a routing algorithm is imple-
mented in this project.

As explained in [7, p. 26], the indoor space model needs to capture indoor
distances in order to support efficient routing. Since indoor spaces do not
contain explicit paths, as it is possible to move freely around, the shortest
distances between access points within every partition are used to generate
the shortest route. In the work done in [7], access points and partitions
are stored with coordinates representing their location in a 2D Cartesian
coordinate system. However, the calculation of distances is not implemented
but made possible by storing these coordinates. This chapter describes the
algorithm used for routing and how calculation of intra-partition distances
between access points is implemented.

6.1 Routing Algorithm

The routing algorithm implemented for this project is defined in [4] and
can be seen in Appendix E. It is based on door-to-door (access point to
access point) distances and is able to calculate the shortest route between
two positions in the indoor space. This is done by using an exploratory
approach to find possible shortest routes between two points and updating
the result if a shorter route is found as the different paths are traversed. As
the algorithm runs, the currently shortest indoor distance from a source door
to a destination door is stored and used to avoid unnecessary computations
if more than one source or destination door exist. Furthermore, the door-
to-door distances calculated at a given time are reused to limit the search.
Accessibility, in terms of directionality, is also utilised to prune the search
space.
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6.2 Intra-Partition Distances

The calculation of intra-partition distances between access points is not the
focus of [4], and is therefore not described. The shortest distance between
two access points can be assumed to be the Euclidean distance between
them. However, as described in [7, p. 26], this is not always correct, as the
path that represents this distance can be obstructed by obstacles or walls in
concave shaped partitions.

Figure 6.1: An example of creating a graph using a partition and the start and
end point.

A straightforward approach to calculate intra-partition distances is to
use Dijkstra’s graph search algorithm [1, p. 658-662], which resembles the
approach proposed in [10]. This is done by creating a graph using all the
vertices in the partition polygon, and the start and end point as graph
vertices. Edges are applied between graph vertices if a line segment can be
drawn between them without it intersecting the polygon or being outside it.
If an edge is applied, the weight is set to be the length of it, i.e. the Euclidean
distance between the two vertices. An example of creating such a graph is
illustrated in Figure 6.1, where Figure 6.1a represents the partition with
start and end points, and Figure 6.1b represents the graph created. When
Dijkstra’s algorithm is run on the graph, the shortest distance between the
start and end point is computed. This approach computes the shortest
intra-partition distance between two access points, but the computation can
be exhaustive if the partition polygon has many vertices. The following
sections describe an attempt to create a more efficient approach to compute
these distances, starting with a review of the iNav approach [9].
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6.2.1 iNav Approach

In [9], a proposal for calculating distances in concave shaped partitions is
given. Here, the boundary of a partition, created by the intersection with
the line segment, is defined as the concave boundary. A concave bound-
ary can have one or more concave vertices. The approach to calculate the
shortest path is to choose a concave vertex on the concave boundary as an
intermediate point. This point is used to create two new line segments.
This process is repeated for each line segment until no intersection with the
partition walls occurs.

Figure 6.2: An example of how the iNav approach calculates the intra-partition
distance between access points s and t.

An example of this can be seen in Figure 6.2 where the shortest distance
between the access points s and t is desired. In Figure 6.2a, the line segment
between s and t is illustrated. It is clear that this direct path is not a possible
path to walk, as it intersects two walls. In this case, the concave boundary
is the boundary between the intersecting points which includes the concave
vertex v1. In Figure 6.2b, the iNav approach is applied, where v1 is chosen as
the intermediate point and thus the shortest distance from s to t is obtained.

Figure 6.3: An example where the iNav approach is insufficient and calculates an
incorrect shortest distance between access points s and t.

However, this approach is naive as the intermediate point is arbitrarily
chosen, which can cause problems when more than one concave vertex is
present. An example of this is shown in Figure 6.3 where the distance ob-
tained will vary based on the order in which the concave vertices are chosen
as intermediate points. In Figure 6.3a, the line segment between s and t
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creates a concave boundary with two concave vertices, v1 and v2. In Fig-
ure 6.3b, v2 is chosen as the intermediate point and the line segments, from
s to v2 and from v2 to t, are created. Here, the first line segment still in-
tersects with the wall and is therefore split using the only concave vertex
on its concave boundary, v1. In Figure 6.3c, the assumed shortest distance,
from s to t, is obtained as the path s− v1− v2− t using the iNav approach.
However, this is not correct, as the shortest path is s − v1 − t. In order
to calculate distances in concave partitions correctly, a new solution, called
Walk the Line, is proposed in this project.

Figure 6.4: An example of the initial split made on the boundary of the partition
in Walk the Line.

6.2.2 Walk the Line

The procedure of Walk the Line is defined in Algorithm 2. The algorithm
take as input a partition p, a start point s, and an end point t. As part of
the initialisation, two polylines are created from the boundary of p, using
the start and end point, as seen in Line 3. An example of this procedure is
depicted in Figure 6.4, where the two highlighted polylines, which constitute
the boundary of the partition, are created using points s and t as splitting
points.

The algorithm returns a set of points, Rpath, which constitute the short-
est path from s to t. After adding s to Rpath and initialising a temporal
point temp to be s in Line 4-5, a while-loop is run from Line 6-23, which
encompasses the code to find the shortest path.

This part of the algorithm is explained using the example shown in Fig-
ure 6.5. In Figure 6.5a, the line segment from s to t is represented by
a dashed line, which corresponds to Line 7. This line intersects with the
boundary of the partition, and an intermediate point must be found, which
is done in Line 11-18.

Here, the two polylines created in the initialisation are used and since the
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Figure 6.5: An example demonstrating the procedure of how to calculate shortest
intra-partition distances using Walk the Line.
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intersecting point closest1 to s, the point cp, lies on the polyline highlighted
in blue, the intermediate point is chosen from the concave vertices on this
polyline by “walking the line”. This is done by iterating through the concave
vertices, starting with the one encountered first when traversing the polyline
from t to temp, in this case v4. For each concave vertex, the line segment
from temp to the vertex is drawn, and the first vertex, where the line segment
does not intersect, and is within, the boundary of the partition, is chosen as
the intermediate point. This process is shown in Figure 6.5b and 6.5c. First
v4 is tested, but the line drawn intersects with the boundary of the partition,
so the next concave vertex, v1, is tested and it passes as an intermediate
point since the line segment drawn does not intersect with the boundary of
the partition. As such, v1 is added to Rpath and chosen as the new temp, as
seen in Line 14-15.

Figure 6.5d illustrates the start of a new while-loop iteration, and the
procedure shown in Figure 6.5a is repeated with v1 as temp. In this iteration,
cp lies on the other polyline created in the initialisation, which is then used.
The for-loop in Line 11-18 is repeated once again, as shown in Figure 6.5e,
where the first concave vertex encountered on pl, v3, is tested. The process
is continued and repeated until t is reached, as shown in Figure 6.5f.

Algorithm 2 Walk the Line

1: function Walk the Line(partition p, point s, point t)
2: set of points Rpath; point temp;
3: split the boundary of p into polylines pl1 and pl2 using s and t;
4: add s to Rpath;
5: temp← s;
6: while temp != t do
7: draw a line segment ltt from temp to t;
8: if ltt intersects with the boundary of p then
9: set point cp to the intersecting point closest1 to temp;

10: set polyline pl to pl1 or pl2, depending on which one contains cp;
11: for each concave vertex v on ls, starting with the one closest to t on pl do
12: draw a line segment ltv from temp to v;
13: if ltv does not intersect and is within the boundary of p then
14: add v to Rpath;
15: temp← v;
16: break
17: end if
18: end for
19: else
20: temp← t;
21: add t to Rpath;
22: end if
23: end while
24: return Rpath;
25: end function

1 The point which has the shortest Euclidean distance to another given point.
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6.2.2.1 Limitations

Through extensive testing, a single scenario has been found where the short-
est intra-partition distance cannot be found using the Walk the Line algo-
rithm. This scenario is illustrated in Figure 6.6. The scenario occurs when
the line segment, drawn in Line 7 in Algorithm 2, lies outside the polygon.
This should be checked for in the if -statement in Line 8, in the same way
as it is done in Line 13. However, even though this check is made, the algo-
rithm is not able to handle this scenario using the procedure in Line 8-17,
since no cp exists, making it impossible to determine pl in Line 10.

Figure 6.6: A scenario where the Walk the Line algorithm cannot determine the
shortest route, since the line segment drawn between the two points lies outside the
polygon.

Another limitation to the Walk the Line algorithm is the assumption
that the start and end points are positioned as access points, i.e. on the
boundary of the partition. However, when computing the shortest route,
other types of intra-partition distances are used, e.g. the shortest distance
between the start point and an access point inside the partition where the
start point is located. As such, the algorithm is limited to run for intra-
partition distances between access points.

6.3 Final Solution

As described, two limitations exist when using the Walk the Line algorithm.
However, the algorithm can still be applied to the scenarios where these
limitations do not influence the computation. As such, a solution is pro-
posed which includes both the Dijkstra’s algorithm and the Walk the Line
approach, by using Dijkstra’s algorithm in the scenarios where Walk the
Line comes short.

It is assumed that Walk the Line is a more efficient algorithm than
Dijkstra’s in the scenarios where it can be applied. In order to verify this
assumption, several tests have been performed. The test configurations,
results and analysis are described in Chapter 8.
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Chapter 7

Navigation App

The development of an app, capable of providing navigational services, is
done to create a bridge between the data extracted by the back-end and in-
door navigation, by visualising a contextual use of it. Additionally, the rout-
ing algorithm is used to provide a routing feature through the app interface.
This chapter describes the architectural choice, design and functionality of
the app.

7.1 Architecture

The architecture used to develop the app is a client-server architecture. The
client (app) sends requests to the server (back-end) to retrieve data. How-
ever, the architecture details can vary, and to determine them is a matter of
choosing what should be handled on the client side and on the server side.
In order to do this, two contrary architectures, shown in Figure 7.1 and 7.2,
are compared to find pros and cons. The parts of the back-end that do not
have any influence on these specific architectures have been omitted from
the figures. An overview of pros and cons in the two architectures can be
seen in Table 7.1.

The architecture in Figure 7.1 is mainly based on the ability to use the
app when a connection to the server is not available, by storing indoor data

Pros Cons

Figure 7.1
- Offline client usage - Spatial database on device

- Storage space on device

Figure 7.2
- No client storage - Frequent communication
- No client route computation
- Global cache

Table 7.1: The pros and cons for the two app architectures shown in Figure 7.1
and 7.2.
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Figure 7.1: An architecture where most tasks are handled on the client side.

Figure 7.2: An architecture where most tasks are handled on the server side.

and running the routing algorithm on the client side. However, this solution
requires that a spatial database is available on the client side device, which is
uncommon. Furthermore, a certain amount of storage space on the device is
required to store all the indoor data needed. In the case that a user wants to
store data for an entire city, it could exceed a reasonable amount of storage
space required.

The focus of the architecture depicted in Figure 7.2 is to create a lightweight
app, by handling both storage and route calculation on the server side. This
ensures that no significant amount of storage space is required on the client
side, since all data needed by the client is requested from the server. How-
ever, it can be assumed that during normal use, frequent client-server com-
munication is needed. It is also assumed that the computation power on
the server side is better that on the client side, which makes this architec-
ture favourable in situations where the data transfer rate between the client
and the server is insignificantly low. Additionally, a global intra-partition
distance cache can be obtained by calculating routes on the server-side.

Considering the high availability of internet access, achieved through
mobile telephony communication (3G or 4G) and WiFi hotspots, and that
the app is mainly developed for visualisation purposes, the architecture in
Figure 7.2 is used in development of the app.
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7.2 Workflow

The workflow design of the app is based on simplicity, by including only the
minimum amount of actions possible to represent the data extracted via the
back-end and to enable use of the routing functionality.

The workflow is illustrated using an activity diagram, which is shown
in Figure 7.3. The first action taken, after opening the app, is browsing a
list of available indoor building maps. The user is able to refresh the list of
maps, re-requesting the list of maps from the web service on the server side.
After a map is chosen, a floor must be also be chosen before a graphical
representation can be displayed. During the display of a graphical floor
map representation, several actions can be taken. In order to navigate the
floor map, either zooming or panning can be performed. A start and an end
point, for a route request, can be chosen, as well as clearing already chosen
points. A route can be requested if both a start and an end point has been
chosen. By doing so, a route calculation request is send to the server side
and the route is returned and displayed. Finally, the user can either go back
to browse the list of indoor building maps, or choose another floor on the
map currently chosen.

7.3 User Interface

In order to give an impression of how the app looks and feels, several screen
shots from it are provided in Figure 7.4. As described in the workflow in
Section 7.2, the user is able to retrieve a list of the stored building maps,
choose a building and a floor, and finally get a graphical representation of
it.

Figure 7.4 contains five screen shots which represents the steps to be
taken in order to retrieve a route, from one point to another, on a given
floor. In Figure 7.4a, a graphical overview of the floor selected by the user,
is given. In Figure 7.4b, the user has panned and zoomed to a desired
location on the indoor map and chosen a start point, marked by a green
dot, for the route that he wants to be calculated. To choose a start or
end point, the user has to make a long touch at the desired location of the
point, which triggers a dialogue similar to the one shown in Figure 7.4c. In
Figure 7.4c, the user has made a long touch and has to choose if he wants
to choose the selected location as an end point, replace the already chosen
start point, or clear the points such that none are chosen.

In Figure 7.4d, it appears that the user chose the selected location as an
end point, which is represented by the red dot. At this point the user has
chosen a start and end point and only needs to request the route from the
server. In Figure 7.4e, the route has been requested and returned, and is
represented by the magenta coloured line.
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Figure 7.3: The workflow of the app, represented as an activity diagram.

49



7.3. USER INTERFACE

F
ig

u
re

7
.4

:
S

creen
sh

o
ts

o
f

th
e

a
p
p

U
I,

d
em

o
n

stra
tin

g
th

e
u

se
o
f

th
e

ro
u

tin
g

fu
n

ctio
n

a
lity.

50



Chapter 8

Experimental Evaluation

Several tests have been performed using the routing algorithm implemented
in this project. All tests are run on the back-end of the prototype (server
side), due to the architectural choice explained in Section 7.1. The tests
have been performed to analyse the effect of the following:

• Computing intra-partition distances using the solution described in
Section 6.3 (WTL) vs. using only the Dijkstra’s algorithm approach
(OD)

• Storing access point to access point distances in a cache and reusing
them in subsequent route computations

• Decomposing partitions before calculating routes

The first test is performed to verify the assumption that WTL is faster
than OD when computing intra-partition distances during the routing algo-
rithm.

The second test is performed to show the influence of using a cache
for storing intra-partition distances between access points. The cache is
implemented such that when an intra-partition distance is requested by the
routing algorithm, a lookup is performed on the cache to see if that distance
already have been calculated, and the distance is returned if so. If not, the
distance is calculated, stored in the cache, and then returned. The cache is
maintained over multiple routing requests, which means that the distances
stored in the cache can be used by future route calculations.

The third test is performed to show the influence of decomposing par-
titions before routes are computed. However, during decomposition, vir-
tual access points are created to connect sub-partitions. The intra-partition
distance computations use the centre of an access point, which results in
inaccuracies in terms of computing the shortest route, as illustrated in Fig-
ure 8.1.
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This chapter describes the different test configurations, the results and
the analysis of them.

Figure 8.1: An example of a route calculated before and after the partition is
decomposed. After decomposition, the calculated route is no longer the shortest
possible, because it must go through the centre of each virtual access point.

8.1 Test Configuration

The computer used for all the tests has the following configuration: An
Intel Core 2 Duo P8600 @ 2.4 GHz processor, with 2.25 GB RAM, running
Windows 7. In order to generate multiple random routes, a function to
find a random start and end point is implemented. This function does not
allow the start and end points to be in the same partition. Furthermore,
the following configurations are set for the different tests:

WTL vs. OD This test is run with four different IFC files, which differ
in number of access points, partitions, and concave partitions. The
route algorithm is run for different files because the computation time
of intra-partition distance computations vary with the shape of the
partition polygon and the placement of access points. For each file, the
routing algorithm is run twice using the same 50 randomly generated
start and end points; once for WTL and once for OD.

Using a cache (WTL vs. OD) This test is performed by running each
algorithm, starting with an empty cache, for 50 randomly generated
routes. This process is repeated 50 times to calculate the average
computation time for each algorithm after a specific number of routes.
Four IFC files are also used for this test.

Decomposing Partitions For both of the aforementioned tests, another
test is performed after decomposing partitions in the extracted data.
In the routing algorithm, the WTL solution is used for these tests.
This method is referred to as WTLD.

An overview of the IFC files used in the tests is shown in Table 8.1.
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File name Floor name Decomposed #Partitions #Access points

“Cassio” “Ground Floor”
No 170 192
Yes 241 266

“Clinic” “First Floor”
No 155 173
Yes 211 231

“Office A” “Level 1”
No 60 68
Yes 93 105

“Dds” “3. etasje”
No 37 42
Yes 52 57

Table 8.1: A list of the files and specific floors that have been used for testing.
The number of partitions and access points contained on each floor is included.

8.2 Results & Analysis

The results from the first test, WTL vs. OD, are illustrated using a bar chart
for each IFC file, shown in Figure 8.2, 8.3, 8.4, and 8.5. The bar charts show
the computation time using OD in percentage of the computation time using
WTL for the same route, e.g. the computation time using OD for the first
route in Figure 8.2 is equal to 200% of the time used to calculate the route
using WTL. It can be seen, in each of the charts, that route calculation
using OD requires longer computation time than with WTL. However, the
computation time greatly varies from route to route, for which the reason
can be assumed to be a varying number of concave partitions included in
the routes.

In the results obtained using the Clinic file, OD is significantly slower
than WTL, up to 23 times, compared to the test results obtained using
the other files. Through a review of the indoor elements contained in the
extracted data from the Clinic file, it is found that the file contains a rela-
tively high amount of concave partitions, which in most cases are connected
to many access points. This means that in many cases, during the route
calculation, an intra-partition distance in a concave partition has to be cal-
culated, due to the high amount of connections between access points inside
the partition. Furthermore, many partitions, with a high amount of vertices
in their polygon representations, exist in the Clinic file. This can increase
the computation time additionally, due to Dijkstra’s algorithm using a min-
priority queue implemented with a binary min-heap having a worst case
running time of O((|E|+ |V |) ∗ log|V |) [1, p. 661-662], [6].

As mentioned, the difference in computation time between using OD
and using WTL varies significantly depending on the route. To provide
an overview of the average computation time for one route, for each of the
different IFC files, a bar chart is shown in Figure 8.6. For the file, Clinic, the
average computation time using OD is 114.4s. However, the bar chart is cut
off at a computation time of 25s, as it is clear that the average computation
time for OD is significantly longer than for WTL in all of the tested files.

Another important note is that the average computation time using

53



8.2. RESULTS & ANALYSIS

Figure 8.2: The results for the “Office A” file, i.e. how OD performs compared
to WTL when the same 50 routes are run for both algorithms.

Figure 8.3: The results for the “Clinic” file, i.e. how OD performs compared to
WTL when the same 50 routes are run for both algorithms.
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Figure 8.4: The results for the “Cassio” file, i.e. how OD performs compared to
WTL when the same 50 routes are run for both algorithms.

Figure 8.5: The results for the “Dds” file, i.e. how OD performs compared to
WTL when the same 50 routes are run for both algorithms.
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WTLD outperforms WTL and OD. This is an expected result, as the num-
ber of concave partitions is reduced substantially after the decomposition.
Unfortunately this algorithm does not provide the shortest route because
it uses centre of virtual access points. An example of this is shown in Fig-
ure 8.1.

Figure 8.6: The average computation time for one route for each of the four files
tested. The average is computation time is shown both for OD, WTL, and WTLD.

The results of the cache tests can be seen in the line charts in Fig-
ure 8.7, 8.8, 8.9, and 8.10. For the first couple of routes, in each of the
charts, the obtained result is that WTLD is faster than WTL, which is
faster than OD. This is an expected result as the cache is very small at
this point and the results reflect the base performance of each algorithm, as
already analysed.

An observation, that can be made from these test results, is the number
of routes to be run before the cache is used almost exclusively, i.e. when
almost all of the intra-partition distances are stored in the cache. As it
can be seen in the four charts, the average computation time for each of
the algorithms converges as the size of the cache increases and a conclusion
is that WTL is faster than OD until only the cache is used, for all tested
files. However, it is assumed that the number of routes to be run, before the
cache is used exclusively, increases with the number of possible routes that
can be taken in the indoor space. It can be seen in the results, that with
the two files, Clinic and Dds, WTL and OD seem to converge after 18 and
8 routes have been calculated, respectively. Analysis of the files show that
Clinic contains a significantly larger amount of possible routes than Dds,
which supports the assumption.
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Figure 8.7: The average computation time for OD, WTL, and WTLD, when a
cache is used. These results are obtained from testing the “Office A” file.

Figure 8.8: The average computation time for OD, WTL, and WTLD, when a
cache is used. These results are obtained from testing the “Clinic” file.
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Figure 8.9: The average computation time for OD, WTL, and WTLD, when a
cache is used. These results are obtained from testing the “Cassio” file.

Figure 8.10: The average computation time for OD, WTL, and WTLD, when a
cache is used. These results are obtained from testing the “Dds” file.
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8.3 Findings

The findings are that it is preferable to use WTL over OD both with and
without a cache. When using a cache the effect of using one approach over
another decreases as the cache gets populated with intra-partition distances.
Using WTLD gives a great performance compared to calculating routes with
non-decomposed partitions, but the effect of this also decreases over time
by using a cache. In the case that no cache is available, the choice of using
WTL over WTLD is a trade-off between performance and getting the actual
shortest route.
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Conclusion

As stated in the project definition in Chapter 3, the problem of this project
is to improve the prototype developed in [7], such that the data produced by
the back-end can be used for indoor navigation purposes. Additionally, the
problem involves the development of a front-end with navigation features to
demonstrate a use of the extracted data. As a solution to this problem, the
following contributions have been made in this project:

• Decomposition of partitions

• Improved back-end extraction and interpretation, database, and data
management UI

• Intra-partition distance calculation

• Indoor navigation app with routing functionality

Due to the use of a spatial database, and thereby spatial indices, effort
has been put into the implementation of partition decomposition, since irreg-
ular and imbalanced partitions can degrade spatial query performance. The
implementation is based on the work of [5], and includes solutions to sev-
eral shortcomings found in the original decomposition algorithm. Partition
decomposition is considered an important contribution, because it improves
an existing decomposition algorithm to handle real world data, and because
it is a general improvement to how spatial data is handled in this project.

Several enhancements are made to the back-end, including a redesign
of the database, an improved mapping approach, and development of two
key features in the back-end UI: Outdoor connectivity and connecting par-
titions.

In order to implement a routing algorithm, that can utilise the indoor
data captured, a method to compute intra-partition distances has been de-
veloped. This method includes a specifically developed geometry-based so-
lution, called Walk the Line, to be used in scenarios where it is applicable,
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and applies Dijkstra’s algorithm as a secondary solution. The method is
evaluated and the test results show that the proposed method is better than
using Dijkstra’s algorithm exclusively in all aspects.

The routing functionality, as well as the indoor data captured, is visu-
alised through an app, which allows users to view different floor maps, from
buildings which have been extracted from IFC files using the back-end UI.

In conclusion, the prototype system developed in this project bridges the
gap between IFC files and indoor navigation, by extracting and transforming
data via the back-end, which can be applied for routing and navigation
features in an app.
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Future Work

This chapter describes different valuable additions that can be made to the
project in the future.

10.1 Connectors

As mentioned in Section 3.2, stairs and elevators are not extracted from IFC
files, and are therefore not included in some parts of the development in this
project.

However, as part of future work, a solution to include stair and eleva-
tor information could be developed. As mentioned, this could be done by
enabling users to include this information through the back-end UI. This
would require the possibility of displaying multiple floors, possibly using a
3D representation, to create an overview of the position of a staircase or
an elevator and the partitions, and thereby floors, it connects. Such a so-
lution would require extensive UI development and possibly include several
usability aspects.

10.2 Positioning

As mentioned in Section 2.2.7, positioning and tracking is a valuable addition
to an indoor navigation system. An interesting approach, regarding future
work, would be to apply a positioning feature to the app, by enabling the
ability to locate the current position of the device when the app is run. This
would also enable the user to select his current position as the starting point
for a route.

10.3 IFC File Parser

The parser for IFC files developed by Open IFC Tools [8], which is used in
this project, is limited to parsing entire files, storing all the parsed data in
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memory at run time. This is not a durable solution for two reasons: Because
most IFC files contain more information than needed in the extraction pro-
cess, and because some files contain so much detail that it is not possible
to store the parsed data in memory, which means that these files cannot be
used.

Future work could involve the development of a parser for IFC files, that
would allow parsing of specific building elements by request. This would be
a better solution, since the response time of the extraction process would be
reduced significantly, and the level of detail contained in the IFC file would
not be of influence.
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Appendix A

CD-ROM

The CD-ROM contains the following:

• A Java Project @ \Application\

• An Android Application Project @ \Application\

• A Dynamic Web Project @ \Application\

• IFC files @ \IFC files\

– AC11-Institute-Var-2-IFC.ifc (2.770 MB)

– Cassiopeia.ifc (10.816 MB)

– Clinic A 20110906 optimized.ifc (12.889 MB)

– Dds BardNa.ifc (42.729 MB)

– HITOS 070308 Elevator.ifc (62.594 MB)

– Nem-FZK-Haus-2x3.ifc (10.157 MB)

– Office A 20110811 optimized.ifc (4.004 MB)

– Statsbygg-HIBO-ARK-20080410.ifc (66.951 MB)

• A PDF file @ \Report\

The Java project contains the source code for the back-end of the prototype
except from the web service.
The Android Application Project contains the source code for the navigation
app.
The Dynamic Web Project contains the source code for the web service.

The IFC files are the ones used for the mapping re-evaluation made in Sec-
tion 5.2.3.1 and the experimental evaluation made in Chapter 8.

The PDF file is a digital version of the report.
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Decomposition

Algorithm 3 Original Decomposition

1: function Original Decompose(Region r, a set of turning points P , threshold Tshape)
2: if r is concave then
3: let R(r) be the MBR of r;
4: select a turning point t ∈ P on r’s boundary, such that t is closer to the middle of r;
5: draw a splitting line perpendicular to the longer dimension d to divide r into two or

more regions: {ri};
6: for each ri in {ri} do
7: Decompose(ri, P − {t}, Tshape);
8: end for
9: else

10: if
len(R(r)1)
len(R(r)2)

> Tshape or
len(R(r)1)
len(R(r)2)

< Tshape then

11: find the middle point m on r’s longer dimension d;
12: draw a splitting line perpendicular to d to divide r into two regions: r1 and r2;
13: Decompose(r1, P, Tshape);
14: Decompose(r2, P, Tshape);
15: end if
16: end if
17: end function
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Back-end UI

Figure C.1: An example from the IFC file “HITOS”, which includes many parti-
tions without any nearby access points.
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Appendix D

Connectivity Trigger

1 CREATE TRIGGER t r i g a 2 p c onn e c t i v i t y
2 BEFORE INSERT
3 ON aptopart
4 FOR EACH ROW
5 EXECUTE PROCEDURE i n s c o nn e c t i v i t y ( ) ;

Listing D.1: This is the trigger which inserts a row into the Connectivity table.

1 CREATE FUNCTION i n s c o nn e c t i v i t y ( )
2 RETURNS t r i g g e r AS
3 BEGIN IF tg op = ’INSERT ’ THEN
4 IF EXISTS (SELECT pa r t i d AS par t id FROM aptopart WHERE ap id =

NEW. ap id ) THEN
5 INSERT INTO conne c t i v i t y ( ap id , par t1 id , pa r t 2 i d ) SELECT NEW.

ap id , par t id , NEW. pa r t i d FROM aptopart WHERE ap id = NEW.
ap id ;

6 END IF ;
7 RETURN new ;
8 END IF ;
9 END

Listing D.2: This is the trigger function used in the trigger defined in Listing D.1.
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Appendix E

Routing Algorithm

Algorithm 4 pt2ptDistance3(source position ps, destination position pt)

1: vs ← getHostPartition(ps)
2: vt ← getHostPartition(pt)
3: doorss ← P2D@(vs)
4: doorst ← P2DA(vt)
5: for each door ds ∈ doorss do
6: np← the partition in D2P@(ds) \ {vs}
7: if P2D@(np) = {ds} and np 6= vt then
8: remove ds from doorss
9: end if

10: for each door dt ∈ doorst do
11: dists[ds][dt]←∞
12: end for
13: end for
14: distm ←∞
15: for each door ds ∈ doorss do
16: doors ← ∅
17: for each door dt ∈ doorst do
18: if dists[ds][dt] =∞ and distV (ps, ds) + distV (pt, dt) < distm then
19: add dt to doors
20: end if
21: end for
22: initialize a min-heap H
23: for each door di ∈ Σdoor do
24: if di 6= ds then
25: dist[di]←∞
26: else
27: dist[di]← 0
28: end if
29: enheap(H, 〈di, dist[di]〉)
30: prev[di]← null
31: end for
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32: while H is not empty do
33: 〈di, dist[di]〉 ← deheap(H)
34: if di ∈ doors then
35: doors ← doors \ {di}
36: if distm > distV (ps, ds) + dist[di] + distV (pt, di) then
37: distm ← distV (ps, ds) + dist[di] + distV (pt, di)
38: end if
39: (v, dj)← prev[di]
40: while dj 6= ds do
41: if dj ∈ doorss and dj > ds then
42: dists[dj ][di]← dist[di]− dist[dj ]
43: if distm > distV (ps, dj) + dists[dj ][di] + distV (pt, di) then
44: distm ← distV (ps, dj) + dists[dj ][di] + distV (pt, di)
45: end if
46: end if
47: (v, dj)← prev[dj ]
48: end while
49: if doors = ∅ then
50: break
51: end if
52: else if di ∈ doorss and di < ds then
53: for each door dj ∈ doors do
54: dists[ds][dj ]← dist[di] + dists[di][dj ]
55: if distm > distV (ps, ds) + dists[ds][dj ] + distV (pt, dj) then
56: distm ← distV (ps, ds) + dists[ds][dj ] + distV (pt, dj)
57: end if
58: end for
59: break
60: end if
61: mark door di as visited
62: parts← D2P@(di)
63: for each partition v ∈ parts do
64: for each unvisited door dj ∈ P2D(v) do
65: if dj ∈ P2D@(v) then
66: if dist[di] + Gdist .fd2d (v, di, dj) < dist[dj ] then
67: dist[dj ]← dist[di] + Gdist .fd2d (v, di, dj)
68: prev[dj ]← (v, di)
69: end if
70: end if
71: end for
72: end for
73: end while
74: end for
75: return distm
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