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B Worked Example - Interaction

Formulae

This chapter is an elaboration of the calculations found in Chapter 4 of the main report.

In European Standard [2005], the following equations must be satisfied satisfied when calculating
by Interaction Formulae, see Equation (B.1) and (B.2).

NEd
χy fyAi

γM1

+ kyy
My,Ed +∆My,Ed

χLT
fyWi
γM1

+ kyz
Mz,Ed +∆Mz,Ed

fyWi
γM1

≤ 1 (B.1)

NEd
χz fyAi

γM1

+ kzy
My,Ed +∆My,Ed

χLT
fyWi
γM1

+ kzz
Mz,Ed +∆Mz,Ed

fyWi
γM1

≤ 1 (B.2)

NEd , My,Ed , Mz,Ed
Design values of the compression force and the maximum moments

[-]
about the y-y and z-z axis along the member, respectively

∆My,Ed , ∆Mz,Ed Moments due to the shift of the centroidal axis for class 4 sections [-]

χy , χz Reduction factors due to flexural buckling [-]

χLT Reduction factor due to lateral torsional buckling [-]

kyy , kyz , kzy , kzz Interaction factors [-]

The values shown in Table B.1 are given in European Standard [2005] for the different cross-
section (C-S) classes.

Class 1 2 3 4

Ai A A A Aeff

Wy Wpl,y Wpl,y Wel,y Weff,y

Wz Wpl,z Wpl,z Wel,z Weff,z

∆My,Ed 0 0 0 eN,y NEd

∆Mz,Ed 0 0 0 eN,z NEd

Table B.1: Values for NRk = fy Ai, Mi,Rk = fy Wi and ∆Mi,Ed [European Standard, 2005].

This appendix will give a full worked example of the calculation for a profile in regard of
Interaction Formulae in the EC. In order to find the right profile for Interaction Formulae in EC,
a MATLAB code has been developed. The code has input parameters as section and material
properties and different assumptions such as effective buckling lengths. As output, the program
states if the equations of Interaction Formulae are satisfied. If not, a new profile with different
section properties must be entered. This makes the whole process an iterative process. This
example is calculated for a HE320A profile where every calculation is based on European Standard
[2005].

B.1 Section Properties

Some of the profile properties have been adjusted in order to fit with the results from Abaqus/CAE.
In Abaqus/CAE, no radius for a rolled sections is taken into account, meaning that the area in Table
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B.2 has been reduced. In addition, the moment of inertia is also calculated and reduced due to the
removal of area of the rolled section. Whenever in this calculation a choice must be made between
rolled or welded section, the welded section is always chosen in order to be able to compare the
results in Abaqus/CAE.

HE320A

Description Symbol Value Unit

Height h 310 [mm]
Width b 300 [mm]
Thickness of web d 9 [mm]
Thickness of flange t 15.5 [mm]
Radius r 27 [mm]
Cross-sectional area A 11.77 · 103

[
mm2

]
Second moment of area about y-y axis Iy 218.12 · 106

[
mm4

]
Elastic section modulus Wel,y 1480 · 103

[
mm3

]
Plastic section modulus Wpl 1628 · 103

[
mm3

]
Second moment of area about z-z axis Iz 69.8 · 106

[
mm4

]
Torsional moment of inertia Iv 1080 · 103

[
mm4

]
Warping moment of inertia Iw 1510 · 109

[
mm6

]
Table B.2: Cross-sectional properties for HE320A [Mohr and et al., 2009].

B.2 Check of HE320A for Element 3

As HE320A is classified as cross-section (C-S) class 1, the following calculations will take this
into account. In addition, the loads with snow as the dominant load can be seen for the reference
frame in Figure B.1.

0.567 kN/m

10.44 kN/m

1.32 kN/m

3.96 kN/m 3.96 kN/m

z

x

y

Figure B.1: Loads on the reference frame with snow as the dominant load.

From these loads, the moment diagram seen in Figure B.2 is calculated in the FEM software
Autodesk Robot.
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309.89 kNm286.31 kNm

223.93 kNm

z

x

y

1

2

3

Figure B.2: Illustration of the moments on the frame.

The column checked is element 3 as this element will have the greatest moment and compression
force out of the two columns.

B.2.1 Forces and Moments

The compression force, NEd, is determined by the applied loads on the roof of the frame and self-
weight of the element. In addition,the wind load will induce a small compression force as well.
The total reaction force in element 3 is found by Autodesk Robot. The total force is found to be
NEd = 125.38 kN.

The moment about the y-axis is also calculated by Autodesk Robot. Moments are occurring
because of the loads on the roof and the loads from the sides due to wind actions. The moments
are then added together, and the worst moment is calculated to be My,Ed = 309.89 kNm.

Since no out-of-plane loads are applied, the moment about the z-axis is equal to zero
(Mz,Ed = 0 kNm). As there are no shift of the centroidal axis (not class 4 sections), there are
no additional moments. Hence, ∆My,Ed = ∆Mz,Ed = 0.

B.2.2 Cross-Section Checks

Compression

The design resistance of the C-S for the uniform compression force, Nc,Rd, should satisfy Eq.
(B.3).

NEd

Nc,Rd
≤ 1.0 (B.3)

The design resistance of the C-S for uniform compression, Nc,Rd, can be calculated as in Eq. (B.4).

Nc,Rd =
A fy

γM0
(B.4)

=
11774 mm2 ·235 N/mm2

1.1
= 2515.35 ·103 N

The C-S check is shown in Eq. (B.5).

125.38 kN
2515.35 kN

= 0.050≤ 1.0 (B.5)
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Bending Moment

The design value of the bending moment, MEd, at each cross-section should satisfy Eq. (B.6).

MEd

Mc,Rd
≤ 1.0 (B.6)

The design resistance for bending, Mc,Rd, is calculated in Eq. (B.7).

Mc,Rd =
Wpl fy

γM0
(B.7)

=
1628 ·103 mm3 ·235 N/mm2

1.1
= 347.8 ·106 Nmm

MEd is equal to My,Ed = 309.89 kNm. This means that the C-S check will be as Eq. (B.8).

309.89 kNm
347.8 kNm

= 0.89≤ 1.0 (B.8)

It can be seen that the element in regard of the bending moment has a high utilization ratio.

Shear

The design value of the shear force, VEd, at each C-S should satisfy Eq. (B.9).

VEd

Vc,Rd
≤ 1.0 (B.9)

Vc,Rd is the design shear resistance. As HE320A is classified as C-S class 1, the verification of the
shear force should be plastic. In addition, it is so that as there is no torsion in the frame, hence the
plastic shear resistance is given as seen in Eq. (B.10).

Vpl,Rd =
Av
(

fy/
√

3
)

γM0
(B.10)

Av is the shear area and will be taken as the expression shown in Eq. (B.11) for sections with load
parallel to web.

Av = A−2b tf +(tw · tf) (B.11)

= (11.77 ·103 mm2)−2 ·300 mm ·15.5 mm+(9 mm ·15.5 mm)

= 2610 mm2

It should also be noticed that Eq. (B.11) is based on a profile without the welds of the section,cf.
Section B.1. In addition, Av should not be less than Eq. (B.12).

ηhwtw (B.12)

ηhwtw = 1.0 ·300 mm ·9 mm = 2700 mm2

The factor for shear area, η , may conservatively be taken equal to 1.0 according to European
Standard [2005].

Thereby, Av is taken as 2700 mm2. Now, Vpl,Rd can be calculated as shown in Eq. (B.13).

Vpl,Rd =
2700 mm2

(
235 N/mm2/

√
3
)

1.1
(B.13)

= 524.38 ·103 N
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The C-S check can then be made as the shear force is found to be 63.4 kN in Autodesk Robot in
Eq. (B.14).

63.4 kN
524.38 kN

= 0.12 ≤ 1.0 (B.14)

Linear summation of the utilization ratios:

According to Eurocode 3 [European Standard, 2005], the following is stated about general
resistance of cross-sections. “As a conservative approximation for all cross-sectional classes a
linear summation of the utilization ratios for each stress resultant may be used”. For cross-section
classes 1, 2 and 3 the following criteria must be verified, see Eq. (B.15).

NEd

NRd
+

My,Ed

My,Rd
+

Mz,Ed

Mz,Rd
≤ 1.0 (B.15)

By inserting the values previously calculated into Eq.(B.15), the verification can be done as shown
in Eq. (B.16).

125.38 kN
2515.35 kN

+
309.89 kNm
347.8 kNm

+0≤ 1.0 (B.16)

0.94≤ 1.0⇒ OK

B.2.3 Buckling Curves

The reduction factor for the relevant buckling curve, χ , is calculated in Eq. (B.17).

χ =
1

Φ+
√

Φ2− λ̄ 2
, χ ≤ 1 (B.17)

The value, Φ, to determine χ is calculated in Eq. (B.18).

Φ = 0.5
(
1+α

(
λ̄ −0.2

)
+ λ̄

2) (B.18)

α is an imperfection factor and is determined by a buckling curve that is defined by the profile
used. For HE320A, the relationship between the hight and the width of the section is calculated
in Eq. (B.19).

h/b = 310 mm/300 mm = 1.03 (B.19)

Since the relationship is 1.03, the web thickness, tw, is equal to 15.5 mm and the section is assumed
to be a welded section, the buckling curves will be according to Table B.3.

Buckling about axis Buckling curve for S235 Imperfection factor α

y-y b 0.34
z-z c 0.49

Table B.3: Imperfection factors based on buckling curves.

The non-dimensional slenderness, λ is calculated in Eq. (B.20).

λ =

√
A fy

Ncr
(B.20)
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Ncr is the elastic critical force for the relevant buckling mode based on a the gross cross sectional
properties. Ncr is calculated as seen in Eq. (B.21).

Ncr =
π2 E I

l2
s

(B.21)

ls is the effective length of element 3 . The effective length will depend on the different support
conditions of the element. An example of the effective length with different support conditions
can be seen in Figure B.3. Here, it is shown which factor the original length of the element should
be multiplied by in order to give the effective length, ls.

Figure B.3: Effective length factors, K [Wikipedia].

The elastic critical force, Ncr, is calculated for both y− y axis and z− z axis and their respective
effective length. In the end, this will lead to a difference in the reduction factor, χ , in regard of
the different axis. Therefore, a reduction factor, χy and χz, for the y and the z axis, respectively, is
calculated separately.

Reduction factor, χy, for the y axis:

First Ncr is calculated and the effective length, ls, should be found. From Force-Euro, an effective
length equation is given for element 3 about the strong axis. The effective length, ls, for element
3 is calculated in Eq. (B.22), and an illustration of the parameters can be seen in Figure B.4.

ls = h

√
4+3.2

s I
h Io

(B.22)
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L

S = L/2

h
I

Io

Figure B.4: Illustration of parameters for Eq. (B.22) [Force-Euro].

By inserting the same moment of inertia for both element 2 and 3 , the height of the structure
h = 5000 mm and half of the length of element 2 , the effective length, ls, is calculated to be ls =
16120 mm. The elastic critical normal force, Ncr, can then be calculated as in Eq. (B.23).

Ncr =
π2 E Iy

l2
s

=
π2 ·2.1 ·10) N/mm2 ·218.12 ·106 mm4

16120 mm2 = 1744.1 ·103N (B.23)

Then the reduction factor, χy, can be calculated by Eq. (B.24), (B.25) and (B.26).

λ =

√
11.77 ·103 mm2 ·235 N/mm2

1744.1 ·103 N
= 1.26 (B.24)

Φ = 0.5
(
1+0.34 (1.26−0.2)+1.262)= 1.47 (B.25)

The reduction factor, χy, for buckling curve b in y-y axis will then be:

χy =
1

1.47+
√

1.472−1.262
= 0.447 (B.26)

The calculated χy is within the limits given in Equation (B.17), so nothing else is done.

Reduction factor, χz, for the z axis:

The effective length, ls, about the z-axis is based on a length between a pinned and fixed support
in the top of element 3 , which is were element 3 meets element 2 . At the bottom of element
3 , the support will still be pinned. To see the difference by using the two types of supports at

the top, the calculation for both has been done and the results are shown Table B.4.

Type of support Effective length, ls [mm] Ncr [N] χz [-]

Fixed end 3500 11810.0 ·103 0.85
Pinned end 5000 5786.7 ·103 0.73

Table B.4: The results of different effective length about the z axis for element 3.

In the end, the support condition of element 2 is something in between fixed and pinned, but it
is difficult to say exactly. Therefore, the worst case is chosen. Hence pinned end is chosen giving
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element 3 an effective length of ls = 5000 mm. The results based on this effective length can be
seen in Table B.5.

Type of support at the ends Effective length, ls [mm] λ [-] Ncr [N] χz [-]

Pinned 5000 0.69 5786.7 ·103 0.73

Table B.5: Results for element 3 about the z axis.

Checks of Buckling Effects

There are two different checks which can be performed to check if buckling effects may be ignored
and that only cross-sectional checks will apply. The checks are:

1. λ̄ ≤ 0.2

2. NEd
Ncr
≤ 0.04

For the reduction factor, χy:

1. λ = 0.78≤ 0.2⇒ NOT OK

2. NEd
Ncr

= 125.38·103 N
4520.8·103 N = 0.028≤ 0.04⇒ OK

For the reduction factor, χz:

1. λ = 0.69≤ 0.2⇒ NOT OK

2. NEd
Ncr

= 125.38·103 N
5786.7·103 N = 0.022≤ 0.04⇒ OK

Based on these results, it can be seen that the buckling effects may not be ignored for this section
due to the slenderness of the element.

In addition to the checks just made, the European Standard [2005] states another check needed for
a compressed element. It states that the element should be verified against buckling as shown in
Eq. (B.27).

NEd

Nb,Rd
≤ 1.0 (B.27)

The buckling resistance, Nb,Rd, for the compressed element is calculated in Eq. (B.28).

Nb,Rd =
χ A fy

γM1
=

0.447 ·11.77 ·103 mm2 ·235 N/mm2

1.2
= 1030.32 ·103 N (B.28)

The reduction factor, χ , is taken as the most unfavorable result of the two axis, hence χy is used.
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The relationship between the compression force and buckling resistance will then be as shown in
Eq. (B.29).

NEd

Nb,Rd
=

125.38 ·103 N
1030.32 ·103 N

= 0.12≤ 1.0⇒ OK (B.29)

B.2.4 Lateral Torsional Buckling Curves for Rolled and Equivalent Sections

The EC gives a general case when it comes to lateral torsional buckling curves and an option for
rolled or equivalent sections. Therefore, it is assumed that the element has rolled or equivalent
sections, and the last option of the lateral torsional buckling is chosen.

The reduction factor, χLT, for lateral-torsional buckling is determined in Eq. (B.30).

χLT =
1

ΦLT +

√
Φ2

LT−β λ
2
LT

but

 χLT ≤ 1.0

χLT ≤ 1
λ

2
LT

(B.30)

According to European Standard [2005], the following values are recommended for rolled
sections:

λ LT,0 = 0.4 (Maximum value)

β = 0.75 (Minimum value)

The value, ΦLT, to determine the reduction factor, χLT, for lateral torsional buckling is calculated
in Eq. (B.31).

ΦLT = 0.5
(

1+αLT

(
λ LT−λ LT,0

)
+β λ

2
LT

)
(B.31)

The imperfection factor, αLT, for lateral torsional buckling is found from the buckling curve. For
HE320A the h/b relationship is as seen in Eq. (B.32).

h/b = 310 mm/300 mm = 1.03≤ 2⇒ Buckling curve c (B.32)

Buckling curve c gives αLT = 0.49 as the profile is assumed to be welded.

Then the non-dimensional slenderness, λ LT, can be calculated as in Eq. (B.33).

λ LT =

√
Wpl,y fy

Mcr
(B.33)

The critical moment, Mcr, is calculated by the following general expression, see Eq. (B.34).

Mcr = mn
E Iz

l2 ht (B.34)

mn A value given by a table for the case investigated [-]
ht Height of C-S from the middle of top flange to middle of bottom flange [mm]

In order to determine a value for mn, the relationship shown in Equation (B.35) must be calculated.

kl =

√
G Iv l2

E Iw
(B.35)
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kl is an input parameter that is used in different tables. The different tables reflect different loads
and boundary conditions for the element analyzed. The table concerning element 3 is m1 and
the equation used to calculate m1 can be seen in Figure B.5. From Figure B.5, it can be seen that
µ needs to be determined. µ is in this case equal to zero as the moment of the bottom support is
equal to zero.

Figure B.5: Table 1 for an Eulerload [Mohr and et al., 2009].

In order to calculate m1, kl must be calculated. It is calculated as seen in (B.36).

kl =

√
8.1 ·104 N/mm2 ·1080 ·103 mm45000 mm2

2.1 ·105 N/mm2 ·1510 ·109 mm6 = 2.63 (B.36)

By inserting kl into Figure B.5, m1 is determined to be 16.94. Next, Mcr can be calculated as
shown in Eq. (B.37).

Mcr = 19.94
2.1 ·105 N/mm2 · (69.8 ·106 mm4)

(5000 mm)2 ·294.5 mm = 2925.1 ·106 Nmm (B.37)

The reduction factor, χLT, for lateral-torsional buckling can be calculated by using Eq. (B.38),
(B.39) and (B.40).

λ LT =

√
Wpl,y fy

Mcr
=

√
1628 ·103 mm3 ·235 N/mm2

2925.1 ·106 Nmm
= 0.36 (B.38)

ΦLT = 0.5
(
1+0.49 (0.36−0.4)+0.75 ·0.362)= 0.527 (B.39)

χLT =
1

0.527+
√

0.5272− (0.75 ·0.362)
= 1.05 (B.40)

χLT ≤ 1.0⇒ NOTOK (B.41)

χLT ≤
1

λ
2
LT

=
1

0.362 = 7.72⇒ OK

Since χLT ≥ 1.0, χLT is set to 1.0 for the further calculations.

Check of Lateral Torsional Buckling

In some cases, lateral torsional buckling effects may be ignored and only cross-sectional checks
will therefore apply. These cases are when:

λ LT ≤ λ LT,0

MEd

Mcr
≤ λ

2
LT,0

14



For HE320A with its loads applied, the checks can be calculated.

0.36≤ 0.4⇒ OK

309.89 ·106 Nmm
2925.1 ·106 Nmm

= 0.106≤ 0.42 = 0.16⇒ OK

Based on these results, it can be seen that lateral torsional buckling effects may be ignored and
only cross-sectional checks will apply.

In addition to the previous checks, another check of the buckling resistance must be done. It is
stated in European Standard [2005] that “A laterally unrestrained member subjected to major axis
bending should be verified against lateral torsional buckling”. This is done in Eq. (B.42).

MEd

Mb,Rd
≤ 1.0 (B.42)

The design resistance for bending, Mb,Rd, is calculated in Eq. (B.43).

Mb,Rd = χLT Wpl
fy

γM1
= 1.0 ·1628 ·103 mm3 235 N/mm2

1.2
= 318.82 ·106 Nmm (B.43)

MEd

Mb,Rd
=

309.89 ·106 Nmm
318.82 ·106 Nmm

= 0.97≤ 1.0⇒ OK

B.2.5 Interaction Factors

There are two different methods in order to calculate the interaction factors, kij. As stated in
Chapter 4 of the main report, the calculations will only be performed by method 2 for I-sections
in C-S class 1 and 2. The interaction factors for I-sections in C-S class 1 and 2 are stated in Annex
B in European Standard [2005] and shown in Eq. (B.44), (B.45), (B.46) and (B.47).

kyy =Cmy

(
1+
(

λ y−0.2
) NEd

χy fy A/γM1

)
≤Cmy

(
1+0.8

NEd

χy fy A/γM1

)
(B.44)

kzy = 0.6 · kyy (B.45)

kzz =Cmz

(
1+2

(
λ z−0.6

) NEd

χz fy A/γM1

)
≤Cmz

(
1+1.4

NEd

χz fy A/γM1

)
(B.46)

kyz = 0.6 · kzz (B.47)

Moment factor Bending axis Points braced in direction

Cmy y-y z-z
Cmz z-z y-y

Table B.6: Moment factors.

The moment factors are depending on the shape of the bending moment about the bending axis.
These can be seen in Figure B.6. It should also be stated that as there are no moments about the z
axis, then Cmz = 0.
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Figure B.6: Equivalent uniform moment factors, Cm [European Standard, 2005].

As for the moment of element 3 , it will have more or less the shape of a triangle, as the wind
is small and will not give a large contribution to the moment distribution. The triangular moment
diagram will have the greatest moment on top, (Ms = 309.89 kNm), and a moment of zero at
the supports. This means that the moment diagram shown at the top of Figure B.6 will give the
approximate moment distribution as seen in element 3 . However, for the moment about the y
axis, the effective length, ls, is twice the length of the original length of element 3 . The question
then becomes if the moment distribution should be according to the effective length of the element,
see Figure B.7.

309.89 kNm
309.89 kNmLeff

L

Figure B.7: Different moment distribution according to original length and effective length of element 3.

It is in this case considered that the moment will be distributed for the effective length about the
y axis. This means that the moment used to calculate Cmy is shown at the bottom of Figure B.6.
In this moment diagram, Mh = 0 and Ms = 309.89 kNm. The calculation of αh will be zero. Then

16



Cmy can be calculated as shown in Eq. (B.48).

0.95+0.05 αh (B.48)

The moment multiplier, ψ , is equal to zero in this case, which means that Cmy = 0.95. The
interaction factors can then be calculated by using Eq. (B.44), (B.45), (B.46) and (B.47).

kyy = 0.984≤ 0.997⇒ OK

kzy = 0.6 ·0.984

kzz = 0≤ 0⇒ OK

kyz = 0.6 ·0 = 0 (B.49)

B.2.6 Interaction Formulae EC-Verification of Element 3

As stated in the beginning of this appendix, the following equation must be verified from the EC,
see Eq. (B.50) and (B.51).

NEd
χy fyAi

γM1

+ kyy
My,Ed +∆My,Ed

χLT
fyWi
γM1

+ kyz
Mz,Ed +∆Mz,Ed

fyWi
γM1

≤ 1 (B.50)

NEd
χz fyAi

γM1

+ kzy
My,Ed +∆My,Ed

χLT
fyWi
γM1

+ kzz
Mz,Ed +∆Mz,Ed

fyWi
γM1

≤ 1 (B.51)

In addition to the properties of the C-S, see Table B.2, the previous calculations have the following
results that is used in EC Interaction Formulae, see Table B.7.

Factor Value Unit

NEd 125.38 ·103 [N]
My,Ed 309.89 ·106 [Nmm]
Mz,Ed 0 [Nmm]
∆My,Ed 0 [Nmm]
χy 0.447 [-]
χz 0.73 [-]
χLT 1.0 [-]
kyy 0.984 [-]
kyz 0 [-]
kzz 0 [-]
kzy 0.59 [-]

Table B.7: Summarize of the results for values in EC Interaction Formulae.

With every value inserted into Eq. (B.50) and (B.51), each part of the equation is calculated. The
results of the different parts are as follows:

0.1217+0.972+0 = 1.09≤ 1⇒ NOTOK

0.0745+0.5832+0 = 0.66≤ 1⇒ OK

This means that the utilization ratio about the y axis of element 3 is above 100%. In reality,
a new profile would be chosen, and the whole procedure would start all over again to gain a
utilization ratio less than 100%. However, for this project, the utilization ratio will be compared
with the utilization ratio given for the General Method, see Chapter 6 .
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B.3 Check of HE320A for element 2

The analysed element of the frame is element 2 , which can be seen in Chapter 2.

B.3.1 Forces and Moments

The compression force, NEd, of element 2 is taken from Autodesk Robot, where it can be
seen that NEd = 60.56 kN. The moments acting on this element will be the same as element 3(
My,Ed = 309.89 kNm,Mz,Ed = ∆My,Ed = ∆Mz,Ed = 0 kNm

)
.

B.3.2 Cross-Section Checks

Compression

The design resistance of the C-S for the uniform compression force,Nc,Rd, should satisfy Eq.
(B.52).

NEd

Nc,Rd
≤ 1.0 (B.52)

Nc,Rd =
A fy

γM0

=
11774 mm2 ·235 N/mm2

1.1
= 2515.35 ·103 N (B.53)

The C-S check will then be shown in Eq. (B.54).

60.56 kN
2515.35 kN

= 0.024≤ 1.0 (B.54)

Bending Moment

The design value of the bending moment,MEd, at each C-S should satisfy Eq. (B.55).

MEd

Mc,Rd
≤ 1.0 (B.55)

The design resistance from bending, Mc,Rd, is calculated in Eq. (B.56).

Mc,Rd =
Wpl fy

γM0
(B.56)

=
1628 ·103 mm3 ·235 N/mm2

1.1
= 347.8 kNm (B.57)

MEd is equal to My,Ed = 309.89 kNm. This means that the C-S check will be as shown in Eq.
(B.58).

309.89 kNm
347.8 kNm

= 0.89≤ 1.0 (B.58)

Shear
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The design value of the shear force,VEd, at each C-S should satisfy Eq. (B.59).

VEd

Vc,Rd
≤ 1.0 (B.59)

where Vc,Rd is the design shear resistance. As HE320A is classified as C-S class 1, the verification
of the shear force should be plastic. In addition, it is so that as there is no torsion in the frame,
hence the plastic shear resistance is given as shown in Eq. (B.60).

Vpl,Rd =
Av
(

fy/
√

3
)

γM0
(B.60)

Av is the shear area and will be taken as the following for sections with load parallel to web as
seen in Eq. (B.61).

Av = A−2 b tf +(tw · tf) (B.61)

= (11.77 ·103 mm)−2 ·300 mm ·15.5 mm+(9 mm ·15.5 mm)

= 2610 mm2

It should also be noticed that this equation is based on a profile without any welds of the section,
see Section B.1. In addition, Av should not be less than what is shown in Eq. (B.62).

η hw tw (B.62)

ηhwtw = 1.0 ·300 mm ·9 mm = 2700 mm2

The factor for shear area, η , may conservatively be taken equal to 1.0 as stated in European
Standard [2005]. Thereby, Av is taken as 2700 mm2. Now, Vpl,Rd can be calculated as shown in
Eq. (B.63).

Vpl,Rd =
2700 mm2

(
235 N/mm2/

√
3
)

1.1
(B.63)

= 524.38 ·103 N

The C-S check can then be made, and the shear force is found from Autodesk Robot to be 105.58
kN.

105.58 kN
524.38 kN

= 0.20≤ 1.0

Linear summation of the utilization ratios:

According to Eurocode 3 [European Standard, 2005], the following is stated about general
resistance of cross-sections. “As a conservative approximation for all cross-sectional classes a
linear summation of the utilization ratios for each stress resultant may be used”. For cross-section
classes 1, 2 and 3 the following criteria must be verified, see Eq. (B.64).

NEd

NRd
+

My,Ed

My,Rd
+

Mz,Ed

Mz,Rd
≤ 1.0 (B.64)

By inserting the values previously calculated into Eq.(B.64), the verification can be done as shown
in Eq. (B.65).

60.56 kN
2515.35 kN

+
309.89 kNm
347.8 kNm

+0≤ 1.0 (B.65)

0.914≤ 1.0⇒ OK
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B.3.3 Buckling Curves

The reduction factor for the relevant buckling curve χ is calculated in Eq. (B.66).

χ =
1

Φ+

√
Φ2−λ

2
, χ ≤ 1 (B.66)

The value, Φ, to determine χ is calculated in Eq. (B.67).

Φ = 0.5
(

1+α

(
λ −0.2

)
+λ

2
)

(B.67)

α is an imperfection factor and is determined by a buckling curve that is defined by the profile
used. For HE320A the relationship between the height and the width of the section is calculated
as shown in Eq. (B.68).

h
b
=

310 mm
300 mm

= 1.03 (B.68)

As the relationship is 1.03, the web thickness is equal to 15.5 mm and the section is assumed to
be a welded section, the buckling curves will be according to Table B.8.

Buckling about axis Buckling curve for S235 Imperfection factor α

y-y b 0.34
z-z c 0.49

Table B.8: Imperfection factors based on buckling curves.

The non-dimensional slenderness, λ is calculated as shown in Eq. (B.69).

λ =

√
A fy

Ncr
(B.69)

Ncr is the elastic critical force for the relevant buckling mode based on a the gross cross-sectional
properties. Ncr is calculated as shown in Eq. (B.70).

Ncr =
π2 E I

l2
s

(B.70)

Reduction factor, χy, for the y axis:

ls is the effective length of element 2 . From Force-Euro, the following equation is used to
calculate the effective length of element 2 , see Eq. (B.71). This equation only applies for the
effective length about the strong axis.

ls = ls,elem.3

√
NEd, elem.3

NEd, elem.2
(B.71)

ls,elem.3 Effective length of element 3 [mm]
NEd, elem.3 Internal normal force of element 3 [mm]
NEd, elem.2 Internal normal force of element 2 [mm]
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The effective length, ls is then calculated as shown in Eq. (B.72).

ls = 16120 mm

√
125.38 kN
60.56 kN

= 23194.57 mm (B.72)

The effective length has been inserted into the MATLAB-file and the results can be seen in Table
B.9.

Effective length, ls [mm] λ Ncr [N] χy [-]

23194.57 1.81 840.31 ·103 0.249

Table B.9: Results for element 2 about the y axis.

χz

The support conditions would in reality most likely be between fixed and pinned supports. It is
however, difficult to determine exactly what the value of effective length should be. Therefore, the
worst case is chosen. Hence, the support conditions are assumed to be pinned in both ends giving
element a an effective length of ls = 20000mm. The effective length, ls has been inserted into the
MATLAB-file and the results can be seen in Table B.10.

Type of support Effective length, ls [mm] λ Ncr [kN] χz [-]

Between fixed and pinned 20000 2.77 361.67 ·103 0.11

Table B.10: Results for element 2 about the z axis.

Checks of Buckling Effects

There are two different checks which can be performed to check if buckling effects may be ignored
and that only cross-sectional checks will apply. The checks are:

1. λ ≤ 0.2

2. NEd
Ncr
≤ 0.04

For the reduction factor, χy:

1. λ = 1.81≤ 0.2⇒ NOT OK

2. NEd
Ncr

= 60.56·103 N
840.31·103 N = 0.0072≤ 0.04⇒ OK

For the reduction factor, χz:

1. λ = 2.77≤ 0.2⇒ NOT OK

2. NEd
Ncr

= 60.56·103 N
361.67·103 N = 0.17≤ 0.04⇒ NOT OK
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Based on these results it can be seen that the buckling effects may not be ignored for this section
due to the slenderness and the compression force of the element.

In addition to the checks just made, the European Standard [2005] states another check needed for
a compressed element. It states that the element should be verified against buckling shown in Eq.
(B.73).

NEd

Nb,Rd
≤ 1.0 (B.73)

The buckling resistance, Nb,Rd, for the compressed element is calculated in Eq. (B.74).

Nb,Rd =
χ A fy

γM1
=

0.11 ·11.77 ·103 mm2 ·235 N/mm2

1.2
= 253.5 ·103 N (B.74)

The reduction factor, χ , is taken from the most unfavorable axis, hence χz is used.

The relationship between the compression force, NEd and buckling resistance, Nb,Rd, will then be
as shown in Eq. (B.75).

NEd

Nb,Rd
=

60.56 ·103 N
253.5 ·103 N

= 0.24≤ 1.0⇒ OK (B.75)

B.3.4 Lateral Torsional Buckling Curves for Rolled and Equivalent Sections

The EC gives a general case when it comes to lateral torsional buckling curves and an option for
rolled or equivalent sections. It is assumed that the element has rolled or equivalent sections, and
the last option of the lateral torsional buckling is chosen.

The reduction factor, χLT, for lateral-torsional buckling is determined in Eq. (B.76).

χLT =
1

ΦLT +

√
Φ2

LT−β λ
2
LT

but

 χLT ≤ 1.0

χLT ≤ 1
λ

2
LT

(B.76)

According to European Standard [2005], the following values are recommended for rolled
sections:

λ LT,0 = 0.4 (Maximum value)

β = 0.75 (Minimum value)

The value, ΦLT, to determine the reduction factor, χLT, for lateral torsional buckling is calculated
in Eq. (B.77).

ΦLT = 0.5
(

1+αLT

(
λ LT−λ LT,0

)
+β λ

2
LT

)
(B.77)

The imperfection factor, αLT, for lateral torsional buckling is found from the buckling curve. For
HE320A the h/b relationship is as follows, see Eq. (B.78).

h/b = 310 mm/300 mm = 1.03≤ 2⇒ Buckling curve b (B.78)

Buckling curve b gives αLT = 0.34.

Then the non-dimensional slenderness, λ LT, can be calculated as shown in Eq. (B.79).

λ LT =

√
Wpl,y fy

Mcr
(B.79)
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The critical moment, Mcr, is calculated by the following general expression, see Eq.(B.80).

Mcr = mn
EIz

l2 ht (B.80)

mn A value given by a table for the case investigated [-]
ht Height of C-S from the middle of top flange to middle of bottom flange [mm]

In order to determine a value for mn, the relationship shown in Eq. (B.81) must be calculated.

kl =

√
G Iv l2

E Iw
(B.81)

kl =

√
8.1 ·104 N/mm2 ·1080 ·103 mm420000 mm2

2.1 ·105 N/mm2 ·1510 ·109 mm6 = 10.50

kl is an input parameter that is used in different tables. The different tables reflect different loads
and boundary condition of the member analyzed. The table used for element 2 is m5, and the
table can be seen in Figure B.8. For element 2 there is a different moment acting on each end
of the element. In order to make the calculation, the moments have to be symmetric. Therefore,
m5 will be calculated with both the highest and lowest end moment calculated for element 2 ,
respectively’.

Figure B.8: Table 5 for an Eulerload [Mohr and et al., 2009].

Before calculating m5 for the moments, µ is determined as a factor of the relationship between the
moment and the line load, r, over the length of the element. The relationship is expressed in Eq.
(B.82).

M = µ r l2 (B.82)

By inserting the highest end moment of MEd = 309.89 kNm, r = 10.44 kN/m and l = 20 m, µ is
calculated to be 0.074 ≈ 1

13.48 . For the other end moment of MEd = 286.31 kNm, inserting MEd

= 286.31 kNm, r = 10.44 kN/m and l = 20 m, µ is calculated to be 0.0686 ≈ 1
14.59 . A linear

interpolation is then made between the values found in Figure B.8, namely the kl between the two
µ values, µ = 1

12 and µ = 1
16 for the first case in Figure B.8. The results of m5 for the different

moments can be seen in Table B.11.
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End moments m5

MEd = 309.89 kNm 307.07
MEd = 286.31 kNm 284.67

Table B.11: The results for m5 of different end moments found by linear interpolation.

The worst case will be for m5 = 284.67 as this will give a smaller critical moment, Mcr. This
means that the following calculations will only take m5 = 284.67 into account.

Mcr = 284.67
2.1 ·105 N/mm2 ·69.8 ·106 mm4

(20000 mm)2 ·294.5 mm = 3072.1 ·106 Nmm

The reduction factor, χLT, for lateral torsional buckling can then be calculated by the following
equations, see Eq. (B.83), (B.84) and (B.85).

λ LT =

√
Wpl,y fy

Mcr
=

√
(1628 ·103) mm3 ·235 N/mm2

3072.1 ·106 Nmm
= 0.35 (B.83)

ΦLT = 0.5
(
1+0.34 (0.35−0.4)+0.75 ·0.352)= 0.52 (B.84)

χLT =
1

0.52+
√

0.522− (0.75 ·0.352)
= 1.05 (B.85)

The checks can then be done shown in Eq. (B.86) and (B.87).

χLT ≤ 1.0⇒ NOT OK (B.86)

χLT ≤
1

λ
2
LT

=
1

0.352 = 8.16⇒ OK (B.87)

Since χLT ≥ 1.0, χLT is set equal to 1.

B.3.4.1 Check of Lateral Torsional Buckling

In some cases, lateral torsional buckling effects may be ignored and only cross-sectional checks
will therefore apply. These cases are when:

λ LT ≤ λ LT,0

MEd

Mcr
≤ λ

2
LT,0

For HE320A with its loads applied, the checks can be calculated.

0.35≤ 0.4⇒ OK

309.89 ·106 Nmm
3072.1 ·106 Nmm

= 0.10≤ 0.42 = 0.16⇒ OK

Based on these results, it can be seen that lateral torsional buckling effects may be ignored and
only C-S checks will apply.

In addition to the previous checks, another check of the buckling resistance must be done. It is
stated in European Standard [2005] that “A laterally unrestrained member subjected to major axis
bending should be verified against lateral torsional buckling”. This is done in Eq. (B.88).

MEd

Mb,Rd
≤ 1.0 (B.88)
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The design resistance for bending, Mb,Rd, may be calculated as seen in Eq. (B.89).

Mb,Rd = χLT Wpl
fy

γM1
= 1.0 ·1628 ·103 mm3 235 N/mm2

1.2
= 318.82 ·106 Nmm (B.89)

MEd

Mb,Rd
=

309.89 ·106 Nmm
318.82 ·106 Nmm

= 0.97≤ 1.0⇒ OK

B.3.5 Interaction Factors

To calculate the interaction factors for element 2 , the moment diagram in the middle of Figure
B.6 is used. The αs factor can be calculated based on the moments illustrated in Figure B.9.

309.89 kNm286.31 kNm

223.93 kNm

z

x

y

Figure B.9: Illustration of the moments of the reference frame.

The αs value is calculated in Eq. (B.90).

αs =
Ms

Mh
=

223.93 kNm
−309.89 kNm

=−0.72 (B.90)

Ms is the moment in the middle of element 2 , and Mh is the highest moment occurring on element
2 . The result of αs means that −1 ≤ αs ≤ 0. The reduction factor of the moment diagram, ψ ,

can then be calculated as shown in Eq. (B.91).

ψ =
−286.31 kNm
−309.89 kNm

= 0.92 (B.91)

As ψ has the value of 0.92, the following equation, Eq. (B.92), should be used to calculate Cmy,
as Cmz will be zero due to no moment about the z-axis.

0.1−0.8 ·αs ≥ 0.4 (B.92)

0.1−0.8 · (−0.72) = 0.676≥ 0.4⇒ OK

This means that 0.676 is the value replacing Cmy in the equations of the interaction factors. This
gives the following interaction factors:

kyy = 0.0.791

kyz = 0.0

kzy = 0.475

kzz = 0.0
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B.3.6 Interaction Formulae EC-Verification of Element 2

Element 2 must be verified by the equations shown in Eq. (B.93) and (B.94).

NEd
χy fyAi

γM1

+ kyy
My,Ed +∆My,Ed

χLT
fyWi
γM1

+ kyz
Mz,Ed +∆Mz,Ed

fyWi
γM1

≤ 1 (B.93)

NEd
χz fyAi

γM1

+ kzy
My,Ed +∆My,Ed

χLT
fyWi
γM1

+ kzz
Mz,Ed +∆Mz,Ed

fyWi
γM1

≤ 1 (B.94)

Table B.12 gives a summary of the values calculated for the beam by Interaction Formulae.

Factor Value Unit

NEd 60.56 [kN]
MEd 309.89 [kNm]
Ncr,y 840.31 [kN]
Ncr,z 361.67 [kN]
Mcr 104.22 [kNm]
χy 0.249 [-]
χz 0.11 [-]
χLT 1.0 [-]
kyy 0.791 [-]
kyz 0.0 [-]
kzy 0.475 [-]
kzz 0.0 [-]

Table B.12: The results for element 2 with HE320A for Interaction Formulae.

With every value inserted into the equation, the utilization ratio for each part of the expressions
for Interaction Formulae is calculated, see Eq. (B.95) and (B.96).

0.1057+0.7692+0 = 0.87≤ 1⇒ OK (B.95)

0.2381+0.4615+0 = 0.70≤ 1⇒ OK (B.96)

As seen from the results of Interaction Formulae for element 2 , the profile has a utilization ratio
less than 100%, which means that the profile HE320A may be used for this element.
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C Finite Element Method (FEM)

The following appendix is based on Cook and et al. [2002] and describes the Finite Element
Method (FEM) which is a commonly used numerical method for analysing complicated
engineering problems. The method is used to solve partial differential equations approximately.
The structure, which is to be analysed, is divided into smaller parts, so-called finite elements.
Approximate solutions to the differential equations describing each of the finite elements are
determined and combined in relation to each other. The behaviour of each finite element is
described by simple polynomial terms, while the actual behaviour of the entire structure is more
complicated. The error made due to the approximation can be reduced by increasing the number
of elements and thereby making a finer mesh, which is a particular arrangement of the elements.

The model on which the Finite Element Method (FEM) is applied to is an approximation too since
it is not the actual physical model that is analysed. Assumptions concerning the geometry, material
properties, loads and boundary conditions are made, and these are based on the features which are
important and less important in obtaining the desired outcomes.

The advantages of using the Finite Element Method (FEM) compared to most other numerical
analysis methods concerning versatility and physical appeal, are that there is no geometrical
restriction which means that the shape of the structure analysed can be arbitrary. Nor the boundary
conditions, the loading or the material properties are restricted, which makes it possible to support
any part of the structure while applying distributed or concentrated forces to any other part and to
change the material properties of each element and even within each element.

The analysis performed by the Finite Element Method (FEM) contains the following three steps:

• Preprocessing
• Simulation
• Postprocessing

The Preprocessing step deals with the input of the data for model. The input data describes the
geometry, material properties, loads and boundary conditions of the structure. The software used
for the Finite Element Method (FEM) generates the mesh of the model automatically, but during
the Preprocessing step, the type and density of the finite elements must be chosen to fit the model
best in all regions of it.

The actual analysis of the model is conducted at the step named Simulation. During this step,
matrices describing the behaviour of each element are automatically generated by the Finite
Element (FE) software. These matrices are combined to one matrix equation which describes
the entire model. The time consumption for a computer performing the calculations during the
Simulation step can vary from few seconds to weeks depending on how detailed the model is done.

In the Postprocessing step, the results of the analysis done by the Finite Element Method (FEM)
are listed or shown graphically. It must be chosen in the software what results to list or display.
Normally, the deformed shape of the model with exaggerated deformations is displayed and
sometimes, the development of the deformations is animated. In addition, the stresses in various
planes can be shown.

It is individually from one finite element (FE) software to another how these three steps are
performed.
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D Abaqus

Abaqus is a software package consisting of powerful engineering simulation programs developed
by SIMULIA. These programs are based on the Finite Element Method (FEM), and they are able
to do relavtively simple linear analyses to more challenging non-linear simulations. Abaqus has a
comprehensive database of elements and material models which can model most geometries and
simulate the behaviour of the most typical types of material used in engineering. The package
of programs is designed as a tool to analyse not only structural problems but also engineering
problems related to fluid dynamics, soil mechanics, thermal management, etc..

Generally, Abaqus is composed of three different products to do an analysis - a Standard, an
Explicit and a CFD analysis. It is possible to extend the Standard and the Explicit analyses
by different add-on analyses. The Standard analysis is applied in this project report, and the
Abaqus/CAE (Complete Abaqus Environment) is used to setup and mesh a model. Using the
Abaqus/CAE, the structure can be assigned physical and material properties together with loads
and boundary conditions. It is possible to do the meshing of the model and a verification of
the results in Abaqus/CAE by powerful options which are embedded in the software. When the
analysis in Abaqus/CAE is accomplished, the analysed jobs can be submitted, monitored and
controlled by the software, and an interpretation of the results can afterwards be shown in the
associated Visualization module [SIMULIA, 2012].
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E Imperfections of a Frame

Imperfections of a frame are described in Eurocode 3 [European Standard, 2005], and where
relevant, these must be taken into account in the modelling of a frame. It can be done by either
initially modelling the frame out of plumb or simpler, by using a system of equivalent horizontal
forces (EHF).

As stated in Eurocode 3 [European Standard, 2005], “frames sensitive to buckling in a sway mode
the effect of imperfections should be allowed for in frame analysis by means of an equivalent
imperfection in the form of an initial sway imperfection and individual bow imperfection of
members”. The global initial sway imperfections are calculated according to Eq. (E.1) where
the the initial imperfection, φ , is calculated.

φ = φ0 αh αm (E.1)

φ0 Basic value: φ0 =
1

200 [-]
αh Reduction factor for height h applicable to columns: αh =

2√
h

but 2
3 ≤ αh ≤ 1.0 [-]

h Height of the structure [m]

αm Reduction factor for the number of columns in a row: αm =
√

0.5
(
1+ 1

m

)
[-]

m Number of columns in a row - for a frame the number of columns in a single frame [-]

The physical interpretation of the initial imperfection, φ , can be shown as an inclination from
vertical in Figure E.1.

Figure E.1: Equivalent sway imperfections [European Standard, 2006].

The height of the structure, h, and the number of columns in a row, m, are for a single span frame
equal to the height of the column and two columns, respectively.

The relative initial local bow imperfections is determined by Eq. (E.2).
e0

L
(E.2)

e0 Maximum amplitude of a member imperfection [mm]
L Length of the member [mm]

According to Eurocode 3 [European Standard, 2005], recommended values for Eq. (E.2) is given
in Table E.1 where the values recommended are based on buckling curves and wither the analysis
is elastic or plastic.
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Buckling curve Elastic analysis Plastic analysis
acc. to Table 6.1 e0 / L e0 / L

a0 1/350 1/300
a 1/300 1/250
b 1/250 1/200
c 1/200 1/150
d 1/150 1/100

Table E.1: Design values of initial local bow imperfection e0 / L

When implementing imperfections into the calculation, Eurocode 3 [European Standard, 2005]
gives an option that is stated as the following. “The effects of initial sway imperfection and local
bow imperfections may be replaced by systems of EHF, introduced for each column”. The EHF
for both initial sway and local bow imperfections are illustrated in Figure E.2.

Figure E.2: Replacement of initial imperfections by equivalent horizontal forces [European Standard,
2006].

In this project, the EHF is applied to the reference frame where the following values of the global
initial sway imperfections and initial local bow imperfections is displayed in Table E.2.

φ Buckling curve e0 / L L e0

0.0038537 b 1 / 200 5000 mm 25 mm

Table E.2: Values of imperfections applied to the reference frame.
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F Bifurcation Buckling

The following appendix is based on Cook and et al. [2002]. Buckling is defined as the condition
where the loads are sufficiently large to cause a loss of the stability of an equilibrium configuration
without fracture or separation of the material. The buckling type called bifurcation buckling
originates from the fundamental column theory where an axial compressive load with the size
of the critical load, Pcr, results in that the straight pre-buckling configuration stops to be a stable
state of equilibrium. Buckling without bifurcation can also occur which happens at a limit point
where no alternative and infinitesimally close state of equilibrium is available. Buckling expressed
by the limit point is non-linear whereas buckling with bifurcation is linear.

F.1 Linear Bifurcation Buckling

The following section contains a description of the analysis commonly performed on straight
columns. Firstly, an arbitrary reference level of external load, {R}ref, is applied to the structure,
and a standard linear analysis determining the element stresses is performed. The stiffness matrix
for stresses related to the load, {R}ref, is consequently called {Kσ}ref. For some other load level,
a scalar multiplier, λ , is applied as shown in Eq. (F.1).

[Kσ ] = λ [Kσ ]ref when {R}= λ {R}ref (F.1)

{R}ref Arbitrary reference level of external load [-]
{R} Multiplication of all loads Ri [-]

[Kσ ]ref Stress stiffness matrix [-]
[Kσ ] Multiplication of all stress stiffnesses Kσ ,i [-]

λ Scalar multiplier [-]

The two expressions in Eq. (F.1) show that a multiplication between a scalar multiplier, λ , and all
loads, Ri, contained in {R} also applies for a multiplication between the same scalar multiplier,
λ , and the intensity of the stress field, and this does not change the stress distribution.

The stiffness matrix, [K], is not changing by loading since the problem is assumed to be linear.
Buckling displacements, {δ D}, relative to displacements of the reference configuration, {D}ref,
are applied to the structure. The equation given in Eq. (F.2) are valid since external loads are not
changing at a point of bifurcation.

([K]+λcr [Kσ ]ref) {D}ref = λcr {R}ref

([K]+λcr [Kσ ]ref) {Dref +δ D}= λcr {R}ref

(F.2)

The two equations in Eq. (F.2) are subtracted from each other which results in the eigenvalue
problem shown in Eq. (F.3).

([K]+λcr [Kσ ]ref) {δ D}= {0} (F.3)

The lowest eigenvalue, λcr, is the smallest level of external load that results in bifurcation, and
therefore, the expression in Eq. (F.4) is valid.

{R}cr = λcr {R}ref (F.4)

The buckling mode is identified by the eigenvector, {δ D}, which is related to the lowest
eigenvalue, λcr. The eigenvector, {δ D}, and thus also the buckling mode can be identified in
Abaqus/CAE.
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F.2 Non-Linear Buckling

Non-linear buckling is present when the prebuckling rotations are significant. This buckling
problem can be solved by e.g. the Newton-Raphson method. A formation of a tangent-stiffness
matrix, [Kt], is thus possible, and this takes into account the effect of changing geometry and of
stress stiffening. The calculation procedure is to solve Eq. (F.5) by using load increments, {∆R},
where correction terms for the load and updates of the tangent-stiffness matrix, [Kt], for each
incremental step are incorporated.

[Kt] {∆D}= {∆R} (F.5)

The displacement increments, {∆D}, become very large when approaching a limit point. The
tangent-stiffness matrix, [Kt], will be singular at either a bifurcation or a limit point.

In general, non-linear calculations are composed of many small load steps, and the non-linear
load-displacement curve is approximated by use of the Element Method as shown in Figure F.1.
In each increment, a linear solution is established, and all these linear solutions give in total the
approximated load-displacement curve. Therefore, the smaller increments, the closer to the real
load-displacement curve.

Load

Displacement

Load

Displacement

Real load-displacement curve Element Method approximation

a) b)

Figure F.1: Load-displacement curve - a) Real load-displacement curve; b) Element Method approxima-
tion

When bifurcation buckling is investigated, the calculations can be done in one single step because
the load-displacement curve is linear. This step is the solution of the eigenvalue problem shown
in Eq. (F.3).

The result is the instability load in a “perfect” world, cf. the Euler column, i.e. it is an upper bound
solution for the bearing capacity. This value is included in several expressions in Eurocode, e.g.
Ncr in Section 6.3.1 and Mcr in Section 6.3.2 in Eurocode 3 [European Standard, 2006]. It gives
realistic results if displacements are small and linear up to the instability/buckling load.

If an Euler column is investigated for instability and the geometry and loads are symmetrical, no
instability will occur in the calculations. Either the geometry or the loads have to be asymmetrical
before calculations of instability can be performed. If the situation is that both the geometry and
the loads are symmetrical, an asymmetrical contribution has to introduced and thereby, a forced
instability. This can be done by introducing either a small asymmetrical load, a small eccentricity
on the load or a small geometrical imperfection as shown in Figure F.2.
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Figure F.2: Forced instability of Euler column.

It is of great importance to apply the smallest possible asymmetrical contribution to give the most
realistic results. This is shown in Figure F.3. Here, the smallest eccentricity gives the most realistic
results.

Increasing eccentricity, e

Cut off (because of small deflections assumption)

δ

P

π
2 
EI

L
2

Figure F.3: P-δ diagram with eccentricity effect.
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G Worked Example - General

Method

This appendix contains a worked example by the General Method [European Standard, 2005] for
the reference frame presented in Chapter 2. The minimum load amplifier, αult,k, related to the
in-plane behaviour of the frame is determined by the beam element model done in Abaqus/CAE.
The result of this is further used in a combination with the other minimum load amplifier, αcr,op,
related to the out-of-plane behaviour of the frame determined by an eigenvalue problem by the
shell element model in Abaqus/CAE. Finally, the utilization ratio, UR, is determined by the inverse
of the General Method.

G.1 Determination of the minimum load amplifier, αult,k

The beam element model is used to determine the minimum load amplifier, αult,k, for the in-plane
behaviour of the reference frame. This is done by determining the relationship between the failure
load, qmax, and the load actually applied, qactual, to the reference frame as shown in Eq. (G.1).

αult,k =
qmax

qactual
(G.1)

The load-displacement curve is then plotted as seen in Figure G.1 to determine the failure load,
qmax, and the load actually applied, qactual.
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Figure G.1: Load-displacement curve for the beam element model.

The minimum load amplifier, αult,k, is then determined in Eq. (G.2).

αult,k,beam =
10.84 N/mm
10.44 N/mm

(G.2)

m
αult,k,beam = 1.0378 (G.3)
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The result of the determination of the minimum load amplifier, αult,k, for the in-plane behaviour
of the reference frame is shown in Table G.1.

Model used to determine αult,k αult,k [-]

Beam Element Model 1.0378

Table G.1: Minimum load amplifier, αult,k, for in-plane behaviour determined by the beam element model.

G.2 Determination of the minimum load amplifier, αcr,op

This section describes how to determine the minimum load amplifier, αcr,op, related to the out-of-
plane behaviour of the reference frame. This is done by solving the eigenvalue problem described
in Appendix F and shown in Eq. (G.4) for the lowest eigenvalue, λcr, giving an out-of-plane
buckling mode in the three-dimensional shell element model in Abaqus/CAE. The eigenvalue
represents the minimum load amplifier, αcr,op, since the expression in Eq. (G.5) is valid and
thereby, λcr = αcr,op.

([K]+λcr [Kσ ]ref) {δ D}= {0} (G.4)

αcr,op =
qmax

qactual
=

λcr qactual

qactual
(G.5)

[K] Stiffness matrix [-]
λcr Eigenvalue - smallest level of external load for which there is bifurcation [-]

[Kσ ]ref Stiffness matrix for stresses associated with load {R}ref [-]
{δ D} Eigenvector associated with λcr is the buckling mode (shown in Abaqus) [-]

Abaqus/CAE is able to solve the eigenvalue problem in Eq. (G.4) and thereby show the lowest
eigenvalue, λcr, giving an out-of-plane buckling mode. The lowest eigenvalue, λcr, is 2.8183 and
thus is the minimum load amplifier, αcr,op = 2.8183 as well. It is the first buckling mode which
gives this eigenvalue, and this buckling mode is shown in Figure G.2.
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Figure G.2: First buckling mode shown in 3D.

G.3 Determination of the Utilization Ratio, UR

The utilization ratio, UR, is determined by the inverse of the result of the General Method as
shown in Eq. (G.6).

UR =
1

χop αult,k
γM1

(G.6)

Firstly, the global non-dimensional slenderness, λ op, is determined by Eq. (G.7) where the two
minimum load amplifiers, αult,k and αcr,op, are used as input parameters.

λ op =

√
αult,k

αcr,op
(G.7)

⇓

λ op =

√
1.0378
2.8183

(G.8)

m
λ op = 0.6068 (G.9)

αult,k Minimum load amplifier for in-plane behaviour, αult,k = 1.0378 [-]
αcr,op Minimum load amplifier for out-of-plane behaviour, αcr,op = 2.8183 [-]

Next, the value, ΦLT, to determine the reduction factor, χLT, for lateral torsional buckling is
determined by Eq. (G.10).

ΦLT = 0.5
[
1+αLT

(
λ op−λ LT,0

)
+β λ

2
op

]
(G.10)

⇓
ΦLT = 0.5

[
1+0.49 · (0.6068−0.4)+0.75 · 0.60682] (G.11)

m
ΦLT = 0.6888 (G.12)
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αLT
Imperfection factor for lateral torsional buckling,

[-]
αLT = 0.49 (according to buckling curve c)

λ LT,0
Plateau length of the lateral torsional buckling curves

[-]
for rolled sections, λ LT,0 = 0.4 (Maximum value)

β
Correction factor for the lateral torsional buckling cur-

[-]
ves for rolled sections, β = 0.75 (Minimum value)

The value of ΦLT is used to determine the reduction factor, χLT, for lateral torsional buckling in
Eq. (G.13).

χLT =
1

ΦLT +

√
Φ2

LT−β λ
2
op

(G.13)

⇓

χLT =
1

0.6888+
√

0.68882−0.75 · 0.60682
(G.14)

m
χLT = 0.8818 (G.15)

Hereafter, a value, Φ, to determine the reduction factor, χ , for lateral buckling is calculated by Eq.
(G.16).

Φ = 0.5
[
1+α

(
λ op−0.2

)
+λ

2
op

]
(G.16)

⇓
Φ = 0.5

[
1+0.34 · (0.6068−0.2)+0.60682] (G.17)

m
Φ = 0.7533 (G.18)

α Imperfection factor, α = 0.34 (according to buckling curve b) [-]

The result of Φ is used to determine the reduction factor, χ , for the relevant buckling mode in Eq.
(G.19).

χ =
1

Φ+

√
Φ2−λ

2
op

(G.19)

⇓

χ =
1

0.7533+
√

0.75332−0.60682
(G.20)

m
χ = 0.8336 (G.21)

The reduction factor, χop, for the non-dimensional slenderness, λ op, can be determined by the
minimum value of the reduction factor, χLT, for lateral torsional buckling and the reduction factor,
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χ , for lateral buckling as shown in Eq. (G.22).

χop = min

{
χLT for lateral torsional buckling

χ for lateral buckling
(G.22)

⇓

χop = min

{
0.8818 for lateral torsional buckling

0.8336 for lateral buckling
(G.23)

m
χop = 0.8336 (G.24)

The General Method is used to determine a value which has to be larger than one as seen in Eq.
(G.25).

χop αult,k

γM1
≥ 1.0 (G.25)

⇓
0.8336 · 1.0378

1.20
≥ 1.0 (G.26)

m
0.7210≥ 1.0 (G.27)

The utilization ratio, UR, is determined by Eq. (G.28).

UR =
1

χop αult,k
γM1

(G.28)

⇓

UR =
1

0.8336 1.0378
1.20

(G.29)

m
UR = 1.3870 (G.30)

The utilization ratio, UR, is above 100% which means that the reference frame will be failing
when investigating the frame with the General Method.
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