
Student report from
Aalborg University

Department of Computer Science
Selma Lagerløfs Vej 300
DK-9220 Aalborg Ø
Telephone (+45) 9940 9940
http://www.cs.aau.dk

Title:
Evolving Strategies for a Real-
Time Strategy Games Using Ge-
netic Algorithms

Project Theme:
Machine Learning

Project period:
Spring Semester 2013,
February 1st to
June 7 th

Project group:
SW1013F12

Authors:

Steffan Bo Pallesen

Nikolaj Dam Larsen

Mikkel Graarup Jensen

Supervisor:
Nicolaj Søndberg-Jeppesen

Pages:
88

Abstract:

The demand for challenging AI in commer-

cial Real-Time Strategy games is increasing

by each generation. This project explores

how genetic algorithms might be used to

evolve more challenging AIs, by utilizing the

power of natural selection. The popular strat-

egy game Starcraft is used a testing platform

throughout the project, due to its maturity

as a research platform. Two approaches to

evolving a Starcraft AI is examined. One is

to use a traditional genetic algorithm, and

the other is to use a Estimation of Distribu-

tion Genetic Algorithm. However, only the

traditional genetic algorithm is implemented

and tested. The results show that it is in

fact possible to evolve an AI that can suc-

cessfully beat an opponent playing the same

static strategy. More research is needed in or-

der to determine if genetic algorithms can be

used to evolve complete commercial grade

AIs.

The content of this report is freely available, but publication is only permitted with explicit permission from the

authors.

PREFACE

This report is a master thesis made for the Department of Computer Science at Aalborg
University in spring 2013.

The topic of this project is Adaptive Artificial Intelligence (AI), specifically the develop-
ment of an AI, using a genetic algorithm evolving strategies for the Real-Time Strategy (RTS)
game Starcraft.

This project is divided into five parts:

• Introduction
Introduces the project statement and the focus of this thesis, i.e. our hypothesis and
how it is validated. Then moves on to describe the Starcraft domain and at last inves-
tigates related work - including our own pre-specialization project.

• Evolutionary Algorithms
Describes the theory of genetic algorithms, which forms the basis for the later chapter
about developing our AI using genetic algorithm. This part also presents the topic of
Estimation of Distribution Algorithms (EDAs) which is a possibly better alternative to
a standard genetic algorithm.

• Evolving Starcraft Strategies
Presents our implementation of a genetic algorithm, such as how to encode a chromo-
some representing a Starcraft strategy. This part also introduces the development of
our AI bot called Cromartie, which is able to play Starcraft and both use static strategies
and strategies represented by chromosomes.

• Results and Discussion
Describes the results gathered from testing our hypothesis using the genetic algorithm
version of Cromartie and discusses the perspective of our results and how they may be
used in practice.

• Conclusion and Reflection
Concludes the work done it this thesis and reflects on what topics might be interesting
for future work.

After these parts come the appendix and the bibliography.

3

CONTENTS

I Introduction 7

1 Introduction 9
1.1 Problem Statement . 10

2 Domain: Starcraft 13
2.1 Mechanics of Starcraft . 13
2.2 Our use of Starcraft . 15
2.3 Development Platform . 15

3 Related Work 16
3.1 Pre-specialization project . 16
3.2 Automatically Acquiring Domain Knowledge . 16
3.3 Existing bots . 17

II Evolutionary Algorithms 19

4 Genetic Algorithms 21
4.1 Selection Mechanisms . 22
4.2 Genetic Operators . 24
4.3 Choice of Population Size . 27

5 Estimation of Distribution Algorithms 28
5.1 Motivation . 28
5.2 General EDA . 28
5.3 Onemax Problem . 29
5.4 Trap Problem . 30
5.5 Probabilistic Linkage Learning . 33

III Evolving Starcraft Strategies 35

6 Genetic Algorithm for Starcraft 37
6.1 Chromosome Encoding . 37
6.2 Selection Mechanism . 41

5

Contents

6.3 Fitness Function . 41
6.4 Genetic Operators . 42
6.5 Search space approximation . 43

7 Cromartie implementation 45
7.1 Tasks of Cromartie . 46
7.2 Skynet . 47
7.3 Modifications and Additions . 50
7.4 Genetic Algorithm Cromartie . 54
7.5 Static Strategy Cromartie . 55

IV Results and Discussion 59

8 Results 61
8.1 Test Setup . 61
8.2 Test Plan . 63
8.3 Test Results . 64
8.4 Conclusion . 67

9 Perspective 69
9.1 Our vision with Adaptive AI . 69
9.2 Using our results . 70

V Conclusion and Reflection 71

10 Conclusion 73

11 Future Work 75
11.1 More genetic algorithm hypotheses . 75
11.2 Improve the genetic algorithm by using EDA . 77
11.3 Player Modelling and Adaptive AI . 77

VI Appendix 83
.1 Trap data 1 . 85
.2 Trap data 2 . 85
.3 Search space . 86
.4 Strong chromosomes data . 87

6

Part I

Introduction

CHAPTER 1

INTRODUCTION

Today, strategy games are an integrated part of human culture. In the western world, Chess
has for hundreds of years been one of the most popular strategy game. Likewise, the Chinese
game Go plays a similar role in many Asian cultures. The two games share properties such as
being turn-based and being played by two players. The main differences between the games
are the strategic goals. In Chess, a player must defeat his opponent through attrition1, until
he is no longer capable of protecting his king. In order to win in Go, a player must conquer
more territory than his opponent.

Attrition from Chess, and control of territory from Go is the basis for many modern strat-
egy games. These two strategic elements are often combined, requiring even more complex
strategic thinking from the players. A new strategy concept found only in computer strategy
games, is the idea of real-time gameplay. Instead of having each player wait until it becomes
his turn, like in Chess or Go, Real-Time Strategy (RTS) games allow both players to make de-
cisions and perform actions simultaneously. Additionally, the game-time keeps progressing,
forcing the players to make quick decisions.

Starcraft is one of the most popular RTS games ever made. It includes all three strategic
elements from Chess and Go, and being a RTS, is played in real-time. In fall 2012 our group
wrote a pre-specialization project[1], about performing data mining on Starcraft replays in
order to find common strategies in the set of mined replays. This project provided the in-
sight into using Starcraft as a research platform. For the duration of this thesis, as with the
pre-specialization project, Starcraft Broodwar is used as our domain/testing platform. The
Starcraft modding community have developed open-source tools for injecting code into the
game at runtime and an API for developing AI agents/bots for the game. More on the Starcraft
domain is found in Chapter 2.

The focus of this project is on adaptive AI, which is Artificial Intelligence that is able to adapt
to its current environment or to the player(s). Adaptive AI is essentially applying machine
learning techniques to improve an AI, for example by letting the AI learn from mistakes
(reinforcement learning) or adapt to new previously unknown tactics. Much of the academic
literature about this topic revolves around Pieter Spronck who also wrote the book Adaptive

1Attrition means gradually reducing the enemy forces

9

Chapter 1. Introduction

Game AI[2]. This book, as well as the article Automatically Acquiring Domain Knowledge[3],
inspired us to define the problem statement presented in Section 1.1.

The report starts out by introducing Starcraft and related work followed by a detailed descrip-
tion of the theory, development, tests and results from implementing an adaptive AI using
Genetic Algorithms (GAs). This adaptive AI is used to validate the correctness of Hypothe-
sis 1 set up in the problem statement. First the theoretical background on GAs and similar
techniques are established, as this is the base of our own implementation of a Genetic Al-
gorithm (GA). The standard GA is shown to be difficult to configure, as the configuration
influences the correctness and convergence rate of the solution. EDAs are introduced as a
possibly better alternative to the standard GA, although trying this technique is left for future
work.

To validate the hypothesis described in Section 1.1 the test setup required us to implement
two AI agents/bots able to play Starcraft. One of the bots is an AI enhanced with our GA and
the other is simply able to play a static strategy given as input at the beginning of a game.

When testing our genetic algorithm AI, we tested using four different configurations, different
on the population size and the configuration of the selection mechanism (see Chapter 4).
Eventually our results showed that at least two different configurations of our GA was able
to evolve 4 winning chromosomes against an AI with a static strategy. It was also found that
a population size of 100 appears to outperform a population size of 50.

1.1 Problem Statement

The goal of this master thesis project is to investigate how adaptive AI can be used to enhance
gaming experience, specifically in RTS games. One of the challenges of Artificial Intelligence
is to always be able to beat the player or play at the same level as the player, without using
obvious cheats.

In this project this challenge is addressed, as we attempt to find answers to a hypothesis
regarding adaptive AI. Four hypotheses were initially considered related to how adaptive AI
can be applied to Starcraft. The first of these hypotheses were selected for further investi-
gation, while the rest was saved for future work (see Chapter 11). Our goal is to setup tests
and an environment, and use it to validate the accuracy of this first hypothesis:

Hypothesis 1. It is possible to use a Genetic Algorithm (GA) to evolve a Starcraft strategy that
can consistently win against a single other strategy.

As a Genetic Algorithm will evolve a population of strategies (described in Chapter 4), the
term winning consistently is defined as at least one chromosome in the population must win
50% of the time over 100 games.

10

1.1. Problem Statement

1.1.1 Setting up the test

In order to test the hypothesis two Starcraft AIs are developed; one AI that incorporates the
Genetic Algorithm and one AI to play a single strategy given as a parameter to it before the
game begins. The Genetic Algorithm AI will use the strategy defined by a given chromosome,
while the AI to play a single strategy will take as input some external strategy. gathered
from an expert source[4]. The internal workings on the AI agents will primarily differ on
the components related to managing strategy, while tasks such as gathering resources and
micro-management of units is handled by exactly the same components for each AI. The
implementation details of each of these AI agents is described in Chapter 7.

The hypothesis is tested by repeatedly making the Genetic Algorithm AI play against a single
AI, using the exact same strategy, on the same map, in each game instance. The Genetic
Algorithm AI will use a different chromosome for each game instance, and thus a different
strategy. The state of the Genetic Algorithm AI will be checked regularly, in order to monitor
whether the win-rate or the average fitness of the population increases - and of course to
validate whether a chromosome with at least 50% win-rate have been evolved.

There is no limit on the number of repeated games played when testing this hypothesis.
This is because the GA does not provide a guarantee on the time taken to converge towards
a winning strategy. This means that it is hard to tell whether the test is a failure. Instead the
information repeatedly reported regarding the state of the GA, is used to monitor whether
the GA converges. If the GA does not converge, the hypothesis could be deemed incorrect, or
alternatively the configuration of the GA might have to be adjusted and tested once again.
The subproblems which is described next, considers this.

1.1.2 Subproblems of the hypothesis

The Hypothesis 1 established for our problem statement raises additional questions involv-
ing the configuration of the tests and the testing environment. These questions are described
here as subproblems of our hypothesis, and the results of testing their influence is summa-
rized in the next section and described in Chapter 8.

First subproblem

In Section 4.3 it is stated that differently sized populations, impacts how near-optimal a
solution can be evolved, as well as how fast it converges. Wewant to test a couple of different
population sizes and see their influence on how our GA converges.

11

Chapter 1. Introduction

This subproblem is tested in the same manner as the overall hypothesis, but using different
configurations of the GA to compare the results.

12

CHAPTER 2

DOMAIN: STARCRAFT

This chapter describes the RTS game Starcraft, which is the problem domain for this project.
A more detailed description of Starcraft can be found in our pre-specialization report from
fall 2012.

2.1 Mechanics of Starcraft

Starcraft is an RTS game in which 2-8 players play against each other. The game is won
by the player that destroys all his enemies forces or if all his enemies give up by leaving
the game. Players can play as three different races: Protoss, Zerg and Terran. The chosen
race will dictate which buildings, combat units and technology upgrades are available to the
player, as each race is unique. In the beginning of a Starcraft game, only a few buildings
and combat units are available to the player. More units and buildings can be unlocked by
constructing technology buildings. Figure 2.1 illustrates which buildings unlocks which, for
the protoss race [1].

Because a Protoss player always starts with the Nexus building, the player only has five
different buildings available for construction at the start of the game (Pylon, Nexus, Assim-
ilator, Gateway and Forge). If the player then decides to build the Gateway, then once the
construction is finished, the Cybernetics Core is available for construction.

Another important mechanic of Starcraft is the concept of supply cap (short for capacity). The
supply cap limits the number of units a player can train, as each unit consumes, or reserves,
an amount of supply, e.g. the Protoss Zealot consumes 2 supplies. Once the unit is destroyed
the consumed supply is released and may be reused. At the beginning of a game the supply
cap is only 8, but can be increased by constructing the pylon building. Units usually require
1 or 2 supplies, and the maximum value for the supply cap is 200.

There are two resources in the game that players must collect in order to train units, construct
buildings and research upgrades. Minerals and gas are scattered all over the map for players
to find and mine. Worker units must be trained to collect these resources, and assimilators
must be constructed on top of gas resources in order to enable extraction.

13

Chapter 2. Domain: Starcraft

Figure 2.1: This figure illustrates the technological dependencies for the race Protoss. Each
square represents a building and an arrow represents a technological dependency. For
instance, the Cybernetics Core building requires that the Stargate building has been

constructed.

When a Starcraft game is started, a map has to be chosen. A map is a 2-dimensional grid
of plains, hills, rivers and other objects, with resources scattered around for the players to
exploit. The various features of the terrain can be used when micro-managing combat units.
During a Starcraft game, only a fraction of the map will be visible to the player. This is

14

2.2. Our use of Starcraft

because of the game concept called Fog of War. Fog of War hides areas of the map that
cannot be seen by the players units. Each unit has a visibility radius that allows it to see
parts of the map that is close to it. Because intelligence is highly important in strategy
games, scouting tactics are usually employed to lift important parts of the Fog of War.

Buildings can be divided into three categories: Production buildings, research buildings and
defense buildings. Production buildings can be used to train combat units, while research
buildings can be used to research technology upgrades. Defense buildings serve as static
defense structures that can damage enemy units. [1]

2.2 Our use of Starcraft

We use Starcraft as the test-bed for our hypothesis as it is highly complex and a real com-
mercially successful game, in contrast to "‘research"’ games such as Wargus[5], as we wanted
the domain to reflect the use of adaptive AI in practice. Our pre-specialization project, was
focused on one of the races of Starcraft - the Protoss - the same is done in this thesis. This
decision is based on our existing knowledge of the race and common tactics, as well as the
basis for our AI agent/bot, Skynet which is described later in Section 7.2, being primarily a
Protoss bot.

2.3 Development Platform

In the introduction in Chapter 1, it is stated that Starcraft is a common domain for use as a
research platform. This is in part because of a large community of modders, that have created
open-source tools and APIs that enable anyone to inject code - such as an AI - into Starcraft.
The most used API is called BWAPI[6] (BroodWar Application Programming Interface), which
is used to development AI agents/bots that can be injected by a tool called Chaosloader
(bundled with BWAPI) into an instance of a Starcraft game. The BWAPI enables any program
or AI using it, to take any action in the game available to the human player, e.g. moving
units, constructing buildings, researching, attacking, etc. BWAPI is much too large to cover
here, but a full documentation can be found at the BWAPI Manual [7].

15

CHAPTER 3

RELATED WORK

Starcraft has previously been used as a platform for testing a range of different machine
intelligence and machine learning hypotheses. GA have also previously been applied to RTS
games. This chapter presents a few topics of related work of interest to this thesis as well as
a list of popular Starcraft bots and the techniques they use.

3.1 Pre-specialization project

This project is a continuation of our pre-specialization project created in fall 2012. The pre-
specialization project [1] explored the use of unsupervised learning to label Starcraft replays.
The goal was to identify Starcraft strategies from these replays and then create a bot that
could execute learned strategies. K-means clustering was used for the purpose of learning
strategies from these replays, but unfortunately the results were not promising. We were
able to identify only two overall strategies, but were unable to identify more finely grained
strategies. The reason for this was either that Starcraft was too complex for the clustering
algorithm, that the feature selection was less than ideal or that the choice of clustering
algorithm was poor for the problem domain. Because of these disappointing results, we
decided to not explore strategy identification further in this thesis.

3.2 Automatically Acquiring Domain Knowledge

Automatically Acquiring Domain Knowledge For Adaptive Game AI Using Evolutionary Learn-
ing is an article that describes research in the field of adaptive AI. Specifically, the article
aims at developing an adaptive AI for the RTS game Wargus[5] by combining Genetic Algo-
rithms (GAs) with dynamic scripting. Dynamic scripting [8] is a simple but effective way of
creating an adaptive AI. The most important part of dynamic scripting is the rule base. The
rule base is a collection of condition based rules each with probability weight assigned to it.
When an AI for a game agent is needed, it can be created by sampling the rule base. A rule
with a high probability weight is more likely to be included in the script, while rules with

16

3.3. Existing bots

low probability weights are less likely to be included. When an agent with a dynamically
generated AI script has been engaged in combat with the human player, the rule base is
updated. Rules that worked well against the enemy will receive a higher probability weight,
while rules that did not work well, will receive a lower probability weight. Over time the
scripts generated from the rule base will be adapted to work well against the human player,
since successful rules will be more likely to be included in the dynamically generated script
[2]. The main contribution of the paper is the use of a GA to evolve a rule base, which is
normally created manually using domain knowledge. This approach managed to evolve rule
bases that are capable of defeating opponents that uses a specific strategy. The practical ap-
plications of using a GA as a means for evolving a competent rule base, is that AI developers
can automate some parts of the process of developing AI. This article has been one of the
inspirations to this writing thesis.

3.3 Existing bots

The community revolving around BWAPI (See Section 2.3) have created a large number of
bots with different goals and uses. This section will list some of the most well-known bots
- a subset of those regularly competing in the annual Starcraft AI Competition [9] and the
techniques they use. The purpose of this section is to both present some of the bots inspiring
the creation of our GA bot, but also to credit the ingenuity of some of the bots competing.

Skynet is one of the most important AI projects to this thesis as it is used as the basis for
common tasks required from our GA bot (more in 7). Skynet is mostly interesting for
its complexity, size and the stability. The bot is highly scripted and does not make use
of interesting AI or machine learning techniques. [10]

UAlbertaBot is another interesting bot developed by the University of Alberta hosting the
competition. The bot uses both dynamic AI systems and scripted rule-based decision
making for its different components. It includes a heuristic search based build order
planning system, that dynamically tries to find near-optimal build orders as well as
a real-time combat simulation system, used to determine whether it is feasible for a
group of units to engage in combat. It utilizes machine learning to select strategies for
opponents, based on previous matches. [11]

NOVA is a bot playing the Terran race that uses various AI techniques. The NOVA bot is a
multi-agent system that assigns the tasks of micro- andmacromanagement tomultiple
sub-agents. It boasts a long list of interesting techniques, such as: opponent strategy
prediction, potential fields and score board for combat target selection. [12]

SCAIL is an ingenious AI that uses multiple modern AI techniques. An article by the devel-
opers describe the techniques and systems used by the AI to compete the Starcraft AI

17

Chapter 3. Related Work

competition. Some of the sophisticated AI presented in their article and used by the
bot is: particle filtering, online machine learning, drive based motivational systems
and virtual emotions. [13]

18

Part II

Evolutionary Algorithms

CHAPTER 4

GENETIC ALGORITHMS

A genetic algorithm simulates the process of biological evolution in order to produce solu-
tions to an optimization problem. Genetic algorithms are the most popular technique in the
class of algorithms called Evolutionary Algorithms. Other techniques in this class include:
Genetic Programming, in which the evolved solution is in the form of a computer program
and Evolutionary Programming, which is similar to Genetic Programming, but allows for the
numerical parameters (population size etc.) to evolve.

Genetic algorithms have been used to solve multiple optimization problems. For instance,
computer-automated design [14], optimizing solutions for Traveling Salesman Problem (TSP)
[15], and training neural networks [16]. In each of these cases, the genetic algorithm has
been tailored to fit the domain in order to produce good results.

A genetic algorithm works by first randomly creating a set of solutions to the targeted prob-
lem. This set is called the population, and has a fixed size that can vary depending on the
problem domain. Each solution is called a chromosome or an individual. These initial chro-
mosomes are unlikely to be effective solutions to the problem as they are randomly gener-
ated. They will however serve as building blocks for creating better chromosomes. A fitness
function is used to evaluate the quality of a chromosome, and a selection mechanism selects
which chromosomes are allowed to breed. A set of genetic operators are used to spawn child
chromosomes from one or more parents. The newly spawned child chromosomes replace old
chromosomes in the population. In many selection mechanisms, chromosomes with a high
fitness value are chosen for breeding while chromosomes with a low fitness value are de-
stroyed. A genetic algorithm is terminated when some max fitness threshold is reached, or
after an arbitrary number of iterations.

In order to explain how a genetic algorithm may be used to optimize a solution to a problem,
an example is given. Imagine that we want to find the shortest route through all the nodes in
an undirected graph (also known as the TSP). This is not possible with a genetic algorithm,
since there is no way of knowing if the solution produced is the shortest possible. However,
it is possible to optimize a solution to the problem that might be close to the shortest route.
In order to do this a chromosome encoding for a route must be defined. A chromosome could
be a set of state transitions, as seen in Table 4.1.

21

Chapter 4. Genetic Algorithms

A -> C
C -> D
D -> B
B -> E

Table 4.1: This is how a chromosome might be formatted when applying a genetic
algorithm to the TSP.

The fitness function for evaluating the quality of a route could be a function that calculates
the total distance of a route. The shorter the distance, the better the route. With a chromo-
some encoding and a fitness function we can now simulate natural selection to optimize a
solution as shown in Listing 4.1.

1 Generate the initial population randomly
2 Calculate the fitness for each chromosome in the population
3 while (!stopcriterionIsMet())
4 {
5 Select a set of promising chromosomes
6 Breed these chromosomes using genetic operators to produce children
7 Evaluate fitness of each child
8 Add the children to the population
9 Remove the chromosomes with the lowest fitness
10 }

Listing 4.1: Pseudo code showing how a genetic algorithm works.

The algorithm starts by generating a random population of routes. They are not completely
random since they must be valid, meaning that a chromosome must visit all nodes in the
graph once, and only once. The fitness value for each route is calculated using the fitness
function. The best routes are then taken from the population and used to breed new routes
using genetic operators (how chromosomes are chosen for breeding can vary, as there exist
multiple selection mechanisms. See Section 4.1). A genetic operator could for instance breed
a new route by combining two parent routes. The resulting route would be a route that is
the combination of some part of parent one and some part of parent two. A genetic operator
could also mutate a parent to produce a child. When a number of children have been pro-
duced, an equivalent number of chromosomes are removed from the population. Over time,
long routes will be removed and shorter routes will survive increasing the average fitness
value of the population, and (hopefully) the maximum fitness value.

4.1 Selection Mechanisms

There are many different mechanisms for selecting individuals for breeding. This section will
cover some of them, including the ones used in this project.

22

4.1. Selection Mechanisms

4.1.1 Tournament Selection

Tournament selction has three parameters:

• SampleSize

• WinnersSize

• LoosersSize

A random sample of size SampleSize is taken from the population. The best individuals in
the sample are selected for breeding while the worst individuals in the sample are destroyed.
The amount of individuals chosen for breeding is determined by the WinnersSize parameter
while the amount chosen for destruction depends on the LoosersSize parameter [17]. Some
individual might not belong to either the winners or the losers. For instance, if sampleSize =
10, winnersSize = 2 and loosersSize = 2, 6 chromosomes will neither belong to the winners
or losers. These chromosomes will not be chosen for breeding, but neither will they be
chosen for destruction. They will simply remain in the population. The chosen parameters
for the tournament selection have a high influence on how it will perform. For instance, if
the sample size is set to the same value as the population size, only the absolute elite will
be chosen for breeding. This may seem like a good thing, since the whole point of a genetic
algorithm is to breed the good chromosomes and discard bad ones. But by doing this, a lot
of building blocks are lost, since mediocre chromosomes will not be chosen for breeding.
Therefore, the consequence of having a high sample size is that the genetic algorithm might
converge faster, but is more likely to get stuck at a local optimum.

4.1.2 Fitness Proportionate Selection

Fitness Proportionate Selection has one parameter:

• SampleSize

Each individual in the population is assigned a probability based on its fitness value. The
higher the fitness value, the higher the probability it has of being selected for breeding. The
probability of individual i is calculated using Equation 4.1:

pi =
fi∑N
j=1 fj

(4.1)

23

Chapter 4. Genetic Algorithms

Where pi is the probability that individual i is chosen for breeding, fi is the fitness value
for individual i, and N is the population size. To keep the population size constant, the
individuals with the lowest fitness in the population is destroyed.

4.1.3 Truncate Selection

Truncate selection is a very basic selection mechanism in which the population is sorted by
fitness, and the X best performing chromosomes are selected for breeding.

4.2 Genetic Operators

When a selection mechanism has chosen at set of chromosomes to breed, genetic operators
are used to perform the actual breeding. Genetic operators are divided into two classes: Mu-
tation operators and crossover operators. Mutation operators works on only one parent. A
child is produced by taking the parent chromosome and the applying mutations to its genes.
For instance, a mutation operator might replace existing genes with different types of genes.
Alternatively a mutation operator might change the parameters of the genes.
Crossover operators take two parent chromosomes and produces one or two child chromo-
somes, by combining different parts of the parents. There are four common types of crossover
operators.

4.2.1 One Point Crossover

The first is the One Point crossover. The chromosomes are divided as illustrated in Figure 4.1.
Two children will be produced, each containing one part of parent one and one part of parent
two [18].

4.2.2 Two Point Crossover

The Two Point crossover works similar to the One Point crossover operator. Instead of choos-
ing one separation point, two points are chosen as illustrated in Figure 4.2. Two children are
then produced as shown in the figure.

24

4.2. Genetic Operators

Figure 4.1: This image shows how the One Point crossover operator can be used to split
two parents, and produce two children.

Figure 4.2: This image shows how the Two Point crossover operator can be used to split
two parents, and produce two children.

4.2.3 Population-wise Uniform Crossover

The Population-wise Uniform crossover is also similar to the One Point- and Two Point
Crossover operators, but it applies a much more powerful mixing as it alternates every gene
between the two parents as shown in Figure 4.3. It is given the name "‘Population-wise"’ to
distinguish it from the probabilistic uniform crossover described in Section 5.3.

25

Chapter 4. Genetic Algorithms

Figure 4.3: This image shows how the Population-wise Uniform crossover operator can be
used to split two parents, and produce two children.

4.2.4 Cut and Slice crossover

The Cut and Slice crossover operator randomly chooses two different cut points on each
parent. Two children can then be produced by combining the different parts of the parents,
as seen in Figure 4.4. It is important to note that since the cutting points are not the same on
each parent, the children produced will not necessarily have the same chromosome length
[18].

Figure 4.4: This image shows how the Cut and Splice crossover operator can be used to
split two parents, and produce two children.

The designers of genetic algorithms must construct their genetic operators in a way so they
do not yield invalid chromosomes [18] by discarding invalid children generated, and not

26

4.3. Choice of Population Size

letting them enter the population, or by using a chromosome encoding which can never be
invalid (often a difficult challenge).

4.3 Choice of Population Size

When optimizing a solution with a GA, choosing the right population size is important. Un-
fortunately, little research has been done in this area [19]. Research in this area focuses on
finding the optimal population sizes for well-known problems. According to [19] one must
balance two tradeoffs when choosing the population size for a lesser known problem: a
large population size yields a more accurate result, whereas a small population size yields
less accurate results. However, a GA with a large population size require more generations to
converge than that of a small population size. One must balance convergence time against
accuracy in order to choose the best population size. Unfortunately, the usual approach to
determining the best population size is by trying different sizes, and then settling on one
that works best [19].

27

CHAPTER 5

ESTIMATION OF DISTRIBUTION
ALGORITHMS

Estimation of Distribution Algorithms (Also known as Probabilistic Model-Building Genetic
Algorithms or Iterated Density Estimation Algorithms) are very similar to the GA approach
in that they are both loosely based on biological evolution. However, where a GA uses re-
combination (crossover) and mutation to generate the population of the next generation,
Estimation of Distribution Algorithm (EDA)s builds a probabilistic model based on the statis-
tics of the selected set of promising solutions, discards the population and generates a new
population based on the probabilistic model (Some EDAs advocate only replacing part of the
population). In this chapter, the details of an EDA are described.

5.1 Motivation

GAs are excellent for many problems, one being the Onemax problem (See 5.3). Many dif-
ferent combinations of parameters and operators can be used, and it still works. In practice,
though, for more complex problems a significant amount of time is spent tuning the GA,
choosing the best parameters and operators. Ideally, this work should be incorporated into
the algorithm itself, such that it adapts to the specific problem on its own. EDA combines
machine learning and Genetic and Evolutionary Computing (GEC) to achieve just that. As an
additional benefit, EDAs also provides the practitioner with a series of probabilistic models
which may give additional insight into the problem at hand [20].

5.2 General EDA

Just like a general GA, the general EDA starts by generating an initial population randomly.
Each chromosome is evaluated, and a set of promising chromosomes are chosen. Based on
the promising chromosomes, a probabilistic model is built, and the model is sampled to
generate a new population. Listing 5.1 shows in pseudo code the general EDA

28

5.3. Onemax Problem

1 t = 0
2 randomly generate initial population, P(0)
3 while(!StopCriteriaIsMet())
4 select set of promising chromosomes, S(t) from P(t)
5 update the probabilistic model based on the estimated distribution in S(t)
6 create a new population, P(t+1), by sampling the probabilistic model
7 t = t+1

Listing 5.1: Pseudo code of a general EDA.

5.3 Onemax Problem

The Onemax problem is a simple linear problem which will be used as an example to illus-
trate the concepts of EDA. It is defined in Equation 5.1

fOnemax(X1, ..., Xn) =
n∑

i=1

Xi (5.1)

Where X1, ..., Xn is a string of bits. Clearly, the global optimum of this problem is the bit-
string containing a 1 in every position. A chromosome for this problem can be defined as a
collection of genes, each representing a single bit.

The data shown in Figure 5.2, Figure 5.3 and Figure 5.4 using a GA and EDA uses identical
population sizes and selection mechanisms. The GA uses population-wide uniform crossover
(See Section 4.2.3) and no mutation, while the EDA uses probabilistic uniform crossover,
defined as:

• Compute the probability of a bit being 1, for every bit in the chromosome, based on
its relative marginal frequency in the selected set of promising chromosomes. The set
of probabilities computed constitutes the probabilistic model, and is referred to as the
probability vector.

• Generate a new population by sampling the probability vector.

According to [21] there is theoretical evidence that the probabilistic uniform crossover ap-
proximates the behavior of population-wide uniform crossover. Figure 5.1 illustrates the
process of the probabilistic uniform crossover.

Figure 5.2 illustrates how the probability vector correctly converges at the global optimum,
where the probability of a bit being one is (very near to being) 1, for all bits in the bit string.

29

Chapter 5. Estimation of Distribution Algorithms

Figure 5.1: Example of a single EDA iteration.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

P
ro

b
ab

ili
ty

 v
e

ct
o

r
e

n
ti

re
s

Iterations

Figure 5.2: Probability vector entries in relation to iterations for the Onemax problem.

Figure 5.3 and Figure 5.4 shows the results of an experiment in which a GA and an EDA is
applied to the Onemax problem, and shows that the GA performs much worse than the EDA
(as expected, according to [20]).

5.4 Trap Problem

While Section 5.3 shows promising results for the EDA approach, there is a significant aspect
which has been left out so far, which will become apparent when the general EDA is applied

30

5.4. Trap Problem

0

20

40

60

80

100

120

10 20 30 40 50 60 70 80 90 100 150 200 300 500

It
e

ra
ti

o
n

s

Problem size

GA EDA

Figure 5.3: Number of iterations required to reach the global optimum in relation to
problem size for the GA and the EDA, respectively.

0

500

1000

1500

2000

2500

10 20 30 40 50 60 70 80 90 100 150 200 300 500

R
u

n
n

in
g

ti
m

e
 (

se
c)

Problem size

GA EDA

Figure 5.4: Running time measured in seconds in relation to problem size for the GA and
the EDA, respectively.

to a more difficult problem, the 5-Trap problem, Equation 5.2

ftrap(n) =

{
5 if n = 5

4− n otherwise
(5.2)

Where n is the sum of the bits in the bit string. The trap problem contains two optimums,
one local for the chromosome with the bit-string 00000 and a global for the bit-string 11111
as shown in Figure 5.5. Figure 5.6 shows the probability vector entries over time as the

31

Chapter 5. Estimation of Distribution Algorithms

algorithm runs.

0

1

2

3

4

5

6

0 1 2 3 4 5

f t
ra

p
(n

)

Number of ones

Figure 5.5: The value of the trap5 function depends on amount of ones in the input string.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

P
ro

b
ab

ili
ty

 v
e

ct
o

r
e

n
tr

y

Iterations

Figure 5.6: Probability vector entries in relation to iterations for the Trap problem.

As seen in Figure 5.6, the EDA converges at the local optimum of 00000. In fact, it will always
converge to the local optimum given a reasonable population size, as having a 0 is statisti-
cally always preferred to having a 1, in any position of the bit-string. The mean fitness of all
chromosomes starting with a 1 is 1.375, while the mean fitness for chromosomes starting
with a 0 is 2 (See Appendix .1 and Appendix .2) which leads the algorithm away from the
global optimum. Clearly, a single bit is an insufficient building block representation for the
Trap problem. It is tempting to assume that pairs of bits would perform better as a building
block, but it turns out to be a false assumption as 00 has a higher mean fitness than both 01

32

5.5. Probabilistic Linkage Learning

and 11. In fact, it is necessary for the probability vector to consider the entire 5-bit chromo-
some as a building block for the EDA to be successful. Where the original probability vector
model had probability entries for individual bits (p(Xi = 1) and p(Xi = 0) for all i bits), the
correct model should instead contain entries for every possible chromosome (p(X = 00000),
p(X = 00001), p(X = 000011), .. .).

As seen in Figure 5.7 the EDA with the correct model is able to identify and converge at
the global optimum. However, to reach this result it was necessary to manually modify the
model based on prior knowledge about the problem. This leads us to the concept of Linkage
Learning which attempts to design methods capable of automatically identifying building
blocks and efficiently processing these.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7

P
ro

b
ab

ili
ty

 o
f

1
1

1
1

1

Iterations

Figure 5.7: Probability of a chromosome sampled containing only 1’s (
p(chromosome = 11111)) in relation to iterations.

5.5 Probabilistic Linkage Learning

As shown in Section 5.4 much care must be taken when decomposing a problem into appro-
priate subproblems (building blocks). Much research in the area of EDA focuses on learning
probabilistic models for proper decomposition. Many models have been proposed, some of
which will be discussed in this section.

When tasked with choosing a probabilistic model there are two major concerns to be aware
of:

• Independence assumptions

33

Chapter 5. Estimation of Distribution Algorithms

• Complexity of learning algorithms

The concern of independence assumption deals with how the individual parts of a chro-
mosome are dependent on each other. For the Onemax problem (See Section 5.3) it was
sufficient to consider every bit to be completely independent of every other bit. It is, how-
ever, insufficient for more deceptive problems such as the Trap problem (See Section 5.4)
where every bit is dependent on all other bits (a 1 is only preferred if all other bits are 1).

Of course, with more complex probabilistic models comes higher complexity in the algo-
rithms needed to learn the model. A model may be able to perfectly capture all interdepen-
dencies of the problem, but if its complexity is too great a large portion of the motivation
for using an EDA is lost.

Existing EDAs can for the most part be categorized based on their independence assump-
tions.
Univariate models assume no interaction between the individual parts. Algorithms in this
category include BSC ([22]), PBIL ([23]), Compact GA ([24]), UMDA ([25]) and DEUM ([26]).
The examples shown in Section 5.3 and Section 5.4 applies UMDA. These algorithms solely
does parametric learning of the model while its structure remains fixed throughout.
Bivariate models which deals with interactions between pairs of building blocks. This cate-
gory adds structural learning to the EDA approach, and includes algorithms such as MIMIC
([27]), COMIT ([28]) and BMDA ([29]).
Multivariate models consider multiple interactions between the individual parts. Applica-
tions of this approach is found in the EBNA ([30]), FDA ([31]), ECGA([32]) and BOA ([20]), with
BOA appearing to be an interesting approach to apply to Starcraft.
In BOA, the Bayesian network is initially constructed by generating a node for every gene in
the chromosome and builds the network using a simple greedy algorithm with 1 operation:
adding a directed edge between nodes in the network. The "‘fitness"’ of the network can be
evaluated with any chosen evaluation technique but suggests using the Bayesian-Dirichlet
metric (BD) mainly because it allows for using prior knowledge about the problem, by taking
an optional pre-made network as input. New chromosomes are generated by sampling the
built network [20].

34

Part III

Evolving Starcraft Strategies

CHAPTER 6

GENETIC ALGORITHM FOR STARCRAFT

A crucial step when using genetic algorithms Chapter 4 to optimize or solve problems, is to
tailor it to the problem domain. This chapter covers how a genetic algorithm can be tailored
to fit the Starcraft environment and describes how the chromosome encoding is designed.

6.1 Chromosome Encoding

Pieter Spronck et al (See [3]) proposes a chromosome encoding for another RTS game by the
name of Wargus in which chromosomes are divided into states and genes. A state can be
seen as a container of genes, and genes are constructs that represents some action taken
by the agent. For instance, a build gene will cause the agent to build a building when it
is executed. This chromosome encoding is well suited for most RTS games, although we
proposemodificationsmore fitting for Starcraft. This section describes our encoding in detail.

There are four kinds of genes:

• Build gene: Builds a building when executed

• Research gene: Researches an upgrade when executed

• Combat gene: Constructs a number of combat units when executed.

• Attack gene: Initiates an attack on the enemy when executed.

The execution of a chromosome entails executing each state in chronological order. If a
game has just started the bot will start by executing first state of the chromosome. In order
to execute a state, each gene in that state is executed. If a build gene is executed, a spe-
cific building will be constructed. If a research gene is executed, a specific upgrade will be
researched. If a combat gene is executed, a certain number of combat units will be trained.
And if an attack gene is executed the chromosome will initiate an attack on the enemy. When
the building built by the build gene has been constructed, the chromosome proceeds by ex-
ecuting the next state. This continues until the chromosome no longer contains any states.
A possible chromosome is shown as an example in Figure 6.1.

37

Chapter 6. Genetic Algorithm for Starcraft

State 1 State 2 State ...

B Gateway B Forge C Zealot 5

State 3

B Nexus R Plasma Shilds

State 4

B Gateway C Zealot 8 A

Figure 6.1: This image shows an example of a chromosome. The first state contains a build
gene that will build a Gateway building. State two contains two genes. One that constructs
a Forge building, and one that trains 5 Zealot combat units. State three constructs a Nexus
building and researches the Plasma Shield upgrade. State four constructs another Gateway

building, trains 8 Zealot combat units and initiates an attack on the enemy.

6.1.1 Creation of Chromsomes

When random chromosomes are created by the GA, they must be constructed with the rules
of Starcraft in mind as to avoid the creation of invalid chromosomes that cannot be executed
in the environment. As mentioned in Chapter 2 most buildings and units are not available
at the start of a Starcraft match. Buildings and units must be unlocked by constructing tech
buildings. This can cause problems for the chromosomes if these constraints are not ac-
counted for. For instance, if state one of a chromosome specifies that the building Photon
Cannon must be constructed, then that chromosome would be invalid since Photon Cannon
requires that the Forge building has been constructed. Likewise, some units can only be
trained if certain buildings have been constructed. For instance, the Zealot combat unit can
only be trained if a Gateway has been constructed. In order to remedy this problem, the ran-
dom generation of chromosomes in the GA is guided by a Starcraft Rule Base. This is done by
simply calculating all the legal buildings, upgrades and combat unit based on the previous
states in the chromosome. The following is an example of how a random chromosome might
be created.

The first step of creating a random chromosome is to create the first state. At this point in
the game no buildings have been created, so only a few buildings can legally be built. No
combat units or upgrades are valid, since no research or training buildings are available. The
buildings available are:

• Nexus

• Forge

• Gateway

• Assimilator

38

6.1. Chromosome Encoding

The first state is then simply created by choosing a random building from the list of valid
buildings. The generated state can be seen in Figure 6.2. In this case, the Gateway building
was chosen.

Figure 6.2

The next step is to generate state 2. Since state 2 is executed after state 1, we know that a
gateway building exists. This open up for more options in the gene creation. For instance,
having a Gateway building unlocks the Cybernetics Core building. It is now also possible to
train Zealot combat units. We can now construct the following buildings:

• Nexus

• Forge

• Gateway

• Assimilator

• Cybernetics Core

And we can train the following units:

• Zealot

Remember that each state must contain a build gene, since a state transition is triggered
by the completed construction of a building. Other genes, however, are optional. Build and
research genes both have a chance of 1/4 for being included in a state, while an attack gene
has a 1/8 chance of being included. Since it is now possible to train combat units, state 2
has a 1/4 chance of containing a combat gene. In this case, a combat gene was added to
state 2, that trains 5 zealot units. The number of units trained is a random number between
1 and 10. The random build gene chosen for state 2 is a Forge building. State 2 can be seen
in Figure 6.3.

The next step is to generate state 3. With the previous construction of a Forge building,
research upgrades are now available. The following research upgrades are available:

39

Chapter 6. Genetic Algorithm for Starcraft

Figure 6.3

• Ground Weapons

• Ground Armor

• Plasma Shields

The following buildings are available:

• Nexus

• Forge

• Gateway

• Assimilator

• Cybernetics Core

• Photon Cannon

And we can train the following units:

• Zealot

Creating state 3 is done much like the other states. Whether state 3 will contain combat,
research or attack genes will be randomly chosen. In the case of Figure 6.4, a research gene
upgrading the Protoss plasma s was chosen.

Ensuring that randomly generated chromosomes obey the rules of Starcraft makes it easier
to guarantee that the population does not contain invalid chromosomes.

40

6.2. Selection Mechanism

Figure 6.4

6.2 Selection Mechanism

The selection mechanism chosen for the genetic algorithm is the Tournament Selection
mechanism described in Section 4.1.1. The reason for this is that it has previously been
successfully applied to a problem domain similar to Starcraft [8]. Furthermore, tournament
selection is often used in practice instead of Fitness Proportionate Selection (Section 4.1.2),
since tournament selection tends to outperform it [33].

6.3 Fitness Function

To measure the quality of a chromosome, a Starcraft game is played where the chromosome
is pitted against an enemy AI. The game is ended when one of the players is victories, or
when the draw timeout of 60 minutes is reached. At the end of a game the following fitness
function is used to calculate the fitness of the chromosome:

f =

{
Sp

So
if winner

ET
MT ∗ Sp

So
if looser

(6.1)

Where Sp is the score of the agent, So is the score of the opponent, ET is the elapsed game
time andMT is the maximum time a game can take (60 minutes). The reason for dividing Sp
and So is that we want to favor chromosomes that achieves a high game score, and prevents
the enemy from achieving a high game score. The higher the score of the chromosome,
and the lower the score of the enemy, the better the fitness value. If the chromosome loses
against the AI, the fitness still depends on game score achieved by the chromosome and
the enemy AI. However, we multiply with ET

MT in order to favor chromosomes that were able
to last longer against the enemy. If the chromosome was defeated quickly, ET

MT will make
the fitness value small. However, if the chromosome was able to hold out for a long period
of time, the reduction to the fitness value caused by ET

MT will be smaller. This part of the
fitness function is very important since most of the chromosomes will lose to the enemy. It

41

Chapter 6. Genetic Algorithm for Starcraft

is therefore necessary have some form of reward for losing chromosomes who were able to
at least stay alive longer than losing chromosomes who were defeated quickly.
The enemy game score and chromosome game score are not available to us by default.
The score is calculated adding several score values provided by BWAPI. BWAPI (described in
Chapter 2) provides three different scores to be considered. Unit score, which is determined
by the units the player has trained. Kill score, which is determined by the units the player has
killed, and building score which is determined by the buildings the player has constructed.
The score for player p is determined by:

Sp = unitScorep + killScorep + buildingScorep (6.2)

6.4 Genetic Operators

The choice of genetic operators is influenced by the choices advocated in [3] and are as
follows: Three Point Crossover, Rule Replace Mutation, Rule Biased Mutation and Random
Chromosome Creation. Each has a 30% probability of being applied except for Random Chro-
mosome Creation which has a 10% probability.

6.4.1 Rule Replace Mutation

Every research, combat and attack gene in the parent chromosome has a 25% probability of
being replaced by a random new gene. Building genes are excluded from this process since
replacing a build gene might result in an invalid chromosome. For example, if state 5 of a
chromosome contains a build gene that builds a Cybernetics Core, and that gene is replaced
with a build gene that builds a Nexus, then the subsequent states might have built genes
that requires the Cybernetics Core, rendering the chromosome invalid.

6.4.2 Rule Biased Mutation

Each combat gene and attack gene in the chromosome has a 50% probability of having its
parameters mutated. For instance, a combat gene might produce 7 Zealot combat units. The
parameter that will be mutated is the number of zealot units produced. Research and build
genes are excluded from the rule biased mutation process. This is because mutating these
genes might produce invalid chromosomes.

42

6.5. Search space approximation

6.4.3 Random Chromosome Creation

The random chromosome creation does not require any parent to produce a new child. A
child is simply randomly created (See Section 6.1.1). The reason for having this genetic
operator is to introduce new genetic variety into the population in an attempt to avoid local
optimums.

6.5 Search space approximation

To get a better understanding of the complexity of the problem at hand, the size of the search
space is investigated in this section. While in reality the search space is infinite, as a state
can contain an unlimited amount of genes, the calculations in this section assume that each
state has one gene of every type.
Ideally the search space should be calculated precisely, taking into account the limitations
imposed by technology tree (See Figure 2.1) and the rules of StarCraft in general.
As a starting point, we only consider the build genes of the chromosome. In the first state,
the build gene can, according to the technology tree, take one of four different values: Nexus,
Assimilator, Forge or Gateway (Pylons are built automatically by the bot) (See Figure 6.5).

State1

State2a

Nexus

State2b

Assimilator

State2c

Forge

State2d

Gateway

Figure 6.5: Search space tree for 2 states.

Depending on the value of the build gene in state 1, the build gene in state 2 can take either
4 or 5 different values. Building a Forge in state 1 opens the door to build a Photon Cannon
in state 2. Likewise, building a Gateway opens up the possibility of building a Cybernetics
Core, as shown in Appendix .3.

If we count the leafs of the tree we see that 18 different chromosomes can be created if we
consider only 3 states and only include build genes in the chromosome. As the chromosome
encoding used in this project has 50 states as well as attack, research and combat genes
in addition to build genes, it quickly becomes impractical to precisely calculate the search
space.

43

Chapter 6. Genetic Algorithm for Starcraft

Instead, the search space is approximated. When the chromosome is grown to 9 states, it
is possible for a chromosome to have unlocked all 14 buildings (The search space is at this
point at 8694640). The approximation then considers all subsequent states to have access to
all 14 buildings. Of course, this approximation will give us a larger search space than reality,
and the error will accumulate and grow exponentially as the chromosome is grown larger
to include all 50 states. Nonetheless, it is considered useful to provide a rough idea of the
complexity of the problem at hand.

50states = 8694640 ∗ (41 ∗ 14) ≈ 5billion (6.3)

Of course units and research should be handled in a similar fashion. After 12 states, all
11 units and all 24 researches are potentially unlocked. Unlocking units and upgrades relies
entirely on buildings including them in the precise calculation becomes impractical. Instead,
as an approximation, no upgrades or units are available until state 12 at which point they
all become available. Note that every combat gene can build between 0 and 10 of a unit:

8694640 ∗ (41 ∗ 14) ∗ (38 ∗ 24) ∗ (38 ∗ 11 ∗ 10) ≈ 19quadrillion (6.4)

Finally, each state can contain either an attacking or nonattacking gene:

8694640 ∗ (41 ∗ 14) ∗ (38 ∗ 24) ∗ (38 ∗ 11 ∗ 10) ∗ (2 ∗ 50) ≈ 1, 9 ∗ 1018 = 1quintillion (6.5)

44

CHAPTER 7

CROMARTIE IMPLEMENTATION

This chapter describes the implementation of our two AI agents, from here on referred to as
bots or GA Cromartie and Static Strategy Cromartie. The purpose of the bots is to test the
validity of Hypothesis 1 from the problem statement in 1.1. The two bots are similar in many
areas, due to much of the code being shared - thus when talking about the shared compo-
nents or both bots, they are simply referred to as Cromartie, and not their individual names.
The function of the bots are essentially to play Starcraft Brood War, but each Cromartie bot is
developed with a different sub-purpose. For instance, the GA Cromartie is used to playback
chromosomes as directed by the Genetic Algorithm described in Chapter 4, while the Static
Strategy Cromartie play Starcraft by following a static strategy given as a parameter before
game begins. This chapter first describes the common components and functionality of the
two bots, where-after the components that are different between the bots are presented.
The bots are based on the bot called Skynet[10] and is built using the application framework
called BWAPI (see Section 2.3).

The first section presents the tasks of the bot as well as the reason for using a different bot,
such as Skynet, as the base of development. The first section also makes a short introduction
to a few of the Starcraft bots that were considered a suitable base for Cromartie.

The second section covers Skynet, the basis of Cromartie. It presents the most important
components from Skynet that is used for developing Cromartie.

The third section describes the additions and modifications of Skynet, made during this
project.

The fourth section describes the Genetic Algorithm Cromartie, and how the Genetic Algo-
rithm is implemented as a component within Cromartie.

The last section is a short presentation of the Static Strategy Cromartie and the External
Build Order component, unique to this bot. It also introduces the Nexus14 strategy/build
order and, using Nexus14 as an example, how strategies are constructed and given as a
parameter to the bot.

45

Chapter 7. Cromartie implementation

The name Cromartie comes from the fictional universe of the Terminator franchise. A bot
called Skynet that serves as the base of the bot developed during this project is named
after the self-aware AI antagonist of the Terminator franchise. Thus it seemed appropriate
to find the name for our bot, within that same universe. The choice fell on Cromartie, a
Terminator agent sent back in time by Skynet, and the main antagonist in the spin-off TV
series, Sarah Connor Chronicles. [34][35]

7.1 Tasks of Cromartie

In order for the bot to be able to play Starcraft effectively, a set of common tasks is to be
identified in order to carve out the required functionality of the bot. As described in Chapter 2
Starcraft is a game of gathering resources, effective use of these resources and managing
units, in order to eventually defeat an enemy with the same prerequisites as one self. From
this the following tasks can be identified:

• Gather resources

• Expand to new base locations

• Construct buildings

• Train units

• Upgrade technology

• Micro-manage combat units

• Scout map and enemy bases

• Launch attacks

All of these tasks are important and must be handled by the bot in order for it to play effec-
tively, but only a few of the tasks are essential for this project. This is because the purpose
of the bot is to test the hypotheses described in Section 1.1, which are concerned with strat-
egy, but not all of the listed tasks are used for managing the strategy of the bot. Thus these
tasks essential for managing strategy, should have the highest focus for the development of
Cromartie, while the remaining tasks should, if possible, be handled by third-party code or
libraries.

46

7.2. Skynet

Name # Games Crash % Build order Scouting Code Micro Resources Supply
UAlbertaBot 11421 0.11 8 7 4 6 7 8
SCAIL 1656 0.32 4 8 8 4 10 5
Nova 5995 0.15 10 5 8 10 10 5
Skynet 11888 0.05 7 10 2 8 10 10

Table 7.1: This table show the potential bot bases investigated, along with the evaluation
criteria and scores. Scores with underlines is the highest/best in the given criteria.

The tasks related tomanaging strategy are: Expansion, Constructing buildings, training units,
upgrading technology and launching attacks. The tasks less essential to this project, al-
though equally important to be handled, are: Gather resources, micro-management of units
and scouting.

By suggestion of the BWAPI [6] project website, a library called BWSAL was initially inves-
tigated, as it provided all of the aforementioned low priority tasks, along with a range of
helping tools such as terrain analysis and building placement. This library was found to be
out-of-date and faulty, requiring us to use a different approach. Instead of using BWSAL, a
number of open-source Starcraft bots, all competing in the 2012 Starcraft AI Competition[9],
was investigated in order to find a code base to build Cromartie from. A number of criteria
was defined, which were used to evaluate these different bots. The bots chosen for eval-
uation and the different criteria is shown in Table 7.1, where each criteria except # Games
and crash % were given a score between one and ten. From this evaluation of bots Skynet
was chosen, as it was both very stable and managed the low priority tasks very well. One
difficulty with Skynet was the sheer size of the code and the way much of its modules were
strictly coupled, which would make the process of building upon it harder. This difficulty
was in part conquered, by exchanging much of the strict coupling with an event/messaging
system, which is described later in Section 7.3.

In the next section we describe the components and code provided by Skynet.

7.2 Skynet

The Skynet bot is a bot competing in the 2012 Starcraft AI Competition and is created and
maintained by Andrew Smith [10]. In this project the different versions of Cromartie is de-
veloped as an extension and modification of Skynet, such that the development of Cromartie
was focused on the tasks related to managing strategy.

Skynet is a large and complicated bot (22868 Lines of Code (LOC) at the time of writing this
report), so covering all of its components and functionality would be infeasible. Instead the
most important components are introduced. These are:

47

Chapter 7. Cromartie implementation

Terrain Analysis Manager is responsible for analyzing the map and create a graph structure
by dividing the map into regions as nodes, connected with choke-points1 as edges. The
Terrain Analysis Manager also uses the map information to create a list of potential
base locations and determining initially where buildings can be placed.

Unit Tracker is responsible to keep track of active units in the game, both friendly and enemy
units. Units in BWAPI includes workers, troops, buildings and other actors like minerals
and geysers. The Unit Tracker informs other subsystems of Skynet when a new unit is
observed e.g. a new worker is trained, a building is built or a mineral patch is observed
through the fog of war. It also informs the subsystems of the destruction of units e.g.
when a troop is killed in combat or a mineral patch is depleted.

Task Manager is the component that manages the tasks given to Skynet from other com-
ponents. A task in this sense could be to construct a building, train a unit or gather
resources. One or more units may be assigned to a task and a task can have precondi-
tions. Thus if a task is given to the manager from a component, but its precondition is
not yet fulfilled, the task is put on hold until it is ready. E.g. a construction task may
have the precondition of having a worker assigned and enough minerals to perform
the construction, and will stay on hold until enough resources have been gathered.

Squad Manager is responsible for the micromanagement of combat units. Trained troops
are placed in one or more squads, where each squad is associated with a high-level
responsibility, e.g. defense, attack, drops, etc. Each squad then controls the micro-
actions of each individual unit, whether in combat or idle.

Scout Manager is the component that uses any available units, e.g. workers and observers,
to gather information of the state of the game. This is done by moving the scouting
unit around on the map and try to cover as much ground as possible. Whenever the
Scout Manager observes something interesting, e.g. an enemy technology building, it
passes on this information to any component interested - the Unit Tracker for instance.

Building Placer is a component used to help position buildings on the surface of the map.
When a component sends a construction task to the Task Manager, the task includes in-
formation about the type of building to construct and a high-level position, i.e. whether
to place it at a base, a choke-point, a proxy (a somewhat hidden location near the en-
emy base), etc. It is then the Building Placers responsibility to determine exactly at
which map-tile to start building. This done by first trying at the center of the proposed
location, e.g. the center of the base, and if this location is unavailable (from other
buildings or structures) then tries again at a different location spiraling the center, in
the case of building at the base, while increasing the radius, until a valid location is
found.

1A choke-point is another term for a bottleneck between regions. Whether they actually "‘choke"’ or not is a
point of discussion

48

7.2. Skynet

Skynet includes a lot of different components, which differ much in complexity, coupling
with other components and size. One commonality with the Skynet code is that there is a
lot cross-cutting concerns between the components, and it is very difficult to extend and
modify the bot as was the purpose of selecting Skynet. In Figure 7.1 the public function call
dependencies of some of the components in Skynet is presented. The diagram shows a web
of inter-dependencies and illustrates the difficulty of extending Skynet. The first challenge
of developing Cromartie based on Skynet was thus to change the structure of Skynet to be
easier to extend. The solution to this challenge was to add an event-/messaging component,
which is addressed in Section 7.3.1.

Figure 7.1: This figure shows some of the components of the Skynet bot and the
dependencies between them. Note that the dependencies of this diagram only show public
function calls and not class associations, aggregations and inheritance dependencies. Also,

the diagram is not meant to be understood, it is merely a visualization of one of the
difficulties with having selected Skynet as a base.

49

Chapter 7. Cromartie implementation

7.3 Modifications and Additions

One of the first development issues of this project was to mold the Skynet bot into Cromartie
by extending and modifying the Skynet code. The purpose of this was to enable and make it
easier to extend the bot with the Genetic Algorithm component or the External Build Order
component in order to build the different versions of Cromartie.

7.3.1 Event Management Component

The firstmodificationwasmade to solve the issue of the large amount of cross-cutting depen-
dencies of Skynet. One common way to solve this issue is to apply an Observer Pattern[36],
specifically by using an event/messaging system. Thus an Event Manager was created for
Cromartie, that each component would call to queue events, instead of calling each other,
such that the Event Manager in turn could pass on these events to any "‘listening"’ compo-
nents. The goal was to turn the highly coupled architecture in Figure 7.1 into Figure 7.2. In
Figure 7.3 the class diagram of the Cromartie Event Management component is shown and
in Figure 7.4 a sequence diagram for the Event Manager is shown.

In the class diagram of Figure 7.3 there is a class called EventManager - this is the main
class of the component. When the bot begins executing, some listeners (the observers of the
Observer Pattern) are added to the EventManager, associated by an EventType. A listener
is a delegate, a function pointer that handles a given type of event. For example, the Unit
Tracker component has a function called UnitDiscoveredEventHandler which serves
as the event listener for UnitDiscovered events.

In the sequence diagram of Figure 7.4 an example of a possible sequence of calls in Cromar-
tie is visualized. First Starcraft - or BWAPI - calls the onStart function of Cromartie, which
in turn calls the private registerListeners function, that is responsible for adding all
the required listeners to the EventManager. For each game frame in Starcraft after the on-
Start function have been called, Starcraft calls the onFrame function of Cromartie. In
this onFrame function a list of game events from BWAPI is collected and sorted into the
event queue of the event system. For instance will any unit discover events from BWAPI,
be queued as a UnitDiscoveredEvent in the EventManager. Also in each frame the
event OnUpdateEvent is queued, before the onFrame function finally calls Update of the
EventManager. The Update function is responsible for taking each event which has been
queued, and execute any relevant listener delegates associated with each given EventType,
and sending the data of the event as a parameter to the delegate. For example in the se-
quence diagram a UnitDiscoveredEvent was queued, and when the EventManager is
updated the listener function UnitDiscoveredEventHandler in the Unit Tracker com-
ponent is called.

50

7.3. Modifications and Additions

Figure 7.2: This figure show how the components communicate after applying an Observer
Pattern.

The event management system was inspired by the Observer Pattern[36] and the game event
management system proposed in the book Game Coding Complete[37]. The event system de-
veloped in this project uses delegates rather than the usual observer/listener classes which
usually, according to the Gang of Four Observer Pattern, implements some IObservable in-
terface. Specifically the framework fastdelegate[38] is used to create easy listener delegates
and thus avoid using function pointers directly, for faster and easier development.

7.3.2 Decoupling Skynet Specific Components

Some of the components provided by Skynet is replaced by the components specific to Cro-
martie, such as the Genetic Algorithm component and the External Build Order component.

51

Chapter 7. Cromartie implementation

Figure 7.3: This figure show the class diagram of the Event Manager component of
Cromartie.

The second development task was thus to identify, remove and decouple those Skynet spe-
cific systems from the code, while still keeping the rest of the functionality provided by
Skynet intact.

Build Order Manager

Skynet contains a component responsible for deciding what build order to use against the
enemy. This system conflicts with both our Genetic Algorithm component, where the gen-
erated chromosomes controls which buildings are built at any given time, and our External
Build Order component, where we want to impose a specific build order right when the
game starts. Thus for our purpose, parts of this component was rendered inactive in Cromar-
tie, although some of it was still kept, as it was used as a base for the External Build Order
component, which is described later in Section 7.5.

52

7.3. Modifications and Additions

Figure 7.4: This figure show a partial sequence of how the event system works in Cromartie.

Squad Manager

In our Genetic Algorithm component Chapter 6 the chromosomes have the power to decide
when Cromartie should attack. Skynet though, uses the Squad Manager to figure out when
to attack and what. Skynet does this using a Default Squad that is associated with all units
of the bot, and then at each frame performs calculations related to the decision on when to
attack. This decision is taken based on an army behavior flag (aggressive, defensive, all-in,
etc.) defined as a part of the build order, as well as the known and guessed information about
the enemy. This Default Squadwas of no use to Cromartie, so a different Squad - called Attack
Squad - was developed, with the sole purpose of attacking when commanded to. Combining

53

Chapter 7. Cromartie implementation

this squad with the event system, the Genetic Algorithm component was granted the power
to attack whenever a chromosome was generated with one or more attack genes.

7.4 Genetic Algorithm Cromartie

The GA part of Cromartie, is an implementation of the bot where the tasks related to man-
aging strategy is handled by a genetic algorithm. The purpose of this part of Cromartie is to
test the accuracy of the first three hypotheses from Section 1.1, by observing that our genetic
algorithm, converges towards a strategy that consistently wins against both a bot with a sin-
gle static strategy, and a bot that switches between three strategies. This section described
the implementation of the Genetic Algorithm component, specific to this implementation of
Cromartie. The tasks assigned to the genetic algorithm are:

• Construct buildings

• Train units

• Upgrade technology

• Launch attacks

The reason for this division of tasks is that we want Skynet to handle the mundane micro
management, while macro management is left to the chromosomes evolved by the GA. The
rest of this section will describe how the genetic algorithm was implemented on top of
Skynet.

Figure Figure 7.5 shows the main classes of the GA implementation.

All gene classes inherit from the abstract Gene class so that we can maintain a list of genes
in each State object. The Chromosome class maintains a list of states associated with it. The
maximum number of states a chromosome can hold is 50. This value was chosen since it is
unrealistic for a Starcraft game to go on for so long that more than 50 states are executed.

The main class of the GA is the GA class. Its responsibility is to manage the population
of chromosomes, performing tasks such as generating the initial population, and breeding
new children. How these classes interacts with each other and Starcraft can be seen in the
sequence diagram in Figure 7.6.

When a Starcraft game starts onStart in Cromartie is called, which then calls the onStart
function in GA. If this is the very first Starcraft game, GA generates an initial random popula-
tion. If this is not the first Starcraft game, the population is loaded from a file. The reason for

54

7.5. Static Strategy Cromartie

Figure 7.5: This figure shows the main classes of the genetic algorithm.

having the population in a file is that when a Starcraft game ends, Cromartie is destroyed and
everything in RAM is deleted. Therefore we need to save the population when a game ends,
and load it again when a game starts. When the population has been loaded, a chromosome
that has not been evaluated is chosen for execution by calling setActiveChromosome. After
that, the first state in the chromosome is executed. When the build gene has finished con-
structing a building, onUnitComplete is called. This triggers the GA to fetch the next state in
the chromosome and execute it. This is repeated until the game ends. When that happens,
onGameEnd is called and the fitness of the chromosome that played the game is calculated.
Finally, the GA saves the entire population so that it is not lost when Cromartie is destroyed.

7.5 Static Strategy Cromartie

The Static Strategy Cromartie bot is a version of Cromartie where the Genetic Algorithm
component described in Section 7.4 is replaced by the External Build Order component. The
term build order in Starcraft is basically a synonym for strategy. The purpose of the Static
Strategy Cromartie is to provide an opponent for the GA Cromartie bot, that uses exactly the
same strategy in each game played against it, such that the GA evolves to win against this

55

Chapter 7. Cromartie implementation

Figure 7.6: This sequence diagram shows the process of the genetic algorithm.

given strategy. As stated earlier the bots are made up of components, handling the different
tasks of the bot. The components related to managing the strategy, e.g. the GA component
and the External Build Order component, is different in the two bots, whereas the rest of the
components, those not related to managing strategy, is exactly the same in the two bots. The
reason for this is to minimize the amount of influence the components not related to strategy,
e.g. the component controlling micro-management of units, have on the result of the GA.
For instance, if one bot was better at micro-controlling units in combat, this would give that
bot an unfair advantage, not related to the strategy, thereby bringing more uncertainty into
the eventual results from testing the GA.

Skynet contains a Build Order Manager component, which selects build orders depending on
the state of the game, such as the race of the enemy, etc. This component is also responsible
for executing build orders. In GA Cromartie, this component from Skynet is turned off, but in
Static Strategy Cromartie, the component is instead modified. The modification consists of
inhibiting the build order selection mechanism, as this is not needed due to the build order
being provided by the input parameter. Instead only the execution of build orders in the
Build Order Manager is used to execute the build order given as a parameter.

56

7.5. Static Strategy Cromartie

The construction of the build order Nexus14[39] can be seen in Listing 7.1. Nexus14 is the
build order used to play against GA Cromartie while testing the hypothesis in Chapter 8.
Nexus14 is arbitrarily selected from the expert Protoss builds found on the Liquidpedia web-
site[4]. The way the construction works, is by first instantiating the BuildOrder object with
the race, name and ID of the build order. Then the actions of the build is added in sequential
order, as this is the order the actions will be executed in by Static Strategy Cromartie. For
instance, in Nexus14 first 4 Probes (worker units) is added to the build order, followed by a
Pylon. The name Nexus14 comes from the goal of getting a second Nexus building once the
players supply consummation is at 14 - for this build order it means that Cromartie should
begin building the second Nexus when its supply is at 13. It is the common convention to
use current supply consummation, as an identifier for when to execute each order, instead
of game time. This is because that if game time was used, and the player using the build
order started building the Nexus a few seconds late, he would have to recalculate the times
of the build order in order to follow it through the rest of the game. Thus using supply is
much easier to follow, especially for new players.

1 BuildOrder fourteenNexus(BWAPI::Race::Protoss, BuildOrderID::FourteenNexus, "14 Nexus");
2
3 // Build Order - every order is executed sequentially
4 fourteenNexus.addItem(Protoss_Probe, 4);
5 fourteenNexus.addItem(Protoss_Pylon); //Pylon on 8
6 fourteenNexus.addItem(Protoss_Probe, 5);
7 fourteenNexus.addItem(Protoss_Nexus, 1, BuildingLocation::Expansion); //Nexus on 13
8 fourteenNexus.addOrder(Order::Scout); // Scout
9 fourteenNexus.addItem(Protoss_Probe);
10 fourteenNexus.addItem(Protoss_Gateway); //Gateway on 14
11 fourteenNexus.addItem(Protoss_Probe);
12 fourteenNexus.addItem(Protoss_Assimilator); //Gas on 15
13 fourteenNexus.addItem(Protoss_Probe, 2);
14 fourteenNexus.addItem(Protoss_Cybernetics_Core); //core on 17
15 fourteenNexus.addItem(Protoss_Gateway); //gate on 17
16 fourteenNexus.addItem(Protoss_Zealot); //zealot on 17
17 fourteenNexus.addItem(Protoss_Probe, 2);
18 fourteenNexus.addItem(Protoss_Pylon); //pylon on 21
19 fourteenNexus.addItem(Protoss_Dragoon, 2);//2 Dragoon on 21
20 fourteenNexus.addItem(Singularity_Charge);//range on 25
21 fourteenNexus.addItem(Protoss_Probe, 2);
22 fourteenNexus.addItem(Protoss_Pylon); //pylon on 27
23 fourteenNexus.addItem(Protoss_Dragoon, 2);//2 Dragoon on 27
24 fourteenNexus.addItem(Protoss_Probe, 2);
25 fourteenNexus.addItem(Protoss_Pylon); //pylon on 33
26 fourteenNexus.addItem(Protoss_Dragoon, 2);//2 Dragoon on 35
27
28 // Define build order to transition to, 2 min after the opening strategy is complete.
29 fourteenNexus.addNextBuild(BuildOrderID::CitadelFirst, 24*60*2);

Listing 7.1: The Nexus14[39] build order used as the opponent of GA Cromartie.

57

Chapter 7. Cromartie implementation

58

Part IV

Results and Discussion

CHAPTER 8

RESULTS

This chapter describes the results acquired from testing the hypothesis described in Sec-
tion 1.1:

Hypothesis 1 It is possible to use a genetic algorithm to evolve a Starcraft strategy that can
consistently win against a single other strategy.

This chapter includes a description of the physical test setup, a test plan describing which
and how the tests were performed, the results gathered and finally a discussion of the results.
The opponent that the GA is evaluated against, which is a modified version of Skynet (See
Section 3.3) executing the Nexus14 strategy presented in Section 7.5.

8.1 Test Setup

The fitness function of the GA used to evolve Starcraft strategies requires the chromosome
under evaluation to be executed in the game. The chromosomes must be evolved against
a single other strategy. The only way to restrict the opponent to always play only a single
strategy is to create a bot with this behavior. Playing against a bot is only possible using
the multi-player mode(s) of Starcraft, causing a bottle-neck in which the evaluation speed is
severely limited by the game speed. The evaluation of a single chromosome takes anywhere
from 5 to 60 minutes.
In order to evaluate a population at an acceptable and practical speed, the chromosomes
are executed in parallel. The test setup consists of multiple PC’s running multiple virtual
machines with each pair of virtual machines being connected by an internal virtual network.
In every pair of virtual machines one is considered the host (executing the GA) and one
is the client (executing the Nexus14 strategy). A Java program is responsible for starting
Starcraft and synchronizing the client and the host. Menu automation is handled partly by
Chaoslauncher and partly by AutoHotKey scripts. All chromosomes are stored in a central
database. Figure 8.1 shows the test setup.

61

Chapter 8. Results

Figure 8.1: Deployment diagram of the test setup. The GA is executed by the Starcraft.exe
process and stores its results in a SQLite database accessed through the network over the
SMB protocol (Windows filesharing) using a C++ API. The Starcraft.exe procceses play

multiplayer against eachother over UDP. Additional nodes (Workstations) can be added to
the network at will.

62

8.2. Test Plan

8.2 Test Plan

In order to test the hypothesis, two tests were performed. The first aims to tune the param-
eters of the GA, while the second aims to produce the most effective chromosome possible.

8.2.1 Test 1: GA parameter tuning

Empirical evidence suggests that a population size of 50 is sufficient to generate effective
chromosomes in a RTS problem domain using a similar chromosome encoding as the one
used in this project ([3]). However, considering the significant size of the problem at hand
wemake the claim that it could benefit from a larger population and thus (potentially) having
access to more building blocks. As such, to tune the parameters of the GA a test is performed
with a population size of 50 and 100.
A valid argument could be made that the population size should be even larger (significantly
larger, even tens of thousands), but a defining aspect of the problem is the time consuming
evaluation. As we know, a larger population size requires more evaluations to reach conver-
gence [19] which makes a large population impractical.

The purpose of Test 1 is two-fold. First, it is to determine the ideal population size. In an
attempt to reduce the impact of the other parameters of the GA (Crossover sample size, win-
ner size and loser size), each test was performed twice with different crossover parameters.
Ideally each test should be performed many more times and more combinations of operators
and parameters should be used, but the evaluation speed of Starcraft is an heart-breakingly
limiting factor that trumphs the ideal approach. Two sets of parameters were chosen based
on initial tests which will not be covered further.
Second, the test could produce winners. This would be a valuable result, as it would make
the belief in our chromosome encoding stronger.

8.2.2 Test 2: Evolve a powerful chromosome

The goal of this test is to produce a winning chromosome and directly validate or invalidate
the hypothesis mentioned in Chapter 8 by running the GA algorithm with the parameters
deemed promising in Section 8.2.1. Any winning chromosomes gathered in Section 8.2.1 are
inserted into the initial population to refine already successful chromosomes.

63

Chapter 8. Results

8.3 Test Results

In this section the results acquired from executing the test plans is presented.

8.3.1 Test 1 results

While the parameters may not yet be finely tuned, no less than 4 winning chromosomes were
found. This is considered a great success, as it indicates that our chromosome encoding is
sound. It appears to be able to capture enough building blocks of the Starcraft domain to
encode a bot behavior capable of winning.

Figure 8.2 and Figure 8.3 shows the result for a population size of 50, while Figure 8.4 and
Figure 8.5 illustrates the results gathered for a population size of 100.

It could appear that a population size of 50 is insufficient for covering the problem space
effectively. Both Figure 8.2 and Figure 8.3 shows that the GA appears to converge at an
optimum in less than 100 generations. Observing Figure 8.4 and Figure 8.5 it appears that
having a population size of 100 does not suffer from the same problem - New better perform-
ing chromosomes are continuously found, even at the later stages of the tests. Of course, it
is difficult to determine with much certainty if this is truly an optimum, or instead just an
effect of a relatively small number of generations.
Worth noting, though, is that Figure 8.2 seems to have converged at a better performing op-
timum than any other test. This makes it difficult to make assumptions regarding the amount
of building blocks contained in the population as the population in this test could, theoret-
ically but unlikely, contain all building blocks. If the global optimum is indeed what was
found in this test, the maximum fitness of the population would, of course, never increase
regardless of the amount of remaining building blocks in the population.

8.3.2 Test 2 results

The results of test 2 looks promising. A total of 6 winning chromosomes were evolved, with
the best chromosome having a fitness of 1.6504. The test was run for 223 generations, and
appears to be close to converging as can be seen in Figure 8.6.

The results of test 2 indicates that it is possible to evolve strategies that can defeat the
Nexus14 strategy, played by the opponent. However, more research is needed in order to
confirm if genetic algorithms can be used to evolve commercial grade AIs.

64

8.3. Test Results

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

Fi
tn

e
ss

Generation

Highest Fitness Average Fitness

Figure 8.2: The results of Test 1, using a sample size of 10, winners size 2 and losers size 2.
The population size is 50. The final average fitness for test 1 is 0.259100754 , and the

fitness for the best chromosome in the population is 0.428488.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

Fi
tn

e
ss

Generation

Highest Fitness Average Fitness

Figure 8.3: The results of Test 1, using a sample size of 20, winners size 5 and losers size 5.
The population size is 50. The final average fitness for test 1 is 0.316675386, and the

fitness for the best chromosome in the population is 1.70661.

65

Chapter 8. Results

0

0.2

0.4

0.6

0.8

1

1.2

1

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1

1
0

1

1
1

1

1
2

1

1
3

1

1
4

1

1
5

1

1
6

1

1
7

1

1
8

1

1
9

1

2
0

1

2
1

1

2
2

1

2
3

1

2
4

1

2
5

1

Fi
tn

e
ss

Generation

Highest Fitness Average Fitness

Figure 8.4: The results of Test 1, using a sample size of 10, winners size 2 and losers size 2.
The population size is 50. The final average fitness for test 1 is 0.28967961, and the fitness

for the best chromosome in the population is 1.05297.

0

0.2

0.4

0.6

0.8

1

1.2

1

1
0

1
9

2
8

3
7

4
6

5
5

6
4

7
3

8
2

9
1

1
0

0

1
0

9

1
1

8

1
2

7

1
3

6

1
4

5

1
5

4

1
6

3

1
7

2

1
8

1

1
9

0

1
9

9

2
0

8

2
1

7

2
2

6

Fi
tn

e
ss

Generation

Highest Fitness Average Fitness

Figure 8.5: The results of Test 1, using a sample size of 20, winners size 5 and losers size 5.
The population size is 100. The final average fitness for test 1 is 0.26040578, and the

fitness for the best chromosome in the population is 1.08333.

66

8.4. Conclusion

The Winning Chromosomes

This section contains a qualitative analysis of the two strongest chromosomes. All referred
listings in this section are the raw database entries which can be found in Appendix .4.

The first chromosome, Listing 1, appears to be heavily invested in producing units as quickly
as possible, as all its buildings constructed can produce units (except for the Photon cannon,
which is static defence). Listing 2 confirms this as a relative large number of early Zealots
and Reaver units are made.

The second best performing chromosome shown in Listing 3 and Listing 4 rushes relatively
quickly for a strong air unit, the Protoss Carrier (and less powerful, but cheaper, Scout). Once
the Carrier is unlocked, the chromosome continues to build 2 more Stargates allowing for
the construction of 3 Carriers simultaniously. The Nexus14 strategy is a strategy which goes
for a quick economic expansion and has a very weak (if any) army early on. As such the chro-
mosome can survive with just a few early Zealots while preparing to build higher technology
units.

8.4 Conclusion

While many more experiments should be done to confirm the the observations made so far,
the results are promising. The biggest success is the fact that the GA was able to produce
winning chromosomes. Whether or not the winners are caused by clever GA parameter se-
lection or not is difficult to say, but it does indicate that the chromosome encoding chosen
is sound.
The GA was only evolved against a single strategy, but the results suggests that a GA may
also be successful in winning against other strategies. Indeed, a very competitive bot may
be created by evolving powerful chromosomes against the most popular strategies used by
opponents. Of course this approach entails a classification problem in which the strategy
of the opponent must be identified before a specific counter-strategy chromosome can be
executed. This classification is left as future work.

67

Chapter 8. Results

Figure 8.6: The results of test 2, using a sample size of 20, winners size 5 and losers size 5.
The population size is 100. The final average fitness for test 2 is 0.3942, and the fitness for

the best chromosome in the population is 1.6504.

68

CHAPTER 9

PERSPECTIVE

This chapter attempts to put the results of our tests from Chapter 8 into perspective, by
discussing how this may be used in practice. During this project, the practical application of
our thesis has always been the main motivation, thus it is important to document the vision
which motivated taking this path for our thesis.

9.1 Our vision with Adaptive AI

When the topic Adaptive AI first came up, our vision was improve the game experience, from
the point of view from the player, when playing against an AI.

We decided to focus on Genetic Algorithms (GAs) and Real-Time Strategy (RTS) games, and
found that GAs can satisfy this vision in multiple ways. The way we imagined GAs could
be used for improving game experience in RTS games, was that if we could create an AI
that could always beat the player, we could forever provide a challenge to this player - at
least until the player reaches a skill level equal to the global optimum in the game. The AI
difficulty would then have to be scaled down to meet the level of the player, such that the
player would not lose confidence from always loosing.

In a practical scenario, e.g. when developing an AI for a brand new RTS game, this usage
of GAs require that the GA would have found the global optimum before the game is re-
leased. Because the GAs require players to play against, in order to evolve, that approach
is unlikely. Instead the GA could be run over time, combining the results from every player
playing against the AI, thus the GA would always attempt to follow, and beat, the trends
of the player community, thereby adapting to the players. Our hope was that this adaption
would make it more interesting for the player to play against an AI, and by that make the
game more valuable.

69

Chapter 9. Perspective

9.2 Using our results

For obvious reasons the whole vision of Section 9.1 could not be covered in one thesis, as
it raises so many different research questions. Instead we concentrated on developing an
AI that utilizes a GA in the domain Starcraft, and by that tries to satisfy a small part of this
vision. For this reason, the practical usage of our results is related to the efficiency of using
a genetic algorithm as basis for an AI.

The tests of running different configurations of the genetic algorithm, offers promising re-
sults as shown in Chapter 8. The genetic algorithm successfully evolved chromosomes
(strategies) that could win against the AI with a static strategy, and although the AI did not
run for more than a week, the tendency of the fitness value was increasing for each configu-
ration, which might mean that over time the win-rate of the genetic AI would also increase.
Thus our results can be used to show that the usage of genetic algorithms, for evolving AIs
that plays a commercial grade real-time strategy game, has potential.

70

Part V

Conclusion and Reflection

CHAPTER 10

CONCLUSION

Two major contributions were made during this project. Not only did we do an exploration
of the feasibility of using genetic algorithms to evolve challenging AIs for commercial grade
RTS games, we also produced a contribution to the The Brood War Application Program-
ming Interface (BWAPI) community by releasing the source code of Cromartie. Cromartie is
expected to replace Standard Add-on Library for BWAPI (BWSAL) as the de-facto standard
for newly developed bots, as it provides a stable and modular implementation of frequently
requested functionality such as building placement, scouting, micro management, database
support, etc.

Starcraft has been used as our domain as it is a good representation of a commercial grade
game, and is a frequently used platform for doing research. Two different approaches for
evolving challenging AIs has been proposed. The first approach is to use a traditional ge-
netic algorithm, an the second approach is to use an EDA based genetic algorithm. Only the
first approach has been tested in this project, leaving the second approach to future work.

In order to test whether it is possible to use the GA to evolve a challenging AI, two tests
where performed. One test with the purporse of determining the best parameters for the GA,
and another test using the best parameters found in the previus test. The first test showed
that a population size of 100, a sampleSize of 20 and a winner/loser size of 5 yielded the
best results. However, due to the stochastic nature of the GA and the limited time available
to run the tests, it is not certain that these settings are the best.
In the last test, the GA was able to evolve multiple winning chromosomes, indicating that
the chromosome encoding used is reasonable - It is indeed able to represent a powerful
strategy. The best chromosome scored a fitness value of 1.6504, which indicates the chro-
mosome scored significantly higher than its opponent.

These results shows that it is possible to use a GA to evolve strategies that can beat an
opponent playing the same static strategy used in the project. However additional research
is required to determine if more flexible bots can be developed using the GA approach. Fu-
ture work in this direction is covered in Chapter 11.
In addition to this, the area of EDA was explored as a promising alternative to GA. Unfor-

73

Chapter 10. Conclusion

tunately a significant amount of development time would have to be dedicated to explore
the effectiveness of using an EDA for evolving Starcraft strategies and as such this is left as
future work (See Chapter 11).

74

CHAPTER 11

FUTURE WORK

In the beginning of and during this project, a lot of interesting topics and questions arose.
We were not able to cover every one of these topics during our master thesis thus it is left
for future work. This chapter describes these topics and where to go from here.

11.1 More genetic algorithm hypotheses

Early in this project, two additional hypotheses regarding genetic evolution of StarCraft
strategies were considered. The first one considers whether it is possible to evolve a strat-
egy that can win against multiple strategies, in contrast to evolving just against one single
strategy. The second one is about the relationship between an evolved strategy against a sin-
gle strategy and an evolved strategy against multiple strategies. The two additional genetic
algorithm hypotheses are:

Hypothesis 2. It is possible to use a genetic algorithm to evolve a Starcraft strategy, that can
consistently win against three other strategies.

Hypothesis 3. The strategy evolved against a single other strategy has a higher win ratio than
the strategy evolved against multiple strategies, when playing against the same
single strategy.

11.1.1 Testing the first hypothesis

The first hypothesis is tested similarly to Hypothesis 1 from Section 1.1, by repeatedly making
the genetic algorithm AI play against three strategies, alternating between playing against
each of them, on the same map in each game instance. The state of the genetic algorithm
AI will be checked regularly, in order to monitor whether the win-rate or the average fitness
of the population increases.

75

Chapter 11. Future Work

11.1.2 Testing the second hypothesis

For the purpose of this section, let the chromosome with the highest win-rate, evolved while
testing Hypothesis 1 from Section 1.1, be referred to as EvolSingle and let the chromosome
with the highest win-rate evolved while testing Hypothesis 2, be referred to as EvolMulti.
There should be evolved a EvolSingle chromosome for each of the three AIs used to evolve
the EvolMulti. The second additional hypothesis is then tested by letting each of the three
EvolSingle chromosomes play a predefined number of games against the single AI that is
used when evolving them. Then letting EvolMulti play three rounds of the same number of
games against the three strategies. So if we defined the number of games to be 100, then
the AIs will play games as follows:

Player 1 ...evolved against Player 2 Number of games
EvolSingle Strategy 1 Strategy 1 100
EvolSingle Strategy 2 Strategy 2 100
EvolSingle Strategy 3 Strategy 3 100
EvolMulti All Three Strategy 1 100
EvolMulti All Three Strategy 2 100
EvolMulti All Three Strategy 3 100

If the average win-rate λS of the games played by each of the EvolSingle chromosomes, is
higher than the average win-rate λM of the games played by EvolMulti against the three
static strategies, the hypothesis is confirmed in this scenario. Formally this is defined by:

WL(x) =

{
1 x is a winning game
0 x is a losing game

(11.1)

win-rate =
1

n

n∑
i=1

WL(i) (11.2)

whereWL(x) is a win-lose function that returns 1 if the game x is won, and 0 if the game x
is lost. The win-rate describes the fraction (or percentage) of winning games out of n games.

Si = win-rate for EvolSingle against strategy i (11.3)

Mi = win-rate for EvolMulti against strategy i (11.4)

λS =
1

n

n∑
i=1

Si (11.5)

λM =
1

n

n∑
i=1

Mi (11.6)

76

11.2. Improve the genetic algorithm by using EDA

Hypothesis 3: λM < λS (11.7)

where n is the number of strategies, and i correspond to a single strategy.

11.1.3 How to test

The setup and environment used for testing the hypothesis from Section 1.1 (See Section 8.1)
can directly be applied to testing these two hypotheses. It is only a matter of configuring the
tests, running the algorithm and waiting for a result.

11.2 Improve the genetic algorithm by using EDA

In Chapter 5 the theory about Estimation of Distribution Algorithms (EDAs) where covered.
During this project, these techniques were not tested as our focus was with the standard
genetic algorithm. By using these techniques though, it might be possible to improve how
close to being optimal, an evolved strategy can get, while lowering the convergence time in
the process.

One approach to improving our AI using EDAs would be to use the Bayesian Optimization
Algorithm (BOA) introduced by Martin Pelikan et al[20]. This algorithm uses techniques for
modelling multi-variate data using Bayesian networks, to create an estimate of a probability
distribution of promising solutions. The challenge is then to incorporate this algorithm into
our AI and into using the chromosomes encoding used for our genetic algorithm.

11.3 Player Modelling and Adaptive AI

This thesis project started by considering adaptive AI in general, which eventually led to
investigating genetic algorithms. Before that an early topic was investigated, which consid-
ered how the AI’s (evolved) strategies would be used in a real life scenario involving human
players. This led to the following assumption:

Hypothesis 4. It is possible to learn a model of a player, such that the strategy of that player
can be consistently guessed correctly, before the game begins. This guess can
then be used by the AI to select one strategy, that consistently wins against the
guessed strategy.

The reason for wanting to guess the strategy of the player, before starting the game, is that
we want to know which strategy the AI should use as a counter, as early as possible.

77

Chapter 11. Future Work

11.3.1 Testing Hypothesis 4

In order to test this hypothesis, a few additional assumptions about the case is made. It is
assumed that the player only knows the strategies that the genetic algorithm has evolved a
counter strategy against. This is in order for the AI to select the appropriate evolved strategy,
once the guess about the player strategy is made. We also assume that the player does not
switch strategy during the game. This is in order to only being required to the guess of the
player’s strategy once per game, right before the game begins, and not while the game is
running. This means that it is possible to build a player profile, solely from replay data, thus
making it easier to test the hypothesis.

The guess about the opening strategy of the player is made based on the model of the
player. Our thought on how to create this model, is to use a probability distribution, over the
probability of the player selecting each of the strategies known by the AI. This player model
could initially (before the player plays his first game) be built by performing data mining on
the latest community replays and building the probability distribution on that. Then after
each game played by the player, the probability distribution would be updated to reflect the
strategy used in that game. This means that the player model would initially model the
community, but over time (games played) converge towards being primarily a distribution of
the strategies used by the player.

Another consideration is how the AI selects the counter strategy once the player strategy is
guessed. One approach is to simply select the strategy evolved against the guessed strategy.
Another approach would be to use the player model to store howwell the player does against
certain counter strategies, and use this information to select the counter strategy most likely
to win, statistically.

Finally a player model could contain a list of tactics and a probability for each tactic, for each
player. Against a player with a tendency to prefer a specific tactic, the bot could prepare an
optimal defense ahead of time.

11.3.2 Difficulty scaling

This hypothesis considers how to get the AI to win as much as possible, but in order for an
AI to be fun, it should be able for the player to win against it. Thus another future work to
consider is how scale the difficulty of the AI, to suit the skill and experience of the player.

78

BIBLIOGRAPHY

[1] Steffan Bo Pallesen, Nikolaj Dam Larsen, Mikkel Graarup Jensen. Labelling Starcraft
Replays Using Cluster Analysis. 2012 (see pp. 9, 13, 15, 16).

[2] Pieter Hubert Marie Spronck. Adaptive game AI. UPM, Universitaire Pers Maastricht,
2005 (see pp. 10, 17).

[3] Marc JV Ponsen, Héctor Mu∼noz-Avila, Pieter Spronck, and DavidWAha. “Automatically
acquiring domain knowledge for adaptive game AI using evolutionary learning”. In:
Proceedings Of The National Conference On Artificial Intelligence. Vol. 20. 3. Menlo Park,
CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999. 2005, p. 1535 (see pp. 10,
37, 42, 63).

[4] Team Liquid Liquipedia: Protoss Build Orders. Url: http://wiki.teamliquid.net/
starcraft/Category:Protoss_Build_Orders (visited on 06/06/2013) (see
pp. 11, 57).

[5] The Wargus Team. Wargus. Url: http://wargus.sourceforge.net/index.
shtml (visited on 06/06/2013) (see pp. 15, 16).

[6] BWAPI: An API for interacting with Starcraft: Broodwar (1.16.1). Url: http://code.
google.com/p/bwapi (visited on 06/06/2013) (see pp. 15, 47).

[7] BWAPI: Manual. Url:http://code.google.com/p/bwapi/wiki/BWAPIManual
(visited on 06/06/2013) (see p. 15).

[8] Pieter Spronck, Marc Ponsen, Ida Sprinkhuizen-Kuyper, and Eric Postma. “Adaptive
game AI with dynamic scripting”. In: Machine Learning 63.3 (2006), pp. 217–248 (see
pp. 16, 41).

[9] StarCraft AI Competition 2012. Url:http://webdocs.cs.ualberta.ca/~cdavid/
starcraftaicomp/media.shtml (visited on 06/06/2013) (see pp. 17, 47).

[10] Andrew Smith. Skynet: A Starcraft: Broodwar Bot using BWAPI. Url: http://code.
google.com/p/skynetbot (visited on 06/06/2013) (see pp. 17, 45, 47).

[11] Dave Churchill. StarCraft AI Competition UAlbertaBot. Url: https://code.google.
com/p/ualbertabot/ (visited on 06/06/2013) (see p. 17).

[12] Alberto Uriarte. NOVA, a Starcraft bot. Url: http://nova.wolfwork.com/ (visited
on 06/06/2013) (see p. 17).

79

http://wiki.teamliquid.net/starcraft/Category:Protoss_Build_Orders
http://wiki.teamliquid.net/starcraft/Category:Protoss_Build_Orders
http://wargus.sourceforge.net/index.shtml
http://wargus.sourceforge.net/index.shtml
http://code.google.com/p/bwapi
http://code.google.com/p/bwapi
http://code.google.com/p/bwapi/wiki/BWAPIManual
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/media.shtml
http://webdocs.cs.ualberta.ca/~cdavid/starcraftaicomp/media.shtml
http://code.google.com/p/skynetbot
http://code.google.com/p/skynetbot
https://code.google.com/p/ualbertabot/
https://code.google.com/p/ualbertabot/
http://nova.wolfwork.com/

Bibliography

[13] Jay Young, Fran Smith, Christopher Atkinson, Ken Poyner, and Tom Chothia. “SCAIL:
An integrated Starcraft AI system”. In: Computational Intelligence and Games (CIG), 2012
IEEE Conference on. IEEE. 2012, pp. 438–445 (see p. 18).

[14] Peter Bentley. “Generic evolutionary design of solid objects using a genetic algorithm”.
PhD thesis. 1996 (see p. 21).

[15] Michael LaLena. Traveling Salesman Problem Using Genetic Algorithms. Url: http://
www.lalena.com/AI/Tsp/ (visited on 06/06/2013) (see p. 21).

[16] David J Montana and Lawrence Davis. “Training feedforward neural networks using
genetic algorithms”. In: Proceedings of the eleventh international joint conference on ar-
tificial Intelligence. Vol. 1. San Mateo, CA. 1989, pp. 762–767 (see p. 21).

[17] Brad L Miller and David E Goldberg. “Genetic algorithms, selection schemes, and the
varying effects of noise”. In: Evolutionary Computation 4.2 (1996), pp. 113–131 (see
p. 23).

[18] Pravir Chawdhry, Rajkumar Roy, and Raj Pant. Soft computing in engineering design and
manufacturing. Springer Verlag, 1998 (see pp. 24, 26).

[19] Stanley Gotshall and Bart Rylander. “Optimal population size and the Genetic Algo-
rithm”. In: Population 100.400 (2008), p. 900 (see pp. 27, 63).

[20] Martin Pelikan. “Bayesian Optimization Algorithm”. In: Hierarchical Bayesian Optimiza-
tion Algorithm. Springer, 2005, pp. 31–48 (see pp. 28, 30, 34, 77).

[21] Heinz Mühlenbein. “The equation for response to selection and its use for prediction”.
In: Evolutionary Computation 5.3 (1997), pp. 303–346 (see p. 29).

[22] Gilbert Syswerda. “Simulated crossover in genetic algorithms”. In: foundations of Ge-
netic Algorithms 2 (1993), pp. 239–255 (see p. 34).

[23] Shumeet Baluja. Population-based incremental learning. a method for integrating genetic
search based function optimization and competitive learning. Tech. rep. DTIC Document,
1994 (see p. 34).

[24] Georges R. Harik, Fernando G Lobo, and David E. Goldberg. “The compact genetic algo-
rithm”. In: Evolutionary Computation, IEEE Transactions on 3.4 (1999), pp. 287–297 (see
p. 34).

[25] Heinz Mühlenbein, Jürgen Bendisch, and H-M Voigt. “From recombination of genes to
the estimation of distributions II. Continuous parameters”. In: Parallel Problem Solving
from Nature—PPSN IV. Springer, 1996, pp. 188–197 (see p. 34).

[26] SK Shakya, JAW McCall, and DF Brown. “Updating the probability vector using MRF
technique for a Univariate EDA”. In: Proceedings of the Second Starting AI Researchers’
Symposium. Vol. 109. 2004, pp. 15–25 (see p. 34).

[27] Jeremy S De Bonet, Ch L Isbell, Paul Viola, et al. “MIMIC: Finding optima by estimat-
ing probability densities”. In: Advances in neural information processing systems (1997),
pp. 424–430 (see p. 34).

80

http://www.lalena.com/AI/Tsp/
http://www.lalena.com/AI/Tsp/

Bibliography

[28] Shumeet Baluja and Scott Davies. “Fast probabilistic modeling for combinatorial op-
timization”. In: Proceedings of the National Conference on Artificial Intelligence. JOHN
WILEY & SONS LTD. 1998, pp. 469–476 (see p. 34).

[29] Martin Pelikan and Heinz Mühlenbein. “The bivariate marginal distribution algorithm”.
In: Advances in Soft Computing. Springer, 1999, pp. 521–535 (see p. 34).

[30] P Larranaga, R Etxeberria, JA Lozano, JM Pena, JM Pe, et al. “Optimization by learning
and simulation of Bayesian and Gaussian networks”. In: (1999) (see p. 34).

[31] Heinz Muhlenbein and Thilo Mahnig. “The factorized distribution algorithm for addi-
tively decomposed functions”. In: Evolutionary Computation, 1999. CEC 99. Proceedings
of the 1999 Congress on. Vol. 1. IEEE. 1999 (see p. 34).

[32] Georges Harik. “Linkage learning via probabilistic modeling in the ECGA”. In: Urbana
51.61 (1999), p. 801 (see p. 34).

[33] Thomas Bäck. Evolutionary algorithms in theory and practice: evolution strategies, evolu-
tionary programming, genetic algorithms. Oxford University Press on Demand, 1996 (see
p. 41).

[34] The Terminator. Url: http://www.imdb.com/title/tt008824 (visited on
06/06/2013) (see p. 46).

[35] Terminator: The Sarah Connor Chronicles. Url: http://www.imdb.com/title/
tt0851851 (visited on 06/06/2013) (see p. 46).

[36] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns: ele-
ments of reusable object-oriented software. Boston, MA, USA: Addison-Wesley Longman
Publishing Co., Inc., 1995. ISBN: 0-201-63361-2 (see pp. 50, 51).

[37] Mike McShaffry and David Graham. Game coding complete. Charles River Media, 2009
(see p. 51).

[38] Don Clugston. Member Function Pointers and the Fastest Possible C++ Delegates. Url:
http://www.codeproject.com/Articles/7150/Member-Function-
Pointers-and-the-Fastest-Possible (visited on 06/06/2013) (see p. 51).

[39] Team Liquid Liquipedia: Nexus14. Url:http://wiki.teamliquid.net/starcraft/
14_Nexus_(vs._Terran) (visited on 06/06/2013) (see p. 57).

81

http://www.imdb.com/title/tt008824
http://www.imdb.com/title/tt0851851
http://www.imdb.com/title/tt0851851
http://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
http://www.codeproject.com/Articles/7150/Member-Function-Pointers-and-the-Fastest-Possible
http://wiki.teamliquid.net/starcraft/14_Nexus_(vs._Terran)
http://wiki.teamliquid.net/starcraft/14_Nexus_(vs._Terran)

Bibliography

82

Part VI

Appendix

.1. Trap data 1

.1 Trap data 1

10101 = 1
10011 = 1
11000 = 2
11001 = 1
11101 = 0
10100 = 2
11011 = 0
10110 = 1
11100 = 1
11010 = 1
10010 = 2
11110 = 0
10001 = 2
10111 = 0
11111 = 5
10000 = 3

Average = 1.375

.2 Trap data 2

01011 = 1
01001 = 2
00000 = 4
00001 = 3
00010 = 3
01111 = 0
01000 = 3
01101 = 1
00110 = 2
01100 = 2
00011 = 2
00111 = 1
01010 = 2
00100 = 3
01110 = 1
00101 = 2

85

Average = 2.0

.3 Search space

Sta
te1

Sta
te2a

Nex
us Sta

te2b

Ass
imil

ator

Sta
te2c

For
ge

Sta
te2d

Gat
ewa

y

Sta
te3a

Nex
us

Sta
te3b

Ass
imil

ator Sta
te3cFor

ge

Sta
te3d

Gat
ewa

y

Sta
te3a

a

Nex
us

Sta
te3b

bAss
imil

ator Sta
te3c

c

For
ge

Sta
te3d

d

Gat
ewa

y

Sta
te3a

aa

Nex
us

Sta
te3b

bbAss
imil

ator Sta
te3c

cc

For
ge

Sta
te3d

dd

Gat
ewa

y

Sta
te3e

Pho
ton

Can
non

Sta
te3a

aaa

Nex
us

Sta
te3b

bbb

Ass
imil

ator Sta
te3c

ccc

For
ge

Sta
te3d

ddd

Gat
ewa

y

Sta
te3e

e

Cyb
ern

etic
s C

ore

Figure 1: Search space tree for 3 states.

86

.4. Strong chromosomes data

.4 Strong chromosomes data

1 ChromosomeID| ChromosomeFitness | Building name
2 --
3 68|16.504|Protoss Assimilator
4 68|16.504|Protoss Gateway
5 68|16.504|Protoss Cybernetics Core
6 68|16.504|Protoss Robotics Facility
7 68|16.504|Protoss Gateway
8 68|16.504|Protoss Forge
9 68|16.504|Protoss Robotics Facility
10 68|16.504|Protoss Stargate
11 68|16.504|Protoss Photon Cannon
12 68|16.504|Protoss Robotics Facility

Listing 1: Building gene order of strong chromosome 1

1 ChromosomeID| ChromosomeFitness | UnitName | UnitCount
2 --
3 68|16.504|Protoss Zealot|8
4 68|16.504|Protoss Zealot|4
5 68|16.504|Protoss Reaver|7
6 68|16.504|Protoss Corsair|9
7 68|16.504|Protoss Scout|4
8 68|16.504|Protoss Zealot|8
9 68|16.504|Protoss Shuttle|1
10 68|16.504|Protoss Shuttle|1
11 68|16.504|Protoss Corsair|4

Listing 2: Combat gene order of strong chromosome 1

1 ChromosomeID| ChromosomeFitness | Building name
2 --
3 14|15.193|Protoss Gateway
4 14|15.193|Protoss Cybernetics Core
5 14|15.193|Protoss Assimilator
6 14|15.193|Protoss Robotics Facility
7 14|15.193|Protoss Stargate
8 14|15.193|Protoss Nexus
9 14|15.193|Protoss Citadel of Adun
10 14|15.193|Protoss Fleet Beacon
11 14|15.193|Protoss Assimilator
12 14|15.193|Protoss Stargate

Listing 3: Building gene order of strong chromosome 2

1 ChromosomeID| ChromosomeFitness | UnitName | UnitCount
2 --
3 14|15.193|Protoss Zealot|1
4 14|15.193|Protoss Zealot|5
5 14|15.193|Protoss Carrier|3
6 14|15.193|Protoss Observer|7
7 14|15.193|Protoss Scout|7

87

8 14|15.193|Protoss Scout|9
9 14|15.193|Protoss Shuttle|1
10 14|15.193|Protoss Scout|9
11 14|15.193|Protoss Scout|4

Listing 4: Combat gene order of strong chromosome 2

88

	I Introduction
	Introduction
	Problem Statement

	Domain: Starcraft
	Mechanics of Starcraft
	Our use of Starcraft
	Development Platform

	Related Work
	Pre-specialization project
	Automatically Acquiring Domain Knowledge
	Existing bots

	II Evolutionary Algorithms
	Genetic Algorithms
	Selection Mechanisms
	Genetic Operators
	Choice of Population Size

	Estimation of Distribution Algorithms
	Motivation
	General EDA
	Onemax Problem
	Trap Problem
	Probabilistic Linkage Learning

	III Evolving Starcraft Strategies
	Genetic Algorithm for Starcraft
	Chromosome Encoding
	Selection Mechanism
	Fitness Function
	Genetic Operators
	Search space approximation

	Cromartie implementation
	Tasks of Cromartie
	Skynet
	Modifications and Additions
	Genetic Algorithm Cromartie
	Static Strategy Cromartie

	IV Results and Discussion
	Results
	Test Setup
	Test Plan
	Test Results
	Conclusion

	Perspective
	Our vision with Adaptive AI
	Using our results

	V Conclusion and Reflection
	Conclusion
	Future Work
	More genetic algorithm hypotheses
	Improve the genetic algorithm by using EDA
	Player Modelling and Adaptive AI

	VI Appendix
	Trap data 1
	Trap data 2
	Search space
	Strong chromosomes data

