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Summary

In this article we introduce recharge automata, a variant of priced timed au-
tomata with only one resource variable. In this formalism, the resource level
can be decreased at a given rate while delaying in locations and instantaneously
increased to its maximum when taking discrete transitions.

We focus on recharge automata with only one clock and want to find out
whether for a given automaton there exists an infinite time-diverging run such
that the resource never goes below 0. For this purpose we present a normal form
that divides the automaton into segments, in which it is possible to freely move
between locations. We then abstract such automaton segments by making use of
an adaptation of energy functions. These take as input the current energy when
entering the automaton segment and compute the highest possible energy we
can end up with when leaving the segment.

The adaptation of energy functions to this formalism results in functions that
are non-decreasing and may have some points of discontinuity. We propose a rep-
resentation for energy functions, describe maximum and composition operations
and show how these operations can be computed in polynomial time.

We then use energy functions in the construction of an abstraction of recharge
automata, called energy function automata, where each transition abstracts a
segment of the recharge automaton. Energy change is represented on the transi-
tions through the before-mentioned functions and time information is given by
a boolean value.

By graph analysis we can find all reachable cycles of a certain size in the
resulting automaton and find out whether one of them can be repeated infinitely
while not using more than the available energy. This results in an NP-algorithm.
We further show that the problem can be solved in polynomial time if we restrict
to so-called flat recharge automata, where each location is only part of one cycle.
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Abstract. We consider recharge automata, a variant of weighted/priced
timed automata with a single, bounded cost variable that can be de-
creased when delaying in locations and fully recharged when taking dis-
crete transitions. Given such an automaton with just one clock, we in-
vestigate whether there exists an infinite time-divergent run where the
resource always stays above zero. Our method includes a notion of en-
ergy functions for abstracting runs by only considering the initial and
final energy. By means of these, we provide a polynomial time algorithm
for solving the problem for ’flat’ recharge automata and prove that the
general problem for any automaton is in NP.

1 Introduction

Pollution and the greenhouse effect have made energy consumption a hot topic
in climate discussions in the last years [1,11,2]. Several examinations of the state
of the environment over the last decades have made it clear that we, among other
things, need to put great attention to how much energy our electronic equipment
consumes. This has lead to research into how to reduce energy consumption in
most areas, from big infrastructures to domestic appliances [17,20,18,19,13].

In the area of software verification, priced timed automata [6,5] have been
proposed as a new formalism based on timed automata [4]. They are used for
modelling real-time systems with clock variables monitoring time and cost vari-
ables representing resource consumption and production. Their use has made it
possible to reason about and verify properties regarding resource consumption
of software systems before creating them and as such make guarantees regarding
for instance their energy efficiency. They can be used to optimize or compare
systems fulfilling the same or similar purposes and choose between them based
on how much energy they consume in the process. Examples of such require-
ments could be how long a given system can run based on given start conditions
or what these conditions have to be to ensure the existence of some desired runs.

In the present article we introduce a variant of this formalism, called recharge
automata. These are priced timed automata with a resource which is consumed
as time passes and can be instantly recharged on transitions when performing
specific actions. The intuition is to simulate the energy used by for instance
electric vehicles which originates from a battery. This has a given capacity and
can at any time be replaced with one that is fully charged. All actions and states
consume energy at a known rate and it is not possible to obtain an energy level
below zero.
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Fig. 1: Automaton modelling a business man travelling between his home, his customer
and the headquarter in his electric car.
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Fig. 2: Energy consumption over time during a run of the business man automaton.

We will be concerned with the problem of finding infinite time-diverging
runs in recharge automata with one clock. This can for instance be relevant
for manufacturers of electric cars with requirements regarding energy efficiency
and an option of immediate resource refill. Examples could be the mobile phone
industry when deciding on battery capacity of devices, such that they can be sure
to have energy for a day or more. Other areas include the issue of determining
the placement of battery replacement station for electric cars, such that they do
not risk running out of energy when going for long distances.

As an example consider the recharge automaton in Fig. 1. It models a business
man that each day has to travel to the headquarter of his firm (qHQ). When he
arrives, he gets an assignment regarding one of his customers, which he visits
afterwards (qC). After having completed his work, he finally can head back
home (qHO). The business man always travels by his electric car, and has the
possibility of changing the car’s battery both on the way to work and at the
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firm’s headquarters. When he decides to change the battery on the way to work
he needs to travel to a nearby battery station (qS), which takes him at least 3
time units. The different rates on the locations depend on the type of road taken
and the speed limit. A rate of zero represents that the car is parked and thereby
is not using any energy. Fig. 2 represents the energy level of the battery of the
car while the business man moves between the different locations, assuming that
the battery has a capacity of 45. The problem is now to find out whether the
business man can continue this travelling pattern without ever requiring more
energy than available.

We present a polynomial time algorithm solving the problem for flat recharge
automata, a subclass where each location can be part of at most one cycle and
requiring guards on transitions to be of a specific form. Moreover, an NP algo-
rithm is presented for the general case. The solution is based on an adaptation
of energy functions, which were originally presented in [8].

The article is structured as follows. In Section 2 we go through other work
related to recharge automata. Section 3 and 4 define recharge automata as well as
the problem considered. Section 5 defines energy functions, some operations on
them and how to represent them. Section 6 then describes how these can be used
to abstract part of a recharge automaton. This leads to the abstraction of a whole
automaton, in Section 7, where energy function automata and their construction
are presented. Finally, Section 8 explains how this automaton can provide us with
a solution to the problem and Section 9 rounds off with a conclusion and future
work.

2 Related Work

Automata with resources and instantaneous resets have been investigated be-
fore by Wang et. al. [3]. In their work, they define R-automata as finite state
machines with an arbitrary amount of counters. The value of each counter can
be increased, reset or left unchanged at every transition. The authors look into
the universality problem in regards to determining an upper bound that permits
all executions and prove that it can be done in 2-EXPSPACE. Within our for-
malism the corresponding problem would be to decide on an upper bound value
such that all runs can be performed without ever running out of energy.

The concept of bounding the resources has been studied in-depth for weighted
timed automata. When only focusing on a resource that is not allowed to have
a value less than zero [10], finding infinite runs has been proved undecidable for
models with four clocks, while a time-limited run makes the problem decidable
in NEXPTIME. Another version of the problem where an initial energy level
is to be found, such that an infinite or time-limited run can be performed, is
PSPACE-complete [10].

Furthermore, different kinds of optimization problems for weighted timed
automata have been considered. For example, reaching a goal location while
incurring the least cost has been proven decidable [6,5], and an implementation
based on the extension of zones with prices was presented in [16]. In models with
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both costs and rewards an optimal strategy could imply the cost per reward to be
minimized [7]. For models where the present costs are more relevant than future
costs, or where there is a growing probability that the object modelled will stop
running (e.g. component failure), optimal infinite runs can be calculated using
discount factors [14]. The last two problems are proven to be PSPACE-complete
[7,14].

When considering a constrained resource, the main problems include deter-
mining whether either one or all runs of a given automaton can be performed
while keeping the resource level between a lower and either a strict or weak up-
per bound, meaning that energy increasing behaviour after reaching the bound
only maintains the current level [9]. For one clock and a lower and weak upper
bound the problem is decidable in polynomial time. Though the infinite run
problem for recharge automata could be seen as a similar problem, their result
cannot be used here, since recharge automata have discrete updates on transi-
tions, meaning that optimal delays can require spending time in more than one
location.

An interesting approach to path abstraction has appeared in [8], where en-
ergy functions are used for one-clock priced timed automata with both positive
and negative weights on locations and transitions. Their purpose is to create
a mapping between an initial resource value and the maximal resource value
that can be obtained along a given path. Using them, it has been shown that
the reachability and the infinite run problem can be solved in EXPTIME. We
will also make use of this technique, though with a few differences regarding
the properties of the functions and how to construct them. Note that our ap-
proach cannot be used for this formalism since recharge automata do not have
arbitrarily weighted transitions and the locations can only have negative rates.

3 Preliminaries

A recharge automaton is a timed automaton extended with a continuous variable
that models the consumption of some resource along an execution of the system
under consideration. The system execution starts with a fully charged resource
which can be used when delaying in locations by specifying a rate. The model
may include a recharge along some transitions that brings the level of the resource
back to its maximum.

In our definition of a recharge automaton we focus on energy as the resource
of interest. We define the set C to be the set of clocks and Φ(C) to be the set
of clock constraints φ defined by the grammar φ ::= c ./ k | φ1 ∧ φ2, where
c ∈ C, k ∈ Z and ./∈ {<,≤,=,≥, >}. Moreover, let Ψ(C) be the set of clock
constraints ψ defined by the new grammar ψ ::= c � k | ψ1 ∧ ψ2, where c ∈ C,
k ∈ Z and �∈ {<,≤}.

4



Definition 1 (Recharge Automaton). A recharge automaton is a tuple A =
(Q, q0, B,C, I, rate, ∆), where

− Q is a finite set of locations,
− q0 ∈ Q is the initial location,
− B ∈ N0 is a maximum energy level,
− C is a finite set of clocks,
− I : Q→ Ψ(C) is a function assigning an invariant to each location,
− rate : Q→ N0 is a rate function and
− ∆ ⊆ Q× Φ(C)× {ε, r} × 2C ×Q is a transition relation.

The transition relation allows to move from one location to another when the
clocks satisfy the guard of the transition and the invariants of the locations in-
volved. Also, during any transition the energy may be recharged and any number
of clocks reset. A transition (q, g, z,R, q′) is called reset transition if R 6= ∅ and
it is called recharge transition if z = r.

Example 1. Assuming a resource bound of 45, the recharge automaton in
Fig. 1 can be formally described as A = (Q, qHO, 45, {c}, I, rate, ∆), where:

Q = {qHO, qS , qHH , qHQ, qHC , qC , qCH}

I(qHO) = c ≤ 12 I(qS) = c ≤ 12 I(qHH) = c ≤ 6

I(qHQ) = c ≤ 6 I(qHC) = c ≤ 8 I(qC) = c ≤ 6

I(qCH) = c ≤ 6

rate(qHO) = 0 rate(qS) = 3 rate(qHH) = 5

rate(qHQ) = 0 rate(qHC) = 7 rate(qC) = 2

rate(qCH) = 5

∆ = {(qHO, c ≤ 12, ε, {c}, qS), (qS , c ≥ 3, r, {c}, qHH),

(qHO, c ≤ 12, ε, {c}, qHH), (qHH , c ≥ 3, ε, ∅, qHQ),

(qHQ, c ≥ 3, r, ∅, qHC), (qHC , c = 8, ε, {c}, qC),

(qC , c ≥ 3, ε, {c}, qCH), (qCH , c ≥ 3, ε, {c}, qHO)}

Let A = (Q, q0, B, C, I, rate, ∆) be a recharge automaton. We define a path
π in A to be an alternating sequence of locations and transitions

q1
g1,z1,R1−−−−−→ q2

g2,z2,R2−−−−−→ . . .
gn−1,zn−1,Rn−1−−−−−−−−−−−→ qn,

such that for all i, 1 ≤ i < n, (qi, gi, zi,Ri, qi+1) ∈ ∆.
We will further on consider a subclass of recharge automata called one-clock

closed recharge automata.
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Definition 2 (One-Clock Closed Recharge Automaton). A one-clock
closed recharge automaton A = (Q, q0, B, C, I, rate, ∆) is a recharge automaton
where C = {c} and where all guards and invariants are non-strict.

See Fig. 1 for an example of such an automaton.
We define the semantics of a recharge automaton A = (Q, q0, B,C, I, rate, ∆)

by a labelled transition system JAK = (S, s0,→). A state s ∈ S is a tuple (q, v, e)
where q ∈ Q is a location, v : C → R≥0 is a valuation over the clocks and
e ∈ [0, B] is the remaining energy. The initial state is s0 = (q0, v0, B), where v0
is the valuation mapping each clock to 0.

We write v′ = v[R] to denote the valuation v′ where all clocks in the set R
have been reset to 0 and all other clocks have the same value as in v. Finally, we
denote by v + d, d ∈ R≥0, the valuation where the value of each clock has been
incremented by d.

Transitions between states in the labelled transition system JAK are of two
kinds:

− Delay transitions: (q, v, e)
d−→ (q, v + d, e′), where d ∈ R≥0 and it holds that

v + d |= I(q) and e′ = e− rate(q) · d, e′ ≥ 0.

− Discrete transitions: (q, v, e)
t→ (q′, v′, e′), where t = (g, z,R) and

(q, g, z,R, q′) ∈ ∆, v |= g, v′ = v[R] and v′ |= I(q′). Furthermore, if z = r
then e′ = B, else e′ = e.

An infinite run Γ of the recharge automaton A is an infinite sequence on the

form s1
d1→ s′1

t1→ s2
d2→ s′2

t2→ s3
d3→ . . ., where for all i, i ≥ 1, si ∈ S.

We will also use the notion of a run segment γ to denote a finite part of an

infinite run, si
di→ s′i

ti→ . . .
tj−1→ sj

dj→ s′j . Similarly, a simple run segment is a run
segment in which no location is visited more than once.

Given an infinite run Γ , let time(Γ ) =
∞∑
i=0

di denote the time elapsed during

the run.

6



Example 2. The following shows an infinite run of the automaton in Fig. 1,
assuming that the bound is 45:

Γ = (qHO, [c = 0], 45)
5.5−−→ (qHO, [c = 5.5], 45)

c≤12,ε,{c}−−−−−−−→ (qHH , [c = 0], 45)

3−→ (qHH , [c = 3], 30)
c≥3,ε,∅−−−−−→ (qHQ, [c = 3], 30)

2.9−−→ (qHQ, [c = 5.9], 30)
c≥3,r,∅−−−−−→ (qHC , [c = 5.9], 45)

2.1−−→ (qHC , [c = 8], 30.3)
c=8,ε,{c}−−−−−−→ (qC , [c = 0], 30.3)

3.1−−→ (qC , [c = 3.1], 24.1)
c≥3,ε,{c}−−−−−−→ (qCH , [c = 0], 24.1)

3−→ (qCH , [c = 3], 9.1)
c≥3,ε,{c}−−−−−−→ (qHO, [c = 0], 9.1)

3−→ (qHO, [c = 3], 9.1)
c≤12,ε,{c}−−−−−−−→ (qS , [c = 0], 9.1)

3−→ (qS , [c = 3], 0.1)
c≥3,r,{c}−−−−−−→ (qHH , [c = 0], 45)

3−→ . . .

Note that time(Γ ) =∞.

4 Infinite Run Problem

We will now define the problem to be solved:

Problem 1. Given a recharge automaton A = (Q, q0, B,C, I, rate, ∆), does
there exist an infinite run Γ ofA starting in (q0, v0, B) such that time(Γ ) =∞?

We will call this Γ a winning run. Similarly, we will define a winning state.

Definition 3 (Winning State). Let A = (Q, q0, B,C, I, rate, ∆) be a recharge
automaton. A state (q, v, e) is said to be winning if there exists an infinite run
Γ of A starting from (q, v, e) such that time(Γ ) =∞.

In the following, we will see how a winning state will also be winning if we
increase the available energy of the state, meaning that any energy level equal
to or above the energy level of the state will make it winning.

Lemma 1. Let A = (Q, q0, B,C, I, rate, ∆) be a recharge automaton. If (q, v, e)
is a winning state of A then every state (q, v, e′) such that e′ ≥ e is winning as
well.

A proof of this lemma can be found in our previous report on the subject [12].
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Example 3. The run Γ from Example 2 is winning. Moreover, any state s in
Γ is also winning, since we can just remove the run segment from the start
state to s to obtain an infinite run starting from s. Additionally, consider
the state (qHQ, [c = 3], 37). By Lemma 1 this is a winning state, since the
state (qHQ, [c = 3], 30) of Γ is winning.

We will now focus on one-clock closed recharge automata. Given a clock
constraint φ, let ub(φ) be the highest clock value that satisfies φ. Moreover let
true denote the guard c ≥ 0. Then we can define the following normal form for
a recharge automaton.

Definition 4 (Recharge-Free Cycle Normal Form). A one-clock closed
recharge automaton A = (Q, q0, B, {c}, I, rate, ∆) is in recharge-free cycle nor-
mal form (rfcNF), if

− there does not exist any path q1
g1,z1,R1−−−−−→ q2

g2,z2,R2−−−−−→ . . .
gn,zn,Rn−−−−−−→ q1 where

qi 6= qj whenever i 6= j, and for all i, 1 ≤ i ≤ n, Ri = ∅ and
− for all transitions (q, g, z,R, q′) ∈ ∆, we have that either
• R = ∅, I(q) = I(q′) and g = true or
• R = {c} and either g = “c = ub(I(q))” or g = true.

Since only transitions with a reset can require the clock to have a specific
value, this normal form allows a run to freely move between locations that are
connected by transitions without a clock reset. Moreover all cycles in the au-
tomaton have at least one clock reset, allowing us to order the transitions that
can be taken on a path between two reset transitions.

These properties enable us to abstract all paths between two reset transitions,
by means of functions that return the highest energy that can be achieved at
the end of any of these paths. These functions will be introduced in the next
section.

Theorem 1. Given a one-clock closed recharge automaton A it is possible to
construct in polynomial time a one-clock closed recharge automaton in rfcNF A′
such that there exists a winning run in A′ iff there exists a winning run in A.

Once again the proof can be found in our previous work [12].

Example 4. In Fig. 3 the path qHH
c≥3,ε,∅−−−−−→ qHQ

c≥3,r,∅−−−−−→ qHC
c=8,ε,{c}−−−−−−→ qC

of the recharge automaton in Fig. 1 is shown in rfcNF. Since the automaton
grows quite a lot by this conversion, we have chosen only to show this part
of the automaton.

In the rest of the article, we will only consider one-clock closed recharge
automata in rfcNF.
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Fig. 3: Part of the automaton from Fig. 1 in rfcNF.
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Fig. 4: Paths abstracted by energy functions.

5 Energy Functions

In this section we will define energy functions. Their purpose is to abstract a
set of paths between two locations with a clock reset only on the last transition,
as shown in Fig. 4. Given the energy level at the source location, the functions
return the highest energy level that can be obtained at the target location by
any run along one of the abstracted paths.

Recall that all locations along the paths, except the last one, have the same
invariant and all transitions, except the last one, have true guards. By choosing
as source a location with an incoming reset transition, we then know that all
paths will have to delay the same amount of time as the value of the clock will
be zero at the start of the run and will have to reach the value required to satisfy
the guard on the last transition.

Because of the equal invariants and true guards, it is possible to distribute
the delay among any of the locations on the paths. In this way we can then
abstract all paths in an automaton by making an energy function for each pair
of locations with an incoming reset transition. The illustration in Fig. 4 shows
which paths will be abstracted by energy functions.

An example of an energy function can be seen on Fig. 5. As shown, the
domain of the functions is [0,B], while the codomain includes also the element
⊥ (dashed line in the graph), meaning that the given energy is not enough to
reach the target location along any path. The function itself is non-decreasing

ein

eout

~m[1] = ~u[1]

~̀[2]

~m[2]

~u[2]

~̀[3] = ~m[3] = ~u[3]

~̀[4]

~m[4] = ~u[4]
~̀[5] = ~m[5]

10 B= 20

10

B= 20

Fig. 5: An energy function.
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and can be discontinuous in some points, while in the intervals between these
points the function is continuous and linear.

To represent energy functions, we can therefore divide the domain of the
function into intervals in which the function is linear. Observe that each interval
and point can be seen as a coarse region. Following this idea, we can observe
each interval as a region and each endpoint of an interval as a region of only one
value.

Because of this partitioning, each endpoint of an interval will delimit three
regions (or two in case of the first and last interval). We will therefore have three
possibly different function values for each endpoint: the lowest value delimiting
the region before the point, the middle value for the region at the point, and the
highest for the region after the point.

We use this in our representation of the energy functions by having one
vector ~x for the domain values and three vectors ~̀, ~m and ~u representing the
corresponding lower, middle and upper codomain values for a given domain
value.

Definition 5 (Energy Function - Representation and Semantics).
Given a bound B ∈ N0, an energy function is represented by a tuple R =
(~x, ~m, ~u, ~̀) where

− ~x = 〈x1, x2, . . . , xn〉 is an increasing finite sequence of numbers such that for
all i, 1 ≤ i ≤ n− 1, xi ∈ Q, 0 ≤ xi ≤ B and xn = B,

− ~m = 〈m1,m2, . . . ,mn〉, ~u = 〈u1, u2, . . . , un−1〉, ~̀ = 〈`2, `3, . . . , `n〉 are finite
sequences of numbers such that for all i, 1 ≤ i ≤ n − 1, mi, ui, `i+1,mn ∈
Q, 0 ≤ mi, ui, `i,mn ≤ B, mi ≤ ui ≤ `i+1 ≤ mi+1.

The representation R defines an energy function fR : [0, B]→ [0, B]∪{⊥} such
that:

fR(x) =


⊥ if x < x1

mi if x = xi, 1 ≤ i ≤ n
ui + (`i+1 − ui) x−xi

xi+1−xi if xi < x < xi+1, 1 ≤ i ≤ n− 1

Note that ~̀ starts with `2, since there is no region before x1 and as such the
first region including more than one value ends in x2.

We use FR to denote the set of all representations of energy functions and
F to denote the set of all energy functions.

Example 5. Given B = 20, we can construct a representation R =
(~x, ~m, ~u, ~̀) for the energy function in Fig. 5, where:

~x = 〈4, 9, 12, 16, 20〉 ~m = 〈0, 6, 12, 20, 20〉

~u = 〈0, 8, 12, 20〉 ~̀= 〈4, 12, 16, 20〉
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Since energy functions abstract a set of paths, to be able to solve the infinite
run problem it will be necessary to choose the most profitable between different
paths leading to the same location and to concatenate a path with another to
make a longer path. Therefore, we will introduce maximum and composition
operators and show that energy functions are closed under these operators.

5.1 The Maximum Operator

The operator Max : F × F → F takes two energy functions with the domain
[0, B], for some B ∈ N0, and returns the pointwise maximum of them. Assume
that ⊥ < n for all n ∈ R. Then Max is defined as follows:

Max (fR1
, fR2

)(x) = max{fR1
(x), fR2

(x)} for all x ∈ [0, B]

Construction
Given two representations of energy functions, R1 = (~x1, ~m1, ~u1, ~̀1) and

R2 = (~x2, ~m2, ~u2, ~̀2), it is possible to construct a representation R s.t. fR =
Max (fR1

, fR2
).

First, let elem(~a) denote the set containing all elements of a vector ~a.

elem(~a) = {~a[i] | 1 ≤ i ≤ |~a|}

When taking the pointwise maximum, note that when one function is giving rise
to maximum values, the other function can only take over either when we move
to a new region with a new linear function (for example point ~m[3] in Fig. 6(e)),
or within the same region if the two functions have only one point of intersection
in the region (for example point ~m[2] in Fig. 6(c)). Let Sinter be the set of these
points of intersection and let Smax be the set containing all relevant points:

Sinter =

{
x | fR1

(x) = fR2
(x) and ∃δ > 0 such that ∀ε, δ ≥ ε > 0,

fR1
(x+ ε) 6= fR2

(x+ ε) and fR1
(x− ε) 6= fR2

(x− ε)
}

Smax = Sinter ∪ elem(~x1) ∪ elem(~x2)

Then we can construct R by calling the function Maximum shown in Algo-
rithm 1.

The idea behind the construction is always to compare the points of the
two function representations and overtaking them directly if we are at a domain
value defined in ~x1 or ~x2. If not, the value is found by interpolation. Note that
we only look at the relevant vector indices for each vector. In the case of ~̀ we
define the values ~̀1[1] and ~̀2[1] to be ⊥, to avoid special cases when considering
the first value in one of the vectors. This is not relevant in the same way for ~u,
since both functions end in the same point by definition, and thus the undefined
vector values will never be accessed by the algorithm.
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Algorithm 1: The algorithm calculates the energy function representation
of the pointwise maximum between the functions represented by R1 and
R2.

Maximum(R1, R2)

Input - R1 = (~x1, ~m1, ~u1, ~̀1), R2 = (~x2, ~m2, ~u2, ~̀2)

Output - R = (~x, ~m, ~u, ~̀) such that fR =Max (fR1 , fR2)

− Let ~x be the increasing sequence containing all elements from the set Smax.
− For all i, 1 ≤ i ≤ |~x|, ~m is defined as follows:

~m[i] = max{fR1(~x[i]), fR2(~x[i])} (1)

− For all i, 1 ≤ i ≤ |~x| − 1, ~u is defined as follows, where 1 ≤ j ≤ |~x1| − 1 and
1 ≤ k ≤ |~x2| − 1:

~u[i] =


max{~u1[j], fR2(~x[i])} if ~x[i] = ~x1[j] and ~x[i] 6∈ elem(~x2) (2a)

max{fR1(~x[i]), ~u2[k]} if ~x[i] = ~x2[k] and ~x[i] 6∈ elem(~x1) (2b)

max{~u1[j], ~u2[k]} if ~x[i] = ~x1[j] = ~x2[k] (2c)

fR1(~x[i]) otherwise (it is an intersection) (2d)

− Finally, let ~̀1[1] = ~̀
2[1] = ⊥. Then, for all i, 2 ≤ i ≤ |~x|, ~̀ is defined similarly,

where 1 ≤ j ≤ |~x1| and 1 ≤ k ≤ |~x2|:

~̀[i] =


max{~̀1[j], fR2(~x[i])} if ~x[i] = ~x1[j] and ~x[i] 6∈ elem(~x2) (3a)

max{fR1(~x[i]), ~̀2[k]} if ~x[i] = ~x2[k] and ~x[i] 6∈ elem(~x1) (3b)

max{~̀1[j], ~̀2[k]} if ~x[i] = ~x1[j] = ~x2[k] (3c)

fR1(~x[i]) otherwise (it is an intersection) (3d)

13
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ein

eout

10 B=20

10

B=20
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(c) The function
Max (fR1 , fR2) = fR.
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(d) The function fR3 .
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~̀[3]

~m[3], ~u[3]

10 B=20
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(e) The function
fR′ =Max (fR, fR3).

Fig. 6: Example of the maximum between energy functions.

Example 6. Consider the two energy functions fR1
and fR2

in Fig. 6(a) and
6(b). The function Max (fR1 , fR2) is shown in Fig. 6(c). Its representation

is given by R = (~x, ~m, ~u, ~̀). Furthermore, we have the representation R3 =

(~x3, ~m3, ~u3, ~̀3) shown in Fig. 6(d).

~x = 〈0, 10, 20〉 ~x3 = 〈4, 15, 20〉
~m = 〈4, 10, 20〉 ~m3 = 〈0, 20, 20〉
~u = 〈4, 10〉 ~u3 = 〈4, 20〉
~̀= 〈10, 20〉 ~̀

3 = 〈6, 20〉

The representation R′ of the energy function Max (fR, fR3
), shown in Fig.

6(e), is defined as follows:

~x = 〈0, 10, 15, 20〉 ~m = 〈4, 10, 20, 20〉

~u = 〈4, 10, 20〉 ~̀= 〈10, 15, 20〉

14



Let the size of the representation of an energy function, |R|, be equal to the
number of entries in the vector ~x, since this is related to the number of entries
in the other vectors. By doing this we abstract from the actual size of the values
used within the vectors and assume that they have a constant size. We can then
state the following theorem.

Theorem 2. Let R1 and R2 be representations of energy functions and let R =
Maximum(R1,R2). Then fR =Max(fR1

, fR2
) and R can be constructed in time

O(|R1|+ |R2|).
The proof is shown in Appendix A on page 47.

5.2 The Inverse of an Energy Function

When defining the composition operator, we will need to be able to get the
inverse of an energy function, since the domain of one function will be directly
related to the codomain of another. Given a monotone function f : R→ R and
a number x ∈ R, the inverse of f is defined as a partial function f -1(y) = x if
f(x) = y and there does not exist x′ 6= x where f(x) = f(x′).

In our case, we need to consider that the domains are limited, meaning that
there are codomain values to which there are no corresponding domain value.
Therefore, the inverse of an energy function fR, where R = (~x, ~m, ~u, ~̀) is a
function f -1

R : ([0, B] ∪ {⊥})→ ([0, B] ∪ {⊥}) defined as:

f -1
R (y) =



~x[1] if y = ~m[1]

~x[i] if y = ~m[i] and y 6= ~u[i− 1],

1 < i ≤ |~x|
~x[i] + (~x[i+ 1]− ~x[i]) y−~u[i]

~̀[i+1]−~u[i]
if ~u[i] < y < ~̀[i+ 1],

1 ≤ i ≤ |~x| − 1

⊥ otherwise

Naturally, we can only define the inverse energy function for injective function
intervals. That is, if the slope of fR is zero in an interval, the value of f -1

R will be
⊥ for the values of the interval. An example of the inverse of an energy function
can be seen in Fig. 7(a) and Fig. 7(b).

Proposition 1. Let R = (~x, ~m, ~u, ~̀) be the representation of an energy function.
Then for all x ∈ [~x[1], B] such that there does not exist x′ 6= x where fR(x) =
fR(x′), it holds that f -1

R (fR(x)) = x. Otherwise, f -1
R (fR(x)) = ⊥.

5.3 The Composition Operator

We define the composition operator ◦ : F × F → F as:

(fR1 ◦ fR2)(x) = fR2(fR1(x)) for all x ∈ [0, B]

where the domain of the two functions is [0, B], for some B ∈ N0.
We will start by taking a look at the algorithm and then afterwards explain

it by a case analysis.
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(a) The function fR1 .
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(b) The function f -1
R1
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(c) The function fR2 .
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(d) The function fR = fR1 ◦ fR2 .

Fig. 7: The inverse of an energy function is shown in 7(a) and 7(b). Function composi-
tion of the functions in 7(a) and 7(c) is shown in 7(d)

Construction
Given two energy function representations R1 and R2, we can construct a

representation R s.t. fR = fR1
◦ fR2

.

Let R1 = (~x1, ~m1, ~u1, ~̀1) and R2 = (~x2, ~m2, ~u2, ~̀2). Moreover, let Scomp be
the set of all points from ~x1, where the corresponding value in ~m1 is higher than
or equal to the first value in ~x2 (values lower than ~x2[1] would lead to undefined
values). Furthermore, we add to Scomp all points obtained by applying the inverse
of fR1 to the values in ~x2, since fR2 is applied last when calculating fR1 ◦ fR2 .

Scomp = {x | x = ~x1[i], ~m1[i] ≥ ~x2[1], 1 ≤ i ≤ |~x1|} ∪
{x | x = f -1

R1
(x2) 6= ⊥, x2 ∈ elem(~x2)}
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Example 7. The set Scomp for the composition of fR1
and fR2

looks as
shown below. The first set contains all values of ~x1, while the second set
contains the values from f -1

R1
.

Scomp = {0, 4, 8, 12, 18} ∪ {0, 16} = {0, 4, 8, 12, 16, 18}

As can be seen on Fig. 7(d), these are exactly the values of ~x.

At all points in Scomp there is a change in the linear functions used, and
thereby there is a change in the composed function. Based on this set we con-
struct the composed function fR1 ◦ fR2 as done in Algorithm 2.

Algorithm 2: The algorithm calculates the representation of the energy
function fR1

◦ fR2
.

Composition(R1, R2)

Input - R1 = (~x1, ~m1, ~u1, ~̀1), R2 = (~x2, ~m2, ~u2, ~̀2)

Output - R = (~x, ~m, ~u, ~̀) such that fR = fR1 ◦ fR2

− The vector ~x is the increasing sequence containing all elements in Scomp.
− For all i, 1 ≤ i ≤ |Scomp|, we have:

~m[i] = fR2(fR1(~x[i])) (4)

− For all i, 1 ≤ i ≤ |Scomp| − 1, ~u is defined as follows, where 1 ≤ j < |~x1| − 1 and
1 ≤ k < |~x2| − 1:

~u[i] =



fR2(~u1[j]) if ~x[i] = ~x1[j] and ~u1[j] 6∈ elem(~x2) (5a)

~m2[k] if ~x[i] = ~x1[j]

and ~u1[j] = ~x2[k], ~u1[j] = ~̀
1[j + 1] (5b)

~u2[k] if ~x[i] = ~x1[j]

~u1[j] = ~x2[k], ~̀1[j + 1] 6= ~u1[j] (5c)

~u2[k] if ~x[i] 6∈ elem(~x1), ~x[i] = f -1
R1

(~x2[k]) (5d)

− Likewise, for all i, 2 ≤ i ≤ n, ~̀ is defined as follows, where 1 < j ≤ |~x1| and
1 < k ≤ |~x2|:

~̀[i] =



fR2(~̀1[j]) if ~x[i] = ~x1[j] and ~̀1[j] 6∈ elem(~x2) (6a)

~m2[k] if ~x[i] = ~x1[j],

and ~̀1[j] = ~x2[k], ~u1[j − 1] = ~̀
1[j] (6b)

~̀
2[k] if ~x[i] = ~x1[j],

and ~̀1[j] = ~x2[k], ~u1[j − 1] 6= ~̀
1[j] (6c)

~̀
2[k] if ~x[i] 6∈ elem(~x1), ~x[i] = f -1

R1
(~x2[k]) (6d)
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To better understand the construction of fR1
◦ fR2

, we will need to consider
how the functions behave. If we take a look at Fig. 7, we can observe several of
these cases by observing selected points, which we will use to give an intuition
of the construction shown in Algorithm 2.

Let R1 = (~x1, ~m1, ~u1, ~̀1), R2 = (~x2, ~m2, ~u2, ~̀2) and let the representation of

the composition of fR1 and fR2 be R = (~x, ~m, ~u, ~̀). Then consider the following
cases of the algorithm:

− Case 5a and 6a
Consider the point ~u[4] in Figure 7(d). We are considering a value of ~x that
was taken from ~x1, but where the corresponding value in ~u1 does not match
a value in ~x2. This means that fR2 is continuous in the point ~u1 and as such
the value of ~u can be found by interpolation. This point is handled by case
5a in Algorithm 2 and similarly we have case 6a for vector ~̀.

− Case 5b and 6b
The point ~u[3] is an example of this case. Here the slope of fR1 is zero in
the region ]~x1[3], ~x1[4][. As such the function reaches the value ~u1[3], which
corresponds to a domain value of fR2

in ~x2. Thus the function value of fR
is equal to the value of ~m2 at that domain value. This corresponds to case
5b in the algorithm and similarly we have case 6b for vector ~̀.

− Case 5c and 6c
A third example of function behaviour is shown in the computation of
point ~u[2]. Notice that the slope of fR1

is not zero in the region after ~x[2],
]~x1[2], ~x1[3][. This means that the value ~u1[2] is never actually obtained in
the region. Since ~u1[2] corresponds to a value in ~x2, we need the correspond-
ing value from ~u2 to delimit fR in the interval. As such, at ~x[2] we have
~u[2] = 12. This is what is taken care of in case 5c in the algorithm and

similarly we have case 6c for vector ~̀.

− Case 5d and 6d
Finally, we have point ~u[5] in Fig. 7(d). Here, ~x[5] was not present in ~x1,
but comes from a value in ~x2, namely ~x2[5]. Thus, we use the value ~u2[5]
for ~u[5]. Case 5d in the algorithm covers this circumstance and similarly we

have case 6d for vector ~̀.

Theorem 3. Let R1 and R2 be energy functions. We can in time O(|R1|+|R2|)
construct R = Composition(R1,R2), s.t. fR = (fR1 ◦ fR2).

The proof is shown in Appendix B on page 51.

Theorem 4. The class of energy functions is closed under Max and ◦.

Proof. Follows from Theorem 2 and Theorem 3. ut
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Fig. 8: Example of a time function based on an automaton segment.
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6 Construction of an Energy Function Representation

We will in this section only consider automata segments of the form shown in Fig.
8(a), where we have exactly two reset transitions, tin and tout, and all locations
are on some path from tin to tout. The intention is to use energy functions to
abstract these paths and in the end create an abstraction of a whole recharge
automaton, simplifying the task of finding infinite runs where the energy does
not go below zero at any time.

Formally, we call such an automaton segment a snippet from tin to tout. For
convenience, given a transition t, we will denote its source location by •t and its
target location by t•. Moreover, let Paths(tin, tout) denote the set of all paths
going from t•in to t•out, where tout is the last transition.

Paths(tin, tout) = {π | π = t•in
true,z1,∅−−−−−→ . . .

tout−−→ t•out}

Additionally, let loc(π) denote all locations and trans(π) denote all transitions
along the path π. We can then define a snippet of a recharge automaton as
follows.

Definition 6 (Snippet). Let A = (Q, q0, B,C, I, rate, ∆) be a one-clock
closed recharge automaton in rfcNF. A snippet S of A is a tuple
(tin, tout, Q

′, B′, C ′, k, rate′, ∆′) such that

− tin ∈ ∆ is a reset transition,
− tout ∈ ∆ is a reset transition such that Paths(tin, tout) 6= ∅,
− Q′ ⊆ Q such that Q′ = {q | q ∈ loc(π) for some π ∈ Paths(tin, tout)}.
− B′ = B,
− C ′ = C,
− k ∈ N0, where I(q) = “c ≤ k” for all q ∈ Q′ \ {t•out},
− rate′ = rate and
− ∆′ ⊆ ∆ such that ∆′ = {t | t ∈ trans(π) for some π ∈ Paths(tin, tout)}.

In the rest of this section we will only consider a fixed snippet S =
(tin, tout, Q,B,C, k, rate, ∆).

Let Runs(S) denote the set of all simple run segments starting in t•in with
valuation c = 0 and ending in some q ∈ Q.

Runs(S) = {γ | γ = (t•in, [c = 0], ein) −→ . . . −→ (q, v, e) is a simple run segment
in S}

The energy function for a snippet determines the maximal energy level that
can be obtained in t•out given the energy level in t•in along a run in Runs(S).

As we proved in Lemma 1, having a higher energy level in a given state allows
at least to take the same transitions as a similar state with lower energy. A higher
energy level may even allow to take new paths. For example, in Fig. 8(a) assume
that we only have the highlighted path from qin to qout and an initial energy of
0. Then we would only be able to spend 6 time units in q11 on the path to q16,
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which would not be enough to satisfy the guard of the transition tout. On the
other hand, having an initial energy level of 22 or above would allow to spend
17 time units in total and reach qout, allowing this run to continue from there.

Each snippet is potentially followed by another one, so when we leave the
current snippet, we prefer to do this with as high an energy level as possible.
In this way, the initial energy of the next snippet is increased and so is the
likelihood of being able to satisfy its guard. It is possible to maximize the energy
level by analysing the set of runs in the snippet and selecting the ones spending
most time while conserving energy. We will use a notion of time functions for
this purpose, to be defined in the next section.

6.1 Time Functions

In this section we consider a fixed snippet S = (tin, tout, Q,B,C, k, rate, ∆).
A time function f for a transition t ∈ ∆ takes as input an energy level

ein ∈ [0, B] and returns a value in R≥0, determining how much time can at
most be spent on a run starting in state (t•in, [c = 0], ein) and having t as last
transition.

ft(ein) = max

{ ∑
0<i≤j

di

∣∣∣ (t•in, [c = 0], ein) = (q1, v1, e1)
d1−→ (q1, v

′
1, e
′
1)

t1−→ . . .

dj−→ (qj , v
′
j , e
′
j)

t−→ (qj+1, vj+1, ej+1)

}

We are interested in maximizing the cumulative delay before the transition tout
along some path in the snippet to find out whether it is possible to satisfy the
guard of tout. If we can even obtain a cumulative delay that would satisfy this
guard before reaching a recharge transition, it means that there is a run that
reaches t•out with energy level B.

Observe as an example Fig. 8(a), where we can find out whether there exists
a run that reaches the location qout by means of a path in Paths(tin, tout) by
strategically determining where delays are performed along the path. For exam-
ple, arriving at location q7 with energy higher than zero means that we might as
well delay some time in q7 (or an earlier location) before taking the transition
t2, since it has a recharge. In general, we want to spend as much time as we
can to be able to satisfy the guard of tout, and since the energy at q9 will be
B independent of the energy level before taking the transition t2, we can spend
more time by delaying until the energy is zero. An example of this can be seen
on Fig. 9(a) and 9(b). Here, the evolution of the energy level of two runs, γ1 and

21



γ2, along the highlighted path of the snippet in Fig. 8(a) is shown.

γ1 = (q0, [c = 0], 30)
1−→ (q0, [c = 1], 25)

true,ε,∅−−−−−→ (q1, [c = 1], 25)

0−→ (q1, [c = 1], 25)
true,ε,∅−−−−−→ (q5, [c = 1], 25)

0−→ (q5, [c = 1], 25)

true,ε,∅−−−−−→ (q7, [c = 1], 25)
7−→ (q7, [c = 8], 11)

true,r,∅−−−−−→ (q9, [c = 8], 30)

0−→ (q9, [c = 8], 30)
true,ε,∅−−−−−→ (q11, [c = 8], 30)

3−→ (q11, [c = 11], 15)

true,ε,∅−−−−−→ (q16, [c = 11], 15)
1.5−−→ (q16, [c = 12.5], 0)

γ2 = (q0, [c = 0], 30)
1−→ (q0, [c = 1], 25)

true,ε,∅−−−−−→ (q1, [c = 1], 25)

0−→ (q1, [c = 1], 25)
true,ε,∅−−−−−→ (q5, [c = 1], 25)

0−→ (q5, [c = 1], 25)

true,ε,∅−−−−−→ (q7, [c = 1], 25)
12.5−−−→ (q7, [c = 13.5], 0)

true,r,∅−−−−−→ (q9, [c = 13.5], 30)

0−→ (q9, [c = 13.5], 30)
true,ε,∅−−−−−→ (q11, [c = 13.5], 30)

3−→ (q11, [c = 16.5], 15)

true,ε,∅−−−−−→ (q16, [c = 16.5], 15)
0.5−−→ (q16, [c = 17], 10)

c= 17,ε,{c}−−−−−−−−→ (qout, [c = 0], 10)

During the first run, the recharge transition t2 is taken after 8 time units, while
the energy is above zero, and the run is not able to reach the 17 time units
required to satisfy the guard of tout. However, if we delay before taking the
transition t2 until we reach zero energy, as done in the second run, it is possible
to obtain a total delay of 17 time units and even have some energy left when
taking tout.

The representation of time functions is similar to the representation of energy
functions. Though, since time functions are continuous, we need only two vectors.

Definition 7 (Time Function - Representation and Semantics).
Given a maximal energy level B ∈ N0 and a value k ∈ N0, a time function is
represented by a tuple T = (~x, ~y), where

− ~x = 〈x1, x2, . . . , xn〉 is an increasing sequence of values s.t. for all i, 1 ≤ i ≤
n, xi ∈ Q, 0 ≤ xi ≤ B, x1 = 0, xn = B,

− ~y = 〈y1, y2, . . . , yn〉 is a sequence of values s.t. for all i, 1 ≤ i ≤ n − 1,
yi, yi+1 ∈ Q, 0 ≤ yi, yi+1 ≤ k and yi < yi+1 if yi < k, else yi = yi+1.

The representation T defines a time function fT : [0, B]→ [0, k] such that:

fT (x) = yi + (yi+1 − yi)
x− xi

xi+1 − xi
where xi ≤ x ≤ xi+1, 1 ≤ i ≤ n− 1

As an example, the time function abstracting paths of Fig. 8(a) going from
tin to t3 is shown in Fig. 8(b). We can observe on the graph that ein has to be at
least 28 to satisfy the guard of tout. Each of the linear segments of the function
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Fig. 9: Two runs of the snippet in Fig. 8(a). Using all energy before taking a recharge
transition is desirable as it allows spending more time.

represents a path which is optimal for the given values of ein. We will explain
later how this function is actually constructed.

Similarly to the inverse of energy functions, we define the inverse of a time
function fT as a function f -1

T : [0, k]→ [0, B] ∪ {⊥}:

f -1
T (y) =


x1 if y ≤ y1
xi if y = yi 6= yi−1, 2 ≤ i ≤ |~x|
xi + (xi+1 − xi) y−yi

yi+1−yi if yi < y < yi+1, 1 ≤ i ≤ |~x| − 1

⊥ otherwise

Note that the semantics of the inverse of a time function is different from energy
functions with respect to undefined values. For example, the inverse of a time
function is defined for all values between 0 and the first defined function value
y1, while the inverse of an energy function returns ⊥ for those values.

Proposition 2. Let T = (~x, ~m) be a time function representation with domain
[0, B] for some B ∈ N0. Then, for all x ∈ [0, B] such that there does not exist x′ 6=
x where fT (x′) = fT (x), it holds that f -1

T (fT (x)) = x. Otherwise, f -1
T (fT (x)) =

min{x′ | fT (x′) = fT (x)}.
Proposition 3. Given a time function representation T = (~x, ~m), we have that
the time function fT is non-decreasing, continuous and piecewise affine.
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Similarly to energy functions, we need to be able to take the maximum be-
tween two time functions, fT1 and fT2 with the same domain [0, B] for some
B ∈ N0.

MaxT (fT1 , fT2)(x) = max{fT1(x), fT2(x)} for all x ∈ [0, B]

The representation for the time function MaxT (fT1 , fT2) can be constructed in
a similar way to constructing the maximum between energy functions. We will
call the algorithm constructing this representation MaximumT .

6.2 Energy Function

In this section we will only consider a fixed snippet S = (tin, tout, Q,B,C, k, rate,
∆).

All the runs in Runs(S) that include the transition tout start in a state where
the clock valuation is zero and are required to reach a value satisfying the guard
of tout. It is possible to calculate an energy function representing, for an energy
level ein ∈ [0, B], the maximal energy that can be obtained when satisfying
the guard and reaching t•out on any of the runs in Runs(S) starting in state
(t•in, [c = 0], ein). Since there may be infinitely many runs in this set, we will use
time functions to find the ones that lead to the highest energy level at t•out.

Let RT (S) be a function that returns a set of all recharge transitions in S.
We will construct a partial order of the recharge transitions included along any
path in Paths(tin, tout). This is possible since the snippet is a part of a recharge
automaton in rfcNF, where all cycles include a clock reset.

Definition 8 (Recharge Ordering). Let S = (tin, tout, Q,B,C, k, rate, ∆) be
a snippet. We define a recharge ordering � ⊆ (RT (S) ∪ {tin, tout})× (RT (S) ∪
{tin, tout}) s.t. t � t′, iff there exists a path π = t•

true,ε,∅−−−−−→ . . .
true,ε,∅−−−−−→ •t′ with

no recharge transitions in the snippet S.

Note that � is not transitive.
We will use the recharge ordering to calculate the energy function of a snippet

S. First of all, we calculate the time function representations abstracting paths
from tin to each of the recharge transitions t in the snippet. For simplicity, we
make use of an addition operator that adds a rational number n ∈ Q≥0 to a
time function fT .

(fT + n)(x) = fT (x) + n

Additionally, we introduce the operator ceil(fT , k) that ensures that the time
function only returns a value that is at most k, for some constant k ∈ N0. We
will use this operation to make sure that all values satisfy the invariant c ≤ k.

ceil(fT , k)(x) =

{
fT (x) if fT (x) < k

k otherwise

For details on how both of the operators can be implemented, refer to Appendix
C on page 55.
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Before we show how to construct the time functions that are relevant for the
snippet S, we define the function µ(t, t′) which for a snippet returns the minimal
rate of all locations on paths between t and t′ where no other transitions with
recharges are used:

µ(t, t′) = min{rate(q) | ∃π = •t
t−→ . . .

true,ε,∅−−−−−→ q
true,ε,∅−−−−−→ . . .

t′−→ t′•}

Algorithm 3: The algorithm calculates the time function representations
each abstracting paths from tin to a recharge transition t in the snippet S
and returns them in the array A.

TimeFunction(S)
Input - S = (tin, tout, Q,B,C, k, rate,∆)
Output - A, such that for all t ∈ RT (S) and for all ein ∈ [0, B],

fA[t](ein) = max

{ ∑
0<i≤j

di

∣∣∣ ∃ γ ∈ Runs(S) s.t. γ = (tin
•, vin, ein)

d1−→

(tin
•, v′in, e

′
in)

t1−→ . . .
dj−→ (•t, v′j , e

′
j)

}
1 begin
2 S = RT (S)
3 while S 6= ∅ do
4 if S \ {tout} 6= ∅ then
5 select a minimum element t ∈ S \ {tout}
6 else
7 t = tout

8 S = S \ {t}
9 if tin � t then

10 if µ(tin, t) > 0 then

11 A[t] = ceil
(

(〈0, B〉, 〈0, B
µ(tin,t)

〉), k
)

12 else
13 A[t] = (〈0, B〉, 〈k, k〉)

14 else
15 A[t] = (〈0, B〉, 〈0, 0〉)
16 forall the t′ ∈ RT (S) \ {tout} where t′ � t do
17 if µ(t′, t) > 0 then

18 temp = ceil
(
A[t′] + B

µ(t′,t) , k
)

19 A[t] = MaximumT (temp, A[t])

20 else
21 A[t] = (〈0, B〉, 〈k, k〉)

22 return A

In Algorithm 3 TimeFunction takes a snippet S as input and returns an
array A that records a time function for each recharge transition in the snippet.
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The algorithm initially finds all recharge transitions in the snippet and then
goes through them one by one following their recharge ordering. Note that special
caution is taken if tin = tout and tout ∈ RT (S), since there would not be a
minimal element in S. If there exists a path without recharge transitions between
tin and a transition with a recharge t, then a representation of a time function
returning the maximal delay that can be achieved on a run following such a path
is constructed. This is done based on the location with the minimal rate on one
of the considered paths.

All recharge transitions preceding t in the recharge ordering are then con-
sidered and, based on those, the maximal time that can be spent along paths
between tin and t is calculated. In the special case where there exists a minimal
rate of zero along one of the paths, a time function representation that returns
the maximal value allowed by the invariant for the entire domain is given. Finally,
the algorithm returns an array of time function representations A abstracting
paths between tin and all recharge transitions in the snippet.

Example 8. An example of the computations performed by the algorithm
on the automaton segment in Fig. 8(a) are shown in Fig. 10.

Initially, the time function abstracting the paths without recharge transi-
tions between tin and t1 is calculated. Since the minimal rate is rate(q5) = 3
and the bound is 30, the time function will be a straight line between
f(0) = 0 and f(30) = 10, as seen in Fig. 10(a). Likewise, the function
between tin and t2 is shown in Fig. 10(b). Since there is no path without
recharges going from tin to t3, the initial time function for t3 is undefined.

We can now construct the time function for paths going to t3 through t1.
The resulting function in Fig. 10(c) is constructed by taking the one from
Fig. 10(a) and raising its values by 5, since the lowest rate between t1 and
t3 is 6 and 30

6 = 5. Similarly, the lowest rate between t2 and t3 is 10, giving
the function shown in Fig. 10(d). When taking the maximum between the
functions of Fig. 10(c) and 10(d), we obtain the time function abstracting
the delay on paths from tin to t3. This is shown in Fig. 10(e).

Theorem 5. Let S = (tin, tout, Q,B,C, k, rate, ∆) be a snippet. Then the algo-
rithm TimeFunction(S) terminates and returns an array A, such that for all
t ∈ RT (S), and for all ein ∈ [0, B]

fA[t](ein) = max

 ∑
0<i≤j

di

∣∣∣ (tin
•, vin = [c = 0], ein)

d1−→ (tin
•, v′in, e

′
in)

t1−→ . . .

dj−→ (•t, v′j , e
′
j)

}
.

The proof is based on a loop invariant and is shown in Appendix D on page 57.
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(e) The final time function for t3.

Fig. 10: How to calculate a time function.
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Now we can use these time functions to calculate the energy function ab-
stracting the paths in Paths(tin, tout). When the guard of tout requires that
some time is spent in the snippet, we can use time functions to find out whether
it is possible to delay enough time to satisfy the guard. Using all of the avail-
able energy after the last recharge further increases the likelihood of satisfying
this guard. Therefore, given A as the result of TimeFunction(S) and a recharge
transition t 6= tout s.t. t� tout and µ(t, tout) > 0, we can construct the following
time function:

T = ceil

(
A[t] +

B

µ(t, tout)
, k

)
Then the smallest energy level for which it is possible to satisfy the guard of tout
will be first(t) = f−1T (k).

If it is possible to delay long enough to satisfy the guard before the last
recharge transition on a path to t•out, it is possible to reach t•out with the maximal
energy level B. For a given recharge transition t, we define last(t) to be either
the minimal value x such that fA[t](x) = k or B in case no such value exists:

last(t) =

{
f−1A[t](k) if f−1A[t](k) 6=⊥
B otherwise

We can now use Algorithm 4 to construct the energy function for the snippet
S. Initially, the time function array A is initialized by calling TimeFunction. We
then look for a proper representation of an energy function to abstract the paths
in Paths(tin, tout).

If the guard of tout is of the form “c = 0” or “true”, the algorithm returns a
representation that maps any energy level to either full energy in case there is a
recharge transition along the path or a “x = y” function in case there are none,
meaning that we end up with the same energy that we started with.

Otherwise, the guard of tout will have the form “c = k”, where k 6= 0. This
means that we are required to delay k time units before taking the transition
tout. If tout has a recharge, the energy function will return the maximal energy
whenever it can delay enough time to satisfy the guard. For all levels of energy
at which this delay cannot be performed the function will instead be undefined.

If tout does not have a recharge, we will consider all recharge transitions t
such that t � tout. Each of these transitions may be the last transition with a
recharge before taking tout. As we did when finding the time function, we look
for a location with minimal rate and calculate the final energy function based
on this and the time that we still need to wait to satisfy the guard of tout. The
function will then be defined in the function SetupVectors based on first(t). The

vectors ~m, ~u and ~̀ are set up similarly.
Note that R will not be defined if no input energy is enough to satisfy the

guard of tout in the snippet.
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Algorithm 4: Calculating the energy function abstracting a snippet.

EnergyFunction(S)
Input - S = (tin, tout, Q,B,C, k, rate,∆), where tout = (•tout, gout, zout, {c}, t•out)
Output - A representation R such that, if R is defined, it holds that for all

ein ∈ [0, B], fR(ein) = max
{
eout

∣∣∣ ∃ γ ∈ Runs(S) s.t. γ = (t•in, vin = [c = 0], ein)

−→ . . .
tout−−−→ (t•out, vout = [c = 0], eout)

}
1 begin
2 A = TimeFunction(S)
3 if gout = true or gout = “c = 0” then
4 if RT (S) 6= ∅ then
5 R = (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉) //fR(x) = B, x ∈ [0, B]

6 else
7 R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉) //fR(x) = x, x ∈ [0, B]

8 else if gout = “c = k” then
9 if tout ∈ RT (S) then

10 ein = f -1
A[tout]

(k)

11 if ein 6= ⊥ then
12 if ein 6= B then
13 R = (〈ein, B〉, 〈B,B〉, 〈B〉, 〈B〉) //fR(x) = B, x ∈ [ein, B]

else
R = (〈ein〉, 〈0〉, 〈 〉, 〈 〉) //fR(x) = 0 if x = B

14 else
15 if tin � tout then
16 if µ(tin, tout) = 0 then
17 R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉) //fR(x) = x, x ∈ [0, B]

18 else

19 T = ceil
(

(〈0, B〉, 〈0, B
µ(tin,tout)

〉), k
)

20 ein = f−1
T (k)

21 if ein 6= ⊥ then
22 if ein 6= B then

23 R =
(
〈ein, B〉, 〈0, B − k · µ(tin, tout)〉, 〈0〉,

〈B − k · µ(tin, tout)〉
)

//fR(x) = x− k · µ(tin, tout), x ∈ [ein, B]
24 else
25 R = (〈ein〉, 〈0〉, 〈 〉, 〈 〉) //fR(x) = 0 if x = B

26 forall the transitions t ∈ RT (S) \ {tout} where t� tout do
27 if µ(t, tout) = 0 then
28 R = (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉) //fR(x) = B, x ∈ [0, B]

29 else if first(t) 6= ⊥ then
30 Rt= SetupVectors(A[t], t)
31 if R is defined then
32 R = Maximum(R,Rt)
33 else
34 R = Rt

35 return R 29



Algorithm 5: The function SetupVectors which is used in Algorithm 4.

SetupVectors(T , t)

Input - T = (~xT , ~yT ), t ∈ ∆ such that fT (ein) = max

{ ∑
0<i≤j

di

∣∣∣
∃γ ∈ Runs(S) s.t. γ = (tin

•, vin = [c = 0], ein)
d1−→ (tin

•, v′in, e
′
in)

t1−→ . . .

dj−→ (•t, v′j , e
′
j)

t−→ (t•, vt, et)

}
Output - R = (~x, ~m, ~u, ~̀) such that fR(ein) = max

{
eout

∣∣∣ ∃γ ∈ Runs(S) s.t.

γ = (t•in, vin = [c = 0], ein)
d1−→ (t•in, v

′
in, e

′
in)

t1−→ . . .
tn−→ (•tout, vn, en)

dn−−→ (•tout, v
′
n, e
′
n)

tout−−−→ (t•out, vout = [c = 0], eout), there exists an i,

1 ≤ i ≤ n, where ti = t, and for all j, i+ 1 ≤ j ≤ n, zj 6= r

}
1 begin
2 ~x[1] = first(t)
3 i = 2
4 forall the j, 1 ≤ j ≤ |~xT | do
5 if ~x[1] < ~xT [j] < last(t) then
6 ~x[i] = ~xT [j]
7 i = i+ 1

8 ~x[i] = last(t)
9 forall the j, 1 ≤ j ≤ i do

10 ~m[j] = B − (k − fT (~x[j])) · µ(t, tout)

11 if last(t) 6= B then
12 i = i+ 1
13 ~x[i] = B
14 ~m[i] = B

15 forall the j, 1 ≤ j ≤ i− 1 do
16 ~u[j] = ~m[j]

17 forall the j, 2 ≤ j ≤ i do
18 ~̀[j] = ~m[j]

19 return (~x, ~m, ~u, ~̀)
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Fig. 11: Calculation of an energy function.
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Example 9. We can use Algorithm 4 to calculate the energy function repre-
senting the automaton segment shown in Fig. 8(a). The functions obtained
in this process are shown in Fig. 11. Moreover recall that the time functions
used by the algorithm were found in Example 8 and shown in Fig. 10.

Initially, we find out how much time we can spend by taking the path
going from tin through t1 to tout. Since we are recharged by t1 and have a
rate of 1 in q13, we can always reach the value of the invariant with an energy
bound of 30, as shown in Fig. 11(a). Of course delaying in q13 also means
that the final energy eout is going to be less that maximum. Depending on
the energy we start with, ein, it can be that we can wait in q5 before taking
t1 and thereby increasing eout, as shown in Fig. 11(b).

In the same way we can create the time and energy function for tout
when only considering t2 as shown in Fig. 11(c) and 11(d). When taking
the maximum between the two to find out which path leads to the highest
energy result (Fig. 11(e)) we notice that the function considering only t1
dominates during the entire domain.

The same calculations are made to find the time and energy function
for t3 in Fig. 11(f) and 11(g). Finally the maximum between the computed
energy functions is found in Fig. 11(h).

We will now state the correctness of EnergyFunction. Note that we consider
max of an empty set to return the bottom element, ⊥.

Theorem 6. Let S = (tin, tout, Q,B,C, k, rate, ∆) be a snippet and let R be the
energy function representation returned by EnergyFunction(S).

Then if R is defined, we have that for all ein ∈ [0, B]

fR(ein) = max

{
eout

∣∣∣ ∃γ ∈ Runs(S) s.t. γ = (t•in, vin = [c = 0], ein)
d1−→

(t•in, v
′
in, e

′
in)

t1−→ . . .
dj−→ (•tout, v

′
j , e
′
j)

tout−−→

(t•out, vout = [c = 0], eout)

}
If R is not defined, then there does not exist any run γ = (t•in, vin = [c =

0], ein) −→ . . .
tout−−→ (t•out, vout = [c = 0], eout) in Runs(S).

The proof is shown in Appendix E on page 60.

Lemma 2. Let S = (tin, tout, Q,B,C, k, rate, ∆) be a snippet. Then
EnergyFunction(S) runs in time O(|∆|3 + |∆|2 · |Q|).

The proof can be found in Appendix F on page 64.
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7 Energy Function Automaton

We will now create an abstraction over a one-clock recharge automaton A to find
winning runs in the automaton. This abstraction will have transitions annotated
with energy function representations, making it possible to represent a whole
set of paths between a source and a target location with a single transition.
Additionally, information on whether time is spent or not on the abstracted
paths is represented on the transitions.

Definition 9 (Energy Function Automaton). An energy function automa-
ton is a tuple E = (Q, q0, B,∆) where

− Q is a set of locations,
− q0 ∈ Q is the initial location,
− B ∈ N0 is the maximum energy level,
− ∆ : Q×FR×{0, 1}×Q is a set of transitions, each with an energy function

representation and an integer value which is 0 if no time is spent when taking
the transition and 1 otherwise.

Note that the time information on transitions can be seen as a boolean value.
We call a transition (q,R, b, q′) time-diverging if b = 1.

The semantics of an energy function automaton E = (Q, q0, B,∆) is a labelled
transition system JEK = (S, s0,→), where the states are S = {(q, e) | q ∈ Q, e ∈
R, 0 ≤ e ≤ B} and the start state is s0 = (q0, B). There is a transition (q, e)

R,b−−→
(q′, e′) if there exists (q,R, b, q′) ∈ ∆ such that fR(e) = e′.

A run ρ of an energy function automaton E is an infinite sequence of states

and transitions starting from s0: ρ = s0
R0,b0−−−−→ s1

R1,b1−−−−→ . . . .
We denote by time(ρ) the amount of transitions on which time is spent along

ρ.

time(ρ) =

∞∑
i=0

bi

A run ρ is winning if time(ρ) =∞.

7.1 Construction of an Energy Function Automaton

In the following we will describe how we can create an energy function automaton
E from a one-clock closed recharge automaton A in rfcNF, such that there exists
a winning run in E iff there exists a winning run in A.

Definition 10 (Start Normal Form). Given a one-clock closed recharge au-
tomaton A = (Q, q0, B,C, I, rate, ∆), we say that A is in start normal form
(sNF) if it is in rfcNF, rate(q0) = 0 and there exists only one transition t ∈ ∆,
such that •t = q0 and this is a reset transition.
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Without loss of generality assume that A is in sNF. Then we can use Algo-
rithm 7 to construct an energy function automaton preserving the answer to the
infinite run problem.

Note that an automaton in rfcNF can easily be transformed into one in sNF
by simply adding a new start location with rate 0 and with a reset transition to
the old start location.

Algorithm 6: Auxiliary function for EnergyFunctionAutomaton that may
only add one transition.

ExtraTransition(t, t′,∆E , snippets, rech)
Input - t, t′ are reset transitions in ∆,

∆E is a set of transitions,
snippets is the set of snippets to consider,
rech ∈ {true, false} depending on whether the path has gone through a
recharge transition yet

Output - ∆E ∪ T where T = {(t•, (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉), 1, t•)} iff there exists
a path from t• and back through snippets in snippets where at least
one includes a recharge transition and has the guard “c = 0” on tout
and the others do not include any recharge transition and have a true
guard or “c = 0” on tout, otherwise T = ∅,

snippets is the set of snippets not yet considered
1 begin
2 while ∃S = (tin, tout, QS , B,C, k, rate,∆S) ∈ snippets, where t′ = tin do
3 if ∃S ′ = (t′in, t

′
out, QS′ , B,C, k

′, rate,∆S′) ∈ snippets, where
t′ = t′in, RT (S ′) 6= ∅, gout = “c = 0” being gout the guard of t′out then

4 current= S ′

5 else
6 current = S
7 snippets = snippets \{current}
8 if RT (current) = ∅ and either gout = “c = 0” or gout = true where gout

is the guard of tout of the snippet current then
9 if tout = t and rech= true then

10 ∆E = ∆E ∪ {(t•, (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉), 1, t•)}
11 else
12 (∆E , snippets) = ExtraTransition(t, tout,∆E , snippets, rech)

13 else if gout = “c = 0” and RT (current) 6= ∅ then
14 if tout = t then
15 ∆E = ∆E ∪ {(t•, (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉), 1, t•)}
16 else
17 (∆E , snippets) = ExtraTransition(t, tout,∆E , snippets, true)

18 return (∆E , snippets)

Algorithm 7 takes as input a recharge automaton A = (Q, q0, B,C, I, rate, ∆)
in sNF. Initially it finds all transitions with a reset in the automaton A. The set
of locations of the energy function automaton QE consists of all the locations
that these transitions go to.
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Algorithm 7: The algorithm creates an energy function automaton based
on a recharge automaton in sNF.

EnergyFunctionAutomaton(A)
Input - A = (Q, q0, B,C, I, rate,∆) in sNF
Output - E = (QE , qE , B,∆E) such that there exists a winning run in E iff there

exists a winning run in A
1 begin
2 Reset = {t | t = (q, g, z, {c}, q′), t ∈ ∆}
3 QE = {q′ | (q, g, z, {c}, q′) ∈ Reset}
4 qE = q where ∃(q0, g, z, {c}, q) ∈ ∆
5 ∆E = ∅
6 snippets = ∅
7 forall the pairs of transitions (tin, tout) ∈ Reset× Reset do
8 if Paths(tin, tout) 6= ∅ then
9 QS = {q | q ∈ loc(π) for some path π ∈ Paths(tin, tout)}

10 k = a where I(t•in) = “c ≤ a”
11 ∆S = {t | t ∈ trans(π) for some π ∈ Paths(tin, tout)}
12 S = (tin, tout, QS , B,C, k, rate,∆S)
13 snippets = snippets ∪{S}

14 forall the S ∈ snippets, where S = (tin, tout, Q,B,C, k, rate,∆) do
15 R = EnergyFunction(S)
16 if R is defined then
17 if gout = “c = 0” or (gout = true, R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉) and

µ(tin, tout) > 0) where gout is the guard of tout then
18 b = 0

19 else
20 b = 1

21 ∆E = ∆E ∪ {(t•in,R, b, t•out)}
22 if (gout = true, R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉) and µ(tin, tout) > 0)

where gout is the guard of tout then
23 (∆E , var) = ExtraTransition(tin, tout,∆E , snippets, false)

24 return (QE , qE , B,∆E)
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Afterwards, a snippet is constructed for each pair of reset transitions
(tin, tout), where Paths(tin, tout) 6= ∅, and EnergyFunction is used to calculate a
representation for the energy function abstracting the runs between them. If the
energy function is defined for some values, a transition between t•in and t•out is
added to ∆E with a value b depending on whether we are allowed to spend time
before taking tout or not.

The function ExtraTransition is called in the special case that a snippet,
where time is allowed to pass, does not include recharge transitions. This function
explores the graph by recursive calls to itself to check whether there exists a path
from this snippet back to itself, through snippets of this same type or where time
is not allowed to pass. If the path includes a snippet with recharge transitions,
but not allowing time to pass, an infinite delay can indeed be performed by
repeating the path. We therefore add an extra transition with b = 1 and R =
(〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉).

Finally, the energy function automaton is returned.
As an example, observe Fig. 12(a) where a recharge automaton A is sketched.

On Fig. 12(b) we can observe the energy function automaton that results from
running EnergyFunctionAutomaton(A).

q1

q2
r2

c := 0

q3
r3

c := 0

c = 10

c = 0

c := 0
c = 5

r1

(a) Recharge automaton A.

q1

q2

q3
R1, b1 = 1

R2, b2 = 0

R3, b3 = 1

R4, b4 = 1

(b) Energy function automaton E returned by EnergyFunctionAutomaton(A).

Fig. 12: Construction of an energy function automaton from a recharge automaton.
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Theorem 7. Let A be a one-clock closed recharge automaton in sNF. Then the
algorithm EnergyFunctionAutomaton(A) runs in time O(|∆|5 + |∆|4 · |Q|) and
constructs an energy function automaton E such that there exists a winning run
of A iff there exists a winning run of E.

The proof of the theorem can be found in Appendix G on page 67. The
correctness part of the proof consists not only of proving that the existence of
an infinite run is preserved in each automaton, but also of proving that time
divergence is preserved in the corresponding runs.

8 Winning Runs in Energy Function Automata

In this section we will investigate how to use the energy function automaton to
get an answer to the infinite run problem. To do this, we will show that it is
enough to inspect all cycles with at most 2 · |Q| + 1 locations when looking for
a winning run.

Let E = (Q, q0, B,∆) be an energy function automaton and π = q1
R1,b1−−−−→

q2
R2,b2−−−−→ . . .

Rn−1,bn−1−−−−−−−→ qn be a path in E . We say that π is a cycle if qn = q1.
Moreover we say that π is a short cycle, if it has length of at most 2|Q| + 1
locations.

Finally, a short cycle π is a simple cycle if the first location in π appears
exactly twice and every other location appears exactly once in π.

Let π = q1
R1,b1−−−−→ q2

R2,b2−−−−→ . . .
Rn−1,bn−1−−−−−−−→ qn be a cycle, let Rπ be the

representation of the function (. . . ((fR1
◦ fR2

) ◦ fR3
) ◦ . . .) ◦ fRn−1

and let the
infimum of an empty set be ∞. We then define eπ as the least amount of energy
required to be able to repeat the cycle infinitely.

eπ = inf

(
{e | fRπ (e) ≥ e}

∪ {~x[i] | ~u[i] = ~x[i], ~̀[i+ 1] 6= ~u[i],Rπ = (~x, ~m, ~u, ~̀), 1 ≤ i < |~x|}
)

ein

eout

10 B= 20

10

B= 20

Fig. 13: An energy function with an undefined point on the line f(ein) = ein.
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Whenever fRπ (e) ≥ e, we know that for all e′ ≥ e it is the case that fRπ (e′) ≥ e,
since the function is non-decreasing. Note however that it might be the case
that we have a discontinuous point on the diagonal line f(ein) = ein, meaning
that we by continuous iterations of the function for values above the point can
get arbitrarily close to it without ever reaching it. This case is illustrated in
Fig. 13. Because of this, all function values on the diagonal line are added when
determining eπ. Equally a point of discontinuity could result in values arbitrarily
close to and higher than the discontinuous point being over the line f(ein) = ein
while the function value at the point itself is under. Therefore we are looking for
an infimum value.

To be able to repeat the cycle infinitely we need to reach it with an energy
higher than eπ, though a value equal to eπ is enough when fRπ (eπ) ≥ eπ. If it
is not possible to reach π with an energy of at least eπ, only a finite amount of
iterations can be performed before running out of energy. This is the case since
the function then can only decrease and only when the function is nearing an
intersection with the diagonal line we can have an infinite series of iterations of
decreasing function values.

We say that a cycle π is winning if there is a time-diverging transition in π
and either π is reachable with an energy level e > eπ or fRπ (eπ) ≥ eπ and π is
reachable with an energy level e ≥ eπ.

When searching for a winning cycle, it is not sufficient to look for a simple
cycle. The intuition is that cycles without time-divergent transitions may in-
crease the energy level to the maximum after just one repetition, though alone
they do not constitute a solution to the problem. Adding these cycles along a
simple cycle which includes a time-divergent transition, could decrease the en-
ergy required to perform the cycle infinitely, and thereby provide a solution to
the problem. Though 2|Q|+ 1 locations are enough, since the path can include
all locations twice, once as a part of a cycle without time-divergent transitions
and once as part of a cycle where time does diverge.

Lemma 3. Let E = (Q, q0, B,∆) be an energy function automaton and π be a
winning cycle in E. Then there exists a short cycle π′ in E which is also winning.

Proof. (Sketch) Assume that there is no short cycle π′ in E which is winning.
Let π be the smallest winning cycle in E . We will now show that it is possible
to reduce its length to obtain a short winning cycle π′.

Since π is not short, either there are at least two locations that are repeated
more than 2 times or one location that is repeated more than 3 times. Consider
the first 3 repetitions of a location q, where q can only be the first location in π if

this is repeated at least 4 times along π. Let π′ = q
R0,b0−−−−→ q1

R1,b1−−−−→ . . .
Rm,bm−−−−−→

q
Rm+1,bm+1−−−−−−−−→ . . .

Rn−1,bn−1−−−−−−−→ qn
Rn,bn−−−−→ q be a subpath of π. Moreover, let the

path π′ be composed of π′1 = q
R0,b0−−−−→ q1

R1,b1−−−−→ . . .
Rm−1,bm−1−−−−−−−−→ qm

Rm,bm−−−−−→ q and

π′2 = q
Rm+1,bm+1−−−−−−−−→ qm+2

Rm+2,bm+2−−−−−−−−→ . . .
Rn−1,bn−1−−−−−−−→ qn

Rn,bn−−−−→ q. Then we have
the following cases:

1. For all i, 0 ≤ i ≤ n, bi = 0.
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2. There exists an i, 0 ≤ i ≤ n, such that bi = 1.
(a) It is possible to reach π′ with energy level e > eπ′ or fRπ′ (eπ′) ≥ eπ′ and

π′ is reachable with an energy level e ≥ eπ′ .
(b) It is not possible to reach π′ with energy level e > eπ′ or fRπ′ (eπ′) ≥ eπ′

and π′ is not reachable with an energy level e ≥ eπ′ .
i. For all i, 0 ≤ i ≤ m, bi = 0
ii. For all i, m+ 1 ≤ i ≤ n, bi = 0.

iii. There exists an i, 0 ≤ i ≤ m, such that bi = 1 and there exists a
j, m+ 1 ≤ j ≤ n, bj = 1.

If all transitions have b = 0 (case 1), then either all the functions on the
transitions of π′ are on the form fRi(ein) = ein for all ein ∈ [0, B] and we can
remove π′ from π, or there is at least one function on the form fRi(ein) = B for
all ein ∈ [0, B]. In the latter case we can remove either of the paths π′1 or π′2 as
long as we keep one transition with a function that always returns B. Clearly in
this case the removed path would not have changed the energy level.

Now consider case 2 where there is at least one transition in π′ with b = 1.
If it is possible to reach π′ along the path in π with an energy level e > eπ′

or fRπ′ (eπ′) ≥ eπ′ and π′ is reachable with an energy level e ≥ eπ′ (case 2a),
then we can replace π with π′ as π′ is also winning.

Otherwise, we have case 2b. Consider first subcase 2(b)i. If there is no time-
diverging transition (qi,Ri, 1, qi+1) in π′1, where 0 ≤ i ≤ m, then fRi(ein) = ein
for all ein ∈ [0, B] and for all i, 0 ≤ i ≤ m. Thus, since all functions in π′1 do
not change the energy, we can remove π′1 from π.

Note that it cannot be the case that there exists an i, 1 ≤ i ≤ m where
fRi(ein) = B for all ein ∈ [0, B]. If this was the case then the function fRπ′2
would be undefined at B. If it were not undefined, it would be possible to reach
π′ with energy level e ≥ eπ′ , being eπ′ = 0. Since π′2 leads to an undefined
function, π would not be winning, resulting in a contradiction.

The same considerations hold for π′2 in subcase 2(b)ii.
Now we consider subcase 2(b)iii, where we know that both π′1 and π′2 have

at least one time-diverging transition. If π′1 is a winning cycle it can be repeated
infinitely and we can consider this cycle instead of π. If it is not winning, we can
remove π′1, as it only decreases the energy available.

In all of the possible cases we have reduced the number of repetitions of a
location with at least one. Therefore by repeating this process it is possible to
obtain a short cycle π′ that is winning, which is a contradiction to the initial
assumption. ut

This property is used by Algorithm 9 to verify whether there exists a winning
run of a given energy function automaton E . To begin with, the algorithm finds
all short cycles in E . Then, for each cycle it is possible to calculate the minimal
energy level that is required to be able to take the cycle infinitely, while mak-
ing sure that time diverges. This computation is performed in MinimalEnergy
which is called for each cycle. The algorithm takes a cycle π as input and calls
Composition once for each transition in the cycle to make an energy function
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for the entire cycle. The algorithm then finds and returns the value eπ needed to
be able to go around the cycle from its first location, and a boolean value that
is true only if an energy level of exactly eπ is enough to do so. Note that the
calculation of eπ can be performed in linear time in the size of the representa-
tion of the energy function computed, by inspecting the points in the function
representation.

Finally, the algorithm calls RelaxTransitions which calculates the energy that
we can reach each location with by updating the energy 2|Q|−1 times, each time
based on the calculated values of neighbour locations. It performs the update
2|Q| − 1 times, since even the energy value for the locations furthest away from
the start location will then be updated at least two times. This is necessary since
taking a cycle without time-divergent transitions would increase the energy that
we can reach a location with, without it being part of a solution. Again using
the same cycle twice would not be desirable, as the maximal energy is reached
after just one iteration.

If the computed energy for a location is more than the required minimal
energy (or equal to, in the case where fRπ (eπ) ≥ eπ), we have found a short
cycle that can be reached with enough energy to be repeated infinitely, and as
such an infinite winning run of the energy function automaton.

Algorithm 8: The algorithm calculates the minimal energy necessary to
be able to repeat the cycle π infinitely.

MinimalEnergy(π)
1 begin

2 if ∃qi
Ri,1−−−→ qi+1 ∈ π for some i, 1 ≤ i ≤ n− 1 then

3 R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉)
4 forall the i, 1 ≤ i ≤ n− 1 do

5 R = Composition(R,Ri) where qi
Ri,bi−−−→ qi+1 ∈ π

6 eπ = inf
(
{e | fRπ (e) ≥ e} ∪ {~x[i] | ~u[i] = ~x[i], ~̀[i+ 1] 6= ~u[i],

Rπ = (~x, ~m, ~u, ~̀), 1 ≤ i < |~x|}
)

7 if fR(eπ) ≥ eπ then
8 return (eπ, true)

9 else
10 return (eπ, false)

11 return (∞, false)
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Algorithm 9: Algorithm to find out whether there exists a winning run
in a energy function automaton E .

RelaxTransitions(C, E)
1 begin
2 forall the i, 1 ≤ i ≤ 2|Q| − 1 do
3 forall the transitions (q,R, b, q′) ∈ ∆ do
4 if fR(C(q)) 6= ⊥ and C(q′) < fR(C(q)) then
5 C(q′) = fR(C(q))

6 return C

ExistsWinningRun(E)
Input - E = (Q, q0, B,∆)
Output - true iff there exists a winning run in E , otherwise false

1 begin
2 forall the q ∈ Q do
3 E(q) =∞
4 D(q) = false
5 C(q) = −∞
6 C(q0) = B
7 Let Cycles be the set of all short cycles in E

8 foreach cycle π = q1
R1,b1−−−−→ q2

R2,b2−−−−→ . . .
Rn−1,bn−1−−−−−−−−→ qn ∈ Cycles do

9 (eπ, Dπ) = MinimalEnergy(π)
10 if eπ < E(q1) or (eπ = E(q1) and Dπ = true) then
11 D(q1) = Dπ

12 E(q1) = min{E(q1), eπ}
13 C = RelaxTransitions(C, E)
14 forall the q ∈ Q do
15 if C(q) > E(q) or (C(q) = E(q) and D(q) = true) then
16 return true

17 return false
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Theorem 8. Let E = (Q, q0, B,∆) be an energy function automaton and let n
be the number of short cycles in E. Then ExistsWinningRun(E) runs in time
O(n · |Q| · |∆|2 + FindCycles), where FindCycles represents the complexity of
finding all short cycles. Moreover, ExistsWinningRun(E) returns true iff there
exists a winning run in E.

Proof. We start by proving the complexity of the algorithm.
The initialization runs in O(|Q|). To find all short cycles, we have the com-

plexity FindCycles. Then we go through all short cycles and call MinimalEnergy.
This algorithm runs in O(|Q|·|∆|2) as each energy function can at most have size
|∆|2 and we call Composition |Q| times, every time adding at most the amount
of vector values in the function representations. Note that computing eπ can be
done in linear time in the size of this function representation, by inspecting the
values in the representation. Since the function is called for each cycle we have
a complexity of O(n · |Q| · |∆|2) for this part of the algorithm.

Finally, the function RelaxTransitions is called once, with a complexity of
O(|Q| · |∆|), and afterwards |Q| comparisons are made.

The total complexity is thus either dominated by the computation of energy
functions or the complexity of the algorithm finding the cycles. The algorithm
then has complexity O(n · |Q| · |∆|2 + FindCycles).

Correctness follows from Lemma 3 and the fact that the path to the cycle
itself has at most 2|Q| locations. This is the case since a cycle in which all
transitions are not time-divergent may give a higher energy, though we do not
benefit from repeating them more than once. If the path is longer than 2|Q|, there
is either a cycle which has a negative effect on the energy or a cycle preserving
the energy. Both types of cycles can be removed, while still having a winning
run. ut

Corollary 1. The infinite run problem is in NP.

Proof. The path used in Theorem 8 to construct a winning run has polynomial
size. It is therefore possible to guess a short cycle and a path to its first location
and check whether it can be used to construct a winning run in nondeterministic
polynomial time. ut

8.1 Flat Recharge Automata

Inspired by [15], if we restrict to flat recharge automata, we can show that the
solution to the infinite run problem can then be found in polynomial time.

Definition 11 (Flat Recharge Automaton). We say that a one-clock closed
recharge automaton A is flat if A is in rfcNF and each location belongs to at
most one cycle.

Note that when constructing the energy function automaton, we may only
add one cycle per location, represented by a self-loop. We know that all short cy-
cles in E that are not simple must include a transition added by ExtraTransition.
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This transition is itself a simple cycle requiring a minimal energy of 0. Therefore
for an energy function automaton constructed from a flat automaton, it suffices
to consider simple cycles, when searching for a winning run. Since each location
belongs to at most one simple cycle consisting of more than one transition, it
is possible to use Depth-First Search to find all the simple cycles in the energy
function automaton.

Finally, we can state the following result.

Corollary 2. Given a flat recharge automaton A, the infinite run problem can
be solved in time O(|∆|4 · (|∆|+ |Q|) + |Q| · (|∆|+ |Q|)3).

Proof. Follows from Theorem 7 and Theorem 8. Note that the constructed en-
ergy function automaton has at most |Q| locations and |∆|+ |Q| transitions. ut

9 Conclusion

We presented recharge automata as a formalism to model resource consumption
in systems, where the resource can be recharged instantaneously to its maximal
level. We considered the problem of deciding whether there exists an infinite non-
zeno run, where the energy level never drops below zero in a recharge automaton
with just one clock.

To find a solution to the problem, we used energy function automata, an
abstraction of recharge automata where transitions are annotated with time
information and functions describing the change in energy caused by taking the
transition. We showed how to construct an energy function automaton from
a recharge automaton in polynomial time while preserving the answer to the
problem considered.

The general problem of finding a winning run in an energy function automa-
ton was found to be in NP. We have shown, though, how it is possible to solve
in polynomial time the infinite run problem for the subclass of flat recharge
automata, where each location is only allowed to be part of one cycle.

Observe that the process of finding a winning run in the automaton would
be shorter if we did not require it to be time-diverging or if we assumed that
all infinite runs in the given recharge automaton were non-zeno. Then the used
normal form would be simplified and thereby also its construction. Moreover,
the construction of an energy function automaton and the problem of finding a
winning run in this model would only require considering simple cycles.

9.1 Future work

We have not succeeded in finding neither a polynomial time algorithm solving
the general problem nor an NP-hardness proof. Therefore the exact complexity
of the problem is still unknown. The maximal energy level can be seen as a
soft bound, and as such it cannot be exceeded, which makes it difficult to prove
NP-hardness of the problem.

43



A dual problem to the one presented in this paper is to determine whether
a given capacity for the resource allows to perform all runs of the automaton.
We believe that a strategy similar to the one presented in this paper can be
used, with the purpose of finding a counterexample, that is a run that cannot
be performed with the given capacity. Here, energy functions would be used to
minimize instead of maximize the energy that can be achieved on paths of a
given automaton segment (snippet). This strategy would result in performing
delays in the location with the highest rate just before taking a reset transition,
thereby minimizing the energy and the run’s likelihood of being able to satisfy
the guard of the transition.

This strategy can also be used to determine the least capacity required to
ensure that we can perform all runs without running out of energy. As before
it would require observing the most energy demanding run and make sure that
the energy capacity is high enough to support it, if possible. Similarly, we can
determine the least resource capacity, such that there exists a winning run in the
given automaton. This could be done by using an energy-maximizing strategy
like the one used in this paper and then find the least energy demanding run to
determine the lowest capacity needed.

Going a bit further along these lines, we could observe the problem from a
game perspective, meaning that some locations would be out of our control. In
this case, we would then require a strategy to make sure to always steer the
run into a direction in which time will progress and we will always have enough
energy to make a next move no matter what happens.

Other interesting problems for recharge automata could include observing
time limited runs, such that we no longer require the runs to be infinite. Here,
we know that the problem is NP-hard even for recharge automata without cycles
(see Appendix H on page 72). In general, problems concerning time limited runs
would require another strategy than the one used in this paper, since all time
information is currently abstracted away.
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A Correctness of Maximum

Theorem 1. Let R1 and R2 be representations of energy functions and let R =
Maximum(R1,R2). Then fR =Max(fR1 , fR2) and R can be constructed in time
O(|R1|+ |R2|).

Proof. It can be shown by exhaustive case analysis that R indeed is a repre-
sentation of an energy function. Moreover, the size of the set Sinter is at most
|R1| + |R2| − 1, since we can have at most |~x1| + |~x2| − 1 values delimiting in-
tervals. In each interval the energy functions are defined as linear functions, and
thus there can be at most one point in the set Sinter for each interval.

We now prove that fR =Max (fR1
, fR2

). We have different cases depending
on which x we calculate the function for:

− x < ~x1[1]
• x < ~x2[1] (1)
• x ≥ ~x2[1]
∗ x ∈ elem(~x2) (2)
∗ x 6∈ elem(~x2) (3)

− x ≥ ~x1[1]
• x < ~x2[1]
∗ x ∈ elem(~x1) (4)
∗ x 6∈ elem(~x1) (5)

• x ≥ ~x2[1]
∗ x ∈ elem(~x1)
· x ∈ elem(~x2) (6)
· x 6∈ elem(~x2) (7)

∗ x 6∈ elem(~x1)
· x ∈ elem(~x2) (8)
· x 6∈ elem(~x2) (see note in case 9 below)
− ∃s ∈ Sinter, s.t. a < s < b
• x < s (9)
• x = s (10)
• x > s (11)

− @s ∈ Sinter, s.t. a < s < b (12)

Case 1
In this case x < ~x1[1] and x < ~x2[1].

We first calculate the maximum between the two functions. We know that
x < ~x1[1] and x < ~x2[1] thus we have the following:

fR1
(x) = ⊥ fR2

(x) = ⊥

Therefore in this case Max (fR1 , fR2)(x) = ⊥.
For calculating fR(x) we need the value ~x[1]. Since this is defined as the

lowest number in the set Smax, which does not include any value lower than the
lowest of both ~x1 and ~x2, we have that x < ~x[1], and thus fR(x) = ⊥.
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Case 2
In this case x < ~x1[1], x ≥ ~x2[1] and x ∈ elem(~x2).

Since x ∈ elem(~x2), we know that there must exist an i, 1 ≤ i ≤ |~x2| s.t.
x = ~x2[i]. Since Smax contains all elements from ~x2, we also know that there
exists a j, 1 ≤ j ≤ |~x| s.t. ~x[j] = ~x2[i].

We then have that fR(x) = ~m[j], which, by Equation 1, is defined as:

~m[j] = max{fR1
(~x[j]), fR2

(~x[j])} = max{fR1
(x), fR2

(x)}

This is the definition of Max (fR1
, fR2

)(x), thus proving this case.

Case 3
In this case x < ~x1[1], x ≥ ~x2[1] and x /∈ elem(~x2).

We start by calculating the maximum between the two energy functions. We
know that x < ~x1[1], thus fR1

(x) = ⊥. Since x ≥ ~x2[1] and x 6∈ elem(~x2), we
know that there exists an index i, 1 ≤ i ≤ |~x2| − 1 s.t. ~x2[i] < x < ~x2[i+ 1]. The
value of fR2

at x is then:

fR2(x) = ~u2[i] + (~̀2[i+ 1]− ~u2[i])
x− ~x2[i]

~x2[i+ 1]− ~x2[i]

We can then calculate the maximum between the two energy functions:

Max (fR1
, fR2

)(x) = fR2
(x)

We will now find the value of fR(x). As before, since Smax contains all el-
ements from ~x2, we know that there exists an index j, 1 ≤ j ≤ |~x| − 1, s.t.
~x[j] = ~x2[i].

Also, since x < ~x1[1], there is no index k, 1 ≤ k ≤ |~x|, s.t. ~x[k] = x and thus
~x[j] < x < ~x[j + 1]. The value fR(x) is then defined as:

fR(x) = ~u[j] + (~̀[j + 1]− ~u[j])
x− ~x[j]

~x[j + 1]− ~x[j]

To calculate this value we need therefore the value of ~u[j] and ~̀[j + 1]. We
know that ~x[j] = ~x2[i] and ~x[j] < ~x1[1]. Therefore we use Equation 2b for
calculating the value of ~u[j].

~u[j] = max{fR1
(~x[j]), ~u2[i]} = ~u2[i]

To calculate the value of ~̀[j + 1] we now have three subcases, depending on
which vector the value ~x[j + 1] was taken from:

1. ~x[j + 1] = ~x1[1] 6= ~x2[i+ 1]
2. ~x[j + 1] = ~x2[i+ 1] 6= ~x1[1]
3. ~x[j + 1] = ~x1[1] = ~x2[i+ 1]
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In case 1 we use Equation 3a.

~̀[j + 1] = max{~̀1[1], fR2
(~x[j + 1])} = max{⊥, fR2

(~x[j + 1])}

= ~u2[i] + (~̀2[i+ 1]− ~u2[i])
~x[j + 1]− ~x2[i]

~x2[i+ 1]− ~x2[i]

Then by substituting the values in the equation for fR(x) we get:

fR(x) = ~u2[i] +

(
~u2[i] + (~̀2[i+ 1]− ~u2[i])

~x[j + 1]− ~x2[i]

~x2[i+ 1]− ~x2[i]
− ~u2[i]

)
x− ~x2[i]

~x[j + 1]− ~x2[i]

= ~u2[i] + (~̀2[i+ 1]− ~u2[i])
x− ~x2[i]

~x2[i+ 1]− ~x2[i]
= fR2

(x)

In case 2 the value of ~̀[j + 1] is given by Equation 3b.

~̀[j + 1] = max{fR1(~x[j + 1]), ~̀2[i+ 1]}

We know that ~x2[i+1] < ~x1[1] since ~x[j+1] = ~x2[i+1] 6= ~x1[1] and ~x[j] < ~x1[1].

This gives that fR1
(~x[j + 1]) = ⊥, and thus ~̀[j + 1] = ~̀

2[i + 1]. Again, by
substitution we obtain fR2

(x).

In case 3 the value of ~̀[j + 1] is given by Equation 3c.

~̀[j + 1] = max{~̀1[1], ~̀2[i+ 1]} = max{⊥, ~̀2[i+ 1]} = ~̀
2[i+ 1]

Thus this case reduces to the case just discussed.

Case 4-8
Similar to the cases previously discussed.

Case 9
In general for cases 9-12, we know that there exists an i such that ~x1[i] <
x < ~x1[i + 1], and there exists a j such that ~x2[j] < x < ~x2[j + 1]. Let
a = max{~x1[i], ~x2[j]} and b = min{~x1[i + 1], ~x2[j + 1]}. Then the interval ]a, b[
includes x, and we have cases 9-12.

In Case 9:

− x ≥ ~x1[1],
− x ≥ ~x2[1],
− x 6∈ elem(~x1),
− x /∈ elem(~x2) and
− ∃s ∈ Sinter, s.t. a < s < b and x < s.

In this case we have an intersection s, which has to be unique, since the two
functions are linear in the interval. We first find the function values at x:

fR1
(x) = ~u1[i] + (~̀1[i+ 1]− ~u1[i])

x− ~x1[i]

~x1[i+ 1]− ~x1[i]
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fR2
(x) = ~u2[j] + (~̀2[j + 1]− ~u2[j])

x− ~x2[j]

~x2[j + 1]− ~x2[j]

We know that there exists an index k, 1 ≤ k ≤ |~x| s.t. ~x[k] = a and ~x[k+ 1] = s,
since both a and s are elements in Smax.
We now calculate the value of fR at x:

fR(x) = ~u[k] + (~̀[k + 1]− ~u[k])
x− ~x[k]

~x[k + 1]− ~x[k]

We can easily determine the value ~̀[k + 1] using Equation 3d:

~̀[k + 1] = fR1(~x[k + 1]) = fR2(~x[k + 1])

To determine ~u[k], we need to consider three cases, each with three subcases
depending on the used definition for ~u[k]. In all of the cases remember that
~x[k + 1] = s and fR1(s) = fR2(s).

1. If ~x2[j] < ~x1[i] we have that ~x[k] = ~x1[i] and, by Equation 2a, ~u[k] =
max(~u1[i], fR2

(~x[k])) = max{~u1[i], fR2
(~x1[i])}.

(a) If fR2(~x1[i]) > ~u1[i] then Max (fR1 , fR2)(x) = fR2(x).

(b) If fR2
(~x1[i]) < ~u1[i] then Max (fR1

, fR2
)(x) = fR1

(x).

(c) It cannot be the case that fR2
(~x1[i]) = ~u1[i] since then s would not exist.

2. If ~x2[j] > ~x1[i] we have that ~x[k] = ~x2[j] and, by Equation 2b, ~u[k] =
max{fR1

(~x[k]), ~u2[j]} = max{fR1
(~x2[j]), ~u2[j]}.

(a) If fR1
(~x2[j]) > ~u2[j] then Max (fR1

, fR2
)(x) = fR1

(x).

(b) If fR1(~x2[j]) < ~u2[j] then Max (fR1 , fR2)(x) = fR2(x).

(c) It cannot be the case that fR1
(~x2[j]) = ~u2[j], since then s would not

exist.

3. If ~x2[j] = ~x1[i] then ~x[k] = ~x1[i] = x2[j] and, by Equation 2c, ~u[k] =
max{~u1[i], ~u2[j]}.

(a) If ~u2[j] > ~u1[i] then Max (fR1
, fR2

)(x) = fR2
(x).

(b) If ~u2[j] < ~u1[i] then Max (fR1 , fR2)(x) = fR1(x).

(c) It cannot be the case that ~u2[j] = ~u1[i], otherwise s would not exist.

It can now be shown by substitution that fR(x) =Max (fR1
, fR2

)(x) in each of
the listed cases.

Case 10, 11 and 12
Similar to previous cases.

ut
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B Correctness of Composition

Theorem 2. Let R1 and R2 be energy functions. We can in time O(|R1|+|R2|)
construct R = Composition(R1,R2), s.t. fR = (fR1 ◦ fR2), since the algorithm
computes each of these values in linear time.

Proof. Let R1 = (~x1, ~m1, ~u1, ~̀1), R2 = (~x2, ~m2, ~u2, ~̀2) and R = (~x, ~m, ~u, ~̀).
It is clear from the definition of Scomp that ~x can have at most size |~x1|+ |~x2|

and thus R can be constructed in time O(|R1| + |R2|). Moreover it can be
shown by exhaustive case analysis that R indeed is the representation of an
energy function.

For proving that fR = (fR1 ◦ fR2) we have to consider different cases de-
pending on the input value x:

− x < ~x1[1] (1)
− x ≥ ~x1[1]
• x = ~x1[i]
∗ ~m1[i] < ~x2[1] (2)
∗ ~m1[i] ≥ ~x2[1]
· ~m1[i] ∈ elem(~x2) (3)
· ~m1[i] 6∈ elem(~x2) (4)

• ∃i s.t. ~x1[i] < x < ~x1[i+ 1]
∗ ∃x2 ∈ elem(~x2) s.t. ~x1[i] < f−1R1

(x2) < ~x1[i+ 1]

· ∃j, 1 ≤ j ≤ |~x2|, s.t. x = f−1R1
(~x2[j]) (5)

· ∃j, 1 ≤ j ≤ |~x2|, s.t. ~x2[j] = min{x′ | x′ ∈ elem(~x2), x <
f−1R1

(x′) < ~x1[i+ 1]},@xlow ∈ elem(~x2) s.t. ~x1[i] < f−1R1
(xlow) < x

− j = 1 (6)
− j > 1
• ~u1[i] ∈ elem(~x2) (7)
• ~u1[i] 6∈ elem(~x2) (8)

· ∃xhigh s.t. xhigh = min{x′ | x′ ∈ elem(~x2), x < f−1R1
(x′) < ~x1[i+

1]},∃xlow s.t. xlow = max{x′ | x′ ∈ elem(~x2), ~x1[i] < f−1R1
(x′) <

x} (9)
· @xhigh ∈ elem(~x2) s.t. x < f−1R1

(xhigh) < ~x1[i + 1]},∃xlow s.t.

xlow = max{x′ | x′ ∈ elem(~x2), ~x1[i] < f−1R1
(x′) < x}

− ~̀
1[i+ 1] ∈ elem(~x2) (10)

− ~̀
1[i+ 1] 6∈ elem(~x2) (11)

∗ @x2 ∈ elem(~x2) s.t. ~x1[i] < f−1R1
(x2) < ~x1[i+ 1]

· ~u1[i] < ~x2[1] (12)
· ~u1[i] ≥ ~x2[1]
− ~u1[i] ∈ elem(~x2)

• ~̀1[i+ 1] ∈ elem(~x2)

∗ ~u1[i] = ~̀
1[i+ 1] (13)

∗ ~u1[i] 6= ~̀
1[i+ 1] (14)

• ~̀1[i+ 1] 6∈ elem(~x2) (15)
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− ~u1[i] 6∈ elem(~x2)

• ~̀1[i+ 1] ∈ elem(~x2) (16)

• ~̀1[i+ 1] 6∈ elem(~x2) (17)

Case 1
In this case x < ~x1[1].

We start by calculating (fR1 ◦ fR2)(x).

(fR1
◦ fR2

)(x) = fR2
(fR1

(x)) = fR2
(⊥) = ⊥

We now calculate fR(x) and show that we get the same result.
We know that ~x[1] ≥ ~x1[1] since Scomp either includes elements from ~x1 or val-
ues for which fR1 gives an element in ~x2 (fR1 is undefined before ~x[1]). Thus,
x < ~x[1] and fR(x) = ⊥.

Case 2
In this case x ≥ ~x1[1], x = ~x1[i] and ~m1[i] < ~x2[1].

We again calculate the composed function at x:

(fR1 ◦ fR2)(x) = fR2(fR1(x)) = fR2(~m[i])) = ⊥

By definition of Scomp we know that ~x[1] > ~x1[i] since ~m1[i] < ~x2[1]. Thus
fR(x) = ⊥, and we again have the same result.

Case 3
In this case x ≥ ~x1[1], x = ~x1[i], ~m1[i] ≥ ~x2[1] and ~m1[i] ∈ elem(~x2).

By the definition of Scomp we know that there exists an index k, 1 ≤ k ≤ |~x|,
s.t. ~x1[i] = ~x[k]. We can then prove this case by applying Equation 4.

fR(x) = ~m[k] = fR2(fR1(~x[k])) = fR2(fR1(x)) = (fR1 ◦ fR2)(x)

Case 4 and 5
Similar to case 3.

Case 6
In this case:

− ∃i s.t. ~x1[i] < x < ~x1[i + 1], ~x2[1] = min{x′ | x′ ∈ elem(~x2), x < f−1R1
(x′) <

~x1[i+ 1]} and
− @xlow ∈ elem(~x2) s.t. ~x1[i] < f−1R1

(xlow) < x.

Therefore we know that ~x1[i] < x < f -1
R1

(x2[1]).
We then can calculate the value of the composed function:

(fR1
◦ fR2

)(x) = fR2
(fR1

(x)) = ⊥

We proceed by calculating fR(x). We know that ~m1[i] < ~x2[1] since ~x1[i] <
f -1
R1

(x2[1]). Thus ~x[1] = f -1
R2

(~x2[1]) and fR(x) = ⊥.

Case 7
In this case:
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− ∃i s.t. ~x1[i] < x < ~x1[i+ 1],
− ∃j, 1 < j ≤ |~x2|, s.t. ~x2[j] = min{x′ | x′ ∈ elem(~x2), x < f−1R1

(x′) < ~x1[i+1]},
− @xlow ∈ elem(~x2) s.t. ~x1[i] < f−1R1

(xlow) < x and
− ~u1[i] ∈ elem(~x2).

Here the composed function has the following value:

(fR1
◦ fR2

)(x) =

~u2[j − 1] + (~̀2[j]− ~u2[j − 1])
~u1[i] + (~̀1[i+ 1]− ~u1[i]) x−~x1[i]

~x1[i+1]−~x1[i]
− ~x2[j − 1]

~x2[j]− ~x2[j − 1]

Again by construction of Scomp we know that there exists an index k, 1 ≤ k ≤
|~x| − 1, such that:

− ~x[k] = ~x1[i] and

− ~x[k + 1] = f -1
R1

(~x2[j]) = ~x1[i] + (~x1[i+ 1]− ~x1[i]) ~x2[j]−~u1[i]
~̀
1[i+1]−~u1[i]

.

The value fR(x) can then be found by interpolation as usual. We therefore need

the values of ~u[k] and ~̀[k + 1] to calculate the interpolation.

In the case of ~̀ we get ~̀[k + 1] = ~̀
2[j] by Equation 6d.

We use Equation 5c for deciding on the value of ~u[k] since we know that

~x[k] = ~x1[i] and ~u1[i] ∈ elem(~x2). Note that ~u1[i] 6= ~̀
1[i + 1]. Otherwise, there

would not exist a j that would satisfy the case. Moreover, ~u1[i] must be equal
to ~x2[j − 1]. If it were not so, xlow would exist. Thus, ~u[k] = ~u2[j − 1].
By substituting this values in the interpolation we get the same result as for
(fR1

◦ fR2
)(x).

Case 8
In this case:

− ∃i s.t. ~x1[i] < x < ~x1[i+ 1],
− ∃j, 1 < j ≤ |~x2|, s.t. ~x2[j] = min{x′ | x′ ∈ elem(~x2), x < f−1R1

(x′) < ~x1[i+1]},
− @xlow ∈ elem(~x2) s.t. ~x1[i] < f−1R1

(xlow) < x and
− ~u1[i] 6∈ elem(~x2).

This case is very similar to the previous one. The only difference resides in the
rule used to get the value of ~u[k]. Here we know that ~x2[j − 1] < ~u1[i] < ~x2[j]
since f -1

R1
(~x2[j − 1]) < ~x1 and f -1

R1
(~x2[j]) > ~x1[i]. Thus, by Equation 5a we get:

~u[k] = fR2(~u1[i]) = ~u2[j − 1] + (~̀2[j]− ~u2[j − 1])
~u1[i]− ~x2[j − 1]

~x2[j]− ~x2[j − 1]

Again this case can then be shown by substitution when solving fR(x).

Case 9
In this case:
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− ∃i s.t. ~x1[i] < x < ~x1[i+ 1],
− ∃xhigh s.t. xhigh = min{x′ | x′ ∈ elem(~x2), x < f−1R1

(x′) < ~x1[i+ 1]} and

− ∃xlow s.t. xlow = max{x′ | x′ ∈ elem(~x2), ~x1[i] < f−1R1
(x′) < x}.

By the definition of xhigh and xlow we know that there exists an index j, 1 ≤ j ≤
|~x2| − 1 s.t. xlow = ~x2[j] and xhigh = ~x2[j + 1]. Thus the value of the composed
function is again the same as for case 7.
We proceed to calculate fR(x). We know, by the definition of Scomp, that there
exists an index k, 1 ≤ k ≤ |~x|−1, s.t. ~x[k] = f -1

R1
(~x2[j]) and ~x[k+1] = f -1

R1
(~x2[j+

1]). The value of fR at x is then found by interpolation. Here, we need again to

substitute the values of ~u[k] and ~̀[k+1] given by Equation 5d and 6d respectively.

~u[k] = ~u2[j] ~̀[k + 1] = ~̀
2[j + 1]

Case 10-17
Similar to the previous ones. ut
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C Addition and Ceiling for Time Functions

It is possible to construct a representation T ′ such that fT ′ = fT + n. This is
done in Algorithm 10.

Algorithm 10: The algorithm computes the representation for the func-
tion representing the sum between a time function and a rational number.

Sum(T , n)
Input - T = (~x, ~y), n ∈ Q≥0

Output - T ′ = (~x′, ~y′) such that fT ′ = fT + n

For all i, 1 ≤ i ≤ |~x| we have:
~x′[i] = ~x[i]
~y′[i] = ~y[i] + n

Proposition 4. Let T be a time function representation and T ′ be the result of
Sum(T , n) for some value n ∈ Q≥0. Then fT ′ = fT + n.

Similarly for the ceiling operation, we can compute a representation T ′ such
that fT ′ = ceil(fT , k). To do this we first need to find out whether the value k is
reached by any value of the time function and, if this is the case, at which input
value this happens.

First of all we find the maximal index imax of ~y which is still below k.

imax =

{
max{i | ~y[i] < k} if {i | ~y[i] < k} 6= ∅
0 otherwise

If imax = 0, the function already returns a value higher or equal to k at an
energy level of 0. On the other hand if 0 < imax < |~x| the value k is reached at
a higher energy level, which can be found by interpolation. We denote by xmin
the minimal energy level needed to obtain the value k. Finally, if imax = |~x| then
the function never reaches the value k, and therefore we do not define xmin.

xmin =

{
0 if imax = 0

~x[imax] + (~x[imax + 1]− ~x[imax])
k−~y[imax]

~y[imax+1]−~y[imax]
if 0 < imax < |~x|

Now we can use Algorithm 11 to find the representation T ′.

Proposition 5. Let T be a time function representation and T ′ be the result of
Ceil(T , k) for some value k ∈ N0. Then fT ′ = ceil(fT , k).
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Algorithm 11: The algorithm ensures that no value of vector ~y′ is higher
than k.

Ceil(T , k)
Input - T = (~x, ~y), k ∈ N0

Output - T ′ = (~x′, ~y ′) such that fT ′ = ceil(fT , k)

If imax = |~x|, then ~x′ = ~x and ~y ′ = ~y.
Otherwise, ~x′ is defined as the increasing sequence of the elements contained in
the following set:

S = elem(~x) \ {~x[i] | ~x[i] ∈ elem(~x), i > imax} ∪ {xmin, B}

Furthermore, ~y ′ is defined as follows for all i, 1 ≤ i ≤ |~x′|:

~y ′[i] =

{
~y[i] if ~y[i] < k

k otherwise
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D Correctness of TimeFunction

Theorem 5. Let S = (tin, tout, Q,B,C, k, rate, ∆) be a snippet. Then the algo-
rithm TimeFunction(S) terminates and returns an array A, such that for all
t ∈ RT (S), and for all ein ∈ [0, B]

fA[t](ein) = max
{ ∑

0<i≤j

di

∣∣∣ (tin
•, vin = [c = 0], ein)

d1−→ (tin
•, v′in, e

′
in)

t1−→ . . .

dj−→ (•t, v′j , e
′
j)
}
.

Proof. We will prove the correctness of the algorithm by proving that the fol-
lowing loop invariant for the loop “while S 6= ∅” holds:

For all t ∈ RT (S) \ S and for all ein ∈ [0, B],

fA[t](ein) = max

{ ∑
0<i≤j

di

∣∣∣ (tin
•, vin = [c = 0], ein)

d1−→ (tin
•, v′in, e

′
in)

t1−→ . . .
dj−→ (•t, v′j , e

′
j)

}
.

− Initialization
We start by showing that the loop invariant holds before the first loop iter-
ation. Here, RT (S) \ S = ∅, so the invariant is trivially satisfied.

− Maintenance
For each t′ ∈ RT (S) \ S, we assume that we have found the time function
returning the most time that can be spend before reaching the transition t′.
Now a minimum element t ∈ S is found and removed from S. Therefore, to
prove that the loop invariant holds after this iteration of the loop, we need
to prove that:
A) there exists a run from (tin

•, [c = 0], ein) to (•t, v′j , e
′
j), such that the

sum of the delays in the run is equal to fA[t](ein) and
B) the sum of the delays along any other run from (tin

•, [c = 0], ein) to
(•t, v′j , e

′
j) is lesser than or equal to fA[t](ein).

We start by proving A).

Since t ∈ ∆ we know that there exists a path from tin to t, by the defini-
tion of a snippet. We then only need to prove that the sum of the delays
corresponds to the value of the function for a given input energy. We do
that by constructing the time function and afterwards a run between the
two transitions with delays summing up to the function value.
Naturally the time function depends on the path, it abstracts. If tin � t
we know that there exists a path without recharge transitions between the
two transitions. A location q with minimum rate µ(tin, t) between tin and
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t is then found and used to construct a time function representation. If
µ(tin, t) = 0, the representation is R = (〈0, B〉, 〈k, k〉) and fR(ein) = k for
all values ein ∈ [0, B].
Otherwise, we know that µ(tin, t) > 0, so the algorithm constructs the repre-

sentation R = ceil
(

(〈0, B〉, 〈0, B
µ(tin,t)

〉), k
)

. Then fR(ein) = min{ ein
µ(tin,t)

, k}
for all ein ∈ [0, B] by the definition of ceil.
We can then construct a run γ starting in (tin

•, [c = 0], ein) and ending in
(•t, v′j , B) such that the sum of all delays in the run is fR(ein).

γ = (tin
•, [c = 0], ein)

0−→ (tin
•, [c = 0], ein)

true,ε,∅−−−−−→ . . .
true,ε,∅−−−−−→ (q, [c = 0], ein)

d−→ (q, [c = d], e)
true,ε,∅−−−−−→ (q′, [c = d], e)

0−→ . . .
0−→ (•t, v′j , B)

Here e = ein − d · µ(tin, t) and if µ(tin, t) = 0, then d = k, otherwise d =
min{ ein

µ(tin,t)
, k}. The reader can easily check that the energy level never goes

below zero along the run.
Moreover, if t′ � t for some t′ ∈ RT (S), there exists a path from t′ to t
without recharge transitions, by the definition of �. Additionally, since t
was chosen as a minimal element of S we know that t′ 6∈ S prior to this
iteration of the while-loop and therefore it holds that for all ein ∈ [0, B]:

fA[t′](ein) = max

{ ∑
0<i≤j

di

∣∣∣ (tin
•, vin = [c = 0], ein)

d1−→ (tin
•, v′in, e

′
in)

t1−→ . . .

dj−→ (•t′, v′j , e
′
j)

}
.

Again, the location q with minimal rate µ(t′, t) on any path between t′ and t
is found and if µ(t′, t) = 0, the algorithm constructs the representation R =
(〈0, B〉, 〈k, k〉), giving the energy function fR(ein) = k for all ein ∈ [0, B].
If µ(t′, t) > 0, the algorithm constructs the representation R =

ceil
(
A[t′] + B

µ(t′,t) , k
)

.

Then, fR(ein) = min{fA[t′](ein) + B
µ(t′,t) , k} for all ein ∈ [0, B] by the def-

inition of the addition and ceiling operations. Since A[t′] is correct, there
exists a run γ starting in (tin

•, [c = 0], ein) and ending in (•t′, v′j , e
′
j), where

v′j = fA[t′](ein). Let tj+1 = t′ and qn = •t. The run γ can now be extended
in the following way:

(•t′, v′j , e
′
j)

tj+1−−−→ (qj+1, vj+1, ej+1)
dj+1−−−→ . . .

tn−→ (qn, vn, en)
dn−→ (qn, v

′
n, e
′
n),

where di = 0 for all i, j + 1 ≤ i ≤ n such that qi 6= q, and otherwise

di =

{
min

{
B

µ(t′,t) , k − fA[t′](ein)
}

if µ(t′, t) > 0

k − fA[t′](ein) if µ(t′, t) = 0
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Since tj+1 is a recharge transition, ej+1 = B and it is easy to see that the
energy level never goes below zero along the run.
Taking the maximum between two representations only results in choosing
different runs for different values of ein and therefore does not have an influ-
ence on the runs constructed. We have thus proved that there exists a run
which delays fA[t](ein) for each ein ∈ [0, B].

We now proceed to prove B).

Assume there exists a run γ′ starting in (tin
•, [c = 0], ein) and ending in

(•t, v′j , e
′
j). We have two cases:

1. there is a recharge transition other than t in the run
2. there are no other recharge transitions in the run.

We first analyse case 1. Let t′ be the last recharge transition on the run before
t. Since there is a path from t′ to t, we have that t′� t and fA[t′](ein) returns
the highest delay that can be achieved on a run from (tin

•, [c = 0], ein)
to (•t′, v′j , e

′
j) (by the loop invariant). This run has been extended by the

algorithm by performing a delay in the location with least rate. It is therefore
clear that delaying in any other location can only result in a total delay that
is lesser or equal to the one of the constructed run.
For case 2 the algorithm has again chosen a location with minimal rate to
delay in. Therefore any other distribution of the delay can at most result in
a delay equal to the one returned by fA[t′](ein).

− Termination
At each iteration of the while-loop exactly one element is removed from S.
Moreover the for-loop can at most be performed RT (S) − 1 times for each
recharge transition. Therefore the algorithm terminates after a finite number
of iterations. At this point we have that S = ∅ and thus RT (S)\S = RT (S).
Therefore, by the loop invariant, we have that for all t ∈ RT (S) and for all

ein ∈ [0, B], fA[t](ein) = max

{ ∑
0<i≤j

di

∣∣∣ (tin
•, vin = [c = 0], ein)

d1−→

(tin
•, v′in, e

′
in)

t1−→ . . .
dj−→ (•t, v′j , e

′
j)

}
.

This proves the theorem.
ut
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E Correctness of EnergyFunction

Theorem 6. Let S = (tin, tout, Q,B,C, k, rate, ∆) be a snippet and let R be the
energy function representation returned by EnergyFunction(S).

Then if R is defined, we have that for all ein ∈ [0, B]

fR(ein) = max
{
eout

∣∣∣ ∃γ ∈ Runs(S) s.t. γ = (t•in, vin = [c = 0], ein)
d1−→

(t•in, v
′
in, e

′
in)

t1−→ . . .
dj−→ (•tout, v

′
j , e
′
j)

tout−−→

(t•out, vout = [c = 0], eout)
}

If R is not defined, then there does not exist any run γ = (t•in, vin = [c =

0], ein) −→ . . .
tout−−→ (t•out, vout = [c = 0], eout) in Runs(S).

Proof. We start by proving that if R is defined, then:

A) For all ein ∈ [0, B], there exists a run γ ∈ Runs(S), where γ = (t•in, vin =

[c = 0], ein) −→ . . .
tout−−→ (t•out, vout = [c = 0], eout) such that eout = fR(ein).

B) For any run γ ∈ Runs(S), where γ = (t•in, vin = [c = 0], ein) −→ . . .
tout−−→

(t•out, vout = [c = 0], eout), it holds that eout ≤ fR(ein).

We start by proving A).
Let gout be the guard of tout. We then have the following cases:

1. gout = true or gout = “c = 0”
a) RT (S) 6= ∅
b) RT (S) = ∅

2. gout = “c = k”, k 6= 0
a) tout ∈ RT (S)
b) tout 6∈ RT (S)

We start by considering case 1. The guard does not require any delay, and it
can therefore always be satisfied. Moreover, for subcase a), RT (S) 6= ∅ and the
algorithm constructs the representation R = (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉). Thus,
fR(ein) = B for all ein ∈ [0, B]. We also know that there exists a recharge
transition t ∈ RT (S). We can therefore construct the following run that achieves
the same energy as the function fR.

γ = (t•in, vin = [c = 0], ein)
0−→ . . .

t−→ (t•, [c = 0], B)
0−→ . . .

0−→ (•tout, [c = 0], B)
tout−−→ (t•out, vout = [c = 0], B)

Note that if t = tout, the energy level B is is not obtained until after tout, where
the run terminates.

Now consider subcase b), where RT (S) = ∅. Here the algorithm constructs
the representation R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉), and thus, fR(ein) = ein for all
ein ∈ [0, B]. We can then construct the following run:

γ = (t•in, vin = [c = 0], ein)
0−→ . . .

0−→ (•tout, [c = 0], ein)
tout−−→ (t•out, vout = [c = 0], ein)
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We now proceed to prove case 2. Here, gout = “c = k”, k 6= 0 and thus
we are required to delay k time units before we can take the transition tout.
Consider subcase a). Since tout ∈ RT (S), TimeFunction has calculated a time
function for tout and, if f -1

A[tout]
(k) 6= ⊥, we construct the representation R =

(〈f -1
A[tout]

(k), B〉, 〈B,B〉, 〈B〉, 〈B〉). Note that when f -1
A[tout]

(k) = B we construct

a representation with only this value in the vector ~x to satisfy the requirements
for an energy function representation. In any case, we then have that:

fR(ein) =

{
B if ein ∈ [f -1

A[tout]
(k), B]

⊥ otherwise

Now, since A[tout] is correct, we know that there exists a run γ ∈ Runs(S) that
starts in (t•in, vin = [c = 0], ein) and ends in (•tout, [c = k], eout) for all ein ∈
[f -1
A[tout]

(k), B]. We can extend this run with the transition tout, thus reaching

the state (t•out, [c = 0], B). For all ein < f -1
A[tout]

(k) there does not exist a run

reaching •tout with valuation [c = k] and therefore there does not exists any run
of the desired form in Runs(S).

Now consider case b). Here tout 6∈ RT (S), and thus we do not have a time
function defined for tout. Then the representation R is constructed as the maxi-
mum of different representations. We will show that for each of the representa-
tions used for this operation there exists a run, that achieves the same energy as
the one returned by the energy function. Taking the maximum will only change
the run chosen for the given input energy ein.

First the algorithm checks whether there exists a path without recharges from
tin to tout. If this is the case and the minimum rate location between those has
rate zero, it constructs the representation R = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉). Then,
for this first step, we have that fR(ein) = ein for all ein ∈ [0, B].

If the minimum rate location has a rate larger than zero, it calculates the
time function T for a run of this form as previous algorithms. This is then used
to find the minimal energy for which the run can delay the k time units required
to satisfy the guard of tout. Then the representation R = (〈f−1T (k), B〉, 〈0, B −
k · µ(tin, tout)〉, 〈0〉, 〈B − k · µ(tin, tout)〉) is constructed. For all ein ∈ [f−1T (k), B]
the function is fR(ein) = ein − k · µ(tin, tout). Clearly for lower energy levels it
is not possible to satisfy the guard on this set of paths. Let q be a location with
rate µ(tin, tout). We can construct the following run:

γ = (tin
•, [c = 0], ein)

0−→ (tin
•, [c = 0], ein)

true,ε,∅−−−−−→ . . .
true,ε,∅−−−−−→ (q, [c = 0], ein)

k−→ (q, [c = k], ein − k · µ(tin, tout))
true,ε,∅−−−−−→ (q′, [c = k], ein − k · µ(tin, tout))

0−→ . . .
tout−−→ (t•out, [c = 0], ein − k · µ(tin, tout))

Afterwards the algorithm goes through all recharge transitions t that may
directly precede tout and calculates the time that can be spent based on the
minimum rate location and the result of TimeFunction(S), again taking special
care if the minimum rate location has rate zero. The representation of the energy
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function is then constructed in the function SetupVectors, where values from A[t]
are used to construct a function fR = B − (k − fA[t](ein)) · µ(t, tout). From the
correctness of TimeFunction we know that for all ein ∈ [0, B] there exists a run
starting in state (t•in, [c = 0], ein) and ending in state (•t, [c = fA[t](ein)], e) for
some energy level e ∈ [0, B]. Let q be a location with rate µ(t, tout), we can then
extend this run in the following way:

(•t, [c = fA[t](ein)], e)
t−→ (t•, [c = fA[t](ein)], B)

0−→ . . .
true,ε,∅−−−−−→

(q, [c = fA[t](ein)], B)
k−fA[t](ein)−−−−−−−−→ (q, [c = k], B − (k − fA[t](ein)) · µ(t, tout))

true,ε,∅−−−−−→ (q′, [c = k], B − (k − fA[t](ein)) · µ(t, tout))
0−→ . . .

tout−−→
(t•out, [c = 0], B − (k − fA[t](ein)) · µ(t, tout))

This concludes the proof of A).
We now prove B). Again we have different cases depending on the guard of

tout.

1. gout = true or gout = “c = 0”
2. gout = “c = k”, k 6= 0

In case 1, if RT (S) 6= ∅ the function constructed always returns B, that is the
highest energy level that can be achieved and thus there does not exist a run
having a higher energy. On the other hand if RT (S) = ∅, the energy function
returns ein. Clearly any run segment in Runs(S), can only obtain an energy level
that is lower or equal to the one at the start of the run, as there is no recharge
transition in the snippet.

In case 2 we shall see that all the constructed runs obtain the highest energy

level. Consider a run γ ∈ Runs(S), γ = (t•in, vin = [c = 0], ein) −→ . . .
tout−−→

(t•out, vout = [c = 0], eout). If γ does not have a recharge, then eout ≤ fR(ein)
as R is constructed by performing a delay in the location with minimal rate
µ(tin, tout). Now assume that γ has at least one recharge transition. Let t be the
last recharge transition. Then the run can at most spend fA[t](ein) time units
before taking the transition t. If γ spends less time in this part of the run it
would be forced by the guard gout to spend more time after t. This results in
spending more time after the last recharge transition on the run, thus obtaining
an energy level that is lesser or equal (in case µ(t, tout) = 0) to the one returned
by fR.

This concludes part B) of the proof.

Finally, we have to prove that if R is not defined then there does not exist a

run γ = (t•in, vin = [c = 0], ein) −→ . . .
tout−−→ (t•out, vout = [c = 0], eout) in Runs(S).

This case can only happen if the guard of tout is on the form “c = k”. Here,
we have two cases depending on whether there is a recharge on tout or not.

If tout has a recharge, TimeFunction has computed a function returning the
longest delay that can be achieved on a run from t•in to •tout. The energy function
R is undefined if f−1A[tout]

(k) = ⊥. This means that there does not exist a simple

62



run segment in the snippet S that can delay enough time to satisfy the guard of
tout. Thereby no run of the desired form exists in Runs(S).

If tout does not have a recharge, we consider whether there exists a path
without recharge transitions from t•in to •tout. If this is the case, we can use the
technique from Algorithm 3 of finding the relation between energy levels and
minimum rate locations to construct a time function that returns the longest
delay that can be performed on a run following this kind of path. Again we
use the inverse time function to find out whether the delay required by the
guard of tout can be performed. If the inverse function is not defined for this
value, the guard cannot be satisfied without taking recharge transitions and
the representation R will not yet be initialized. The algorithm then considers
all recharge transitions t, where t� tout and computes the maximal delay in the
usual way while maximizing the time function. If after having considered all these
transitions the energy function representation R still has not been initialized,
then it is not possible to delay enough time on any path in the snippet to satisfy
the guard of tout and thereby there does not exist a run taking this transition
in Runs(S).

ut
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F Time Complexity of EnergyFunction

Lemma 2. Let S = (tin, tout, Q,B,C, k, rate, ∆) be a snippet. Then
EnergyFunction(S) runs in time O(|∆|3 + |∆|2 · |Q|).

Proof. Before analyzing EnergyFunction, we will determine the complexity of
TimeFunction, which is used within it.

TimeFunction

Let �+ denote the transitive closure of � and �∗ denote the transitive and
reflexive closure of �. Then, given a recharge transition t, we can define the set
Wt = {µ(tin, t

′) | t′ ∈ RT (S), tin � t′ and t′ �∗ t}.
We will now argue that the time complexity of TimeFunction is O(|∆|3 +

|∆|2 · |Q|) and the size of each constructed time function is O(|∆|). Furthermore,
the possible slopes of the time functions are given by µ(tin, t) for each t ∈ RT (S)
or 0.

We initially observe that the size of the set RT (S) can at most be ∆.
Note that it is possible to determine the recharge ordering between the transi-

tions by running DFS once. This information can then be used to both determine
the minimal element in S \ {tout} and the � relation between two transitions.

Given two transitions t and t′, where t � t′, we need to determine µ(t, t′).
We can use yet another DFS to find the location with least rate that lie on
a path without recharge transitions between t and t′. Since this calculation is
performed at most once for each pair of transitions, we get a total complexity of
O(|∆|2 · (|∆|+ |Q|)).

Now we will prove for each transition t that the constructed time function
representation A[t] has polynomial size.

By induction on the iteration number, we prove that the size of |Wt| is at
most i and that for all t ∈ RT (S) the function fA[t] is composed of linear seg-
ments, each having either a higher slope than the previous segment with a value
of 1

n for some n ∈Wt, or a slope of 0 and function value k.

Base step
We start by considering the first iteration. Since the algorithm selects a minimum
element t in RT (S) \ {tout} there does not exist a t′ ∈ RT (S) \ {tout}, such that
t′�t. Moreover it must be the case that tin�t and Wt = {µ(tin, t)}, as otherwise
t would not be a minimum element of the snippet S.

The time function A[t] is constructed in lines 9-13. If µ(tin, t) = 0 (line 13)
we construct a representation with slope 0. Otherwise, in line 11 we construct
a representation with slope 1

µ(tin,t)
. Then we use the ceiling operation which

may add a line segment with a slope of 0, if the function for some value returns
values higher than k. Since there does not exists t′ ∈ RT (S), such that t′ � t,
the algorithm does not enter the forall-loop in line 16.

The function fA[t] is thus composed of linear segments each having a slope

of 1
µ(tin,t)

or 0 in this order, and if the slope is 0 the function has value k. The
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representation A[t] thus ends up with a final size of at most 3. This concludes
the base step.

Induction step
Assume the hypothesis holds up to and including iteration i. Let t be the minimal
transition chosen in iteration i+ 1. We want to show that |Wt| ≤ i and that the
function fA[t] only consists of linear segments that each has either a higher slope

than the previous segment with a value of 1
n for some n ∈ Wt, or a slope of 0

and function value k.
In lines 11 to 15, a representation with at most two linear segments is con-

structed, one with slope 1
µ(tin,t)

and one with slope 0, as in the base step. Then

the algorithm goes through all transitions t′ ∈ RT (S) \ {tout}, such that t′ � t.
We know that none of these transitions is in the set S at iteration i+ 1. Other-
wise the element t would not be minimal. Therefore by induction hypothesis we
have that for all t′ ∈ RT (S) \ {tout}, such that t′ � t, A[t′] is composed of linear
segments that each has either a higher slope than the previous segment with a
value of 1

n for some n ∈ Wt′ , or a slope of 0 and function value k. Moreover,
|Wt′ | ≤ i. Since t is a minimal element, we have already at iteration i considered
all transitions t′ ∈ RT (S) s.t. t′ �+ t, and we now have that |Wt| ≤ i+ 1.

Let t′ be the first transition considered in line 16. If fA[t′] already contains
the maximal amount of linear segments, i + 1, taking the maximum in line 19
can at most add one new linear segment with slope 1

µ(tin,t)
to the function. This

is the case since there then already is a line with slope 0 and function value k in
fA[t′]. This line can either dominate the other function or have the same value.
In both cases there will only be one segment with slope 0. On the other hand if
a segment with slope 0 was not present, then it would be added. In both cases
there would be a total of i+ 2 segments.

Now assume there exists another transition tp, such that tp � t. Then the
function MaximumT is called once more. However, it holds that |Wt′ ∪Wtp | ≤ i
since there are at most i+1 values in Wt and µ(tin, t) is not included in Wt′∪Wtp .
Thereby there are at most i + 1 different slopes in total when considering all
functions fA[t′] where t′ ∈ RT (S) \ {tout} and t′ � t. Moreover by induction
hypothesis the lines in each function have an increasing slope until the function
reaches the value k after which the slope becomes 0. If there is not one function
that completely dominates the other when taking the maximum between two
linear functions, then the slope of the maximum function will initially be the
lowest of the two slopes and then after the intersection change to the highest
for the upper domain values. Due to this and the fact that two lines with the
same slope cannot intersect, each slope gives rise to at most one linear segment
in A[t]. Thus the function fA[t] has at most i+ 2 linear segments with slopes in
the desired order.

Then each time function representation has a size of at most |∆| + 2
(|∆| + 1 linear segments are represented by |∆| + 2 points). Since the opera-
tion MaximumT goes through all points once to compare them, computing the
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maximum between two such functions has a complexity of O(|∆|). Finally, this
operation is executed at most |∆|2 times because of the loops.

Summing it all up, the calculation of the minimum rates turns out to
be the most expensive operation, since it is embedded within two loops per-
formed no more than |∆| times each. Thus, the complexity of TimeFunction is
O(|∆|3 + |∆|2 · |Q|).

EnergyFunction
The algorithm starts by calling TimeFunction, adding the complexity of it to this
algorithm. This algorithm also makes use both of the calculation of the recharge
ordering and the location with the minimum rate, which we determined to have
complexity O(|∆|2 · (|∆| + |Q|)). Later we iterate at most |∆| times in a for-
loop. We then call SetupVectors which performs at most |~xA[t]| operations on

all elements of ~x, ~m, ~u and ~̀, meaning that it is once again determined by the
size of a time function, which we found to be at most O(|∆|). Besides these, one
extra value may be added to the representation of the energy function to include
a last function value at the value B in ~x. The actual size of the final energy
function representations can then at most be |∆| ·O(|∆|) = O(|∆|2), since we go
through the loop no more than |∆| times and each time the maximum operation
can add |∆| new values to the representation based on values coming from a
time function.

As we can see, the overall complexity of the algorithm is then O(|∆|3 + |∆|2 ·
|Q|).

ut
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G Correctness of EnergyFunctionAutomaton

Theorem 7. Let A be a one-clock closed recharge automaton in sNF. Then the
algorithm EnergyFunctionAutomaton(A) runs in time O(|∆|5 + |∆|4 · |Q|) and
constructs an energy function automaton E such that there exists a winning run
of A iff there exists a winning run of E.

Proof. We first analyse the complexity of the algorithm and then proceed with
proving correctness.

First of all the algorithm constructs a snippet for each pair of reset transitions
tin, tout, where Paths(tin, tout) 6= ∅. We can use DFS to find out whether there
exists such a path, and then to determine the set of transitions and locations
that are included in the snippet. Thus the construction of all the snippets has
complexity O(|∆|2 · (|∆|+ |Q|)).

In the second forall-loop the function EnergyFunction is called, which has
complexity O(|∆|3 + |∆|2 · |Q|). The algorithm calls EnergyFunction once for
each iteration and since it goes through every snippet, it has at most |∆|2 itera-
tions. Moreover in each iteration it also calls ExtraTransition, which has at most
|∆| recursive calls to itself. Thus, the complexity of EnergyFunctionAutomaton
will be |∆|2 ·O(|∆|3 + |∆|2 · |Q|) = O(|∆|5 + |∆|4 · |Q|).

We now proceed with proving the correctness of the algorithm.

To do this we need to show that:

A) if there exists a winning run of A we can construct a winning run of E .
B) if there exists a winning run of E we can construct a winning run of A.

We start by proving A).

Let Γ = (q1, v1, e1)
d1−→ (q1, v

′
1, e
′
1)

t1−→ (q2, v2, e2)
d2−→ (q2, v

′
2, e
′
2)

t2−→
(q3, v3, e3)

d3−→ . . . be a winning run of A. We will now show how to construct
a winning run of E . Clearly the first discrete transition of any infinite run in
A is a reset transition, since A is in sNF. Moreover since time(Γ ) = ∞ and
since every location has an invariant of the form c ≤ k, k ∈ N, there must be
infinitely many reset transitions along the run. Let tin = (q0, g, z, {c}, q) and let
tout be the second reset transition in Γ . By the construction of E there exists a
transition on the form (q,R, b, t•out), where for all ein ∈ [0, B],

fR(ein) = max
{
eout

∣∣∣ ∃γ ∈ Runs(S) s.t. γ = (t•in, vin = [c = 0], ein)
d1−→

. . .
tout−−→ (t•out, vout = [c = 0], eout),

}
.

Moreover since rate(q0) = 0, Γ reaches q with energy level B. Therefore we can

start the run ρ of E with the transition (q,B)
R,b−−→ (t•out, fR(B)). Let (t•out, [c =

0], eout) be the state reached by Γ after the transition tout. Clearly fR(B) ≥ eout
and the transition is therefore legal.
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We can now continue the run by considering the next reset transition t in Γ .
Again, there exists a transition in E from t•out to t• for which the same properties
as above hold and, since energy functions are non-decreasing functions, having
a higher energy level at any state will not have a negative effect. We can do this
for all reset transitions in Γ , and thereby construct an infinite run ρ in E .

Now we have to prove that ρ is winning, meaning that it has an infinite
amount of transitions with b = 1.

Consider the transitions of ρ that have b = 0. These are constructed from a
snippet where either

a) the guard on the last transition is “c = 0” or
b) the guard on the last transition is “true”, there is no recharge transition in

the snippet and all locations have a rate higher than 0.

In case a), there does not exist any infinite run in A which can delay in such a
snippet.

In the case b), Γ can make a delay in the snippet, if the energy level at t•in
is greater than zero. The maximal delay that Γ can perform in such a snippet is

ein
µ(tin,tout)

. Assume that time(ρ) 6=∞. This means that ρ has only finitely many

transitions with b = 1 and infinitely many with b = 0. Though if all transitions
with b = 0 are obtained from case b), only a finite delay can be performed in Γ
and it would not be winning. Thus there must be an alternation of transitions
obtained from case a) and case b). This means that the run Γ must have infinitely
many run segments of the form shown below as there can only be a delay in a
snippet of the type described in case b) if there is a snippet with at least one
recharge transition, but guard “c = 0”.

g,z,{c}−−−−→ (q1, v1, e1)
d1−→ (q1, v

′
1, e
′
1)

t2−→ (q2, v2, e2)
d2−→ . . .

true,ε,{c}−−−−−−→ (qi, vi, ei)
di−→

. . .
dm−−→ (qm, v

′
m, e

′
m)

“c=0”,ε,{c}−−−−−−−→ . . .
dn−→ (qn, v

′
n, e
′
n)

“c=0”,zn,{c}−−−−−−−−→
(qn+1, vn+1, en+1)

Here we have that for all j, 2 ≤ j ≤ i− 1 or m+ 1 ≤ j < n, Rj = ∅. Also, for all
j, i + 1 ≤ j ≤ m, either tj = (qj−1, “c = 0”, ε, {c}, qj) or Rj = ∅. Finally, there
exists a j, m+ 1 ≤ j ≤ n, such that zj = r.

Since there are infinitely many such segments in Γ , the run must at some
point repeat some location in a snippet of the type in b). But then we can sub-
stitute this cycle with the transition

(
q1, (〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉), 1, q1

)
. This

transition was added by the function ExtraTransition. We now have a winning
run in E .

We now prove B).

Let ρ = (q0, e0 = B)
R0,b0−−−−→ (q1, e1)

R1,b1−−−−→ (q2, e2)
R2,b2−−−−→ . . . be a winning

run of E . We will first prove that we can construct an infinite run in A and then
that this is actually a winning run.
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First of all, to construct an infinite run Γ in A, we start with the following
run segment, taking the first reset transition.

(q0, [c = 0], B)
0−→ (q0, [c = 0], B)

g,z,{c}−−−−→ (q, [c = 0], B)

Then we consider all transitions in ρ in the order they are taken in the run. We
know that for each transition (qi,Ri, bi, qi+1) in ρ there exists a transition in the
energy function automaton, and by construction of this automaton, we have one
of the following two cases:

a) Either there exists a snippet S = (tin, tout, Q,B,C, k, rate, ∆) where t•in = qi,
t•out = qi+1, and EnergyFunction(S) = Ri or

b) qi = qi+1 and the transition was added using the function ExtraTransition.

Consider case a). By Theorem 6, we have that for all ein ∈ [0, B]:

fRi(ein) = max
{
eout

∣∣∣ ∃γ ∈ Runs(S) s.t. γ = (t•in, vin = [c = 0], ein) −→

. . .
tout−−→ (t•out, vout = [c = 0], eout)

}
Therefore for each transition taken in ρ of this type, it is possible to find a run
segment that achieves the same energy.

Now consider case b). In this case there exists a sequence of snippets
Sm . . .Sn, where for all j, m ≤ j ≤ n, Sj = (tinj , toutj , Qj , Bj , Cj , kj , ratej , ∆j),
t•inm = t•outn = qi, goutm = true, RT (Sm) = ∅, µ(tinm , toutm) > 0, for all
j, m ≤ j < n, toutj = tinj+1

, there exists `, m < ` ≤ n such that RT (S`) 6= ∅
and gout` = ”c = 0”, for all j 6= `, m < j ≤ n, either goutj = “c = 0” or
goutj = true. Let d = ein

ratem(t•inm ) . Then we can add to Γ the run segment shown

in Equation 7.

(t•inm , [c = 0], ein)
d−→ (t•inm , [c = d], 0)

t1−→ (t•1, [c = d], 0)
0−→ . . .

toutm−−−−→

(t•inm+1
, [c = 0], 0)

0−→ . . .
toutn−−−→ (t•outn , [c = 0], B) (7)

Note that only the first delay in the run segment is nonzero, and that since
there exists a snippet with a recharge transition S` it is possible to achieve the
energy level B at the end of the run independently of the value of ein. Finally
all transitions in the segment can be taken as the guard is either true or “c = 0”.

Note that in both case a) and b) the run segments end in a state (t•out, vout =
[c = 0], eout), which is then used as the start state of the run segment which
substitutes the next transition in ρ. This makes it possible to just concatenate
the run segments, obtaining an infinite run of A.

We now need to show that time(Γ ) = ∞, thus proving that Γ is a winning
run of A.

Since ρ is winning, we know that time(ρ) =
∞∑
i=0

bi = ∞ and therefore there

must be infinitely many transitions (qi,Ri, bi, qi+1) in ρ, where bi = 1. As men-
tioned each transition corresponds to a transition in E , which is constructed
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either from a sequence of snippets or from a single snippet S. Let gout be the
guard of the transition tout for the snippet S. Then the constructed transition
is given the value bi = 1 if:

1. it was constructed from a single snippet S
(a) gout = “c = k”, where k 6= 0, or
(b) gout = true and either

i. Ri 6= (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉) or
ii. Ri = (〈0, B〉, 〈0, B〉, 〈0〉, 〈B〉) and µ(tin, tout) = 0.

2. it was constructed from ExtraTransition.

Clearly in case 1a the run segment which is used to replace the transition
(qi,Ri, bi, qi+1) must delay k time units.

However in case 1b the run segment is not required to perform any delay. First
consider case 1(b)ii. We will show that it is possible to construct a run segment
γ starting in state (qi, vin = [c = 0], ein) and ending in state (qi+1, vout = [c =
0], fRi(ein)) such that time(γ) > 0. Note that in this case fRi(ein) = ein for all
ein ∈ [0, B]. Let q be a location such that rate(q) = µ(tin, tout) = 0. Then the
run segment γ will be:

γ = (qi, vin = [c = 0], ein)
0−→ (qi, vin = [c = 0], ein)

true,ε,∅−−−−−→ . . .
true,ε,∅−−−−−→

(q, [c = 0], ein)
k−→ (q, [c = k], ein)

true,ε,∅−−−−−→ (q′, [c = k], ein)
0−→ . . .

tout−−→
(qi+1, [c = 0], ein)

Now consider case 1(b)i and case 2. We will first show that for all ein,
0 < ein ≤ B, it is possible to construct a run segment γ starting in state
(qi, vin = [c = 0], ein) and ending in state (qi+1, vout = [c = 0], fRi(ein)) such
that time(γ) > 0. In both cases the representation Ri can only have the form
(〈0, B〉, 〈B,B〉, 〈B〉, 〈B〉) as can be seen in Algorithm 4. In case 1(b)i there exists
at least one recharge transition in RT (S). Let t be a recharge transition such
that tin�t. We can then construct the run segment γ, where t•in = qi, t

•
out = qi+1

and

d =

{
k if rate(t•in) = 0

ein
rate(t•in)

otherwise

γ = (t•in, vin = [c = 0], ein)
d−→ (t•in, vin = [c = d], ein − d · rate(t•in))

true,ε,∅−−−−−→

(q2, vin = [c = d], ein − d · rate(t•in))
0−→ . . .

t−→ (t•, [c = d], B)
0−→ . . .

true,ε,∅−−−−−→ (•tout, [c = d], B)
0−→ (•tout, [c = d], B)

tout−−→ (t•out, [c = 0], B)

Thus for all ein, 0 < ein ≤ B we have that time(γ) > 0. A similar run can be
constructed in case 2 (see Equation 7).

Now consider the energy level ein = 0. In both cases, even though the run
segments constructed do not spend any delay, they reach the energy level B in
their last state. Now we show that the energy level B is preserved until a delay is
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performed. In the run ρ, the transition taken into consideration can be followed
either by a transition with b = 1 or one with b = 0. If it has b = 1 we have
already shown that we can construct a run segment γ where time(γ) > 0. On
the other hand if b = 0 the energy function representation on the transition
represents either the function f(ein) = ein for all ein ∈ [0, B] or the function
f(ein) = B for all ein ∈ [0, B]. In both cases the energy level remains B and
since time(ρ) =∞ there will be at some later point in the run a transition with
b = 1, which as shown corresponds to a run segment where some time is spent.

Thus we have shown that if there exists a winning run in E then there exists
a winning run in A.

We have now proved that there exists a winning run in A iff there exists a
winning run in E . ut
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H NP-Hardness of a Time-Bounded Run

Here we will prove that the time-bound problem is NP-hard even for recharge
automata with only one clock and no cycles.

Problem 2. Given a recharge automaton A and a time bound T ∈ N0, does
there exist a run γ of A where time(γ) ≥ T?

Theorem 8. The time-bounded run problem is NP-hard.

Proof. This proof is by reduction from SUBSET-SUM. An instance of the
SUBSET-SUM problem is a pair (A, t), where A ⊂ N is a finite set and t ∈ N.
The problem is to find out whether there exists a subset of A whose elements
exactly sum up to t.

Assume an instance of SUBSET-SUM (A, t), where A = {t1, t2, . . . , tn}. We
construct a recharge automaton A = (Q, q1, t, C, I, rate, ∆), where

− Q = {q1, q2, . . . , qn, qn+1},
− C = {c},
− rate(qi) = 1 for all i, 1 ≤ i ≤ n, rate(qn+1) = 0,
− I(qi) = c ≤ ti for all i, 1 ≤ i ≤ n, I(qn+1) = c ≤ 1, and
− ∆ = {(qi, c = ti, ε, {c}, qi+1) | 1 ≤ i ≤ n}∪{(qi, c = 0, ε, ∅, qi+1) | 1 ≤ i ≤ n}.

The automaton is shown in Figure 14.

c=t1

c:=0

c=0 c=0

c=t2

c:=0

c≤ t1

0

c=tn

c:=0

c=0
c≤ t2 c≤1

1 1

q1 q2 qn+1

Fig. 14: Reduction from SUBSET-SUM.

Let the minimum time be T = t+ 1. There exists a run γ with time(γ) ≥ T
iff there is a solution to SUBSET-SUM.

In each location qi we have the choice to either include ti in the subset or not.
If we choose to wait in a location, we include it in the sum and thus decrease the
energy level, which will then correspond to what is missing to reach the number
t. Note that it is not possible to wait in any of the locations from qi to qn for all
the T time units required, since we will have 0 energy after only t time units.
This way we are forced to spend the last time unit required in location qn+1.

It is clear that if SUBSET-SUM has a solution, the time-bounded run prob-
lem also has a solution. On the other hand if SUBSET-SUM does not have a
solution, there is no solution to the time-bounded run problem.
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Any run can spend at most t time units in the locations q1 to qn, so we are
forced to reach qn+1 to spend the last time unit, and to do so we can either
include or exclude each number from the subset.

If the numbers chosen sum up to more than t, the run will not include the
last number fully as it would make the resource go under 0.

If the numbers chosen sum up to less than t the run will reach qn+1 where it
is only allowed to wait for one time unit, so the total time of the run would be
less than T .

Thus, there would not be a solution to the time-bounded run problem either.
ut
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