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Danish Summary
Denne opgave omhandler algoritmer til lokalisering af mobile enheder i et tr̊adløse netværk.

Mere specifikt lokalisering til indendørsbrug hvor fx GPS-signaler ikke er tilgængelige eller

utilregnelige. Opgaven giver læseren en hurtig introduktion til lokaliseringsteknikker og de

problemer der er forbundet med at udføre lokalisering i indendørs omgivelser. Dette indbe-

fatter bl.a. problemer med forhindringer som møbler og vægge, der gør det problematisk

at opn̊a gode estimater for den direkte afstand mellem to enheder.

Ved traditionel lokalisering anvender mobile enheder kun m̊alinger fra fastplaceret

punkter, som fx basestationer. Men ved at lade mobile enheder samarbejde om lokalis-

eringopgaven kan der opst̊a en synergieffekt hvor to mobile enheders tvetydige lokaliser-

ingsestimater kan reduceres til et enkelt korrekt estimat.

Opgaven tager udgangspunkt i en lokaliseringsalgoritme baseret p̊a s̊akaldt “Varia-

tional Message Passing”. Dette er en methode til at approximere en kompleks pdf med

en simplere pdf med minimal informationsforskel.

I dette projekt bliver den oprindelige algoritme udvidet til at inkludere et bimodal

estimat i forhold til det oprindelige unimodal estimat. Begge algoritmer er blevet imple-

menteret og testet, og den opgave fremviser nogle af resultater.

Det bliver via Monte Carlo simuleringer p̊avist at den foresl̊aede udvidelse kan give

forbedrede postionsestimater. Dette kommer dog p̊a bekostning af forøget beregningskom-

pleksitet. Foruden simulerede data s̊a testes algoritmerne ogs̊a p̊a data fra fysiske m̊alinger

foretaget via det EU-finansierede WHERE2-projekt, som denne opgave er en del af.
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cessing and Computing programme from the School of Information and Communication

Technology at Aalborg University. The project has been carried out in the period from

September 2012 to June 2013.

The objective of this project has been to implement the Variational Message Passing

(VMP) algorithm for indoor localization by Pedersen et al. [1] with the goal of performance
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This work has been performed within the framework of the WHERE2 (ICT-248894)
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References are cited using IEEE style, i.e. a citation number in square brackets.
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PDF file, MATLAB code for the figures and algorithm implementation, and the exper-

imental data. For convenience the content of the CD-ROM is also available online at

http://vmp.koldsgaard.dk. File references are presented as I/folder/filename.ext.

When the thesis is viewed as a PDF these references function as links to the online version

of the files.
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ance and inputs. My collaboration with Burak on the some of the topics have been very
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1 Introduction
This Master’s project started with a project proposal stated as: implement, assess per-

formance, and refine the Variational Message Passing algorithm for indoor localization by

Pedersen et al. [1]. The project has included many types of different tasks like familiar-

ization with the fields of indoor localization and variational message passing in general,

implementing a preliminary version of the algorithm, testing the algorithm on simulated

scenarios and on real measurements, evaluating the experience from these tests, propos-

ing improvements of the algorithm, implementing new versions of the algorithm including

improvements, and more. This thesis will describe some of the most important things

learned from the this work including considerations, experiences, and actual results from

within the field of indoor localization.

The main result of this work is a bimodal extension of the algorithm. Simulations

show that this extension improves the average localization error compared to the original

unimodal version of the algorithm. However the performance improvement comes at the

expense of added computational load, and the performance improvement is only prominent

in some scenarios. This leaves the bimodal extension as a trade off between performance

and computational load. To make a fair valuation of this added computational load it is

necessary to further asses efficient implementation schemes.

This project has been a part of the WHERE2 project. The WHERE2 project is an

EU funded project with a threefold objective of developing indoor localization techniques,

utilizing this location information for improving wireless communication, and realizing all

of this in hardware to confirm the improvements with real measurement data [2].

The thesis is structured in 6 chapters. The remaining part of this chapter (Section

1.1) gives an introduction to the concepts of indoor localization and the challenges at

hand. This section furthermore introduces the terminology from indoor localization that

will be used throughout the thesis. Chapter 2 describes the theory and concepts behind

the Variational Message Passing algorithm and elaborate on some of the details. Chapter 3

introduces the bimodal extension of the algorithm. Chapter 4 describes how the algorithms

was implemented. Chapter 5 present results from some of the conducted simulations and

results from real world data from the WHERE2 project. Chapter 6 wraps up the thesis

with a conclusion of the achieved results.

1.1 Indoor localization
The concept of indoor localization is the equivalent of the well-known GPS positioning for

outdoor scenarios. Although consumer-grade GPS receiver accuracy have improved over

the years indoor environments and dense high-rise urban scenarios are still a challenge.

GPS signals might not be available or unreliable, which might result in position accuracies

that are impractical for many applications [3]. For indoor localization to be useful for a

wide range of applications it should have a fairly good accuracy that is at least accurate

to the right room on the right floor and hopefully much better than that.

Many types of applications could benefit or spawn from accurate indoor localization,

e.g. indoor turn-by-turn navigation, emergency service assistance, security, location-based
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CHAPTER 1. INTRODUCTION

notifications, games, information of nearest coffee maker or toilet, tracking of goods, or

tracking of people that are late for meetings. For wireless communication accurate position

estimates could be used to optimize the resource utilization, and as mentioned this is one of

the main objectives of the WHERE2 project. The type of devices to be located range from

small wireless sensors to smartphones to larger objects like indoor vehicles. In this work a

specific application is not selected and generic terms are used to refer to the devices. All

devices are termed “nodes” and these are divided into the two groups “anchor nodes” and

“mobile nodes”. Anchor nodes are nodes with a known position, e.g. a WiFi access point

at a known position. Mobile nodes are nodes with an unknown position, e.g. a smartphone

carried around by the user. The mobile nodes are the ones to be located. Mobile nodes

need not necessarily be moving and could be stationary at an unknown position, e.g. a

laptop on an office desk. Furthermore anchor nodes need not necessarily be at a fixed

position and need not be part of a communication network as such. It could simply be

a “dumb” device that broadcast beacons solely for localization purposes. The important

thing is that its position is known at all times, e.g. like the GPS satellites whose positions

are always predictable even though they orbit the Earth in a non-geosynchronous manner.

1.1.1 Measurements
To perform localization some measurements needs to be gathered that the position estima-

tion can be be based on. Two popular measures are range and angle estimation. In range

estimation the distance between two nodes is measured. These range measurements can

then be used to indicate possible positions in the form of circles in the 2D case (spheres

for 3D). This is illustrated in Figure 1.1(a). The the common intersection of these circles

can then be used as a position estimate of the mobile node. This method is known as

trilateration. For angle estimation nodes determines from which direction the incoming

signals arrive. These measured angles of arrival can then be used to present a line on which

the transmitting node most be located. The intersection of these lines gives an estimate

of the position of the mobile node (see Figure 1.1(b)). This is known as triangulation.

 

 

Anchor node Mobile node Range measurement

(a)

 

 

Anchor node Mobile node Angle measurement

(b)

Figure 1.1: Two types of measurements that can be used for position estimation. (a)
Range measurements. (b) Angle measurements.

Angle measurements is sometimes referred to as AOA (Angle of Arrival). To perform

angle estimation some form of antenna array is needed. The orientation of a node should

2



1.1. INDOOR LOCALIZATION

be consistent throughout an angle measurement or compensated for. Hand-held devices

might experience problems with signal obstruction by the users hand for some angles of

arrival. Localization based solely on angle estimates might be somewhat problematic since

reliable knowledge of the device orientation is needed.

Range estimations can be done in two ways; measuring transmission delay or sig-

nal strength. Radio waves propagate according to the inverse-square law and hence the

received signal strength decays with the distance. So by measuring the received signal

strength the distance can be inferred. Measures of signal strength is often referred to as

RSS (Received Signal Strength) or RSSI (Received Signal Strength Indicator). The main

problem with RSS is that walls and other obstructions reduce the received signal strength

[4], and hence such measurements would seem like being transmitted from further away

than what was actually the case. Furthermore reliable measurements require some cali-

bration of the sender and receiver, at least such that the receiver knows the transmitted

signal power. Using some measure of transmission delay is an another form of range es-

timation. With the transmission delay and propagation rate of radio waves the distance

can be calculated. Determining the transmission delay can be done in multiple ways.

One method is to have some form accurate time synchronization, and then calculating

the difference between the timestamps of transmit and receive. This is known as TOA

(Time of Arrival). Another way is to use some form of round-trip method, i.e. where the

receiver returns a message upon arrival of the a message from the transmitter. The total

round-trip time divided by two can then be used as measure of the transmission delay.

Round-trip systems should compensate for the time delay introduced by the receiver not

responding instantly. This is known as RTD (Round-Trip Delay time).

Another type of localization technique is multilateration. Here TDOA (Time Dif-

ference of Arrival) is measured between two or more spatially separated nodes. With

multiple such synchronized receiver nodes at known positions it is possible to locate the

transmitting node. TDOA is also used to describe the measurements within a node that

performs angle of arrival estimation with an antenna array.

1.1.2 Challenges of indoor measurements
Performing useful and reliable measurements in indoor environments is however not trivial.

Non-line-of-sight (NLOS) conditions often arise in indoor environments due to walls and

furniture. This can lead to decreased signal strength (problematic for RSS measurements),

but it can also be the root of a much tougher problem: signals not taking the direct route.

Radio waves propagate in all direction (assuming an isotropic antenna) and while radio

waves do penetrate most walls they also reflect of surfaces. This leads to multiple paths

of signal propagation from device A to device B. This is know as multipath propagation.

This is a serve challenge for indoor localization as the measured signal might not contain

the direct line-of-sight (LOS) component. For range estimation this would result in longer

estimates than would have been the case for line-of-sight-only measurements. For angle

estimation this is even a larger problem as the strongest component might appear from a

different angle than the direction of the transmitting node.

Another problem of indoor localization is the possible low number of anchor nodes

within communication range. For unambiguous localization in 3 dimensions using tri-
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CHAPTER 1. INTRODUCTION

lateration a minimum of 4 anchors is needed. However the number of anchors within

reliable communication range in an indoor scenario might not always be 4. And even if

4 anchors are available they may provide unreliable range estimations due to multipath

propagation. Installing at least 4 anchor nodes in each room would of course reduce this

problem (assuming empty and convex shaped rooms), but it would likely be impractical

or too costly.

1.1.3 Cooperation
To overcome the difficulties of a low number of reliable anchor nodes it might be beneficial

to let the mobile nodes cooperate for localization. Figure 1.2 shows how two mobile nodes

can benefit from cooperation. Mobile node m1 is connected to anchor node a1 and a3,

and mobile node m2 is connected to anchor node a2 and a3. Assuming range based 2-

dimensional localization both mobile node m1 and m2 can not unambiguously determine

their positions. Mobile node m1 could be located in either intersection i1 or i2 whereas

mobile node m2 could be in i3 or i4. However if the two mobile nodes cooperate and

measure the distance between them this distance could be used to determine that the only

possible configuration is that m1 is in i1 and m2 in i3. This is main idea of cooperative

localization. Cooperative localization requires communication between the mobile nodes

to enable them to help each other. In the example of Figure 1.2 that could be mobile node

m1 sending its possible position coordinates of i1 and i2 to mobile node m2, that would

then be able to determine its position unambiguously using the inter-distance of the two

mobile nodes. The position of m2 should then be returned to m1 enabling it to as well

determine its position.

The concept of cooperative localization shown in Figure 1.2 can of course be used

in even more complex scenarios where some mobile nodes might only have connections to

other mobile nodes and not to any anchor nodes.

1.1.4 Distributed vs. centralized
One of the main considerations for a localization scheme is where the computation of the

position estimates should occur. For non-cooperative localization, like GPS positioning,

the computation is often carried out by the mobile node itself. However this computation

could be done centralized by the anchor nodes or another compute device on the network.

For cooperative localization the idea of centralized localization is even more attractive as

the needed communication between the mobile nodes could be eliminated. In the example

from Figure 1.2 that would mean that all range measurements from the mobile nodes

including the measured inter-distance would be sent to a central compute unit on the

network that would then return the estimated positions to the two mobile nodes. The

most suitable scheme depends on the application at hand. However determining which one

is the most suitable is not trivial. Constraints on privacy, energy consumption, mobile

node computational power, required position estimation update interval, and network

communication limitations are just some of the things to consider. E.g. for a network

of mobile low-powered low-cost wireless sensors it is probably most desirable to do the

localization computation on the device that handles all the sensor readings away such that

the position estimates are synchronized with the sensor readings. Another example could
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1.1. INDOOR LOCALIZATION
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Anchor node Mobile node Range measurement Position candicate (intersection)

Figure 1.2: With cooperative localization ambiguities can be solved. Without cooperation
mobile node m1 would not know whether it was located in intersection i1 or i2, and
mobile node m2 in i3 or i4. However by measuring their inter-distance (red dashed line)
the mobile nodes can both unambiguously determine their correct positions.

be an office network of powerful smartphones and laptops. These mobile nodes could

perform the computations themselves and exchange information with their neighbouring

nodes in the process.

1.1.5 Algorithm categories
Localization algorithms generally fall into two categories; geometric and statistical [5].

Geometric algorithms use the measurements as is (assuming LOS conditions) to compute

the best position estimate in some sense, e.g. a least squares error measure. Statistical

based algorithms assign some uncertainty to the measurements and perform statistical

inference using general purpose statistical methods. These uncertainties could be assigned

in multiple ways, but should of course aim to describe the underlying distributions as

truthfully as possible. This is however not a trivial task since the measurement error

might be caused by multipath NLOS conditions rather that measurement noise.

An alternative way to do localization that does not fall into the two other categories

is fingerprinting [3]. Fingerprinting is a mapping scheme where range measurements (RSS

and/or TOA) from each anchor node are collected and stored for each position of inter-

est. These points of interest could be arranged as a grid of points in a room. A set

of measurements for a specific point is called a fingerprint. To do localization the same

measurements are performed by a mobile node and these results are then looked up in

the database of fingerprints where the best match is then used as the position estimate.

However the fingerprinting scheme has some drawbacks. One is that the fingerprints needs

to be collected and this might include some costly manual work. Another drawback is

that two fingerprints from different locations might be similar and indistinguishable by a

mobile node.

New algorithms that are specifically tailored for indoor localization have appeared
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CHAPTER 1. INTRODUCTION

recently. These algorithms exploit that UWB (Ultra WideBand) signals might contain

information on the mutlipath components and that these components along with detailed

floor plan information can be used for localization with only one anchor node [6]. In

these algorithms the NLOS multipath components are used as range measurements from

virtual anchors. A virtual anchor represent the location from which a signal would appear

to be coming from if the signal from the physical anchor is reflected of a wall or other

surface. These techniques have been combined with cooperation in [7] and [8]. While

these algorithms are certainly interesting this extra information of multipath components

within UWB signals have not been included in this project.
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2 Variational Message Passing
(VMP)

The Variational Message Passing (VMP) algorithm for indoor localization by Pedersen

et al. [1] has been the main focus of this project and this section will give an introduc-

tion to the algorithm. The algorithm can by classified as one of the statistical types of

algorithms for localization. The algorithm has a simplistic approach to localization by

considering a network of nodes as a probabilistic graphical model where the node pairs

are connected if they have performed a range measurement between them. This gives the

simple interpretation that nodes in the graph corresponds to physical nodes, and that the

localization problem can be solved by inference on the graph. The algorithm consider only

range measurements and the estimated uncertainty of these. Hence it does not care how

these measurements are obtained be it RSS, TOA, RTD, or something else.

Using a slightly modified version of the notation from [1] the graph can be defined

as a set of nodes N and a set of edges E . Each physical node with index r is defined as

a node r ∈ N in the graph, and edges (r, t) ∈ E in the graph represents the link between

nodes r and t where a range measurement has been performed. An example of such a

graph can be seen in [1, Fig. 1]. The subsets of mobile and anchor nodes are represented

by NM and NA, respectively.

The true position of a node is represented by a vector µr ∈ R2. Note that like in [1]

this thesis will only consider localization in 2 dimensions, but an extension to 3 dimensions

is straightforward. Any prior knowledge of the position of a mobile node is represented by

a circular symmetric Gaussian with mean µ̃m and variance σ̃2
m. The distance measures

between two nodes is represented by:

dr,t = ||µr − µt|| + wr,t (2.1)

where ||·|| is the Euclidean norm and wr,t is the independent observation noise. In [1] this

observation noise is defined as a zero-mean Gaussian with variance σ2
dr,t

. This choice is

an important one since it simplifies the algorithm, but at the same time it is question-

able whether this distribution describes all the types of range measurements fed into the

algorithm.

Now defining a set of all node position vectors as X = {xr : r ∈ N} and a set of all

distance measurements as D = {dr,t : (r, t) ∈ E} the joint pdf for a localization scenario

can be described as (like [1, eq. 2 and 3]):

p(X ,D) = p(D|X ) p(X ) (2.2)

=

 ∏
(r,t)∈E

N
(
dr,t | ||xr − xt|| , σ2

dr,t

) ∏
m∈NM

N
(
xm | µ̃m, σ̃2

m

) (2.3)

where for notational convenience N (· | ·, σ2) is used for both the one-dimensional Gaussian

pdf and the circular symmetric 2-dimensional pdf N (· | ·, σ2I). This joint pdf can be
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CHAPTER 2. VARIATIONAL MESSAGE PASSING (VMP)

represented as a factor graph with the variable nodes X and the following factors:

fm(xm) = N
(
xm | µ̃m, σ̃2

m

)
(2.4)

gr,t(xr,xt) = N
(
dr,t | ||xr − xt|| , σ2

dr,t

)
(2.5)

Note that the value of variable nodes XA = {xa : a ∈ NA} will be considered as observed

variables since these are the known positions of the anchor nodes. An example of such

a factor graph is shown in Figure 2.1, where the factor nodes names are shown in short

form like fm and gr,t.

x2x1 x3

g1,4 g2,4 g2,5 g3,5

x4 x5g4,5

f4 f5

Figure 2.1: Example of factor graph representing a scenario similar to the one shown in
Figure 1.2. Gray variable nodes represent observed variables (anchor node positions).

Having expressed the localization problem in the form of a factor graph makes it easier to

apply graphical inference methods. Note that like in the example of Figure 2.1 the graphs

will generally contain loops and hence exact inference might be intractable. Message

passing algorithms can be used to solve such problems by approximating the complex

Bayesian network with a simpler network with minimum information divergence [9]. The

use of approximations implies that the solutions might be sub-optimal. Multiple such

message passing algorithms exist, e.g. loopy belief propagation, expectation propagation,

and variational message passing. According to [9] they differ by the measure of information

divergence they try to minimize, e.g. inclusive vs. exclusive Kullback-Leibler divergence.

The variational message passing (VMP) algorithm is based on the mean field assumption

and the exclusive Kullback-Leibler (KL) divergence. The mean field assumption refers

to the assumption that the complex pdf p(X|D) can be approximated by a simpler pdf

q(X ) that factorizes into q(X ) =
∏
xi∈X qi(xi). The used divergence measure is the KL-

divergence:

KL (q(X ) ‖ p(X|D)) =

∫
X
q(X ) ln

q(X )

p(X|D)
dX (2.6)

Since the KL-divergence measure is not symmetric it is important to note that the used

measure of VMP is KL (q ‖ p). This form is termed exclusive and zero-forcing by Minka

[9] since it forces q to be small when p is small. On the other hand the form KL (p ‖ q) is

termed inclusive as q would try to include more of p even if q would have to include areas

where p is small. An example of this is shown in [9, Fig. 1]. The messages of the VMP

8



algorithm are defined as [1]:

mfr→xr(xr) = fr(xr) (2.7)

mgr,t→xr(xr) = exp

(∫
xt

mxt→gr,t(xt) ln gr,t(xr,xt) dxt

)
(2.8)

mxr→gr,t(xr) = p̃r(xr) =
1

Z
mfr→xr(xr)

∏
t∈Nr

mgr,t→xr(xr) (2.9)

where Nr is the set of neighbouring nodes of the variable xr and Z is the normalization

constant such that
∫
xr
p̃r(xr) dxt = 1. The message of (2.9) can become arbitrary complex

to represent and lead to intractable computations. To avoid this problem the messages

are restricted to be in the family of circular symmetric Gaussians [1]. This is done by

approximating the messages p̃r(xr) with q′r(xr) belonging to this family with the least

KL-divergence:

mG
xr→gr,t(xr) = arg min

q′r(xr)∈G
KL
(
q′r(xr) ‖ p̃r(xr)

)
(2.10)

where G represents the family of circular symmetric Gaussians. The found q′r(xr) that

minimizes the KL-divergence is fully represented by its mean µ̂r and variance σ̂2
r .

In particle based belief propagation methods this problem of too complex messages

is solved by representing the messages with a large number of particles, e.g. 200 particles

per message in [10]. This would however result in a large communication overhead in

a distributed localization scheme. For the VMP algorithm with the circular symmetric

Gaussian restriction only the mean and variance needs to transmitted. In the case of 3-

dimensional localization this would be 4 real values. This is the main advantage of VMP

compared to particle based methods.

The VMP algorithm in all its simplicity is shown in Algorithm 1. Note that no

stopping criterion is decided upon in [1]. For the simulations and study of the algorithm

in this thesis the stopping criterion will simply be a fixed number of iterations. See chapter

4 for a discussion of the stopping criterion for a real world implementation.

Algorithm 1 The VMP algorithm [1].

Initialization:

for all nodes (in parallel) do
1) Obtain distance measurement to neighbouring nodes.
2) Broadcast distance measures and prior position knowledge to neighbouring nodes.

end for

Position estimation:

repeat
for all nodes (in parallel) do

1) Find q′r(xr) that minimizes KL (q′r(xr) ‖ p̃r(xr)).
2) Broadcast found parameters of q′r(xr) to neighbouring nodes.
3) Collect broadcasted messages from neighbouring nodes.

end for
until stopping criterion is reached.

9



CHAPTER 2. VARIATIONAL MESSAGE PASSING (VMP)

2.1 Closed form expression for the KL-divergence
In (2.10) the message is constrained to a circular symmetric Gaussian with the least

KL-divergence. However to find this q′r(xr) it is highly beneficial to have a closed form

expression for the function to be minimized. Such an expression is not provided in [1] so

it has been derived here. The expression for the KL-divergence to be minimized is stated

as:

KL
(
q′r(xr) ‖ p̃r(xr)

)
=

∫
xr

q′r(xr) ln
q′r(xr)
p̃r(xr)

dxr (2.11)

where q′r is a circular symmetric Gaussian with mean µ̇r and variance σ̇2
r (parameters for

optimization) and p̃r defined as:

q′r(xr) = N (xr | µ̇r, σ̇2
r ) (2.12)

p̃r(xr) =
1

Z
mfr→xr(xr)

∏
a∈Nr ∩NA

mgr,a→xr(xr)
∏

m∈Nr ∩NM

mgr,m→xr(xr) (2.13)

with Z being the normalization constant and:

mfr→xr(xr) = N (xr | µ̃r, σ̃2
r ) (2.14)

mgr,a→xr(xr) = N (dr,a | ||xr − µa|| , σ2
dr,a) (2.15)

mgr,m→xr(xr) = exp

(∫
xm

qm(xm) lnN (dr,m | ||xr − xm|| , σ2
dr,m) dxm

)
(2.16)

= exp
(
Exm

[
lnN (dr,m | ||xr − xm|| , σ2

dr,m)
])

(2.17)

Note that the messages from factor nodes gr,t are spilt into those from anchor nodes gr,a

and from mobile nodes gr,m. The messages from gr,a are simplified by considering qa(xa)

of the observed variable as a Dirac delta function in µa. Now ignoring the normalization

constant we can rewrite the KL-divergence as:

KL
(
q′r(xr) ‖ p̃r(xr)

)
∝ KL

(
q′r(xr) ‖ N (xr | µ̃r, σ̃2

r )
)

(2.18a)

−
∑

a∈Nr ∩NA

Exr

[
lnN (dr,a | ||xr − µa|| , σ2

dr,a)
]

(2.18b)

−
∑

m∈Nr ∩NM

Exr

[
Exm

[
lnN (dr,m | ||xr − xm|| , σ2

dr,m)
]]
(2.18c)

For (2.18a) the closed form solution for a KL-divergence between two multivariate Gaus-

sians can be used. In our case with a 2-dimensional circular symmetric Gaussians that

is:

KL
(
q′r(xr) ‖ N (xr | µ̃r, σ̃2

r )
)

=
σ̇2
r

σ̃2
r

+
||µ̇r − µ̃r||

2

2σ̃2
r

− 1− ln
σ̇2
r

σ̃2
r

(2.19)
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2.1. CLOSED FORM EXPRESSION FOR THE KL-DIVERGENCE

The contribution from each neighbouring anchor node can be written as:

Exr

[
lnN (dr,a | ||xr − µa|| , σ2

dr,a)
]

= Exr

[
ln 1√

2πσ2
dr,a

− 1

2σ2
dr,a

(dr,a − ||xr − µa||)2

]
(2.20)

= ln 1√
2πσ2

dr,a

− 1

2σ2
dr,a

Exr

[
(dr,a − ||xr − µa||)2

]
(2.21)

= ln 1√
2πσ2

dr,a

−
d2
r,a − 2dr,aExr

[
||xr − µa||

]
+ Exr

[
||xr − µa||

2
]

2σ2
dr,a

(2.22)

Using that xr can be rewritten as µ̇r + x̄r with x̄r ∼ N (0, σ̇2
r ):

Exr

[
||xr − µa||

2
]

= Ex̄r

[
||x̄r + (µ̇r − µa)||

2
]

(2.23)

= ||µ̇r − µa||
2 + Ex̄r

[
||x̄r||2

]
+ 2Ex̄r

[
x̄r

]T
(µ̇r − µa) (2.24)

= ||µ̇r − µa||
2 + 2σ̇2

r (2.25)

Furthermore defining R = ||x̄r + (µ̇r − µa)|| we have that R ∼ Rice(||µ̇r − µa|| ,
√
σ̇2
r )

[11], hence:

Exr

[
||xr − µa||

]
= Ex̄r

[
||x̄r + (µ̇r − µa)||

]
(2.26)

= ER
[
R
]

(2.27)

=
√
σ̇2
r
π
2 M

(
−1

2
, 1,−

||µ̇r − µa||
2

2σ̇2
r

)
(2.28)

where M(a, b, z) is the confluent hypergeometric function of the first kind [12]. Inserting

(2.25) and (2.28) into (2.22) gives the contribution from each neighbouring anchor node:

Exr

[
lnN (dr,a | ||xr − µa|| , σ2

dr,a)
]

=

ln 1√
2πσ2

dr,a

−
d2
r,a − 2dr,a

√
σ̇2
r
π
2 M

(
−1

2 , 1,−
||µ̇r−µa||2

2σ̇2
r

)
+ ||µ̇r − µa||

2 + 2σ̇2
r

2σ2
dr,a

(2.29)

Using a similar approach for the neighbouring mobile nodes with xm = µ̂m + x̄m and

x̄r+m = x̄r + x̄m where x̄m ∼ N (0, σ̂2
m) and x̄r+m ∼ N (0, σ̇2

r + σ̂2
m) gives:

Exr

[
Exm

[
lnN (dr,m | ||xr − xm|| , σ2

dr,m)
]]

= ln 1√
2πσ2

dr,m

−
d2
r,m − 2dr,m

√
(σ̇2
r + σ̂2

m)π2 M
(
−1

2 , 1,−
||µ̇r−µ̂m||2
2(σ̇2

r+σ̂2
m)

)
+ ||µ̇r − µ̂m||

2 + 2(σ̇2
r + σ̂2

m)

2σ2
dr,m

(2.30)

11



CHAPTER 2. VARIATIONAL MESSAGE PASSING (VMP)

Now using (2.19), (2.29), and (2.30) and ignoring all constant terms the KL-divergence

can be written in closed form as:

KL
(
q′r ‖ p̃r

)
∝
||µ̇r − µ̃r||

2 + 2σ̇2
r

2σ̃2
r

− ln σ̇2
r (2.31a)

+
∑

a∈Nr ∩NA

−2dr,a
√
σ̇2
r
π
2 M

(
−1

2 , 1,−
||µ̇r−µa||2

2σ̇2
r

)
+ ||µ̇r − µa||

2 + 2σ̇2
r

2σ2
dr,a

(2.31b)

+
∑

m∈Nr ∩NM

−2dr,m
√

(σ̇2
r + σ̂2

m)π2 M
(
−1

2 , 1,−
||µ̇r−µ̂m||2
2(σ̇2

r+σ̂2
m)

)
+ ||µ̇r − µ̂m||

2 + 2σ̇2
r

2σ2
dr,m

(2.31c)

To do the numerical minimization a closed form expression for the gradient is found as

well. This is shown in Appendix A. With this closed form expression for the KL-divergence

the implementation of the VMP algorithm is straightforward.
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3 Bimodal Variational Message
Passing (B-VMP)

This chapter concerns the “refinement” part of the project. The algorithm from [1] de-

scribed in chapter 2 was implemented for initial performance assessment purposes. From

simulations similar to the ones described in [1, Sec. V] it was clear that scenarios where

some of the mobile nodes failed to be located was the most interesting. A simple simula-

tion scenario was constructed to investigate these problems further. The simple simulation

scenario is described in Section 5.1.

It was observed that in these simulations the position estimate for one or more mobile

nodes would sometimes alternate between two distinct positions for each iteration rather

that improve one of them. Figure 3.1 illustrates such an example where the position

estimation error is shown for each mobile node for each iteration. Note that this figure

only consists of 10 · 16 discrete values, and that the contours in between these are just

interpolations used to easier visualize the change from one iteration to another. In this

example mobile node 1 and 9 both alternate between a good position estimate (blue) and

a worse position estimate (red) for all iterations whereas the other nodes seem to have

found more stable position estimates.
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Figure 3.1: Example of convergence for the VMP algorithm. The figure shows the position
estimate error for each mobile node for each iteration.

This behaviour is of course caused by the interaction of the mobile nodes via the

messages of new beliefs. Since these changes of belief for one or more neighbouring nodes

could cause a mobile node to continuously alternate between two position estimates it was

clear that an inherent or arising ambiguity in the system was not fully modelled.

Looking at a simple 1-dimensional example of a belief based on erroneous measure-

ments it is clear that the simple unimodal representation in [1] might not be sufficient.

Figure 3.2 shows such an example. For simplicity just two erroneous anchor distance mea-

surements are shown with their appertaining messages. Below the graph is an illustration

of the distance measurements dr,t and their ±1 standard deviation σdr,t . It is clear that

in such a case the product of the messages would be bimodal (green line). To underline

the point of this example it is constructed such that the largest of the modes is the wrong

13



CHAPTER 3. BIMODAL VARIATIONAL MESSAGE PASSING (B-VMP)

one, i.e. the true position of the mobile node (vertical dashed line) is closer to the smaller

mode. A unimodal approximation with minimum KL (q ‖ p) divergence from the product

is shown as the red dashed line.

p(x)

x

 

 
Incoming message from one anchor
Incoming message from another anchor
Product of incoming messages
Unimodal approximation (scaled)

Figure 3.2: Example of a bimodal unconstrained message in 1D. The graph shows examples
of messages from anchor nodes (see eq. (2.15)). The green line shows how the product
of these messages might become bimodal. The two distance measurements and their ±1
standard deviation are shown below the graph. An example of the true position of the
mobile node is shown with a vertical dashed line.

This problem of bimodal unconstrained messages can also be shown for a 2D case.

Figure 3.3(a) show an example of p̃r(xr) where a mobile node is connected to three anchor

nodes with non-faulty distance measures of each link. The circular symmetric Gaussian

with the least KL-divergence from p̃r(xr) is shown in 3.3(b). From this figure it is clear

that in such a case the approximation is quite good.

1 2

3

Anchor node Mobile node Link Measured distance

(a)

1 2

3

Anchor node Mobile node Link Measured distance

(b)

Figure 3.3: Example with good distance measurements. With (a) p̃r(xr) and (b)
q′r(xr) ∈ G.

However in the case that one or more distance measures are not perfect p̃r(xr)

might have a form that is not unimodal. Figure 3.4(a) shows an example that is similar

to Figure 3.3(a) but where the distance between anchor node 3 and the mobile node is

reported to be longer that true distance and have a larger distance measurement variance.

Approximating this p̃r(xr) with a unimodal circular symmetric Gaussian results in Figure

14



3.4(b). From this it is clear the strongest mode is chosen by the approximation, and that

the less probable (but correct) mode is completely discarded.

1 2

3

Anchor node Mobile node Link Measured distance

(a)

1 2

3

Anchor node Mobile node Link Measured distance

(b)

Figure 3.4: Example with a bad distance measurement and unimodal approximation. With
(a) p̃r(xr) and (b) q′r(xr) ∈ G.

1 2

3

Anchor node Mobile node Link Measured distance

(a)

1 2

3

Anchor node Mobile node Link Measured distance

(b)

Figure 3.5: Example with a bad distance measurement and bimodal approximation. With
(a) p̃r(xr) and (b) q′r(xr) ∈MG.

To improve the result of the algorithm it is proposed to approximate p̃r(xr) with a

mixture of two circular symmetric Gaussians. We denote this family as MG (Mixture of

Gaussians). An example of this is shown in Figure 3.5(b) where it is clear that the less

probable mode is preserved if q′r(xr) ∈MG.

The main idea of this improved approximation of p̃r(xr) with possibly two modes

is to hopefully make it possible for neighbouring mobile nodes to more accurately or

within fewer iterations find a good position estimate. Another benefit of the bimodal

approximation is that odd shaped p̃r(xr) can be represented better.

It is however not trivial to predict how such a refinement will influence the localization

performance of the algorithm. It depends on the localization scenario at hand and whether

bimodal or oddly shaped unconstrained messages occur.
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CHAPTER 3. BIMODAL VARIATIONAL MESSAGE PASSING (B-VMP)

The implications of extending the algorithm to use a bimodal constraint over a

unimodal constraint are rather limited due to the structure of the VMP algorithm. Besides

the task of finding a new closed form expression for the KL-divergence and choosing a

method for minimizing this, the extension only affects the algorithm in the sense that the

size of the messages passed from the mobile nodes increases. With the circular symmetric

Gaussian constraint the messages have contain the mean and variance (3 real values -

assuming a 2-dimensional case) whereas for a mixture of two circular symmetric Gaussians

7 real values should be passed (1 ratio value (weight), 2 means, and 2 variances).

Section 3.1 describes the derivation of the closed form expression for the bimodal

KL-divergence and the effect of this extension of the algorithm is presented in Chapter 5.

3.1 Closed form expression for the KL-divergence
The approximation q′r(xr) can be defined as a mixture of circular symmetric Gaussians

where:

q′r(xr) =

K∑
k=1

ẇr,kN (xr | µ̇r,k, σ̇2
r,k) (3.1)

with the constraint:

K∑
k=1

ẇr,k = 1 (3.2)

In the bimodal case of K = 2, which we want to implement, (3.1) and (3.2) reduces to:

q′r(xr) = ẇr,1N (xr | µ̇r,1, σ̇2
r,1) + (1− ẇr,1)N (xr | µ̇r,2, σ̇2

r,2) (3.3)

However as the definition in (3.1) is more generic and in some sense simpler it will be

used throughout this derivation. The derivation follows the same steps as the derivation

for the unimodal KL-divergence. See Section 2.1 for details. As for the unimodal case the

KL-divergence can be written as:

KL
(
q′r(xr) ‖ p̃r(xr)

)
∝ KL

(
q′r(xr) ‖ N (xr | µ̃r, σ̃2

r )
)

(3.4a)

−
∑

a∈Nr ∩NA

Exr

[
lnN (dr,a | ||xr − µa|| , σ2

dr,a)
]

(3.4b)

−
∑

m∈Nr ∩NM

Exr

[
Exm

[
lnN (dr,m | ||xr − xm|| , σ2

dr,m)
]]
(3.4c)

However contrary to the unimodal case no closed form expression exist for the first

part (3.4a) when q′r(xr) is a mixture of Gaussians. Multiple approximations of the KL-

divergence between two mixtures of Gaussians have been compared in [13], and of these

“the variational approximation” is recommended. For two Gaussian mixtures f and g

with components fi and gi having weights wf,i and wg,i this approximation is defined as:

Dvar (f ‖ g) =
∑
a

wf,a ln

∑
bwf,b exp(−KL(fa ‖ fb))∑
cwg,c exp(−KL(fa ‖ gc))

(3.5)
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3.1. CLOSED FORM EXPRESSION FOR THE KL-DIVERGENCE

In our case where the prior knowledge is a single circular symmetric Gaussian (or “mix-

ture” of one component) the KL-divergence can be stated as:

KL
(
q′r(xr) ‖ N (xr | µ̃r, σ̃2

r )
)
≈ Dvar

(
q′r(xr) ‖ N (xr | µ̃r, σ̃2

r )
)

=

K∑
k=1

ẇr,k ln

∑K
l=1 ẇr,l exp

(
− σ̇2

r,k

σ̇2
r,l
− ||µ̇r,k−µ̇r,l||2

2σ̇2
r,l

+ 1 + ln
σ̇2
r,k

σ̇2
r,l

)
exp

(
− σ̇2

r,k

σ̃2
r
− ||µ̇r,k−µ̃r||2

2σ̃2
r

+ 1 + ln
σ̇2
r,k

σ̃2
r

) (3.6)

For (3.4b) and (3.4c) the same approach as for the unimodal case can be used by noting

that:

Exr

[
h(xr)

]
=

K∑
k=1

ẇr,k Exr,k

[
h(xr,k)

]
(3.7)

with xr,k ∼ N (µ̇r,k, σ̇
2
r,k). So the contribution from the neighbouring anchor nodes be-

comes:

Exr

[
lnN (dr,a | ||xr − µa|| , σ2

dr,a)
]

= (3.8)

ln 1√
2πσ2

dr,a

−
d2
r,a − 2dr,a

∑K
k=1 ẇr,k Exr,k

[
||xr,k − µa||

]
+
∑K

k=1 ẇr,k Exr,k

[
||xr,k − µa||

2
]

2σ2
dr,a

(3.9)

Inserting the derived expressions for Exr,k

[
||xr,k − µa||

]
and Exr,k

[
||xr,k − µa||

2
]

(see eq.

(2.25) and (2.28)) and grouping all constant terms into c this becomes:

Exr

[
lnN (dr,a | ||xr − µa|| , σ2

dr,a)
]

=

− 1

2σ2
dr,a

[
−2dr,a

K∑
k=1

ẇr,k

√
σ̇2
r,k

π
2 M

(
−1

2
, 1,−

∣∣∣∣µ̇r,k − µa∣∣∣∣2
2σ̇2

r,k

)

+

K∑
k=1

ẇr,k

(∣∣∣∣µ̇r,k − µa∣∣∣∣2 + 2σ̇2
r,k

)]
+ c (3.10)

= − 1

2σ2
dr,a

K∑
k=1

ẇr,k

[
−2dr,a

√
σ̇2
r,k

π
2 M

(
−1

2
, 1,−

∣∣∣∣µ̇r,k − µa∣∣∣∣2
2σ̇2

r,k

)
+
∣∣∣∣µ̇r,k − µa∣∣∣∣2 + 2σ̇2

r,k

]
+ c (3.11)

For the contributions from the neighbouring mobile nodes we can again use that:

Exr

[
Exm

[
h(xr,xm)

]]
=

K∑
k=1

K∑
l=1

ẇr,kŵm,l Exr,k

[
Exm,l

[
h(xr,k,xm,l)

]]
(3.12)
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Hence the same principles as for the unimodal case can be used. Grouping constant terms

into c the contribution from each neighbouring mobile node can be expressed as:

Exr

[
Exm

[
lnN (dr,m | ||xr − xm|| , σ2

dr,m)
]]

=

− 1

2σ2
dr,m

[
−2dr,m

K∑
k=1

K∑
l=1

ẇr,kŵm,l

√
(σ̇2
r,k + σ̂2

m,l)
π
2 M

(
−1

2
, 1,−

∣∣∣∣µ̇r,k − µ̂m,l∣∣∣∣2
2(σ̇2

r,k + σ̂2
m,l)

)

+

K∑
k=1

K∑
l=1

ẇr,kŵm,l

(∣∣∣∣µ̇r,k − µ̂m,l∣∣∣∣2 + 2σ̇2
r,k

)]
+ c (3.13)

= − 1

2σ2
dr,m

K∑
k=1

K∑
l=1

ẇr,kŵm,l

[
−2dr,m

√
(σ̇2
r,k + σ̂2

m,l)
π
2 M

(
−1

2
, 1,−

∣∣∣∣µ̇r,k − µ̂m,l∣∣∣∣2
2(σ̇2

r,k + σ̂2
m,l)

)
+
∣∣∣∣µ̇r,k − µ̂m,l∣∣∣∣2 + 2σ̇2

r,k

]
+ c (3.14)

Inserting (3.6), (3.11), and (3.14) into (3.4) while ignoring the constant terms gives the

closed form expression to be minimized for the multimodal case. To do the numerical

minimization a closed form expression for the gradient is found as well. This is shown in

Appendix B. With this closed form expression for the bimodal KL-divergence the imple-

mentation of the extented VMP algorithm is straightforward.
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4 Implementation
This chapter presents some of the things to consider when implementing a real world

cooperative localization algorithm. These considerations help define a common framework

with a flexible structure for testing the two algorithms VMP and B-VMP.

As mentioned in Chapter 1 it is essential to decide whether the algorithm should

be run in centralized or distributed localization scheme. For this work we assume that

a distributed scheme is selected upon and will hence describe the arising challenges from

this choice.

The straight-forward definition of the VMP algorithm in Algorithm 1 on page 9

gives a simple recipe for performing localization. However this definition does not specify

anything about when, how, and whom can or should invoke the algorithm for performing

the localization. Furthermore it does not specify how the distance measurements should

be obtained and how the communication between the nodes should be handled. It as well

does not specify a stopping criterion.

Participation of mobile nodes in cooperative localization
In the case of non-cooperative localization the localization algorithm can be invoked when-

ever the mobile node find it convenient. E.g. for GPS-based navigation the localization

algorithm could be invoked at a fixed time interval or based on measurements from iner-

tial sensors. But in the case of cooperative localization this task of invoking a localization

procedure becomes bit more complicated.

Performing cooperative localization requires some effort of the neighbouring nodes

as they would have to perform distance measurements and possibly computations for the

localization algorithm to run. This effort costs both computation time and energy for the

neighbouring nodes. But for mobile nodes these resources are likely limited and hence

the neighbouring nodes would have to somehow decide whether to participating in this

cooperative localization procedure or not. E.g. if a mobile node only have a small amount

of battery power left and does not need a new position update for itself it might choose

not to participate in a cooperative localization procedure initiated by another mobile node

on the network. The scale of this problem of course depends on the application at hand,

e.g. it might be a problem for individual smartphones in an office network whereas for a

cooperative sensor network with a common goal it might be less of a problem.

To simplify the implementation and testing of the algorithms this decision of invoking

the procedure is simply generalized and termed a “position request”. When, how, and

whom initiates a position request is not important to the algorithm as such but the way

the mobile nodes choose to participate is.

Node communication
In a distributed iterative cooperative localization algorithm it is important that the mobile

nodes can communicate. However it is not important how the nodes communicate. This

could be via a common network or by peer-to-peer connections. The important thing

to notice is that the communication between the nodes might not be perfect, and the

communication link between two nodes might be unreliable or stop working during the
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iterative procedure. It is therefore important that the testing framework can handle and

simulate such losses of communication. In the case of a message from one mobile node

to another does not arrive at an iteration step it is then up to the algorithm to decide

if it should discard all information from this node or assume that the content of the last

message is still valid. In the case of the (B-)VMP algorithm this might even be exploited

as a feature that a mobile node could choose to not send a message if it is identical to the

previous message broadcasted or is within a small numerical boundary hereof.

In any case it is important to define some communication scheme to determine when

a message is considered lost, e.g. due to a fixed timeout setting. Such a timeout setting

depend on the application at hand and should besides communication delay allow for

reasonable amount of time to collect incoming messages and compute an outgoing message.

Stopping criterion
Determining when to stop the iterative algorithm depends on multiple factors. One con-

sideration could be that the mobile nodes might have moved and hence a new position

request should be made with new fresh distance measurements. For some applications it

might be beneficial to abort the algorithm before it has converged and do a new position

request. For other applications the opposite might be true.

If no new urgent distance measurements are required, e.g. if the mobile nodes are

assumed to be static, the algorithm would have to terminate based on some other criterion.

A simplistic way to do this would be a fixed number of iterations. But determining such a

one-size-fits-all number is not trivial. A dynamic approach on the other hand would allow

the algorithm to terminate quickly if it has already converged. One way to do so would

be to look at the difference of the between the current and previous computed outgoing

message (mean, variance, and weight). If all mobile nodes reported “no change” then the

algorithm could be terminated by assuming that the algorithm has converged to its best

set of position estimates.

Obtaining distance measurements
Another consideration is how to obtain the distance measurements between the nodes. As

presented in Chapter 1 multiple technologies and methods exists for obtaining a distance

estimate. However as the accuracy of the distance estimates have directly influence on

the localization results it is important that they are as accurate as possible. Furthermore

for (B-)VMP algorithm it is important that an estimate of the distance error variance is

provided as well. A simple approach to this is to measure the distance multiple times and

hope that the fluctuations in the measurements are representative for the true distance

error variance. Note that this distance error variance should encompass the true distance

error, i.e. including offset caused by NLOS conditions.

In a static environment this might be a problem as two nodes could measure the

exact same distance over and over again even if this is a non-direct path. This would

result in a measured variance of zero which of course would not be representative if the

distance measured is a non-direct path that is much longer that the true direct distance.

One solution to this problem is to measure the distance using multiple radio access

technologies (RAT). If two nodes both support multiple RATs that operates with different

frequency characteristics this might result in different distance estimates due to the dif-
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ferent propagation properties. Fusing such two distance measurements to a hybrid RAT

distance measurement might give a better estimate of the distance as well as the distance

error variance. For RATs with multiple channels available this could also be achieved by

measuring the distance using each channel.

If the RAT available uses Ultra WideBand (UWB) communication this might already

be somewhat exploited due to the large bandwidth that makes it possible to identify

multipath components and hence better determine the LOS component [14].

Another practical consideration regarding obtaining the distance measurements is to

determine the time allowed for performing these measurements.

4.1 Algorithm implementation
With the considerations above in mind a common framework for the two algorithms have

been implemented. The main purpose of this framework is to investigate the behaviour of

the two algorithms. So besides the flexibility needed to handle the above considerations

the framework is as well designed to save all intermediate values for subsequent analysis,

e.g. all passed messages. Fortunately the structure of the (B-)VMP algorithm is relatively

simple and straight-forward to implement.

The purpose of this section is not explain the trivial details of the implementation

but rather the flexible structure of the data that permits the implementation to be used

for both simulations and testing on real measurement data.

The input to the algorithm is represented with a MATLAB structure of the following

format:

scenario

.name: Name of the input scenario.

.map: Structure with image of floor plan for plotting the results.

.nodes: Structure array with the nodes.

.node id

.name

.anchor: Boolean value to indicate anchor node.

.position requests: Structure array with data of all position requests.

.timestamp

.true positions: Structure array with true position for all nodes for this

position request. The true position of anchor nodes are used in the algo-

rithm whereas true position for mobile nodes are only used for evaluation.

.node id

.x

.y

.distance estimates: Structure array for distance estimates.

.node id a

.node id b
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.distance

.distance variance

The choice of using MATLAB structures compared to simple matrices is due to readability

concerns for the source code of the algorithm. For real world measurements the structure

as well contain the link measurements used to the generate the distance estimates. This

way all data related to a scenario is contained within one variable and the structure can

handle both simulated data and real world measurements.

The implementation of the (B-)VMP algorithm follows the basis form presented

in Algorithm 1 on page 9. For each iteration a structure is created (and saved) that

contains all incoming messages. The content of this structure is then used to create a

function handle to the closed form expression of the KL-divergence with this data inserted.

This function handle is passed to MATLAB’s GlobalSearch algorithm from the Global

Optimization Toolbox for determining the global minimum of this function. The global

optimization procedure is initiated with the parameters estimates found in the previous

iteration. The GlobalSearch algorithm has a default value of 1000 for NumTrialPoints

which defines the number of potential starting points for algorithm. However it was

observed that this number in most cases could be reduced to 250 without affecting the

results but giving a significant computational saving. So where nothing else is specified

the algorithm uses NumTrialPoints = 250.

The main part of the algorithm can be found in I/matlab/vmp algorithm.m, and

the closed form expression for the KL-divergence for VMP and B-VMP can be found in

I/matlab/vmp algorithm kld unimodal.m and

I/matlab/vmp algorithm kld bimodal.m, respectively.
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5 Results
The implementation of the two algorithms have been tested on two types of data; sim-

ulated scenarios and the real measurement data from the WHERE2 project. An initial

implementation of the VMP algorithm was tested on simulated scenarios similar to those

described in [1] with 13 anchor nodes and 100 mobile nodes. However to investigate the

behaviour of the algorithms more closely a simpler scenario with fewer nodes have been

defined. Section 5.1 describes this simple simulation scenario and some of the results that

have been obtained from simulations using this scenario. Section 5.2 presents some results

from the DLR preliminary measurement campaign from the WHERE2 project.

5.1 Simulations
To investigate the behaviour of both the VMP and B-VMP algorithm a simple simulation

scenario has been constructed. This scenario was devised with two goals in mind: simplic-

ity and flexibility. The simplicity is achieved by using only 3 anchor nodes and 10 mobile

nodes. As the simulation scenario is intended for only 2-dimensional localization 3 anchor

nodes is sufficient to avoid ambiguity caused by rotation or mirroring. The number of mo-

bile nodes is chosen as a trade-off between having as few nodes as possible for simplicity

while still having enough mobile nodes to generate interesting scenarios that depends on

cooperation between the nodes to achieve good localization performance.

Figure 5.1 shows an example of the devised simulation scenario. This example will

be used throughout this section. The simulation “floor plan” is a rectangle of 30 × 20

m. The mobile nodes are distributed uniformly and independently within this rectangle.

The anchor nodes are located such that they do not form a isosceles triangle. This way it

is easy to verify that the plotting of a generated scenario have not been mirrored in the

process.

The simulated distances measures are generated by first deciding whether two nodes

are connected and then making a noisy distance measurement. As in [10] the probability

of two nodes being connected given their true distance d is defined as:

p(d) = exp

(
−d2

2R2

)
(5.1)

where R is the communication range. This gives a probability of a connection of roughly

88 % for d = R
2 , 60 % for d = R, and 14 % for d = 2R. The parameter R adds flexibility to

the simulation scenario. A large R would result in a well connected network while a small

R would result in a scenario where each node only has a few connections. Compared to a

fixed communication range this probabilistic approach to connectivity also add diversity

to the generated scenarios.

The distance measurements can by generated in multiple ways to simulate some

underlying RAT and distance measurement method. However for the results shown here

the distance measures are generated by adding zero-mean Gaussian noise to the true

distances. This is done to comply with the assumption from the algorithms so that the

comparison is as fair as possible.

23



CHAPTER 5. RESULTS

x [m]

y 
[m

]

1 2

3

4

5

6

7
8

9

10

1112

13

 

 

−15 −10 −5 0 5 10 15
−5

0

5

10

15

Anchor node Mobile node

Figure 5.1: Example of the simple simulation scenario with 3 anchor nodes at fixed loca-
tions and 10 mobile nodes uniformly distributed within the boundaries.

Figure 5.2 shows an example of how these measurements might look like. Note that

in this figure only the distance measurements from anchor nodes to mobile nodes are

shown. These distance measurements are coloured to so that they match the colour of

the mobile node. Figure 5.3 shows the full scenario including the cooperative mobile to

mobile distance measurements. These cooperative measurements are shown in yellow.

From Figure 5.2 it is clear that this simple scenario can generate a diverse set of

challenges for localization algorithms. This example shows how distance measurements

can be way off and that some mobile nodes like node 8, 9, and 10 is only connected to one

anchor. The example was generated with R = 15 m and a distance measurement error

variance of σ2
dr,t

= 3.

Figure 5.4(a) and 5.4(b) shows the resulting position estimates from the VMP and

B-VMP algorithm, respectively. Both algorithms have been run for 15 iterations. From

these results it is clear that the B-VMP algorithm in this specific case gives a better

position estimate. While node 4, 7, and 8 are better positioned by the VMP algorithm

the 7 other mobile nodes are worse positioned.

Figure 5.5(a) and 5.5(b) shows how the error of the position estimates converges for

the two algorithms. For each iteration the position error for each mobile node is plotted

as color indicating the size of the error. Note that the interpolation of colours between the

data points only serve as a visual aid. From these plots it is also clear that the B-VMP

algorithm handles this scenario better than the VMP algorithm.

This particular example is of course chosen to highlight the potential of the B-

VMP algorithm. However explaining why this particular example is better suited for

the B-VMP algorithm is not trivial since it depends on the interplay between the mobile

nodes during the iterations of the algorithms. To shed some light on this matter the

unconstrained p̃r(xr) have been plotted for all mobile nodes for the first 5 iterations for

both algorithms. Figure 5.6 shows the result for VMP and Figure 5.7 for B-VMP. In these

figures the true location of the mobile node is shown with a green dot and the selected
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Figure 5.2: Example of simple simulation scenario with anchor to mobile distance mea-
surements shown. The colour of the distance measurement is determined by the colour of
the mobile node.
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Figure 5.3: Same as Figure 5.2 but also showing the cooperative mobile to mobile distance
measurements. These are shown in yellow.
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(a) VMP
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(b) B-VMP

Figure 5.4: Resulting position estimates by the two algorithms after 15 iterations.
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(b) B-VMP

Figure 5.5: Position estimate error for each mobile node for each iteration.

mean(s) of the circular symmetric Gaussian(s) is shown with an yellow circle. For the

B-VMP plots the red square shows the weighted average of the two selected means, i.e.

ŵr,1µ̂r,1 + (1 − ŵr,1)µ̂r,2. This weighted average is as well used as the position estimate

for this iteration.

The p̃r(xr) messages are shown with coloured contours. The colours are used to

distinguish them from each other and to pair them with the mobile node they represent.

The colours used are the same as from the previous figures (see Figure 5.1), e.g. the

red contour belongs to mobile node 6. The figures show a wide variety of shapes that

the p̃r(xr) can take during the iterations of the algorithms. It is clear that p̃r(xr) is not

always circular. It might be oblong, banana shaped, or some other irregular shape and

it might be bimodal. From these figures it as well becomes apparent that the bimodal

shape can occur from the changes of the approximated beliefs of the position estimates

from the neighbouring nodes. Note that the variance of the Gaussian circular symmetric

approximations are not shown. The changes in these variances contribute to generate

bimodal shapes.

Figure 5.6(c) shows two examples where the VMP algorithm has to choose one mode

of a bimodal p̃r(xr). Both the p̃r(xr) for mobile node 6 and 13 are bimodal (the non-

chosen mode of 13 is the one to the left of the true position of mobile node 11). In Figure

5.7(c) in can be seen how B-VMP for both mobile node 5 and 6 has selected means that

match the modes of the bimodal p̃r(xr).
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(a) VMP: Iteration 1 (b) VMP: Iteration 2

(c) VMP: Iteration 3

(d) VMP: Iteration 4 (e) VMP: Iteration 5

Figure 5.6: Map of p̃r(xr) for each mobile node for selected iterations. These are for the
VMP algorithm.
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(a) B-VMP: Iteration 1 (b) B-VMP: Iteration 2

(c) B-VMP: Iteration 3

(d) B-VMP: Iteration 4 (e) B-VMP: Iteration 5

Figure 5.7: Map of p̃r(xr) for each mobile node for selected iterations. These are for the
B-VMP algorithm.
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5.1.1 Monte Carlo simulations
While the previous example show how the B-VMP algorithm can outperform VMP in

a specific case the real interesting question is how often this is the case. To investigate

this a set of Monte Carlo simulations have been conducted. The parameters used have

been R = {10, 15} and the distance measurement error variance σ2
dr,t

= {1, 1.5, 2, 3, 5}.
For each combination of these two parameters 200 scenarios have been generated and

passed through the algorithms for 15 iterations. Figure 5.8(a) shows a CDF of position

estimate errors for R = 10 and Figure 5.8(b) for R = 15. The solid lines are for the

B-VMP algorithm and the dashed lines for the VMP algorithm. For R = 10 the average

number of connections per node is 5.7 whereas for R = 15 it is 8.0. From Figure 5.8(a) it

appears that B-VMP generally perform better for all settings of the distance measurement

variance. This indicates that for these low connectivity scenarios with few anchors the B-

VMP algorithm is beneficial and produces better position estimates. However for R = 15

it appears that there is only little or no improvement using B-VMP over VMP.

However these CDF plots does not show whether the individual nodes are generally

located better or just differently. To investigate this histograms have been created that

shows the difference in the position estimates for individual nodes between VMP and B-

VMP. These are shown in Figure 5.9. The difference is calculated for each node as VMP

position error minus B-VMP position error. Hence positive differences means that B-VMP

result is better. Note that the plots are limited to 5 % to highlight the differences between

the two algorithms. From Figure 5.9(a) it is clear that while the CDF indicates an general

improvement this does not mean that all mobile nodes are located better. However the

B-VMP result is better and 54.9 % of the mobile nodes have been located more accurately.

7.9 % of the nodes are located better than 2 m while only 4.9 % are located worse than -2

m (negative difference, VMP better). The case for R = 15 is shown in Figure 5.9(b) and

only 51.6 % is located better with B-VMP. And for error differences larger than 2 m the

percentage is just 2.7 % and for differences less than -2 m it is 2.5 %.

From these simulations it seems that the B-VMP algorithm is more beneficial the

tougher the scenario, e.g. low connectivity and large distance measurement error variance.

Of the simulated scenarios the one with the largest improvement by B-VMP vs. VMP is

for R = 10 m and σ2
dr,t

= 3. In this scenario the position estimate is improved for 57.6 %

of the nodes, and for 8 % more than 2 m while only 3.8 % is less than -2 m.

Another thing to note is that for R = 15 m and σ2
dr,t

= 1 the VMP algorithm seem to

be notably better than the B-VMP. However as this seemed unintuitive it was investigated

further and it turned out that the global optimization procedure did not find the global

minimum but only a local minimum for some of the nodes. All simulations of Figure 5.8

was conducted with the the global optimization setting NumTrialPoints set to 250. To

see the effect of this the scenario was re-run with NumTrialPoints set to 1000. Figure

5.10 shows the comparison of these two runs. From this figure it is clear that global

optimization parameters had been set too low for this scenario.
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Figure 5.8: CDF of position errors for different sets of simulation parameters. See text for
further description.
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Figure 5.9: Histogram showing the position error difference for VMP error minus B-VMP
error.
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Variance: 1, Algorithm: B−VMP (NumTrialPoints: 250)
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Figure 5.10: The blue lines are equal to chose from Figure 5.8(b). The orange line indicate
the result of B-VMP algorithm re-run with NumTrialPoints setting at 1000 instead of
250 as is used for all the other plots.
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5.2 WHERE2 DLR preliminary measurements
Within the WHERE2 project a couple of measurement campaigns have been carried out

to evaluate the both the hardware and algorithms developed within the project. One

of these measurement campaigns is termed “DLR preliminary” and resulted in the ICC

paper shown in Appendix C. A part of this Master’s project have been to evaluate the

VMP algorithm on the WHERE2 measurements. This measurement campaign where con-

ducted on the DLR premises in Germany (Deutsches Zentrum für Luft- und Raumfahrt).

The measurement campaign included multiple scenarios but in this section only results

from “Setup 2” will be considered. See Fig. 5 of Appendix C for details. The distance

measurements used are obtained from the ZigBee nodes using RSSI. At the time when

the paper was written the B-VMP algorithm was not implemented and hence results from

this algorithm were not included in the paper.
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Figure 5.11: Results from the DLR preliminary “Setup 2” scenario.

Figure 5.11 shows the result of the B-VMP algorithm evaluated on the DLR prelim-

inary “Setup 2” scenario. As can be seen from 5.11(a) the results of B-VMP and VMP

look similar. Figure 5.11(b) shows the differences of the position estimation errors. The

result are that 55.9 % of the nodes are better located by B-VMP over VMP but 3.9 % is

located worse than -1 m and only 2.6 % are better than 1 m.

This however does not mean that the benefits of the B-VMP algorithm is not present

in the localization result. Figure 5.12 shows the position error per mobile node per iteration

plot for the position request with index 26 (of 38). It can be seen that in this case the

alternation between two sets of position estimates are eliminated in the B-VMP algorithm

compared to VMP.

Looking at the CDF of Figure 5.11(a) it can be seen that only 45 % of the nodes are

located within an error range of 2 m and 70 % within 3 m. This might seem somewhat

inconvenient for and indoor localization application. However to evaluate the performance

it is necessary to look at the input of the algorithms. Figure 5.13 shows the distance

measurements for position request index 26. This is somewhat representative for the

position request of scenario “Setup 2”. From this figure it is clear that these scenarios

both have low connectivity and that the distance measurement vary a lot. But as can be

seen from the results in Figure 5.14 both algorithms find rather good position estimates

anyway.
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In this case the VMP algorithm performs a little better as it locates the mobile node

with id 400 more accurately. However as the VMP algorithm alternates between two

sets of position estimates (see Figure 5.12(a)) if the algorithm had been terminated one

iteration before then this mobile node would have been located worse. Looking at the

plots of p̃r(xr) in Figure 5.15 it can be seen that both algorithms have a bimodal p̃r(xr)

for this node. The VMP algorithm chooses one of these modes whereas the B-VMP select

both. This particular node shows the challenges of selecting the final position estimate of

the B-VMP algorithm.
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(b) B-VMP

Figure 5.12: Position estimate error for each mobile node for each iteration. For position
request with index 26.
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Figure 5.13: True positions and distance measurements for position request with index 26.

However the shown example is one of the better where the localization performance

is resonable. For some position requests large erroneous distance measurements pushes

the best position estimates way of course. As can be seen from Figure 5.11(a) close almost

20 % of the nodes are located with errors worse than 5 m. It is therefore interesting to

see how these distance measurements from the real world look like. Figure 5.16 show

a histogram of the distance measurement errors. Figure 5.17 shows a histogram of the

distance measurement errors relative to their individual reported distance measurement
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Figure 5.14: Estimated positions obtained from the algorithms after 30 iterations. Distance
measurements also shown. Position request index 26.

(a) (b)

Figure 5.15: Map of p̃r(xr) for each mobile node at last iteration (30). Position request
index 26.

standard deviation σdr,t . From these two plots it is clear the distance errors are not

normally distributed. Furthermore is it clear the reported distance measurement standard

deviation is not that reliable as there are many large outliners (of by multiple standard

deviations). Actually 24.2 % of the distance measurements are of by more than 3 standard

deviations.
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Figure 5.16: Histogram of all distance measurement errors. The yellow line shows a zero-
mean scaled Gaussian for comparison.
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Figure 5.17: Histogram of distance measurements errors relative to their reported distance
measurement error standard deviation.
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6 Conclusion
Cooperative localization is clearly a good idea and it is obviously beneficial in otherwise

low connectivity scenarios. However as presented in Chapter 4 distributed cooperative

localization does involve a lot of practical challenges.

In this work the VMP algorithm by Pedersen et al. [1] is introduced and investigated.

From both simulations and real world measurement data it is observed that the algorithm

might end up alternating between two sets of position estimates and not converge to a

single set. With this in mind a modified version is proposed that uses a bimodal ap-

proximation instead of the original unimodal approximation. This proposed algorithm is

termed Bimodal Variational Message Passing (B-VMP).

Both algorithms are further investigated in pursuit of understanding their internal

behaviour. A simple simulation scenario is defined and Monte Carlo simulations are per-

formed. From these simulations it is concluded that the B-VMP algorithm does actually

improve the position estimates compared to the original VMP algorithm.

It is also observed that both algorithms highly depends on an efficient and correct

global minimization for the defined closed form KL-divergences. This minimization step

might be quite computational demanding. Note that for the B-VMP algorithm a global

minimum is searched for in a non-convex 7-dimensional space.

Besides the simulated scenarios both algorithms were as well tested on real world

data from the WHERE2 project. It was observed that for this measurement scenario the

algorithms perform equal to or better that alternative algorithms proposed within the

WHERE2 project (see Appendix C).

From the work of this project it is clear that many more questions needs to be

answered before this type of algorithm can be implemented in a real scenario.

6.1 Discussion
Before any further work is conducted a couple of things need to be considered. First of

all it should be considered when and why distributed localization might be preferred over

a centralized solution for some applications. A clearer understanding of the applications

at hand will be favorable for any further work. Secondly it should be considered how to

include any floor plan information in the algorithm. For applications with user interaction

it is save to assume the floor plan is available in some digital format. Next it should be

considered how potential multipath information from UWB signals can be exploited like

in [6, 7, 8].
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A Gradient of KL-divergence for
VMP

For definition of the terms see Section 2.1. For the confluent hypergeometric function we

use that [12]:

dM(a, b, z)

dz
=
a

b
M(a+ 1, b+ 1, z) (A.1)

With this the gradient can be derived as:
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where i ∈ {1, 2} is the vector component index.
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B Gradient of KL-divergence for
B-VMP

For definition of the terms see Section 3.1. As the closed form expression of the KL-

divergence for the bimodal case consists of the same building blocks as for the unimodal

case the gradients will as well consist of the same blocks (although scaled by appertaining

weights). See Appendix A for details on the contributions from the neighbouring nodes.

The gradient for ẇr,1 for these parts is trivial to derive. Only the part from (3.4a) (i.e.

eq. (3.6)) is significantly different and will be derived here.

Since this is only to be used for the bimodal case we will rewrite (3.4a) using that

K = 2, ẇr,2 = (1− ẇr,1), and that KL(fa ‖ fa) = 0. For clarity we first define qk and q̃.

qk(xr) = N (xr | µ̇r,k, σ̇2
r,k) (B.1)

q̃(xr) = N (xr | µ̃r, σ̃2
r ) (B.2)

And (3.4a) then becomes:
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From (B.4) we can derive the gradient for this part:
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(1− ẇr,1) + ẇr,1 exp (−KL (q2 ‖ q1))
(B.5)

41



APPENDIX B. GRADIENT OF KL-DIVERGENCE FOR B-VMP

and for simplicity we introduce k̄ ∈ {1, 2} \ k:
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where i ∈ {1, 2} is the vector component index.
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Abstract—In this paper we present the results of real-life
localization experiments performed in an unprecedented coop-
erative and heterogeneous wireless context. These measurements
are based on ZigBee and orthogonal frequency division mul-
tiplexing (OFDM) devices, respectively endowed with received
signal strength indicator (RSSI) and round trip delay (RTD)
estimation capabilities. More particularly we emulate a multi-
standard terminal, moving in a typical indoor environment,
while communicating with fixed OFDM-based femto-base stations
(Femto-BSs) and with other mobiles or fixed anchor nodes
(through peer-to-peer links) forming a wireless sensor network
(WSN). We introduce the measurement functionalities and met-
rics, the scenario and set-up, providing realistic connectivity and
obstruction conditions. Out of the experimental data, prelim-
inary positioning results based on cooperative and geometric
algorithms are finally discussed, showing benefits through mobile-
to-mobile cooperation, selective hybrid data fusion and detection
of unreliable nodes.

I. INTRODUCTION

Most of our usual environments comprise heterogeneous
wireless resources, such as WiFi access points (APs), Long
Term Evolution (LTE) femto base stations (Femto-BSs) and
wireless sensor networks (WSNs). These environments are
also densely crowded by multi-standard mobile terminals
(MTs) cooperating directly over short or medium ranges.
In such environments, the radiolocation capability has been
clearly identified as a key feature in order to enhance the con-
nectivity experience (i.e. providing ubiquitous wireless access,
extended context-dependent service coverage or increased data
rates through e.g., vertical handover) and to provide indoor
navigation or even beyond, new context-based services [1].

Algorithmic works reported in the recent literature have
been focusing on decentralized iterative positioning (e.g. [2],
[3], [4]) on the one hand, and cooperative links selection (e.g.
[5], [6]) on the other hand, but the localization performance
has been uniquely assessed through simulations so far. The
latter evaluations can obviously not account for complex
phenomena inherent to jointly cooperative and heterogeneous
contexts, such as space-time correlations (inter- or intra-
radio) between the different involved radio access technologies

(RATs), the conjunction of harmful sparse connectivity and
poor geometric dilution of precision (GDoP) conditions, or
erratic radio obstructions experienced along the MT trajectory
(e.g. due to small pieces of metallic furniture [7]), etc.

In this paper, we describe a real-life localization-oriented
measurement campaign realized in a cooperative and het-
erogeneous wireless indoor context, based on ZigBee and
OFDM devices. The ZigBee devices are enabled with received
signal strength (RSS) measurement capabilities. The OFDM
setup allows for round trip delay (RTD) estimation. Applying
decentralized iterative message-passing and non-cooperative
geometric positioning to the extracted experimental data, we
show the clear benefits observed through selective peer-to-
peer (P2P) short-range cooperation and multi-RAT hybrid data
fusion, considering different path loss models to represent such
harsh indoor scenarios in more detail.

The paper is structured as follows. In Section II, we recall
the main characteristics of the involved OFDM and ZigBee ra-
dio devices. Section III describes our experimental setup, along
with the covered indoor scenarios. Section IV subsequently
reports positioning results obtained through decentralized co-
operative message-passing and geometric algorithms based on
the measurement data.

II. AVAILABLE RADIO ACCESS TECHNOLOGIES AND
LOCATION-DEPENDENT METRICS

A. RTD-Enabled OFDM Devices

In the context of the WHERE2 project [1], we developed a
flexible test-bed that allows for P2P ranging based on analogue
amplify RTD. Fig. 1 shows the test-bed [8] embedded in the
multi-standard MT. The analogue amplify RTD determines,
based on the fixed processing delay in the return node, the
distance similarly to the time of arrival (ToA) method. The
test-bed consists of two parts, a master node and a slave node.
The master node transmits an OFDM modulated signal to
the slave node. The slave node returns this signal amplified.
The master node receives the signal from the slave node and
estimates the RTD to determine the distance. This approach
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Multi-standard MT:
ZigBee coordinator & 

RTD master node

Ground-truth points

Main track 
in corridor

ZigBee 
anchor

ZigBee 
anchor

Fig. 1. Photograph of the multi-standard MT mounted on a trolley in the
small open space area.

simplifies the synchronization between both nodes. The key
system parameters are a sampling rate of 120 MHz with a
subcarrier spacing of 14.65 kHz. Only the inner 512 subcar-
riers are active, which results in an effective bandwidth of
36.62 MHz. The center frequency of the master-to-slave link
is 5.5 GHz and the reverse link is 5.7 GHz. The transmit power
was limited to 21 dBm.

In the setup, RTD estimation is based on a correlation
receiver with interpolation. Thus, it is possible to obtain
fractional sample delays which leads to high ranging accuracy.
The structure of the OFDM modulated signals is similar to
that used in 3GPP-LTE. This allows for future investigations
of flexible allocation schemes of subcarriers to steer the
ranging performance depending on the requirements. Fig. 2
shows the ranging performance versus distance for different
propagation conditions in the investigated indoor environment.
We distinguish between three constellations characterized by
the position of the MT: corridor (LoS1), open area close to
the right end of the corridor (LoS2), and open area (NLoS),
see the dotted-line trajectory on Fig. 4. As indicated by the
used acronyms, the two former constellations correspond to
line of sight (LoS) transmission, while the latter is a non-
line of sight (NLoS) condition. As expected we can observe
in Fig. 2 a performance degradation as the distance between
the RTD anchor and the MT increases. The observed larger
distance errors at the end of the corridor and in the open area
are caused by more severe multipath propagation.

B. RSS-Enabled ZigBee Devices

The radio transceiver is based on the CC2431 Texas In-
struments. This chip is a solution for IEEE 802.15.4 and
ZigBee applications. Regarding the RSSI measurement the
more relevant CC2431 radio parameters are the operation
frequency of 2.4 GHz with a bandwidth of 5 MHz, a TX
power of 0 dBm and a RX sensitive of -92 dBm.

We use the one-slope pathloss model [9] to infer on the
ranges from the experimentally obtained RSSI values of the
ZigBee nodes. For the range estimation we follow the method
described in [10]. The parameters of the one slope model are
the reference power P0, obtained at reference distance d0 =
1 m, and the path loss exponent np, which characterizes the
power decay versus distance. The deviations of experimental
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Fig. 2. RTD ranging performance versus distance obtained with the used
correlator in the investigated indoor environment. Different propagation con-
ditions are considered: LoS1 (in the long corridor), LoS2 (after the corridor
in the open space), and NLoS (in the open space).
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Fig. 3. Cluster plot of the experimental RSSI values obtained in Setup 1
(see Section III-A) versus distance together with the pathloss model using the
“global” settings reported in Tab. I.

RSSI values from the pathloss model are commonly modeled
as realizations of a zero-mean Gaussian random variable with
variance σ2

sh. The pathloss parameters are environment depen-
dent and are determined empirically from a set of calibration
measurements. For the presented results we estimated the
model parameters from the measurement setup described in
Section III-A using a Least Squares (LS) estimator. We report
in Tab. I the estimated parameters together with parameter
values from the data sheet of the ZigBee transceiver of a
non-specified scenario [11] and label them “global” and “data
sheet”, respectively. The measured RSSI values and the fitted
model are shown in Fig. 3.

III. MEASUREMENT SETUPS AND SCENARIOS

The measurement campaign is part of an integration and
validation step between ZigBee nodes and a RTD test-bed
developed in the frame of the WHERE2 project. Measurement
results are provided within the WHERE2 project to enable
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TABLE I
PATHLOSS MODEL PARAMETERS.

P0 [dBm] np σsh[dB]

data sheet -42 3 5.0
global -47 2 5.8

algorithm verification and benchmarking for interested part-
ners. The measurement data is available on the WHERE2
website [1].

A. Setup 1: Nominal Cooperative and Heterogeneous Sce-
nario

In this setup we aim to cover the whole measurement
area with the used ZigBee nodes. This allows verification
of cooperative / non-cooperative positioning algorithms and
the extraction of shadowing maps. Fig. 4 shows a simplified
floorplan with the positions of the ZigBee nodes and the
RTD slave anchor and Fig. 1 depicts a photograph of the
measurement setup. The RTD slave node is located at the
end of the corridor, to allow LoS ranging for the majority
of ground-truth points (GTPs). The ZigBee anchors are dis-
tributed in a way to satisfy the limited communication range
as well as to reduce the GDoP along the main track. Our
multi-standard MT is comprised of the RTD master node and
one ZigBee coordinator mounted on a trolley. Measurements
are performed at stationary positions for approximately 100 s
each. GTPs along the corridor are separated by 1 m and GTPs
perpendicular to the corridor track or parallel to the corridor
track are separated by 0.5 m. The provided GTPs have an
accuracy better than 2 cm.

Furthermore, we chose one ZigBee node mounted on a
tripod as mobile node, crossing the main track in the corridor,
see the green dashed line in Fig. 4. The multistandard MT
moves from the RTD slave node along the corridor, whilst in
parallel, this specific mobile node walks along its own GTP-
track. Thus, this additional mobile node can either be exploited
as moving anchor node or as cooperative node with estimated
position.

B. Setup 2: Impact of Peer-to-Peer Connectivity
The second measurement setup aims for a further evaluation

of cooperation through peer-to-peer (P2P) links. All ZigBee
anchors are located in a small open space area, see Fig. 5.
Thus, we have an environment with multiple P2P links and
a generally overdetermined positioning system. This helps
evaluate the potential of more sophisticated cooperative po-
sitioning algorithms, e.g., GDoP reduction and link selection.
The measurement procedure is similar to that used for Setup
1, but we start in the middle of the corridor only. This ensures
a fully connected network in which the ZigBee coordinator on
the MT has valid ranging links to all anchors.

IV. TESTED ALGORITHMS AND PRELIMINARY RESULTS

In this section, we apply selected positioning algorithms
developed in the frame of WHERE2 onto experimental ranges

̴6m
̴1.

8m
̴7.

3m

̴8.8m̴24.5m

Track for multi-standard MT

Track for ZigBee mobile node

RTD anchor

ZigBee anchor

Mobile ZigBee node

Concrete-steel compound walls / pillar

Multi-standard MT

Elevator

Fig. 4. Cooperative and heterogeneous Setup 1: Back-and-forth trajectory of
a multi-standard OFDM-RTD/ZigBee MT in a corridor and small open area
with 7 ZigBee anchors and 1 RTD anchor.

Fig. 5. Cooperative and heterogeneous Setup 2: Identical multi-standard MT
track but with locally higher short-range peer-to-peer connectivity in the small
open area.

derived from RTD and RSSI measurements (from both setups
1 and 2). In the latter case, RSSI-based range information is
derived using estimators from [10], while using the in-site path
loss model parameters discussed in Section II-B.

A. Non-cooperative Positioning

The non-cooperative RGPA algorithm described in [12],
which is based on geometric representation of the location
dependent metrics (LDPs), is applied to experimental data
from measurement Setup 1. We consider all the RSSI values
measured between the fixed ZigBee anchors and the ZigBee
coordinator of the multi-standard MT. Fig. 6 shows the cumu-
lative distribution function (CDF) of estimated location errors,
with and without incorporating the OFDM RTD measurement
on top of the ZigBee RSSI measurements, illustrating the
clear benefits that can be achieved through hybrid data fusion
in comparison with homogeneous WSN localization. Fig. 6
also presents a comparison with a non-cooperative maximum
likelihood (ML) positioning algorithm, initialized with a ran-
dom guess drawn on the scene of interest. The comparison
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Fig. 6. CDF of positioning errors for the RGPA and randomly initialized
ML positioning algorithms, with and without incorporating the OFDM RTD
measurement on top of ZigBee RSSI measurements.

reveals that the geometric algorithm slightly outperforms the
ML solution in the small and medium location error regimes
at the benefit of much lower computational complexity, while
suffering from performance degradation in the order of 1 m
only in the worst case location error regime caused by severe
measurement outliers (i.e. beyond a location error of 4 m at
90% of the CDF), where the ML error would be anyway larger
than practical target thresholds in most indoor applications.

B. Cooperative Positioning

In these investigations we compare the cooperative and
decentralized variational message-passing (VMP) solution de-
scribed in [2], cooperative centralized least squares (LS) and
weighted least squares (WLS) algorithms [13] and a non-
cooperative decentralized anchor centroid (AC) solution [14].
The latter is used as initialization in the VMP algorithm.
The LS and WLS algorithms obtain initial starting positions
from a semi definite programming (SDP) algorithm [15]. For
all algorithms we consider the data from the fixed OFDM
RTD anchor, 4 fixed ZigBee anchors, 3 ZigBee non-anchor
nodes (with unknown positions) and the multi-standard mobile
trolley in Setup 2, see Fig. 5. We estimate the positions
of the non-anchor nodes and the mobile trolley with the
above positioning algorithms and evaluate their performance
in terms of positioning accuracy. Fig. 7 shows the CDFs of
the positioning errors for the different algorithms.

The VMP algorithm uses link-specific standard deviations in
the distance-error model. These standard deviations are com-
puted from distances estimated from multiple RSSI readings.
For the RTD measurement we distinguish between LoS and
NLoS conditions and set the standard deviation to 0.25 m
and 1.5 m, respectively. For the WLS algorithm we select the
weights as wi,j = 1/d̂2i,j where d̂i,j is the estimated distance
between nodes i and j. The AC algorithm solely relies on the
positions of anchors to which a link is available.

We observe that all algorithms perform better than the AC
method, except the LS for position errors larger than 3 m.
For position errors larger than 4 m all algorithms are above
80% of the CDF and perform similar to the AC method. Only
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Fig. 7. CDF of positioning errors for the AC, VMP, LS and WLS algorithms.
Furthermore VMP is shown excluding unreliable “Node 02” (dashed orange)
and including RTD measurements (red).

the WLS seems to perform slightly better. We observe further
that VMP and WLS seem to perform equally well for practical
error ranges smaller than 3 m.

For the heterogeneous case (inclusion of RTD measure-
ments) we observe only a small benefit for position errors
larger than 3.8 m in the VMP algorithm. The gain in Setup
1 is more pronounced as shown in Fig. 6. This is maybe
due to the fact that in Setup 1 LoS conditions prevail and
that generally the distances are larger, as such the expected
distance errors obtained from the RSSI measurements are
larger, which leads to a more significant improvement from
the RTD measurements.

We observed that the RSSI readings of node 02 (see Fig. 5)
exhibit much larger fluctuations compared to the readings of
other nodes. By comparison of the CDFs for the VMP with
and without node 02 in Fig. 7 we see that for positioning
errors larger than 2 m the results without this node seem
to be improved. More specifically an error gain of 1 m is
obtained at 80% of the CDF. Thus, node 02 is unreliable and
its readings should be discarded. This example illustrates the
benefits of detecting and incorporating solely the most reliable
cooperative nodes. This problem of link selection is one of the
ongoing topics within WHERE2 (e.g. based on link quality,
GDoP, location error CRLB, or a combination of the previous
criteria [5], [6]).

C. Sensitivity to a priori Path Loss Models and Parameters

We investigate the sensitivity of the positioning errors of
the RGPA, VMP, and WLS algorithms for different path loss
model settings in the prior RSSI-based ranging step. The CDFs
of position errors are shown for each algorithm using two
different path loss model settings in Fig. 8. The results for
VMP and WLS are obtained for Setup 2 using path loss model
settings “global” and “data sheet”. The results for RGPA are
obtained for Setup 1 using the “global” path loss model, and
using an individual path loss model for each ZigBee node
termed “node specific” in the figure. The “node specific” set
of path loss models (dashed blue curve) provides only a slight
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Fig. 8. CDF of positioning errors for RGPA, VMP, and WLS using the
different path loss model settings reported in Tab. I.

improvement over the fixed “global” path loss model (blue
curve) in the practical error range (up to 3 m) for indoor
localization. Hence from these preliminary results no clear
benefit of using individually tailored path loss model settings is
seen. The CDFs of VMP and WLS (orange vs. dashed orange
and green vs. dashed green) show that both algorithms seem
to be rather insensitive to the selected path loss model. This
apparent insensitivity is likely caused by the relatively large
variance of the RSSI measurements. The large variance of
the RSSI measurements could also explain why the RGPA
results do not improve much when the “node specific” path
loss models are utilized, even though such node specific in-site
self-learning have been shown valuable [7].

V. CONCLUSION

In this paper we presented a heterogeneous and cooperative
positioning test-bed. This test-bed combines a single OFDM-
based radio device using time-based distance measurements
together with multiple ZigBee nodes that rely on the received
signal strength indicator to estimate relative ranges. The
measured data was collected and post-processed by different
positioning algorithms, including a cooperative variational
message-passing solution, and a non-cooperative geometric
algorithm, both developed in the frame of the WHERE2
project. Cooperative positioning in indoor environments must
classically cope with fast changing conditions, in terms of
individual nodes mobility and problem geometry. In our inves-
tigations, the ranging devices also created additional outliers of
range estimates (e.g. one node being even totally unreliable),
which are representative of real-life operating conditions. This
causes new challenges for the established algorithms that
were investigated and compared. A few insights have thus
been disclosed in favor of context-aware data fusion (e.g.
depending on LOS/NLOS condition) and selective cooperation
through links weighting or nodes censoring. Furthermore, even
if most algorithms are parametric (in the sense that they would
require a priori models of the expected measurement data),
the proposed performance assessment tends to show that they
are rather insensitive to using either values from the literature

or refined models based on in-site measurements, at least in
practical indoor localization error regimes.

The previous results, which are preliminary but not yet
definitive, will be completed and further analyzed in the
final version of the paper. The new inputs could concern the
application of other message passing algorithms such as Non
Parametric Belief Propagation (NBP), as well as the mitigation
of unreliable cooperative nodes or poor hybrid measurements.
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