
Just In Time Joint Encoding
ofMultiple Video Streams

Master’s thesis
Henrik Juul Pedersen

&
Palle Ravn

June 6, 2013





Department of
Electronic Systems
Fredrik Bajers Vej 7
DK-9220 Aalborg Øst
Phone: +45 96 35 86 00
Internet: es.aau.dk

This master’s thesis focuses on H.264
video compression of multiple streams
to be transmitted over a limited channel.
The report describes the workings of the
H.264 codec. Afterwards, proposals on
bitrate estimators are presented, and a
predictor is chosen for later use in rate
control. We design a rate controller set
up as a constrained convex optimization
problem, and test it against a set of
video sequences.
Our results show that it is possible to
encode video sequences jointly with re-
gard to their individual qualities, whilst
still keeping fluctuations in quality low.
We conclude, that if a Just-In-Time en-
coder is created with regard to our pro-
posed rate controller and bitrate predic-
tion, it could be used in realtime joint
video coding.

Synopsis:

Title:
Just In Time Joint Encoding of
Multiple Video Streams

Theme:
Master’s thesis

Project period:
September 2012 - june 2013

Project group:
13gr1071

Members of the group:
Henrik Juul Pedersen
Palle Ravn

Supervisors:
Jan Østergaard
Søren Holdt Jensen

Number of copies: 5

Number of pages: 69

Attachments: CD

Appendices: 1

Project completed: June 6, 2013

Contents of this report is freely available

but publication (with specification of source) may only be done upon arrangement with the authors.

http://es.aau.dk




Institut for
Elektroniske Systemer
Fredrik Bajers Vej 7
9220 Aalborg Øst
Telefon: 96 35 86 00
Internet: es.aau.dk

Dette kandidatspeciale fokuserer p̊a
H.264 video komprimering af flere video
strømme til transmission over en be-
grænset kanal. Rapporten beskriver
hvordan H.264 fungerer. Derefter
foresl̊as nogle bitrate estimatorer, og
en estimator er valgt til senere brug
i ratekontrol. Der designes en ratekon-
trollør sat op som et begrænset konvekst
optimeringsproblem, og det testes imod
et antal videosekvenser.
Resultaterne viser at det er muligt
at indkode video sekvenser ud fra en
fælles betragtning af deres individu-
elle kvaliteter, imens udsving i kvalitet
holdes lavt.
Det konkluderes, at hvis en ’Just-In-
time’ indkoder laves med øje for den
foresl̊aede ratekontrollør og bitrate es-
timator, kan den benyttes til realtids
fælles video indkodning.

Synopsis:

Titel:
Just In Time Joint Encoding of
Multiple Video Streams

Tema:
Kandidatspeciale

Projektperiode:
September 2012 - juni 2013

Projektgruppe:
13gr1071

Medlemmer af gruppen:
Henrik Juul Pedersen
Palle Ravn

Vejleder:
Jan Østergaard
Søren Holdt Jensen

Antal kopier: 5

Antal sider: 69

Bilag: CD

Appendikser: 1

Projekt afsluttet: 6. juni, 2013

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse)

må kun ske efter aftale med forfatterne.

http://es.aau.dk




Preface
This report has been conducted as the main part of our master’s thesis
doing the fall semester of 2012 and spring semester of 2013. We have tried
to explain most of the technical expressions and context to an extend where
anyone with a basic knowledge of video coding should be able to read it.
Basic knowledge of convex optimization is needed for understanding the
propossed rate-controller as it is derived from a optimization problem. The
results can be understod without any knowledge of computer code, but it is
required for in depth understanding of the simulation setup.

While most notations should be eighter self-explanatory or be explained
at apperence, we present the most commonly used notations just in case
someone would find them usefull. When writing mathmatics we have that
vectors are bold lower case letters, e.g. r. Matrices are bold upper case
letters, e.g. M and if its dimensions are given explicitly we eighter use
M4×4 for a 4 by 4 matrix, or M ∈ R4×4

+ for a positive semidefinite 4 by 4
matrix.

When refering to video sequences the name of the clip is often emphasised
as ducks take off, this is however not restricted to video names.

Most data processing have been done with python, and all plots are generated
using the matplotlib package.

We would like to thank Futarque for an intreresting visit to their Aalborg
office, and for offering help with test equipment.

Henrik Juul PedersenPalle Ravn

i



Contents
1 Introduction 1

1.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The H.264 Codec 5
2.1 Macroblocks . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 DVB recommendations . . . . . . . . . . . . . . . . . . . . . 8
2.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.6 Rate control . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Complexity Estimation 11
3.1 Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4 Buffers and GOPs 26
4.1 Group Of Pictures . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Buffers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Rate-Control 29
5.1 Allocation problem . . . . . . . . . . . . . . . . . . . . . . . 29
5.2 Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.3 Example with two streams . . . . . . . . . . . . . . . . . . . 32
5.4 Rate controller modification . . . . . . . . . . . . . . . . . . 36

6 Communication 38
6.1 Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Implementation 40
7.1 Joint rate control . . . . . . . . . . . . . . . . . . . . . . . . 46
7.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Simulations 48
8.1 Static bitrate . . . . . . . . . . . . . . . . . . . . . . . . . . 48
8.2 Prioritized PSNR . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Final evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 56

ii



CONTENTS iii

9 Conclusions 59

10 Discussion 60

A Test Sequences 61
A.1 NTIA/ITS sequences . . . . . . . . . . . . . . . . . . . . . . 61
A.2 Taurus Media Technik sequences . . . . . . . . . . . . . . . 62
A.3 SVT sequences . . . . . . . . . . . . . . . . . . . . . . . . . 63
A.4 HDgreetings sequences . . . . . . . . . . . . . . . . . . . . . 64
A.5 Sintel trailer . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
A.6 Elephants dream . . . . . . . . . . . . . . . . . . . . . . . . 65
A.7 Big Buck Bunny . . . . . . . . . . . . . . . . . . . . . . . . . 65
A.8 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . 65

List of acronyms 66

Bibliography 68





1 Introduction

This project focuses on joint compression of multiple video streams for
broadcasting. Efficient compression of video makes room for additional
streams, or streams of higher quality, on the same channel. Even though the
individual streams might be optimally encoded given individual limitations
they are not necessarily jointly optimal.

We will be looking at MPEG-4 Digital Video Broadcasting (DVB), without
distinguishing between the physical channels, e.g. terrestrial, cable, satellite,
or others. The MPEG-4 codec considered is the H.264 codec for HDTV up
to 30 Hz[1].

The goal of the project is to enable Just-In-Time (JIT) encoding of multiple
streams, by taking their different features into account in order to make the
overall rate-distortion better. Our application should work on an arbitrary
number of streams and any reasonable bandwidth limit, within physical
and practical computational limits. The number of live versus prerecorded
streams is not important. However, if all streams are prerecorded, one can
benefit from offline encoding end thereby avoid real-time issues.

Encoding video in an optimal way is always a tradeoff between computational
complexity, quality, and compression ratio. Instead of optimizing each video
stream for a fixed rate, we would like to encode multiple streams jointly, such
that the overall perceived distortion for the entire collection of streams is
minimal. Our goal is to make a video-encoding framework with autonomous,
yet intercommunicating, encoders with adjustable encoding parameters.
These parameters are based on a real-time analysis of each video stream,
extracting essential features in order to collectively decide on the individual
encoding parameters, and thereby optimizing for the overall quality instead
of the individual quality for each stream.

First we give a brief introduction to image compression based on the princi-
ples in H.264, followed by an introduction of relevant encoding parameters
influencing encoding time, resulting bitrate, and video quality. Based on a
selected subset of encoder parameters we will explore and compare ways of
extracting the necessary features for real-time encoding which optimizes the
overall quality.

All test sequences used for this project are described in appendix A, and
can be found in lossy format together with some of the results from the
project on the enclosed CD.

1



2 CHAPTER 1. INTRODUCTION

1.1 Terminology

ITU-T H.264, AVC, MPEG-4 part 10, and ISO/IEC 14496-10 are all
synonymous[1] and will simply be called H.264 where applicable throughout
this report.

It is important to distinguish between individual video streams, collections
of streams, and multiplexed streams. A single video stream is referred to
as an Elementary Stream (ES), a collection of streams is referred to as a
Compound Stream (CS), and a multiplexed CS will be referred to as a
Transport Stream (TS). This is illustrated in figure 1.1.

Source 1
ES

Classifier + Encoder

Source 2
ES

Classifier + Encoder

Source 3
ES

Classifier + Encoder

Source n
ES

Classifier + Encoder

Compound Stream (CS)

TS

Figure 1.1: System overview and illustration of used abbreviations. Boxes included in
the cloud are interconnected, allowing the classifier to share its complexity estimation
with the other encoders. Seen from the left, we have n sources, individually referred to as
an Elementary Stream (ES). Each ES is analyzed and encoded before being muxed, the
muxed stream is referred to as a Transport Stream (TS). Several sources, regardless of
encoding format, is referred to as a Compound Stream (CS), as illustrated by the dashed
line.

Throughout this project the abbreviation MB is used for Macroblock.
Megabyte and other units which are powers of two will be expressed using
IEC binary prefixes, e.g. MiB for 8 · 220 bit[2].



1.2. STATE OF THE ART 3

1.2 State of the art

In order to reduce statistical redundancy in digital video, techniques to
predict information from within a frame (intra coding) or from previously
transmitted frames (inter coding) has been introduced and implemented
in [1, 3, 4, 5] as part of the encoding process. In MPEG video, three
different frametypes are currently used for generic video coding; I-, P-, and
B-frames[1, 5]: I-frames are completely intra coded, and provide semi-random
access to the stream, as it has no dependency on previously transmitted
frames, P-frames can be inter predicted towards a single reference, and
B-frames can be inter predicted towards two references[1, 5]. All predictions
in MPEG are done on a Macroblock (MB) level; in H.264, a MB is 16× 16
pixels, and can be split into smaller shapes within the MB[1]. In H.265 - the
high-definition successor to H.264 - MBs used in earlier MPEG standards
are replaced by Coding Units (CUs) and can be up to 64 × 64 pixels in
size[5].

Coding-parameters relevant for a frame or slice are specified in its header,
it includes skipped MBs, reference picture index(es), block sizes, motion
vectors, etc. Recent developments in rate control proposes the size of
the header information to be separated from the texture, as the header is
often constant and does not change with quantization parameters, leaving
separate header and texture rates to be approximated[6]. If rate control
is done immediately before quantization, the exact header bits are known,
and only the amount of texture bits should be approximated[7, 8]. Rate
control can be split in two categories; online rate control for live broadcasts
where latency and complexity are key elements in the dual problem of
Rate-Distortion (R-D) versus complexity[9], and into offline rate control
where multi pass optimal rate approximations with high complexity is
possible[9]. The online complexity approximations often take their offset
in statistics of prior frames[9], resulting in a dilemma known as the QP,
or chicken-egg, dilemma[6, 10]. The chicken-egg dilemma describes the
problem of estimating the rate from different parameters, or estimating
optimal parameters from a missing rate estimate.

Several rate control methods has been proposed for block based video
compression. [11, 12] proposes using a Discrete Cosine Transform (DCT)
based complexity estimation together with buffer feedback to perform rate
control for very low bitrate and low latency video coding. Their work inspired
[13] to use a predicted Sum of Absolute Differences (SAD) (calculated as
Mean Absolute Difference (MAD)) based approach in order to reduce PSNR
fluctuations in higher rate video. DCT coded residuals are also used in [14]



4 CHAPTER 1. INTRODUCTION

where they use the macroblock histogram differences for rate control. The
amount of zeros after quantization is proved[7, 8] to have a linear relationship
with the resulting texture bits, allowing for accurate bitrate approximations.
As [7, 8, 11, 12, 13, 14] work on residuals, either inter or intra predictions
has been performed prior to analysis and thus, their complexity estimations
work with all frame types.



2 The H.264 Codec

H.264 exploits both spatial and temporal correlation in the source during
encoding. This enables high compression rates, at the cost of additional
encoder complexity. In short, H.264 searches within, and between frames,
looking for a similar area, encoding only a Motion Vector (MV) for that
area, and a residual. This will be explained to greater depth in section 2.2.

The H.264 standard defines numerous ways of encoding video. The different
encoding parameters are grouped into profiles. Further, each profile in the
H.264 standard has several levels, which describe the maximum rate of
data the decoder must be able to process. The simplest profile from the
original standard is called baseline, followed by profiles main, and extended.
The general idea is, that with each profile the complexity of the encoder
increases, allowing for a better compression rate and/or quality. Later on,
ammendments have added further profiles, such as the high profile[1].

First we will describe the basics of the H.264 encoder, to give an introduction
to image compression, this also introduces the terms used when discussing
encoding and decoding. Next we will state the DVB recommendations that
we find necessary for our complexity analysis, and argue why we rely on and
restrict attention to these.

2.1 Macroblocks

A video sequence consists of frames, where each frame corresponds to a still
image. Frames can be represented in the YCbCr format, with or without
chroma subsampling[15]. Chroma subsampling enables better compression
with low perceptual loss in quality. The H.264 encoder divides each frame
into regions of 16× 16 pixels called Macroblocks (MBs). A slice is a number
of MBs with similar properties. Both slices and MBs are depicted in figure
2.1. There are three types of slices, I, B, and P slices. An I-slice uses only
intra prediction and thus is a self sufficient representation of the image. A
P-slice constructs the current frame based on previous frames. A B-slice can
go both back- and forward in the frame order when searching for a Motion
Estimator (ME). Typically the bit count for the different slice types follows;
I > P > B.

5



6 CHAPTER 2. THE H.264 CODEC

MB

Slice

Figure 2.1: A frame partitioned in 5× 7 MBs, and two slices in raster scan order.

Frame

Type

Bits

1

I

2

B

3

B

4

P

5

B

6

B

7

P

8

B

9

B

10

P

11

B

12

B

13

I

(a) Frame order

Frame

Type

Bits

1

I

4

P

2

B

3

B

7

P

5

B

6

B

10

P

8

B

9

B

13

I

11

B

12

B

(b) Transmission order

Figure 2.2: Illustration of transmitted slices. In this illustration; B slices depend on
their neighbouring I and P slices. (a) shows the order of which the frames should be
displayed. (b) illustrates the necessary transmission order, for the decoding of B slices to
be possible. The lower part of (a) and (b) shows a number of bits to transmit for each
slice, where I > P > B.



2.2. PREDICTION 7

2.2 Prediction

The main goal of prediction is to find a MB that is near identical to the
current one. As much video data is correlated both spacially and temporally
it is possible to encode some of the video as MVs. MVs point to a place in
a previously decoded reference frame. This reference is used as a prediction,
which combined with a residual, is used to resemble the current block of the
image. With a good prediction, the vector and residual representation uses
far less bits than a full intra coding of the image block. Many search schemes
for finding MVs have been proposed, such as the diamond search[16], as an
exhaustive search is computationally very complex.

Encoding a video sequence with correlated data by MVs reduces the bit
rate, as much less data needs to be transmitted. Using MVs is favorable in
terms of storage and transmission, all at the expense of increased coding
complexity and perhaps delay. In the case where the reference MB is not
exactly identical to the current MB the residual is encoded along with
the associated MV. Due to the high correlation between the two MBs, it
is still beneficial to encode the residual since it, like the MV, describes
the difference between something known and something new, instead of
describing everything. An illustration of the advantage of prediction is
depicted in figure 2.3 with a game of pong. Two succeeding frames (a)
and (b) are showing the complete frames, (c) shows the absolute difference
between (a) and (b). Encoding the differences, the black MBs in (c), instead
of the whole frame (b) reduce the data to encode. Better is the Motion
Vector prediction, as shown in (d), only the vectors pointing to the reference
MB needs to be encoded. This is a very simplified example and often the
residual between the two MBs would be encoded as well.

2.3 Compression

As video images often have high spatial correlation, a better compression of
MBs can be accomplished in practice by decorrelating the information. For
this purpose H.264 uses the Discrete Cosine Transform (DCT). The DCT
is invertible and produce a frequency representation. As many images are
slowly changing over space, high frequency content from the DCT can be
truncated to zero, resulting in a lossy compression, still with good perceptual
quality. The DCT is applied to both inter and intra coded MBs.



8 CHAPTER 2. THE H.264 CODEC

(a) Frame 1 (b) Frame 2

(c) Absolute difference (d) Prediction

Figure 2.3: Illustration of two frames and the motion between them. The illustration
is a classical game of pong, the player to the left has no movement. The ball and the
player to the right move between the frames. (c) shows the absolute difference between
the frames. (d) shows Frame 2 overlayed on Frame 1, with motion vectors.

2.4 DVB recommendations

As broadcasting companies have many degrees of freedom when encoding a
video-stream, we will rely on the recommendations given by DVB[17]. On
the I slice frequency they recommend the following:

”It is recommended that a video sequence header, immedi-
ately followed by an I-frame, be encoded at least once every
500 ms.”[17]

By I frame it is understood that all MBs are intracoded over a 500 ms period
at most. By doing this, random access to the stream is possible within
500 ms plus eventual delays caused by buffers and decoding.

This project will focus on HD transmission up to 30 Hz, the profiles and
levels specified for this is the H.264 High Profile at Level 4[17].



2.5. LIMITATIONS 9

2.5 Limitations

The H.264 High Profile at Level 4 introduces some features and limitations:

• Only I, P, and B slice types may be present.

• Chroma formats allowed: 4:0:0 and 4:2:0.

• Luma and Chroma samples must have a bit depth of 8.

• Maximum MBs per second: 245 760.

• Max frame size: 8192 MBs.

• Max Decoded Picture Buffer (DPB) size: 32 768 MBs.

• Vertical MV component range: −512 to 511.75.

• Horizontal MV component range: −2048 to 2047.75.

• Bi-predictive blocks less than 8× 8 are not supported.

• From the maximum MBs per second it is seen, that the maximum
frame rate for 1920 × 1080 pixels video equates to 30.1 frames per
second.

All limitations are defined in [1, Appendix A].

2.6 Rate control

The Joint Model (JM) reference encoder allows for automatic rate control,
the target can be quality or bitrate.

As seen on figure 2.4, the encoding process is split into several steps. As the
input is analyzed through the different processes, a rate controller can act
on acquired information to adapt encoding parameters. E.g. a frame or a
MB can be skipped if the buffers are too full, or a frame can be intra coded
if a scene change is registered.



10 CHAPTER 2. THE H.264 CODEC

Skip?
Raw input

Intra?
No

Intra
prediction

Yes

Inter
prediction

No

DCT

QuantizationVLCNAL

Yes

To Buffer

Figure 2.4: Simplified model of the H.264 encoding process. Skip decides whether an
entire frame should be skipped. Intra decides whether the frame should be intra coded,
e.g. at a scene change. Intra prediction cycles between predictive modes to reduce
spacial redundancy. Inter prediction searches for the best MV in one or more reference
frames, some MBs might be intra coded or skipped. DCT transforms the residuals from
the predictors to focus the energy at dominant frequencies. Quantization reduces the
number of transform coefficients based on QPs. VLC is a lossless variable length coder,
reducing statistical redundancy. NAL encapsulates header and texture information for
later decoding.



3 Complexity Estimation

This chapter explains the complexity estimation techniques that has been
considered for this project. Complexity estimation is to be used in the
communication towards a rate-controller, for it to decide on a set of encoding
parameters. By complexity we mean the R-D relation. Assume several
individual video streams encoded at the same bitrate, then the stream with
the lowest distortion is also the one with the lowest complexity. Likewise,
if they where encoded to have the same distortion, the stream with lowest
complexity would be the one with the lowest bitrate.

3.1 Complexity

The complexity, or bit requirement, of a H.264 encoded frame is determined
from a set of parameters: If the frame is to be intra coded, each MB is
predicted from surrounding pixels, or used as raw data. If it is predicted from
surrounding pixels, a smooth image will give a better prediction, and thus
reduce the residual to be coded. If a frame is inter coded, the complexity
is determined from whether good motion vectors to a reference frame is
possible, the temporal changes between reference and subject frames decide
the length of the motion vectors, and the residual to be coded.

The residuals are coded the same way for inter and intra coded frames,
but for inter coded frames, a motion vector is also to be coded. Motion
vectors in H.264 are coded using signed exponential-golomb codes[1, section
7.4.5.1], allowing arbitrary length vectors, at the cost of word length growing
with vector length, see table 3.1. H.264 also allow for quarter-pixel motion
vectors, extending the resulting word lengths further.

11



12 CHAPTER 3. COMPLEXITY ESTIMATION

symbol bits
0 1
1 010
-1 011
2 00100
-2 00101
3 00110
-3 00111
4 0001000
-4 0001001
· · · · · ·

Table 3.1: Example of the signed exponential-golomb codes used in H.264, the amount
of leading zeros determine the amount of bits to be read after the first one.[1, section
9.1.1]

3.2 Feature extraction

The QP is correlated with the bitrate, as depicted in figure 3.1 for all our
test movies. However, there is not a linear or exact mapping from QP into
bitrate, as the bitrate depends on the texture details and motion in the
movie.

0 10 20 30 40 50
QP

105

106

107

108

B
it

ra
te

[b
ps

]

Movies
Mean
Sintel trailer
Ducks take off

Figure 3.1: Relation between the encoder parameter QP and the resulting bitrate for
52 values of QP and 24 movies, plotted on a semilogarithmic scale.



3.2. FEATURE EXTRACTION 13

It has been shown by [7] that there is a linear relation between the encoded
bitrate and the percentage of zeros in a quantized transform, for any typical
transform used in image coding, including the DCT. The relation in [7] is
defined as

R̂(ρ) = θ · (1− ρ) (3.1)

where R̂(ρ) is the bitrate estimation, ρ is the percentage of quantized zeros
and θ is a constant. As ρ depends on the QP we can predict the bitrate for
a set of QPs and select the one with the highest bitrate within the channel
limits, provided that θ can be estimated or is known in advance. This only
covers the bitrate for the DCT quantization, the video stream also includes
information such as MVs and QP values, therefore we split the prediction
of the total bitrate into texture and header information. As seen in figure
2.4 all the header information is calculated prior to the DCT and does not
have to change with the QP, therefore the resulting bitrate for the header
information is known at the time of texture quantization, and only the
texture bitrate needs to be predicted.

Prediction of the texture bitrate using equation 3.1, depends on ρ and θ.
For determination of ρ we need to know the quantizer and the DCT values.
The 4-by-4 quantizer implemented in the JM H.264 reference encoder is
described in the following, where all constants are deduced by [18]. A matrix
M is defined to be

M =


13107 5243 8066
11916 4660 7490
10082 4194 6554
9362 3647 5825
8192 3355 5243
7282 2893 4559

 , (3.2)

and it serves as a lookup table for construction of a scale matrix. If
q = (QP mod 6) then the scale matrix S is given by

S =


Mq,0 Mq,2 Mq,0 Mq,2

Mq,2 Mq,1 Mq,2 Mq,1

Mq,0 Mq,2 Mq,0 Mq,2

Mq,2 Mq,1 Mq,2 Mq,1

 . (3.3)



14 CHAPTER 3. COMPLEXITY ESTIMATION

Note that S is constructed from a single row of M and only contains three
unique numbers. Let D4x4 be a DCT matrix, then the quantized matrix
L4x4 is given by

Lm,n = sign(Dm,n) ·
[
(|Dm,n| · Sm,n + q offset)� q bits

]
(3.4)

where | · | is the absolute value, q bits = 15 + floor(QP
6

), and q offset is a
constant that depends on the frame type, the QP, and the prediction mode.
Combined with the bitshifting, the addition of q offset equals a rounding
function, where q offset determines the deadzone. With equation 3.4 we are
able to determine ρ in equation 3.1 for different QPs and make predictions
of the resulting texture bitrates.

Based on the above we give an example of a frame based prediction using
equation 3.1 and 3.4, where θ will be updated after each encoded frame as

θi+1 =
ri

1− ρi
, (3.5)

where r is the texture bitrate, and ρ is the percentage of quantized zeros
over the whole frame. As depicted by figure 3.2 the prediction is close to
the actual bitrate, with an average error of 0.31%.

For comparison we calculate the Pearson’s correlation coefficient, stated in
equation 3.6, between the bitrate and the prediction measurement, denoted
C(x, r), where x is the considered measure, and r the bitrate vector. For
this example the correlation coefficient is C(ρ, r) = −0.9988 which is close
to −1 implying a near linear relation, as demonstrated in [7].

C(x, r) =
cov(x, r)

σxσr
, (3.6)

where cov is the sample covariance function, and σ is the sample standard
deviation.

There are other complexity measures that can be used for bitrate prediction.
In the following we motivate for some alternative candidates and their
performance as a linear predictor. We seek a linear predictor as it is



3.2. FEATURE EXTRACTION 15

0 50 100 150 200
Frame

3.0

3.5

4.0

4.5

5.0

B
it

s

×106 ρ-prediction, Blue Sky, QP 10
Prediction
Bits

Figure 3.2: Linear prediction of the texture bitrate for the movie Blue Sky at QP 10,
using equation 3.1. The first frame is left out, as θ was initially set to 1.

computationally simple and fast to execute. The different measures are
compared by Pearson’s correlation coefficient, as it measures the linearity
on a closed scale where ±1 is an expression for linear correlation and 0 is no
correlation. See table 3.2 for an easy comparison of correlation coefficients.
For visual comparison of the ρ-predictor and the following see figure 3.3, as
it is constructed in the same way as the inter coding examples.

For the tests in this chapter, we have generated motion vectors and intra
predictions from the raw sequences. The motion vectors are created from a
full search with a search range of ±32 both horizontally and vertically, or as
far as possible when searching near edges. The code we created for the full
search algorithm is located on the CD, we compiled it as a shared object
and called it from a python script.

As inter and intra frames are coded differently, we have split the complexity
estimators into two categories. The features we will look into are, for:



16 CHAPTER 3. COMPLEXITY ESTIMATION

0 50 100 150 200
Frame

2.5

3.0

3.5

4.0

4.5

5.0

B
it

s
×106 Blue Sky, QP 10

ρ

Bits

Figure 3.3: Comparison of bitrate and a scaled ρ for visual inspection. The first frame
is left out.

Inter coding

• MVs, horizontal and vertical.

• SAD between a MB and its optimum reference after motion estimation.

• DCT variance

Intra coding

• Predictive modes:

– Horizontal.

– Vertical.

– DC.

For easier visual inspection, inter predictors are illustrated by scaling the
measurement, such that it has the same mean as the bitrate. The movie
blue sky has been chosen for illustration as it does not contain any scene
changes, which need to be treated as a special case due to the sudden
change in bitrate. The movie starts out with a picture of a clear blue sky,
and slowly rotates towards a tree top, where the tree top has more details
than the plane colored sky. This is reflected by the increasing bitrate. The
measurements are compared using Pearson’s correlation coefficient, where



3.2. FEATURE EXTRACTION 17

the constant is calculated for both blue Sky alone and for all movie clips
stacked into one long movie.

MV

This measurement is very simple. Given a maximum range for the MB
motion search, the MV to the reference resulting in the lowest SAD is used
as a measure for complexity. The complexity measurement is given by

CMV =
H∑
h=1

||MV h||1 (3.7)

where H is the number of MBs, || · ||1 denotes the `1-norm, and MVh is the
hth Motion Vector (MV) resulting in the best reference within the search
limits.

Motivation

This measurement gives a value for the total motion between two frames in
the video. As MVs are limited by a maximum search range, and possibly a
number of iterations, the result will be an inferior reference which results
in a worse rate distortion. Long MVs uses more bits, due to the golomb
coding, and combined with the possible inferior MB references, a larger
CMV should imply a higher bitrate. MVs are a natural part of the encoding
process, therefore the information required for this measurement is readily
available.

Results

From figure 3.4 we see that CMV is inverse proportional to the bitrate, also
indicated by the correlation coefficient of −0.9520 for this particular clip.
The correlation coefficient drops to −0.2465 when using all the test movies.



18 CHAPTER 3. COMPLEXITY ESTIMATION

0 50 100 150 200
Frame

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

B
it

s
×106 Motion vector, Blue sky, QP 10

Bits
CMV

Figure 3.4: Comparison of CMV from equation 3.7 and the textual bitrate at QP 10,
for the movie blue sky. Note that CMV is scaled to match the mean of the bitrate.

SAD

An SAD between a MB and its optimum reference within the search range
for all MBs in a frame is considered.

CB =
G∑
g=1

N∑
n=1

M∑
m=1

|MB(n,m)g − M̂B(n,m)g| (3.8)

where G is the number of MBs, N is the MB width in pixels, M is the
MB height in pixels, and the hat denotes the optimal reference MB for the
current MB.

Motivation

As it is the residuals of one MB subtracted from the best matching reference
that are DCT transformed and quantized, the residual coefficients are related
to the resulting bitrate. If we are able to determine the relation between
the residuals and bitrate, we are able to select the value for QP giving the
optimal rate distortion under the bandwidth restriction. This measure is
attractive as some form of SAD is already performed to compare motion
estimators, and will thus require few additional computations in the encoding
process.



3.2. FEATURE EXTRACTION 19

Results

The CB measure in figure 3.5 looks to be linear correlated with the bitrate,
as the adjustment of the mean is a linear scaling. For the blue sky movie in
figure 3.5 the correlation coefficient is 0.9966. For all the test movies the
correlation drops to 0.5109.

0 50 100 150 200
Frame

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

B
it

s

×106 SAD, Blue sky, QP 10
Bits
CB

Figure 3.5: Comparison of CB from equation 3.8 and the textual bitrate at QP 10, for
the movie blue sky. Note that CB is scaled to match the mean of the bitrate.

DCT variance

The DCT values are approximately laplacian distributed. The distribution
is considered zero-mean and therefore the only unknown parameter is the
variance[6, 14]. The measure is given by

CV = var(DCT ) (3.9)

where DCT is the DCT coefficients for the frame.



20 CHAPTER 3. COMPLEXITY ESTIMATION

Motivation

As seen on figure 3.6 the DCT coefficients resembles a laplacian distribution
and over time a laplacian distribution with varying variance as depicted in
figure 3.7. If the DCT values of a frame resembles a draw from a laplacian
distribution, and the only unknown of the Probability Mass Function (PMF)
is the variance, then the variance alone should give some insight about the
complexity and thereby also the bitrate. As the DCTs values are made by
an orthogonal transformation the result would be the same if applied on the
residual values.

−40 −20 0 20 40

DCT value

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

F
re

qu
en

cy

×105 Histogram, Aspen
Histogram
Laplacian

Figure 3.6: Histogram of DCT values for the aspen test sequence with a search range
of 32. Any value outside the minimum and maximum bin is discarded.

Results

As depicted in figure 3.8 there are some correlation between the texture
bitrate and the linear scaled measure CV . The correlation coefficient is
0.9820 for the blue sky movie.



3.2. FEATURE EXTRACTION 21

100 200 300 400 500
Frame

−20

−15

−10

−5

0

5

10

15

20

H
is

to
gr

am

2D histogram, Aspen

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

×105

Figure 3.7: Histogram of DCT values per frame for the aspen test sequence. Screen
changes happen where the variance spikes, illustrated by the blue lines cutting through
the red center. The histogram changes little between frames within the same scene.
However, there are distinct differences between scene histograms.

0 50 100 150 200
Frame

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

B
it

s

×107 DCT variance, Blue sky, QP 10
Bits
CV

Figure 3.8: Comparison of CV and the texture bitrate at QP 10, for the movie blue
sky. Note that CV is scaled to match the mean of the bitrate.



22 CHAPTER 3. COMPLEXITY ESTIMATION

Pearson’s constant
Inter Blue sky All movies
ρ-predictor -0.9988 -0.9783
Motion vector -0.9520 -0.2465
SAD 0.9966 0.5109
DCT variance 0.9820 0.2318
Intra
Vertical 0.9776 0.7717
Horizontal 0.9876 0.7363
DC 0.9819 0.7462

Table 3.2: Pearson’s correlation coefficient of the measurements and bitrates stacked
into one signal. All bitrates are the result of an encoding with a QP of 10.

Intra predictive modes

Although the DCT transformed residuals prove to be a good complexity
measure, the residuals after prediction might provide a cheap insight into the
complexity of the current frame. The typical measure used by the encoder
for picking a suitable predictor, the sum of absolute residuals, is readily
available for use in complexity estimation. H.264 specifies several intra
prediction modes. For 16 × 16 blocks four modes are specified: Vertical,
Horizontal, DC, and Plane. As these modes are used for intra prediction, we
believe that the resulting residual can be used for complexity estimation, as
it is directly related to the encoding process. Only the Vertical, Horizontal,
and DC modes are considered in this section. The Vertical and Horizontal
modes only apply when neighboring MBs are present either above, or to
the left, respectively. The DC predictive mode can always be applied. The
prediction is used as a reference, as with inter coding. We consider 16× 16
pixel MBs, but other predictors exist for sub MBs of different shapes and
sizes which are not covered here.

Vertical predictive mode

The Vertical prediction works by extending the row of pixels above the MB
vertically down through the MB, as it is also seen in figure 3.9.[1, section
8.3.3.1]

Horizontal predictive mode

The Horizontal prediction works by extending the row of pixels left of the
MB horizontally through the MB, this functions similarly to the vertical



3.2. FEATURE EXTRACTION 23

Figure 3.9: Illustration of the vertical extension used in the vertical predictive mode.
The illustration to the left shows a sample MB of 8 × 8 pixels. The red square marks
the current subject MB and outside the square the neighboring pixels are shown. The
illustration to the right shows the vertical extension, resulting in a vertical prediction in
the subject MB.

prediction illustrated in figure 3.9.[1, section 8.3.3.2]

DC predictive mode

The DC prediction works by making an average of available surrounding
pixels to the left and above. If no pixels are available, the center of the
dynamic range is chosen as DC value. This value is then used as the predictor
for the entire block.[1, section 8.3.3.3]

Prediction performance

The figures 3.10, 3.11, and 3.12 show the vertical, horizontal, and DC
predictive modes scaled to fit the bitrate, the movies are coded entirely from
I-frames for this test.

The correlation coefficients of the three predictors versus all 24 movies are
0.7717 for vertical, 0.7363 for horizontal, and 0.7462 for DC. The correlation
is, as expected, not as high as with DCT zeros. All coefficients are compared
in table 3.2.



24 CHAPTER 3. COMPLEXITY ESTIMATION

0 50 100 150 200
Frame

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

B
it

s
×106 Vertical prediction, Blue sky, QP 10

Luma texture bits
Prediction

Figure 3.10: Comparison of vertical prediction and the texture bitrate at QP 10, for
the movie blue sky, all frames are intra coded. Note that the vertical predictor is scaled
to match the mean of the bitrate.

0 50 100 150 200
Frame

3

4

5

6

7

B
it

s

×106 Horizontal prediction, Blue sky, QP 10
Luma texture bits
Prediction

Figure 3.11: Comparison of horizontal prediction and the texture bitrate at QP 10,
for the movie blue sky, all frames are intra coded. Note that the horizontal predictor is
scaled to match the mean of the bitrate.



3.3. CONCLUSIONS 25

0 50 100 150 200
Frame

3

4

5

6

7

B
it

s

×106 DC prediction, Blue sky, QP 10
Luma texture bits
Prediction

Figure 3.12: Comparison of DC prediction and the texture bitrate at QP 10, for the
movie blue sky, all frames are intra coded. Note that the DC predictor is scaled to match
the mean of the bitrate.

3.3 Conclusions

As expected from the findings in [7, 8], the amount of zeros after quantization
provide a good linear predictor of the resulting bitrate. The operations
needed for implementing the predictor are simple, but requires knowledge on
the quantization process in order to know the deadzone threshold and step
size. The process of controlling rate in real time from DCT values, requires
a deadline for motion and intra prediction, leaving time for communication
with a rate controller, prior to quantizing the residuals.

From the coefficients in table 3.2, we see that many of the predictors show
correlation with the resulting bitrate, it is however also clear, that a smooth
video like blue sky is not representative for movies in general. When the
sequence becomes longer and more complex, we see that some measurements
are less correlated. From the literature, and after inspecting figure 3.2 we
choose to continue with the number of DCT zeros as our bitrate predictor.



4 Buffers and GOPs

This chapter describes a Group Of Pictures (GOP) and some of the buffers
used in H.264.

4.1 Group Of Pictures

A GOP, or coded video sequence[1], in predictive video compression is
typically an I-frame followed by a number of predictive frames. The I-frame
marks the beginning of a section of the movie, and in some standards it
provides access to the stream without prior decoded frames. In H.264 an
Instantaneous Decoding Refresh (IDR) frame is needed in order to begin
decoding the stream. It resets all reference picture buffers, making it
impossible for the encoder to reference pictures prior to the IDR.

I B B P B B P B B P B B P I

(a) Bi-Predictive GOP

I P P P P P P P P P P P P P P I

(b) Predictive GOP

Figure 4.1: Two different GOP types. The rightmost I-frame marks the beginning of
the next GOP. The number of frames in a GOP is mainly limited by practical concerns,
e.g. error resilience and random access.

Figure 4.1 shows two different types of GOPs, both with predictive frames.
GOPs are often used for ”GOP-level” rate control, where a bit budget is
set for one GOP at the time, and then encoding parameters are adjusted
per frame or MB to fit the budget.

4.2 Buffers

Several buffers can be found in H.264 encoding and transmission: input
buffers for each of the operations seen in figure 2.4 on page 10, Decoded
Picture Buffers (DPBs), output buffers, and a transmission buffer after
multiplexing. The input buffers are implementation specific, so they will
not be covered here.

26



4.2. BUFFERS 27

DPBs are used for inter prediction and optionally for calculating the error
introduced by quantization, they are equal to the decoded pictures, and are
thus the pictures used for motion searches. The encoder must decode all
encoded reference frames.

Output buffers can be explained as a First In, First Out (FIFO) buffer with
a fixed rate output, using a ”leaky bucket” analogy as seen in figure 4.2 and
from the formula

Fi+1 = Fi +Bi −
RB

f
, (4.1)

where Fi is the buffer fullness at time i, Bi is the bits of frame i, RB is the
constant output rate of the buffer, and f is the frame rate.

Encoder 1

Multiplexer

Encoder 2

Figure 4.2: Figure showing output buffers of two Elementary Stream (ES) encoders,
”leaking” constant flows into a multiplexer, also with an output buffer.

Figure 4.2 shows the general setup of encoders with a constant output bitrate
from their buffers into a multiplexer. The classical approach of rate control
on individual ESs is simple to implement, and is often based entirely on
buffer fullness[9]. When multiplexing ESs into a Compound Stream (CS),
some buffers might have gotten overfull - resulting in skipped MBs or frames,



28 CHAPTER 4. BUFFERS AND GOPS

and some buffers might have run empty - wasting bitrate which could have
been used on other ESs.

An implementation with a single output buffer and joint rate control between
encoders should make it possible to even out fluctuations in quality such as
those introduced by the smaller, individual buffers of contemporary encoders.



5 Rate-Control

In the following we discuss the different aspects of a rate-controller and its
requirements. We also state a problem and its optimal Rate-Control (RC)
solution.

5.1 Allocation problem

The rate-controller will have to allocate bits to each ES taking a number of
constraints into account, such as channel bandwidth, buffer usage, quality
fluctuations, etc. Ideally, the rate-controller will allocate bits such that the
whole channel bandwidth is used at all times. Maximizing the bandwidth
usage is fulfilled as long as the multiplexer has enough data to fill the channel.
Instead of the channel bandwidth we contemplate a transmission buffer
placed between the multiplexer and the channel. Using the leaky bucket
analogy the multiplexer fills the bucket and the channel drains it. If Rmax

is the buffer size then we wish to allocate bits such that the buffer fullness
is close to some fraction of the total buffer, denoted Rtarget, such that we
do not encounter overflow or underflow and we allow some slack for the bit
allocation, which is necessary as the prediction is not exact. If Rused is the
amount of the buffer currently in use, we have that Rfree = Rtarget −Rused is
the amount of bit we have to fill into the buffer to reach the buffer target.
This leads us to the first constraint for the rate-control problem, namely

N∑
n=1

xi ≤ Rfree (5.1)

where the vector x ∈ RN+ contains the bits allocated for each ES. The sum of
bits needs to be less than or equal to Rfree because of the buffer limitations.
There are scenarios where the encoders are unable to produce a total bit
amount of Rfree. The encoder leads to two additional constraints, based
on the QP limits. With a QP of 0 we have the highest possible amount of
bits and at QP at 51 we have the lowest possible bitrate, if not considering
a frame skip. Denoting these two extremes as rmax and rmin we have the
additional constraints

29



30 CHAPTER 5. RATE-CONTROL

x � rmax (5.2)

x � rmin (5.3)

where � and � are element wise operators, rmax and rmin are vectors
containing the approximated maximum and minimum bits, respectively,
possible to produce for each encoder.

The first three constraints are based on the technical limitations for a causal
system, given the setup in figure 1.1. There are one additional consideration
that concerns the perceptual quality of the video that poses a limitation for
the rate-control. We wish the bitrate to be as high as possible, but large
variation in the quantization, and thereby also the quality, between frames
are perceptually worse than a constant lower bitrate. If m is the predicted
bitrates for each ES if neither of them changes their QP, we can limit the
variation with the `2-norm as

‖Mx− 1‖2 , (5.4)

where M = diag(m)−1. Taking the ratio between x and m in this way, we
adjust the ratio of change instead of the displacement, such that low bitrates
will change less than larger bitrates, and vice versa. We can now state our
bit allocation as a constrained optimization problem as

maximize
x

f(x) = cTx−∆ ‖Mx− 1‖2
2

subject to x � rmax

x � rmin

1Tx ≤ Rfree

(5.5)

where c is a weight vector, such that the ESs can be prioritized, allocating
more bits for some streams and less for others. For equal bandwidth
distribution we simply use a vector 1 where all elements are equal to 1, such
that c = 1. ∆ is a constant adjusting how much the allocated bits may
deviate compared to those of a constant quality. Solving problem 5.5 leads
to the optimal bit allocation in terms of ES priority, channel bandwidth,
and perceptual quality.



5.2. CONVEXITY 31

5.2 Convexity

For generality we write problem 5.5 into a minimization problem and evaluate
the Hessian. Writing the constraints from problem 5.5 in matrix form, the
problem is given by

minimize
x

f(x) = ∆ · ‖Mx− 1‖2
2 − cTx

subject to Ax ≥ b
(5.6)

where

A =

−1T

I
−I

 , b =

−Rfree

rmin

−rmax

 ,
and I is the identity matrix. Given the problem is convex it can be solved by
a number of algorithms for convex optimization. Investigating the convexity
we start by writing out the `2-norm term, such that

f(x) = ∆ · xTMTMx−∆ · xTMT1−∆ · 1TMx + 1T1− cTx (5.7)

Differentiating with regard to x once, we have the gradient as

∇f(x) = ∆ · (MTM + MMT)x−∆ ·MT1−∆ ·MT1− c (5.8)

differentiating again we get the Hessian

H (f(x)) = ∇∇Tf(x) = ∆ · (MTM + MMT) (5.9)

since MT = M we have that the Hessian is given by 2∆ ·MM, which is a
positive definite diagonal matrix, implying that the unconstrained problem
is strictly convex. Convexity holds if the constraints form a convex set,
which is the case as all constraints in problem 5.6 are linear.



32 CHAPTER 5. RATE-CONTROL

5.3 Example with two streams

As the optimization problem only has inequality constraints, it is seen that
when Rfree ≥ 1Trmin the optimization problem has a solution, and when
Rfree > 1Trmin Slater’s condition holds, as there always exist a solution in
the relative interior of the constraints. This means that there exist a dual
solution with a duality gap of zero.

To demonstrate how the constrained optimization problem can be solved
using Lagrange multipliers and the Karush-Kuhn-Tucker (KKT) conditions,
we give the following numerical example with two streams. Initially let

c =

[
1
1

]
,m =

[
4
5

]
,∆ = 1, Rfree = 8, rmin =

[
4
2

]
, rmax =

[
7
5

]
(5.10)

which will give a solution lying on the edge of one rmin and one rmax

constraint, and the Rfree constraint, chosen this way for a nice example.
Each of the constraints in problem 5.5 are given Lagrange multipliers, and
the Lagrangian becomes

f(x) = ∆‖Mx−1‖2
2−cTx+λ(1Tx−Rfree)+µT(x−rmax)+εT(rmin−x) (5.11)

where λ ≥ 0, and µ, ε � 0, and

M = diag(m)−1 =

[
1
4

0
0 1

5

]
. (5.12)

As equation 5.11 is a convex problem, solutions lie where the gradient of
f(x) is zero, leading to the equation

∇xf(x) = ∆2M2x−∆2M1− c + λ1 + µ− ε = 0 (5.13)

and isolating for x yields



5.3. EXAMPLE WITH TWO STREAMS 33

x = M−11 +
1

2∆
M−2c− λ

2∆
M−21− 1

2∆
M−2µ +

1

2∆
M−2ε (5.14)

and we see that x depends on the Lagrange multipliers. Differentiating
f(x) with regard to the Lagrange multipliers, we get an expression for each
multiplier. Starting with λ we have

∇λf(x) = 1Tx−Rfree = 0 (5.15)

Substituting x with equation 5.14 and isolating for λ yields

1T

(
M−11 +

1

2∆
M−2 (c− λ1− µ + ε)

)
−Rfree = 0 (5.16)

λ =
2∆1TM−11− 2∆Rfree + 1TM−2(c− µ + ε)

1TM−21
. (5.17)

Differentiating f(x) with regard to µ yields

∇µf(x) = x− rmax = 0 (5.18)

and substituting x yields

M−11 + M−2c− λ1− µ + ε

2∆
− rmax = 0 (5.19)

µ = ∆2M1−∆2M2rmax + c− λ1 + ε. (5.20)

The expression for ε is closely related to that of µ, and can be found in a
similar way

∇µf(x) = rmin − x = 0 (5.21)

Again substituting x yields



34 CHAPTER 5. RATE-CONTROL

M−11 + M−2c− λ1− µ + ε

2∆
− rmin = 0 (5.22)

ε = 2∆M2rmin − 2∆M1− c + λ1 + µ (5.23)

We now have expressions for x and all the Lagrange multipliers, and we can
evaluate the different solutions using the KKT conditions. The unconstrained
solution is found for λ = 0, and µ, ε = 0 as

x = M−11 +
1

2∆
M−2c

x =

[
4
5

]
+

1

2

[
16 0
0 25

] [
1
1

]
x =

[
12.0
17.5

]
(5.24)

Evaluating the solution from equation 5.24 with regard to the constraint
11x ≤ Rfree, we have that

1Tx = 29.5 � 8 (5.25)

showing that x is an infeasible point and therefore not a solution. The
problem is then solved for λ > 0,µ = 0, ε = 0, leading to

x = M−11 + M−2 c

2∆
−M−2 λ1

2∆
(5.26)

Using equation 5.17 we have

λ =

1 · 2 · 9− 1 · 2 · 8 +
[
16 25

] [1
1

]
41

=
43

41
(5.27)

Substituting λ in equation 5.26 with equation 5.27 we have



5.3. EXAMPLE WITH TWO STREAMS 35

x =

[
12

17.5

]
− 1

2
· 43

41

[
16 0
0 25

] [
1
1

]
=

[
3.61
4.39

]
(5.28)

It is seen that the constraint 1Tx ≤ 8 is fulfilled, but now x1 � rmin,1. We
then solve for λ > 0,µ = 0, ε1 > 0, ε2 = 0, then

x = M−11 +
1

2∆
M−2c− λ

2∆
M−21 +

1

2∆
M−2ε (5.29)

with

ε = 2∆M2rmin − 2∆M1− c + λ1

ε1 = 2∆
rmin,1

m2
1

− 2∆
1

m1

− c1 + λ

ε1 =
1 · 2 · 4

16
− 1 · 2

4
− 1 + λ

ε1 = λ− 1 (5.30)

and

λ =
2∆1TM−11− 2∆Rfree + 1TM−2(c + ε)

1TM−21

λ =
2

41
+

16λ

41
+

25

41

λ =
27

25
(5.31)

then substituting equation 5.31 into equation 5.30 yields

ε1 =
2

25
(5.32)



36 CHAPTER 5. RATE-CONTROL

Substituting 5.31 and 5.32 into equation 5.14 we get

x =

[
12.0
17.5

]
− 27

25
· 1

2

[
16 0
0 25

] [
1
1

]
+

1

2

[
16 0
0 25

] [
2
25

0

]
x =

[
12.0
17.5

]
−
[
8.64
13.5

]
+

[
0.64

0

]
x =

[
4
4

]
(5.33)

The solution in equation 5.33 is feasible as it satisfies all constraints. In
fact it is the optimal solution for this problem. In order to ensure the
optimal solution, all combinations of lagrange equations must be tested. It
is important to note, that for εi > 0, µi has to be zero while rmin,i 6= rmax,i

and vice versa. The amount of possible combinations of equations grows
exponentially with the number of streams

Neq = 2 · 3N (5.34)

which means that problems with many streams might be solved faster with
other methods.

5.4 Rate controller modification

After evaluation of the rate controller it is clear, that streams with larger m
values than others result in relatively less penalty by the quadratic part of
the function, allowing larger growth of these streams than desired. This is
solved by adding a M to the linear, negative part of the primal function, so
that the function yield

f(x) = ∆‖Mx− 1‖2
2 − xTMc (5.35)

f(x) = ∆xTM2x− 2∆xTM1 + ∆1T1− xTMc

∇xf(x) = 2∆M2x− 2∆M1−Mc (5.36)

It is seen from the gradient in equation 5.36 that if the c vector is different
from 1, then the amount of growth in bitrate for the unconstrained problem



5.4. RATE CONTROLLER MODIFICATION 37

changes with c. This is however not handled in the optimization problem,
as it is easier handled by lowering the rmax vector to the maximally allowed
growth. Setting ∆ to allow a certain growth factor α on average is done by
first isolating ∆ as

∇xf(x) = 2∆M2x− 2∆M1−Mc = 0

2∆(M2x−M1) = Mc

2∆(Mx− 1) = c

2∆ =
1Tc

1TMx− 1T1

∆ =
1

2
· 1Tc

1TMx− 1T1

(5.37)

and then substituting x with (1+α)m, where α is the allowed change factor,
yields

∆ =
1

2
· 1Tc

1TM(1 + α)m− 1T1

∆ =
1

2
· 1Tc

1T1α
(5.38)

Different ways of setting the c vector is described in chapter 8.



6 Communication

This chapter describes the information to be communicated between encoders
and the rate controller.

6.1 Information

For simplicity we assume a setup where all ESs run at the same Frames Per
Second (FPS), such that the rate-controller described in chapter 5 can be
used without modifications. As the rate-controller holds the primal problem,
a solver, and the buffer Rfree, it requires the variables rmin, rmax, and m, to
find a solution. Furthermore, the encoded header size is required, such that
it can be subtracted from the available buffer size. In addition to these nec-
essary conditions for the allocation problem, the encoder also communicates
the Peak Signal-to-Noise Ratio (PSNR) and size of the previously encoded
frame, such that the buffer status can be updated. As the encoders do not
return data for the rate-controller at the same time, the rate-controller will
wait until all encoders have data ready before bit allocation.

6.2 Implementation

The communication between the encoders and the rate-controller is imple-
mented as a single text file per encoder, and all information is exchanged
via this file. The encoder writes its variables for the allocation problem as
a comma separated string. The rate-controller reads the information from
all encoders, solves the allocation problem, and writes back the requested
bitrates. The file is truncated prior to each write. All strings are termi-
nated with end of text (ETX), defined as 3 by ASCII, such that a partial
written string will not be read as complete information. All communication
from the encoders to the rate-controller will start with JM and from the
rate-controller to the encoders will start with R, thereby controlling in what
direction the data is meant to go.

38



6.2. IMPLEMENTATION 39

Protocol

Communication from the encoder to the rate-controller follows the syntax

JM minimum bitrate, current bitrate, maximum bitrate, header size,

previously encoded bits, previous PSNR ETX

note that whitespaces have been added for easier reading, and should be
omitted and ETX is end of text. The syntax for rate-controller to encoder
communication follows

R requested bitrate ETX

again, whitespaces should be omitted.



7 Implementation

The Joint Model (JM) reference encoder version 18.4 is written in C, and as
it is part of the basis of the H.264 standard, it is capable of encoding videos
with all features from the standard including scalable and multi-view coding.
As the H.264 standard has many features the JM software has become very
complex, however, we have been able to limit the features used by JM to an
extend where we have succeded in getting enough information from JM to
do our rate-control, and it has been possible for us to use the bit budget
returned by the rate-controller to set a QP. It is important to note that while
the JM rate control is capable of tweaking R-D for separate sub-macroblocks,
we are setting our QP for the entire frame, thus not performing as well on
R-D as JM but this is implementation specific.

JM runs through rate-control, prediction, residual transform, quantization,
and NAL encoding on a macroblock basis, and it is thus not immediately
possible for us to get the transformed residuals for a full frame prior to
quantization. Instead of rewriting the entire encoder, we have chosen a
method with very little invasion to the original functionality, but with a high
computational overhead. We encode the entire frame, counting coefficients
after the DCT, and allow for the encoder to complete encoding the frame.
We then read out the header size, and perform our predictions on the data
collected and communicate with our proposed rate-controller for a bit budget.
Once the bit budget is received and we have chosen a suitable QP from our
predictor, we clear some buffers in JM and let it encode the image again,
with our newly chosen QP.

For this implementation we store much of our information in a globally
accessible struct shown in listing 7.2. When doing the DCT transform of the
residuals from prediction, we create a number of histograms. The histograms
are created based on where in the transform the coefficient lies, due to the
way the quantization thresholds are calculated. The 4× 4 DCT has three
different quantization parameters, and the number of bins needed for the
histograms is based on the placement, frame type, and QP resulting in
the highest zero-threshold. As the threshold is symmetric around zero, the
negative coefficients will be counted along with their positive counterparts.

In order not to collide with existing functions and clutter the namespace, all
of our global definitions, as well as some of our local functions are prefixed
AAU project.

40



41

We define the amount of bins to be used, and the ETX character to be used
in communication with the rate-controller. The definitions are read by the
pre-compiler.

47 #define AAU_project_bins 1917

48 #define ETX 0x3

Listing 7.1: Defines in JM/lencod/inc/global.h

The global struct definition makes use of the amount of bins previously
assigned, and is initialized immediately.

50 struct AAU_project_struct

51 {

52 int transform4x4 [3][ AAU_project_bins ];

53 int transform8x8 [6][ AAU_project_bins ];

54 int transform4x4_count;

55 int transform8x8_count;

56 int prev_total_bits;

57 int prev_header_bits;

58 int prev_psnr_luma;

59 int header_bits;

60 int qp;

61 int count;

62 int zeros;

63 int pass;

64 int theta;

65 int offset;

66 int md;

67 } AAU_project_struct;

Listing 7.2: Project struct in JM/lencod/inc/global.h

In order to know which coefficients belong to which histograms, a couple of
lookup tables are defined

71 static const int AAU_project_4x4_quant_coefs [4][4] = {

72 {0, 1, 0, 1},

73 {1, 2, 1, 2},

74 {0, 1, 0, 1},

75 {1, 2, 1, 2}};

76

77 static const int AAU_project_8x8_quant_coefs [8][8] = {

78 {0, 1, 2, 1, 0, 1, 2, 1},

79 {1, 3, 4, 3, 1, 3, 4, 3},

80 {2, 4, 5, 4, 2, 4, 5, 4},

81 {1, 3, 4, 3, 1, 3, 4, 3},

82 {0, 1, 2, 1, 0, 1, 2, 1},

83 {1, 3, 4, 3, 1, 3, 4, 3},

84 {2, 4, 5, 4, 2, 4, 5, 4},

85 {1, 3, 4, 3, 1, 3, 4, 3}};

Listing 7.3: Histogram matrices in JM/lencod/inc/global.h



42 CHAPTER 7. IMPLEMENTATION

The histograms are cleared before encoding each frame, but the amount of
zeros from the previous picture and the QP must be set prior to encoding
the first picture. This is done in the main function, immediately before
starting the encode process. The starting QP is set to the initial P-frame
QP from the configuration file, and the amount of zeros from the previous
frame is set to negative one.

267 AAU_project_struct.qp = p_Enc ->p_Inp ->qp[0];

268 AAU_project_struct.zeros = -1;

Listing 7.4: Initialization of QP and zeros in JM/lencod/src/lencod.c

The deadzone used for quantization changes with the frame type, so this is
set for each frame. Also, we have implemented a way of asking the user for
the next frame type, which, when enabled, gives full control of the GOP for
testing.

823 char inpbuffer [1];

824 inpbuffer [0] = ’ ’;

825 if (0) { // Disabled

826 printf("Slice type [%c]: ", (p_cur_frm ->type == I_SLICE ? ’I’ : ’P’));

827

828 scanf("%c",inpbuffer);

829

830 if (inpbuffer [0] != ’\n’)

831 p_cur_frm ->type = (inpbuffer [0] == ’I’ ? I_SLICE : P_SLICE);

832

833 while (inpbuffer [0] != ’\n’) {

834 scanf("%c",inpbuffer);

835 }

836 }

837

838 AAU_project_struct.offset = (p_cur_frm ->type == I_SLICE ? 682 : 342);

Listing 7.5: Setting offset from frame type, and also possibility to set frame type
manually in JM/lencod/src/lencod.c



43

Most of our calculations are performed in image.c, the following function
calculates the zero-thresholds for the 4× 4 transformed coefficients given a
QP, this could also be implemented as a lookup table. See ρ-prediction in
section 3.2 for information on the predictor.

103 void threshold4x4(int QP , int *aThreshold) {

104 int scaleMatrix [] = {

105 13107 , 5243, 8066,

106 11916 , 4660, 7490,

107 10082 , 4194, 6554,

108 9362, 3647, 5825,

109 8192, 3355, 5243,

110 7282, 2893, 4559};

111 int QPmod6 = QP % 6;

112

113 int x;

114 for(x=0; x<3; x++) {

115 int scale = scaleMatrix [3* QPmod6 + x];

116 int divisionFactor = QP / 6;

117

118 /* Calculates:

119 * (2^(15 + QP/6) - (offset * 2^(4 + QP/6))) / scale

120 * and floors.

121 */

122 aThreshold[x] = ((1 << (15 + divisionFactor)) -

(AAU_project_struct.offset * (1 << (4 + divisionFactor)))) / scale;

123 }

124 }

Listing 7.6: Calculates thresholds given a QP in JM/lencod/src/image.c

The zero-thresholds are used to summarize the amount of texture coefficients
that are truncated to zero if the provided QP is used.

167 int quantizedZeros4x4(int QP) {

168 int aThreshold [3];

169

170 /* Get quantization thresholds */

171 threshold4x4(QP, aThreshold);

172

173 int histogramID;

174 int histogramIndex;

175 int sum = 0;

176 for(histogramID =0; histogramID <3; histogramID ++) {

177 histogramIndex = 0;

178 while (histogramIndex < aThreshold[histogramID ]+1) {

179 sum +=

AAU_project_struct.transform4x4[histogramID ][ histogramIndex ++];

180 }

181 }

182 return sum;

183 }

Listing 7.7: Function to count zero-coefficients given QP in JM/lencod/src/image.c

Predictions of the texture bitrates at a given QP is based on the amount of
transformed coefficients, the amount of coefficients being truncated to zero,
and a predictor, which is created from statistics from the previous frame.



44 CHAPTER 7. IMPLEMENTATION

186 int predictBitrate(int qp) {

187 int zeros , count;

188 float rho;

189 int prediction;

190

191 zeros = quantizedZeros4x4(qp) + quantizedZeros8x8(qp);

192 count = AAU_project_struct.transform4x4_count +

AAU_project_struct.transform8x8_count;

193 rho = (float) zeros / (float) count;

194 prediction = (int) AAU_project_struct.theta * (1.0 - rho);

195

196 return prediction;

197 }

Listing 7.8: Function to predict bitrates from QPs in JM/lencod/src/image.c

The predictor is updated from the percentage of zeros in the previous frame,
and the actual amount of texture bits generated.

225 void updatePredictor( void ) {

226 int texture_bits;

227

228 float zeroPercentage = AAU_project_struct.zeros / (float)

AAU_project_struct.count;

229

230 texture_bits = AAU_project_struct.prev_total_bits -

AAU_project_struct.prev_header_bits;

231

232 AAU_project_struct.theta = (int) texture_bits / (1 -

zeroPercentage);

233 }

Listing 7.9: Updates predictor from statistics in JM/lencod/src/image.c



45

Once a texture bit budget is returned from the rate-controller, the QP is
set to the one providing the closest prediction.

199 int newQP(int targetBitrate) {

200 int QP;

201 int predictedBitrate = 0;

202 int previousBitrate = 0;

203 int theta = AAU_project_struct.theta;

204 float zeroSum;

205 float zeroPercentage;

206 float totalElm = AAU_project_struct.transform4x4_count +

AAU_project_struct.transform8x8_count;

207

208 for (QP=0; QP <=51; QP++) {

209 zeroSum = quantizedZeros4x4(QP) + quantizedZeros8x8(QP);

210 zeroPercentage = zeroSum / totalElm;

211 predictedBitrate = (int)(theta * (1.0 - zeroPercentage));

212

213 if (predictedBitrate <= targetBitrate) {

214 if (( targetBitrate - predictedBitrate) <= (previousBitrate -

targetBitrate) || QP == 0) {

215 return QP;

216 } else {

217 return QP -1;

218 }

219 }

220 previousBitrate = predictedBitrate;

221 }

222 return 51;

223 }

Listing 7.10: Function to choose QP from estimations given a budget in
JM/lencod/src/image.c

When not doing mode decision, the transformed coefficients are counted up
in the histograms.

69 if (AAU_project_struct.md == 0) {

70

71 for (i=0; i < BLOCK_SIZE; i++){

72 for (ii=0; ii <4; ii++){

73 x = iabs(tblock[pos_y + ii][ pos_x + i]);

74 if (x < AAU_project_bins) {

75 c = AAU_project_4x4_quant_coefs[ii][i];

76 AAU_project_struct.transform4x4[c][x]++;

77 }

78 }

79 }

80

81 AAU_project_struct.transform4x4_count += 16;

82 }

Listing 7.11: Count function in JM/lcommon/src/transform.c



46 CHAPTER 7. IMPLEMENTATION

The JM encoder communicates its predictions to a rate-controller via a file.

279 fprintf(statefile ,"JM%d,%d,%d,%d,%d,%d%c",

280 predictBitrate (0),

281 predictBitrate(AAU_project_struct.qp),

282 predictBitrate (51),

283 AAU_project_struct.header_bits ,

284 AAU_project_struct.prev_total_bits ,

285 AAU_project_struct.prev_psnr_luma ,

286 ETX);

Listing 7.12: Communication towards the rate-controller in JM/lencod/src/image.c

7.1 Joint rate control

Our rate controller is implemented in python 2, and is started by a script
which also handles the setup of the JM encoders.

% ./encode JMpath cfgpath qp1,qp2... movie1 movie2 ...

The rate controller is implemented in the file rate-control and is using
scipy for linear algebra and convex optimization. It communicates its findings
back towards JM in the state file with the following

151 streamID = 0

152 for arg in sys.argv [1:]:

153 with open(arg , ’wb’) as fp:

154 out = "R" + str(np.round(x[streamID ]).astype(np.int)) + chr(3) +

’\n’

155 fp.write(out)

156 fp.close ()

157 streamID += 1

The final newline was added to allow unified functionality across ext4 and
btrfs file systems used on our computers.



7.2. SOFTWARE 47

7.2 Software

The machine used for our tests has the following configuration

% source /etc/os-release; echo $PRETTY_NAME

Arch Linux

% uname -sr

Linux 3.7.4-1-ARCH

% python2 -V

Python 2.7.3

% python2 -c "import scipy; print scipy.version.version"

0.12.0

% gcc -v 2>&1 | grep "gcc version"

gcc version 4.7.2 (GCC)

% ffmpeg -version | grep "ffmpeg version"

ffmpeg version 1.2.1

It uses the ext4 file system on all partitions.

7.3 Issues

The JM encoder changes header sizes of the encoded streams with QP, which
can result in large prediction errors with our setup when QP is changed.

The optimization tool seems to malfunction on scipy version 0.9, all of our
tests has been run against scipy version 0.11 or 0.12.



8 Simulations

This documents the results using our rate-controller. We present results
for different channel bandwidths, in a setup simulating a transmisson of
three ESs, with different weights for quality adjustment. Having a limited
bandwidth channel, the most naive approach is to encode all streams to
a fraction of the available bandwidth as their mean bandwidth. This is
illustrated for comparison and explanation of its shortcomings. A more
thorough simulation is done with four streams for 1000 frames, for better
evaluation of the performance over time.

The movies aspen, ducks take off, and factory, have been used as they are
very different. Aspen has little motion but a high level of textural details,
ducks take off has high detail through the whole stream, and factory is an
animation.

8.1 Static bitrate

We simulate a limited channel of 3Mbps, 6Mbps, and 12Mbps, and encode 100
frames of each video at a bitrate of one third of the channel bandwidth, using
the native JM encoder. The GOP structure is one initial I-frame followed
by P-frames. Figure 8.1 depicts the accumulated bitrate for the three test
movies, when encoding for constant bitrate. The streams are individually
encoded and then summed into a single bitrate. The RC implemented in
the JM encoder tries to reach the correct end sum of bitrates on average,
explaining the bitrate fluctuations in figure 8.1. Theses fluctuations are
only limited by the maximum allowed change of the QP between successive
frames, which has been set to the default setting of 4.

While the bitrate fluctuations might not pose a problem, as an output buffer
would even it out, the resulting variation in visual quality, depicted in figure
8.2 for the same streams, gives a perceptually bad quality. The PSNR
variance for all three bandwidths are given in table 8.1(a).

Using our rate-controller we get an overall lower PSNR, see table 8.1(b) and
figure 8.4, and a lower PSNR variance except for aspen, see table 8.1(a).
The lower PSNR is a symptom of the very rough quality steps used in our
implementation to fit the bitrate budgets. An implementation able to fit the
bitrate target on a MB level could improve the R-D. The PSNR variance

48



8.1. STATIC BITRATE 49

0 20 40 60 80
Frame

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
it

s

×106

Aspen
Ducks
Factory

Figure 8.1: Accumulated bitrates for the first 100 frames of aspen, ducks take off, and
factory, encoded at a constant bitrate for a channel bandwidth of 12Mbps.

0 20 40 60 80
Frame

30

35

40

45

P
SN

R
[d

B
]

Aspen
Ducks
Factory

Figure 8.2: Luminance PSNR of aspen, ducks take off, and factory encoded with JM at
a target bitrate of 4Mbps each.



50 CHAPTER 8. SIMULATIONS

is generally lower with our implementation, as it is the main focus of our
rate-controller. The variance would improve with a better fit to the bitrate,
instead of the over- or undershoots resulted when adjusting the QP of the
entire frame. Also, the predictions suffer from large variations in header size
between QPs, which we address to the specific JM encoder implementation.

0 20 40 60 80
Frame

0.0

0.2

0.4

0.6

0.8

1.0

B
it

s

×106

Aspen
Ducks
Factory

Figure 8.3: Accumulated bitrates for the first 100 frames of aspen, ducks take off,
and factory, encoded with fixed and evenly distributed bitrate weights for a channel
bandwidth of 12Mbps.

When inspecting the resulting PSNR in figure 8.4 and bitrate in figure 8.3
it is clear, that the target of the rate-controller has been to keep the bitrate
in vicinity of a target, and to evenly distribute the bits between ESs while
keeping PSNR variation low. However, it is desirable to have lower quality
for the aspen and factory streams, to allow better quality for the much more
complex stream ducks take off. This is accounted for in the implementation
presented in the following section.



8.2. PRIORITIZED PSNR 51

0 20 40 60 80 100
Frame

25

30

35

40

45

P
SN

R
[d

B
]

Aspen
Ducks
Factory

Figure 8.4: Luminance PSNR of aspen, ducks take off, and factory encoded with our
rate-controller at a target bitrate of 12Mbps total.

8.2 Prioritized PSNR

Instead of averaging the bitrates we prioritize the PSNRs by using the PSNR
diffence between a stream and the stream with the highest quality plus one,
which will result in convergence towards a common PSNR for all streams.
How the c vector is made can be seen from the following example

PSNR =

38
28
32


c = max(PSNR)−PSNR + 1

c =

 1
11
7


As seen by figure 8.6 the PSNR range is reduced, compared to the constant
bitrate regulation. As complexity of ducks take off is much higher than the
two other streams, the PSNR regulations impact on the bitrate is substantial,
as seen on figure 8.5. It is near impossible for the rate-controller to adjust



52 CHAPTER 8. SIMULATIONS

the PSNRs further, as the next step in QP for ducks take off would require
all the bandwidth currently used for the aspen and factory streams.

As the bits required for ducks take off for a PSNR matching the other
streams are extremely high in comparison, we replace it with the tractor
clip, and do the same PSNR leveling. As seen by figure 8.7 and 8.8 the
tractor clip also requires more bits than the other streams for the same
PSNR, though not as much as ducks take off. Table 8.1(b) shows that the
average PSNR for the tractor clip is more than 3 dB higher than ducks take
off while both aspen and factory also have increased in average PSNR.

0 20 40 60 80
Frame

0.0

0.2

0.4

0.6

0.8

1.0

B
it

s

×106

Aspen
Ducks
Factory

Figure 8.5: Accumulated bitrates for the first 100 frames of aspen, ducks take off, and
factory, encoded for equal PSNR values for a channel bandwidth of 12Mbps.



8.2. PRIORITIZED PSNR 53

0 20 40 60 80 100
Frame

25

30

35

40

45

50

P
SN

R
[d

B
]

Aspen
Aspen (JM)
Ducks
Ducks (JM)
Factory
Factory (JM)

Figure 8.6: Luminance PSNR of aspen, ducks take off, and factory encoded for equal
PSNR values with our rate-controller at a target bitrate of 12Mbps total. The results
from figure 8.2 is the dotted lines, shown for easier comparison.

0 20 40 60 80
Frame

0.0

0.2

0.4

0.6

0.8

B
it

s

×106

Aspen
Tractor
Factory

Figure 8.7: Accumulated bitrates for the first 100 frames of aspen, tractor, and factory,
encoded for equal PSNR values for a channel bandwidth of 12Mbps.



54 CHAPTER 8. SIMULATIONS

0 20 40 60 80 100
Frame

31

32

33

34

35

36

37

38

39

P
SN

R
[d

B
]

Aspen
Tractor
Factory

Figure 8.8: Luminance PSNR of aspen, tractor, and factory encoded for equal PSNR
values with our rate-controller at a target bitrate of 12Mbps total.



8.2. PRIORITIZED PSNR 55

PSNR variance
aspen ducks take off factory

JM Our JM Our JM Our
3Mbps 0.4536 1.2407 0.3768 0.2783 8.0979 3.9386
6Mbps 0.2934 0.5294 0.4252 0.2273 8.8587 6.9158
12Mbps 0.2304 0.3203 0.6500 0.3930 9.4961 8.0839

Prioritized PSNR
12Mbps - 2.9928 - 0.2813 - 1.4581

aspen tractor factory
12Mbps - 0.8098 - 0.4654 - 2.2294

(a) PSNR variance for the 100 first frames of each movie for different target
bandwidths and encoding setups. Where the numbers for the JM encoder is
missing, is where it do not have an encoding setup that matches ours, our
numbers in those columns can not be compared directly.

Mean PSNR [dB]
aspen ducks take off factory

JM Our JM Our JM Our
3Mbps 36.4724 31.8196 24.0794 22.6032 35.1657 31.8061
6Mbps 39.1307 35.7004 26.3220 25.1915 37.5469 34.3461
12Mbps 40.9394 39.1356 28.8425 27.5929 39.9657 36.6436

Prioritized PSNR
12Mbps - 34.7747 - 29.9973 - 33.8046

aspen tractor factory
12Mbps - 36.1657 - 33.3812 - 35.5656

(b) Mean PSNR for the JM encoders rate-controller compared with ours, for the first
100 frames of each movie.



56 CHAPTER 8. SIMULATIONS

8.3 Final evaluation

To test the rate-controller in a realistic scenario, we test it against four
streams on a 25 Mbps total bandwidth at 24 FPS. The test streams used are
from the movies elephants dream and big buck bunny where each movie has
been split in two at the 6000’th frame, simulating four individual streams.
The test will run over 1000 frames.

0.0 0.2 0.4 0.6 0.8
Frame ×103

20

40

60

80

100

P
SN

R
[d

B
]

Big Buck Bunny
Big Buck Bunny 6000
Elephants Dream
Elephants Dream 6000

Figure 8.9: Luminance PSNR of the two sequences from big buck bunny and the two
sequences from elephants dream encoded for equal PSNR values with our rate-controller
at a target bitrate of 25Mbps total.

The PSNR starts out very high, see figure 8.9, for the two streams starting
at frame 1, as their complexity is very low. Big Buck Bunny starts out with
slow panning over a landscape overlayed with white text, and Elephants
Dream have a slow moving background. As the change in PSNR is limited
by the rate-controller it is unable to fill the buffer as there are produced
fewer bits at this initial QP than what is required to fill the buffer, see figure
8.11. The steep decent in PSNR for the same two streams are imposed
by the optimization constraint of keeping the sum of bitrates below the
given maximum. The PSNRs in table 8.1 indicates a wildly varying PSNR,
observing the swings in figure 8.9 this is understandable. However, inspecting
the PSNR evolution of the individual streams, and discarding the drops
at scene changes, we see that the rate-controller is able to slowly vary the
PSNR over time.



8.3. FINAL EVALUATION 57

Movie
Big Buck
Bunny

Big Buck
Bunny
6000

Elephants
Dream

Elephants
Dream
6000

Mean PSNR 44.8428 43.6229 47.5887 48.6956
PSNR variance 77.7117 44.4220 71.0803 19.9419

Table 8.1: Average PSNR and variance for the four streams used in the final simulation.

The sudden drops in PSNR, quite distinctly in Big Buck Bunny 6000 and
Elephants Dream 6000, are mainly caused by scene changes, as the bit budget
is unable to provide the encoder with enough bandwidth for a constant
PSNR.

0.0 0.2 0.4 0.6 0.8
Frame ×103

0.0

0.5

1.0

1.5

2.0

2.5

B
it

s

×106

Big Buck Bunny
Big Buck Bunny 6000
Elephants Dream
Elephants Dream 6000

Figure 8.10: Accumulated bits of the two sequences from big buck bunny and the two
sequences from elephants dream encoded for equal PSNR values with our rate-controller
at a target bitrate of 25Mbps total.

Figure 8.10 shows the accumulated bits per frame. While the total number of
bits vary around the buffer target, there are large variations in the individual
streams and their part of the total bandwidth.

Even though the implemented buffer is very simple it is possible to stay
within its limit. The buffer fullness and buffer target is plotted in figure
8.11, and it is seen that buffer overflow is never encountered if the buffer
is twice the size of the buffer target. This is not guarantied to be the case



58 CHAPTER 8. SIMULATIONS

for all combination of streams and channel bandwidths, but shows that it is
possible to keep the buffer fullness reasonable.

0.0 0.2 0.4 0.6 0.8
Frame ×103

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
it

s

×106

Buffer fullness
Target

Figure 8.11: Buffer fullness when encoding the four streams for a 25Mbps channel with
a frame rate of 24 and a buffer target of approx 2.08 Mbit, which is the same size as two
average frames.



9 Conclusions

In this project, we have investigated the H.264 video codec for use in a
broadcasting scenario. Our research focuses on accurate bitrate predictions
with low complexity, to be used with joint encoding for maximum usage of
limited bandwidth channels. We have found that a simple linear predictor,
based on the quantization process, provides accurate predictions for texture
bits, and combined with the size of the frame header, it is possible to predict
the total amount of bits for the frame with accuracy suitable for rate control.

Our implementation used for this project is based on the Joint Model H.264
encoder, which is used for development and testing of the H.264 reference
decoder, specified by ITU-T and ISO. The JM encoder is not immediately
suited for the type of predictions and rate control we impose, but has been
solved by modifing the software for two-pass encoding. Our rate-controller
has been implemented in Python 2, using scipy’s optimization toolbox for
solving the proposed convex optimization problem.

The tests provided in this report show comparisons with sequences encoded
by the JM reference encoder for a fixed bitrate. This comparison is not
completely fair, as the JM encoder is able to adjust the QP on a macroblock
level, whilst we control it on a frame level. Moreover JM has no restrictions
on buffer fullness or quality fluctuations, other than the allowed change
in QP. The JM encoder also adjusts the frame header sizes considerably
between different QPs, resulting in inaccurate predictions in our setup. A
fair comparison would require an implementation where it is possible to
interchange the rate-controlling functions between an existing rate-controller
for broadcasting and ours.

As neighter the JM encoder nor our rate-controller is optimized for real-time
encoding, we can not demonstrate a real-time running setup. However we
still belive that it is possible to make a real-time implementation, as the
additional computations and communication for this scheme is belived to
be of relatively low cost, especially when comparing with the complexity of
mode decisions and motion estimation in H.264.

It is clear, that in order to enable Just-In-Time encoding with autonomous
encoders, they and the rate-controller must obey strict deadlines on predic-
tions and bit allocation, respectively.

59



10 Discussion

As the supply of high definition content is constantly rising and the distri-
bution cost of such content is a concern for any provider, the need to pack
content efficiently is of great importance. Using the distribution channels
to their fullest can help distribution companies create value for money, and
optimize their investment.

While our focus has been on H.264 encoding, we believe that the findings
of this research project applies to other video compression codecs, such as
H.265, VP8, and VP9, as well as other transform codecs. As the general
principles in video coding is the same, and the great differences lie in
implementation choices, they should be compatible with our rate control
scheme, with similar results.

Just-In-Time execution is fundamental for this scheme to function, so it is in
need for a time efficient, and deadline aware implementation. Reaching such a
goal requires attention to the distribution of computations, and with existing
hardware it would require some sort of multiprocessing. Many of the tasks
used in prediction and transform coding can be performed independently, and
therefore great enhancements can be made by utilizing parallel computing
units. The parallelism can be acheived by multi-core processors, found in
modern CPUs and GPUs. A hardware specific implementation capable
of harnessing specific features could reduce encoding time whilst keeping
rate-distortion at a high level. Also, application specific hardware could be
made to meet the requirements.

The rate-controller could be distributed between encoders, and with a higher
degree of knowledge of other streams it might be possible to better allocate
the bits. due to the nature of the rate-controller, it is possible to encode
for the allocated budget at any link of the production or distribution, be it
at the camera, or at the broadcaster. Also, the rate-control scheme allows
for dynamically adding or removing streams to or from a channel on the fly,
while not disturbing the current channels unnecessarily.

60



A Test Sequences

This chapter describes the test sequences used for the project.

A.1 NTIA/ITS sequences

These video sequences are owned by NTIA/ITS, an agency of the U.S. Federal

Government. They were created under Project Number 3141012-300, Video Quality

Research, in 2008. These video sequences may be used for research purposes,

only. You can use, copy, modify and redistribute them upon your acceptance of

these terms and conditions and upon your express agreement to provide

appropriate acknowledgments of NTIA/ITS’s ownership of the video sequences by

keeping this text present with any copied or derived works.

Video Standard: 1080p 30fps

Camera specs: Panasonic AJ-HDX-900, saved to DVCPro tape.

Video standard: Native

Editing: 19 second clips, intended to remove first 2-sec and final 2-sec.

Scenes:

Aspen

RedKayak

WestWindEasy

Video Standard: 1080p 30fps

Camera specs: The camera was a Panasonic P2HD AJ-HPX3000G; and the lens a

Fujinon TV Lens HA22x7.8 BERM-M48. This camera records in H.264

intra-frame coding at 100 Mbps.

Video standard: Native

Editing: 19 second clips, intended to remove first 2-sec and final 2-sec.

Scenes:

RushFieldCuts -- shutter speed 30

SnowMnt -- shutter speed 30

SpeedBag -- shutter speed 60

TouchdownPass -- shutter speed 30

Video Standard: 1080p 30fps

Camera specs: The camera was a Sony HVR-Z1U (HDV format) which was

converted to SMPTE 292M (high definition 1080i format) and

recorded onto a Panasonic HD-D5.

Use restrictions: research purposes, only

Notes: Video of fire was taken of a controlled burn of a Meth house.

Video standard: Native

Editing: 19 second clips, intended to remove first 2-sec and final 2-sec.

Scenes:

ControlledBurn

61



62 APPENDIX A. TEST SEQUENCES

All clips but one were obtained in y4m format from the ”derf” collection, the
”RushFieldCuts” clip was obtained in the original NTIA/ITS AVI container.
No loss was introduced in the conversion to y4m, and the chroma format of
the files is 4:2:2.

A.2 Taurus Media Technik sequences

Sequence #Frames Short description

--------------------------------------------------

Blue sky 250 Top of two trees against blue sky. High contrast, small color

differences in the sky, many details. Camera rotation.

Sunflower 500 Sunflower, very detailed shot. One bee at the sunflower, small

color differences and very bright yellow. Fixed camera, small

global motion.

Rush-hour 500 Rush-hour in Munich city. Many cars moving slowly, high depth

of focus. Fixed camera.

Pedestrian Area 375 Shot of a pedestrian area. Low camera position, people pass

by very close to the camera. High depth of field. Static camera.

Tractor 761 A tractor in a field. Whole sequence contains parts that are

very zoomed in and a total view. Camera is following the

tractor, chaotic object movement, structure of a harvested

field. Very red wheels of the tractor

Riverbed 250 Riverbed seen through the water. Very hard to code.

Station 313 View from a bridge to munich station. Evening shot. Long zoom

out. Many details, regular structures (tracks)

Camera: Sony HDW-F900

Recorded on (Tape): HDCam

Stored on: DVS

Frame rate: 25 fps (progressive)

Resolution: 1920x1080

Color subsampling: 4:2:0

Filter Tabs for Subsampling: -0.0063 / 0 / 0.0299 / 0 / -0.0831 / 0 /

0.3098 / 0.4994 / 0.3098 / 0 / -0.0831 /

0 / 0.0299 / 0 / -0.0063

Color conversion: ITU Rec BT 709 (SMPTE 274M)

Original files contact: oelbaum@ei.tum.de

Restrictions of use: No restrictions

Copyright: No Copyright

Date of Recording: Summer 2001

Source: Taurus Media Technik, Dr. Karl Mauthe

Producer: Martin Kreitl martin.kreitl@KirchGruppe.de

Camera Operator: Jürgen Würzinger

Camera Assistent: Yean Ives Diss

All material was recorded in summer 2001 by Taurus Media Technik.

All clips were obtained in y4m format from the ”derf” collection, in some
sequences, the number of frames differ from those listed in the readme, see
table A.1 for ”derf” collection frame numbers.



A.3. SVT SEQUENCES 63

Blue sky 217
Sunflower 500
Rush-hour 500
Pedestrian Area 375
Tractor 690
Riverbed 250
Station 313

Table A.1: Number of frames for the Taurus Media Technik sequences, from the ”derf”
package.

A.3 SVT sequences

Through the ”derf” package, we have acquired parts of the SVT High-
Definition Multi Format Test Set of February 2006. The test set has no
short readme, but the following information has been extracted from the
documentation:

Copyright and Restrictions of Use:

Individuals and organizations extracting sequences from this
archive agree that the sequences and all intellectual property
rights therein remain the property of Sveriges Television AB
(SVT), Sweden. These sequences may only be used for the pur-
pose of developing, testing and presenting technology standards.
SVT makes no warranties with respect to the materials and
expressly disclaim any warranties regarding their fitness for any
purpose.

All sequences has been acquired in 4:2:0 chroma format, and in y4m file
format. A list of the test sequences and their frame counts can be seen in
table A.2, as proposed by SVT; they are 10 second clips from the original
50 fps source.



64 APPENDIX A. TEST SEQUENCES

Crowd run 500
Park Joy 500
Ducks take off 500
Into tree 500
Old town cross 500

Table A.2: Number of frames for the SVT sequences.

A.4 HDgreetings sequences

Through the ”derf” package, we have obtained test sequences from HDgreet-
ings.

Copyright and Restrictions of Use:

These clips are provided for benchmarking, research, and testing
only. The video is copyrighted material and HDgreetings retains
all rights to it. You may post part or all of the content on another
site if it’s for one of these purposes. If you link to the videos,
please link to this page (http://www.hdgreetings.com/other/
ecards-video/video-1080p.aspx) instead of directly to the
videos. Thanks.

The videos are in y4m container format, and are in 4:2:0 chroma format. A
list of videos and their frame count can be seen in table A.3.

Factory 1339
Life 825
Dinner 950

Table A.3: Number of frames for the HDgreetings sequences.

A.5 Sintel trailer

Sintel is a short film created by the ”Durian Open Movie project”, It
is licensed under the ”Creative Commons Attribution 3.0” license. It is
copyrighted Blender Foundation, and further information on copyright or
the creators can be seen at www.sintel.org. For this project, the 1253
frame trailer is used, acquired from the ”derf” package, presented in y4m
file format and 4:2:0 chroma format.

http://www.hdgreetings.com/other/ecards-video/video-1080p.aspx
http://www.hdgreetings.com/other/ecards-video/video-1080p.aspx
www.sintel.org


A.6. ELEPHANTS DREAM 65

A.6 Elephants dream

Has been downloaded in its original 1080p avi container. It is released under
the ”Creative Commons Attribution license”. It is copyrighted Blender
Foundation, and further information on the copyright or the creators can
be seen at www.elephantsdream.org.

A.7 Big Buck Bunny

Big Buck Bunny is a short film created by the ”Peach open movie project”
and has been downloaded in its original 1080p avi container. It is released
under the ”Creative Commons Attribution 3.0 license”. It is copyrighted
Blender Foundation, and further information on the copyright or the creators
can be seen at www.bigbuckbunny.org.

A.8 Pre-processing

For this project, we wish to have a unified set of raw input sources. A file,
and chroma format of YUV 4:2:0 is chosen, all test sequences but Sintel
have 1920×1080 pixels resolution, and will not necessarily be used at its
native frame rate. All videos are converted from y4m container, and chroma
resampled if needed with the following command:

% ffmpeg -i [inputfile] -pix_fmt yuv420p [output.yuv]

Using

% ffmpeg -version | grep "ffmpeg version"

ffmpeg version 0.8.5-4:0.8.5-0ubuntu0.12.04.1

www.elephantsdream.org
www.bigbuckbunny.org


List of acronyms

MB Macroblock

CS Compound Stream

CU Coding Unit

DCT Discrete Cosine Transform

DPB Decoded Picture Buffer

DVB Digital Video Broadcasting

ES Elementary Stream

FIFO First In, First Out

FPS Frames Per Second

GOP Group Of Pictures

IDR Instantaneous Decoding Refresh

KKT Karush-Kuhn-Tucker

ITU-T International Telecommunication Union - Telecommunication
Standardization Sector

JIT Just-In-Time

JM Joint Model

MAD Mean Absolute Difference

ME Motion Estimator

MV Motion Vector

PMF Probability Mass Function

PSNR Peak Signal-to-Noise Ratio

R-D Rate-Distortion

66



67

RC Rate-Control

SAD Sum of Absolute Differences

TS Transport Stream

QP Quantization Parameter



Bibliography
[1] ITU-T, H.264, January 2012, IEC 14496-15 (MPEG-4 part 15, AVC).

[2] IEC, Letter symbols to be used in electrical technology, August 2005,
IEC 60027-2.

[3] ISO/IEC, Information technology – Coding of moving pictures and
associated audio for digital storage media at up to about 1,5 Mbit/s:
Video, 1993, IEC 11172-2 (MPEG-1 part 2).

[4] ——, Information technology – Generic coding of moving pictures and
associated audio information: Video, 2000, IEC 13818-2 (MPEG-2 part
2).

[5] ITU-T, H.265, January 2013, IEC 23008-2 (MPEG-H part 2, HEVC).

[6] C. Pang, O. C. Au, J. Dai, and F. Zou, “LMM-based frame-level rate
control for H.264/AVC high-definition video coding,” Signal Processing:
Image Communication, vol. 27, no. 7, pp. 737–748, August 2012.

[7] Z. He and S. K. Mitra, “A Linear Source Model and a Unified Rate
Control Algorithm for DCT Video Coding,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 12, no. 11, pp. 970–982,
2002.

[8] ——, “ρ-Domain Bit Allocation and Rate Control for Real Time Video
Coding,” International Conference on Image Processing, 2001, vol. 3,
pp. 546–549, 2001.

[9] Z. Chen and K. N. Ngan, “Recent advances in rate control for video
coding,” Signal Processing: Image Communication, vol. 22, no. 1, pp.
19–38, January 2007.

[10] H. Yu, Z. Lin, and F. Pan, “An improved rate control algorithm for
H.264,” IEEE International Symposium on Circuits and Systems, vol. 1,
pp. 312–315, May 2005.

[11] J. Ribas-Corbera and S.-M. Lei, “Rate control in DCT video coding
for low-delay communications,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 9, no. 1, pp. 172–185, February
1999.

68



BIBLIOGRAPHY 69

[12] ——, “A Frame-Layer Bit Allocation for H.263+,” IEEE Transactions
on Circuits and Systems for Video Technology, vol. 10, no. 7, pp. 1154–
1158, October 2000.

[13] M. Jiang, X. Yi, and N. Ling, “Frame layer bit allocation scheme for
constant quality video,” IEEE International Conference on Multimedia
and Expo, vol. 2, pp. 1055–1058, June 2004.

[14] T. Lan and X. Gu, “H.264 Frame Layer Rate Control Based on Block
Histogram Difference,” IEEE International Conference on Communica-
tions Workshops, pp. 281–284, May 2008.

[15] I. E. G. Richardson, H.264 and MPEG-4 Video Compression. Wiley,
2003, ISBN: 978-0-470-84837-1.

[16] S. Zhu and K.-K. Ma, “A new diamond search algorithm for fast block-
matching motion estimation,” IEEE Transactions on Image Processing,
vol. 9, no. 2, pp. 287–290, February 2000.

[17] ETSI, Digital Video Broadcasting (DVB); Specification for the use of
Video and Audio Coding in Broadcasting Applications based on the
MPEG-2 Transport Stream, November 2012, TS 101 154 V1.11.1.

[18] I. Richardson, “4x4 Transform and Quantization in H.264/AVC,”
VCodex Ltd White Paper, April 2009, http://www.vcodex.com/.


	Introduction
	Terminology
	State of the art

	The H.264 Codec
	Macroblocks
	Prediction
	Compression
	DVB recommendations
	Limitations
	Rate control

	Complexity Estimation
	Complexity
	Feature extraction
	Conclusions

	Buffers and GOPs
	Group Of Pictures
	Buffers

	Rate-Control
	Allocation problem
	Convexity
	Example with two streams
	Rate controller modification

	Communication
	Information
	Implementation

	Implementation
	Joint rate control
	Software
	Issues

	Simulations
	Static bitrate
	Prioritized PSNR
	Final evaluation

	Conclusions
	Discussion
	Test Sequences
	NTIA/ITS sequences
	Taurus Media Technik sequences
	SVT sequences
	HDgreetings sequences
	Sintel trailer
	Elephants dream
	Big Buck Bunny
	Pre-processing

	List of acronyms
	Bibliography

