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We study a Networked Control System (NCS) architecture
for Linear Time Invariant (LTI) plants, where an unreliable
data rate limited network, with random Independent and
Identically Distributed (IID) packet dropouts occurring,
connects the plant and the controller. To achieve
robustness of the control system with respect to IID
dropouts, a receding horizon controller is used which
minimizes a finite horizon cost function. To deal with rate
limited networks, we, in this thesis, wish to design sparse
packets using l0 penalized optimization. This is done on
Sparse Regression Code (SPARC) dictionaries containing
lattices or IID Gaussian samples.
We transmit the current and expected future control
signals, such that on reception of the packet, the current
signal as well as the next N − 1 future control signals can
be reconstructed in the plant. The distinguishing factors
of this thesis regarding to other available studies is that
we use a fixed rate vector quantizer based on SPARC,
featuring a finite support which can be overloaded in case
of heavy oscillations in the plant.
We design different SPARC dictionaries and simulate
these in an NCS with different packet dropout rates on the
network. Results show good performance at bit rates down
to 2.75 bit/symbol with an IID packet dropout probability up
to 0.20 when Gaussian IID SPARC dictionaries are used.
The performance of a lattice SPARC dictionary is not able
to reach these bit rates, and generally requires bit rates of
3.75 or 4 bit/symbol to stabilize the NCS.

Finally we state an alternative network model featuring

two network states with different dropout probabilities. A

different SPARC dictionary is designed for each network

state. We stated equations to analyze whether the system

with given transition and dropout probabilities is stable

using Markov Jump Linear System (MJLS) theory. This is

followed by simulations of NCSs featuring these networks.
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I denne afhandling undersøges Netværksbaserede Con-
trol Systemers (NCS) architecturer for Lineare Tidsinvari-
ante (LTI) systemer, hvor et upålideligt båndbredde be-
grænset netværk med random IID pakketab, forbinder sys-
temet (plant) og controlleren. For at gøre kontrolsystemet
robust m.h.t. IID pakketab, bruges en aftagende hori-
zon controller som minimerer en finite horizon cost funk-
tion. For at kunne håndtere båndbredde begrænsede
netværk, designes der i denne specialeafhandling sparse
contol pakker ved brug af l0 penaliserede optimerings
algoritmer på SPARC baserede ordbøger indeholdende
IID Gaussiske vektorer eller latticer. Der sendes expect-
ede fremtidige samt et nutidigt control signal til planten,
således at N −1 fremtidige controlsignaler kan genskabes
såfremt pakken modtages af planten. De faktorer der ad-
skiller denne specialeafhandling fra andre bidrag er, at der
bruges fixed rate vektor quantizere baseret på SPARC, der
har et finitivt support og derved kan overloade quantizeren
i tilfælde af at der sker oscillationer i planten.
Der designes forskellige SPARC ordbøger, der simuleres
i et NCS med forskellige pakketabsrater på netværket.
Resultaterne viser en god ydelse for bitrater ned til 2.75

bit/symbol når sandsynligheden for IID pakketab ikke
overstiger 0.20. Dette ved brug af Gaussiske IID SPARC
ordbøger. Lattice SPARC ordbøger opnår derimod ikke
den samme ydelse ved disse bitrater, og kræver generelt
bit rater på 3.75 eller 4 bit/symbol for at stabilisere et NCS.

Til sidst opstilles der en netværksmodel indeholdende

to states med hver deres pakketabsrate. Der designes

forskellige SPARC ordbøger for hver state netværket kan

antage. Der opstilles ligninger baseret på MJLS teori,

således stabilitet for et system med givne transitions- og

pakketabs sandsynligheder kan analyseres. Til sidst er

systemer baseret på disse netværk blevet simuleret.
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Preface
This thesis is composed during the 9th and 10th semester during the Autumn of 2012 and
the Spring of 2013. It is written by a student studying “Signal Processing and Computing”
at Aalborg University in Denmark in cooperation with the University of Newcastle in
Australia.

The target audience for this thesis are students, researchers and others with a
background in vector quantization and signal compressing, optimization, NCSs design
and others interested in these topics.

The citations in this thesis are referred by a number in square brackets, e.g. [1],
with details to be found in the bibliography located on page 69. The abbreviations used
in this thesis are explained in the Abbreviation list on page ix. All matrices are denoted
with a bold capital letter, i.e. M where MT denotes its transpose. Vectors are denoted
with a bold lower case letter i.e. v, and scalars in normal lower case i.e. u. I denotes the
identity matrix, containing 1’s on the diagonal. diag {v} diagonalizes the vector v. We
define ‖v‖P =

√
vTPv for a positive definite matrix P and ‖v‖2 =

√
vTv. The spectral

radius of the matrix M is denoted by rσ(M). The operator E {x} defines the statistical
expectation of a random variable x, whereas var {x} denotes its variance.

A CD is attached containing a digital version of this thesis and the scripts used for
the simulations performed herein.

Finally, the author would like to thank Associate Professor Daniel Quevedo at the
University of Newcastle and Associate Professor Jan Østergaard at Aalborg University for
their support and guidance during the writing of this thesis.
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1 Introduction
LTI control systems are today used in many different places, occasions and situations.
These systems all have in common, that there is a feedback from the system to be
controlled (plant) to the controller, maintaining the plant in a desired state. In some cases
it might be desired to have the controller at another physical location than the plant, in
which case a wired or wireless network connects these. This topology is called a NCS and
can have many advantages, such as lower cost, higher reliability and easier maintenance,
but other challenges arise, including bit rate limitations, random delays and breakdowns,
which leave the plant in open loop operation and can have severe consequences depending
on the situation.

This chapter describes recent research in NCS and relevant topics. Afterwards the
problem considered in this thesis is described.

1.1 State of the art
NCSs with random IID dropouts occurring and packet delays have been introduced and
analyzed in various studies [1, 2, 3, 4, 5, 6, 7, 8, 9]. General literature [10, 11, 12, 13]
explains methods for Linear Quadratic Regulator (LQR) controller design and receding
horizon controllers for linear plants as well as stability for those. The paper [6] shows
stability results for cases where the maximum number of consecutive packet dropout is
bounded, whereas [7] investigates NCS with bounded time-delays. [3, 4] analyzes mean
square- and stochastic stability of NCS based on a Markov dropout where an unbounded
number of consecutive packet dropouts can occur.

Quantization within the NCS has been done in e.g. [4, 5, 8], where the controller
is forced to select the control vector from a finite constrained set of vectors using a
nearest neighbor vector quantizer, reducing the bandwidth required on the network, and
analyses the closed loop behavior of these. In [5] an Entropy-Coded Dithered (lattice)
Quantizer (ECDQ) is used and closed loop stability is investigated using linear matrix
inequalities based on MJLSs. Optimal rates for the entropy coder are calculated based on
the statistics of the NCS. MJLS stability using ECDQ is also investigated in [4], where
stochastic stability and bounds on the maximum packet dropout are investigated. The
work [2] relates the PPC to problems solved in compressed sensing, and investigates sparse
representation of the control vector using Orthogonal Matching Pursuit (OMP) as well as
providing sufficient conditions for stability when the controller is used on a network with
bounded packet dropouts.

Source coding using SPARC in is introduced in [14] as codes to compress memoryless
Gaussian sources over AWGN channels and reaches rate-distortion results close to the
optimal rate-distortion function. In [15] a computationally efficient method is proposed for
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CHAPTER 1. INTRODUCTION

SPARCs, which achieves performance close to the optimal rate-distortion function when
used on IID Gaussian sources. The SPARC dictionary is constructed with the sections
being interpreted as refinements of the previous sections using a scaling function. The
dictionary search in [15] is performed using an algorithm closely resembled to Matching
Pursuit (MP). In [16] the homotopy continuation algorithm is described to perform
searches on Gaussian IID Dictionaries, which traces all solutions for Basis Pursuit (BP)
as a function on the regularization parameter. The homotopy continuation algorithm in
[16] can additionally be used to select a regularization parameter based on the desired
sparsity of the representation of the signal.

1.2 Problem description
The setup of the problem to be considered in this thesis is shown in Figure 1.1. The
controller and plant are connected through a network with random packet dropouts
occurring, also called an NCS. The feedback path is throughout this thesis assumed
to be stable with no packet dropouts occurring.

Controller
Q
uantizer

B
uffer

PlantNetwork

Figure 1.1. An illustration of the controller setup considered in this thesis.

The next state of the plant is described with the following function

xk+1 = Axk +B1uk +B2ωk, k ∈ N0, (1.1)

with xk ∈ Rm describing the plant state at time k, A ∈ Rm×m the system matrix of the
plant, u ∈ R the control signal or input, B1 the input matrix and B2ωn describing the
noise in the plant. Although uk can be an input vector, this thesis is limited to the scalar
case.

Since there is a network connecting the controller and plant, there exists a probability
for signals (or packets) to be delayed or lost. This has to be taken into account, such that
the plant is kept stable in case it does not receive the control data, which has been
described in e.g. [8, 10, 11, 12, 13], and other literature under the terms Receding Horizon
Control and Model Predictive Control (MPC).

Since we in this thesis focus on bandwidth limited networks, it is of high interest that
the size of the control packets is reduced, which can be done using vector quantization.
The papers [2, 4, 5] investigated this using different quantizers and methods. This thesis
contributes by applying SPARCs, presented in [14], on NCSs. The sparse regression codes
are constructed as

2



1.2. PROBLEM DESCRIPTION

← L columns →←− L columns −→ ←−−−− L columns −−−−→

Γ =


γ1,1 · · · γ1,N γ1,N+1 · · · γ1,2N · · · γ1,(L−1)N+1 · · · γ1,LN

γ2,1 · · · γ2,N γ2,N+1 · · · γ2,2N · · · γ2,(L−1)N+1 · · · γ2,LN

...
. . .

...
...

. . .
...

...
. . .

...

γM,1 · · · γM,N γM,N+1 · · · γM,2N · · · γM,(L−1)N+1 · · · γM,LN

 (1.2)

β =
[

0, · · · · · · · · · , 0, 1, 0 1, 0, 0, · · · · · · · · · · · · , 0 · · · 0, 0 · · · · · · · · · · · · · · · · · · , 0, 1
]
, (1.3)

with Γ ∈ RN×ML, which is split up in M sections, each consisting of L code words, which
can be used to generate a set W of linear combinations. The vector β being a ML × 1

vector, containing only one entry equaling 1 in every section m ∈ {1, 2, . . . ,M}. These
can be used to estimate a signal x to compress

x̂ = Γβ. (1.4)

We need to find the closest code word Γβ over all β ∈ B to x ∈ RN . Thus given a vector
x and some fixed code book Γ and β, we have to solve the minimization problem

β∗ = arg min
β∈B
‖x− Γβ‖2. (1.5)

The set B is non-convex which means, that (1.5) is a non-convex optimization problem,
requiring methods that are able to solve these.

In this thesis we will, based on the results in [4], present two methods to solve
non-convex dictionary searches, and modify these to operate on (1.5) to compare the
performance of these compared to traditional Gaussian dictionaries in Chapter 3. Chapter
4 describes the basics on quadratic control and receding horizon control, followed by the
incorporation of the quantizer in Chapter 5. Chapter 6 describes different dictionaries,
that can be used in the NCS followed by simulations in Chapter 7. The remaining chapters
investigate different drop out scenarios in the network and stability criteria for these.
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2 Rate-distortion theory
When using a lossy source coding, we are interested in keeping the bit rate, measured in
bit/symbol, as low as possible, while also maintaining a distortion on the signal. This
chapter briefly introduces the methods used to calculate the bit rate and distortion of
the signals as well as the theoretic lower bounds on these. The measurement methods
introduced in this chapter are used throughout the rest of the thesis.

2.1 Rate-distortion
When signals are quantized, we wish to reduce the bit rate of this signal. This introduces
an error, since parts of the signals are lost. Some error in the signal can be allowed
in many occasions, including NCS. The error, calculated by the difference between the
original and quantized signal is called distortion, and can be calculated in different ways,
such as Mean Squared Error (MSE) and Signal to Noise Ratio (SNR), which are used in
this thesis. The MSE is calculated as [17]

DMSE = E
{

(x̃i − xi)2
}
, (2.1)

with E being the expectation operator. The SNR is given by [17]

DSNR =
E
{

(xi)
2
}

DMSE
. (2.2)

The rate of a signal is often represented in the amount of bit needed to represent a signal,
also denoted bit/symbol. In source coding it is often desired to minimize the bit rate for a
given distortion, also called rate-distortion. There exist a theoretical lower bound for the
rate that can be obtained for a given distortion, which for memoryless Gaussian sources
is defined by [18]

R(D) =
1

2
log2

(
σ2

D

)
, (2.3)

with R denoting the rate, D denoting the distortion, and σ2 being the variance of the
signal. Practical source coders result in distortion levels higher that the rate-distortion
lower bound, since the algorithms often are sub-optimal [17].

Equation (2.3) can be rewritten to calculate the theoretical lower bound for the
distortion at a given rate by

D(R) = σ22-2R. (2.4)

2.2 Calculating the rate
In this thesis the dictionary and vectors are constructed as

5



CHAPTER 2. RATE-DISTORTION THEORY

x̂ = Γβ, (2.5)

where Γ ∈ RN×ML is the dictionary matrix containing M sections with L columns of
Gaussian distributed samples with variance σ2. β is a ML× 1 binary vector containing
only zeros and a single 1 in each section M . This results in the non-operational rate

R = M
log2(L)

N
(2.6)

since the vector β is coded as M binary numbers indicating which index equals 1. The
operational rate is calculated by ceiling (2.6) to the nearest integer value.

6



3 Dictionary search
This chapter describes two different algorithms to perform a dictionary search to estimate a
signal x by a linear combination x̂ = Γβ. These algorithms are described using Gaussian
dictionaries, after which the algorithms are modified to perform a search on SPARCs
containing Gaussian entries.

3.1 Matching pursuit
As described in Equation (1.5) in Chapter 1, we need to solve the optimization problem

β∗ = arg min
β∈β
‖x− Γβ‖22, (3.1)

and find sparse solutions to this optimization problem. This can be enforced by penalizing
β with the l0-norm enforcing a limited number of non-zero entries in β, which results in
the reformulated optimization problem

β∗ = arg min
β∈β
‖x− Γβ‖22 + ‖β‖0. (3.2)

This can be done by e.g. performing an exhaustive search, comparing all combinations
of Γβ and picking the best solution. The complexity of an exhaustive search is O(LN ),
where L is the dictionary size, and N the number of elements to use. This makes it very
time consuming to use an exhaustive search on larger dictionaries.

An alternative to performing an exhaustive search is MP, which performs the inner
product between columns of the dictionary Γ containing orthonormal rows, and x after
which it picks the solution containing the largest energy using the inner product. [19]

β = arg max
γi
|〈γi,x〉| (3.3)

MP is a greedy algorithm finding the projection of the vector x onto a dictionary Γ

with the maximal reduction in the residual. Afterwards the algorithm is repeated on the
residual, until certain stopping criteria are reached. Afterwards, on the receiving side, the
signal is reconstructed by a linear combination of the vectors selected. The complexity of
the algorithm is reduced to O(LN).

The general MP algorithm is shown in algorithm 3.1[20]. Here the dictionary index,
maximizing the energy, is stored in g and the energy for each vector in α. The result
is subtracted from the residual. The algorithm can be stopped after a fixed amount of
iterations, or after R is decreased sufficiently. The vector β contains a 1 in every index
gk ∈ g, and αk contains the scaling of the vector. The scaling, αk has to be quantized and
coded.

Figure 3.1 shows the performance of MP on a Gaussian dictionary. The signal
x ∈ R20×1 is quantized using the dictionary Γ ∈ R20×3000. The scaling factor α has been

7



CHAPTER 3. DICTIONARY SEARCH

Algorithm 3.1 The general MP algorithm
1: Dictionary Γ
2: Vector β = 0 . Initialize with zeros
3: R0 ← x . Input signal
4: while stopping criteria not met do
5: gk ← arg max

γi
|〈Rk,γi〉|

6: αk ←
〈
Rk,γgk

〉

7: Rk+1 ← Rk − αkγgk

8: βgk
= 1

9: Increase k
10: end while

limited to be in the set {-2, -1.5, -1, -0.5, 0.5, 1, 1.5, 2}, resulting in 3 bits of storage
for every vector γi ∈ Γ used. This results in 3 bits for the gain and log 2

(
M
N

)
indicating

the index in β, for every iteration k in algorithm 3.1. This plot is created running MP for
k = {1, . . . , 10}, and calculate the rate afterwards.

0 1 2 3 4 5 6

Rate [bit/symbol]

−40

−35

−30

−25

−20

−15

−10

−5

0

D
is

to
rt

io
n

[d
B

]

MP

R(D) bound

Figure 3.1. The performance of MP on a Gaussian IID source compared to the rate-distortion
bound.
Code: mpplots.py.

3.1.1 Matching Pursuit on SPARC
When considering a SPARC dictionary, we are only interested in the index in the dictionary
such that β only contains a single 1 in each section m ∈M . The gain, α, is not used. For
this reason, the MP algorithm has to be modified, such that the vector in the dictionary
maximizes the inner product directly instead of the energy, such that the residual is
minimized the most, without any scaling. The problem is rewritten as

β = arg max
ai
〈γi,x〉 , (3.4)

8



3.1. MATCHING PURSUIT

such that only linear combination with a positive result are chosen, resulting in the residual

Rk+1 = Rk − γi, (3.5)

with R0 = x.
The signal is constructed from the linear combination of the M sections in the

dictionary Γ. This means, that the linear combination must contain the same energy
as the signal x for a perfect reconstruction. For this reason, the variance of the linear
combination of Γ must match the variance of the signal x, such that

σ2
x ≈Mσ2

a, (3.6)

resulting in the scaling

ck =

√
1

M
. (3.7)

The algorithm for performing MP on a regression dictionary, which is split intoM sections
with each the L vectors is shown in algorithm 3.2.

Algorithm 3.2 The MP algorithm modified to work on sparse regression codes.
1: Dictionary Γ ∼ N

(
0, 1

M σ
2
)

2: Vector β = 0 . Initialize with zeros
3: R0 ← x . Input signal
4: for m = 1→M do
5: gm ← arg max

γi
〈Rk,γi〉 k ∈ {(m− 1)L+ 1, . . . ,mL}

6: Rm+1 ← Rm − γgm

7: βgm
= 1

8: end for

Figure 3.2 shows MP performed on a regression dictionary, split up into M sections
with M = {1, 10, . . . , 300} and the L = M columns per section. The vector length N is
calculated to fit the desired rate such that

N = round

(
M

log 2(L)

R

)
, (3.8)

with the dictionary being Gaussian and scaled according to (3.6). The regular MP is
performed on a orthonormal Gaussian dictionary as in algorithm 3.1.

When using lower bit rates, the performance is very similar until the bit rate reaches
2 bit/symbol, where the normal dictionary has a clear advantage. This is mostly due to
the scaling α, which is fixed to

√
1
M when using the regression dictionary.

In [15], the authors found the scaling factor

ck =

√
2Rσ2

M

(
1− 2R

M

)k−1

k = 1, . . . ,M, (3.9)

with R denoting the rate andM denoting the number of sections in Γ. Figure 3.3 shows ck
from (3.6) and (3.9) compared. It shows that there is only a slight difference in performance
when comparing these scaling factors when using Gaussian dictionaries and signals.
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CHAPTER 3. DICTIONARY SEARCH
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Figure 3.2. MP performed on a gaussian dictionary and on sparse regression codes.
Code: mpregression.py.
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Figure 3.3. Scaling factor ck compared from equations (3.6) and (3.9).
Code: testspark.py.

3.2 Homotopy
An alternative to matching pursuit is to reformulate the l0 relaxation problem defined in
Equation (3.2)

min
β
‖x− Γβ‖22 + ‖β‖0 (3.10)

to

min
β

max
λ
‖x− Γβ‖22 + λ‖β‖1, (3.11)

where Γ ∈ RN×M , N ≤ M and λ ≥ 0 [16]. This noisy version allows for a larger residual
between the original data x and the estimate Γβ while requiring β to be more sparse.

10
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The regularization parameter λ forces an amount of entries in β to zero. The higher λ is,
the sparser is β.

When λ is fixed, the problem reduces to a quadratic programming problem, which
can be solved analytically. The problem is to choose the parameter λ resulting in the
desired sparsity in β while reducing the noise [16]. The function is not differentiable
whenever an entry βi becomes zero since [16]

‖β‖1 =
∑

i

|βi|. (3.12)

[16] proposes a method for solving this problem by solving a local problem for a limited
range of λ whereafter the local solutions are set together to obtain solutions for all regions
of λ.

3.2.1 The optimization problem
We define the cost-function

J(β∗, λ̃) = ‖x− Γβ‖22 + λ‖β‖1. (3.13)

To find the solution minimizing this cost function, it is desired to find its gradient and set it
equal to zero. Since ‖x‖1 is not a smooth function, it is not possible to differentiate it right
away. It is, however possible to differentiate the cost function by using sub-differentials.

The vector v is a sub-gradient of the function f at point β0 if [21]

f(β) ≥ f(β0) + v(β − β0) (3.14)

is valid for any β. The set of all these subgradients of f at β0 is called the subdifferential
of f at β0. In case the function f is convex and differential at a point β, the subdifferential
only consists of the gradient of f [21]. The subdifferential of |β| is given as the interval
[−1, 1] if β = 0, and as −1 or +1 if β is less than or larger than 0 respectively. This gives
the following expression for the sub-gradient of the l1 norm: [16]

u(β)
∆
= ∂‖β‖1 =





u ∈ RN

∣∣∣∣∣∣∣∣

ui = 1 if βi > 0

ui = -1 if βi < 0

ui ∈ [−1 · · ·+ 1] if βi = 0





(3.15)

If we fix λ as λ̃, the subdifferential of J(β, λ̃) becomes

∂

∂β
J(β, λ̃) = 2ΓT(Γβ − x) + λ̃u(β). (3.16)

Setting the gradient to 0 for a β̃ that minimizes J(β, λ̃), results in the solution

2ΓTΓβ̃ + λ̃ũ = 2ΓTx⇔ Gβ̃ + λ̃ũ = z (3.17)

for some ũ ∈ u(β̃), where G = 2ΓTΓ and z = 2ΓTx. We now define a set Ion containing
the support of β̃ for β̃i 6= 0, whereas Ioff contains the indexes where βi equals 0 [16]. This
makes β̃ = [β̃T

on , β̃
T
off ]T. We similarly split the matrix G and vector z into

11



CHAPTER 3. DICTIONARY SEARCH

Gβ̃ + λ̃ũ = z ⇔


 Φ Ψ

ΨT Υ




β̃on

0̃


+ λ̃


ũon

ũoff


 =


zon

zoff


 , (3.18)

and write the following linear equations from this [16]

Φβ̃on + λ̃ũon = zon (3.19)

ΨTβ̃on + λ̃ũoff = zoff . (3.20)

We can neglect the right side of the matrix G, since x̃off only contains zeros. The above
equations can be solved for x̃on and ũoff

β̃on = Φ−1
(
zon − λ̃ũon

)
(3.21)

ũoff =
1

λ̃

(
zoff −ΨTβ̃on

)
. (3.22)

We start the algorithm by letting λ̃ = λ0 begin at ∞, forcing all entries in β̃ to zero.
While decreasing λ, entries in β̃ become non-zero one by one. Practically, we take the
supremum of 2ΓTx, resulting in the λ0, for which all larger values of λ will result in all
βi ∈ β̃ equaling zero.

β̃on and ũon are calculated. All entries in β̃on will be non-zero, and the vector β
is obtained, by putting the entries from β̃on in the entries in β, where Ion contains the
indexes in β. [16] Afterwards the support for β has to be recalculated. This is done by
finding at which λ an entry in β is forced to zero or to a non-zero value by solving (3.21)
for λ̃ [16]

λβ = diag {ũon}-1 zon (3.23)

and equation (3.22) for λ where uoff is set to ±1.

λupos
= diag

{
I −ΨTΦ−1ũT

on

}-1 (
zoff −ΨTΦ−1zon

)
(3.24)

λuneg
= diag

{
-I −ΨTΦ−1ũT

on

}-1 (
zoff −ΨTΦ−1zon

)
, (3.25)

where I is the identity matrix.
We are interested in finding the largest λ lower than the current λ0 forcing either

one component of β to zero or to a non-zero value. This is done by discarding all values
of λ, obtained in equations (3.23), (3.24) and (3.25), that are larger than or equal to λ0,
whereafter the largest value among the λ’s in equations (3.23), (3.24) and (3.25) is found,
and the corresponding index is moved from Ion to Ioff depending on whether the index in
β is forced to one or zero. The corresponding value in u is set to ±1 or zero as well. [16]
This procedure is repeated either until a certain amount of indexes in β become non-zero,
a certain tolerance on ‖x− Γβ‖22 is reached, or λ reaches zero.

12



3.2. HOMOTOPY

Algorithm 3.3 Homotopy algorithm.
1: G← 2ΓTΓ . Init G
2: z ← 2ΓTx . Init z
3: λ0 ← max

z
|z| . Init λ0 with the infinity norm of z

4: Ion ← arg max
z
|z| . Set the index of β to be active

5: u = sign(z) . Set u to correspond to the sign of the initial z
6: while not converged do
7: Φ← GIon,Ion . Move active indexes from G to Φ (eq. (3.18))
8: ΨT ← GIoff ,Ion . Move indexes corresponding to eq. (3.18) to ΨT

9: β̃on ← Φ−1 (zon − λ0ũon) . Calculate β̃on as eq. (3.21)
10: ũoff ← 1

λ0

(
zoff −ΨTβ̃on

)
. Calculate ũoff as eq. (3.22)

11: Verify ũoff ∈ [−1, 1]

12: λupos
← diag

{
I −ΨTΦ−1ũT

on

}-1 (
zoff −ΨTΦ−1zon

)
. λ forcing β positive

13: λuneg
← diag

{
-I −ΨTΦ−1ũT

on

}-1 (
zoff −ΨTΦ−1zon

)
. λ forcing β negative

14: λβ ← diag
{
z−1

on

}
ũon . λ forcing β to zero

15: λnew ← max
λ

{
λupos

< λ0,λuneg
< λ0,λβ < λ0

}
. Select highest λ lower than λ0

16: if λnew ∈ max
λ
λβ then . Activate or deactivate indexes in β

17: Move index from Ion to Ioff

18: Set corresponding index in ũ = 0
19: end if
20: if λnew ∈ max

λ
λupos

then
21: Move index from Ioff to Ion

22: Set corresponding index in ũ = 1
23: end if
24: if λnew ∈ max

λ
λuneg

then
25: Move index from Ioff to Ion

26: Set corresponding index in ũ = -1
27: end if
28: λ0 ← λnew

29: end while

3.2.2 Algorithm
Algorithm 3.3 shows the algorithm for the homotopy implementation. The algorithm has
to stop when it is not possible to find a value of λ that is lower than the current λ0. It can
additionally be stopped when the algorithm is considered converged, such that the norm
of the residual of x− Γβ is below a certain threshold, or the length of βon has reached a
certain value.

13



CHAPTER 3. DICTIONARY SEARCH

3.2.3 Verification
The implementation of the homotopy continuation is verified by constructing a dictionary
Γ ∈ RM×N with M = 100 and N = 500 of random Gaussian distributed numbers and
x ∈ RM . The algorithm runs until λ reaches zero. The plots show the MSE compared to
the number of non-zero indexes in vβ.
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Figure 3.4. Convergence paths for 10 simulations of the homotopy algorithm.
Code: homotopy-verification.py.

Figure 3.4 shows the convergence of 10 simulations of the homotopy algorithm. It is
clearly seen, that the algorithm activates and deactivates different βi while converging.

3.2.4 Homotopy with a binary solution
Since we are interested in not only a sparse representation of β but also want β to be
binary, containing only one or zero, we have modified the optimization problem to:

min
β
‖x− Γβ‖22 (3.26)

subject to ‖β‖0 ≤ L
βi = 1 for all βi 6= 0,

such that all non-zero β ∈ β only contain 1. This results in a mixed integer programming
problem, which is non-convex. The cost function can be relaxed into two convex sub-
problems that approximate (3.26) and is formulated as
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3.2. HOMOTOPY

L (β∗, λ∗,µ∗) = xTx+
1

2

[
βon βoff

]

 Φ Ψ

ΨT Υ




βon

βoff


+ λ

∥∥∥∥∥∥


βon

βoff



∥∥∥∥∥∥

1

. . .

+
[
µon µoff

]

βon − 1

βoff


−

[
βon βoff

]

zon

zoff


 , (3.27)

with

G =


 Φ Ψ

ΨT Υ


 = 2ΓTΓ (3.28)

and

z =


zon

zoff


 = 2ΓTx. (3.29)

The gradient for som fixed λ̃ is defined by

d

dβ
L (β∗, λ∗,µ∗) =


 Φ Ψ

ΨT Υ




β̃on

0̃


+ λ̃


ũon

ũoff


+


µ̃on

0


−


zon

zoff


 , (3.30)

resulting in the linear equations given by

Φβ̃on + λ̃ũon + µ̃on = zon (3.31)

ΨTβ̃on + λ̃ũoff = zoff . (3.32)

The gradient of (3.27) with respect to µ becomes

∂

∂µ
L (β∗, λ∗,µ∗) =


βon

βoff


−


1

0


 , (3.33)

such that

µ̃on = β̃on − 1 (3.34)

µ̃off = β̃off = 0. (3.35)

Since we are only interested in positive values in β, all λuneg
are neglected. This results

in the following equations to calculate β̃on and ũoff

β̃on = Φ−1 (zon − λ0ũon − µ̃on) (3.36)

where

µ̃on = β̃on − 1

m
µ̃on = Φ−1 (zon − λ0ũon − µ̃on)− 1

m
µ̃on =

(
Φ−1 + 1

)
(zon − λ0ũon)−Φ1− 1 (3.37)
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and µ̃on are the Lagrange multipliers. The vector ũoff is unchanged compared to (3.22).
The linear equations to find the critical values of λ when β leaves the region are

derived from (3.22) with all ũoff are set to 1

λupos
= I

(
zoff −ΨTβ̃on

)
. (3.38)

The λ who lead to an entry in β becoming negative are omitted, since the constraint will
force these entries to +1, increasing the residual.

The λ forcing an entry in β to zero are given by

λβ = diag {ũon}-1 (zon − µ̃on) . (3.39)

Finally the constraints for β̃on are verified. The rest of the algorithm is identical to
Algorithm 3.3, with the expressions for the given variables replaced by those, given in this
section. The calculation of λuneg

is omitted, and is not used.

3.2.5 Verification
The algorithm for the constrained homotopy is verified and the results for 10 simulations
are plotted. The dictionary Γ ∈ RM×N is designed withM = 100 and N = 500 of random
Gaussian distributed numbers and x ∈ RM . We allow up to 30 entries in β to become
non-zero. The variance of each entry in Γ is set to 1/30, while the variance of x is 1.
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Figure 3.5. Verification of the constrained homotopy algorithm with up to 30 non-zero values in
β.
Code: constrainedhomotopy.py.

Figure 3.5 shows the simulation results. The algorithm starts to converge, but the
distortion tends to increase when more than 15 to 20 indexes in β become non-zero. This
can have various reasons. It can be the case, that there are no more vectors left in the
dictionary, that reduce the MSE.
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Another reason, that can explain, why the distortion increases is, that although the
sub-problems are convex, since all βµon

6= 0 have the convex constraint ‖βµon,i − 1‖ = 0,
and βµoff

= 0 have ‖βµoff ,i‖ = 0, the main cost function (3.26) is not convex, since it
forces each βi to belong to a finite set, containing a 0 or 1.

3.2.6 SPARC in homotopy
Returning to the original problem, defined in Chapter 1 , we have a dictionary Γ

constructed as

← L columns →←− L columns −→ ←−−−− L columns −−−−→

Γ =


γ1,1 · · · γ1,N γ1,N+1 · · · γ1,2N · · · γ1,(L−1)N+1 · · · γ1,LN

γ2,1 · · · γ2,N γ2,N+1 · · · γ2,2N · · · γ2,(L−1)N+1 · · · γ2,LN

...
. . .

...
...

. . .
...

...
. . .

...

γM,1 · · · γM,N γM,N+1 · · · γM,2N · · · γM,(L−1)N+1 · · · γM,LN

 ,

(3.40)

where β only contains one non-zero entry on each Section. This entry must contain a 1.
To enforce this, we alter the homotopy implementation from section 3.2.4 to

deactivate the region, as soon as one entry of β in that region becomes non-zero. If an
entire section in β becomes zero, it will be activated again until a new entry becomes non-
zero. This is done by introducing another list together with the already present Ion and
Ioff , called Ipass, which contains all the elements which are passive. The consequence of this
is that the entries in Ipass are omitted in Equation (3.38), and thus never activated. The
changes in algorithm 3.3 are shown in Algorithms 3.4 and 3.5, such that the sections are
activated or deactivated, depending on whether there exists a 1 or 0 in the corresponding
section of β.

Algorithm 3.4 Modifications to Algorithm 3.3 line 16 to 19.
1: if λnew ∈ max

λ
λβ then

2: Move index from Ion to Ioff

3: for index in section of λnew do
4: Move index from Ipass to Ioff

5: end for
6: end if

Algorithm 3.5 Modifications to Algorithm 3.3 line 20 to 23.
1: if λnew ∈ max

λ
λupos

then
2: Move index from Ioff to Ion

3: Set corresponding index in u = 1
4: for index in section of λnew do
5: Move index from Ioff to Ipass

6: end for
7: end if
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3.2.7 Verification
The verification of this algorithm is done by setting Γ ∈ RN×ML with N = 100, L = 200

and M = 20, such that we will obtain 20 non-zero entries in β which all contain 1. The
Γ-matrix is generated by scaled random Gaussian generated numbers, where each section
in Γ is scaled by

cm =

√
2Rσ2

x

N

(
1− 2

R

N

)m−1

(3.41)

according to [15] where R is the rate given by

R =
M log2(L)

N
(3.42)

and m ∈ [1, . . . ,M ] is the number of the section in Γ.
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Figure 3.6. Verification of the sectioned homotopy algorithm with 20 sections in β, which each
has at most one non-zero value.
Code: section-homotopy.py.

Figure 3.6 shows the convergence of the algorithm, and illustrates the occurrence
of the same tendency already found for the constrained version of homotopy in Figure
3.5, where the algorithm converges at first until a sudden point, where the MSE starts to
increase.

Another tendency is that the removal of an active βi in β tends to increase the MSE
instead of decreasing it, like homotopy normally does (Figure 3.4).

3.3 Summary
In this chapter, we have analyzed Matching Pursuit (MP) and homotopy algorithms.
These are both suited to perform dictionary searches to estimate an input signal x, but
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each uses different constraints. MP restricts the l0-norm by limiting the number of non-
zero entries in β, whereas homotopy limits the l1-norm, such that the non-zero entries in
β are not allowed to contain large numbers, depending on the weighting factor λ.

We have investigated to add additional constraints to the cost function used in the
homotopy algorithm, forcing the non-zero entries in β to 1. The simulations showed,
that this is not working as intended, with the MSE increasing after a few iterations.
A possible explanation to this can be, that the cost-function is not convex, and has
no analytic solution, even though the sub-problems, in which the cost-function is split,
each are convex. It might be possible to solve the non-convex cost-function using other
optimization algorithms and/or integer programming, but this is out of the scope of this
thesis.

MP showed to perform well on sparse regression dictionaries, especially at lower bit-
rates. Future optimization to the algorithm might include other scaling factors to the
dictionary, and allowing the algorithm to select the vectors from the different sections in
an arbitrary order instead of forcing it to select the first vector from the first section.
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4 Control theory
In this chapter, the motivation for feedback and control theory is described along with the
basics of this theory. This is followed by an explanation of LQR control, which is a special
type of feedback controller. The final sections describe finite horizon control to predict
future control inputs and the introduction of packet loss to the network. The chapter
concludes with simulation results. It should be noted that only discrete-time LTI systems
are considered.

4.1 Control and feedback
Feedback control is applied in almost every modern system. Figure 4.1 shows a simplified
basic diagram of a feedback controlled system. The simplifications that are used in this
thesis are

• The output is identical to the variable we wish to control, which is not the case in
the general setting.

• The signal uk is scalar.

The plant is a not necessarily a stable system, which we wish to stabilize. This is done
using feedback, by e.g. measuring the position, speed, temperature etc. from the plant.
The controller uses the measurement to stabilize the plants state. Examples on feedback
control are the thermostat controllers and cruise control in a vehicle.

Controller
Plant

−

xk+1ukrk

Axk +B1uk +B2wk

ek
+

Figure 4.1. General feedback loop with output xk+1, input uk and reference uk. wk is gaussian
noise.

Figure 4.1 shows the plant, with the LTI state equation

Axk +B1uk +B2wk, (4.1)

where A is the system matrix. This matrix has a direct relation to transfer functions as

H(z) = det(zI −A)-1B1, (4.2)

of which the poles are given by the eigenvalues of A and z is the z-transform variable.
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4.1.1 Stability
Consider a state-space equation

xk+1 = f(xk) (4.3)

with initial conditions x0
k0

and xk0 .

Stability

The system in Equation (4.3) is stable if and only if for any given ε > 0 a δ(ε, k0) > 0

exists, such that all solutions with ‖xk0−x0
k0
‖ < δ imply that ‖xk−x0

k‖ < ε for all k ≥ k0.
[11].

Asymptotic stability

A system is asymptotic stable if the system is stable and if ‖xk − x0
k‖ → 0 when k → ∞

providet that ‖xk0 − x0
ko
‖ is small enough [11]. For LTI systems the system is stable if

and only if all eigenvalues of A are strictly located within the unit circle [4],

BIBO stability

A system is Bounded Input Bounded Output (BIBO) stable if a bounded input gives a
bounded output for every initial value [11].

Asymptotical stability implies that a system is stable and BIBO stable[11].
The stability of an open-loop system can thus be checked by observing the eigenvalues

of A. The closed loop response is given by

xk+1 = Axk +B1uk (4.4)

m
xk+1 = Axk +B1 (-Kxk) , (4.5)

where K is the controller gain. The system is again stable if and only if the eigenvalues
of A−B1K are within the unit circle.

Controllability

A system is said to be controllable if and only if [11]

rank {Wc} = N, (4.6)

where N is the dimension of A and Wc is the controllability matrix given by

Wc =
[
B1AB1 . . . A

N−1B1

]
. (4.7)

If a system is controllable it is possible to find a control sequence such that the origin can
be reached in finite time from any initial state. [11]

A system is reachable if it is possible to reach any state from any initial state in finite
time [11]. Reachability and controllability are equivalent if A is invertible [11].
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4.2 Controller design
A system is controllable if the controllability matrix has full rank. This means, that it is
possible to design a controller with gain K, such that

uk = −Kxk. (4.8)

There are different approaches to design the controller e.g. by manually choosing the pole
locations, and calculate the controller gain according to those. An efficient solution with
guaranteed stability is the LQR method. Here a cost-function is designed and minimized
to obtain the optimal controller gain.

The cost function is given as

J(u,xk) = ‖xk‖Q + ‖uk‖R, (4.9)

with the optimal control sequence to minimize the cost-function given in equation (4.8),
where K is given by

K =
(
R+BT

1 PB1

)-1
BT

1 PA. (4.10)

Here P is the solution to the discrete algebraic Ricatti equation [11]

P = ATPA+Q−
(
ATPB1

) (
λI +BT

1 PB1

)-1 (
BT

1 PA
)
. (4.11)

4.2.1 Simulations
The LQR controller is implemented for a randomly generated A ∈ Rm×m and B1 = B2 =

[1 1 1 1 1]T. Q = I and R = 1/2. The seed for the random generator is set to 111 in
Python, such that all simulations are based on the same random numbers. Simulations
with this controller with no packet dropout are shown in Figure 4.2. The noise is IID
Gaussian distributed with variance σ2

w = 0.1.
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Figure 4.2. Left: output states of the plant, right: control signal uk.
Code: lqr.py.

The control network with a packet dropout introduced is shown in Figure 4.3. The
first packet is set to always arrive at the plant.
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Controller
Plant

Network
Axk +B1uk +B2wk

pd

uk

xk+1

rk

Figure 4.3. Control system with a lossy network where packet dropout occurs.

The network is simulated by a binomial process with the probability p for a packet
dropout and probability 1−p for a packet passing through. The signals with a 20% packet
dropout are shown in Figure 4.4. The red dots indicate when a packet is dropped. In this
case uk = 0 is sent to the plant.
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Figure 4.4. Controller with 20% packet dropout on the network. Red dots indicate a dropped
packet. Left output states of the plant, right: control signal uk.
Code: lqr-dropout.py.

It can be seen, that the plant easily becomes unstable and begins to oscillate.
Figure 4.5 shows the same simulation with a 40% packet dropout, resulting in larger

oscillations.

0 20 40 60 80 100
Sample

−8

−6

−4

−2

0

2

4

6

8

O
u

tp
u

t
m

ag
n

it
u

d
e

×107

0 20 40 60 80 100
Sample

−4

−3

−2

−1

0

1

2

C
on

tr
ol

le
r

ou
tp

u
t

m
ag

n
it

u
d

e

×107

Figure 4.5. Controller with 40% packet dropout on the network. Red dots indicate a dropped
packet. Left output states of the plant, right: control signal uk.
Code: lqr-dropout40.py.
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4.3. MODEL PREDICTIVE CONTROL

As Figures 4.4 and 4.5 show, the plant can become unstable when packet dropouts
occur. This corresponds to operating the plant in open-loop with no feedback.

4.3 Model predictive control
To prevent the plant from running completely in open-loop when a packet dropout occurs
it is desired to predict a number of future control signals, which can be used if a packet
dropout occurs at sample k. In this case the diagram from Figure 4.3 is modified to
include a buffer, containing the predicted samples as shown in Figure 4.6.

Controller
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Plant
Network

Axk +B1uk +B2wk
bk

pd

uk

xk+1

rk
uk

Figure 4.6. Diagram of the model predictive control system, where packet dropout occurs.

The buffer bk is operated as [4]

bk = dkMbk−1 + (1− dk)Uk, (4.12)

where dk = 1 if a packet dropout occurs. The matrix M shifts the buffer one state if a
packet dropout occurs, and is given by [4]. In this case the used uk is deleted from the
buffer and a zero is added to the end. It can also be chosen to make the buffer circular,
repeating the used uk in the end of the buffer.

M =




0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0

0 · · · · · · 0 1

0 · · · · · · · · · 0




. (4.13)

The input to the controller uk is updated as

uk = eT
1 bk, (4.14)

with

e1 =
[
1 0 · · · 0

]T
. (4.15)

It is in this case necessary to update the cost function of the controller to predict the
future states of the plant. These are given as

x′l+1 = Ax′l +B1u
′
l (4.16)
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with l indicating the predicted sample number and x′0 being the current plant state [4].
The cost function to minimize is given as [4]

J(uk,xk) = ‖x′N‖2P +
N−1∑

l=0

(
‖x′l‖2Q + ‖u′l‖2R

)
, (4.17)

which can be rewritten as

J(uk,xk) = ‖Υxk + Φuk‖22
= xT

kΥTΥxk + uT
kΦTΦuk + 2xT

kΥTΦuk, (4.18)

with

Φ =




B1 0 · · · 0

AB1 B1 · · · 0
...

...
. . .

...

AN−1B1 AN−2B1 · · · B1




(4.19)

and Υ as

Υ =




A

A2

...

AN



. (4.20)

The gradient with respect to uk is

∂

∂uk
J(uk,xk) = 2ΦTΦuk + 2ΦTΥxk

= Guk +Hxk (4.21)

with

G = ΦTQ̄Φ + R̄ (4.22)

H = ΦTQ̄Υ (4.23)

and

Q̄ = blockdiag(Q, · · · ,Q,P ). (4.24)

R̄ = diag {R, · · · , R} (4.25)

P is given by the discrete algebraic Ricatti equation (4.11) and R̄ and Q̄ are the weighting
parameters to balance the penalty on the size of uk and of xk+1, respectively. This results
in the control equation

uk = -G -1Hxk (4.26)
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4.3. MODEL PREDICTIVE CONTROL

4.3.1 Simulations
The MPC algorithm is simulated with a horizon length of 8 with the rest of the parameters
remaining similar to those set in Section 4.2.1 and first sample set to always arrive at the
buffer. The results are shown in Figure 4.7.
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Figure 4.7. MPC with 20% (left) and 40% (right) packet dropout, horizon length N = 10.
Code: lqr-horizon20.py and lqr-horizon40.py.

When comparing these results to those obtained in Figure 4.2, it can be seen, that the
packet dropout barely disturbs the plant states.

Figure 4.8 shows the control signals when 60% and 80% packet dropout occurs.
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Figure 4.8. MPC with 60% and 80% packet dropout.
Code: lqr-horizon60.py and lqr-horizon80.py.

The curves on these figures change, since the packet dropout combined with the noise
causes disturbances in the output signals, which the MPC does not take into account. The
controllers also runs in open-loop when more than 8 consecutive packet dropouts occur,
since the horizon length is set to 8 samples. This can also result in large disturbance in
the plant, depending on the state and noise in the plant.
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4.4 Summary
In this chapter we discussed the LQR controller and listed the stability criteria for these.
It is shown how an LQR controller is designed, and this is simulated with a network with
IID random dropouts occurring, resulting in large spikes in the state of the plant.

We finally showed the MPC, which is able to calculate future control signal for a
finite horizon. These future predictions are stored in a buffer at the plant, and are used
in case a packet dropout occurs. Simulations of this shows, that a MPC controller is able
to maintain the state of the plant within lower values compared to the LQR, even with a
high probability af packet dropouts.
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5 Quantized PPC
In this chapter the control loop from Chapter 4 is combined with a quantizer, reducing
the bit rate of the control packets u send through the network to the buffer bk.

The first section describes quantization added in the control loop and the issues
related to this. The following sections investigate closed loop control, where the quantizer
is applied directly to the cost function.

5.1 PPC with a quantizer
Quantization is regularly used to reduce the size of data, reducing the requirements to
the bandwidth of the storage or channel. In this thesis, we want to reduce the size of the
packet, generated at the controller, such that it can be transmitted through a network
with limited bandwidth. Figure 5.1 shows the setup of the quantizer in the control loop.
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Figure 5.1. The control network with the quantizer added.

In this case the controller calculates the control signal uk according to equation
(4.26), which is repeated here

uk = -G-1Hxk. (5.1)

The quantizer performs the operation

βk = Q(uk) (5.2)

= min
βk

‖uk −Aβk||+ ‖βk‖0, (5.3)

which is transmitted. On the receiving side, the decoder reconstructs ūk = Aβk, and
feeds this to the buffer bk.

In this setup, the controller finds the control signal u, minimizing the cost function
(4.17). Afterwards, this signal is quantized using a finite set of numbers to approximate
u. The selected vectors are not necessarily the optimal ones to reduce the cost function.
This issue can be avoided by using the finite set of numbers directly in the cost function.
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5.2 Closed loop PPC
To address the problems mentioned in the previous section, it is chosen to implement the
quantizer directly into the controller, such that the finite set of numbers created by the
dictionary and β are used in the cost function. This setup is illustrated in Figure 5.2.

Controller Buffer Plant
Network

Axk +B1uk +B2wkbk = Γβk

pd

βk

xk+1

rk
ūk

βk = J (βk,xk)

Figure 5.2. Closed loop PPC with the quantizer integrated in the cost function according to
Equation (5.4).

The cost function is stated by

Ĵ (βk,xk) = min
ūk

xT
kΥTΥxk + ūT

kΦTΦūk + 2xT
kΥTΦūk, ūk ∈ W, (5.4)

with W denoting the set of vectors obtained by the linear combination

ūk = Γβ. (5.5)

The remaining symbols are identical to the ones in Chapter 4.
The cost function is solved using a greedy method, selecting the vector from the first

sectionM in the dictionary, reducing the cost function the most and repeats this for every
section

i∗ = min
i
γT
i ΦTΦγi + 2xT

kΥTΦγi, i ∈ ((m− 1)L+ 1, . . . , Lm), m ∈ (1, . . . ,M)

(5.6)

βi∗ = 1 (5.7)

βj = 0, ∀j 6= i∗ (5.8)

with L being the number of vectors in each part m in dictionary Γ. This is repeated for
all sections M in the dictionary, such that

ūk = Γβk. (5.9)

In this case, we chose to minimize the cost function forn one section of Γ each iteration.
This is shown in Algorithm 5.1.

It can also be chosen to provide all sections at every iteration, and remove the
sections, when one vector in the section is chosen. This can, in some cases give
better results, since the cost function (4.18) might get reduced further, although the
computational cost is increased, since L(M −m) calculations have to be done for every
iteration m.

30



5.3. SUMMARY

Algorithm 5.1 Algorithm to do a greedy search on the cost function.
1: Dictionary Γ
2: Input signal xk
3: β = 0 . Initialize β with zeros.
4: for m = 1→M do . Repeat for every section.
5: ū = Γβ . Create ū from the already selected vectors.
6: for i = L(m− 1) + 1→ Lm do
7: r = Γβ + γi
8: res i = rTΦTΦr + 2xT

kΥTΦr . Solve cost function for all γ in the section.
9: end for

10: g = arg min(res) . find the vector minimizing the cost function.
11: βg = 1
12: end for

5.3 Summary
This section described some basics regarding quantization on PPC systems. Two different
methods to quantize a PPC are illustrated and described. It is chosen to continue working
on the closed loop quantizer, since this integrates the controller and quantizer into one
unit, allowing us to incorporate the quantizer directly into the cost function.

The performance of the quantizer is dependent on the design of the dictionary, which
is covered in the next chapter.
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6 Dictionary design
This chapter describes some considerations regarding the design of the SPARC dictionary
for the closed loop PPC. We state three SPARC dictionaries in this chapter, two
dictionaries consisting of IID Gaussian vectors. The first dictionary uses no scaling on the
different sections (refinements) in the dictionary, whereas the second uses scaling based on
the index of the refinement in the dictionary. The last dictionary is a lattice dictionary,
with fixed size Voronoi cells. We finally introduce an optional variable gain, that can be
added to the dictionaries.

The different ideas are described and simulated to verify whether they are able to keep
the system stable at a rate of around 5 bit/symbol. The simulations are only performed
to verify the dictionaries, and can not be used to perform a direct comparison between
the different dictionary designs.

6.1 Gaussian dictionary
The SPARC dictionaries used in Chapter 3 are all based on Gaussian IID vectors, which
results in a decent performance in the algorithms presented. It is for that reason chosen to
test this kind of dictionary in PPC. The signals used Chapter 3 were Gaussian IID with
unit variance, which were quantized by a dictionary created with the same parameters.
The signals to quantize in PPC are more complex and the predictions in u are correlated
since they depend on each other. A possible dictionary can be made by simulating the
PPC and use the calculated values for u. An alternative is to calculate the parameters for
the PPC and use these to generate Gaussian IID vectors for the dictionary. This requires
the first and second moments of the system, which are found analogously to [1] by

E {u} = E
{
-G -1Hx

}
= -G -1HE {x} (6.1)

Qu = var
{
-G -1Hx

}
= G -1HE

{
xxT

}
HTG -T. (6.2)

In [1] the covariance of the PPC is based on the dropout probability pd, which in this
case is known. The covariance used to generate the dictionary is calculated analogously
to [1] with the quantizer noise omitted, since it is not known. The covariance of the total
system state is found to be

QΘ,k+1 = E
{
Θk+1Θ

T
k+1

}
= AE

{
ΘkΘT

k

}
AT + pd(1− pd)ÃE

{
ΘkΘT

k

}
ÃT

+ C(pd),

(6.3)

where

Θk =


 xk

bk−1


 (6.4)

is the total state of the system and buffer, and

33



CHAPTER 6. DICTIONARY DESIGN

C(pd) = σ2
wBwBT

w (6.5)

A = E
{
Ā(dk)

}
(6.6)

Ã = Ā(1)− Ā(0) (6.7)

B = E
{
B̄(dk)

}
. (6.8)

The matrices Ā(pd) and B̄(pd) are modified compared to [1] since we in this thesis are
not operating in the ξ-domain and the quantizer noise is omitted. The matrices become

Ā(0) =


A−B1e

T
1K 0

-K 0


 Ā(1) =


A B1e

T
1M

0 M




B̄(0) = B̄(1) =


B2

0




and σ2
w denoting the plant noise. Since we are interested in the covariance of u, which

according to (6.2) depends on Qx since the covariance Qx is found as

QΘ =


 Qx E

{
xbT

}

E
{
bxT

}
Qb


 , (6.9)

where the covariance of u is given by

Qu = G -1HQxH
TG -T. (6.10)

The dictionary is created as N ×ML matrix with

Γ ∼ N (0,Qu) . (6.11)

6.1.1 Verification of Gaussian dictionary
A simulation of the dictionary has been made to verify that it is working as desired. The
controller is designed according to Algorithm 5.1, with a zero-mean normal distributed
dictionary with covariance Qu.

The simulation of the controller is performed with horizon length N = 3, a dropout
rate of pd = 0, 20, and a system matrix A randomly generated to be

A =




−0.7578 −0.3245 −0.085337 0.060403 −2.2557

0.43212 −0.35593 0.0024123 0.0071095 −0.17091

−0.17328 1.0627 0.36569 0.67106 0.93852

0.95123 0.66704 0.73738 −0.43393 0.35231

1.0536 0.48356 −0.15787 0.45405 −0.26378




, (6.12)

with spectral radius rσ = 1.66 and vectors B1 = B2 = [1 1 1 1 1]T. Figure 6.1 shows the
plant state, controller output and whether a dropout occurred at each sample during the
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Figure 6.1. Simulation of closed loop control with a gaussian dictionary consisting of two sections
and a rate of 5.01 bit/symbol, corresponding to L = 182.
Code: controllergaussian.m.

simulation. It is seen, that the plant is kept stable, with a few large peaks, which are
stabilized again. The plot at the top shows the amplitude of all five states in the plant
at sample k, with the plot in the middle showing the quantized output and predictions
of the controller at sample k. The bottom plot shows the MSE accumulated for all five
states for each sample k. The bit rate is calculated per symbol (entry in uk) as

rate = M
log 2 (L)

N
. (6.13)

A 2D view of the dictionary used in the simulation is shown in Figure 6.2. In
this dictionary, both sections are created by different realizations of exactly the same
distribution, with the covariance calculated by Equation (6.3) with the noise variance
σ2
w = 0.1.

Figure 6.3 shows a Gaussian IID dictionary split into M = 3 sections. Using a
horizon length N = 3 and L = 32, the system, as easily can be seen after a few samples in
Figure 6.3(a). This is mainly due to the low amount of vectors in each section. Although
the total number of combinations that can be obtained from the sections, is very close
to the amount obtained when M = 2 (32 768 compared to 33 124), the greedy method to
select the vectors is limited to select one among only 32 vectors for every iteration.

By increasing the number of columns in each section by a factor ten leading to
L = 323 and a bit rate of 8.32 bit/symbol the system can be stabilized, as illustrated in
Figure 6.3(b). The increase results in a total of 33.7 · 106 possible linear combinations.

The performance of the quantizer, stability wise, can be improved by making the
first search pick the best matching vector among all sections, and exclude the sections, for
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Figure 6.2. A 2D view of the dictionary and values generated by the quantizer in the simulation
shown in figure 6.1 the red and blue dots indicate the entries in the each section, while
the cyan stars indicate the picked values generated by the controller.
Code: controllersimgaussion.m.
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Figure 6.3. Simulation run with N = 3 with M = 3 sections in the Gaussian IID dictionary and
a rate of 5 bit/symbol (a) and 8.34 bit/symbol (b). The top figures show the plant
state xk, whereas the bottom show uk. The remaining parameters are equal to the
simulation shown in Figure 6.1. It is shown, that increasing the bit rate, leading to
an increment in L, results in stabilizing the system.
Code: controllergaussian3secN3.m and controllergaussian3secN5.m.
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6.2. GAUSSIAN DICTIONARY WITH SCALED REFINEMENTS

which a vector is already picked from the next iterations.

6.2 Gaussian dictionary with scaled
refinements

Another method to design the SPARC dictionary is to scale each section of the dictionary,
such that the first section contains the most energy, which is reduced for every section.
This scaling can be done using Equation (3.9), which is repeated here

ck =

√
2Rσ2

M

(
1− 2R

M

)k−1

k = 1, . . . ,M, (6.14)

although it is not suited for dictionaries with relatively few sections, since the negative
part gets too large, and results in imaginary numbers. For this reason, the scaling has
been changed to

ck =

√
2Rσ2

M

(
1− 0.9R

M

)k−1

k = 1, . . . ,M. (6.15)

6.2.1 Verification
The performance of this dictionary is shown in Figure 6.4, and seems to contain more
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Figure 6.4. Simulation of closed loop PPC with a scaled Gaussian dictionary with 2 sections and
a rate of 5.01 bit/symbol, corresponding to L = 182.
Code: controlsimgaussianscale.m.

spikes than the Gaussian dictionary without scaled refinements when operating with a
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horizon length of N = 3. This dictionary also results in a slightly higher MSE than the
unrefined version illustrated in FIgure 6.1.
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Figure 6.5. Voronoi cells of the Gaussian quantizer without scaling (a) and with scaling (b). The
colors indicate the different sections M in the dictionary. The horizon length is N = 2
with a rate of 5 bit/symbol and M = 3 sections.
Code: voronoiplot.m.

Figure 6.5 depicts the Voronoi cells for the Gaussian dictionary with and without
scaled refinements for a horizon length N = 2, and L = 11. When using the scaled
Gaussian dictionary, shown in Figure 6.5(b), the inner Voronoi cells have a smaller volume.
The disadvantage in this case is that the dictionary is overloaded earlier, since the total
energy of the linear combination of the scaled dictionary is lower, than the non-scaled.
This can be resolved by using a larger scaling for the first section

6.3 Lattice dictionary
The dictionaries presented in Sections 6.1 and 6.2 both use a randomly generated
dictionary. This means that the Voronoi cells have different volumes, and are placed
randomly with the possibility of a few outliers, which is shown in Figure 6.5. An alternative
method to design a dictionary is to use lattices, fixing the volumes of the Voronoi cells.

The root lattice A2 [22] is shown in figure 6.6(a), which uses the gram matrix

Ugram,A2 =


 2 -1

-1 2


 , (6.16)

to create the generator matrix

UA2 = chol
(
Ugram,A2

)
=



√

2 0

-
√

2
2 1.2247


 . (6.17)

.
Figure 6.6(b) shows the dictionary shaped by the pdf of the distribution of the system

based on Equation (6.3) with one refinement. The refinement is created by scaling the
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Figure 6.6. The Voronoi cells of a 2D lattice dictionary (a) and the L lattices formed as the pdf of
the system with one refinement (b). The horizon length is chosen to be 3, with L = 31
and M = 2 sections, resulting in 4.95 bit/symbol. The system matrix A is taken from
Equation 6.12.
Code: lattice2dtest.m.

lattice until L Voronoi cells are located within the first Voronoi cell in its parent lattice,
by measuring the distance to the center of the cell. If more than L Voronoi cells of
the sublattice are located within the parent Voronoi cell, the first L sublattice Voronoi
cells are chosen. This can in some cases lead to larger Voronoi cells at the corner of the
parent lattice, which is not optimal. More sophisticated and optimal methods to create
sublattices exist, and are described in [23]. This is though out of the scope of this thesis.

6.3.1 Dithering
The pdf of the system is, as mentioned before, based on Equation (6.3), which includes
the quantizer noise, σ2

n. This is based on the dithering used in a lattice quantizer [23],
where some (pseudo-) random noise is added to the signal prior to the quantization, which
again is subtracted from the reconstructed signal. Therefore, it requires that the dither
signal is known at both the quantizer and decoder. The reconstructed signal with dither
is described by

ūk = Q(uk + ηk)− ηk, (6.18)

where ηk is the dither noise. This dithering noise adds distortion to the quantizer, which
can be measured by

DN ≈ G(Λ)v
2
N , (6.19)

where G(Λ) is the dimensionless second moment based on the lattice shape and v is the
volume of a Voronoi cell in the lattice of dimension N , and is found as in [23] to be

v =
√

det(Ugram) = det(U), (6.20)

with U being the generator matrix an Ugram its Gram matrix, defined as Ugram = UUT.
The more sphere-shaped the lattice becomes and the lower G(Λ) becomes [23]. The G(Λ)

values used in this thesis are found in Table 3.1 in [23].
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Since

Q (uk + ηk)− ηk = uk + nk, (6.21)

the noise variance of the quantizer is given by

σ2
n = G(Λ)v

2
N . (6.22)

6.3.2 Verification
Figure 6.7 shows a simulation using a lattice dictionary with one refinement. The
parameters used in the simulation are identical to those used in Section 6.1.1. A few
spikes can be seen in the simulation, but the system is stabilises quickly afterwards. The
horizon length in this simulation is set to N = 3, requiring a 3D dictionary. The dictionary
is designed using the Ã3 lattice [22] with Gram matrix

U
gram,Ã3

=




3 -1 -1

-1 3 -1

-1 -1 3


 , (6.23)

with a possible generator matrix

U
Ã3

= chol
(
U

gram,Ã3

)
=




1.7321 -0.5774 -0.5774

0 1.6330 -0.8165

0 0 1.4142


 , (6.24)

with [23]

G(Λ) = 0.0787. (6.25)

The Gram matrices and G(Λ) values used in this thesis are found in appendix A.

6.4 Dictionaries with variable scaling
In some cases it happens, that the state of the plant obtains high values, which can
overload the quantizers with finite support. In this case the plant will keep oscillating and
the controller is unable to stabilize the system. This can be avoided partially by adding
a fixed gain to the quantizer, increasing the volume of the Voronoi cells, resulting in an
increment in the amplitude of the spikes in the state of the plant, which might not be
desired. A better solution to this is to add a variable gain to the quantizer. This requires
that additional bits to be sent to the decoder (buffer), since the decoder needs to know
the added gain. To limit the additional bits needed, it is chosen to only add a total gain
to the entire quantizer, not to every vector picked in the quantizer.

Since the gain is variable, it is not known on the decoder and should therefore be
transmitted. The scaling used for the dictionary is stored in an integer, calculated from
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Figure 6.7. Simulation of the lattice dictionary using the Ã3 lattice and parameters as in Section
6.1.1
Code: controllerlattice.m.

logarithmic scaling. The number of bits allocated to store the gain differs, and is simulated
in Chapter 7. The gain is stored as

Gdict =
log2 (Gvalue)

log2 (Gbase)
, (6.26)

where Gvalue is the factor of the gain and Gbase the base of the logarithm. Provided with
the number of bits allocated, Gvalue is calculated as

Gvalue = Gkbase, k ∈
{

0, 1, . . . 2b − 1
}
, (6.27)

with b denoting the number of bits allocated to store the gain. The rate in bit/symbol for
the dictionaries using variable gain is given by

R =
bM log2 (L)

N
. (6.28)

The controller Algorithm 5.1 is modified, resulting in Algorithm 6.1, such that the
combination of vectors and gains is selected, that minimizes the cost function.

Figure 6.8 shows the first section of a scaled lattice dictionary with 2 bit scaling.
Only the first section is shown to illustrate the effect of the scaling, although it is applied
to all sections in the dictionary. The lattice is created with 2 sections with 3.9 bit/symbol
resulting in L = 15. This results in 4.9 bit/symbol for the dictionary.

When comparing the dictionary in Figure 6.8 to the dictionary in Figure 6.6(b),
it can be seen, that although the lattice consists of fewer points (L = 15 compared to
L = 31), a larger area is covered by the lattice with gain = 8. The volume of the Voronoi
cells at the higher gain is larger, introducing a larger distortion, but reducing the risk of
overloading the dictionary.
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Algorithm 6.1 Algorithm to do a greedy search on the cost function with different gains.
1: Dictionary Γ
2: Input signal xk
3: β = 0 . Initialize β with zeros.
4: gains = 2i, i ∈

{
0, 1, . . . , 2gainBits − 1

}

5: for gain ∈ gains do . Repeat for every gain.
6: for m = 1→M do . Repeat for every section.
7: ū = gainΓβ . Create ū from the already selected vectors.
8: for i = L(m− 1) + 1→ Lm do
9: r = gainΓβ + γi

10: resgain,i = rTΦTΦr + 2xT
kΥTΦr . Solve cost function for all γ in the

section.
11: end for
12: g = arg min(res) . find the vector minimizing the cost function.
13: βgain,g = 1
14: end for
15: Select βmin res . Select the β with smallest resulting cost.
16: end for
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Figure 6.8. Scaling of the lattice with 2 bit used to store the gain. The different colors show the
gain used. Only the first section is plotted with each gain. The lattice is 3.9 bit/symbol
with L = 15.
Code: lattice2dtestgain.m.
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6.4.1 Verification
The scaling can be used on both a Gaussian and a lattice dictionary. Figure 6.9 shows the
simulation of the Gaussian dictionary with unscaled refinements and a 2 bit gain with a
base of 2. Figure 6.10 shows the simulation when using a Gaussian dictionary with scaled
refinements as described in Section 6.2 and 2 bit scaling.
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Figure 6.9. Simulation of the Gaussian dictionary without scaled refinements and 2 bit gain. The
parameters are identical to the simulation in Section 6.1.1, with the rate of the lattice
being 4.2 bit/symbol and the gain 2 bit, resulting in a total of 4.87 bit/symbol.
Code: controllergaussiangain.m.

Figure 6.11 shows a simulation with a lattice dictionary, using the A3 lattice with
2 bit scaling, resulting in 0.67 bit/symbol. The bit rates for the dictionaries are lowered
slightly (4.2 bit/symbol compared to 5 bit/symbol) compared to unscaled dictionaries so
the total bit rate is maintained, resulting in L = 79 compared to L = 182 for a dictionary
with 2 sections and a horizon length of N = 3. Both dictionaries are able to keep the
system stable at the selected bit-rates with a dropout probability of pd = 0.2.
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Figure 6.10. Simulation of the Gaussian dictionary with scaled refinements and 2 bit gain. The
parameters are identical to the simulation in Section 6.1.1, with the rate of the lattice
being 4.2 bit/symbol and the gain 2 bit, resulting in a total of 4.87 bit/symbol.
Code: controllersectionscalegain.m.
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Figure 6.11. Simulation of the lattice dictionary with a 2 bit gain. The parameters are similar to
the simulation in section 6.1.1, with the rate of the lattice being 4.2 bit/symbol and
the gain 2 bit, resulting in a total of 4.87 bit/symbol.
Code: controllerlatticegain.m.
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6.5 Summary
Different methods to design dictionaries have been shown and described in this chapter.
The methods are based on either IID Gaussian samples or lattices, that have been shaped
according the covariance of the closed loop system. All methods have been simulated with
a bit rate around 5 bit/symbol to verify whether the quantizer is able to keep the system
stable for 1000 samples.

So far the performance of the quantizer has not been considered, i.e. which quantizer
has the best performance while keeping the system stable at the lowest bit rate. This is
investigated in Chapter 7.
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7 Simulations
In this chapter we simulate the different SPARC dictionaries that were presented in
Chapter 6. The first simulations focus on optimizing the scaling of the dictionaries in
the form of a fixed gain, that is known by both the quantizer and the decoder, and as
a variable gain that has to be transmitted. The parameters used in the dictionaries are
shown in Appendix B. The results are plotted using MSE, averaged over 3000 samples, in
dB on the y-axis, and the non operational bit rate, calculated as in Equation (2.6) on the
x-axis in bit/symbol.

7.1 Dictionary scaling - fixed gain
The simulations in this section are used to decide how much the entire dictionary should
be scaled. The scaling of the dictionary is applied differently, depending on the dictionary
used. This is tested for the three dictionaries described in Chapter 6. In the Gaussian
dictionaries, the scaling is applied by increasing the variance σn in Equation (6.3), affecting
the total system variance and thereby generating IID Gaussian samples with higher
variance. In the lattice dictionary, the volume of the Voronoi cells is scaled. The dropout
rate pd is set to 0.20, and the remaining parameters used in the simulation are described
and listed in appendix B. The legend for the figures is explained in table 7.1.

Line color and style Scale factor
0.5
1
1.5
2
2.5
3
3.5

- - 4
- - 4.5
- - 5
- - 5.5
- - 6
- - Reference plant without quantizer

Table 7.1. Values used in the simulations with different scaling of the dictionary.

Figures 7.1(a) shows the distortion for different rates for the normal Gaussian
dictionary (without scaling on the refinements), which is explained in Section 6.1. The
MSE is lowest when the scaling factor is 0.5, but in this case, the system is not stable
for bit rates lower than 4 bit/symbol. Increasing the scaling to 1, results in a slightly
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higher MSE, but a stable system at bit rates down to 3.5 bit/symbol. When the scaling
is increased to 2.5, the system is stable at 3.25 bit/symbol at the cost of a higher MSE.
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Figure 7.1. The performance of the Gaussian dictionaries with scaling applied to the entire
dictionary. Figure (a) shows the normal Gaussian dictionary with similar scaling in all
refinements, whereas Figure (b) shows the Gaussian dictionary with scaled refinements.
The legend is explained in Table 7.1.
Code: plotvardict.m,msemeasvardict.m.

Figure 7.1(b) shows the Gaussian dictionary with the refinements being scaled as
described in Section 6.2. Here the MSE is lowest with a scaling of 0.5 results in the lowest
MSE and results in a stable system at bit rates down to 3.25 bit/symbol. A scaling of 2.5

here results in a stable system at 3 bit/symbol as well.
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Figure 7.2. The performance of the Lattice dictionary with scaling applied to the entire dictionary.
The legend is explained in Table 7.1.
Code: plotvardict.m,msemeasvardict.m.

Figure 7.2 shows the Lattice dictionary with scaling. The system is maintained stable
at a bit rate of 3.5 bit/symbol with a scaling of 1 or higher. The MSE decreases as the bit
rate is increased towards 4.25 bit/symbol, after which the system becomes unstable. This
behavior is unexpected, and thought to be the result of the very simple algorithm used to
create the lattice refinements, which is explained in Section 6.3.
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7.2 Dictionary scaling - variable gain
In this section we simulate the dictionary with gain, which is explained in Section 6.4. The
gain in the dictionary is stored as integers, which are scaled logarithmic to create the gain.
We simulate the dictionaries with different logarithmic bases and a different amounts of
bits allocated to store the gain, where we will find the combination that results in the best
performance. The gain is calculated according to Equation (6.27) in Section 6.4, and is
restated here

Gvalue = Gkbase, k ∈
{

0, 1, . . . 2b − 1
}
. (7.1)

In this simulation the base Gbase and number of bits b is varied using different bit rates
for the quantizers. The bit rate listed on the x-axis is the total bit rate per symbol, which
is calculated as

R =
bM log2 (L)

N
. (7.2)

Figure 7.3(a) shows a lattice dictionary using gain. The legend is explained in Table 7.2
and dropout probability pd = 0.20. The remaining parameters can be found in Appendix
B.

Line color and style Bits Base
2 2

- - 2 2.5
-.-. 2 3

3 2
- - 3 2.5
-.-. 3 3

4 2
- - 4 2.5
-.-. 4 3
- - Reference plant without quantizer

Table 7.2. Values used in the simulations with varying gain.

Figure 7.3(b) shows the Gaussian dictionary without scaled refinements, whereas
Figure 7.4 shows the Gaussian dictionary with scaled refinements. The lattice dictionary
has the best performance with 2 bit designated for the gain and a base of 2. The Gaussian
dictionary without refinements in Figure 7.3(b) shows similar results, although the overall
MSE is lower. The Gaussian dictionary with scaled refinements, shown in Figure 7.4 shows
a mostly similar performance on all parameter combinations. The overall MSE is slightly
higher than the unrefined counterpart though.

Figures 7.5(a) and 7.5(b) show the simulations performed on the Gaussian dictionary
with, and without scaled refinements, respectively, with M = 3 sections. The lattice
dictionary was unable to maintain the system stable in any of the provided parameter
sets when M = 3, and is therefore not shown. Figures 7.5(a) and 7.5(b) illustrate, that
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Figure 7.3. Simulation of lattice dictionary 7.3(a) and Gaussian dictionary 7.3(b) without scaling
on the refinements with varying gain. The full lines show the MSE for a base of 2, the
dashed 2.5 and dot-dash 3.
Code: plotgainbasebits.m,msemeasbit.m.
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Figure 7.4. Simulation of the Gaussian dictionary with scaled refinements and varying gain. The
full lines show the MSE for a base of 2, the dashed 2.5 and dot-dash 3.
Code: plotgainbasebits.m,msemeasbit.m.

the amount of bits used for the gain are not affecting the performance too much for the
Gaussian case without scaling (Figure 7.5(a)), as long as the base is 2. In the Gaussian case
with refinements (Figure 7.5(b)) the 2 bit and 3 bit gain result in the best performance.
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Figure 7.5. Simulation of the Gaussian dictionary without 7.5(a) and with 7.5(b) refinements and
varying gain. The full lines show the MSE for a base of 2, the dashed 2.5 and dot-dash
3.
Code: plotgainbasebits.m,msemeasbit.m.

7.3 Dropout probabilities
In this section, we run the quantizers with the optimal parameters and test with different
dropout probabilities. The legend for the figures in this section are explained in Table
7.3. All simulations are performed with M = 2 sections, a horizon length N = 5, and the
remaining parameters defined as stated in Appendix B.

Line color and style Dictionary used
Normal Gaussian

Gaussian with scaled refinements
Lattice

Normal Gaussian with 2 bit gain
Gaussian scaled refinements and 2 bit gain

Lattice with 2 bit gain
- - Reference plant without quantizer

Table 7.3. Values used in the simulations with different packet dropout rates.

Figures 7.6(a) and 7.6(b) show the MSE for a NCS with no packet dropouts pd = 0,
and pd = 0.05. It is shown, that although all dictionaries are able to maintain the system
stable for bit rates of 3.75 bit/symbol at pd = 0, the Gaussian dictionaries produce the
best rate compared to the distortion. As the rate increases, the distortion of the normal
unscaled Gaussian only differs a few dB from the plant without quantizer. When pd = 0.05

in Figure 7.6(b), the performance is very similar. This is mainly due to the length of the
horizon (N = 5), which results in a probability of 3.125 · 10−7 for five consecutive dropouts
occurring.

In Figures 7.7(a) and 7.7(b) the dropout probabilities are increased to pd = 0.10

and pd = 0.15, respectively. While the performance of the Gaussian dictionaries is similar
to the results shown in Figures 7.6(a) and 7.6(b), the Lattice dictionaries are unable to
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Figure 7.6. Simulation of the NCS with pd = 0.00 (a) and pd = 0.05 (b) for the different quantizers
shown in Table 7.3. The black line illustrates the MSE of the NCS without quantizer.
Code: plotmsedropout.m,msemeasdropout.m.

stabilize the system at bit rates lower than 4 bit/symbol.
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Figure 7.7. Simulation of the NCS with pd = 0.10 (a) and pd = 0.15 (b) for the different quantizers
shown in Table 7.3. The black line illustrates the MSE of the NCS without quantizer.
Code: plotmsedropout.m,msemeasdropout.m.

By further increasing pd to 0.20 (Figure 7.8(a)) and pd = 0.25 (Figure 7.8(b)), the
MSE increases slightly for the normal Gaussian dictionaries, both with and without
variable gain, but these are still able to stabilize the PPC at bit rates equal to or
higher than 3 bit/symbol. The Gaussian dictionary with variable gain is even stable at
2.75 bit/symbol with pd = 0.20. The other dictionaries are unable to stabilize the PPC
for bit rates lower than 3.75 bit/symbol. The Lattice dictionaries require yet higher bit
rates before they are able to stabilize the system.

Figures 7.9(a) and 7.9(b) show the results for pd = 0.3 and pd = 0.35, respectively.
Here the normal Gaussian dictionary without scaled refinements, with 2 bit variable gain
can stabilize the system with 3.25 bit/symbol at pd = 0.3 and even down to 3 bit/symbol
for pd = 0.35. At this rate, the probability for 5 consecutive dropouts occurring is 0.0053.
The MSE increases with 8 dB compared to the results shown in Figure 7.9(a). When
simulating over more than 3000 samples, as is the case in this simulation, the results in
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Figure 7.8. Simulation of the NCS with pd = 0.20 (a) and pd = 0.25 (b) for the different quantizers
shown in Table 7.3. The black line illustrates the MSE of the NCS without quantizer.
Code: plotmsedropout.m,msemeasdropout.m.

Figure 7.9(b) would not be expected to be able to stabilize the system at lower bit rates
than in Figure 7.9(a).
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Figure 7.9. Simulation of the NCS with pd = 0.30 (a) and pd = 0.35 (b) for the different quantizers
shown in Table 7.3. The black line illustrates the MSE of the NCS without quantizer.
Code: plotmsedropout.m,msemeasdropout.m.

In general, the Gaussian dictionaries, both with and without scaling applied on the
refinements and a 2 bit variable gain had the best performance. These were able to stabilize
the NCS with a dropout probability pd reaching up to 0.35.

The lattice dictionary resulted in worse performance, which is caused by the fixed
size of the Voronoi cells. Since the distribution of the NCS is Gaussian, the best results
are obtained when using a dictionary resembling these. The performance of the lattice
dictionary can possibly be improved by increasing the volume of the Voronoi cells gradually
as they are placed further away from the origin in the dictionary, since the likelihood for
the Voronoi cell get selected reduces, the further it is away from the origin. This can for
example be done using companding, which is described in [24], but is out of the scope of
this thesis and left for future research.
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7.4 Summary
In this chapter we simulated the different SPARC dictionaries, described in Chapter 6
with varying dropout probabilities and both a fixed and variable gain.

In the first simulations the scaling of the entire dictionary is varied to find the optimal
scaling. The gain is fixed, and therefore known for both the quantizer and decoder (buffer),
and does therefore not require any information to be sent over the network. The results
in general showed, that with pd = 0.20, the lower scaling values which resulted in smaller
Voronoi cells gave a lower MSE, but were in some cases unable to stabilize the NCS. Since
all dictionaries had a good performance with a fixed gain factor of 1, it is chosen not to
scale the dictionaries in the remaining simulations performed.

Section 7.2 shows results for the different dictionaries scaled with a variable gain.
Since this gain varies, it has to be transmitted to the decoder. We simulated different
amounts of bits allocated for the gain which, since the overall bit rate is maintained,
reduced the bits allocated for β. This results in a smaller dictionary. Here the Gaussian
dictionary with scaled refinements showed similar performance with all gain parameters.
The Gaussian dictionary with equal scaling on the refinements and the lattice dictionary
showed the best performance with 2 bit allocated for the gain using a base of 2. The
dictionaries featuring gain simulated in the next sections therefore use these parameters.

We finally simulated all dictionaries with and without gain applied, using the optimal
parameters, found in Sections 7.1 and 7.2, on a NCS with different dropout probabilities.
The Gaussian dictionaries featuring gain, showed to provide the best overall performance
at higher packet dropout rates. This is due to the increased size of the Voronoi cells when
the gain is applied to the dictionary. The performance of the lattice dictionary is worse
than with the Gaussian dictionaries, and resulted in a higher distortion compared to the
Gaussian dictionaries. It was in addition also was unable to stabilize the system at bit
rates lower than 3.5 to 4 bit/symbol. The reason for this is that fixed size of the Voronoi
cells in a lattice quantizer do not resemble the Gaussian distribution of the NCS as well
as a dictionary containing Gaussian IID vectors.

The performance of the Lattice quantizer can be increased by increasing the volume
of the Voronoi cells based on their distance to the origin. This makes a better fit of the
Voronoi cells to a Gaussian distribution. Methods for this, such as companding explained
in [24], exist and can eventually be applied in future work.
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8 Alternative dropout sce-
narios

We have so far covered a network with a fixed dropout probability pd. As soon as this
dropout probability gets too high based on the horizon length N and bit rate, the system
gets unstable. This situation does not necessarily describe, what happens in real world
applications. In a practical setting a network might operate stable and only loose a few
packets most of the time, while the dropout probability increases significantly for short
periods due to various reasons, such as bandwidth limitations, busy periods, etc. The
scenario is modeled in this chapter after which the design of the dictionaries is described
briefly. We analyze the stability of this scenario using MJLS following the basics from
[25] and [4]. The following section expands the theory to include systems with different
dropout scenarios, that can occur in the network. It is throughout the entire chapter
assumed, that the entire system knows, in which state it is. We finally show simulations
performed on this network model.

8.1 Scenario with two states
The system considered in previous chapters has one state dropout state with a fixed
probability pd. In this state a dropout occurs with probability pd or a packet is received
with probability 1 − pd. When pd is increased above a certain probability, the system
becomes unstable, which is simulated in Chapter 7. This occurs when multiple dropouts
occur consecutively and the number of consecutive dropouts exceed the horizon length N
for longer periods, causing the system to oscillate.

In this section a new model is proposed, which better suits a real-world network
with a relatively low dropout probability for most of the time, while for short periods the
probability increases drastically, causing the system to become unstable. This system is
modelled as a MJLS and is shown in Figure 8.1, with dropout scenarios A and B. The

A B
pAA

pAB

pBB

pBA

Figure 8.1. Model of a network with two dropout states.

state transition matrix for this system, containing the probabilities to change to the other
state, is given as
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P =


pAA pAB

pBA pBB


 . (8.1)

Each state in figure 8.1 has its own dropout probability pd,A or pd,B.

8.2 Dictionary considerations
The dictionary design in Chapter 6 is based on the state distribution of the closed loop
system. As found in Section 6.1, the distribution has zero mean and its covariance is
repeated here from equation (6.3)

Qk+1 = E
{
Θk+1Θ

T
k+1

}
= AE

{
ΘkΘT

k

}
AT + pd(1− pd)ÃE

{
ΘkΘT

k

}
ÃT

+ C(pd),

(8.2)

where the parameter C(pd) is given in Section 6.1. It is clear from Q that the behavior of
the system depends on the probability pd for a packet to be lost.

Under the assumption, that both the controller and the buffer know, whether the
network is in state A or B, it is investigated whether the system performs better when
there is a different dictionary for each state. The dictionaries differ according to Q, which
is based on pd in the current state, and eventually a different scaling.

In this thesis we assume that both the quantizer and the decoder know in which
state the network is, hence no extra information has to be transmitted over the network
to indicate this. When the network goes from one state to the other, the quantizer and
decoder change to the dictionary generated according to the state of the network.

8.3 Stability of Markov Jump Linear
Systems

In this section we summarize the basics on Mean Square Stable (MSS) of MJLSs mentioned
in [25] and [4].

Consider the model shown in Figure 4.6, with dropout rate pd, where the next state
described by

xk+1 = Axk +B1uk +B2ωk (8.3)

bk = dkMbk−1 + (1− dk)uk, (8.4)

with dk indicating the state of the system at sample k. In Figure 4.6, dk = 1 when a
dropout occurred.

For the stability analysis in this section, the system is described as

Θk+1 = Ā(dk)Θk + B̄(dk)υk, (8.5)

56



8.3. STABILITY OF Markov Jump Linear SystemS

with

Ā(0) =


A−B1e

T
1K 0

-K 0


 Ā(1) =


A B1e

T
1M

0 M




B̄(0) =


B2 B1e

T
1

0 I


 B̄(1) =


B2 0

0 0




and

Θk =


 xk

bk−1


 υk =


ωk
nk


 .

The lattice quantizer is dithered, as mentioned in Section 6.3.1, such that

ūk = Q(uk + ηk)− ηk, (8.6)

where ηk is uniformly distributed over the Voronoi cell, and is independent on current
and past values of the input signal. In this analysis we assume, that the following linear
additive noise model holds as in [4]

Q(uk + ηk)− ηk = uk + nk, (8.7)

with nk distributed as -ηk, such that E
{
‖n2

k‖
}

= E
{
‖η2
k‖
}
, and each nk is white with zero

mean, such that it is independent on uk−l, ∀ l ≥ 0.
When the plant noise ωk and quantizer noise υk is white and has bounded variance,

it is sufficient to determine wether the system is MSS by observing Ā, reducing the model
to analyse to

Θ̃k+1 = Ā(dk)Θ̃k. (8.8)

In this case the MJLS is MSS according to [25] and [4] if E
{
ΘkΘT

k

}
converges as k →∞

such that, for any initial condition Θ̃0 ∈ Rn, d̄k0
∈ dk0, there exists a mean µ and

covariance Q, such that

‖µ(k)− µ‖2 → 0 as k →∞ (8.9)

‖Q(k)− Q‖2 → 0 as k →∞, (8.10)

with the covariance

Q(k) =

N∑

i=1

Qi(k). (8.11)

Theorem 1 from [25] shows the necessary and sufficient conditions a system has fulfill to
be MSS.

Theorem 1 [25, Theorem 3.9] The following assertions are equivalent and contain
necessary and sufficient conditions for MSS:
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1. The system (8.8) is MSS.

2. The spectral radius of A, rσ(A) < 1.

3. For any positive definite S in the positive definite Hilbert Hn+, there exists a unique
positive definite V ∈ Hn+, such that

V − T (V ) = S (8.12)

4. For some positive definite V ∈ Hn+, we have

V − T (V ) � 0 (8.13)

5. For all initial conditions d0 ∈ {0, 1} and Θ̃0 with bounded variance, the following
holds:

∞∑

k=0

E
{
‖Θ̃k‖2

}
<∞ (8.14)

The proof is found in [25].
The matrix A is defined as

A =




Ā0 ⊗ Ā0

Ā1 ⊗ Ā1

. . .

ĀN−1 ⊗ ĀN−1




(
PT ⊗ In2

)
, (8.15)

which is stable if the spectral radius rσ < 1. P denotes the transition matrix of the
Markov chain and Āi denoting the system state matrix at state i.

The linear operator T is defined by

Tj(V ) =
N−1∑

i=0

pijĀiViĀ
T
i , (8.16)

with pij denoting the transition probability from state i to j.
The covariance and the operator T are linked as [25]

Q(k + 1) = T (Q(k)), (8.17)

with the total covariance [25]

Q(k) =
N∑

i=1

Qi(k) =
N∑

i=1

T ki (Q(0)). (8.18)

8.4 Stability for MJLS with different
dropout scenarios

In this section we consider a MJLS with different dropout scenarios. Initially we show a
two state dropout scenario where one state models a stable network with a low dropout
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probability and one state modeling an unstable network with a high dropout probability.
The probability to switch from the stable to the unstable system is larger than zero. The
system model is shown in Figure 8.2, where state A and B have dropout probabilities pd1

and pd2, respectively.

A B
pAA

pAB

pBB

pBA

Figure 8.2. Markov model showing the two dropout scenarios.

Figure 8.3 includes the states, where a dropout occurs together with the network
state. The Markov transition matrix entries are dependent on the dropout rate in the

Ā3 Ā4Ā2

p12

p14

p13

dk = 0 dk = 1

Ā1

dk = 0 dk = 1

p41

p21

p31

Figure 8.3. Markov model showing the two dropout scenarios with the dropout states. The arrows
not going to or from node Ā1 are colored gray for easier viewing.

current state as well as the probability to switch to the other state and are calculated
using normal probability theory as

P =




pAA(1− pd1) pAApd1 pAB(1− pd2) pABpd2

pAA(1− pd1) pAApd1 pAB(1− pd2) pABpd2

pBA(1− pd1) pBApd1 pBB(1− pd2) pBBpd2

pBA(1− pd1) pBApd1 pBB(1− pd2) pBBpd2



. (8.19)

The rows in P sum up to 1, since the total probability of leaving a state is equal to 1. The
easiest method to check for stability is by using (2) and verify that the spectral radius of
A < 1, where A is defined according to Equation (8.15).

Checking whether point 3 and 4 in Theorem 1 are fulfilled requires solving a set of
coupled Lyapunov equations given by point 3 and Equation (8.16), where we solve for
each j

Vj = Sj + p1jĀ1V1Ā
T
1 + p2jĀ2V2Ā

T
2 + p3jĀ3V3Ā

T
3 + p4jĀ4V4Ā

T
4 , (8.20)
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with Sj being a unique positive definite matrix.
The system matrix A and buffer bk do not change in the different dropout scenarios

A and B, such that Ā1 = Ā3 = Ā(0) and Ā2 = Ā4 = Ā(1), reducing Equation (8.20) to

Vj = Sj + Ā(0) (p1jV1 + p3jV3) ĀT(0) + Ā(1) (p2jV2 + p4jV4) ĀT(1), (8.21)

which can be solved iteratively, and results in positive definite matrices Vj if the system
is stable.

Equation (8.18) is used to check for point 5 in Theorem 1. This can be done by using
the Vj obtained in Equation (8.21) and sum these up. If Q is bounded, which requires Vj
to be bounded for all j, the system is stable.

If these conditions are satisfied, the MJLS with transition matrix P is MSS, such
that the state system converges to the desired state.

8.5 Verification
In this section we verify the network model with two states. No thorough benchmark
is done to fine tune the parameters in this situation. We instead focus on the stability
criteria mentioned in Section 8.4 and verify these results on a NCS. The NCS used in the
simulations uses the fixed rate quantizer, designed in Chapter 5, with a Gaussian SPARC
dictionary containing zero-mean IID vectors with the covariance calculated as in Equation
(8.2). We simulate a network with parameters identical to those, listed in Appendix B.
Only two simulations are shown due to time constraints while performing these.

Simulation 1

In this simulation we have the probabilities for a packet dropout in both states pdA = 0.05

and pdB = 0.4 The network transition probabilities are p12 = 0.05 and p21 = 0.1, which
using the transition matrix in Equation (8.19), result in the transition matrix

P1 =




0.902 0.048 0.030 0.020

0.902 0.048 0.030 0.020

0.095 0.005 0.540 0.360

0.095 0.005 0.540 0.360



. (8.22)

The condition from Theorem 1 are verified using the code stabilityMJLS1.m. This
results in spectral radius of A, rσ(A) = 0.993, which is less than 1 and thus satisfying
condition 2. The remaining conditions are also satisfied.

Figure 8.4 shows the simulation of the NCS with the network modeled as a two-state
MJLS with transition matrix P1. The quantizer used is the Gaussian dictionary where
the refinements are scaled, which is explained in Section 6.2, operating at 3.75 bit/symbol.

Only 1000 samples are shown in the simulation for easier viewing. The NCS has
been simulated up to 10 000 samples, where the NCS also showed to be stable.
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M = 2, N = 5, rate 3.75 bit/symbol
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Figure 8.4. Simulation of the NCS with the network modeled as a 2-state MJLS with transition
matrix P1. The first graph shows the plant state x at each sample k. The second plot
the dropout probability pd at each sample k, indicating in which state the network is.
The blue dots indicate that a packet is lost at k. The bottom plot show the MSE.
Code: controller2state1.m.

Simulation 2

In this simulation we have similar parameters as in Simulation 8.5, but change p21 from
0.1 to 0.05, which using the transition matrix in Equation (8.19), result in the transition
matrix

P2 =




0.902 0.048 0.030 0.020

0.902 0.048 0.030 0.020

0.048 0.003 0.570 0.380

0.048 0.003 0.570 0.380



. (8.23)

The condition from Theorem 1 are verified using the code stabilityMJLS2.m. This
results in spectral radius of A, rσ(A) = 1.047, which is not lower than 1. The remaining
conditions are neither fulfilled, thus the system should not be stable. To verify this, we
simulated 10 000 samples. The results are shown in Figure 8.5 shows the stability results
for the MJLS, which according to the theory should not be stable.
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M = 2, N = 5, rate 3.75 bit/symbol
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Figure 8.5. Simulation of the NCS with the network modeled as a 2-state MJLS with transition
matrix P2, which is unstable. The first graph shows the plant state x at each sample
k. The second plot the dropout probability pd at each sample k, indicating in which
state the network is. The blue dots indicate that a packet is lost at k. The bottom
plot show the MSE.
Code: controller2state2.m.

8.6 Summary
In this chapter we illustrated an alternative network setup compared to the default setup
that is used in previous chapters. This setup gives a more real-world impression of the
network, which, most of the time, is operating stable featuring low packet dropouts, while
it for short periods can feature high packet dropout rates due to e.g. overload or instability.

We proposed to design two dictionaries, one for each state of the network. This is
based on the assumption that both the controller and the plant know the network state.

Stability criteria based on MJLS has been analyzed and modified to fit the NCS.
These have briefly been verified in two simulations, showing that the system also is stable
in the simulation, when the theory tells it is stable. This theory can be used to verify
systems in NCS situations, where busy periods or instabilities on the network are expected
for short time periods, and can verify if the system will be stable without the need for
simulations.

62



9 Conclusions
In this thesis we implemented Sparse Regression Code (SPARC) for Networked Control
System (NCS)s using fixed rate vector quantizers based on previous work in [4].

Two different methods to perform dictionary search on Gaussian dictionaries have
been investigated and modified to operate with SPARC. Since no optimal solvers exist to
perform a dictionary search sub-optimal solvers, based on greedy methods have been
applied. The MP algorithm showed good performance on SPARC and low bit rates
match a regular Gaussian dictionary. The homotopy continuation algorithm showed
to perform well on Gaussian dictionaries. This algorithm was modified to solve the
Integer Programming (IP) problem using a relaxation approximation on the cost function.
Unfortunately it did not provide the desired results, which is most likely due to the non-
convexity of the cost function.

The receding horizon controller is explained, and combined with the quantizer. After
discussions on the advantages and disadvantages of integrating the quantizer directly into
the controller, it showed to be advantageous to integrate the quantizer and solve the cost
function directly from the finite set using a greedy algorithm.

In this thesis we consider two Gaussian SPARC dictionaries, containing IID random
generated vectors, where the sections one dictionary are of are scaled versions of the
previous sections as well as a Lattice SPARC dictionary where the sections consists of
a sub-lattice of the Voronoi cells. During the design of the dictionaries for fixed rate
vector quantizers caution has to be exercised that the state of the NCS can not get out of
reach of the quantizer, which would cause it to overload. Gaussian dictionaries resembling
the distribution of the NCS were expected to provide good results. Lattice dictionaries
were expected to perform better, since the Voronoi cells have the same volume, making
the quantizer able to quantize values within the set, with lower MSE than the Gaussian
dictionaries.

Simulations of the dictionaries with fixed and variable gain on a NCS with different
dropout rates showed that the Gaussian dictionaries perform better than the lattice
dictionary, and were able to stabilize the NCS at bit rates down to 2.75 bit/symbol for
dropout rates up to 0.20. The poor performance of the lattice dictionary is due to the
shape of the Voronoi cells.

After simulations of the different dictionaries and parameters, the network model
is altered such that it can switch between two states, featuring different dropout rates.
The network is modeled using Markov Jump Linear System (MJLS), and criteria have
been described to verify whether the system with the given parameters is Mean Square
Stable (MSS). The system has been simulated with a different quantizer for each state, and
has been compared to the theory. With this model we are able to simulate more realistic
networks, with high packet dropout rates for short periods. We design the quantizers
individually, which results in a stable system with a low MSE during the stable periods
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and a higher MSE in the periods with high dropout rates.
Throughout this thesis we have designed a fixed rate vector quantizer based on

SPARC dictionaries, and have shown that these can maintain the NCS used in the thesis,
stable with a bit rate of 2.75 bit/symbol, while the MSE converges towards the MSE of
the unquantized NCS as the bit rate increases.
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10 Future research
In this thesis a quantizer using SPARC has been designed, for which multiple dictionaries
have been implemented and tested. To stay within the scope of this thesis, the performance
of the dictionaries is only tested usin a single system dependent system matrix A. Since
increasing the spectral radius of the system matrix results in a more unstable system which
oscillates faster when operating in open loop, it would affect the design, scaling and bit
rate of the dictionary significantly. The reason for this is that faster oscillations overload
the dictionary faster. When continuing work on this, it is relevant to specify conditions
for the dictionaries and bit rates under which the system with a given spectral radius and
dropout rate can be maintained stable.

The lattice dictionary designed has a decent performance. One weakness of this
dictionary is, that all Voronoi cells have the same volume. The system is, depending on
the packet dropout rate, mostly operating with small controller outputs, thus operating in
the center of the dictionary. Since the lattice Voronoi cells as well as the refinements all are
of equal size, the quantization noise is fixed, and results in a higher MSE when operating in
closed loop (without dropouts). It would here be of interest to scale the size of the Voronoi
cells, making them grow, the further they are away from the origin. This can for example
be done using companding, which is described in [24]. Companding uses a mapping on
the input signal before it is quantized, after which the inverse mapping is applied in the
decoder. This results in smaller Voronoi cells in the center of the dictionary, reducing
the MSE, while the outer Voronoi cells are larger, reducing the likelihood to overload the
dictionary.

We have investigated networks which can switch between a good state featuring low
dropout rates and a bad state with a high number of dropouts occurring. Theory to verify
whether the system with the given transition probabilities and dropout probabilities is
MSS has been described. In future work, this could be expanded to analyze an arbitrary
number of network states.

——————————————————————————
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A Lattice Gram matrices
This appendix lists the Gram matrices used to construct the lattice dictionary for different
horizon lengths N . All lattices are found in [22] and the G(Λ) values are found in Table
3,3 in [23]. The Gram matrices are defined as

Ugram = UTU . (A.1)

One of many generator matrices can be found using the Cholesky factorization or the
matrix square root [26]. In this thesis the Cholesky decomposition is used, since it results
in sparse matrices featuring fewer decimals.

A2 lattice

Ugram,A2 =


 2.0 −1.0

−1.0 2.0


 (A.2)

G(Λ) = 0.0802 (A.3)

Ã3 lattice

U
gram,Ã3

=




3.0 −1.0 −1.0

−1.0 3.0 −1.0

−1.0 −1.0 3.0


 (A.4)

G(Λ) = 0.0787 (A.5)

D4 lattice

Ugram,D4 =




2.0 0.0 1.0 0.0

0.0 2.0 −1.0 0.0

1.0 −1.0 2.0 −1.0

0.0 0.0 −1.0 2.0




(A.6)

G(Λ) = 0.0766 (A.7)

D̃5 lattice

U
gram,D̃5

=




1.0 0.0 0.0 0.0 0.5

0.0 1.0 0.0 0.0 0.5

0.0 0.0 1.0 0.0 0.5

0.0 0.0 0.0 1.0 0.5

0.5 0.5 0.5 0.5 1.2




(A.8)

G(Λ) = 0.0756 (A.9)

E6 lattice

Ugram,E6 =




2.0 −1.0 0.0 0.0 0.0 0.0

−1.0 2.0 −1.0 0.0 0.0 0.0

0.0 −1.0 2.0 −1.0 0.0 −1.0

0.0 0.0 −1.0 2.0 −1.0 0.0

0.0 0.0 0.0 −1.0 2.0 0.0

0.0 0.0 −1.0 0.0 0.0 2.0




(A.10)
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APPENDIX A. LATTICE GRAM MATRICES

G(Λ) = 0.0743 (A.11)

Ẽ7 lattice

U
gram,Ẽ7

=




3.0 4.0 5.0 6.0 4.0 2.0 3.0

4.0 8.0 10.0 12.0 8.0 4.0 6.0

5.0 10.0 15.0 18.0 12.0 6.0 9.0

6.0 12.0 18.0 24.0 16.0 8.0 12.0

4.0 8.0 12.0 16.0 12.0 6.0 8.0

2.0 4.0 6.0 8.0 6.0 4.0 4.0

3.0 6.0 9.0 12.0 8.0 4.0 7.0




(A.12)

G(Λ) = 0.0731 (A.13)

E8 lattice

Ugram,E8 =




2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

−1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

0.0 −1.0 1.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 −1.0 1.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 −1.0 1.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 −1.0 1.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 −1.0 1.0 0.0

0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5




(A.14)

G(Λ) = 0.0717 (A.15)
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B Parameters for simulation
This appendix lists the parameters used for the simulations in this thesis.

The system matrix A ∈ R5×5 is randomly generated to be

A =




−0.7578 −0.3245 −0.085337 0.060403 −2.2557

0.43212 −0.35593 0.0024123 0.0071095 −0.17091

−0.17328 1.0627 0.36569 0.67106 0.93852

0.95123 0.66704 0.73738 −0.43393 0.35231

1.0536 0.48356 −0.15787 0.45405 −0.26378




, (B.1)

and the input matrix, as well as the noise matrices are given by

B1 = B2 = [1 1 1 1 1]T (B.2)

The LQR weighting parameter Q ∈ R5×5 is set to be

Q = diag {1, . . . , 1} . (B.3)

The parameter R = 1.
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