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chronized capture of visual, thermal,
and depth images. The depth im-
age is by default registered to the vi-
sual image. Three scenes within the
range are defined. For each scene, a
custom-built thermal-visible calibration
rig is used to provide point correspon-
dences between the views. Two recti-
fication algorithms have been investi-
gated and tested by the use of the gener-
ated point correspondences; stereo rec-
tification and rectification by multiple
homographies. The stereo rectification
is however shown to provide poor re-
sults. The rectification by multiple ho-
mographies is based on training data
to generate k homographies which are
used to map points between the thermal
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mapping visible points to the thermal
modality than the baseline of a single
homography. However, the method falls
short on providing the opposite trans-
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Synopsis:

Dette speciale tager udgangspunkt i
problemstillingen med at registrere
multi-modale billedsekvenser indenfor
en rækkevidde på 1 – 4 m. Rapporten
tager udgangspunkt i at registrere alle
objekter inden for dette område. Her-
til er der konstrueret en platform i bå-
de hardware og software der muliggør
en synkroniseret optagelse af visuelle-,
termiske- og dybdebilleder. Dybdebille-
derne er som udgangspunkt registeret
til de visuelle billeder. Tre scener er de-
fineret inden for den ønskede rækkevid-
de. Punktkorrespondancer mellem hver
modalitet er genereret ved hjælp af spe-
cialkonstrueret kalibreringsudstyr. To
registreringsalgoritmer er blevet under-
søgt og testet ved hjælp af de genere-
de punktkorrespondancer: Stereorektifi-
cering og rektificering ved flere homo-
grafier. Tests viser dog, at stereorekti-
ficering giver dårlige resultater. Rekti-
ficeringen ved flere homografier bygger
på de generede træningsdata, hvorpå k
homografier er estimeret. Disse homo-
grafier bruges til at overføre punkter
mellem modaliteterne. Det viser sig, at
denne metode giver en større nøjagtig-
hed ved overførslen af punkter fra visu-
elle til termiske billeder end reference-
metoden, der bruger en enkelt homo-
grafi. Imidlertid er metoden ikke i stand
til at skabe den samme nøjagtighed ved
den modsatte overførsel.

Rapportens indhold er frit tilgængeligt, men offentliggørelse (med kildeangivelse) må kun ske efter
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Reading guide
This report is divided into the following parts: Introduction and analysis, design,
verification and conclusion, and appendices.

In the part on introduction and analysis we will focus on properly identifying the
problem and the challenges thereof and investigate some of the techniques applied in
previous work. At the end of the part we will define the boundaries and requirements
of the proposed system.

The second part is dedicated to the design of the prototype, including the design
and set-up of hardware, and the design of the algorithms included in the software.
The third part focuses on the verification of the system and such, several tests are
performed to assess the performance of the system based on the criteria stated in
part one. At the end of part three, we will open the discussion on further improving
the performance of the proposed system. Part four covers the appendices which are
provided to support the contents of part one and two. However, the report might be
understood in its entirety without visiting the appendices.

The formulas and equations stated throughout the report rely on the following
notation: Matrices are always denoted by using upper-case fonts, such as F . Vec-
tors are written as lower-case, bold letters, whereas scalars are written using regular
fonts. The use of an apostrophe behind a vector or a matrix denotes that the matrix
or vector belongs to the other view. Such is the point x referring to the position of a
point in the first view whereas the point x′ is referring to the corresponding position
of the point in the other view.

To support the content of the thesis, a CD is enclosed. On this CD, the reader may
find code related to the main problem, as well as several test scripts and additional
test data. All references to the code on the CD are done using a CD icon, ,
which refers to the position of the content with respect to the root of the CD.
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Chapter 1

Introduction

The field of computer vision has been rapidly expanding through the past decades
as advances in manufacturing processes and sharp decreases in cost has opened the
market for everyday use of imaging devices. The fields of active research within
computer vision are numerous and includes people detection, security installations,
traffic monitoring, and military applications.

There are several methods for segmenting and processing visible light images, in-
cluding Gaussian models [Stauffer and Grimson, 2000], code-book based models [Kim
et al., 2005] and the state-of-the-art ViBe background subtraction scheme [Barnich
and Van Droogenbroeck, 2011]. However, these methods rely fundamentally on the
quality of the spectral and spatial information of the image such as colour and gra-
dient. These features are dependent on external lighting such as the sun or artificial
lighting and as the intensity or the direction of the light fluctuates, the colours and
gradients might change significantly. However, if the objects are not immersed in
light they are not even visible. The reliance on stable lighting conditions makes it
difficult for visible light systems to operate in harsh weather conditions and impos-
sible to operate in the darkness.

In order to overcome the downsides of visual imaging, a new field in computer
vision centred on thermal cameras has emerged. The field of thermal cameras has
long been limited to military applications due to excessive manufacturing costs, but
rapid advances in spatial resolution and sensor cost has opened the field of scientific
research within the last decade. Thermal cameras in the mid and long-wavelength
infrared range captures the radiation of objects with a temperature between 190 K
and 1000 K [Gade and Moeslund, 2013] and are thus perfectly capable of detecting
humans if the body temperature is significantly different from the surroundings.
The thermal characteristics of a human body is independent of colour, texture, and
external lighting and the thermal sensor might even see through material that blocks
visible light but lets radiation through. Thermal cameras are presently used in
agriculture [Vadivambal and Jayas, 2011], building inspection [Al-Kassir et al., 2005],
industrial gas detection, industrial manufacturing, rescue operations, and unmanned
aerial vehicles, to name some.

Whereas the thermal camera is superior for detecting humans in a broad range
of situations, the nature of the thermal information makes it difficult to use thermal
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4 Chapter 1. Introduction

imaging for person identification and recognition. Compared to visible imagery,
thermal images provide fewer features and the thermal appearance might also vary
according to the physical condition of the subject. However, when combined, the two
modalities might complement each other and provide stable features for tracking
and recognition where the separate modalities otherwise will fail. A possible use
case is the detection of humans where the thermal imagery is used for robust people
detection after which the visible imagery is used for identification of the humans
found.

Due to the immanent differences of thermal and visible images and the imaging
devices, fusion of the images implies an accurate image registration. In the following
chapter, we will review the literature for methods on thermal-visible registration and
define the further scope of this project.



Chapter 2

Preliminary analysis

In this chapter, we will give an introduction to the current state-of-the-art on thermal-
visible registration as well as the limitations of those. At the end of the chapter, we
will provide a problem statement for the further work of this report.

Thermal-visual image fusion is broadly classified in three categories: pixel-level
fusion, feature-level fusion, and decision-level fusion. Each level of fusion requires
different levels of accuracy of the thermal-visible registration and while all fusion
schemes benefits from an accurate registration, the pixel-level fusion requires, natu-
rally, a very accurate pixel-to-pixel level registration. The image registration methods
mentioned below use their registration schemes for either blob-based pixel-level or
feature-level fusion.

2.1 Methods on thermal-visible registration

The field on thermal-visible registration has been actively researched within the last
decade and though a lot of interesting methods have been presented, a single ’gold
standard’ for accurately registering video frames from the thermal and visible modal-
ities is yet to be presented. As the visible and thermal modalities have immanently
different properties, performing an accurate registration at every point in the 3D
plane has shown to be a difficult task, according to the current literature on the
matter.

Articles from Krotosky and Trivedi [2007] and Zhao and Sen-ching [2012] have
provided a thorough survey of current techniques on the registration of the modalities.
Krotosky and Trivedi [2007] divides the research into categories based on whether or
not the registration includes 3D information of the scene, the registration method,
calibration measures, and the assumptions necessary for the registration to work.
Zhao and Sen-ching [2012] divides the literature by the method of performing the
’geometric fusion’ between the thermal and visible modalities. In this overview, we
will use their notation. Zhao and Sen-ching [2012] distinguish between optical fusion,
alignment assumed, image warping, 3D reconstruction, and blob homography. The
methods are summarized in Table 2.1. While the former notations are widely used
in the literature, the novel notion of ’blob homography’ covers a variety of methods
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6 Chapter 2. Preliminary analysis

for cross-image rectification that are based partially on the correction of the epipolar
lines in the modality images and a subsequent search for corresponding blobs in order
to compensate for the remaining disparity.

Geometric fusion Alignment level Accuracy

Optical fusion Pixel Low-medium
Alignment assumed Pixel High
Image warping Frame Low–High
3D reconstruction Pixel–blob Medium
Blob homography Blob Medium–High

Table 2.1: Thermal-visible camera registration methods, overview [Zhao and Sen-ching, 2012]

In the following, we will give a brief introduction to the methods listed.

2.1.1 Optical fusion

In optical fusion, a beam-splitter is used for feeding both the thermal and visible
camera with light. In this way, the displacement of the sensors is made negligible,
and both sensors will see the scene from the exact same positions. Differences in field-
of-view and lens properties of the visible and thermal cameras will entail inevitable
differences in the images of the two modalities, though.

Optical fusion is used by Ó Conaire et al. [2005] who use a standard-window
glass for splitting the light beams, as seen from Figure 2.1. The clear advantage of
this approach is that the need for geometric fusion is very sparse, and in the work
of Ó Conaire et al. [2005], the image registration is accomplished by using a simple
planar homography. However, the performance of this registration algorithm is not
evaluated quantitatively and only qualitatively via visual inspection. The downside
of optical fusion, though, is the amount of light absorbed by the beam splitter. The
absence of much of the light reduces the contrast of the thermal image [Ó Conaire
et al., 2005].

Figure 2.1: Beamsplitter camera rig. Courtesy of [Ó Conaire et al., 2005].

2.1.2 Alignment assumed

This method is fairly simple - by simply assuming that the image alignment is one-
to-one, no image registration is needed. This assumption is used where scenes are
pre-registered and is thus of no interest to us.
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2.1.3 Image warping

The techniques of image warping use manually extracted corresponding points from
both modalities to construct either a planar or infinite homography for image recti-
fication. This requires the important assumption, however, that the scene is planar,
which means that the difference of the distances of moving objects in the scene are
much smaller than the distances of the scene from the camera. However, when this is
the case, a accurate pixel-to-pixel correspondence is achieved. The actual accuracy of
this mapping is hard to assess, though, as the authors performing image warping do
not present any quantitative measures on the performance of the registration. Image
warping with the above limitation of inter-object distances is presented by Kroto-
sky and Trivedi [2007] as “Global registration”, whereas the image warping used on
long-distance imagery is using an infinite homography. More on this in Figure 2.2.

The majority of research on thermal-visible registration, tracking, and image
fusion use the image warping technique, such as Davis and Sharma [2007]. The
widespread use of the thermal-visible datasets from OTCBVS [Davis and Sharma,
2005] encourages the use of an infinite image homography, as the data set contains
surveillance data from a high altitude, thus providing a good ratio of the distances
between the camera and the scene and the inter-object distances of the scene.

Without using a homography, the work of St-Laurent et al. [2010] uses a cascade of
geometrical operations to register imagery at a fixed distance to the scene. Instead
of using a homography, the authors use a cascade of operations to geometrically
correct the registration at a fixed distance, compensate for differences in Field of
View (FOV), and tilt angle.

2.1.4 Blob homography

The techniques of “blob homography” use either a calibrated approach with chess-
boards [Krotosky and Trivedi, 2007], an uncalibrated stereo rectification [Zhao and
Sen-ching, 2012], or a depth-induced V-disparity transformation [Bertozzi et al., 2006]
for pre-registering the images. The paper of Krotosky and Trivedi [2007] use a promis-
ing disparity voting algorithm based on the dual input of the two cameras. Bertozzi
et al. [2006] use stereo pairs of thermal and visible cameras to detect pedestrians
by performing a V-disparity computation for each modality and doing a subsequent
bounding-box based search to register the pedestrians individually. Zhao and Sen-
ching [2012] use the silhouettes of the detected blobs to perform the registration.

All three methods above rely on the assumption that foreground objects in the
thermal image are substantially hotter than the background and the methods may
only be used to detect objects fulfilling this assumption, thus excluding a pixel-wise
correspondence of every object in the scene.

The performance of “blob homography” image rectification systems are provided
by most authors and range from 95− 99.4 % accuracy [Krotosky and Trivedi, 2007],
and a false positive error of 0.19 and a false negative error of 0.01 [Zhao and Sen-ching,
2012]. In all systems, the results are presented as contour overlays on colour images.
For the naked eye, the results here seems to be accurate on a blob-to-blob level. Is
is hard, though, to provide any measure on the exact pixel-to-pixel correspondence.
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Other approaches to blob registration includes registration based on optical flow
[Zhang et al., 2012] and silhouette tracking [Torabi et al., 2011].

2.1.5 3D reconstruction

3D reconstruction is a road to image registration that is substantially less travelled
than image warping techniques or blob homography. Johnson and Bajcsy [2008]
and Lee et al. [2009] use a set-up of tree grey-scale cameras, one RGB camera,
and one thermal camera. The authors perform a calibration of both modalities
to extract internal and external camera parameters. From these parameters, the
authors project the RGB points to world coordinate space and from there to the
coordinate space of the thermal camera. Although the authors provide a pixel-wise
mapping of the thermal and visible images, the only quantitative measurement of
the papers is the measurement of the numbers of pixels that were correctly classified
as foreground/background, thus not containing any explicit data of the quality of
the image registration.

The work of Krotosky and Trivedi [2008] use a dual stereo configuration of two
thermal and two visible light cameras to construct trifocal tensors relating two cam-
eras of one modality to one camera of another modality. With the trifocal tensor,
an accurate image registration is performed. The trifocal tensor is the generalisation
of the fundamental matrix when used with a trinocular set-up. The fundamental
matrix is explained in greater detail in Section 7.2.

2.1.6 Geometric interpretation

The notions of Zhao and Sen-ching [2012] may also be presented by their geometric
implications as presented originally by Krotosky and Trivedi [2007]. The overview is
seen from Figure 2.2.

According to Krotosky and Trivedi [2007], the infinite homography and single
homography methods are the most commonly used methods on image registration.
Only a few authors use the stereo geometry alone, although this method often is
a prerequisite for methods on “blob homography” as described above. As seen in
Figure 2.2c, the registration for a single homography is only accurate within the
exact plane that the registration is done within. The further the world point deviates
from the registered plane, the more the parallax increases. This also applies when
using multiple homographies, however the image registration is in this case valid for
multiple planes.

2.2 Accurate pixel-to-pixel level registration

The methods described in Section 2.1 provide viable thermal-visible image registra-
tion for a long range of different scenes, differing from short range distance of 1 – 10
m to long-range scenarios with 30 – 50 m from the cameras to the scene. In general,
the long-range registration is achieved using an infinite homography with high accu-
racy. In the short range registration, however, a number of techniques have emerged
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Figure 2.2: Geometric overview of methods for image rectification, inspired by [Krotosky and
Trivedi, 2007]. The cameras C and C’ are seen from above, with image planes seen as dotted lines
and the registered plane of interest noted π. In infinite homography, the core assumption is that the
distance between the two cameras is minimal and the distance to the scene is large. With a single
homography, we have registered the scene for a single image plane π only, whereas with multiple
homographies, we may register the scene at multiple depths or planes - however, as with the single
homography, movement outside the plane(s) is subject to a noticeable parallax. Stereo geometry
uses information of the cameras and the scene to obtain a rectified image for both modalities where
the only displacement of corresponding points is found in either the vertical or horisontal direction.
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that either limits movement to one or more predefined planes or is reliant on a dual
stereo configuration to recreate the 3D structure of the scene in both modalities.
The above mentioned methods on “blob homography” does not limit the movement
in the plane nor requires a dual stereo configuration. However, these methods are
solely restricted to people detection or detection of objects with consistently defined
contours in both the thermal and visible modalities. Otherwise, the search for the
remaining disparity in one of the image axes are prone to failing.

If one wishes to register thermal-visible imagery for any object in the scene, this is
currently only achievable via 3D reconstruction by a dual stereo configuration, which
requires a minimum of two thermal and two visual cameras. Previous articles on 3D
reconstruction do not provide any quantitative data on the registration accuracy and
thus makes it hard to prove the validity of the algorithms used. The field of thermal-
visible image registration is still relatively young though, and there might thus exist
other registration methods that allows an accurate registration of an entire scene
without the use of an expensive dual thermal configuration. This project aims to
investigate such methods to thermal-visible image registration.

2.3 Problem statement

Following the above, the goal of this project is to study how we may create a robust,
accurate thermal-visible registration algorithm. Unlike many of the algorithms listed
above, the registration algorithm of this project should not be limited to registering
humans or be limited to registering objects that have a clear distinction in either the
visible or thermal modalities and should thus be able to register all objects within a
predefined range.

Many of the proposed methods on thermal-visible registration use the properties
of infinite homographies due to the fact the scene is located far from the camera. In
this project, we do not wish to exploit this condition and thus focus on providing
an accurate registration where other methods will induce noticeable parallax. As a
result, the algorithm should be limited to registering scenes within the range of 1 –
4 metres from the camera.

Unlike some of the methods presented above, we will not use a dual stereo con-
figuration with two thermal and two RGB cameras. However, we still want to utilize
depth information of the scene either via a visible light stereo camera or active infra-
red sensors such as the Microsoft Kinect or ASUS Xtion. Due to the high cost of
thermal cameras, the set-up should only consist of a single thermal camera supple-
mented by one or more visible light cameras.

Summarized, the project aims to solve the following problem:

• How to develop a registration algorithm for registration of thermal-visible im-
agery of objects within the range of 1 – 4 m by the use of a single thermal
camera and a visible camera configuration providing depth information of the
scene.

Based on this problem statement, the following chapter will provide a thorough
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review of the resulting requirements and implications for the system to be designed.



Chapter 3

Requirement specification

The previous chapter introduced the notion of thermal-visible image registration and
the multitude of methods developed for providing an accurate registration between
imagery of the two modalities. In Section 2.3, the problem statement of the project
is presented as how to develop a registration algorithm for registration of thermal-
visible imagery of objects within the range of 1 – 4 m by the use of a single thermal
camera and a visible camera configuration providing depth information of the scene.

Based on this problem statement, this chapter will set the requirements in order
to create a framework for acquiring and registering thermal-visible imagery.

3.1 Image acquisition platform

An accurate thermal-visible registration requires an acquisition platform capable of
capturing and pre-processing the imagery. This section will describe the require-
ments for this platform, both in terms of the hardware needed for the actual image
acquisition and the software needed for the extraction of frames and the temporal
alignment of image data.

3.1.1 Synchronization

In order to provide an accurate registration, the imagery of the two modalities must
be carefully synchronized in time to make the movement of objects synchronous in
both modalities. The difference in time between any two synchronized frames of the
imagery should not exceed half of the inter-frame interval of the camera with the
slowest frame rate. This is indeed an important criterion since if this is not met,
the synchronization algorithm has either skipped frames that fitted better or the
synchronization is skewed in time. The property of the half inter-frame interval is
seen from Figure 3.1. As a high frame rate is important, we choose a maximum
synchronization error of 40 ms, which leads to a minimum frame rate of 12.5 frames
per second.

12
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t visible

t thermal

visible frame

thermal frame synchronization lag

unreferenced frame

Figure 3.1: Synchronization of frames. The vertical lines show frames for both the visible and
thermal camera. In this example, the frame rate of the two cameras are not equal, which means
that some frames from the visible camera are left unreferenced to any frames of the thermal camera,
and are thus discarded.

3.1.2 Thermal imagery

Thermal images should be provided of the scene by a thermal camera capable of
capturing radiation emitted by humans and objects used by humans, which is defined
as the range from -10◦C to 50◦C. The minimum resolution for the thermal images is
chosen to be QVGA, 320 x 240.

3.1.3 Visible imagery

Visible images should be provided by a RGB camera which takes images at minimum
VGA resolution, 640 x 480.

3.1.4 Depth information

The visible camera(s) should provide depth information of objects placed within 1 –
4 metres from the cameras. The depth of the object should be determined even if
the object does not contain any texture information.

3.1.5 Depth registration

The visible cameras(s) should provide a registration between the depth information
and the visible image. The acquisition platform should store this registration for
further use.

3.1.6 Baseline

The thermal and visible cameras should be co-located and the baseline between the
camera sensors should be minimized in order to ease the process of image registration
and minimize the effect of image parallax. It is therefore required, that the image
sensors of the thermal and visible cameras are not situated further apart than 100
mm.
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3.1.7 Summary

The final requirements for the acquisition platform are summarized in Table 3.1.

Parameter Requirement Explanation

Synchronization lag ≤ 40 ms Lag between synchronized frames
Minimum frame rate ≥ 12.5 FPS Minimum allowed frame rate
Thermal range -10◦C – 50◦C Temperature range visible to the thermal

camera
Minimum visible res-
olution

640x480 Minimum resolution for the RGB cam-
era, in pixels

Minimum thermal
resolution

320x240 Minimum resolution for the thermal
camera, in pixels

Baseline between
cameras

≤ 100 mm As small as possible, but below 100 mm

Depth information Available Available for at least one camera
Depth registration Stored The registration between the depth infor-

mation and the visible image should be
provided by the manufacturer and stored
during capture

Depth range 1 m – 4 m Range for which the depth information
should be provided by the depth sensor

Table 3.1: Requirements for the image acquisition platform.

3.2 Thermal-visible registration algorithm

The registration algorithm relates objects in the visual image to the same objects
in the thermal image and vice versa, thus providing pixel-to-pixel correspondences
between the images. As the depth is registered to the visual image by the acquisi-
tion platform, we will only define the accuracy requirements for the thermal-visible
registration.

3.2.1 Distribution of corresponding point sets

The sets of corresponding points, from which the performance of the registration
algorithm should be measured against, should be distributed equally throughout the
entire depth range. Validation points are, in this context, individually extracted
corresponding points from both the thermal and visible imagery. The exact place-
ment of the corresponding point sets is treated in the acceptance test specification
in Chapter 4.

3.2.2 Number of validation points

The number of validation points should not be less than 1000.
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3.2.3 Registration range

The registration should work for objects in the scene placed within a distance of 1 –
4 metres.

3.2.4 Accuracy

The accuracy of the registration is the pixel error of registering both visible to thermal
and thermal to visible imagery. In the following, we will distinguish between two error
measures; the one-directional transfer error, and the two-dimensional transfer error,
better known as the symmetric transfer error (STE) between corresponding points
in both modalities.

The one-directional transfer error (OTE) is the sum of squared errors of mapping
either visible to thermal points or thermal to visible points, and thus, there exist two
OTE’s: rgb→t and t→rgb.

The symmetric transfer error (STE) is the sum of both OTE’s and thus describes
the overall performance of the registration. It is necessary to distinguish between
these error measures as the performance of the registration might not necessary
be symmetric. It might be that the registration for RGB to thermal points is far
superior to the registration for thermal to RGB points, depending on the proposed
registration algorithm.

The STE is formalized as:∑
i

d(xi, HTtoRGB x′i)2 + d(x′i, HRGBtoT xi)2 (3.1)

where xi is the point vector in the RGB image, x′i is the corresponding point vector
in the thermal image, HRGBtoT is the homography mapping points from the RGB
image to the thermal image, and HTtoRGB is the homography mapping points from
the thermal image to the RGB image.

The distance function, d is not explicitly defined and may be set as the function of
choice. This work will distinguish between two distance functions, geometric distance
and algebraic distance, which in this context will be defined as:

dalg,x(xi, x̂i) = |xi − x̂i| (3.2)
dalg,y(xi, x̂i) = |yi − ŷi| (3.3)

dgeom(xi, x̂i) =
(
(yi − ŷi)2 + (xi − x̂i)2

)1/2
(3.4)

where x is the measured image point vector, x̂ is the estimated image point vector,
and xi, yi and x̂i, ŷi are the x and y coordinates of the measured and estimated
points, respectively.

The definition of the algebraic distance differs from the definition by Hartley and
Zissermann [2003], but in this framework, the algebraic distance is used to measure
if the mapping error is biased in either the x or y direction. This could also be
measured by computing the phase of the geometric error, but is computationally
easier to implement by the algebraic error.



16 Chapter 3. Requirement specification

Other measures than the STE such as the reprojection error might also be used.
The reprojection error estimates ’how much it is necessary to correct the measure-
ments in each of the two images in order to obtain a perfectly matched set of image
points’ [Hartley and Zissermann, 2003]. This measure is indeed similar to the one
of STE, but in this case, we would explicitly like to measure the sum of mapping
errors rather than finding the distance to perfectly mapped points. Therefore, the
symmetric transfer error is chosen as he measure of choice.

Base-lining the accuracy The actual thresholds for the STE and OTE are hard
to set. In general, we would want a zero-error registration between the two modal-
ities such that a unique pixel-to-pixel correspondence indeed does exist. However,
an error-free correspondence assumes zero noise which is indeed impossoble and as
such, we have to specify exactly what is acceptable. The literature on image regis-
tration does not provide any quantitative data defining if an error is ’acceptable’,
and if one wants to set a tolerated error in terms of the OTE and STE, the defined
threshold would indeed be arbitrary. Instead, we will choose a baseline, for which
the performance of the proposed registration algorithm is measured against.

The baseline chosen for comparing the registration accuracy of the proposed
registration algorithm is the global registration technique which registers the images
of the two modalities by a single homography. The global registration technique
is described in brief in Section 2.1. The global registration technique might be
considered as the ’minimum configuration’, as the technique is simple, well known,
and readily implemented in many frameworks for computer vision. The proposed
method should be able to increase the performance of the registration compared to
the baseline in terms of lower OTE and STE for all scenes, measured in geometric
distance.

3.2.5 Assumptions

It is assumed that the scenes for which the registration should be applied are known
prior to any registration. Furthermore, the intrinsic parameters of the cameras should
be known. Therefore, in order to provide a valid thermal-visible registration, the
scene and the cameras must be calibrated before any image registration may take
place. The calibration includes, but is not limited to, estimation of intrinsic camera
parameters, undistortion of images, and determination of world points seen through
a calibration device.

To provide a reliable depth view of the scene, it is also assumed that scenes are
located indoors and under controlled lighting.

If scenes are limited in range, for instance by the placement of furniture, walls,
and doors, the requirements for the registration distance and distribution of control
points should be limited to reside inside the range of the scene.

3.2.6 Summary

A summary of the requirements for the registration algorithm is listed in Table 3.2.
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Parameter Requirement Explanation

Geometric OTE,
rgb→t

< baseline The mean and standard deviation of the
one-dimensional transfer error when rec-
tifying points from rgb→t, measured in
geometric distance, should be lower than
the corresponding error of the baseline.

Geometric OTE,
t→rgb

< baseline The mean and standard deviation of the
one-dimensional transfer error when rec-
tifying points from t→rgb, measured in
geometric distance, should be lower than
the corresponding error of the baseline.

Geometric STE < baseline The mean and standard deviation of the
symmetric transfer error, measured in
geometric distance, should be lower than
the corresponding error of the baseline.

Registration
range

1 m – 4 m Objects should be registered with the
listed accuracy within this range.

Number of valida-
tion points

≥ 1000 The number of validation points used
for measuring the registration accuracy
should be greater than or equal to 1000.

Distribution of
validation points

- The validation points should be dis-
tributed equally throughout the entire
range of the scene.

Table 3.2: Requirements for the image acquisition platform.



Chapter 4

Acceptance test specification

The acceptance test specification will set the conditions, for which the requirements
of Chapter 3 will be evaluated. Consequently, the acceptance test specification will
be divided in parts according to the requirement specification.

4.1 Image acquisition platform

The requirements for the image acquisition platform are relatively easy to test, since
these typically are based on the detection whether a physical property of the platform
is fulfilled or not. The test specification for the image acquisition platform is divided
into three parts: the physical platform, synchronization, and depth information.

4.1.1 Physical platform

An acquisition platform is be constructed that meets the requirements of the pixel
resolution, minimum frame rate, and the baseline between the camera centres listed
in Table 3.1.

4.1.2 Synchronization

In order to measure the performance of the synchronization of frames from the visible,
thermal, and depth modality, each frame should be traceable in time. In other words,
each frame of every modality is measured against a single clock. This clock might be
a system clock of the acquisition platform or a clock of one of the cameras as long
as every frame relates to the time of this clock. The traceability of the frames may
not be readily available directly after the capture of scenes and should, in this case,
be obtained through post-processing of the image stream.

Once traceability is available for every frame of the image streams of the cameras,
the requirements of Section 3.1.1 is easily tested by measuring the time distance be-
tween synchronized frames against the same clock, and finding the maximum distance
in time.

18
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4.1.3 Depth information

As listed in the requirement specification, depth information should be obtained and
registered with respect to the visible camera.

The range of the depth information is tested by placing an object, a blank A4
paper or equal, in front of the depth camera at the boundaries of the specified depth
range, in this case at 1 and 4 metres. The validity of the depth information inside
this range is verified by extracting depth information for calibration rigs defined in
Section 4.2.2. The accuracy of the depth measurements is a topic for another project
and is thus not estimated here. However, the accuracy of most depth sensors is
provided by most manufacturers or, in the case of the Microsoft Kinect, available by
scientific measurements, such as the one from Khoshelham [2011].

The registration of the depth images to the visible image should provide a map-
ping for all pixels inside the depth image to corresponding pixels of the visible image.
If this exists, the criterion on depth registration is fulfilled. The evaluation of the
factory calibrated depth registration performance is beyond the scope of this project
and will thus not be tested.

4.2 Thermal-visible registration algorithm

The range of the registration algorithm is bounded in space by the requirement
specification which also defines that the registration should work for indoor scenarios.
This sets some very important delimitations for defining the test scenes for which
the thermal-visible registration algorithm should be evaluated.

4.2.1 Defining scenes

Three scenes are defined for validating the registration algorithm; two general scenes
and a planar scene. The scenes are defined in a overall context defined by the
collaboration with the VAP group at Aalborg University, and the definitions of the
scenes are therefore different from one would immediately expect to be defined in the
context of thermal-visible registration. For these scenes, the registration algorithm
should register humans and objects within the defined range. These scenes will be
explained in the following:

Scene 1 takes place in a room bounded by a wall at the maximum registration
distance, and a door on the left. A table and two chairs are placed in front of the
cameras.

Scene 2 is a planar subset of scene 1, which means that objects are placed within
a fixed distance to the cameras. The actual distance to the cameras is irrelevant, as
long as objects are placed within the range of 1 – 4 metres. However, in order to
obtain a near-planar scene, the objects should be placed within a range of ±0.25 m
from the chosen distance.

Scene 3 is, unlike scene 1, not bounded by walls at the maximum registration
distance. The scene contains at least one table, one chair, and one couch.
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The definitions of Scene 1 – 3 are listed in Table 4.1.

Scene Depth range Open environment Chair Table Indoor

1 1 – 4 m x x x
2 d± 0.25 m x x x
3 1 – 4 m x x x x

Table 4.1: Scenes defined for the validation of registration performance.

4.2.2 Obtaining corresponding point sets

In order to measure the registration performance of scenes defined in Section 4.2.1,
sets of corresponding points in the thermal and visible images must be defined. These
sets should come from a calibration rig from which corresponding points are easily
extracted in both the visible and the thermal modality. The nature of the calibration
rig is left undefined but should enable the extraction of corresponding points in the
thermal and visible images with sub-pixel accuracy. The point correspondences from
the calibration rig might also be used for undistorting the imagery from the cameras
and estimating the camera parameters.

In order to fulfil the requirement of distribution of validation points, the thermal-
visible calibration rig is swept through the entire range of the scene in what is defined
as a calibration sequence. The duration of this sequence is limited by the performance
of the calibration rig but should at least be 1 minute. Within this minute, the
calibration rig is swept through as much as the scene as possible, covering multiple
depths, poses, and ranges.

When the calibration sequence is conducted, a number of frames is extracted from
the sequence, from which the corresponding point sets are extracted. As these point
sets shall be used for a variety of applications, including the calibration and regis-
tration of cameras, at least 25 frames are extracted from each calibration sequence.
These frames have to be picked carefully, and should reflect a broad range of depths,
poses, and ranges of the calibration rig, reflecting the coverage of the calibration rig
in the calibration sequence.

In order to generate as many point correspondences of each scene as possible,
three calibration sequences are conducted for each scene. Calibration sequence 1
and 2 are used for training the registration algorithm whereas calibration sequence
3 is used for the validation of the algorithm. By choosing sequence 3 to provide the
validation point correspondences, one might calculate the minimum amount of point
correspondences generated by one view of the calibration rig:

correspondences per rig = 1000
number of calibration sequences = 40 (4.1)

The registration algorithm is thus trained with the point correspondences of calibra-
tion sequence 1 and 2 and validated with the point correspondences of calibration
sequence 3.
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4.2.3 Registration accuracy

The performance of the registration algorithm is measured for both the training
and validation set. For each adjustable parameter of the registration algorithm,
the registration procedure is run 20 times on both the training and validation set.
The successive runs is required to level out eventual irregularities if the registration
algorithm is based on non-deterministic measures.

The number of trials for the registration algorithm is thus defined as:

N = number of scenes · 20 · number of parameters · 2 (4.2)
= 3 · 20 · number of parameters · 2 (4.3)
= 120 · number of parameters (4.4)

The performance of the algorithm is measured by the symmetric transfer error
and one-directional transfer errors specified in Section 3.2.4.

Creating the baseline

As specified in the requirement specification, the baseline for which the registration
algorithm is compared against is the technique of global registration. The global
registration uses a single homography to register the thermal and visible images.
This homography is easily obtained using OpenCV’s findHomography which uses the
RANSAC technique described in Section 7.3.3. The RANSAC technique relies on a
threshold for filtering the outliers, which might be arbitrarily defined. In order to find
the best fitting homography, one should test multiple values for the threshold. Given
that the coordinates are given in pixel, we will in this context vary the threshold
between 1 and 30 and find the homography featuring the lowest symmetric transfer
error of each test set.
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Chapter 5

Acquisition platform

The following chapter will go through the design and construction of a platform for
acquiring the thermal and visible imagery. This includes the creation of a hardware
platform and the use of software SDK’s to provide a synchronised capture of images
from both modalities.

5.1 Hardware platform

As stated in section 2.3, we will need a configuration consisting of one thermal camera
and either a visible stereo camera configuration or a single visible camera equipped
with 3D information of the scene. In the next section, we will investigate available
vision equipment and choose an appropriate camera set-up for the image acquisition.

5.1.1 Visible light cameras

As noted above, we want to utilize depth information of the scene to enhance the
performance of the registration algorithm. This means that we will either use a stereo
camera set-up which uses texture information to induce the depth of the scene or a
camera equipped with an active emitter to measure the depth of the scene.

Stereo cameras: Bumblebee XB3

The Bumblebee XB3 is a stereo camera by Point Grey. It includes three different
cameras, each of which has a resolution of 1280x960 for a frame rate of 15 frames
per second. Equipped with three cameras, the system comes with to baselines: wide
mode with a baseline of 24 cm or narrow mode with a baseline of 12 cm [Point Grey
Research, 2011]. The camera communicates with a computer through a FireWire
interface. In terms of software, the system is shipped with the FlyCapture and
Triclops SDK, which allow use of the Bumblebee in a C program; FlyCapture is
specifically designed for image acquisition, whereas the Triclops SDK focuses on
computer vision such as rectification of images and computation of the disparity.
Table 5.1 gives more specifications of the Bumblebee XB3.

23
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Property Value

Focal length 3.8 mm or 6 mm
HFOV 66 deg

43 deg
Baseline, narrow mode 12 cm
Baseline, wide mode 24 cm
Maximum disparity 1024 px
Signal-to-Noise ratio 54 dB
Resolution 1280x960 @ 15 FPS
Dimensions 227 mm x 37 mm x 41.8 mm

Table 5.1: Bumblebee XB3 specifications [Point Grey Research, 2011]

The Bumblebee XB3 is a stereo vision system. This implies that the robustness
of the output greatly depends both on the algorithms used for the computation and
some elements in the scene that the system is known to be weak against. Specifically,
this includes, but is not limited to, specular highlights and large non-textured areas.

By nature, stereo vision algorithms need a lot of computation to give the depth
of a pixel: first, the two images have to be rectified so that epipolar lines are parallel;
then several points are to be matched in both images; finally, the disparity has to be
calculated, from which the depth is calculated. However, the Bumblebee XB3 can
output rectified images directly, meaning that the first step may be skipped.

Accuracy and precision Based on experimental results, a good rule of thumb is
to estimate a matching error of 0.22 pixels in the disparity [Point Grey Research,
2004]. Furthermore, the Bumblebee XB3 camera is pre-calibrated to guarantee a
root-mean square error of maximum 0.08 pixels [Point Grey Research, 2010].

Microsoft Kinect

The Microsoft XBOX 360 Kinect is a camera containing a RGB camera, an infrared
laser emitter, an infrared camera, a multi-array microphone, and a motorized tilt
mechanism. The Kinect is available for about 176 EUR [Play.com, 2013].

According to the technical specifications of the Kinect, it has a horizontal field
of view of 57 degrees and a vertical field of view of 43 degrees [Microsoft Developer
Network, 2013a]. Further specifications may be seen from Table 5.2.

The Kinect is compatible with the the OpenKinect project and the OpenNI frame-
work for natural interaction which allows for interfacing the Kinect with MATLAB
if the ’Kinect for MATLAB’ wrapper is utilized [Shirai and Yu, 2011].

Microsoft provides the Kinect for Windows SDK that provides speech recognition,
skeleton tracking, and several modes for extracting the depth and colour information
[Microsoft Corporation, 2013]. In this context however, we will only need to access
the raw depth and colour information. The SDK is available for C++, C#, and
Visual Basic and allows interaction with MATLAB using the ’Kinect Bridge’. The
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Property Value

HFOV 57 deg
VFOV 43 deg
Depth range, near mode 0.4 m - 3 m
Depth range, default mode 0.8 m - 4 m

Colour resolution 1280x960 32-bit colour @ 12 FPS
640x480 32-bit colour @ 30 FPS

Depth resolution 640x480, 16-bit depth @ 30 FPS
Audio resolution 24-bit at 16 KHz

Table 5.2: Technical specifications for Microsoft Kinect [Microsoft Developer Network, 2013a],
[Eisler, 2013]

device requires power via a separate power supply and is connected to a computer
through an USB cable.

Accuracy and precision Microsoft has not provided any public data on the accu-
racy and precision of the Kinect sensors. However, the community behind the Robot
Operating System library has made measurements of those parameters [ROS.org
OpenNI Wiki, 2013], and the accuracy of the calibrated Kinect sensor ’turns out to
be very high’, in numbers between ±1 mm. The error of the depth measurements
is found to be almost proportional to the distance to the object squared. For one
Kinect, the equation is presented as [ROS.org OpenNI Wiki, 2013]:

E = d2 · 0.0075 (5.1)

According to the work of Khoshelham [2011], the error does indeed follow this pat-
tern. According to the author, the Kinect has a depth resolution about 5 cm at a
distance of 4 meters. At five meters, which is the ’extended’ range with newer Kinect
SDK’s, the resolution increases to 7 cm. The decrease in accuracy is a consequence
of the nature of the infrared pattern that the Kinect emits to measure the depth by
triangulation.

ASUS Xtion

ASUS manufactures the Xtion Pro and Xtion Pro Live which share the majority of
specifications with the Kinect. The Xtion Pro comes with depth sensors similar to
the ones found in the Kinect, however, it does not include the RGB camera nor the
microphone of the Kinect. The Xtion Pro Live includes those two emissions. Both
sensors are interfaced through the OpenNI framework with C++ and C#. The range
of the depth sensor is, according to ASUS, between 0.8 and 3.5 m - comparable to
the default mode of the Kinect [Asus.com, 2013].

5.1.2 Thermal cameras

Commercial thermal cameras are available in a number of different configurations,
most importantly distinguished by the range of infrared radiation visible to the cam-
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era. The infrared range is defined between wavelengths of 0,7 µm to 1.000 µm.
The range of interest for thermal camera manufacturers is substantially smaller, and
might be sub-divided into categories shown in Table 5.3.

Division name Abbreviation Wavelength

Short-wave SWIR 0,7 - 1,4 µm
Mid-wave MWIR 3 - 5 µm
Long-wave LWIR 8 - 14 µm

Table 5.3: Sub-division ranges for thermal cameras [Gade and Moeslund, 2013].

Humans with a body temperature around 37 ◦C are visible in both the mid-
and long-wave infrared ranges. According to the physics of Planck’s Law, the cooler
the object, the longer the wavelength of the emitted radiation. This means that
objects cooler than 0 ◦C are almost invisible for MWIR cameras, whereas LWIR
cameras are able to see objects with temperatures ranging from -20 to 100◦C. We
are interested in cameras that are able to see humans and objects in the temperature
ranges of ’everyday life’ both outdoors and indoors, which makes LWIR cameras a
good choice.

Due to the excessive cost of thermal cameras, we only investigate one thermal
camera in the long-wawe range, the AXIS Q1922. The AXIS is readily available
at the Visual Analysis of People (VAP) Laboratory at Aalborg University, whereas
other cameras might only be accessible at an additional cost.

AXIS Q1922

The AXIS Q1922 thermal network camera is capable of capturing radiation in the
LWIR-range. The camera uses an uncooled micro bolometer to passively capture
the radiation and comes in a indoor and an outdoor configuration, the Q1922-E.
Technical specifications of the camera is seen from Figure 5.4.

Property Value

Lens 19 mm
Image resolution 640x480 @ 30 FPS*
Spectral range 8 – 14 µm
Sensitivity < 100 mK
Audio resolution Stereo AAC LC @ 16 KHz

Table 5.4: Technical specifications for AXIS Q1922. *Frame rate only applicable in selected
countries such as the EU and USA [AXIS Corporation, 2013a].

The data stream of the camera is accessible through an Ethernet cable. Unlike the
Kinect camera which provides a framework for capturing single imagery, the AXIS
camera comes with built-in support for video compression codes such as Motion
JPEG or H.264. The camera and the data stream may be controlled from the AXIS
SDK’s for C++ or C#. The streamed imagery may also be viewed and controlled
using a browser with AXIS Media Control. The camera is powered via either Power
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over Ethernet or a separate DC-adapter. The AXIS camera is available at around $
7000 [dss.com, 2013].

5.1.3 System configuration

For the current purpose of registering images at distances between 1 – 4 m, it is
chosen to go with the Microsoft Kinect as the visual camera. This choice is based on
the notion that the Kinect is superior to the Bumblebee XB3 at correctly determining
the distance to objects in the short range. Stereo vision set-ups are dependent on
the quality of the spectral information of the objects in the scene, which might vary
due to lighting conditions or bad texture information of the object. As we want to
have depth information of the scene even in bad lighting conditions or for objects
containing sparse texture information, the Kinect is the device of choice. Should we,
however, decide to extend the scene to depths outside the range of the Kinect, the
Bumblebee will be a subtle choice.

As described in the previous section, the choice of thermal cameras is limited to
the devices available at the VAP Laboratory. The available camera, the AXIS Q1922,
however, is excellent in terms of image quality, frame rate and resolution, where it
mirrors the resolution and frame rate of the Kinect. The SDK’s of the Kinect and
AXIS cameras both support C++ and C#, so it should be possible to make a decent
software acquisition system for both set-ups.

Physical platform

It is necessary to construct a common hardware platform consisting of the two cam-
eras. The platform should fix the position of both cameras and make it hard to alter
the positions of the cameras when capturing a scene. If the position of the cameras
is altered on-the-fly, it will be increasingly difficult to register the imagery of the two
modalities.

Such a platform has been constructed and is seen from Figure 5.1.

The cameras have been placed on top of each other in order to minimize the base-
line between the camera sensors. The smaller the baseline, the smaller the difference
in field-of-view of the cameras, and the smaller the parallax on close objects.

The Kinect camera is connected to the computer through a USB port and powered
by the 230 V adapter included with the camera. The AXIS camera is connected to
the computer through an Ethernet cable and powered through a stock 12 V adapter.

5.2 Acquisition software

As described in Section 5.1, the AXIS and Kinect camera both utilize SDKs that
allows interfacing in C++ and C#. In the following, we will go through the respective
SDKs for the cameras and choose the SDKs for constructing a robust yet simple
platform for acquiring imagery from both cameras. The development and execution
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Figure 5.1: Hardware platform containing the AXIS Q1922 and the Microsoft Kinect for XBOX.

of the software interface is done using Windows, as this is the platform of the native
SDK for the AXIS camera. The image streams from the cameras shall provide the
basis for registering the two cameras, and thus there are criteria that should be
fulfilled:

1. Synchronization: The image streams should either be fully synchronized in
time or be traceable. That is, for each frame in the image stream, the exact
system time should be known.

2. Depth registration: The depth and RGB streams are factory registered on the
Kinect. Those registrations should be stored during capture.

3. Calibration mode: The interface should distinguish between a calibration mode
and a capture mode. The calibration mode is for capturing imagery for camera
calibration and registration, whereas the capture mode is for capturing the
actual scene.

5.2.1 Interfacing the AXIS camera

The AXIS Q1922 thermal camera comes with the AXIS Media Control framework
for Windows. The SDK is available to the general public and thus not subject
to any restrictions on use nor distribution. According to the documentation, the
AXIS Media Control is ’efficient for... capturing snapshot images, recording video
sequences in ASF format...’ [AXIS Corporation, 2013b]. The SDK comes with code
samples for both Visual C++ and C#. Unfortunately, the C++ samples require
the full version of Visual Studio Professional due to requirements for the Microsoft
Foundation Class Library. This restriction is not apparent in the implementation
with C# which fortunately work well with freeware such as Microsoft Visual Studio
2010 Express.

The sample code uses the AXIS specific AXISMEDIACONTROL Library which
a Windows Forms application is built upon. The sample is capable of recording video
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in 30 FPS from the camera out-of-the-box and as such, only a few adjustments are
needed. The thermal camera is remotely controlled using a web interface from which
we may control the time of the camera, and even more important, add an overlay
on the images representing the frame rate and the actual time of the frame, as seen
from Figure 5.2. However, these time stamps are referring to the camera system time
which might deviate from the computer system time, even though these are aligned
prior to capturing the frames.

Figure 5.2: Overlay shown in the thermal images. The current frame rate and camera time of the
frame is shown.

In order to apply to the synchronisation criterion above, we need to provide
the system time for each frame in another way. This is done by creating a list of
strings which contains the system time stamps for each instance of the recorded
thermal frames. Each time a new frame is generated from the camera, the function
myAMC_OnNewImage is triggered which adds the current system time to the end of
the list. At the end of a capture sequence, the function writeLogToFile writes the
timestamps to the file ThermalTimestamps.log.

5.2.2 Interfacing the Kinect

When interfacing the Microsoft Kinect on Windows, we have multiple choices for
choosing the framework. The OpenNi is a standard framework for 3D sensing
[Openni.org, 2013] and widely used with multiple image sensors. As of December
2012, the framework is at version 2.0 and is increasingly mature. Alongside the
OpenNi, Microsoft has developed its own framework for interfacing the Kinect, the
Kinect for Windows SDK which is at version 1.6. Compared with its OpenNi coun-
terpart, the Kinect for Windows SDK comes with multitudes of code examples and
documentation, whereas the documentation for interfacing the Kinect with OpenNi
is a little more sparse. Based on the level of documentation and the expected time
to get the system up and running, it is chosen to use the Kinect for Windwos SDK
for this implementation.

Contrary to the Axis camera, the Kinect for Windows SDK does not provide
a native framework for capturing a video stream for the RGB and depth cameras.
Therefore, we will either have to add a framework for capturing video or storing
each frame individually. The latter approach is chosen as this eliminates the need
for making a separate list of time stamps and enables us to provide the time of the
frames via the file name. As we want to interact between the AXIS and Kinect
capture platforms, the implementation is done by building upon the C# Color Ba-
sics Windows Presentation Foundation sample of the Kinect for Windows Developer
Toolkit.

The image stream from the depth and colour sensors are enabled separately and
handed to a WritableBitmap of the System.Windows.Media.Imaging Class. As
seen from Table A.1 on page 96, there are several options of the resolution and frame
rate of the image streams.
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Those streams are coupled to an event handler that is called whenever both
the depth and colour streams are available. Whenever this is the case, the func-
tion SensorAllFramesReady is called and processes the image streams. A detailed
overview of the function is available in Appendix A.1 on page 96. During the de-
velopment process, it was shown that the scope of taking images from streams and
storing them on disk was outside the performance criteria for real-time performance
at 30 FPS. Therefore, it is necessary to split the task of saving images to disk in
separately threaded processes so that the function SensorAllFramesReady is able
to end in timely fashion before the next event is triggered. This leads us to two
new functions processColor and processDepth which are explained in detail in
Appendix A.1 on page 96.

The RGB images are saved easily using the save method of the WriteableBitmap
and thus the depth image should follow in this fashion. However, the data type of
the depth image is different - whereas the RGB image is a conventional 4-channel
32 bit BGRA image, the depth image is a single channel 16-bit grey-scale image.
The built-in method for saving 16-bit images in C# is substantially slower than the
equivalent method for saving 8-bit images, making it impossible to achieve real-time
performance at 30 or even 15 FPS. The OpenCV library comes with built-in func-
tionality to save 16-bit images but in the implementation for C# using the Emgu
Wrapper, the functionality is yet to be implemented. In order to improve perfor-
mance, the depth image is converted to a single-channel 8-bit image of double the
width of the original image and saved without further ado. In Figure 5.3, a dou-
ble sized 8-bit image is shown besides the original 16-bit image. This workaround
necessitates that we subsequently convert the depth images back to the original rep-
resentation, which is done with the MATLAB script convertDepthDataToUShort.m.
The script is explained in Appendix A.2.1.

(a) Original 16-bit image of size
640x480.

(b) Converted 8-bit image of size 1280x480.

Figure 5.3: Depth images from the Kinect. In order to save the 16-bit images in real time, a
conversion to the double-width 8-bit images seen in figure b is necessary. The images are flipped
horizontally because of the orientation of the sensor.

Depth registration

As described in the introduction to this chapter, the depth and RGB cameras of the
Kinect are factory calibrated with respect to each other, meaning that for each pixel
in the depth image, the camera provides an accurate registration to the corresponding
pixel in the RGB image. This registration is available via the CoordinateMapper
method of the Kinect for Windows SDK. Due to a bug in the 1.6 version of the SDK,
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the mapping is available for registering the depth image to the RGB image - but not
the other way around. This implies that we have to do the reverse mapping ourselves,
which is done by the function convertD2RGBtoRGB2D.m described in Appendix A.2.2.

We assume that the depth-to-RGB registration is unchanged during capture of
the scenes. This assumption gives us the freedom to initialise the registration once
every scene. The assumption also eliminates the requirement of real-time registration
performance which enables us to save the registration as 16-bit images. The con-
version of the registration from the Kinects CoordinateMapper to an 16-bit image
is performed using the function calibrateDepthD2RGB. The registration is saved as
two 16-bit images where one image serves as a look-up-table for the x-coordinate and
the other image serves as a look-up-table for the y-coordinate. The images of the
look-up-tables for the depth to RGB and the mapped tables for RGB to depth is
seen from Figure 5.4. One might see that the reversed mapping for the x coordinate
contains certain artefacts. These artefacts are related to the nature of the inverse
map and although the MATLAB function convertD2RGBtoRGB2D.m handles smaller
artefacts such as small holes in the map, bigger artifacts such as the ’rip’ in Figure
5.4c are too big to be handled. Thus, no meaningful mapping exists in such a hole.
More details on this in Appendix A.2.2.

(a) Depth to RGB registration, x coordinate (b) Depth to RGB registration, y coordinate

(c) RGB to depth registration, x coordinate (d) RGB to depth registration, y coordinate

Figure 5.4: Depth to RGB and RGB to depth registration images. The images serves as look-
up-tables for registering imagery from both modalities. The depth to RGB registration is obtained
natively from the Kinect SDK whereas the RGB to depth registration is obtained by a transformation
of the former registration.
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5.2.3 Creating a common framework

In the above, we have described how to record images from the AXIS and Kinect
sensors by using the native SDK’s of the sensors. In this subsection, we will focus
on the creation of a common framework for capturing the depth, visual, and thermal
image streams simultaneously. As both interfaces are written in C#, we are able to
integrate the AXIS platform into the code for the Kinect platform. At the top of
the section, we required that the image streams should be synchronized, the depth
registration should be stored, and a calibration mode be enabled. In the above,
we have paved the way for image synchronization by providing each frame of the
thermal camera with a separate time stamp in a text file and providing the system
time of the depth and RGB streams of the Kinect at the file name of each frame.
The registration of the depth image to the RGB image is implemented, and only the
requirement of a calibration mode needs to be fulfilled.

This is done by introducing several modes in the combined graphical user interface
(GUI), each corresponding to a flag. We may thus choose between a depth registra-
tion mode, a calibration mode, and a capture mode. These modes are implemented
in the final GUI and is seen from Figure 5.5. A more detailed overview of the imple-
mentation is found in Appendix A.1. When pressing the “Calibrate depth” button,
15 frames of the depth-to-RGB registration is saved as 15 images of the mapped x
and y coordinates respectively. The depth registration is saved in the calibration sub
folder chosen by the radio buttons ’1’, ’2’, and ’3’. The “Calibrate RGB + T” and
“Capture RGB + D + T” buttons are essentially providing the same functionality -
both buttons enable the capture of depth, thermal, and RGB streams. The former
button does, however, store the captured image and video steams in the calibration
folder whereas the latter button stores the data in the root folder provided.

Figure 5.5: The GUI for recording the image streams from the Kinect and AXIS cameras.
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The “video sample” window in Figure 5.5 is the AXIS part of the interface. The
window is used for connecting to and opening the video stream of the AXIS camera
and choosing the video codec. When these tasks are conducted, the control of the
thermal camera is maintained from the “RGBDT Capture” window.

Selecting the frame rate

Both devices are equipped with sensors that provide images at 30 frames per second at
equal resolution, 640x480 pixels. Nevertheless, it seems that the Kinect for Windows
SDK is not built for real-time image recording. In Section 5.2.2 on interfacing the
Kinect we experienced performance issues when saving the depth images. It turns
out that the combined capture of depth, RGB and thermal images is too much for
the SDK to handle, even with multiple optimizations such as threaded saving and
the testing of several save methods for C#. At 30 FPS, the recording remains stable
for up to one minute but suffers subsequently from a lag of approx. 0.8 s where
no information is stored. This pattern repeats itself upon further capture and the
nature of the lag seems non-deterministic. Therefore, the frame rate of the RGB
sensor is lowered to 15 FPS which runs stable with no lag. The thermal camera still
captures images at 30 FPS. The difference in frame rates does not pose any problem,
however, as the synchronization step described in Section 6.1 will take care of this.

5.2.4 Post-processing the thermal images

The section above has described how to create and capture the image streams from
the AXIS thermal and Kinect depth and RGB cameras. In order to further process
the thermal imagery however, we need to split the video frames of the thermal camera.
This is done by applying a FFMPEG-script that dumps each individual frame to a
single file:

1 ffmpeg -i thermal .asf -r 30 -vsync 0 -f image2 T/%05d.png

With this amendment, we now have created a framework for capturing unsyn-
chronized streams the thermal, depth, and RGB cameras. The synchronization of
the image streams is treated in the next chapter.



Chapter 6

Camera synchronization and
calibration

In the previous chapter we have described how to capture image streams from the
visible, thermal, and depth cameras. In this chapter the synchronization, or the
temporal alignment, of the imagery is implemented, and the thermal and RGB images
are calibrated to remove distortion and to provide point-to-point correspondences for
registration purposes.

6.1 Camera synchronization

The individual RGB and depth frames are provided with time stamps of the system
time whereas the individual frames of the thermal camera are provided with two time
stamps; the camera time of the frame printed in the top of the image frame and the
system time of the frame provided in the text file ThermalTimestampsThermal.log.
An example of a frame from the thermal camera is seen in Figure 6.1.

6.1.1 Aligning the thermal frames

Is it not guaranteed though, that the first extracted frame of the thermal camera
corresponds to the first entry of the time stamp log. Therefore, a control frame is
saved at the beginning of each capture with the system time specified in the file
name. Such a frame is seen from Figure 6.1.

By including a control frame, the correspondence is provided between the system
time and camera time. This allows the exact correspondence of the entries of the
time stamp log and the extracted thermal frames. It is found that only the offset
between the time stamp log and the extracted thermal frames might be wrong. When
the offset is fixed, the correspondence between the time stamps and the extracted
frames is found to be one-to-one. The offset is removed in the MATLAB-function
alignThermalFrames.m.

The MATLAB-function reads the control frame and the first extracted frame of

34
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Figure 6.1: Control frame from the thermal camera. The camera time, along with the frame rate,
is printed on top of the image. The system time for the frame is 09-30-02-99 which is written in the
file name.

the thermal image stream and prompts the user to input the camera time of both
images. As we now know the correspondence between the system time and the
camera time, the function is able to calculate the system time of the first extracted
frame of the thermal image stream. The file of thermal time stamps is subsequently
opened and searched to find the best matching time stamp of the first frame. When
this time stamp is found, any earlier time stamps are discarded and a new log file
is written. Thus, the correspondence between the thermal time stamps and the
extracted frames of the thermal camera is now one-to-one.

6.1.2 Synchronizing the captured image streams

Now that we have a proper correspondence between the thermal images and the
time stamps, a full synchronization between the thermal, depth, and RGB im-
ages is in place. The synchronization is implemented in the MATLAB-function
synchronizeData.m and is described in the following.

The function loads time stamps from the thermal log file and the directory of
the recorded RGB frames. The recorded imagery from the RGB and depth cameras
are already synchronized and so there is no need to load time stamps for the depth
modality. With time stamps of the frames from both the AXIS and Kinect cameras,
we might begin to match the individual time stamps. In this implementation, the
time stamps of the Kinect RGB frames are matched with the thermal frames one-by-
one within a predefined search window. For each RGB time stamp, we search for the
lowest time difference in the search window based on the best match of the previous
RGB time stamp. This is illustrated in Figure 6.2. The search window is currently
defined to be very wide in order to go with belt and braces but might be optimized
for speed.

The time differences between the current RGB time stamp and all thermal time
stamps in the search window are computed, and the thermal time stamp correspond-
ing to the lowest time difference is chosen as the best match, as seen in Figure 6.2.
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The correspondence pair is written into the ’Best match’ array until corresponding
thermal time stamps for all the Kinect frames are found.
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Figure 6.2: The synchronization in overview. For each RGB frame, the closest thermal frame
in time is sought. In order to not search through the entire array of thermal frames for each
correspondence, the search is limited to a search window centred on the best match of the precious
RGB frame. For each RGB frame, the closest thermal frame is written into the array of best matches.

However, the ’best match’ array will almost certainly not provide a one-to-one
mapping between the RGB and thermal frames, especially when their frame rates
are different, which is the case here. There might be several RGB frames which maps
to one thermal frame and vice versa.

In order to handle this, a run through the ’best match’ array is conducted and each
correspondence is checked. If two RGB frames refer to the same thermal frame, their
differences in time to the thermal time are compared and only the correspondence
with the lowest time difference remains. Thermal frames which are left unreferenced
in the ’best match’ array are omitted through an exclusive OR operator.

The arrays of RGB and thermal time stamps are now strictly one-to-one and we
might now read the corresponding frames and write them into three synchronized
folders, SyncD, SyncT, and SyncRGB. Samples of synchronized imagery is seen from
Figure 6.3.

6.2 Camera calibration

With synchronized sets of images of RGB, thermal, and depth modalities, we might
focus on calibrating the RGB and thermal cameras in order to remove image distor-
tion and to provide point-to-point correspondences for registration purposes.

6.2.1 Camera model

In order to undistort the images, the notion of camera geometry needs to be intro-
duced. The image formation process is geometrically presented as the projection of a
3D scene unto a 2D plane and is described mathematically using projective geometry.
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(a) RGB image (b) Thermal image

(c) Depth image

Figure 6.3: Synchronized imagery from the Kinect and AXIS cameras. Notice the differences in
field of view of the three modalities.

Multiple camera models exists that describe the projection and the most common
is the pinhole camera model which is illustrated in Figure 6.4. The image plane is
placed at Z = f and is the plane, where the image is formed. The point at the world
coordinate X = (X,Y, Z)T is projected to the image plane at the intersection of the
plane with the line connecting the camera centre C and the world coordinate X.
The projected point on the image plane is denoted as x = (x, y)T . The image plane
is centred at the principal axis Z which is the Z-axis of the right handed Euclidean
coordinate system with origin at the camera centre. In order to comply with the
default coordinate system used with images, the y axis is inverted. The point where
the principal axis intersects the image plane is called the principal point, p, and is
typically in the centre of the image.

The mathematical relationship between the point in world coordinates and image
coordinates is described by [Hartley and Zissermann, 2003]:

(X,Y, Z)T 7→ (fX/Z, fY/Z)T (6.1)

where f is the focal length.

By using homogeneous coordinates the mapping is described as:
X
Y
Z
1

 7→
fXfY
Z

 =

f 0
f 0

1 0



X
Y
Z
1

 (6.2)
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Figure 6.4: Geometric relations for the pinhole camera model. The centre C denotes the centre
of the projective camera and P denotes the principal point of the camera. With inspiration from
Hartley and Zissermann [2003] and Laganière [2011].

The above equation does hold if world points are expressed in the camera coordinates.
However, points are often expressed in a different coordinate frame and thus needs
a rotation and translation to be represented in the camera coordinate frame. The
rotation is expressed as a 3x3 matrix and the translation is expressed as a 3-vector.
When combined in one matrix, equation 6.2 might be generalised as:
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The above equation describes the idealized projection of points onto the image plane.
However, the physical camera does not act as the ideal model as physical imperfec-
tions or manufacturing inaccuracies introduce the following parameters:

• Principal point offset
In the above, the origin of the image plane is placed exactly at the principal
point. The real centre might be subject to a small offset, so the parameters
px and py are used to express the coordinates of the principal point in the
image. In pixel dimensions, the principal point is expressed as x0 = mxpx and
y0 = mypy in the x and y directions respectively.

• Non-square pixels
The pinhole camera model assumes that the pixels in the x and y directions
are equal in scale. With common CCD cameras, this is not guaranteed to be
the case [Hartley and Zissermann, 2003]. Therefore, a scale factor mx, my is
multiplied on the focal length, thus representing the focal length in terms of
pixels in the x and y direction. The generalised focal length is expressed as:
αx = fmx, αy = fmy.

• Skew
In case of non-parallel image axes, a skew parameter, s is introduced. In
practice however, the parameter will almost remain zero.
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With the above additions, the pinhole camera model is noted as the finite projective
camera [Hartley and Zissermann, 2003]:
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The 3x3 matrix in the above equation is known as the calibration matrix, K, of
the camera and describes the intrinsic parameters of the camera. The intrinsic
parameters remain unchanged when capturing multiple scenes and might thus only
be determined once for a single camera. The rotation and translation are known as
the extrinsic parameters of the camera and relates the world to the camera frame.

The above equation might be expressed in short form as:

P = K[R|t] (6.5)

where P is the camera matrix, K is 3x3 matrix of intrinsic parameters, R is the
3x3 rotation matrix and t is the translation 3-vector. The camera matrix P is a 3x4
matrix with 11 degrees of freedom.

In the creation of the finite projective camera model, we have this far treated the
model as if no lens existed or if the lens was created with no artefacts. However,
most lenses introduce optical distortions, and with lenses of bad quality or short
focal length, noticeable radial distortion is apparent [Laganière, 2011]. If the centre
of the lens is not positioned carefully at the principal point, the image is also subject
to tangential distortion. The radial distortion is most noticeable when the distance
to the principal point is large and results in the bending of otherwise straight lines.
In the widely used Camera Calibration Toolbox for Matlab and the implementation
in OpenCV, the distortion is modelled as [Bouguet, 2004]:

xd =
(
xd
yd

)
= (1 + kc1 r

2 + kc2 r
4 + kc5 r

6)xn + dx (6.6)

where xd is the normalized image coordinates, r is the radial distance to the image
centre, r2 = x2 + y2, kcx is the distortion coefficients to be determined, and dx is
the tangential distortion vector defined as:

dx =
[
2kc3 x y + kc4(r2 + 2x2)
kc3(r2 + 2y2) + 2kc4 x y

]
(6.7)

Once coordinates are undistorted, they might be used for estimating the param-
eters of the camera matrix of Equation 6.4.

6.2.2 Estimating the camera matrix

The camera matrix of Equation 6.5 has 11 degrees of freedom and thus requires 11
equations to solve. The matrix is solvable from point correspondences relating world
points to image points. Each point correspondence gives two degrees of freedom,
thus giving us a minimum of 6 correspondences to solve the camera matrix. The
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minimum configuration necessitates that no noise is apparent in the image points
nor the world coordinates; otherwise the estimated camera matrix will be faulty. As
the data might not be exact and there inevitably will be noise in the extracted image
coordinates and in the world coordinates, we will in general need much more points
to achieve a robust solution. As such, the solution for estimating the camera matrix
is overdetermined and as noise exist in the observations, one exact solution does
not exist. A solution is obtained using optimization methods as implemented in the
Camera Calibration Toolbox for Matlab [Bouguet, 2004] and its OpenCV counterpart
[Bradski, 2000].

To automate the process of finding the point correspondences, a widely used
method in Computer Vision is to show a chessboard pattern to the camera. The
chessboard is shown in different depths and poses to the camera and when varied
properly, 10 to 20 views of the chessboard are sufficient [Laganière, 2011]. When
calibrating multiple modalities however, the need for multimodal calibration rigs
occur. This will be treated below.

Multimodal calibration boards

The black and white chessboard pattern seen in Figure 6.5a is the standard chess-
board used for calibration of visible imagery. However, the pattern is hardly visible
when seen by a thermal camera unless the pattern is illuminated with high intensity
halogen bulbs as used by Krotosky and Trivedi [2007]. The high energy use and the
size of the halogen bulbs make this a hardly removable nor flexible configuration.
There is thus a need to find a more versatile approach of providing a multi-modal
chessboard that is visible in both thermal and visible light. We will not use cali-
bration procedures for the depth camera as the depth stream is factory registered
to the RGB camera and there is thus no need for further calibration or registration
purposes.

A thermal calibration rig has been proposed by St-Laurent et al. [2010] which pre-
sumably uses a special construction to heat a board with circular cut-outs. The exact
configuration is hard to find, though, as the authors do not provide any hint on how
to remake the calibration rig shown in Figure 6.5c. Zhao and Cheung [2009] do not
use a chessboard for providing point-to-point correspondences but uses a coloured,
heated metal tag seen in Figure 6.5d. Another approach is to use a chessboard con-
structed by material with different emissivities as proposed by Ursine et al. [2012]
and seen in Figure 6.5e. The authors use copper squares mounted on a backplate
of other material. When light hits the chessboard, the emittance of the squares will
vary, thus resulting in a pattern visible to the thermal camera.

In Figure 6.5f, the proposal of Vidas et al. [2012] is shown. Instead of provid-
ing the chessboard with different emissivity properties, the chessboard mask is a
cardboard plate with square cut-outs. The mask is held on top of a backdrop with
different emissivity properties. The authors suggests that backdrops includes warm
objects and powered computer monitors. From Figure 6.5f, the object is seen. An-
ders Jørgensen of the VAP group at Aalborg University has proposed a custom mask
of light bulbs seen from Figure 6.5b. The method works fine when obtaining im-
ages with the thermal camera but fails in the visible domain due to the fact that the
centres of the bulbs are hard to distinguish from another on the Kinect RGB camera.
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(a) Standard calibration chess-
board. Bundled with OpenCV
[Bradski, 2000]

(b) Chessboard of light bulbs (c) Thermal calibration rig
[St-Laurent et al., 2010]

(d) Depth image [Zhao and
Cheung, 2009]

(e) Copper chessboard [Ur-
sine et al., 2012]

(f) Geometric mask with back-
drop [Vidas et al., 2012]

Figure 6.5: Thermal-visible calibration devices for capturing point correspondences in both modal-
ities.

For the calibration of the thermal-visible cameras for this project, the proposed
method of Vidas et al. [2012] is chosen. The method shown in Figure 6.5c is inter-
esting, but without further information, the calibration rig cannot be recreated. The
performance of the calibration board of Figure 6.5e is yet to be documented and thus
questionable for this project. The proposal of the method shown in Figure 6.5d is
interesting but provides only one correspondences per image. The performance of
the chosen method is well-documented and relatively easy to recreate.

Opposed to the original proposal, we have enlarged the calibration board to
comprise of an A3 sheet cut out from a ring binder, depicted in Figure 6.6. The
backdrop used is an A3 sized 10 mm foam board made of polystyrene. Prior to
a calibration recording, the backdrop is heated using a heat gun. Images of the
calibration board in active use is seen from Figure 6.7.

In order to calibrate the cameras with the proposed mask, the mask is swept
throughout the entire scene in a variety of depths and poses during a one minute
pass recorded by the AXIS and Kinect cameras. This process is repeated twice or
trice in order to capture a sufficient amount of calibration data. The full procedure
of capturing the calibration sequences is described in Appendix E.2.

6.2.3 Processing the calibration images

Once the calibration images are captured and synchronized, the processing of the
image frames for calibration is begun. By using the MATLAB-function getCali-
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Figure 6.6: The calibration board used for the thermal-visible calibration.

(a) RGB image (b) Thermal image (c) Depth image

Figure 6.7: The calibration board as captured by the thermal, depth, and RGB cameras. The
frames are synchronized as described in Section 6.1.

brationImages.m, a defined number of calibration images is saved to the folder
’CalibrationHelper’ of each individual calibration folder. The number of calibration
images and the start and stop image is input to the function which selects a subset
of calibration images uniformly spread throughout the chosen range. The automatic
extraction of image frames for the calibration is based upon the assumption that
movement of the calibration board is distributed evenly in space throughout the
calibration take. After the extraction of calibration images, the image set is manually
examined to spot if any image regions are better represented than others and in this
case, more calibration images are added. The Calibration Toolbox for MATLAB
[Bouguet, 2004] is used for the extraction of the chessboard corners in both the
thermal and visible modalities. An example of points extracted using the toolbox for
both modalities is seen in Figure 6.8. Through multiple passes of corner extraction,
re-projection and refinement, an accurate point set is obtained for both modalities.

The extracted points and the computed camera matrices are stored as .mat files.
Data for the thermal camera are stored as calib_data_right.mat whereas data for
the RGB camera is stored as calib_data_left.mat.

However, as we want to modify the images further in OpenCV, we need to ex-
port the point correspondences to a file readable by OpenCV. This is done by the
MATLAB-function saveCalibVarAsText.m which outputs files containing the im-
age and object coordinates of the extracted chessboard points. The coordinates are
subsequently loaded into OpenCV where the function calibrateCamera calibrates
the thermal and visible cameras one-by-one.

By using the computed camera matrices and distortion parameters, the function
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Figure 6.8: Extracted and re-projected points using the Camera Calibration Toolbox for MATLAB.
The extracted points are marked with x and the reprojected points with O.

undistort is able to undistort the images for lens distortion as shown in Figure 6.9.

(a) Undistorted RGB image (b) Undistorted Thermal image

Figure 6.9: Undistorted calibration images. The lens distortion is removed from both cameras and
straight lines appear straight in both images.
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Image registration

7.1 Introduction to image registration

Whereas Chapter 5 and 6 treated the construction of the image acquisition platform
and the synchronization and calibration of the captured imagery, this chapter will
treat the problem of constructing a registration algorithm for accurately registering
objects in the thermal and visible images.

In the preliminary analysis in Chapter 2, several methods on thermal-visible
image registration are listed. Table 2.1 and Figure 2.2 provide a good overview
of these methods. Based on the conditions set by the requirement specification of
Chapter 3, the goal is to create a registration algorithm that works for objects in
located in the range of 1 – 4 metres from the cameras.

Due to the short range, the method on infinite homography of Figure 2.2 is easily
rejected as the short distance between the scene and the cameras will inject severe
parallax if one tries to apply a homography that fits the entire scene. This also applies
for the baseline technique of global registration, which applies a single homography
in order to register a restricted region in the scene. In theory, those techniques could
be applied for a strictly planar region of the scene. However, even if movement in
the scene is restricted to a straight line, the differences in depth of the human body
would induce noticeable parallax due to the low distance ratio between the camera
and the scene and the inter-object distances perpendicular to the registered plane.

This leaves us with the techniques of stereo geometry and multiple homographies
which will be treated in depth in the following. The implications of stereo geometry
on stereo imagery is known in Computer Vision as stereo rectification and might be
applied for any generic two-camera configuration.

7.2 Stereo rectification

In order to understand the technique of stereo rectification, one must understand the
fundamentals of epipolar geometry, which in brief will be reviewed here. Epipolar
geometry describes the intrinsic relationship between two cameras which is defined
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by the intrinsic properties and the camera pose of the two cameras.

In this framework, a epipolar point is defined, which is the camera centre of the
first camera pictured by the second camera - and vice versa. The epipolar point is
thus the point in each image where the camera centre of the other camera is located
- with respect to the current camera. The epipolar point and the epipolar geometry
is illustrated in Figure 7.1. The epipolar point is not necessarily inside the image
and will, in typical stereo camera configurations, be situated far beyond the visual
image. The epipolar points are always situated on the baseline connecting the two
camera centres. Planes which include the baseline are called epipolar planes and span
a one-dimensional family of epipolar planes. The epipolar plane intersects the image
plane of the two cameras in epipolar lines. The family of epipolar lines connects
every pixel of the image with the epipolar point. By knowing the epipolar geometry
of two cameras, the search for corresponding points in two images is reduced to a
one-dimensional search along the corresponding epipolar line in the second image.
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Figure 7.1: Epipolar geometry between two views. The epipolar point in one view is the image
point of the camera centre of the other view.

The technique of stereo rectification applies transformations to images from both
cameras to transfer epipolar points to the point of infinity, thus resulting in perfectly
vertical or horizontal epipolar lines. The point at infinity is represented in homoge-
neous coordinates as (1, 0, 0)T. With epipoles at infinity, the search for corresponding
points is thus be reduced to a one-dimensional search within the x- or y-axes of the
images.

When world points are located on a plane πi, there exists a 2D homography
mapping each of the points on the plane seen by the first camera to the image
plane of the second camera. The homography, Hπi, is transferring points given the
equation:

x′ = Hπix (7.1)

This property, along with the notion that the epipolar line might be expressed as
the cross product of the epipolar point and the point in one image, introduces the
fundamental matrix, F : [Hartley and Zissermann, 2003]

l’ = e′ ×Hπix = Fx (7.2)
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The fundamental matrix is a 3x3 matrix that encapsulates the epipolar geometry
algebraically. It has 7 degrees of freedom and the important relationship on corre-
sponding points:

x′TFx = 0 (7.3)

where x and x′ are pairs of corresponding points in two images.

The fundamental matrix may also be calculated from the camera projection ma-
trices or from at least 8 corresponding points. This leads to two different approaches
to stereo rectification, the calibrated and the uncalibrated approach, respectively. In
the following, the implementation of these methods will be described.

7.2.1 Calibrated stereo rectification

In calibrated stereo rectification, the fundamental matrix is computed using the
following property:

F = e′ × P ′P+ (7.4)

where P ′ is the camera projection matrix of the second camera and P+ is the pseudo-
inverse of P , the camera projection matrix of the first camera.

Stereo calibration estimates the camera projection matrices of a dual camera
configuration such that the reprojection errors of the corresponding points in both
cameras are minimized, much like the calibration process for a single camera de-
scribed in Section 6.2. As corresponding points for both modalities are generated
by the thermal-visible calibration board of Vidas et al. [2012], the required data is
in place to perform a full stereo calibration. In the following, we will distinguish
between two cameras; the left and the right, but we could as well refer to a upper or
lower camera, as long as the cameras are placed in a dual configuration.

The OpenCV framework for C++ features robust functionality for performing
calibrated stereo rectification. The StereoCalibrate function of the framework tries
to minimize the reprojection error of the camera corners in both the left and the right
view by adjusting the intrinsic and extrinsic calibration parameters of the two cam-
eras. The function computes the fundamental matrix of the two views and computes
a rotation and translation matrix that projects the coordinate system of the right
camera onto the coordinate system of the left camera. As the intrinsic parameters
for each camera are already computed in Section 6.2, the function is called with the
CV_CALIB_FIX_INTRINSIC flag which means that StereoCalibate just optimizes the
extrinsic parameters of the camera matrices, thus reducing the parameter space to
be optimized and generating a more robust solution. Fully calibrated, the function
allows the transfer of 3D coordinates between two cameras views.

However, the correspondence problem between corresponding point pairs of the
views is yet to be solved. The epipolar points in both images still need to be shifted
to the point at infinity and transformations for doing so should be computed. This is
done by the function StereoRectify. The function accepts as input the camera ma-
trices and projective transformations computed by StereoCalibrate and computes
the projections required to map the epipoles to infinity, thus resembling a canonical
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camera configuration. In the canonical camera configuration, both image planes are
residing on the same world plane, and thus epipolar lines in one image are parallel
to epipolar lines in the other image.

In overall terms, the StereoRectify function does the following: [Lee, 2012]

1. Construct a rotation matrix Rrect which rotates the left camera to make the
left epipole go to infinity.

2. Apply the rotation matrix Rrect on the right camera.

3. Rotate the right camera by the rotation matrixR obtained in StereoCalibrate,
thus resembling a canonical camera configuration.

4. For each pixel of the rectified left and right cameras, calculate the corresponding
point in the original, unrectified images.

5. Adjust the scale of the rectified images.

Step 5 includes the scaling of the rectified images. In the OpenCV implemen-
tation, one might choose an arbitrary number between 0 and 1. When fixed at 0,
the rectified images only includes ’valid pixels’, whereas a scaling parameter of 1 in-
cludes all pixels of the original images such that these are retained in the the rectified
images. Due to transformation applied, a scaling of 1 also includes non-valid pixel
regions due to the transformation of the rectified images.

Preliminary tests

The rectification by calibrated stereo is tested against the proposed scenes in Ap-
pendix D.1. The results show that the algorithm is unable to find a stable solution
of the image rectification matrices, resulting in heavily distorted images that are not
suitable for image registration. This applies no matter the size of the dataset that is
used for the calculation of the calibrated stereo. Based on these results, the further
work on the calibrated stereo approach for image rectification is discarded.

7.2.2 Uncalibrated stereo rectification

If the calibrated approach to stereo rectification is impossible to perform due to the
absence of calibration data, one is able to construct a rectified view between two
images based on the estimation of the fundamental matrix and the rectification ma-
trices. The fundamental matrix might be estimated up to a projective ambiguity
from 8 or more corresponding point pairs. Several methods for computing the fun-
damental matrix exists, such as the normalized 8-point algorithm, the least median
of squares (LMS), and the RANSAC-approach [Hartley and Zissermann, 2003]. The
estimation methods are based on the definition of the fundamental matrix:

x′TFx = 0 (7.5)

If the point correspondences are optimal, the linear solution of the 8-point algo-
rithm will provide a perfect estimate of the fundamental matrix. However, as there



48 Chapter 7. Image registration

will inevitably be noise in the image coordinates, the robust methods of LMS or
RANSAC should be applied. The RANSAC-scheme is chosen for this implementa-
tion as it computes the optimal solution no matter the amount of outliers in the
point set provided. The RANSAC-method relies on a threshold for discriminating
the outliers from the inliers, which needs to be set manually. The fundamentals of
the RANSAC-method is described in more detail in Section 7.3.3.

When computed, the fundamental matrix is used to find the epipoles in the two
images using the following properties: [Hartley and Zissermann, 2003]

Fel = 0 erTF = 0 (7.6)

where el and er are the epipoles in the left and the right image, respectively.

The epipoles of the left and the right image is thus given by the right and the left
null vector of F , respectively. With the estimation of both the fundamental matrix
and the epipolar points in each image, we may now construct a transformation that
maps the epipole to infinity. In the uncalibrated stereo rectification of Hartley [1999],
the epipolar lines of the two images are mapped to lines parallel to the x-axis, which
means that the epipoles should be mapped to the point at infinity given as (1, 0,
0). If points should lie parallel to the y-axis, the epipoles should correspondingly be
mapped to (0,1,0).

It is found that the following transformation maps the epipole to infinity: [Hart-
ley, 1999]

H =

 1 0 0
0 1 0
−1/f 0 1

 (7.7)

The corresponding transformation that maps the epipole to infinity in the other
image is found by an iterative process that minimizes the distance function:∑

i

d(Hxi, H ′xi′)2 (7.8)

The corresponding pair of projective transformations, or homographies, is mapping
corresponding pairs of epipolar lines on top of each other when transferring from
one image to the other. With the algorithm of Hartley [1999], two projective 2D
transformations are computed that rectifies the stereo images such that the epipoles
are mapped to the point at infinity.

OpenCV features an implementation for computing the fundamental matrix from
point correspondences, findFundmantalMat. The fundamental matrix computed
from this is led to the function stereoRectifyUncalibrated which computes the
rectification matrices based on the theory of Hartley [1999] listed above.

The computation of the fundamental matrix from point correspondences is gen-
erally robust, but as the algorithm relies heavily on epipolar geometry, if might fail
severely if lens distortion is apparent. Therefore, images are undistorted before being
led to the process of uncalibrated rectification.
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Preliminary tests

The performance of the uncalibrated stereo rectification is tested on scene 1 – 3 in
Appendix D.2. The results show that the rectification algorithm performs worse
than the baseline provided by a single homography in scene 1 and 3. For scene 2, the
performance is generally better than the baseline, but only for the test set. For the
training set, the algorithm falls short on providing a decent mapping between corre-
sponding point sets. As the baseline is seen as the least acceptable performance of
the mapping, the method on uncalibrated stereo rectification is consequently not in-
cluded in the acceptance test. Methods on refining the performance of the algorithm
are conducted, though, and will be presented in the next section.

7.2.3 Depth refinement

The methods on stereo rectification rectify the images so that the search for corre-
sponding pixels is limited to only one direction. However, this assumes that one is
able to search for corresponding pixels or features along the rectified epipolar lines.
The search for correspondence is complicated greatly in thermal-visible imagery due
to the immanently different properties of the modalities. In the preliminary tests
above, we have assumed that the correspondence is good enough ’as is’ and that no
correction along the rectified epipolar lines should be added. As might be seen from
the tests, the registration with this assumption is not satisfactory, and we might turn
to other methods to gain further accuracy.

When cameras are only translated with respect to each other in a stereo camera
configuration, the relationship between corresponding pixels is reduced to: [Hartley
and Zissermann, 2003, pp. 249]:

x’ = x +Kt/Z (7.9)

whereK is the camera matrix, t is the translation vector between the camera centres,
and Z is the Euclidean depth to the object to be registered.

This set-up is indeed the canonical camera configuration and resembles the rec-
tified imagery obtained from stereo rectification. This means that the corresponding
points only move along either the x- or the y-axis, and the equation might be sim-
plified as:

x’ = x + t/Z (7.10)

Which means that disparity between points along either the x- or y-axis is equal to
the inverted Euclidean distance to the corresponding world point. This dependence
might be used for improving the accuracy of the stereo rectification. In order to
test this, the relationship of the inverted depth and the distance in the x-direction
for the uncalibrated stereo rectification of scene 1 has been extracted and plotted
in Figure 7.2. In the camera configuration shown in Figure 5.1, the cameras are
placed vertically with respect to each other, so one would expect the disparity to be
apparent in the y-direction. However, the disparity is shown in rectified coordinates,
and as the uncalibrated stereo rectification algorithm is only capable of aligning
images horizontally, the images are rotated to fit this assumption, thus resulting in a
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disparity in the x-direction. Regressions for Scene 2 and 3 is seen from Figure D.3b
and D.3c in the appendix.
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Figure 7.2: Relationship between the inverted depth in the x-direction of the rectified images in
scene 1

With the robust fitting tool of MATLAB, a linear regression is estimated from
the points. It is seen from Figure 7.2 that the observations do follow a descending
pattern, but due to noise of the observations is is hard to say if the relationship
between the disparity and the inverted depth is strictly linear. The depth refinement
technique is used to register the tri-modal dataset presented in [Escalera et al., 2013]
which is co-authored by the author of this thesis.

Preliminary tests

In Appendix D.3, the performance of the depth refinement technique is measured
against the original implementation of the uncalibrated stereo rectification. The
use of a linear regression does improve the accuracy for scene 1 and 3, but doubles
the transfer error of scene 2 compared to the uncalibrated stereo rectification. The
improved performance of scene 1 and 3 is bringing the mapping on par with the
baseline, for which similar results are measured. We would like to improve the
performance beyond the baseline, however, and thus the depth refinement technique
is discarded.

7.3 Rectification by multiple homographies

In the previous section it is shown that traditional stereo rectification techniques
fall short when used for registering objects with the thermal-visible imagery of the
proposed set-up.
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The poor performance of traditional stereo vision techniques might be due to the
short range of the registered scenes and the differences in field-of-view of the thermal
and visible cameras. The short range of the scene introduce noticeable parallax when
trying to apply a single homography or rectification view, as seen in the previous
section.

This section will treat a different approach to image registration by introducing
multiple homographies that registers multiple subsets of the scene. From the above
treatment on epipolar geometry is is known that a single homography is able to
accurately map corresponding points between two views if the points are residing on
a world plane. If points are outside the registered plane π, the resulting parallax of
the mapping is given by: [Hartley and Zissermann, 2003, Chap. 13]

x′ = Hx + ρe′ (7.11)

Where ρ is the parallax relative to the homography and e′ is the epipolar point of
the second view. The scalar ρ might be interpreted as the depth from the plane π.

If only one homography is used for registering the imagery, only one plane is ac-
curately registered. When using the RANSAC or Least-Median-of-Squares methods
to find the best fitting homography of corresponding point pairs, such as in OpenCV,
the points chosen for the homography are the points that span the largest possible
plane in world coordinates. The homography will estimate a good correspondence
for points close to the plane, but for points further away from the plane, the parallax
will be noticeable according to Equation 7.11.

That this holds true for real world points is seen from Figure 7.3. For the gen-
erated calibration data of Scene 2, 20 homographies have been generated, scattered
across the scene. Then, for each of the calibration points used for the camera calibra-
tion, the distance to the closest homography in world coordinates is compared with
the actual transfer error induced by the closest homography when used for mapping
the image point to thermal coordinates. As might be seen from Figure 7.3, there ex-
ists a relationship between the distance to the homography and the parallax relative
to the homography as claimed in Equation 7.11.

0 200 400 600 800 1000 1200 1400 1600
0

20

40

60

80

100

120

140

160

180

200

EuclideanGdistanceGfromGhomographyGcentreG(worldGcoord.)

E
uc

lid
ea

nG
m

ap
pi

ng
Ge

rr
or

G(
im

ag
eG

co
or

d.
)

ErrorGmappingGRGBGpointsGtoGthermalGpoints

Figure 7.3: Transfer errors versus the distances to the closest homography for calibration points
of Scene 2.

By using multiple homographies, the registration parallax will be reduced as the
distances to the closest planar homography are reduced. The distances to the nearest
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homographies vary according to the number of homographies and positioning of
homographies between world points. If a significantly high number of homographies
is chosen and the homographies are carefully distributed throughout the scene, the
parallax for points lying outside a registered plane will be sufficiently small to provide
an accurate pixel-to-pixel registration for all points inside a defined range. For points
placed between multiple homographies, the positioning of corresponding points might
be calculated by a weighted sum of neighbouring homographies.

However, a registration method based on multiple homographies is subject to
several deliberations:

• How many homographies are needed for an accurate registration?

• How should the homographies be positioned?

• How should the homographies be generated?

• How should the interpolation between homographies be designed? Should one
always choose the closest homography?

• Which measure defines the ’closest’ homography?

Previous work of using multiple homographies is limited to using a very small
subset, usually two or three, homographies for multiple regions of interest in the
scene. In this context, the goal is to create a set of homographies that enables the
entire scene to be registered, which in this context is the range between 1 and 4
metres from the cameras. This is an approach which, to the best knowledge of the
author, has retrieved very sparse attention.

Therefore, there do not exist an unambiguous answer to the questions stated
above. Some of the answers are provided by design choices of the algorithm, while
others are included as test parameters for the acceptance test.

The rectification by multiple homographies will only work if homographies are
scattered evenly through the regions of the scene for which we want to register the
images. Thus for each scene, multiple homographies should be present in the range
of 1 – 4 metres from the camera. There exist an infinite amount of solutions on how
the homographies should be scattered and thus many optimal solutions might exist
based on the number of homographies chosen for the scene.

In order to compute 2D homographies between two camera views, one must
know at least 4 point correspondences of the thermal and visible cameras. These
correspondences are already generated in the camera calibration stage as the cali-
bration rig is swept through the entire scene. If individual frames of these calibration
correspondences are picked so that the entire scene is covered by the union of the
correspondences, one might assemble the correspondences of the calibration boards
in k clusters and from those clusters generate k homographies. These homographies
will relate thermal and visible points within a range of the registered plane. When
one wants to map points from the RGB camera to the thermal camera or vice versa,
the closest homography or a subset of homographies is chosen to provide the best
available point map. The process of creating this map is summarized in Figure 7.4.
In the following, the steps of Figure 7.4 will be treated one-by-one.
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Figure 7.4: Generating and choosing between multiple homographies, in brief.

7.3.1 Generating a set of corresponding points

As concluded above, the homographies should be distributed evenly throughout the
entire scene at different positions and depth relative to the camera. This requirement
is met by extracting corresponding point pairs of images of the calibration board used
for the thermal-visible calibration. During the acquisition of the calibration images,
the board is swept through the entire scene to provide an accurate registration ev-
erywhere inside the defined range. The corresponding point pairs are generated from
at least 50 different views of the calibration board from two calibration sequences,
and thus it is highly probable that the point correspondences cover the range of the
scene we want to register.

However, the point correspondences obtained from the camera calibration only
gives the coordinates in the image plane. In order to find the 3D world coordinate
of the point, the corresponding point in the depth image is found through the RGB-
to-depth registration of Section 5.2.2 and the depth of the point is looked up in
the depth image. The depth is relative to the camera coordinate frame and might
be interpreted as the z-value of the world coordinate of the point. However, the
image points are still in image coordinates and thus needs to be transferred to world
coordinates.

In order to transfer the points, the we might use the formula for mapping world
points in the camera coordinate frame to image coordinates by means of the intrinsic
parameters of the camera:

xwyw
w

 =

fx 0 cx 0
0 fy cy 0
0 0 1 0



X
Y
Z
1

 (7.12)

where x and y are the image coordinates and X, Y , and Z are the world coordinates
in the camera frame.

As we already know the value of the depth Z, one may derive the world coordi-
nates X and Y from the following formulas:

X = xZ − cxZ
fx

(7.13)

Y = yZ − cyZ
fy

(7.14)

This operation is applied for each image point of the calibration data.

The data extracted from calibration sequence 1 and 2 of Scene 3 is seen from
Figure 7.5.
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Figure 7.5: Point cloud obtained from multiple views of the calibration board, shown in camera
coordinates of the RGB camera. The depth of the points is obtained through the depth sensor of
the Kinect. The camera centre is located at the origin of the coordinate system.

7.3.2 Positioning of point subsets

The positioning of the k homographies may be chosen manually or through a classi-
fication algorithm. In this case, the k-means clustering algorithm is chosen to divide
the set of points into k clusters. From these clusters, k unique homographies are
computed. The k-means clustering algorithm attempts to minimize the following
cost function: [Hartigan and Wong, 1979]

K∑
j=1

N∑
i=1

(
argminj‖x

j
i − cj‖22

)
(7.15)

where xji is the coordinate of the ith point residing in the jth cluster and cj is the
centre of the jth cluster.

The k-means clustering algorithm is not guaranteed to find the optimal solution
though, and thus multiple runs with different initializations of the clusters should be
conducted to find a solution that is closer to or is the global minimum of the cost
function. The algorithm uses the Euclidean distance to minimize the cost function
which might not be optimal if the dimensions of the data are skewed. Therefore,
data should be normalized by some metric before clustering.

The generated point cloud is normalized by dividing each coordinate by the stan-
dard deviation of the respective dimension, thus resulting in a dataset with a standard
deviation of unity in each dimension.

The normalized point coordinates are led into the OpenCV implementation of the
k-means algorithm, kmeans. The algorithm generates k random centres and iterates
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from these to minimize the cost function. Due to the fact that the k-means algorithm
is vulnerable to the positioning of cluster centres, the algorithm is repeated for 100
random sets of clusters. At the end of the trials, the set of clusters representing the
smallest cost function is chosen. Each coordinate in the point cloud is assigned to a
unique cluster.

The clustering is applied for world coordinates of the calibration points seen from
the RGB camera. However, these coordinates are easily mapped to world coordinates
seen by the thermal camera. This mapping is described in Section 7.3.4.

7.3.3 Generating the homographies

Once the k-means algorithm has found k clusters and classified the points into these
clusters, it is time to generate k homographies. From the theory of the k-means
algorithm, we know that points classified in one cluster are lying close together in
Euclidean distance. The density of the cluster is affected by the distribution of points
and the number of clusters chosen. When the number of clusters is sufficiently high,
the world points will lie so close that it is a reasonable assumption to say that a large
subset of the points constitutes a plane for which a homography might be generated.
However, we would want a homography that maps image points between the RGB
and thermal images, not between their world coordinates. Luckily, the coordinates
of the image frames are easily generated as they constituted the basis for generating
the world points in Equation 7.14.

As we have a one-to-one mapping between world points and the corresponding
image points of the RGB and thermal cameras, the image points might be classi-
fied according to the k clusters. From these subsets of point correspondences, k
homographies are generated using the findHomography function of OpenCV.

The 2D homography H has 9 entries but only 8 degrees of freedom, which means
that at least 4 point correspondences are required to find a 2D homography between
images. However, as the view of the calibration rig typically consists of 96 point
correspondences we have an overdetermined solution, and as several chessboard views
may be united to create one cluster, even more point correspondences occurs. Due
to image noise and errors of the corner extraction process, the point correspondences
do not represent an exact map between the true world coordinates of the corners and
their depicted counterparts. Furthermore, as not all points in a cluster are lying on
the same plane, there exist no single solution for finding a homography that fits all
points.

Robust homography estimation Thus, one must apply a robust method for
finding a homography that fits the largest possible subset of points. This is possi-
ble by using the RANdom SAmple Consensus (RANSAC) algorithm that is readily
implemented in OpenCV. The RANSAC algorithm for computing a 2D homography
uses the following approach: [Hartley and Zissermann, 2003, chap. 4], [Bradski, 2000]

1. Select 4 random point correspondences and compute the 2D homography H.

2. For each point correspondence in the point set, calculate the re-projection error
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with respect to the homography H.

3. Compute the number of inliers. An inlier is defined as a point whose re-
projection error does exceed a threshold set by the user.

The above procedure is repeated N times, a number that is determined adaptively
at runtime [Hartley and Zissermann, 2003]. When the runs are complete, the ho-
mography with the largest number of inliers is chosen. The RANSAC algorithm is
illustrated in Figure 7.6 by the process of fitting a line through a noisy point set.

d

x

y

l

Figure 7.6: The RANSAC algorithm fitting a 1D line onto a subset of points. The two encircled
dots are chosen as basis for the line l. For this line, the number of points that lie inside the
thresholded distance d are counted. The algorithm is repeated N times and upon completion, the
line with the greatest number of inliers is chosen.

The threshold used for filtering the outliers might be chosen arbitrarily and should
be adapted to the current level of noise in image data. The OpenCV documentation
suggests a threshold between 1 and 10, and such, a threshold of 3 is chosen for
the current implementation of findHomography. The generated homographies only
apply for the mapping of points from the visible to the thermal modality. In order
to provide the the opposite mapping, the homographies are inverted.

7.3.4 Choosing a distance metric

The current implementation of the clustering and homography generation does not
generate information on the actual planes that are the theoretical framework behind
the computed homographies. However, we know the centre of the cluster and the
points for which the homography is generated, which may be used to constitute a
useful depth measure. The simplest measure of the distance between homographies
and points is to use the Euclidean distance between the world coordinates of the
cluster centres and the point. However, the Euclidean distance between the point
and the cluster centre might not be an optimal solution since the valid region of the
homography spans a plane, not a point in world space. With a purely Euclidean
distance measure, a point might be substantially close to a plane spanned by a
homography but far away when measuring the distance to the centre of the cluster.

A better distance measure when one does not know the actual plane is the Ma-
halanobis distance given by: [Mahalanobis, 1936]

DM =
√

(x− µ)TΣ−1(x− µ) (7.16)
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where x is a point vector, µ is the mean vector of the dataset, and Σ is the covariance
matrix of the dataset.

The mean and covariance should in this respect be treated as the mean and
covariance of the points classified in a cluster. The mean value of the cluster is by
definition the cluster centre. The covariance matrix is computed from the points
spanning the homography generated in Section 7.3.3. This subset of points used for
computing the covariance matrix might not necessarily consist of all the points of the
given cluster but only the points returned from findHomography which are classified
as inliers by the RANSAC-estimation of the homography.

The mean and covariance should in this respect be treated as the mean and
covariance of the points classified in a cluster. The mean value of the cluster is by
definition the cluster centre. The covariance matrix is computed from the points
spanning the homography generated in Section 7.3.3. This subset of points used for
computing the covariance matrix might not necessarily consist of all the points of the
given cluster but only the points returned from findHomography which are classified
as inliers by the RANSAC-estimation of the homography.

The Mahalanobis distance measure mimics the process of forming the homog-
raphy. If, for instance, the majority of the variation of the points lies along a line
or plane in space, the RANSAC algorithm is likely to estimate a homography for a
plane that is defined by points residing on a this line or plane. When computing the
Mahalanobis distance of points residing on this plane, the distance will be substan-
tially smaller than if the point was residing outside the plane, but with the same
Euclidean distance to the cluster centre. This relationship is depicted in Figure 7.7
for a multivariate Gaussian.
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a b

Figure 7.7: Mahalanobis distance for a multivariate Gaussian with centre µ. Even though the
points a and b are located at different Euclidean distances from the centre, they share the same
Mahalanobis distance.

Distances wrt. the thermal camera The above mentioned methods of mea-
suring the distance between world points does only apply if one knows the depth
for every image point. Otherwise, it is only possible to back-project image points
to world coordinates up to a one-dimensional ambiguity, thus mapping points to
lines. This is indeed the case for points obtained from the thermal camera. For
image points on the thermal camera, depth information might only be provided if
the corresponding point in the visible camera is known - but in order to provide this
correspondence, the depth information is required to select the closest homography!

This relationship might be solved by applying an iterative approach for which the
depth of a pixel is guessed, projected to RGB coordinates, then extracting the actual
depth, and then re-projecting to thermal coordinates where the mapping error might
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be used for a second guess of the depth of the object. This process is repeated until
the re-projection error is below a certain threshold. However, the implementation of
such an algorithm is beyond the scope of this project, and we will focus on a simpler
implementation.

When building the point cloud from views of the calibration rig seen through
the visible camera and depth sensor, a parallel point cloud is built that projects
points of the thermal camera into the world space by a fixed depth. This essentially
denotes that we are projecting the image plane onto a broader world plane, but this
is necessary in order to use the same metrics across both modalities. The ’thermal’
point cloud is generated trough the intrinsic properties of the thermal camera. This
means that in order to measure the distance from thermal image points to the closest
homography, centres and covariance matrices defined above have to be recalculated
with respect to the coordinates of the thermal point cloud.

Thus, even though a visible and a thermal point is affected by the same homog-
raphy when the points are mapped to the other modality, they will feature different
distance metrics. This is the direct cause of the difference in depth information
provided by the two modalities.

7.3.5 Interpolation between homographies

The chosen distance measure enables us to find nearby homographies and sort them
according to their distance to a current point. The homographies map points re-
siding in their defined plane perfectly, but how should they behave when points are
positioned outside the planes? Should only the closest homography be selected or
should we interpolate between a subset of homographies?

It is preferable not to choose only the closest homography for certain reasons. If
a point is situated in the middle of two planes spanned by two homographies, both
homographies should contribute equally to the mapping of the point. Furthermore,
the mapping between adjacent points should be smooth, which means that a smooth
and continuous transition between homographies is required. If we pick only the k
nearest neighbours, the influence of one homography might go from substantial to
zero within a few pixel if the homography is no longer apparent in the set of the k
nearest homographies.

Instead, it is chosen to use a weighting scheme of the homographies based on the
relative distance from a point in space to the nearest homography. This means that
homographies close to a point will receive a high weighting compared to homographies
further away and that points which are very close to a homography will be mapped
almost entirely by this homography.

The proposed scheme of interpolating between the homographies at an arbitrary
world point is the following:

1. For given world coordinateXj , compute the distances to all homographies given
the Mahalanobis distance defined in Section 7.3.4. In order to exaggerate the
differences in distance between homographies, the distances are squared.

2. Find the minimum distance, dmin.
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3. For all homographies, compute the relative distance with respect to the closest
homography:

wreli = dmin
di

(7.17)

4. Sum the weights of the relative distances

5. Divide each weight by the sum of weights. Now, the weights sum to unity:

wi = wreli∑N
i=1wreli

(7.18)

With this approach, we favour homographies close to a point by penalizing every
other homography by the distance ratio to the closest homography. When moving
between homography centres, the transition between homographies is smooth. How-
ever, even if the Mahalanobis distance is squared, homographies ’far away’ from the
point might still be weighted by 5–10 %. This is indeed not wanted, as homographies
will induce significant parallax the further the point is located from the image point
according to Equation 7.11. Therefore, a window function is introduced to eliminate
homographies which are further away than a distance threshold dwindow. The window
function should be ’invisible’ to distances within the allowed threshold and should
make a smooth transition for distances outside the range. These characteristics apply
for the Tukey window function described by the following equation: [Tukey, 1967]
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(7.19)

The Tukey window function consists of a rectangular window for the middle 1−r
par of samples and is a partial cosine function for the first and last r/2 of samples.
Thus, it makes a good compromise of not affecting the distance values and making
a smooth transition at the end of the desired range. The parameter r is set at
0.1, which means that 10 % of the window is in the cosine-tapered section. The
time-domain characteristic of the Tukey window at r = 0.1 is seen from Figure 7.8.
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Figure 7.8: Time-domain view of the Tukey window function with r = 0.1.

The usage of the window function affects the distance calculation in Section 7.3.4
which is Step 1 in the process described above. As we want to penalize distances
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larger than dwindow, the measured distance is divided by the scaling of the window
function:

wi = wi
W (wi)

(7.20)

Distances outside the range of dwindow are fixed at a fixed number, 1 · 109, instead of
being clamped to infinity.

As seen from Figure 7.8, the window function effectively suppresses distances
outside the allowed threshold. However, this leaves one question open: How to set
the threshold dwindow?

The optimal threshold should (1) be so low that distances that result in the
weighting of homographies with significant parallax are suppressed but (2) be so
large that every point within the scene boundaries should be associated with at least
one homography. Thus, the threshold is closely related to the distribution of the
world points used for clustering and the number and positioning of the generated
clusters.

If condition (2) is to be held, the distances to the closest homography should be
calculated for all points used for the clustering process of Section 7.3.1. The largest
distance should then be picked as the window length, dwindow. In this way, every point
will have at least one homography within its reach. For each scene, the distances to
the closest homography by using the training set is calculated, and the maximum
distance is found. As the points used for the validation of the algorithm will likely
feature a longer distance to the nearest homography than the training points, the
maximum distance is multiplied by a factor of 1.5 which is found empirically. Indeed,
two window lengths are specified: one applying to points in the visible image and
one applying to points in the thermal image.

Visualization of the weighting scheme

The interpolation algorithm is difficult to visualize since it is implemented for 3D
points. However, when scaled in 2 dimensions, such as the case for thermal image
points, the performance of the algorithm might be shown. The following describes
the implementation in MATLAB, which is equivalent to the implementation of the
algorithm in OpenCV.

Five clusters have been generated throughout the image plane as seen from Figure
7.9a. The entries of the covariance matrices of the clusters are scaled between 0.2
and 0.6, and the clusters therefore have different reach in the x- and y directions,
modelling bivariate Gaussian distributions.

In Figure 7.9b and 7.9c, the impact of cluster 5 and 3 on neighbouring points
is seen. The impact, or the percentage of the total weighting of homographies that
the corresponding homography represents at the current pixel, is seen from contour
plots of Figure 7.9b and 7.9b. The contour scale goes from blue, which represents a
value of [0; 0.30], to brownish red, which represents a value close to 1. It is seen from
both contour plots that points in the vicinity of the cluster centres are influenced
almost entirely by the current homography, which indeed should be the case. From
the contour plot of cluster 3 in Figure 7.9c, the impact of the window function is
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(a) Distance transform of the cluster centres,
measured in Euclidean distance
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(b) Contour plot of distances for homography 5
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(c) Contour plot of distances for homography 3
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Figure 7.9: Depth images from the Kinect. The 8 bit-image is the saved depth image from the
Kinect in order to comply with performance requirements.
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seen in the upper left region of the image. Before the impact of the window function,
the weighting of the homography at the upper left corner is below 0.10, however, the
impact of the window slowly slides the weight of the homography to zero.

Figure 7.9d shows a cross-sectional view of the weighting of the homographies at
the line x = 200. It is easily seen from the Figure that the line goes straight through
cluster 4 and lies very close to cluster 1, as the weighting of these homographies are
peaking at their respective centres. It is also seen how the window function cancels
the contributions from cluster 1 and 3 as the distances to these centres are outside
the allowed range at the beginning of the line.

Summary on the image registration

This chapter has treated the design of two significantly different image registration
techniques: stereo rectification and rectification by multiple homographies. The
technique of stereo rectification is widely applied in the computer vision community
in stereo configurations with visible cameras. Therefore, one would assume that
an implementation on the thermal-visible imagery might provide good results. The
stereo rectification is implemented in both the calibrated and uncalibrated case, and a
method to automatize the search for corresponding points along the rectified epipolar
lines has been proposed. However, results show that the stereo rectification methods
provide a poor estimate of rectifying the thermal-visible imagery of the proposed
set-up.

A technique on generating multiple homographies for each scene is proposed.
The homographies are generated through the sets of corresponding points that are
divided in clusters according to the k-means clustering algorithm. Image points
residing either in the visible or thermal modality are mapped to the other modality
by a weighting of the closest homographies available at each point. The distance from
a image point to a homography is defined by projecting the image point to world
coordinates and using the Mahalanobis distance function evaluated at the points that
span each homography.

Both rectification methods are implemented in the OpenCV framework for C++.
The code is available in the CD provided1 and is described in brief in Appendix B.

In the next chapter, the acceptance test will evaluate the performance of the
rectification by multiple homographies.

1 Code/DualCalibration/DualCalibration.sln
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Chapter 8

Acceptance test

The acceptance test specification of this chapter is validating the requirements set in
Chapter 3 upon the methods defined in the acceptance test specification in Chapter
4. The beginning of this chapter will assess the requirements of the image acquisition
platform, whereas the latter part of will evaluate the performance of the registration
algorithm.

8.1 Image acquisition platform

8.1.1 Physical platform

The creation of the physical image acquisition platform is described in Section 5.1
and consists of the Microsoft Kinect for XBOX and the AXIS Q1922 thermal camera.
The core specifications of the cameras are listed in Table 8.1.

Microsoft Kinect for XBOX AXIS Q1922

Modality Visible, depth Thermal
Resolution 640x480 640x480
Frame rate 15 FPS 30 FPS
Spectral range Visible* 8 – 14 µm

Table 8.1: Properties of the thermal and visible cameras. The Kinect is able to record frames at
up to 30 FPS. Due to performance issues though, the actual frame rate is decreased to 15 FPS. *The
spectral range is not available in any data sheet for the Kinect, but as for any common RGB-sensor,
the camera captures visible light.

As seen from the specifications of Table 8.1, the cameras fulfil the requirements on
the minimum resolution and frame rate of the platform. The baseline of the platform
is 70 mm, thus fulfilling the requirement of a maximum distance between the thermal
and visible cameras of 100 mm. The AXIS thermal camera has a spectral range in
the LWIR range of 8 – 14 µm, which is perfectly capable of ’seeing’ objects in the
temperature range of -10◦C – 50◦C. The temperature range will not be tested though,
and we will rely on the properties of the sensor provided by the manufacturer.

64
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8.1.2 Synchronization

In correspondence with the accept test specification, three scenes have been recorded
with the acquisition platform. The acquired frames for each calibration sequence of
scene 1 – 3 has been synchronized using the measures described by Section 6.1. The
synchronization lag is measured in Appendix C.1.1 and the results are replicated in
Table 8.2 for convenience.

Synchronization lag Largest frame lag
Scene Calibration

sequence
Max. Mean Std.dev. Thermal RGB

1
1 31.3 ms 9.31 ms 8.71 ms 374.4 ms 78.0 ms
2 46.8 ms 9.43 ms 8.70 ms 78.1 ms 93.6 ms
3 46.8 ms 9.26 ms 8.40 ms 358 ms 93.6 ms

2
1 31.2 ms 9.07 ms 8.48 ms 109 ms 93.6 ms
2 31.2 ms 9.35 ms 8.99 ms 129 ms 93.6 ms

3
1 62.4 ms 9.53 ms 9.30 ms 218 ms 93.6 ms
2 46.8 ms 9.34 ms 8.83 ms 359 ms 94.6 ms
3 31.2 ms 9.13 ms 8.62 ms 359 ms 93.6 ms

Table 8.2: Synchronization lag between and frame lag within cameras of the 8 calibration sequences.
The synchronization lag is the lag between synchronized frames of different modalities, and the
largest frame lag is the inter-frame distance between synchronized frames of the same modality. The
depth frames are not mentioned here as these frames feature a perfect synchronization with the RGB
frames - and thus, the terms RGB and depth are interchangeable in this table.

It is seen from the table that the requirement of a minimum synchronization lag
of 40 ms is not met in four of the eight calibration sequences. This is not a fault
of the synchronization algorithm but a result of sudden ’jumps’ in the frame rate
of either the thermal or RGB cameras. This jump in the frame rate does indeed
lead to inter-frame lag up to 374 ms, which is the case for two thermal frames in
calibration sequence 1 of scene 1. However, these lags will only lead to excessive
synchronization lag if the RGB frames are also lagging - otherwise, the RGB frames
that resides in between the laggy frames will be discarded. This is the case in four
calibration sequences where a synchronization lag up to 62 ms is measured. These
spikes in the synchronization lag does only occur once or twice through a calibration
sequence but in these occurrences, objects in motion will occur out of sync, and point
correspondences extracted from these frames will be degenerate.

However, the average performance of the synchronization of the multi-modal
frames is significantly below the threshold of 40 ms. The mean of the synchronization
lag lies consistently between 9.07 – 9.53 ms and the standard deviation of the lag
never exceeds 10 ms. But notwithstanding the good performance on the average, the
requirements of the synchronization lag are only partially met.

8.1.3 Depth information

The Kinect for XBOX camera is equipped with a built in depth sensor that esti-
mates the depth of objects for 0.8 – 4 metres according to the specifications of the
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manufacturer [Eisler, 2013]. The requirement specification defines a minimum range
of 1 – 4 metres which is verified by placing an object at exact these distances, as seen
from Figure 8.1.

(a) Depth image of object at 1 metre from
the sensor. The depth value returned from the
Kinect sensor is 863 mm.

(b) Depth image of object at 4 metres from
the sensor. The depth value returned from the
Kinect sensor is 3074 mm.

Figure 8.1: Depth images from the Kinect at the bounds of the specified interval.

8.1.4 Depth registration

The depth images are factory registered to the RGB images of the Kinect. The
registration is saved by the image acquisition platform and is processed further to
provide a mapping between pixels in the depth image to pixels in the RGB image and
vice versa. An example of this map is seen from Figure 5.4, fulfilling the requirement
on the depth registration.

8.1.5 Summary

The requirements for the image acquisition platform set in Table 3.1 has all but
one been fulfilled. For 50 % of the calibration sequences, the synchronization lag is
greater than 40 ms, for a few frames, thus only partially fulfilling the requirement
on the synchronization lag.

The compliance with the requirements for the image acquisition platform is listed
in Table 8.3.

8.2 Thermal-visible registration algorithm

This section will test the requirements for the performance of the registration algo-
rithm between the thermal and visible images. As stated in the requirement specifi-
cation, the performance of the depth registration will not be tested, and we thus rely
solely on the built-in registration between the visible and depth images as provided
by the Kinect for Windows SDK. Although multiple image registration techniques
based on stereo rectification and multiple homographies have been presented, only
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Parameter Requirement Test result Passed

Synchronization lag ≤ 40 ms ≤ 62.4 ms Failed
Minimum frame rate ≥ 12.5 FPS 15 FPS Passed
Thermal range -10◦C – 50◦C Factory spec. Passed
Minimum visible res-
olution

640x480 640x480 Passed

Minimum thermal
resolution

320x240 640x480 Passed

Baseline between
cameras

≤ 100 mm 70 mm Passed

Depth information Available Available Passed
Depth registration Stored Stored Passed
Depth range 1 m – 4 m 1 m – 4 m Passed

Table 8.3: Compliance with the requirements for the image acquisition platform.

the rectification by multiple homographies is evaluated here. The stereo rectification
algorithms are evaluated in Appendix D and it is found that the performance of these
algorithms is not within the acceptable range. Therefore, these are not included in
the acceptance test.

8.2.1 Scenes

Based on the definitions of Section 4.2.1, three scenes are created. These scenes
are seen from Figure 8.2. For scene 1 and 3, three calibration sequences are con-
ducted, whereas only two calibration sequences are conducted for scene 2. This is
not necessarily a problem though, which is discussed in the next section.

8.2.2 Obtaining corresponding point sets

For each calibration sequence, between 25 and 30 frames have been picked, and cor-
ners of the calibration rig is manually extracted according to the process described in
Appendix C.2. Due to the shortage of calibration sequences of scene 2, an additional
15 frames have been extracted from calibration sequence 2. Although these frames
are taken from the same calibration sequence, they are taken with different time in-
tervals and starting conditions in time. Consequently, these frames may be used for
the validation of the registration algorithm for scene 2, and will, in this framework,
be defined as calibration sequence 3.

Number of validation points

The number of active frames extracted for each calibration sequence is listed in Table
8.4. Here, we distinguish between the number of frames extracted from each frame
and the number of active frames from which the corners of the calibration rig have
been successfully extracted. The multi-modal calibration rig is described in Section
6.2.2 and consists of 96 corners, which translate to 96 point correspondences between
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(a) View of Scene 1 (b) View of Scene 2

(c) View of Scene 3

Figure 8.2: The three scenes created for the test and validation of the registration algorithm.

Scene Calibration se-
quence

Active frames Number of point
correspondences

1
1 25 2312
2 24 2304
3 21 1968

2
1 22 2112
2 22 2112
3 15 1440

3
1 28 2584
2 28 2584
3 24 2208

Table 8.4: Number of active frames and the number of point correspondences extracted for each
calibration sequence. More frames might be extracted from a calibration sequence than the above
listed ’active frames’, but these are discarded due to either synchronization issues, poor visibility of
the corners, or problems with the positioning and pose of the calibration rig.
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the thermal and visible images. However, the calibration rig is not fully visible in all
views, and therefore one cannot obtain the total number of point correspondences by
multiplying the number of active frames by 96. It is seen from the entries of Table
8.4 that the number of point correspondences for each calibration sequence exceeds
the required amount of calibration points by at least 40 %.

If one was sure that the internal positioning of the cameras was constant between
the different scenes, a bigger dataset for training and testing the registration algo-
rithm might be created from a concatenation of the calibration sequences of all three
scenes. However, as this is not guaranteed, the registration algorithm is trained and
tested separately for each scene.

Distribution and range of validation points

The requirements on the distribution of the corresponding point sets are harder to
assess. The method chosen here is to manually validate the point clouds extracted
from the visible and depth information available of the corresponding point sets.
Furthermore, the set of active frames are validated by manual inspection. In order to
generate the point cloud, the image coordinates of the calibration points in the RGB
image are back-projected to world coordinates by the intrinsic camera parameters of
the RGB camera and the depth obtained by the depth sensor of the Kinect. The
point cloud is thus given in the coordinate frame of the RGB camera where the origin
is the camera centre. The claim from Microsoft is that the depth obtained from the
Kinect might be interpreted in mm [Microsoft Developer Network, 2013b]. It is seen
from the measurements of Section 8.1.3 that this is indeed a poor estimate. The
test object placed 1 m from the camera is measured as having a depth of 863 mm
whereas the object placed at 4 m is measured as 3074 mm. This indicates that Kinect
depth measurements at 3 m should indeed be translated to a real-world distance of
4 m. The validation of the depth measurements from the Kinect sensor is beyond
the scope of this project so in this context, we will use the raw sensor values from
the Kinect, however with the range of the measurements in mind.

The raw data for generating the point cloud are found in Dataset/Scene
x/y/CalibrationHelper/pointCloudRgb.txt where x and y denotes the scene and cali-
bration sequence number, respectively. The point cloud is easily visualized with the
tool of choice. In this context, the dlmread and plot functionality of MATLAB is
used.

Although the three-dimensional point cloud is indeed very difficult to visualize
on paper, the point clouds of the validation sequences for scene 1 – 3 are shown in
Figure 8.3. The figures show the x- and z-coordinates of the point clouds and give an
indication of the positioning of the calibration rig in the plane y = 0. From the point
clouds it is seen that the depth range of the validation points of scene 2 is indeed
limited compared to the ranges for scene 1 and 3.

Through an inspection of the point clouds and the corresponding images of the
calibration rig, it is verified that both the training and validation points are dis-
tributed equally through their respective scenes.

The range is formalized even further in Table 8.5. The table shows the 1 and 99
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(a) Validation points for scene 1
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(b) Validation points for scene 2
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(c) Validation points for scene 3

Figure 8.3: Distribution of the validation points for all scenes shown in world coordinates in the
reference frame of the RGB camera. As only a 2D view is provided, the points are projected to the
plane y = 0. The validation points for each scene are corresponding to the 3rd calibration sequence.
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% quantile of the depth of the corresponding point sets of each calibration sequence.
From the entries of the table it is easily seen that the range requirement for scene
2 is fulfilled as the points are within the range 1700 mm ± 200 mm. For scene 1
and 3 it is seen that the points do indeed lie inside the range 1 – 4 m. However, it
is noticed that points in some scenes are not contained in the full range of up to 4
m, which translates to a Kinect measurement of 3074 mm. This property is due to
the nature of the scenes which does not allow the calibration rig to be placed further
away. The conditions for the range requirement are therefore met for all scenes.

Scene Calibration sequence 1 % quantile 99 % quantile

1
1 1142 mm 2882 mm
2 1182 mm 2912 mm
3 1056 mm 2942 mm

2
1 1470 mm 1894 mm
2 1510 mm 1894 mm
3 1536 mm 1921 mm

3
1 1067 mm 2561 mm
2 1298 mm 3276 mm
3 1018 mm 2852 mm

Table 8.5: The 1 and 99 % quantile of the depth of the corresponding point set for each calibration
sequence. The depth is equal to the z-entry of the point cloud.

8.2.3 Registration accuracy

As the registration by multiple homographies is indeed a non-deterministic algorithm,
we need to evaluate each adjustable parameter k times and evaluate the algorithm
based on the average performance of the runs. The image registration by multiple
homographies is characterised by the n number of homographies for a scene, a number
which might be chosen arbitrarily. Thus, in order to find the number of homographies
which contributes to a better image registration, the algorithm is run for each scene
with a varying number of homographies in the range from 1 – 30.

In Section 7.3.3, the RANSAC-threshold for finding the homographies from each
cluster of point correspondences is set to 3. In order to challenge this threshold, the
performance is tested with both the threshold of 3 and a threshold of 10, which is
the largest recommended threshold of OpenCV. Future work will assess the impact
of the threshold through further investigation.

The acceptance test specification states that 20 runs should be conducted for
each varying parameter of the registration algorithm, which for three scenes gives
us 3 · 30 · 20 · 2 = 3600 runs. Furthermore, we would like to test the registration
performance on both the training data and the validation set.

As stated in the requirement specification, the baseline chosen to compare the
registration against is the global registration method, which might be interpreted as
the multiple homographies technique with only one cluster. The global registration
relies on the OpenCV function findHomography, for which the the best RANSAC-
threshold in the interval 1 – 30 is found for each scene.
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For each run, a log file is created with the error in pixels between the mapping
and the ground truth points. Given the size of the dataset and the proportion of the
tests, it is not feasible to show all results here. For each batch of 20 runs testing the
performance of the registration algorithm with n clusters, the average performance
is listed in text files on the CD Logs/Hom/ .

For each scene, the registration performance by 5, 10, and 20 homographies are
shown alongside with the best performance of the global registration. In the fol-
lowing, the validation data provided by calibration sequence 3 of each scene will be
treated as test data, whereas the data of calibration sequence 1 and 2 will be treated
as training data. The training data are used for feeding both the multiple homogra-
phy registration and the global registration algorithm with point correspondences.

Scene 1

The performance of the registration algorithm versus the number of clusters, for
which homographies are generated, is seen from Figure 8.4. From the graphs corre-
sponding to a RANSAC-threshold of 3 it is seen that the transfer errors of the test
set decreases from 150 and 200 to a relatively stable level with only five clusters.
From here, the increase in the number of clusters does not affect the performance of
the test set until 20 and 21 clusters are reached. Beyond 21 clusters it seems that
the resulting homographies are modelling noise rather than the actual characteris-
tics of the thermal-visible camera configuration, as the errors for the mapping rgb→t
are fluctuating greatly. This does not affect the mapping from t→rgb, which might
be due to the reduced complexity in the thermal point cloud. With a RANSAC-
threshold of 10, one might see that the errors of the mapping for the test set do not
fall with the increase of the number of clusters.

It is seen from the graphs of Table 8.4 that the mapping of the training data is
improved, the larger the number of clusters, although the transfer error is decreasing
slowly above 10 clusters.
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(a) RANSAC-threshold of 3
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(b) RANSAC-threshold of 10

Figure 8.4: Relationship between number of clusters and corresponding one-directional transfer
error for scene 1

Figure 8.5 shows the relationship between the squared Mahalanobis distance to
the nearest cluster and the geometric OTE with a RANSAC-threshold of 3. It is seen
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from the graphs of the figure that the OTE of the test data is nearly independent on
the positioning of the clusters. The OTE for the mapping from t→rgb even decreases
with larger distances, and the OTE for the mapping from rgb→t is increasing very
slightly up to a squared distance of 5. This characteristic generally also applies for
the mapping of the training data from t→rgb. For the mapping of the training
from rgb→t, we see a steady increase in the OTE as the distance to the nearest
homography increases, as one would expect from theory.
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Figure 8.5: The distance to the nearest homography, or cluster, compared to the geometric OTE
for scene 1. The graphs are generated with a RANSAC-threshold of 3 but are equivalent to the
corresponding graph generated with a threshold of 10.

The accuracy for mapping the test and training points by 5, 10, 15, and 20
clusters with a RANSAC-threshold of 3 is seen from Table 8.6 and 8.7, respectively.
The best fitting homography with a RANSAC-threshold of 10 is also shown. The
mapping errors of the table reflects the graphs of Figure 8.4, and it is thus seen
from the data that the best overall mapping is obtained with 5 homographies and
a RANSAC-threshold of 3. At the bottom of the table is shown the accuracy of
the best fitting planar homography, which is obtained with a RANSAC-threshold
of 12. It is seen that this planar homography is superior to the method of multiple
homographies when measuring the geometric error of the STE. However, the mapping
from rgb→t is more accurate with the method on multiple homographies. With 3
homographies and a RANSAC-threshold of 10, the average geometric transfer error
from rgb→t is down from 104.4 to 94.5 pixels, a 9 % decrease. The mapping from
t→rgb of the multiple homographies comes nowhere near of the performance of the
single homography, however. An example of the performance of the mapping is shown
in Figure 8.6 for which two mappings of each modality in the test set is performed.

The transfer errors of the training set are listed in Table 8.7. Unsurprisingly, the
transfer errors are considerably lower than the errors of the test set. One might see
from the table that the geometric mean of the STE decreases with increasing cluster
size and thus is on par with or even lower than the STE of the planar homography.
The decrease in STE is enabled by sharp decreases in the mapping error from rgb→t
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Nbr. RANSAC Algebraic error (x,y) Geometric error
Hom. thresh. Mean Std.dev Mean Std.dev

5 3 OTE rgb→t 46.02 53.48 81.63 69.2 99.5 108
t→rgb 35.25 59.02 83.26 70.38 94.27 108

STE rgb↔t 81.28 112.5 148.2 126.6 193.8 193.4

10 3 OTE rgb→t 40.28 59.52 135.8 78.76 99.8 174.7
t→rgb 40.79 63.82 95.92 79.6 104.6 126

STE rgb↔t 81.07 123.3 201 132 204.4 253.2

15 3 OTE rgb→t 56.53 59.71 312.2 84.63 116.2 352.7
t→rgb 30.02 63.88 77.2 89.31 93.9 127.2

STE rgb↔t 86.55 123.6 339.9 142.2 210.1 397.9

20 3 OTE rgb→t 45.31 58.47 190.3 129.3 103.8 272.7
t→rgb 31.36 74.24 69.07 96.89 105.6 122.7

STE rgb↔t 76.67 132.7 215.6 175.3 209.4 317.3

3 10 OTE rgb→t 36.84 57.66 84.46 68.84 94.5 111.5
t→rgb 49.05 55.1 150.5 75.45 104.1 195.1

STE rgb↔t 85.89 112.8 198 130.7 198.6 258.7

OTE rgb→t 33.29 71.08 73.59 85.06 104.4 116.8
Planar 12 t→rgb 25.43 50.86 52.83 60.62 76.28 84.29

STE rgb↔t 58.72 121.9 126.3 145.6 180.7 201

Table 8.6: Errors for the test of the image registration algorithm on scene 1 by using Nbr. hom.
clusters. The ’Planar 12’ is the best fitting planar homography. 12 denotes the RANSAC threshold
used for filtering the outliers.
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(a) Test image 1, rgb→t (b) Test image 1, t→rgb

(c) Test image 14, rgb→t (d) Test image 14, t→rgb

Figure 8.6: The performance of the rectification algorithm on two sets of images of scene 1.
Ground truth points are shown in green and rectified points are shown in red. The rectification
is performed using 3 homographies generated by a RANSAC-threshold of 10. The upper images
show a nearly perfect registration between the modalities, whereas the two lower images show a
considerable mismatch of the rectification.
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whereas the accuracy for t→rgb remains largely unchanged. The best mapping from
rgb→t is enabled by a RANSAC-threshold of 10 with 30 clusters supported, which
gives a geometric mean of the OTE of 14.85, a decrease of 67 % compared to the
baseline.

Nbr. RANSAC Algebraic error (x,y) Geometric error
Hom. thresh. Mean Std.dev Mean Std.dev

5 3 OTE rgb→t 71.04 30.23 326.3 117.6 101.3 417.8
t→rgb 16.23 33.44 32.76 40.18 49.66 53.79

STE rgb↔t 87.26 63.66 345 131.7 150.9 440.5

10 3 OTE rgb→t 16.91 16.72 68.9 59.38 33.63 116.8
t→rgb 20.25 31.75 48.5 47.22 52 74.19

STE rgb↔t 37.16 48.47 98.37 95.51 85.63 170.6

15 3 OTE rgb→t 17.6 15.3 79.46 54.7 32.9 118.7
t→rgb 17.11 32.08 41.8 45.67 49.2 66.32

STE rgb↔t 34.71 47.39 100.8 88.26 82.1 163.3

20 3 OTE rgb→t 12.45 12.67 41.09 39.47 25.12 67.83
t→rgb 17.07 36.7 55.03 49.3 53.77 77.55

STE rgb↔t 29.52 49.37 77.79 73.2 78.89 120.3

20 10 OTE rgb→t 7.485 10.19 20.31 31.92 17.68 45.51
t→rgb 20.52 35.5 98.64 48.96 56.01 119.2

STE rgb↔t 28 45.69 102.8 66.33 73.69 134.8

30 10 OTE rgb→t 6.432 8.418 14.93 22.87 14.85 30.96
t→rgb 17.91 37.95 86.4 57.69 55.86 120.1

STE rgb↔t 24.34 46.37 89.21 65.37 70.71 127.4

OTE rgb→t 12.16 33.26 31.84 51.22 45.42 65.95
Planar 12 t→rgb 9.373 24.08 25.47 37 33.45 49.75

STE rgb↔t 21.53 57.34 57.28 88.2 78.87 115.6

Table 8.7: Errors for the training of the image registration algorithm on scene 1 by using Nbr.
hom. clusters. The ’Planar 12’ is the best fitting planar homography. 12 denotes the RANSAC
threshold used for filtering the outliers.

Scene 2

Scene 2 is by far the most planar of the three scenes, and one might therefore expect
the scene to be successfully modelled by a small subset of homographies. This is
reflected in Figure 8.7 which shows the number of clusters versus the transfer error.
Indeed, the performance of the registration algorithm on the test data shows that the
mapping from rgb→t might effectively be handled with less than 6 homographies.
The performance of the mapping from t→rgb is significantly worse and shows little
improvement by increasing the number of clusters. Beyond 15 clusters is the perfor-
mance of the mapping indeed random, as multiple homographies in the 3D space is
modelling the noise and inaccuracies of the training data. However, this does only
apply for the mapping from rgb→t, whereas the mapping from t→rgb seems to be
inresponsive to the number of clusters.
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(a) RANSAC-threshold of 3

0 5 10 15 20 25 30
0

50

100

150

200

250

300

350

400

Number of clusters

M
ea

n 
of

 s
qu

ar
ed

 e
rr

or
s

One−directional transfer error (Geometric distance)

 

 
Test: rgbToT
Test: tToRgb
Training: rgbToT
Training: tToRgb

(b) RANSAC-threshold of 10

Figure 8.7: The number of clusters and the resulting error for the training and test set of scene 2.
The graph clearly shows that the mapping from rgb→ is unstable for 17 clusters or above.

The performance of the mapping of training data from t→rgb is significantly
worse than the mapping from rgb→t. This is also seen from the graph of Malahanobis
distances versus the transfer error, which is shown in Figure 8.8. It is seen from the
figure that the transfer errors for the mapping from t→rgb starts at 40 and 110 pixels
test and training data, respectively, even if the nearest cluster is at zero distance.
This does indeed show that the proposed implementation of the clustering scheme
for mapping thermal points to RGB does not perform well in planar scenes.
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Figure 8.8: The distance to the nearest homography and the average transfer error for test and
training points of scene 2. Below a distance of 1, the rectification algorithm delivers an average
transfer error below 10. Beyond this threshold, the error shows an exponential relationship with the
increase of the squared error.

The same might not be said for the mapping of RGB points to thermal. It is seen
that the error does actually increase with the distance to the nearest homography up
to a certain point. Beyond this point, the error fluctuates with no sign of any pattern.
The performance of the multiple homographies on the test set is listed in Table 8.8
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and the performance of the best fitting set of homographies is shown for a dual set of
images in Figure 8.9. The table shows the OTE and STE for selected set of numbers of
homographies along with the best performing planar homography, which in this case
is generated with a RANSAC-threshold of 5. The table verifies that the mapping from
t→rgb provided by the multiple homographies is lagging behind the baseline greatly.
The best performance from t→rgb is provided by a single homography which is indeed
similar to the baseline, just with different threshold for the RANSAC estimation. The
performance of the opposite mapping from rgb→t is different, though. The transfer
error by using 3 homographies with a RANSAC-threshold of 10 is smaller on than
the corresponding error by using a planar homography. The mean of the geometric
error is down from 19.56 to 11.23, a 43 % decrease. The standard deviation of the
error is down from 22.74 to 16.53, which corresponds to a decrease of 27 %.

(a) Test image 10, rgb→t (b) Test image 10, t→rgb

(c) Test image 3, rgb→t (d) Test image 3, t→rgb

Figure 8.9: The performance of the rectification algorithm on two chosen test images of scene
2. Ground truth points are shown in green and rectified points are shown in red. The mappings
are performed by using 3 homographies generated by a RANSAC-threshold of 10. The mapping of
points from t→rgb for test image 10 shown in the upper right corner shows a nearly perfect mapping
of the thermal points in the visible modality. The opposite mapping shown in the upper left corner
shows that the mapping from rgb→t suffers from noticeable parallax. The lower images of test image
3 shows the severity of the parallax induced from the mapping of points from t→rgb. Although the
mapping from rgb→t is not exact, it is substantially more accurate than its counterpart.

The transfer errors of the training data shown in Table 8.9 shows that the model
of multiple homographies is struggling to model the point correspondences of the
training set. The mappings from t→rgb are still erroneous and does not constitute a
useful registration. The planar homography that fitted the test set of Table 8.8 does
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Nbr. RANSAC Algebraic error (x,y) Geometric error
Hom. thresh. Mean Std.dev Mean Std.dev

5 3 OTE rgb→t 8.735 5.98 20.15 11.55 14.71 24.46
t→rgb 27.69 47.7 69.14 104.1 75.38 144

STE rgb↔t 36.42 53.68 79.67 104.4 90.1 148.9

10 3 OTE rgb→t 17.26 9.606 35.8 21.53 26.87 44.4
t→rgb 26.32 36.21 57.38 85.21 62.53 118.6

STE rgb↔t 43.58 45.82 74.2 88.51 89.4 127.5

15 3 OTE rgb→t 21.48 9.01 54.31 19.43 30.49 60.07
t→rgb 32.7 39.28 79.73 82.61 71.98 132.4

STE rgb↔t 54.18 48.29 104.7 88.36 102.5 151.2

20 3 OTE rgb→t 42.1 27.43 770 1797 69.53 2560
t→rgb 25.46 37.05 62.02 84.22 62.51 117.4

STE rgb↔t 67.56 64.48 772.9 1799 132 2562

3 10 OTE rgb→t 5.698 5.532 13.99 8.902 11.23 16.53
t→rgb 24.09 31.44 59.88 62.76 55.53 95.93

STE rgb↔t 29.79 36.97 65 63.32 66.76 99.36

OTE rgb→t 9.546 10.01 16.77 13.89 19.56 22.74
Planar 5 t→rgb 7.397 7.757 12.8 10.32 15.15 17.1

STE rgb↔t 16.94 17.77 29.53 24.09 34.71 39.69

Table 8.8: Errors for the test of the image registration algorithm on scene 2 by using Nbr. hom.
clusters. The ’Planar 5’ is the best fitting planar homography. 5 denotes the RANSAC threshold
used for filtering the outliers.
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show to be performing a lot worse fitting the training data and thus, another planar
homography is included which fits the training set better. This homography does
indeed outperform the method on multiple homographies by a large margin when
measured by the STE.

Nbr. RAN-
SAC

Algebraic error (x,y) Geometric error

Hom. thresh. Mean Std.dev Mean Std.dev

5 3 OTE rgb→t 36.45 30.94 95.91 106.7 67.39 182.2
t→rgb 101.3 144.4 272 430.7 245.7 661.1

STE rgb↔t 137.7 175.3 332.9 503.2 313 783.5

10 3 OTE rgb→t 45.39 32.06 123.2 105.5 77.45 202.6
t→rgb 91.36 108.5 223.9 324.6 199.8 514.8

STE rgb↔t 136.7 140.5 281.6 378.3 277.3 610.6

15 3 OTE rgb→t 47.98 29.85 135.8 111.6 77.83 224.7
t→rgb 102.9 124.5 266.8 370.9 227.4 600

STE rgb↔t 150.9 154.4 334.6 . 438.5 305.2 722

20 3 OTE rgb→t 1354 472.5 3.7e05 1.3e05 1827 4.9e05
t→rgb 80.38 117.9 202.1 348.4 198.3 516.8

STE rgb↔t 1434 590.4 3.7e05 1.3e5 2025 4.9e05

2 10 OTE rgb→t 20.76 19.06 55.07 69.08 39.83 108.3
t→rgb 39.94 63.43 124.8 213.2 103.4 326.4

STE rgb↔t 60.7 82.5 157.9 267.6 143.2 405.8

OTE rgb→t 31.98 22.05 75.53 53.75 54.03 107.7
Planar 5 t→rgb 23.24 18.78 52.55 55.44 42.02 88.6

STE rgb↔t 55.22 40.83 127.6 108.3 96.05 194

OTE rgb→t 14.93 16.84 24.1 44.76 31.77 57.1
Planar 30 t→rgb 12.17 15.57 19.67 46.43 27.74 58.64

STE rgb↔t 27.1 32.4 43.41 90.98 59.51 115.2

Table 8.9: Errors for the training of the image registration algorithm on scene 2 by using Nbr.
hom. clusters. The ’Planar 5’ is the best fitting planar homography of the test data. However, this
homography does not perform as well for the training data as the homography with a RANSAC-
threshold of 30, which is therefore included. 30 denotes the RANSAC threshold used for filtering
the outliers.

Scene 3

The transfer error for the test and training set for different cluster sizes is seen
the graphs of Figure 8.10 and the entries of Table 8.10 and 8.11. It is observed
from the graphs of Figure 8.10 that the transfer errors of the mapping from t→rgb
goes beyond the graph window for clusters sizes greater than 8 – 10. The best
performance for this mapping is achieved with the smallest amount of clusters, thus
resembling a planar homography. The picture is different when it comes to the
performance of the mapping from rgb→t. Here, the method on multiple clusters
does seem to improve the performance by adding more clusters. The transfer error
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for the test data is lowered until 10 clusters have been reached. When the number
of clusters increases beyond this point, the error increases rapidly. For the training
set, however, the mapping from rgb→ improves steadily with the higher number of
clusters which shows that in the case of scene 3, the proposed method is making a
better approximation of the data set by applying multiple homographies. This does
only apply for a RANSAC-threshold of 3, however. For a threshold of 10, the error
decreases until 20 clusters have been reached. Beyond this point, the errors of the
mapping from rgb→t on the training and test are indeed very unstable.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Number of clusters

M
ea

n 
of

 s
qu

ar
ed

 e
rr

or
s

One−directional transfer error (Geometric distance)

 

 
Test: rgbToT
Test: tToRgb
Training: rgbToT
Training: tToRgb

(a) RANSAC-threshold of 3
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(b) RANSAC-threshold of 10

Figure 8.10: The number of clusters and the resulting error for the training and test set of scene
3.

The relationship between the distance to the nearest homography and the result-
ing average transfer error for the training and testing of scene 3 is shown in Figure
8.11. The graphs are consistent with the equivalents of scene 1 and 2 and shows that
the error of the mapping of points from rgb→t is going towards zero as the distance
to the nearest homography decreases. It is seen from the graphs that the error of the
mapping from t→rgb for the test and training data is indeed larger with increasing
distances. However, at zero distance to the nearest homography, the mapping from
t→rgb results in a relatively large transfer error of 70 and 500 pixels for the test and
training datasets, respectively.

The bad performance of the mapping from t→rgb is reflected in Table 8.10 and
Table 8.11 for the test and training data of scene 3. The performance of the mapping
does not come on par with with the baseline of the planar homography in neither
the training nor test set. The best performance of the mapping from rgb→t in the
test set is found with 8 clusters and a RANSAC-threshold of 10. The average of the
geometric OTE features a decrease in the error from 69.98 to 59.96. However, the
standard deviation of the error remains high, which indicates that some points are
mapped with suboptimal accuracy, thus resulting in large errors. The rectification
is applied on a subset of the test images which are found in Figure 8.12.

The mapping error for the training set of scene 3 shows that the planar homog-
raphy is struggling to deliver a good performance of the mapping from rgb→t. The
average of the geometric error has increased by a factor of 5.7, resulting in a average
OTE from rgb→t of 466.2 pixels. The method on multiple homographies delivers
considerably better performance in representing the training set by 30 clusters, re-
sulting in an average OTE from from rgb→t of 303.2 pixels, a decrease of 35 %
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Figure 8.11: The distance to the nearest homography and the average transfer error for test and
training points of scene 3.

Nbr. RANSAC Algebraic error (x,y) Geometric error
Hom. thresh. Mean Std.dev Mean Std.dev

5 3 OTE rgb→t 59.64 44.43 274.1 132.6 104.1 373.9
t→rgb 81.16 56.97 182.1 121.2 138.1 268.5

STE rgb↔t 140.8 101.4 340.9 210.1 242.2 497.2

10 3 OTE rgb→t 53 39.18 155.4 115.2 92.18 234.3
t→rgb 739.2 375.2 2493 1545 1114 3404

STE rgb↔t 792.2 414.3 2522 1554 1207 3436

15 3 OTE rgb→t 122.2 63.93 546.1 189.4 186.1 633.2
t→rgb 3042 1150 6939 2546 4192 8495

STE rgb↔t 3164 1214 7106 2597 4378 8684

20 3 OTE rgb→t 128.2 71.62 460.6 257.8 199.8 594
t→rgb 5010 1817 7091 2637 6827 8358

STE rgb↔t 5138 1889 7133 2684 7027 8407

8 10 OTE rgb→t 24.79 32.17 76.06 127 56.96 180.7
t→rgb 77.08 62.67 160.4 109.3 139.7 234.2

STE rgb↔t 101.9 94.83 190 207.3 196.7 343.2

OTE rgb→t 28.45 41.53 37.63 87.72 69.98 103.6
Planar 30 t→rgb 23.15 33.41 30.02 67.64 56.56 79.2

STE rgb↔t 51.6 74.93 67.5 155.3 126.5 182.6

Table 8.10: Errors for the test of the image registration algorithm on scene 3 by using Nbr. hom.
clusters. The ’Planar 30’ is the best fitting planar homography. 30 denotes the RANSAC threshold
used for filtering the outliers.
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(a) Test image 10, rgb→t (b) Test image 10, t→rgb

(c) Test image 20, rgb→t (d) Test image 20, t→rgb

Figure 8.12: The performance of the rectification algorithm on two chosen test images of scene
3. Ground truth points are shown in green and rectified points are shown in red. The rectification
is performed by using 8 homographies generated by a RANSAC-threshold of 10. The upper two
images show that both the mapping from rgb→t and t→rgb suffers from nearly the same parallax
as points are mapped either too high or too low with respect to the y-axis. The lower two images
show the impact of the depth information contained by the mapping from rgb→t. Even though this
mapping is skewed a few pixels for the lower points of the calibration rig, the mapping is indeed
more accurate than the corresponding mapping from t→rgb which does not take advantage of the
additional depth information.
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compared to the single planar homography.

Nbr. RANSAC Algebraic error (x,y) Geometric error
Hom. thresh. Mean Std.dev Mean Std.dev

5 3 OTE rgb→t 199.6 319.7 832.1 1719 519.3 2252
t→rgb 208.6 272.7 615 1285 481.3 1660

STE rgb↔t 408.3 592.4 1412 2995 1001 3885

10 3 OTE rgb→t 179.9 301.9 810.5 1709 481.8 2227
t→rgb 817.2 662.5 2679 2261 1480 4015

STE rgb↔t 997 964.4 2948 3475 1961 5248

15 3 OTE rgb→t 167.8 264.7 746.7 1536 432.6 2001
t→rgb 2560 1357 6279 2911 3917 7730

STE rgb↔t 2728 1622 6431 3674 4350 8276

20 3 OTE rgb→t 119.7 211.6 605.1 1266 331.2 1646
t→rgb 4062 1955 6592 2770 6017 7536

STE rgb↔t 4182 2166 6669 3200 6348 7811

30 3 OTE rgb→t 103.2 200 570.7 1206 303.2 1563
t→rgb 2666 1560 5221 2559 4226 6289

STE rgb↔t 2769 1760 5315 3055 4529 6665

OTE rgb→t 154.3 311.9 734.9 1657 466.2 2125
Planar 30 t→rgb 127.8 262.9 613.4 1408 390.7 1799

STE rgb↔t 282.1 574.8 1348 3065 856.9 3924

Table 8.11: Errors for the training of the image registration algorithm on scene 3 by using Nbr.
hom. clusters. The ’Planar 30’ is the best fitting planar homography. 30 denotes the RANSAC
threshold used for filtering the outliers. The performance of the mapping with a RANSAC-threshold
of 10 is not shown as the training error is above what is achieved by a RANSAC-threshold of 3.

8.2.4 Summary

The compliance with the requirements of the thermal-visible registration algorithm
are listed in short form in Table 8.12 and 8.13.

8.3 Conclusion on the acceptance test

This section will summarize the most important conclusions from the acceptance
test:

• An image acquisition platform is built that enables the synchronized capture
of visual, thermal, and depth imagery from the Microsoft Kinect sensor and an
AXIS thermal camera. The baseline of the RGB and thermal image sensors is
down to 70 mm.

• Depth information is contained in indoor conditions in the range of 1 – 4 m
and is registered against the RGB image of the Kinect.
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Geometric error
Scene Mean Std.dev

1 OTE rgb→t -9,5 % -4,5 %
t→rgb +23,1 % +33,7 %

STE rgb↔t +7,2 % +3,8 %

2 OTE rgb→t -42,5 % -27,4 %
t→rgb +266 % +445 %

STE rgb↔t +92,3 % +158%

3 OTE rgb→t -18,6 % +74,4 %
t→rgb +147 % +196 %

STE rgb↔t +55,5 % +88,0%

Table 8.12: Compliance with the accuracy requirements for the image acquisition platform. It is
seen that the proposed registration algorithm performs significantly worse than the baseline in the
mapping of thermal points to visible. However, the proposed algorithm is providing more accurate
results when mapping visible points to thermal, except for the standard deviation of the test set of
scene 3.

Parameter Requirement Test result Passed

Registration
range

1 m – 4 m Registered within
the scene bound-
aries

Passed

Number of valida-
tion points

≥ 1000 ≥ 1440 Passed

Distribution of
validation points

- - Passed

Table 8.13: Compliance with the additional requirements for the image acquisition platform.



86 Chapter 8. Acceptance test

• The acquisition platform features a combined maximum frame rate of 15 FPS.
Frames from the two cameras are synchronized with an average lag of 9.53 ms.
However, there are rare spikes in the synchronization performance which means
that some frames feature a lag of up to 62.4 ms, which is too much if objects
are in motion.

• In order to test the performance of the proposed registration algorithm, three
scenes are created. Scene 1 and 2 feature point correspondences within 1 – 4
m whereas scene 2 is largely planar and features point correspondences within
a depth range of ± 0.25 m.

• For each scene, between 4224 and 5168 point correspondences are generated,
which by manual inspection is found to be distributed throughout the wanted
range of the scene.

• The proposed registration algorithm of multiple homographies is shown to per-
form better on average than the baseline method when mapping points from
the visible to the thermal modality. However, the mapping of thermal points
to the visible modality is shown to be substantially worse than the baseline of
using a single homography.

• With the use of the proposed distance metric of squared Mahalanobis distance,
it is shown that the rectification error is smaller the lower the distance to
the closest homography. This shows that the Mahalanobis distance is relevant
when defining ’nearby’ homographies.

• The great divide of the performance of mapping points between modalities is
most certainly a property of the missing depth information for pixels of the
thermal camera. Without this, the mapping of thermal points to visible is
only made possible through an estimation of the depth, which means that the
mapping of thermal points is vulnerable to parallax.

• The results of the training sets shows that the proposed registration algorithm
is substantially better at approximating the mapping of points from visible to
thermal by using the depth information and finding the nearest homography
than by using a fitted single homography. This does however only apply for
the more ’complicated’ scenarios of scene 1 and 3. For scene 2, the planar
structure of the scene means that the training sets of corresponding points are
better fitted by using a single homography.

• The visual images of the rectification of visible points to thermal shows that
although the accuracy is increased with respect to the baseline, there is room for
improvement. In some test images, the rectified points still feature a parallax
that is noticeable if one wants to use the imagery for further image processing.
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Conclusion

The point of departure for this thesis is to investigate the registration of thermal,
visible, and depth imagery for objects placed in close range to the cameras. Related
work on multi-modal image registration is largely focused on developing an accurate
registration between the thermal and visible modalities for objects residing relatively
far away from the cameras or for objects lying on a plane. Recent work has been
conducted that performs thermal-visible registration for surveillance scenarios where
objects are placed closer to the camera. However, these algorithms either rely on a
dual stereo camera configuration or the requirement that only blobs that are clearly
distinguishable in the thermal modality may be accurately registered.

In this project, we do want to limit ourselves to a dual stereo camera configuration
or the assumption that humans are always non-occluded and significantly hotter than
the background. Therefore, alternative image registration techniques are proposed
that registers objects in the thermal, visible, and depth images. In order to do so,
multi-modal imagery must be available for the training and testing of the registration
algorithms. This imagery is captured using a custom-built image acquisition platform
that features a Microsoft Kinect for XBOX camera and a AXIS Q1922 camera for
acquiring the visible, depth, and thermal images respectively. The range of the data is
limited by the depth sensor that is specified within a range of 0.8 – 4 m. Imagery from
the multi-modal sensors is captured by a software acquisition platform which enables
the simultaneous capture and synchronization of image frames from the cameras. The
depth images obtained from the Kinect are registered to the visible images by the
included SDK, which means that depth information is provided out-of-the-box for
the visual image. Images from the three modalities are captured with a minimum
frame rate of 15 FPS. Frames from each modality are synchronized through post-
capture processing and feature an average synchronization lag of 9.53 ms. However,
during a sequence of 1 minute, single frames may suffer from a synchronization lag
of up to 62.4 ms.

In order to generate point correspondences in the thermal and visible images, we
use the proposal of Vidas et al. [2012] to create an A3-sized calibration rig. Three
scenes are defined, for which the registration algorithm is tested. Two scenes are
containing objects in the full range of the depth camera of the Kinect whereas one
scene only contains objects within a planar range. For each scene, the calibration
rig is swept through the entire range of the scene, and through manual extraction
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of the chessboard corners, three sets of point correspondences are generated for each
scene. Each set contains at least 1440 point correspondences generated by minimum
15 views of the calibration rig. For each scene, two of the point sets are used for
training the rectification algorithm whereas one is used for testing.

Two image registration methods have been investigated: stereo recti-
fication and the rectification by multiple homographies. As the depth is factory
registered to the visible image, only the visible and thermal images needs to be regis-
tered. The stereo rectification technique is well known and is readily implemented in
OpenCV and MATLAB. Stereo rectification aligns each image such that the search
for correspondence of two views is limited to either the horizontal or vertical axis.
However, the search for corresponding pixels is indeed difficult in thermal-visible
imagery as the modalities are fundamentally different. To compensate for this, a
depth refinement technique is proposed that uses the depth information of objects to
compensate for the parallax. However, even with this depth refinement technique,
tests show that the stereo rectification falls short of providing an image registration
that provides a better accuracy than the chosen baseline of a single homography.

This leaves us with the method of multiple homographies. By using multiple
homographies to facilitate the mapping of points from one modality to another, one
might reduce the effect of the depth parallax. The depth parallax is noticeable in
scenes where the inter-object distances of the scene are large compared to the dis-
tances from the objects to the camera, which indeed is the case of scenes within 1
– 4 m. For each scene, homographies relating subsets of points in the thermal and
visible images are generated using a k-means clustering scheme succeeded by a robust
homography estimation based on the clustered points. The training points that lie
inside an acceptable range of the homography are used for forming a Mahalanobis
distance measure. The Mahalanobis distance is used for relating points to homogra-
phies, enabling the definition of nearby homographies for image points. A weighting
scheme is applied to ensure a smooth transition between homographies as points are
moved in space.

The acceptance test shows that the proposed rectification algorithm of multiple
homographies is enabling a more accurate mapping of visible points to the thermal
modality than the baseline, which uses a single homography. The registration by
multiple homographies shows an average transfer error that is respectively 9.5 %,
42.5 %, and 18.6 % below the baseline for scene 1, 2, and 3. However, the better
performance does only apply for mapping visible points to the thermal modality.
When mapping thermal points to the visible modality, the proposed method is shown
to contribute to an average transfer error that is up to 2.6 times larger than the
baseline. The non-symmetric performance of the rectification may correspond to the
absence of depth information of pixels in the thermal modality which entails that the
mapping of points from the thermal modality is vulnerable to parallax for different
depths.

The current state of the proposed algorithm thus enables the refinement of trans-
ferring visible points to the thermal modality at short range compared to the baseline.
However, tests show that there is still room for improvement in order to provide an
accurate pixel-to-pixel mapping between the modalities.



Chapter 10

Discussion

The work on the acquisition and registration of the tri-modal imagery has induced
some deliberations that might contribute to a more accurate and more robust image
registration algorithm than what is currently proposed. These deliberations are listed
in the following:

Varying the RANSAC-threshold for homography generation Better accu-
racy may eventually be achieved by varying the RANSAC-threshold used for gen-
erating the multiple homographies of the registration method. In the acceptance
test it was shown that RANSAC-thresholds of up to 30 pixels delivered the best
performance for a single homography. Currently, only thresholds of 3 and 10 have
been used for the generation of multiple homographies. The results show that a
small threshold is good at estimating the training data, while a larger threshold is
providing a more general estimate, thus delivering a better accuracy for registering
points not lying in the training set.

Homography weighting scheme The proposed homography weighting scheme
is chosen due to its continuous properties and relative weighting of nearby homo-
graphies. However, other weighting schemes might be proposed that gives a better
estimate of evaluating nearby homographies at a current point in space. The current
weighting scheme might be paired with a k-nearest neighbour approach such that
only the k nearest homographies are chosen. Furthermore, it might show that no
weighting scheme is required and choosing the nearest homography will provide the
best approximation. This may work if homographies are placed very closely - oth-
erwise, it might lead to a non-continuous mapping if nearby points are mapped by
two different homographies.

Improving the performance of the thermal rectification The current state
of the rectification of thermal points to the visible modality is indeed not satisfactory.
Better performance might be introduced by varying the RANSAC-thresholds even
more as stated above. The current method of finding clusters and homographies for
the thermal training points relies on depth data extracted from the corresponding
points in the visible modality. However, as the thermal points do not directly induce

89



90 Chapter 10. Discussion

any depth information, one might generate two homographies which are distant in
3D space but very close in terms of the projective ambiguity introduced by the
lack of depth information. In order to correct this, a separate point cloud might be
generated for the thermal points, in two dimensions only, for which the homographies
are generated. However, even though such a scheme will certainly level out the depth
parallax, it will not abolish it. In order to do this, one might use an iterative scheme,
which is discussed in the following.

Iterative rectification As described above, the mapping of thermal points suffers
from depth parallax caused by the absence of depth information for the thermal
pixels. Instead of assuming a planar state as proposed above, a method by iterative
rectification might make the mapping more stable and cancel the depth parallax. For
a given point in the thermal image, one might make one or multiple guesses of the
depth of the object. Based on the guess, the thermal point is mapped to the visible
modality for which the actual depth of the object is known. Using the measured
depth, the point is reprojected to the thermal image where the distance to the original
thermal point is measured. If the reprojected and the original thermal points are
coincident, the mapping is accurate. Otherwise, a new estimate of the depth of the
thermal point is used to find a suitable mapping until the points coincide.

Using a different distance metric In the proposed method, the distance from
a point to a homography is measured using the Mahalanobis distance of the training
points used for the generating the homography. One might recall that points on a
single plane are mapped accurately between two cameras views by a single homog-
raphy. The Mahalanobis distance is a an estimate of the planar structure of the
homography, thus penalizing points that does not lie close to plane of points used for
the generation of the homography. However, we may go even further and estimate
the plane in which the training points reside. Distances for points to homographies
might then be calculated by measuring the distance to the closest plane.

Increasing the training set An even larger set of training points will enable a
better estimation of the already existing homographies and provide the basis for a
more accurate image rectification.



Bibliography

Al-Kassir, A. R., Fernandez, J., Tinaut, F., and Castro, F. (2005). Thermographic
study of energetic installations. Applied thermal engineering, 25(2):183–190.

Asus.com (2013).
http://www.asus.com/Multimedia/Xtion_PRO_LIVE#specifications. ASUS -
Xtion PRO LIVE.

AXIS Corporation (2013a). http://www.axis.com/files/datasheet/ds_q1922_
q1922-e_46221_en_1301_lo.pdf. AXIS A1922/-E Thermal Network Cameras -
Datasheet.

AXIS Corporation (2013b).
http://www.axis.com/techsup/cam_servers/dev/activex.htm. AXIS Media
Control ActiveX components.

Barnich, O. and Van Droogenbroeck, M. (2011). Vibe: A universal background
subtraction algorithm for video sequences. Image Processing, IEEE Transactions
on, 20(6):1709–1724.

Bertozzi, M., Broggi, A., Felisa, M., Vezzoni, G., and Del Rose, M. (2006).
Low-level pedestrian detection by means of visible and far infra-red tetra-vision.
In Intelligent Vehicles Symposium, 2006 IEEE, pages 231–236. IEEE.

Bouguet, J.-Y. (2004). Camera calibration toolbox for matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/.

Bradski, G. (2000). The OpenCV Library. Dr. Dobb’s Journal of Software Tools.

Davis, J. W. and Sharma, V. (2005). Fusion-based background-subtraction using
contour saliency. In Computer Vision and Pattern Recognition-Workshops, 2005.
CVPR Workshops. IEEE Computer Society Conference on, pages 11–11. IEEE.

Davis, J. W. and Sharma, V. (2007). Background-subtraction using contour-based
fusion of thermal and visible imagery. Computer Vision and Image
Understanding, 106(2):162–182.

dss.com (2013). http://www.dssvideo.com/shop/thermal-cameras/
axis-q1922-10mm-30fps-network-camera/. AXIS Q1922.

Eisler, C. (2013). http://blogs.msdn.com/b/kinectforwindows/archive/2012/
01/20/near-mode-what-it-is-and-isn-t.aspx. Near Mode: What it is (and
isn’t).

91

http://www.asus.com/Multimedia/Xtion_PRO_LIVE#specifications
http://www.axis.com/files/datasheet/ds_q1922_q1922-e_46221_en_1301_lo.pdf
http://www.axis.com/files/datasheet/ds_q1922_q1922-e_46221_en_1301_lo.pdf
http://www.axis.com/techsup/cam_servers/dev/activex.htm
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.dssvideo.com/shop/thermal-cameras/axis-q1922-10mm-30fps-network-camera/
http://www.dssvideo.com/shop/thermal-cameras/axis-q1922-10mm-30fps-network-camera/
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-t.aspx
http://blogs.msdn.com/b/kinectforwindows/archive/2012/01/20/near-mode-what-it-is-and-isn-t.aspx


92 Bibliography

Escalera, S., Mogelmose, A., Clapes, A., Bahnsen, C., and Moeslund, T. (2013).
"tri-modal person re-identification with rgb, depth and thermal features. 9th
IEEE CVPR workshop on Perception Beyond the Visible Spectrum (PBVS’2013).

Gade, R. and Moeslund, T. B. (2013). Thermal cameras and applications: A
survey. Under peer review.

Hartigan, J. A. and Wong, M. A. (1979). Algorithm as 136: A k-means clustering
algorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1):100–108.

Hartley, R. and Zissermann, A. (2003). Multiple View Geometry. Cambridge, 2nd
edition.

Hartley, R. I. (1999). Theory and practice of projective rectification. International
Journal of Computer Vision, 35(2):115–127.

Johnson, M. J. and Bajcsy, P. (2008). Integration of thermal and visible imagery
for robust foreground detection in tele-immersive spaces. In Information Fusion,
2008 11th International Conference on, pages 1–8. IEEE.

Khoshelham, K. (2011). Accuracy analysis of kinect depth data. In ISPRS
workshop laser scanning, volume 38, page 1.

Kim, K., Chalidabhongse, T. H., Harwood, D., and Davis, L. (2005). Real-time
foreground–background segmentation using codebook model. Real-time imaging,
11(3):172–185.

Krotosky, S. J. and Trivedi, M. M. (2007). Mutual information based registration
of multimodal stereo videos for person tracking. Computer Vision and Image
Understanding, 106(2):270–287.

Krotosky, S. J. and Trivedi, M. M. (2008). Person surveillance using visual and
infrared imagery. Circuits and Systems for Video Technology, IEEE Transactions
on, 18(8):1096–1105.

Laganière, R. (2011). OpenCV 2 Computer Vision Application Programming
Cookbook. Packt Publishing, 1st edition.

Lee, D. J. (2012). Stereo calibration and rectification. Technical report, Brigham
Young University. Slides on Robotic Vision.

Lee, S. K., McHenry, K., Kooper, R., and Bajcsy, P. (2009). Characterizing human
subjects in real-time and three-dimensional spaces by integrating
thermal-infrared and visible spectrum cameras. In Multimedia and Expo, 2009.
ICME 2009. IEEE International Conference on, pages 1708–1711. IEEE.

Mahalanobis, P. C. (1936). On the generalized distance in statistics. In Proceedings
of the national institute of sciences of India, volume 2, pages 49–55. New Delhi.

Microsoft Corporation (2013). http:
//www.microsoft.com/en-us/kinectforwindows/discover/features.aspx.
Product Features | Microsoft Kinect for Windows.

http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx
http://www.microsoft.com/en-us/kinectforwindows/discover/features.aspx


Bibliography 93

Microsoft Developer Network (2013a).
http://msdn.microsoft.com/en-us/library/jj131033.aspx. Kinect for
Windows Sensor Components.

Microsoft Developer Network (2013b).
http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges.
Kinect for Windows Sensor Components.

Ó Conaire, C., Cooke, E., O’Connor, N. E., Murphy, N., and Smeaton, A. F.
(2005). Fusion of infrared and visible spectrum video for indoor surveillance. In
WIAMIS 2005 - 6th International Workshop on Image Analysis for Multimedia
Interactive Services.

Openni.org (2013). http://www.openni.org/openni-sdk/#.UYyiuMpd27s. Open
NI SDK | OpenNI.

Play.com (2013). http:
//www.play.com/Games/Xbox360/4-/10296372/Project-Natal/Product.html.
Technical Details of the Kinect.

Point Grey Research, I. (2004).
http://www.ptgrey.com/support/kb/data/kbStereoAccuracyShort.pdf.
Stereo Accuracy and Error Modeling.

Point Grey Research, I. (2010).
http://www.ptgrey.com/support/kb/index.asp?a=4&q=63. How is depth
determined from a disparity image?

Point Grey Research, I. (2011).
http://www.ptgrey.com/products/bbxb3/bumblebeeXB3_stereo_camera.asp.
Bumblebee XB3 CCD FireWire Camera.

ROS.org OpenNI Wiki (2013).
http://www.ros.org/wiki/openni_kinect/kinect_accuracy. Openni_kinect/
kinect_accuracy.

Shirai, H. and Yu, O. (2011). http://sourceforge.net/projects/kinect-mex/.
Kinect for MATLAB.

St-Laurent, L., Prévost, D., and Maldague, X. (2010). Fast and accurate
calibration-based thermal/colour sensors registration. In Proceedings of 10th
Quantitative InfraRed Thermography conference, paper QIRT2010-126 Québec
(Canada).

Stauffer, C. and Grimson, W. E. L. (2000). Learning patterns of activity using
real-time tracking. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 22(8):747–757.

Torabi, A., Massé, G., and Bilodeau, G.-A. (2011). An iterative integrated
framework for thermal-visible image registration, sensor fusion, and people
tracking for video surveillance applications. Computer Vision and Image
Understanding.

Tukey, J. W. (1967). An introduction to the calculations of numerical spectrum
analysis. Spectral Analysis of Time Series, pages 25–46.

http://msdn.microsoft.com/en-us/library/jj131033.aspx
http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges
http://www.openni.org/openni-sdk/#.UYyiuMpd27s
http://www.play.com/Games/Xbox360/4-/10296372/Project-Natal/Product.html
http://www.play.com/Games/Xbox360/4-/10296372/Project-Natal/Product.html
http://www.ptgrey.com/support/kb/data/kbStereoAccuracyShort.pdf
http://www.ptgrey.com/support/kb/index.asp?a=4&q=63
http://www.ptgrey.com/products/bbxb3/bumblebeeXB3_stereo_camera.asp
http://www.ros.org/wiki/openni_kinect/kinect_accuracy
http://sourceforge.net/projects/kinect-mex/


94 Bibliography

Ursine, W., Calado, F., Teixeira, G., Diniz, H., Silvino, S., and de Andrade, R.
(2012). Thermal/visible autonomous stereo visio system calibration methodology
for non-controlled environments. In 11’th International Conference on
Quantitative InfraRed Thermography.

Vadivambal, R. and Jayas, D. S. (2011). Applications of thermal imaging in
agriculture and food industry—a review. Food and Bioprocess Technology,
4(2):186–199.

Vidas, S., Lakemond, R., Denman, S., Fookes, C., Sridharan, S., and Wark, T.
(2012). A mask-based approach for the geometric calibration of thermal-infrared
cameras. Instrumentation and Measurement, IEEE Transactions on,
61(6):1625–1635.

Zhang, Y., Zhang, X., Maybank, S. J., and Yu, R. (2012). An ir and visible image
sequence automatic registration method based on optical flow. Machine Vision
and Applications, pages 1–12.

Zhao, J. and Cheung, S. (2009). Human segmentation by fusing visible-light and
thermal imaginary. In Computer Vision Workshops (ICCV Workshops), 2009
IEEE 12th International Conference on, pages 1185–1192. IEEE.

Zhao, J. and Sen-ching, S. C. (2012). Human segmentation by geometrically fusing
visible-light and thermal imageries. Multimedia Tools and Applications, pages
1–29.



Part IV

Appendix

95



Appendix A

Acquisition software

A.1 Creating the software platform

The sections on interfacing the AXIS and Kinect cameras on page 28 give an overview
of the creation of a platform for recording the imagery of the sensors. This section
does not serve as a full documentation of the code written but will provide a deeper
look into the mechanisms that we utilize in the platform.

The Kinect for Windows SDK enables us to choose between a subset of resolutions
and frame rates for the depth and colour sensors. Some of the most important options
are listed in Table A.1 below. The AXIS thermal camera is capable of selecting any

Colour stream Depth stream

1280x960 RGB @ 12 FPS 640x480 @ 30 FPS
640x480 RGB @ 30 FPS 320x240 @ 30 FPS
640x480 YUV @ 15 FPS 80x60 @ 30 FPS

Table A.1: Available depth and colour streams of the Kinect for Windows SDK. Raw colour streams
are not included in the table.

frame rate between 1 and 30 FPS, but according to research by Anders Jørgensen1,
the clock frequency inside the camera remains unchanged which means that the
firmware drops frames according to the wanted frame rate. If one wants to pick a
frame rate for the thermal camera different from 30 FPS, the frame rate should be a
integer dividend of 30 FPS such as 7.5, 10, and 15 FPS. Because of the performance
problems described in Section 5.2.2, the colour stream is chosen as 640x480 YUV @
15 FPS. The YUV term is of no importance as the WriteableBitmap that the pixels
are written into neatly converts the image to BGR.

As we would like the program to be able to register the depth, take multiple
calibration sessions for each scene, and record multiple scenes, certain flags are in-
troduced in the program:

• DEPTHCAL_CAPTURE_FLAG
1Research assistant at the VAP group. andjor@create.aau.dk
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Flag for capturing the depth registration.

• DEPTH_CAPTURE_FLAG
Enabling the capture of the depth stream.

• RGB_CAPTURE_FLAG
Enabling the capture of the RGB stream.

• CALIBRATE_RGB_FLAG
Setting the calibration mode of the RGB and thermal streams. The implication
of this flag is to set the save paths for the RGB, thermal, and depth calibration
streams.

• ENABLE_THERMAL_FLAG Enabling the capture of the thermal image stream.

These flags are set by the software buttons of the GUI shown in Figure 5.5.

A.1.1 AllFramesReady

The function AllFramesReady is called when both the RGB and depth streams
fire an event simultaneously. This means that only the lowest frame rate of the
depth and RGB streams matters - which in the current configuration is 15 FPS.
The function distinguishes between different use cases specified by the flags set. The
overall functionality of the AllFramesReady is seen from Figure A.1.

AreawearecordingaRGBa(a
isaRGB_CAPTURE_FLAG

set?

YesNo

Refreshatheaimageaona
theascreen

Copyapixelaframeatoa
temporaryaarray

Instantiateanewataskaof
processColor()

Areawearecordingadeptha(a
isaDEPTH_CAPTURE_FLAG

set?

Yes

Copyapixelaframeatoa
temporaryaarray

Instantiateanewataskaof
processDepth()

No

Areawea
registeringadeptha(aisa

DEPTHCAL_CAPTURE_FLAG
set?

Copyaregistrationaframea
toatemporaryaarray

Yes

Foratheanexta15a(aiainstancesuarun
calibrateDepthD2RGB()

No

returnH1

SensorAllFramesReady()

Figure A.1: Flowchart of function AllFramesReady.

The function mainly acts as a task handler - the core part of saving imagery is split
upon three functions: processColor, processDepth, and calibrateDepthD2RGB.
The functions processColor and processDepth are instantiated as new threads to
improve real-time performance, whereas we have no need for this when calling the
latter function.
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A.1.2 ProcessColor

The processColor function is fairly simple. It is called with the colour pixels to
process, the time stamp to add to the file, and the flag that decides whether the file
should be saved in a calibration directory or not. By using the Save method of the
Bitmap class, the RGB image is saved.

A.1.3 ProcessDepth

The processDepth function works in many ways like its sibling. The crucial dif-
ference is the way the bitmap is handled. In processDepth, the 16-bit bitmap is
copied to a double-sized 8-bit indexed bitmap using the Marshal.Copy method. The
indexed bitmap does, however, need a colour palette in order to be stored properly
as an image, so we have to create the palette at run time. The palette is applied
to the double-sized bitmap which may now be stored to disk. It is of no doubt that
the need to re-create the palette every time a depth frame is stored is a performance
hog - but no other workaround allowed us to store the full information of the depth
image.

A.1.4 Depth registration

The function calibrateDepthD2RGB is responsible for converting the CoordinateMap-
per object of the Kinect’s DepthImageFrame. This is done by running through every
pixel of the CoordinateMapper, transferring the registration for this pixel to a two-
dimensional point and then transferring the x and y coordinates of this point to the
look-up-tables of the x and y direction respectively. Those look-up-tables are ushort
arrays the size of 640x480, and so these are stored in the relevant calibration folder
using the Save method of the BitmapEncoder.

A.1.5 Folder structure

When pressing the ’Use this folder’ button of the GUI shown in Figure 5.5, folders
are created in the directory provided in the text box as shown below:

• Cal

– 1
∗ D
∗ RGB

– 2
∗ D
∗ RGB

– 3
∗ D
∗ RGB
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• D

• RGB

Depth and RGB frames are saved in the directories named accordingly whereas
the thermal video and time stamps are saved in the root folders of the current capture.
Three sub folders are created for calibration footage.

A.2 Post-processing the image stream

This section contains the MATLAB and Python scripts that are developed for post-
processing the image stream and to ensure a robust output of the acquisition plat-
form.

A.2.1 convertDepthDataToUshort

Due to performance requirements and an inefficient implementation of the 16-bit
PNG save method in C#, the depth image is saved as a double-sized 8 bit image.

(a) Original 16-bit image of size
640x480.

(b) Converted 8-bit image of size 1280x408.

Figure A.2: Depth images from the Kinect. The 8 bit-image is the saved depth image from the
Kinect in order to comply with performance requirements.

This transformation needs to be reversed in order to have a meaningful rep-
resentation of the depth images, as seen from Figure A.2. This is done by the
MATLAB-function convertDepthDataToUShort.m. The core MATLAB functions
of the function are listed below

1 for i = 1: numImg
2 waitbar (i/numImg ,h);
3

4 % Read and process all the .png images in the directory
5 img = imread (d(i).name);
6

7 if isa(img ,’uint8 ’) % We only want to process uint8 images
8 dim = size(img);
9

10 % Reshape image array and typecast
11 img = reshape (img ’,size(img ,1)*size(img ,2) ,1);
12 img = typecast (img ,’uint16 ’);
13
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14 % Then reshape it back
15 img = reshape (img ,dim (2) /2, dim (1)) ’;
16

17 % Rename the filename
18 imgStr = strrep (d(i).name ,filetype ,’-U16.png ’);
19

20 % Save the converted image
21 imwrite (img ,imgStr ,’png ’);
22 end
23 end

Most of the heavy lifting is done by the MATLAB-function reshape. In order for
the function to work, we need however to reshape the image array to a vector - and
back.

A.2.2 convertD2RGBtoRGB2D

As described in Section 5.2.2, the Kinect for Windows SDK is able to provide a
registration from the depth image to the RGB image - but not the other way around.
This leaves with us with the option to reverse the transformation ourselves which
is performed in the MATLAB-function convertD2RGBtoRGB2D.m. When reversing a
conventional image mapping, one would simply use the original transform to back-
project the image. However, this is not easily doable is this case as the transform
here is a look-up-table, making a relation of pixel x,y in the depth image to its
corresponding x or y value in the RGB image. Instead, we choose to use a forward
mapping. It may be expressed as:

x-map: kx′(kxx,y ,kyx,y) = x (A.1)
y-map: ky′(kxx,y ,kyx,y) = y (A.2)

The algorithm runs through each coordinate of the look-up-table and collects the
x and y coordinate of the image point and the x and y coordinate of the corresponding
mapping, (kxx,y, kyx,y). At the position of the mapped point in the new look-up-
table, the original coordinates of the look-up-table is placed. In order to induce
simplicity of the mapping, the x and y coordinates of the look-up-table are stored in
two separate images.

Unfortunately, the method of forward mapping comes with certain downsides.
We are not guaranteed that a one-to-one mapping exists between the original look-
up-table and the reversed one; the mapping might be one-to-many, many-to-one, or
a combination of both. Such a case is seen from Figure A.3 and one might see ’holes’
in the reversed mapping where a correspondence does not exist.

As one might see from the table in Figure A.3, a strong correlation exists between
vertical entries in the table, whereas the correlation between horizontal entries is
existing, but weaker. The correlation exists in the x look-up-tables. In the y look-
up-table, the correlation is reversed so the strongest correlation is between horizontal
entries. This correlation might be exposed to correct the mapping by designing a
structuring element and performing a morphological closing operation. If a proper
structuring element is chosen, the morphological closing will fill the holes of the look-
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Figure A.3: The look-up-table relating the RGB image to the depth image, shown directly after
the forward transformation of the look-up-table of depth to RGB. As one might see from the image,
the transformation is not one-to-one, and there exist coordinates where a mapping is non-existing.

up-table with correlated entries but not affect the borders of the look-up-table where
a correlation might not exist at all due to to different field-of-view of the cameras.

In order to exploit the high vertical correlation of the mapping, we construct a
rectangular structuring element of size 30 x 3 and 3 x 30 for the x and y look-up-tables
respectively. This is a rather large structuring element, but the size allows us to close
nearly all holes in the mapping. The large size does have its shortcomings, however.
Patterns not large enough to fit into the structuring element will be smoothed or
removed and thus might some of the detail of the mapping be lost. This is solved by
only applying the enhancements of the morphological operation on pixels in the look-
up-table with zero-entries. The morphological closing operation is applied on the full
image and subsequently only the pixels that were previously zero are transferred to
the reversed look-up-table. This gives us the look-up-table of Figure A.4.

Figure A.4: The look-up-table relating the RGB image to the depth image, after enhancements of
the morphological closing operation. The holes of Figure A.3 have been successfully closed.

The implementation in MATLAB of the above mentioned function is seen in the
Listing below. It is seen from Figure 5.4 on page 31 that we have handled all but one
of the holes in the inverse map. The remaining hole would be removed by using a
larger structuring element. However, this should be of the size > 40x3, which would
introduce multiple artifacts in regions close to the border of the image. Therefore,
we will note the current mapping as acceptable for the purpose of our work.

1 for i = 1: numImg
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2 xImg = imread ( xContents (i).name);
3 yImg = imread ( yContents (i).name);
4

5 for ii = 1: size(xImg ,1) % Displace coordinates
6 for jj = 1: size(xImg ,2)
7 xcoord = xImg(ii ,jj);
8 ycoord = yImg(ii ,jj);
9

10 if (( xcoord > 0) && ( ycoord > 0))
11 newCoordImgX (ycoord , xcoord ) = jj;
12 newCoordImgY (ycoord , xcoord ) = ii;
13 end
14 end
15 end
16

17

18 % Use structuring element to straighten out imbalances
19 seX = strel(’rectangle ’ ,[30 3]);
20 seY = strel(’rectangle ’ ,[3 30]);
21 newCoordImgXrecon = imclose ( newCoordImgX ,seX);
22 newCoordImgYrecon = imclose ( newCoordImgY ,seY);
23

24 % Filter the reconstructed images to only contain entries where
the

25 % previous mapping had zero entries
26 newCoordImgXrecon = newCoordImgXrecon .* uint16 ( newCoordImgX ==

0);
27 newCoordImgYrecon = newCoordImgYrecon .* uint16 ( newCoordImgY ==

0);
28

29 % Create the final image
30 newCoordImgX = newCoordImgX + newCoordImgXrecon ;
31 newCoordImgY = newCoordImgY + newCoordImgYrecon ;
32 end



Appendix B

Implementation in OpenCV

This appendix will provide an overview of the code providing the functionality of the
creation and validation of the image rectification algorithms presented. This will by
no means serve as a thorough review of the code but will provide a description of the
behaviour and output of the core functions. The code is implemented in Visual C++
in Microsoft Visual Studio 2010 Express and uses the OpenCV framework. The code
is available in the CD provided1.

The implementation supports the multiple image rectification algorithms pro-
posed and might train and validate each of those rectification algorithms one-by-one.
In order to do so, a number of flags are introduced:

USE_FUNDAMENTAL_MATRIX Is set if any method that rectifies the im-
ages based on the fundamental matrix is used, e.g. stereo rectification.

RECTFY_USING_F Is set if the images are in rectified view by the stereo rec-
tification.

USE_DEPTH_FOR_RECT When using the depth refinement technique of
Section 7.2.3, this flag is set.

IS_VERTICAL_STEREO The search for correspondence in rectified stereo im-
agery is reduced to either the vertical or horizontal axis. This flag determines
in which direction one should search for the correspondence.

UNDISTORT_IMAGES If images or image points are undistorted, this flag is
set.

USE_PLANAR_HOMOGRAPHIES When the method of rectification by mul-
tiple homographies presented in Section 7.3 is chosen, this flag is set.

computeEpipolarHomography This is the core function providing the entry
points for training and validating the rectification algorithms. Using utility func-
tions such as readCoordinatesFromFile2D and readCoordinatesFromFile3D, the

1 Code/DualCalibration/DualCalibration.sln
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function calibrates the camera views based on the sets of corresponding points ex-
tracted from MATLAB. These are saved in the file intrinsics.yml which is created
on the first run. The function prompts the user to choose the wanted rectification
algorithm and gives an estimate on the performance of the current algorithm on the
current training set. By calling the function validateCalibration, the performance
of the rectification algorithm is measured against the test set, and the transfer errors
are written to log files in the Validation folder of the respective data set.

createPointCloud Is called within computeEpipolarHomography to create and
save a point cloud for the training data. Points clouds seen through both the visible
and thermal cameras are generated and saved in the respective CalibrationHelper
folder.

computePlanarHomographies This function uses the points clouds generated
by the above mentioned function to divide the points cloud into k clusters based
on the normalized point cloud. The points that lie within these clusters are used
for forming a homography by the built-in OpenCV function findHomography. This
function returns a mask which is used to find the points that lie within the desired
range of the computed homography. The world coordinates of these points in the
visible and thermal camera frame are used to find the centre and the covariance
matrix that corresponds to the homography.

computeCorrespondingRgbPointFromDepth The functions uses the pre-loa-
ded registration images to map depth points to the RGB image. If no map is found,
the function returns the coordinate (0,0).

computeCorrespondingDepthPointFromRgb Same functionality as the above
mentioned function, however mapping RGB points to depth points. If the RGB
points are undistorted, they need to be re-distorted prior to the lookup.

computeCorrespondingThermalPointFromRgb Maps vectors of points from
RGB to thermal by means of the chosen rectification method. Returns the depth
displacement, minimum distance to the closest homography, and the index of the
closest homography, depending on the rectification algorithm.

computeCorrespondingRgbPointFromThermal Provides the reverse map of
the above mentioned function.

computeHomographyMapping Base function for mapping points by the means
of multiple homographies. May map points in either direction depending on the
input vectors. Is called by both computeCorrespondingThermalPointFromRgb and
computeCorrespondingRgbPointFromThermal when the flag USE_PLANAR_HO-
MOGRAPHIES is set.



Appendix C

Post-processing the calibration
images

In Appendix E.2, the acquisition of the calibration images is described. The calibra-
tion images are used for camera calibration and the training and testing of image
registration algorithms. However, the raw data streams obtained from thermal, vis-
ible, and depth camera are useless without any post-processing of the data. The
post-processing consists of the synchronization, transformation, and calibration of
image streams and the methods used and developed for this purpose are described
in Chapter 6.

This chapter will provide a more formal step-by-step description of the post-
processing of the calibration images and will present the results of the synchroniza-
tion, camera calibration, extraction of chessboard corners, and generation of a point
cloud.

The following will describe the post-processing of the image streams after the
capture described by the measurement journal of Appendix E.2.

C.1 Pre-calibration processing

The pre-calibration processing is the manipulation of image streams to fit into the
calibration process. This process is done by the following steps which are repeated
for each calibration sequence of the scenes:

1. Thermal frames are extracted from the image stream with the FFMPEG script
described in Section 5.2.41.

2. Depth images are converted from double-sized 8-bit images to 16-bit images of
the native resolution of the depth camera by the MATLAB-function convert-
DepthDataToUshort.m2. Results are equivalent to the images shown in Figure
5.3.

1 Scripts/splitFrames.txt
2 Scripts/convertDepthDataToUshort.m
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3. Depth registration images are created for the RGB-to-Depth correspondence
by running the MATLAB-function Scripts/convertD2RGBtoRGB2D.m3.

4. Image frames are synchronized by the MATLAB-function synchronizeData.m4

which also calls alignThermalFrames.m5 to align the thermal time stamps to
system time.

C.1.1 Synchronization lag

The synchronization lag for all scenes and calibration sequences is seen from Table
C.1. The synchronization lag is measured by comparing the individual time stamps
of the system time for each synchronized frame. The frame lag as shown in the
left side of the table is calculated by finding the maximum time difference between
consecutive frames of each camera. Considering that RGB and depth frames are
synchronous at capture time, data for the depth frames is included in the RGB
measures.

Synchronization lag Largest frame lag
Scene Calibration Max. Mean Std.dev. Thermal RGB

1
1 31.3 ms 9.31 ms 8.71 ms 374.4 ms 78.0 ms
2 46.8 ms 9.43 ms 8.70 ms 78.1 ms 93.6 ms
3 46.8 ms 9.26 ms 8.40 ms 358 ms 93.6 ms

2
1 31.2 ms 9.07 ms 8.48 ms 109 ms 93.6 ms
2 31.2 ms 9.35 ms 8.99 ms 129 ms 93.6 ms

3
1 62.4 ms 9.53 ms 9.30 ms 218 ms 93.6 ms
2 46.8 ms 9.34 ms 8.83 ms 359 ms 94.6 ms
3 31.2 ms 9.13 ms 8.62 ms 359 ms 93.6 ms

Table C.1: Synchronization lag between and frame lag within cameras of the 8 calibration se-
quences.

The synchronization lag is discussed in the Acceptance test in Chapter 8.

C.2 Calibrating the images

Once the initial post-processing and synchronization of the image streams have found
place, the extraction of chessboard corners for the calibration may follow. The ex-
traction of corners lays the foundation for undistorting the images, estimating the
camera parameters, and generating training and test data for the registration algo-
rithms.

The calibration process consists of the following steps:

3 Scripts/convertD2RGBtoRGB2D.m
4 Scipts/synchronizeData.m
5 Scripts/alignThermalFrames.m
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1. The synchronized folder of thermal images, SyncT, is evaluated, and the last
frame for which the corners of the calibration board may be correctly extracted
is chosen.

2. This frame number is input to the MATLAB-function getCalibrationImages.m6

alongside the number of frames to be generated.

3. The folder CalibrationHelper is now created with the wanted number of syn-
chronized calibration frames of the visible, thermal, and depth modalities.

4. Inside the CalibrationHelper folder, the Camera Calibration Toolbox for MAT-
LAB7 [Bouguet, 2004] is run. The calibration process consists of the following
steps:

(a) RGB images is read, and the extraction of grid corners is done manually.
The grid size of the calibration board is 35 mm.

(b) Once all images are extracted, the camera is calibrated using the ’Cali-
brate’ button.

(c) Once the calibration is finished, all corners are reprojected on the images.
Problematic images are detected, where the reprojected corners do no fit
on the actual corners. For those images, the grid corners are re-extracted.

(d) Another calibration run is done, and corners are reprojected on images
again. The images for which the reprojected corners still does not fit are
excluded from the calibration through the button ’Add/Suppress images’.
The final number of active images is seen from Table C.2.

(e) As the calibration sequence now only consists of valid calibration images,
the corners are recompiled via the ’Recomp. corners’ button with a win-
dow size of 3x3.

(f) The third calibration run is done. The image corners and camera pa-
rameters are saved by using the ’Save’ button. The pixel error of the
reprojected image corners and the extracted corners is listed in Table C.2.

5. Step 4 is repeated for both the thermal and visible images. One must make
sure that the activated images for the calibration are the same for both the left
and right modality. Otherwise, the sub-sequent calibration in OpenCV will
fail. The output files from the calibration are renamed with the suffix ’_right’
or ’_left’ for the thermal and visible images, respectively.

6. The calibration parameters of the .mat-files are transferred into text files read-
able by OpenCV by the MATLAB-function saveCalibVarAsText.m8.

Once the calibration process is completed, the image coordinates of the corners
of the calibration board are saved in text files in the CalibrationHelper folders of the
respective calibration sequences. The following six files are generated:

6 Scripts/getCalibrationImages.m
7A slightly modified version of the toolbox is used, which is found at Scripts/toolbox_calib .
8 Scripts/saveCalibVarAsText.m . The function is dependent on saveCalibrationPoints-

Depth.m .
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Pixel error (x,y)
Scene Calibration Active chessboards RGB Thermal

1
1 25 0.560, 0.494 0.340, 0.354
2 24 0.357, 0.319 0.338, 0.359
3 21 0.330, 0.290 0.492, 0.504

2
1 23 0.277, 0.258 0.277, 0.258
2 22 0.613, 0.469 0.406, 0.452

3
1 29 0.308, 0.319 0.425, 0.512
2 28 0.314, 0.307 0.317, 0.342
3 24 0.334, 0.340 0.338, 0.357

Table C.2: Number of active chessboards for each calibration sequence and the pixel error of the
reprojection of corners by the Calibration Toolbox for MATLAB.

• lChessboard3D_imagec.txt, rChessboard3D_imagec.txt
These files contains the image coordinates (in pixels) of the chessboard views
for the RGB camera (l) and the thermal camera (r). Only coordinates of the
’active’ calibration views are stored.

• lChessboard3d_object.txt, rChessboard3D_object.txt
These files store the object coordinates of the chessboards as seen from either
the RGB or thermal camera. The object coordinates are the 3D coordinates
of the calibration board, in coordinates defined by the coordinate frame of the
calibration board. The extrinsic parameters of the camera define the transla-
tion and rotation matrices that transforms these coordinates into the camera
coordinate frame and ultimately, into image coordinates.

• lChessboard3D_nbrCorners.txt, rChessboard3D_nbrCorners.txt
The line of active images for the calibration of the RGB and thermal camera
are listed in the above files. Also, the number of corners in both the x- and
y-directions are listed for every active chessboard of the calibration.

The above listed files are used in the implementation of the registration algorithm
in OpenCV9.

C.2.1 Calibration in OpenCV

The implementation of calibration algorithms is found to be more robust in OpenCV
than in the Calibration Toolbox for MATLAB, which is why the calibration and
undistortion of the thermal and visible imagery is chosen to be implemented in
OpenCV. Even though the intrinsic parameters of the thermal and visible cameras do
not change, the parameters are estimated for each calibration scene. In order optimize
the estimation of calibration parameters for each scene, the OpenCV implementation
uses point correspondences for both calibration sequence 1 and 2. The calibration is

9Visual C++ project solution file at Code/DualCalibration/DualCalibration.sln



C.2. Calibrating the images 109

computationally very expensive at might take up to one minute on a modern, dual-
core laptop10. Once the calibration is performed, the calibration parameters are
stored in the yml-file intrinsics.yml at the CalibrationHelper folder of calibration
sequence 1 for each scene. The calibration parameters obtained for scene 1 – 3 are
listed in Table C.3 and C.4.

Intrinsic parameters
Scene 7Calibration Focal length (x,y) Principal point (x,y)

1 RGB 489.1 488.5 334.9 231.6
Thermal 1254 1237 319.4 238.0

2 RGB 499.0 327.8 327.8 497.3
Thermal 2905 3318 319.2 237.9

3 RGB 500.6 501.1 333.0 232.6
Thermal 2142 2034 319.4 240.1

Table C.3: Intrinsic camera parameters for the visible and thermal cameras, determined for each
scene.

Distortion parameters
Scene Calibration K1 K2 P1 P2 K3

1 RGB 1.501e-1 -4.589e-1 1.715e-2 3.192e-3 3.625e-1
Thermal -1.115 -5.169 9.569e-3 5.063e-3 6.193e1

2 RGB 8.267e-2 -1.163e-1 -2.336e-2 -6.885e-3 9.362e-3
Thermal -7.223 2.277 -9.150e-2 4.854e-2 1.542e3

3 RGB 1.142e-1 -1.510e-1 1.492e-2 3.208e-3 2.940e-2
Thermal -9.706e-1 -75.00 2.981e-2 8.880e-2 1.185074e3

Table C.4: Distortion parameters of the thermal and visible cameras, according to the 5-parameter
distortion model of OpenCV.

10HP Probook 6560b, w. Intel 2’nd generation Intel Core i5-2520M @ 2.5 GHz



Appendix D

Performance of stereo
rectification algorithms

In this Appendix, the performance of the stereo rectification algorithms is measured.
The stereo rectification algorithms are described in Section 7.2 and includes cali-
brated stereo rectification, uncalibrated stereo rectification, and a method on depth
refinement of these methods. In the following, the performance of the algorithms are
measured according to the procedure of the acceptance test specification of Chapter
4. However, due to the instability and poor performance of the methods, these are
not included in the general acceptance test of the registration algorithms. The set-up
for the tests described in this set-up is similar to the one of the acceptance test of
Chapter 8. All validation images, their point correspondences, and the rectified point
correspondences are found in Logs/Stereo .

The stereo rectification algorithms are compared to the baseline specified in the
requirement specification of Chaper 3. The performance of the baseline is on the
validation set is seen from Table D.1. The baseline is computed by the OpenCV
findHomography function which relies on a threshold for filtering outliers in the
RANSAC-estimation method used. The homography is computed using the training
samples of each scene and validated against the test sample. Thresholds for the
RANSAC estimation are validated in the range from 0 – 30, and the threshold
resulting in the best fit for each scene is chosen.

D.1 Calibrated stereo

The method on calibrated stereo rectification as described in Section 7.2.1 is tested
against the validation dataset of Scene 1 – 3. The transfer errors of the validation
points are listed in Table D.2 for both the One-dimensional Transfer Error (OTE)
and the Symmetric Transfer Error (STE). From the transfer errors of the table it is
easily seen that the rectification algorithm performs very poorly. As seen from Fig-
ure D.1a and D.1b, the rectified views of the modalities are distorted in ways that
renders the images useless. This unfortunate transformation of the imagery might
be due to multiple causes, which are hard to identity. The most likely reason is that
the iterative estimation ’runs away’ due to a misfit of the corresponding point sets.
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Algebraic error (x,y) Geometric error
Scene Mean Std.dev Mean Std.dev

Scene 1 OTE rgb→t 33.29 71.08 73.59 85.06 104.4 116.8

Planar 12 t→rgb 25.43 50.86 52.83 60.62 76.28 84.29
STE rgb↔t 58.72 121.9 126.3 145.6 180.7 201

Scene 2 OTE rgb→t 9.546 10.01 16.77 13.89 19.56 22.74

Planar 5 t→rgb 7.397 7.757 12.8 10.32 15.15 17.1
STE rgb↔t 16.94 17.77 29.53 24.09 34.71 39.69

Scene 3 OTE rgb→t 28.45 41.53 37.63 87.72 69.98 103.6

Planar 30 t→rgb 23.15 33.41 30.02 67.64 56.56 79.2
STE rgb↔t 51.6 74.93 67.5 155.3 126.5 182.6

Table D.1: Transfer errors for the ’baseline’ rectification method. The Number listed after ’Planar’
is the RANSAC threshold used in obtaining the single planar homography.

Algebraic error (x,y) Geometric error
Scene Mean Std.dev Mean Std.dev

1 OTE rgb→t 3.162e04 1.764e04 3.937e04 1.651e04 4.925e04 4.713e04
t→rgb 1.241e05 4.868e04 9.062e04 4.377e04 1.728e05 9.012e04

STE rgb↔t 1.557e05 6.632e04 9.474e04 4.213e04 2.221e05 9.764e04

2 OTE rgb→t 1.653e05 7.174e04 1.09e05 5.745e04 2.37e05 1.202e05
t→rgb 1.285e05 5.079e04 8.512e04 4.275e04 1.793e05 9.31e04

STE rgb↔t 2.938e05 1.225e05 1.936e05 1.002e05 4.163e05 2.127e05

2 OTE rgb→t 9.344e04 5.66e04 1.029e05 6.122e04 1.5e05 1.196e05
t→rgb 8.683e04 6.936e04 8.332e04 5.094e04 1.562e05 8.263e04

STE rgb↔t 1.803e05 1.26e05 1.772e05 9.715e04 3.062e05 1.784e05

Table D.2: Transfer errors for validation points by using calibrated stereo rectification, in pixels.
As seen by the numbers, the algorithm is malfunctioning for all scenes. The errors are measured with
a scaling parameter of the stereo rectification of 0.8, which is mentioned in Section 7.2.1. Varying
the scaling parameter, however, does not change the performance of the algorithm radically from
what is listed above.
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However, even when multiple sets of corresponding points of the different calibra-
tion sequences are provided for the rectification algorithm, the results are similar.
Therefore, one must conclude that the stereo rectification algorithm is unstable for
the dataset provided and thus must be discarded.

(a) Rectified thermal image (b) Rectified RGB image

Figure D.1: ’Rectified’ views of the Thermal and RGB views provided by the calibrated stereo
algorithm. It is seen clearly from the two views, that the iterative methods of the stereo rectification
has caused a runaway of the rectification.

D.2 Uncalibrated stereo

The method on uncalibrated stereo rectification is outlined in Section 7.2.2. As
uncalibrated stereo rectification depends on robust estimation to calculate the fun-
damental matrix and rectifying homographies, the best values for the RANSAC
estimation threshold has to be determined by trial and error. Two thresholds are to
be considered:

• The RANSAC threshold for estimating the fundamental matrix

• The threshold for performing uncalibrated rectification

Both thresholds have been tested individually for each scene in the interval [0;30],
and the thresholds resulting in the lowest transfer errors have been chosen. These
are seen from Table D.3

Scene Fundamental matrix Uncal. rectification

1 3 0
2 2 0
3 6 0

Table D.3: Thresholds chosen for the robust estimation of the fundamental matrix and the matrices
for uncalibrated rectification.

The results for the validation of the algorithm is seen from Table D.4. It is
seen from the transfer errors of the table that the uncalibrated stereo rectification
algorithm is functional as opposed to the implementation of the calibrated stereo rec-
tification. From the geometric mean and standard deviation of the STE, the transfer
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errors of the uncalibrated stereo rectification for scene 1 and 2 are slightly above the
corresponding errors of the baseline. The transfer errors between modalities of Scene
2 are substantially lower than what is achieved by the baseline method. However,
when compared against the training set, the uncalibrated stereo rectification results
in a 62 percent increase in the average geometric error.

Algebraic error (x,y) Geometric error
Scene Mean Std.dev Mean Std.dev

1 OTE rgb→t 35.79 71.43 61.67 107 107.2 125.4
t→rgb 27.24 49.02 46.43 69.68 76.26 84.92

STE rgb↔t 63.03 120.5 107.9 176.4 183.5 209.8

2 OTE rgb→t 4.506 8.206 6.667 11.75 12.71 14.08
t→rgb 3.458 6.63 5.014 9.478 10.09 11.2

STE rgb↔t 7.964 14.84 11.65 21.18 22.8 25.19

2-Training OTE rgb→t 27.29 26.01 57.63 69.61 53.3 111.2
t→rgb 20.82 22.63 44.68 70.08 43.45 104.3

STE rgb↔t 48.11 48.63 101.5 139.3 96.75 214.1

3 OTE rgb→t 44.07 33.35 81.9 72.54 77.42 108.3
t→rgb 36.08 27.76 67.93 60.63 63.84 90.67

STE rgb↔t 80.15 61.11 149.8 133.2 141.3 198.9

Table D.4: Transfer errors for the uncalibrated stereo rectification.

The performance of the algorithm on two of the validation images of Scene 3 is
seen from Figure D.2. The mapping errors are varying depending on the depth and
the position in the image of the object. Larger errors tend to occur at depths far from
’the middle’ of the scene and at the image corners. Even though the performance of

(a) RGB validation image 8 (b) RGB validation image 20

Figure D.2: Validation images of Scene 3, along with the mapped points of the chessboard corners
from the thermal image (red). The ground truth points of the calibration board are shown in green.

the uncalibrated stereo rectification is better on the planar test set of scene 2, the
method is not included in the overall acceptance test due to the bad performance
of the algorithm in the remaining scenes. The image rectification should at least
be better than the simple technique of using a single homography. Furthermore, the
uncalibrated stereo rectification tends to suffer from the same problems with parallax
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as the single homography, which means that objects far away from the middle of the
registered scene plane are subject to large rectification errors.

D.3 Depth refinement

The technique of depth refinement is described in Section 7.2.3. The technique might
be used for both the calibrated and uncalibrated stereo rectification, but due to the
poor performance of the calibrated stereo rectification, the depth refinement is only
applied on the uncalibrated rectification. The depth refinement technique is based
on the physical property that the parallax of the image registration is proportional
to the inverted depth from the corresponding point in space to the camera.

In order to investigate this property, the disparity and the depth of point pairs
used for training the uncalibrated rectification is processed using OpenCV. The dis-
parity in this context is the rectification error of the corresponding point pair mea-
sured in the rectified image space. The rectified image space is obtained by applying
the rectification matrices on each image, thus projecting the epipolar lines to infin-
ity. The disparity and the inverted depth for each corresponding point pair is saved
to a text file and loaded into the Curve Fitting Tool of MATLAB, from which a
linear regression is estimated using robust methods. For each scene, a regression is
estimated, and the coefficients of the regression is inserted in OpenCV.

The regressions, along with the corresponding data, are shown from Figure D.3a
– D.3c. Is is seen from the graphs that although a relationship exists between the
inverted depth and the disparity of the mapping in the x-direction, the relationship is
indeed very noisy and filled with outliers. This might be due to the fact that the fun-
damental matrices are estimated and thus not exact, the difference in field-of-views
of the cameras, and noise in the point correspondences used for the estimation. The
points in Figure D.3b do not imply this characteristic, however, and the estimated
regression is, by visual inspection, very poor. This might be due to the fact that
Scene 2 is largely planar, thus minimizing the effect of the depth parallax.

When linear regressions for each scene are estimated, the process of mapping
points from one modality to the other by means of the depth refinement technique
is then the following:

1. Rectify the point according to the uncalibrated rectification algorithm. The
point is now in ’rectified’ coordinates.

2. Find the depth of the point by mapping the point to the depth image, and look
up the depth.

3. Calculate the depth rectification disparity by the following equation:

x′rect =
{
x′rect = x′rect ± (a · d+ b)
y′rect = y′rect

(D.1)

where x′ is the mapped point in rectified coordinates, d is the depth from the
camera to the point as measured by the Kinect, and a and b are the parameters
of the linear regression.
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(a) Scene 1. a = −27858, b = 15.35, r2 = 0.76
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(b) Scene 2. a = 24500, b = −14.45, r2 = 0.87
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(c) Scene 3. a = 28520, b = −16.23, r2 = 0.94

Figure D.3: Relationship between the disparity in the x-direction and the inverted depth of corre-
sponding point sets. For each Scene, a linear regression (ax+ b) is estimated.
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The ± sign is indicating that the disparity is either subtracted or added to
the rectified x-coordinate based on the direction of the mapping. If points
are mapped from RGB to thermal, the sign should be negative, and should
therefore be positive when mapping thermal points to RGB.

4. Map the point back to unrectified coordinates by applying the inverse homog-
raphy.

This approach presents a dilemma, though: How to determine the depth of ther-
mal points?

The determination of the depth for thermal points is indeed not possible as the
registration of the thermal and depth modalities depends on the registration between
the thermal and RGB images - which is what we are estimating here. However, the
depth of thermal points might be estimated by assuming that the disparity between
the thermal and RGB points in rectified coordinates is close to zero. This means
that the rectified thermal points might be treated as RGB points, for which the
corresponding depth is found. Once the depth is found, the corresponding depth
rectification disparity is computed, and the RGB point is estimated This approach
introduces some errors on both the rectification and the depth measurement, as one
cannot guarantee that the depths are similar. However, this method gives a pleasing
estimate of the depth if objects are relatively large and uniform in depth.

The transfer errors for the depth refinement technique used on the uncalibrated
stereo rectification are listed in Table D.5. The refinement methods uses the same
thresholds for estimating the fundamental matrices and rectification matrices as the
uncalibrated approach. These thresholds are listed in Table D.3. The results of the

Algebraic error (x,y) Geometric error
Scene Mean Std.dev Mean Std.dev

1 OTE rgb→t 41.95 62.36 76.61 85.08 104.3 115.8
t→rgb 27.24 49.02 46.45 69.91 76.26 85.06

STE rgb↔t 69.19 111.4 122 126.6 180.6 177.4

2 OTE rgb→t 7.669 23.1 10.17 36.62 30.77 42.48
t→rgb 3.506 6.821 5.129 10.39 10.33 12.37

STE rgb↔t 11.17 29.92 13.54 43.8 41.09 50.2

3 OTE rgb→t 45.88 21.37 83.86 56.94 67.25 103.1
t→rgb 36.07 27.52 67.88 60.2 63.6 90.3

STE rgb↔t 81.95 48.9 151.6 107.3 130.8 186.9

Table D.5: Transfer errors for the uncalibrated stereo rectification with the depth refinement
technique applied.

refinement technique on scene 1 shows a slight improvement of the average geomet-
ric STE compared to the original rectification. However, the standard deviation is
down by 32,4 pixels, which is a considerable improvement. The depth refinement is
however not working on scene 2. Both the average error and standard deviation of
the geometric STE is nearly doubled by using the refinement technique. The perfor-
mance of the mapping of scene 3 is improved by a 10 pixels for both the mean and
standard deviation of the STE.
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However, these improvements to the mappings of scene 1 and 3 only sets them
on par with the performance of the baseline of the planar homography. Even with
the refinements, the technique is unable to surpass the performance of a single ho-
mography for each scene. Due to the above performance, we will not contribute to
any further work on the depth refinement technique.



Appendix E

Measurement records

E.1 Default set up for multi-modal capture

In this measurement record, we will describe the default set up of the camera systems
and the acquisition software. This set-up is the minimum configuration for capturing
imagery with the thermal, visible, and depth cameras.

E.1.1 Equipment used

The equipment used for the set-up is listed in Table E.1.

Instrument Manufacturer, type etc.
RGB camera Microsoft Kinect for XBOX Camera
Depth camera Microsoft Kinect for XBOX Camera
Thermal camera AXIS Q1922
12 V DC-adapter Noname
Laptop HP ProBook 6560b

Table E.1: Equipment used for the multi-modal setup

E.1.2 Set-up

The Kinect and AXIS cameras are placed neatly in the mount depicted in Figure
E.1. Care must be taken to position the cameras such that their horizontal axes align
and the field-of-view of the cameras overlap as much as possible.

The Kinect is connected to a Windows-powered PC through a USB cable and
powered through the included adaptor whereas the AXIS camera is connected to the
same PC through an Ethernet cable and powered through a 12 V DC-adapter. If
the scene is dimly lit, external light sources are recommended in order to improve
the low-light performance of the RGB sensor of the Kinect.
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Figure E.1: The test setup consisting of the AXIS and Kinect cameras.

E.1.3 Procedure

The following is the standard procedure for initializing the multi-modal acquisition
platform:

1. The set-up is configured as described in the previous subsection.

2. The AXIS and Kinect cameras are powered and connected to the same PC.

3. Once the cameras are initialized, the recording program RGBDT Capture is
opened. In the window of the thermal camera, the proper IP address of the
AXIS camera is written and the stream from the thermal camera is started. If
the IP address of the AXIS camera is unknown, it may be found by opening
the ’Network’ folder in Windows Explorer.

4. In the file path text box of the capture program, the file path of the current
directory used for the capture is written. Once completed, the ’Use this folder’
button is pressed.

5. If both the RGB and thermal streams are shown, the initialization is complete.

E.2 Acquiring calibration images

In this measurement record, we will describe the process of obtaining imagery for
calibrating the cameras used.

Purpose

The purpose of this measurement is to provide a sufficient amount of calibration
footage for the camera calibration and registration.
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Equipment used

The basic equipment used for the measurements is similar to the listings in Table
E.1. Furthermore, the equipment of table E.2 is used. The design of the calibration

Instrument Manufacturer, type etc.
Calibration board AAU VAP
Heat gun Nakachi 1500 W

Table E.2: Additional equipment used for acquiring calibration images.

board is described in Section 6.2.2.

Set-up

The basic set up is equivalent to the process described in Section E.1. Further-
more, the procedure of Section E.1 must be followed and the image streams of both
the thermal and RGB cameras should be visible in the windows of the acquisition
program.

E.2.1 Procedure

The following procedure is repeated for all three scenes defined in the requirement
specification of Chapter 3. The exact set-up of these scenes are described in the
acceptance test in Chapter 8, and it is for these scenes, that the following procedure
is repeated.

1. The set-up is configured as described in the previous subsection.

2. The ’calibrate depth’ button is pressed.

3. The calibration mask is cooled either outside or in a fridge prior to calibration
capture.

4. The backdrop is heated uniformly by using the heat gun.

5. The mask is placed firmly on top of the backdrop and the button ’Calibrate
RGB + T’ is pressed

6. The calibration board is swept through the entire scene, thus representing a
broad variety of depth and pose angles to the cameras.

7. Once the patterns of the calibration board are barely visible from the thermal
camera (approx. 1 min), the ’Stop capture" button is pressed.

8. The ’calibration sequence number’ is incremented and step 2-6 is repeated until
three calibration sequences are recorded.
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E.2.2 Results

The images may be found on the enclosed CD Dataset/[1;3] . Samples from the
measurement is seen in Figure 6.7 on page 42.

E.2.3 Uncertainty of measurements

The quality of the images is limited to the physical properties of the cameras such
as focal length, lens size, and resolution. If the room is not sufficiently lit, the colour
quality of the Kinect RGB camera will suffer greatly, thus making the process of
extracting corners from the calibration rig difficult. The treatment of the reprojection
errors and the evaluation of the spatial positioning of the calibration rig is made in
Appendix C.
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