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Abstract:
Dette kandidatspeciale omhandler em-
net non-linear parameterestimering ved
brug af metoder til global optimering
baseret på intervalanalyse (IA), accel-
lereret vha. parallel implementation på
en grafikprocessor (GPU). Global opti-
mering med IA er en matematisk ga-
ranteret metode af Branch & Bound ty-
pen, i stand til på pålidelig vis at løse
globale optimeringsproblemer med kon-
tinuært differentiabele objektivfunktio-
ner, selv når afrundingsfejl finder sted.
Strukturen af disse problemer og me-
toder er parallel i sin natur, og pas-
ser godt til moderne GPU-arkitektur.
Metoder til effektivt at udnytte den-
ne parallelisme præsenteres og base-
ret på disse implementeres en paral-
lel GPU-accelereret algoritme til glo-
bal optimering. En samling af algorit-
miske variationer af den parallelle GPU-
accelererede algoritme benchmarkes og
sammenlignes med tilsvarende sekventi-
elle CPU-baserede implementationer.
Resultaterne viser hastighedsforøgelser
imellem 1,43 og 60,4 gange for de an-
vendte testproblemer og problemstør-
relser. En analyse viser at de GPU-
accelerede implementationer ikke an-
vender GPU-hardwaren til fulde. Det
vurderes der ved at introducere et yder-
ligere lag af parallelisme kan opnås hø-
jere anvendelsesgrad og hastighedsforø-
gelse. Det konkluderes at den presente-
rede metode giver potentiale for signi-
fikante hastighedsforøgelser for proble-
mer med højt antal målinger.
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Notation and Abbreviations

Sets

R The real numbers.
R∗ The extended real numbers.
IR The finite interval numbers.
IR∗ The extended interval numbers.
S A set or sequence, depending on the context.

Real numbers

Real numbers are denoted using lower-case letters.

x Real scalar.
x Real matrix or vector.
xi,j The ith row and jth column of the matrix x.
(xm)i,j The ith row and jth column of the matrix xm (used when several sub-

scripts are needed).
xi The ith element of the vector x.
(xm)i The ith element of the vector xm (used when several subscripts are

needed).

Intervals

Intervals are denoted using capital letters. See Section 2.1 for more.

X Real interval.
X Upper bound of X.
X Lower bound of X.
[a, b] Interval with lower bound a and upper bound b.
X Interval matrix/vector.
int(X) Interior of X.
mid(X) Midpoint of X.
wid(X) Width of X.
vol(X) Volume of X.
hull(S) Hull of the set S.
cset(f,S) Containment set of the function f over the set S.

Symbols

Ψ Number of parameters in the model function.
Φ Number of measurements.
Γ Dimension of the measurement points.

xi



xii Notation and Abbreviations

Abbreviations

ALU Arithmetic Logic Unit
AMP Asynchronous Multiple Pool
ASP Asynchronous Single Pool
BB Branch & Bound
FLOPS Floating Point Operations Per Second
FMA Fused Multiply Add
FPU Floating Point Unit
GMU Grid Management Unit
GPU Graphical Processing Unit
GPGPU General Purpose Graphical Processing Unit
GS Gauss Seidel
IGS Interval Gauss Seidel
IGO Interval Global Optimization
IN Interval Newton
IN/GB Interval Newton/Generalized Bisection
IOPS Interval Operations Per Second
MIMD Multiple Instructions Multiple Data
NVVP Nvidia Visual Profiler
OpenCL Open Computing Language
SIMD Single Instruction Multiple Data
SIMT Single Instruction Multiple Threads
SM Streaming Multiprocessor
SMP Synchronous Multiple Pool
SSP Synchronous Single Pool
ULP Unit in the Last Place



Chapter 1

Introduction

This chapter serves as an introduction to the thesis. The objective of the thesis
is to research the possibility of accelerating the non-linear least-squares parameter
estimation problem using a Graphical Processing Unit (GPU).

In Section 1.1 the non-linear least-squares parameter estimation is introduced,
followed by an overview of global optimization methods for solving the problem in
Section 1.2. The global optimization method selected for use in this work is a Branch
& Bound-type algorithm that uses Interval Analysis. Finally Section 1.3 provides
an overview of the state of the art within methods for interval global optimization
(IGO) and parallelization thereof.

1.1 Parameter Estimation

The task of parameter estimation often arises in the engineering sciences (see e.g.
[1, 2, 3, 4]). Given a set of measurements on a system and a mathematical model of
this system with unknown parameters, the task is to somehow find a set of parameters
that makes the model predictions fit the system behavior as closely as possible. In
terms of least squares, the optimal set of parameters is obtained by solving the
following optimization problem1:

popt = argmin
p

f(p,x,y) (1.1)

f(p,x,y) =
Φ−1∑
i=0

(yi −m(p,xi))2 (1.2)

where Ψ is the number of parameters to be estimated and p ∈ RΨ is a vector of the
parameters for the model function m(p,xi) ∈ R. The measurements, the number
of which is denoted Φ, are contained in the vector y ∈ RΦ. The corresponding
measurement points are contained in the matrix x ∈ RΦ×Γ where xi ∈ RΓ denotes
the ith row containing the ith measurement point.

In the case where the model function m(p,xi) is non-linear in p, (1.2) may result
in a non-convex optimization problem i.e. (1.2) may be multimodal and thus contain
several local minima [7]. It is important to notice that (1.2) is not nesessarily non-
convex if the model function m(p,xi) is non-convex. The present work focuses on

1An alternative approach, where the measurements themselves are regarded as uncertain and
therefore included as variables in the optimization problem is the Error In Variables (EIV) approach.
For more on this method, see e.g. [5, 6]

1



2 Chapter 1. Introduction

these cases, where the model function is non-linear. To solve non-convex optimization
problems global optimization techniques are required.

For these types of problems, as with most other computational problems, it is nat-
ural to strive for as low execution time as possible in order to make it feasible to solve
progressively larger problems within a given time frame. During the recent years,
the floating point processing performance of Graphical Processing Units (GPUs) has
risen significantly beyond that of common CPUs, when performing parallel computa-
tions [8]. This has resulted in a trend within high performance computing to utilize
GPUs to accelerate the execution of algorithms [9]. As noted in e.g. [10, 11, 12],
global optimization problems are parallel by nature. These facts combined makes it
natural to attempt to accelerate algorithms to solve the non-linear parameter esti-
mation problem using GPUs.

1.2 Global Optimization Methods
A large number of different methods for global optimization exist, and thus a com-
plete survey of these methods is out of scope. Instead, this section aims to provide a
classification of the methods for global optimization based on their properties. Clas-
sification of global optimization methods is dependent on the properties considered,
and is therefore not unique. One classification2, given in [7], defines the following
categories:

Incomplete methods: Methods that use search heuristics and provide no guaran-
tees of finding a global optimum.

Asymptotically complete methods: Methods that, assuming infinite run time
and use of exact arithmetic, find a global optimum with probability one, but
does not know when a global optimum is found.

Complete methods: Methods that, assuming infinite run time and use of exact
arithmetic, find a global optimum, and after a finite amount of time is able to
provide an approximate global optimum within specified tolerances.

Rigorous methods: Methods that, within a fixed amount of time, find an approx-
imate global optimum within specified tolerances, even without use of exact
arithmetic.

The latter two, and especially the last, of these categories are obviously stronger than
the former two, due to the fact that they provide guarantees regarding the quality
of the result.

In this work the focus is on rigorous methods, specifically the methods based
on Interval Analysis (IA) (see Chapter 2 and 3). Methods for interval global opti-
mization (IGO) are based on the Branch & Bound (BB) method [13]. BB uses a
divide-and-conquer principle for global optimization where the initial search region is
successively divided into subregions. For each subregion the bounds of the objective
function are evaluated and based on this the subregion is split (branched), discarded
from the search or accepted as a possible solution [14]. An interpretation of BB is
that of a search tree structure, as illustrated in Figure 1.1. Starting with the entire
search region, represented to the left on the figure by the top node and to the right
by the black box, the search region is split into progressively smaller subregions,
represented as nodes on the tree to the left in the figure.

2For other classifications, see e.g. [10].
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Search regionSearch tree

Figure 1.1: Illustration of a Branch & Bound search three. The search region, illustrated to the
right, is split into smaller boxes. The subregions created by the splits are represented as nodes in
the tree to the left. The colored lines in search region to the right represent the lines along which
subregions are split. This is reflected by the colored lines connecting the nodes in the tree to the
left.

In order to compute bounds of the objective function over a region, the method
used must utilize some knowledge of the function. In the case of IGO, all methods
require that the objective function f is continuous, and additionally most require
that f is continuously differentiable and its gradient gf and Hessian hf must contain
a finite number of isolated zeros [15, 16, 17, 18].

While most IGO algorithms are designed for unconstrained optimization (bounds-
constrained in practice), some are able to work with constraints. The constrained
case is not treated here. For more on constrained IGO, see [11, ch. 14-16].

A few practical examples of parameter estimation problems that can be solved
using IGO include: vapor-liquid equilibrium problems in chemistry [19], sinusoidal
modeling problems, used in speech analysis [20, 21] and the Error Vector Magnitude
problem [22]. For more examples, see e.g. [23, 4]. An example of a category of
problems that are not solvable by IGO methods is problems with discrete valued
variables.

In practice, whether or not a parameter estimation problem can be solved within
a reasonable time frame using IGO methods, is determined by the number of pa-
rameters to be determined. In [24] a collection of different parameter estimation
problems, solved using the BARON solver, are collected. The maximum number of
parameters solved are 7. The authors have not been able to find any examples of
solvers based on interval analysis or other rigorous methods that solve parameter
estimation problems with more than 7 parameters.

1.3 State of the Art
This section provides an brief overview of the state of the art within IGO methods
and parallel implementations of IGO methods.

Much work has been done in IGO. The field of Interval Analysis was pioneered in
the mid-sixties by Ramon E. Moore with publication of the book Interval Analysis3.
In [25] a short overview of the early work Moores early work is given. In 1979
a method for global optimization using interval analysis was proposed for the one
dimensional case by Hansen in [17]. The following year it was extended to the
multidimensional case by Hansen in [18]. A comprehensive work on IGO including
many of the developments until 2004 can be found in [11], in which advanced methods

3R. E. Moore - "Interval Analysis", Prentice-Hall, 1966. This book is unfortunately not available
to the authors.



4 Chapter 1. Introduction

for both unconstrained and constrained IGO using heuristics to combine different
methods are presented.

Most IGO algorithms make use the Interval Newton method – a method that
can be use contract areas of the search space to enclose solutions or disqualify areas
of the search space that do not contain solutions. As part of the Interval Newton
method a linear system of equations must be solved. This is commonly done using
the interval Gauss-Seidel method [26, 27, 28, 11]. In order to make the method more
efficient, the system to be solved can be preconditioned. A standard approach is
the inverse-midpoint preconditioner. This approach is, however, proven to be sub-
optimal in some cases in [29]. Instead [29] presents an approach where an optimal
preconditioner is computed using a linear programming approach. However, as this
approach is computationally heavier than the inverse-midpoint approach, it does not
always result in better overall efficiency. In [28] a pivoting preconditioning approach,
based on ideas from [29] is presented and combined with the inverse-midpoint precon-
ditioner in a hybrid preconditioning approach, which is shown to lead to substantial
speedups for the problems tested.

Within parallel IGO, some notable works are [30, 31, 32, 33] and [34]. These
all take the approach of processing nodes in the search tree in parallel. This is
covered further in Section 5.1. To the best knowledge of the authors, no work on
implementation of parallel IGO using GPUs has been published at the time of writing.

1.4 Summary
This project treats the subject on non-linear parameter estimation based on interval
global optimization. These are problems that are parallel in nature and can be very
time consuming to solve. Therefore the possibilities to parallelize the optimization
algorithm using GPUs is investigated. Interval global optimization is an area where
significant amounts of research has been done, however, to the best knowledge of the
authors, no attempts to parallelize the method using GPUs have been published.

In Chapter 2 the central concepts of intervals and interval arithmetic are intro-
duced. Chapter 3 describes how interval analysis can be to construct a method for
global optimization, some approaches for accelerating the convergence of these meth-
ods, and considerations specific to the parameter estimation problem. In Chapter 4
the Nvidia CUDA GPU platform is introduced. The hardware architecture of CUDA
GPUs, the CUDA programming model are described, and use of the CUDA plat-
form for interval computations is treated. A scheme for parallelization and a GPU
accelerated implementation of IGO based on this scheme is described in Chapter 5
along with a sequential CPU based reference implementation. The GPU accelerated
implementation and the CPU reference implementation are benchmarked using a
set of test problems and compared to measure the speedup in Chapter 6. Finally,
Chapter 7 concludes on the present work and discusses possibilities for improvement
of the implementation presented.



Chapter 2

Interval Analysis

This chapter introduces the central concepts of intervals and interval arithmetic.
In Section 2.1, the basic concepts of intervals, finite interval arithmetic, functions
of intervals, dependence and extended interval arithmetic are introduced, followed
by a short introduction to computational interval arithmetic. This is followed by
an introduction to systems of linear interval equations and how they are solved in
Section 2.2.

This chapter is primarily included to give the reader a quick overview and un-
derstanding of some important concepts.

2.1 Interval Arithmetic
This section describes the basic concepts of finite and extended interval arithmetic.
Throughout the section, some definitions and theorems are presented. For proofs and
further details see [11, Ch. 2-4] and [13], on which this section primarily is based.

2.1.1 Finite Interval Arithmetic

In finite interval arithmetic, introduced in by R.E. Moore in 19661 [11, 13], the
concept of a real interval number (or just interval)X ∈ IR describes a closed interval.
X is defined by its real lower and upper endpoints X, X ∈ R, such that [11, 13]

X = [x`, xu] =
[
X,X

]
= {x | x` ≤ x ≤ xu} (2.1)

Here and in the following, capital letter variables represent intervals and lowercase
letter variables represent real numbers. The lower- and upper bounds of interval
variables are sometimes referenced using under- and overlined capital letters, respec-
tively, as in (2.1). By this definition, a real number y corresponds to an interval of
width zero (called a degenerate interval), where Y =

[
Y , Y

]
= [y, y] [11, 13].

The basic arithmetic operations on intervals are extensions of their real counter-
parts. For intervals X = [x`, xu] and Y = [y`, yu] they are defined as in [11, 13]:

X op Y = {x op y | x ∈ X, y ∈ Y } for op ∈ {+, −, ·, /} (2.2)

1In the publication R. E. Moore - "Interval Analysis", Prentice-Hall, 1966. This publication is
unfortunately not available to the authors.

5
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This leads to the following expressions for the basic operations [11, 13]:

X + Y = [x` + y`, xu + yu] (2.3)
X − Y = [x` − yu, xu − y`] (2.4)
X · Y = [min(x`y`, x`yu, xuy`, xuyu), max(x`y`, x`yu, xuy`, xuyu)] (2.5)
X/Y = [x`, xu] · [1/yu, 1/y`] , 0 /∈ Y (2.6)

Additionally exponentiation is defined for n ∈ N0,

Xn =


[1, 1] for n = 0
[xn` , xnu] for x` ≥ 0 or n odd
[xnu, xn` ] for xu ≤ 0 and n even
[0, max(xn` , xnu)] for x` ≤ 0 ≤ xu and n even

(2.7)

Note that (2.6) is not defined when the interval in the denominator contains zero,
as this would cause a division by zero in real arithmetic in (2.2), which is undefined.

As for real numbers, vectors and matrices of intervals can be used. Interval
vectors are sometimes called boxes, as they describe an n-dimensional box. Some
definitions for intervals X and interval vectors X ∈ IRn are shown in Table 2.1.

Concept: Interval: Interval vector:

Midpoint mid(X) = 1
2 (X +X) mid(X) = [mid(X0),mid(X1), . . . ,mid(Xn−1)]T

Width/diameter wid(X) = X −X wid(X) = maxi=0,...,n−1 wid(Xi)
Abs. value/norm |X| = max{|X|, |X|} |X| = maxi=0,...,n−1 |Xi|

Box volume vol(X) =
n−1∏
i=0

wid(Xi)

Table 2.1: Real functions on intervals and interval vectors [11, 13].

2.1.2 Functions of Intervals

There are two classes of functions on intervals; real functions of intervals, and interval
functions. Real functions of intervals are real-valued functions that take interval
arguments, such as the functions in Table 2.1. Interval functions are interval-valued
functions that take interval arguments. The concept of interval functions is central to
interval analysis [11]. An important condition that must hold for interval functions
is the containment constraint [11]:

F (X) ⊇ {f(x) | x ∈ X} (2.8)

A couple of important definitions lead to the so called fundamental theorem of finite
interval analysis.

Definition 2.1 (Interval extension) [11, 13] An interval function F (X) is called
an interval extension of a real function f(x) if F (x0) = f(x0) for all x0 ∈ Df , where
Df is the domain of f .

?

Definition 2.2 (Inclusion isotonicity) [11, 13] An interval extension F is inclu-
sion isotonic if F (X′) ⊆ F (X) for all X′ ⊆ X ⊆ Df .

?
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Theorem 2.1 (The fundamental theorem of finite interval arithmetic) [11,
13] Let F (X) be an inclusion isotonic interval extension of a real function f(x). Then
F (X) contains the values of f(x) for all x ∈ X (i.e. (2.8) holds).

♦

This means that interval extensions can be used to bound the values of real functions
over an interval. This is a very useful property that is used extensively in Chapter 3.

2.1.3 Dependence

Each time an interval variable occurs in an interval expression, it is treated as a
separate interval. As an example, consider the operation of squaring an interval. For
real numbers, squaring is the same as multiplying the number with itself, but for
intervals, using the definitions of the operations in Section 2.1.1 on page 5:

X = [−3, 6] (2.9)
Y1 = X2 = [0, 36] (2.10)
Y2 = X ·X = [−18, 36] (2.11)

Observe that
{
y | y = x2 , x ∈ X

}
= Y1 ⊆ Y2, that is; both results include the true

result, but only Y1 is a tight or sharp result. The extra width of Y2 is caused by
the effect called dependence. The implication of dependence is that the algebraic
form of interval expressions has an effect on the quality of the result, contrary to real
expressions [11].

Another example of dependence is subtraction. Consider a situation where Y =
X1 + X2 where X2 is known, and X1 is unknown. To obtain the value of X1, one
would normally perform the manipulation

X1 = Y −X2 (2.12)

However, when X1 + X2 is substituted for Y and the definition of subtraction in
(2.4), the right-hand side of (2.12) becomes:

X1 +X2 −X2 = X1 +
[
X2 −X2, X2 −X2

]
6= X1 when X2 6= X2 (2.13)

Instead, to obtain X1, one must use a dependent form of subtraction, which can be
interpreted as the inverse of (2.3):

X 	 Y =
[
X − Y , X − Y

]
(2.14)

Applying this to (2.13) yields:

X1 +X2 	X2 = X1 +
[
X2 −X2, X2 −X2

]
= X1 (2.15)

Each of the basic operations (2.3)-(2.6) has a corresponding dependent version [11].

2.1.4 Extended Interval Arithmetic

The interval system introduced in Section 2.1.1 has a large drawback in that not all
operator-operand combinations are defined. An example of this is division by inter-
vals containing zero (see (2.6)), which is quite a large restriction when constructing
algorithms.
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To eliminate this problem, an alternative interval system, based on the set of ex-
tended real numbers R∗ = R∪{−∞,∞} = [−∞,∞] was introduced independently in
1968 by Kahan and Hanson2 [11] and later developed into a mathematically consis-
tent system presented in [11]. The set of intervals over the extended reals is denoted
IR∗.
A central concept when working with arithmetic over the extended reals is that of
containment sets.

Definition 2.3 (Containment set) [11] The containment set of an expression eval-
uated on all points in the set S, denoted cset(f,S), is the smallest possible set of
values taken on by all possible algebraic transformations of the expression evaluated
on all points in S.

?

Contrary to the real numbers, the containment sets of the basic arithmetic op-
erations on the extended reals are not always single values, but may be intervals or
sets. The containment sets listed in Appendix D in Tables D.1-D.4.
The fact that containment sets may be quite complicated to represent and use,
motivates the introduction of interval boxes that enclose the containment sets, named
containment set enclosures:

Definition 2.4 (Containment set enclosure) [11] F (X) is a containment set en-
closure of f if F (X) ⊇ cset(f,X) for all X ∈ IRn∗ .

?

This leads to the fundamental theorem of extended interval arithmetic:

Theorem 2.2 (The fundamental theorem of extended interval arithmetic)
[11] Given the real expression f(x) = g(h(x),x) and the containment set enclosure
of h, H(X), then G(H(X),X) is a containment set enclosure of cset(f,X) for all
X ∈ IRn∗ . ♦

The containment sets of some operations have shapes that can be exploited
in algorithms. Consider for example the expression f(X,Y ) = X

Y , evaluated at
(X0, Y0) = ([1, 2] , [−3, 5]). The containment set enclosure F of f is [−∞, ∞] be-
cause Y0 contains zero (see Appendix D Table D.4), but the containment set is:

cset(f, (X0, Y0)) =
{[
−∞, −1/3

]
,
[

1/5, ∞
]}

(2.16)

The containment set in (2.16) consists of the union of two distinct semi-infinite
intervals, separated by a gap. Specifically, when 0 /∈ X and Y < 0 < Y , the
containment set of f(X,Y ) = X

Y consists of two semi-infinite intervals [11]. An
algorithm where knowledge of this gap is described in Section 2.2.1.

2The publications W.M. Kahan - "A more complete interval arithmetic" - 1968 and R.J. Hanson
- "Interval arithmetic as a closed arithmetic system on a computer" - 1968 are unfortunately not
available to the authors.
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2.1.5 Computational Interval Arithmetic

Directed rounding

When doing interval computations in practice in finite precision, rounding errors in-
evitably occur. Normally when using IEEE-754 floating point arithmetic, the round-
to-nearest mode is used. Using this mode for interval computations, causes the finite
precision result to sometimes become narrower than the infinite precision result, thus
breaking inclusion isotonicity. In order to ensure that inclusion isotonicity holds, out-
ward rounding of the interval bounds is used. That is, the lower bound is always
rounded down to the nearest representable finite precision value and the upper bound
is always rounded up [11, 35].

The level of support for directed rounding differs between hardware architectures
and math libraries used. An example is the x86 architecture which supports directed
rounding, but switching between rounding modes is often more time consuming than
the actual operations [35].

Software for Interval Arithmetic

Many software libraries and a few compilers supporting interval arithmetic are avail-
able. This section mentions a few of these, but should not be considered a complete
survey. Some of the libraries available are:

INTLAB: A MATLAB toolbox for reliable computing, which includes support for
Interval Arithmetic [36].

Boost: A collection of C++ libraries, which includes an interval arithmetic library.
The library has no direct support for transcendental functions, such as sin, exp
and log [37]. A CUDA port of a subset of the library was shipped with the
CUDA 3.2 SDK Samples and is included but undocumented in the later versions
(up to 5.0) [38].

filib++: A C++ extension of the ANSI-C library FI_LIB, which is short for Fast
Interval Library [39].

RealLib: A C++ library for exact real arithmetic. The library makes use of the
fact that the the rounding modes of the SSE-2 registers in Intel’s x86 plat-
form can be set independently of each other and of the x87 floating point unit
(FPU). By using the SSE-2 registers for interval arithmetic and using the x87
FPU for other computations, switching of rounding modes becomes unneces-
sary. Speedups between 2.53 and 20.6 times speedup for the basic operations
is reported comparing the Boost library in version 1.33 with RealLib3. The
library does not support division by intervals containing zero [35].

The availability of compilers with support for interval arithmetic is more limited.
One example is the Fortran 95 compiler by Oracle (formerly by Sun Microsystems)
[40].

2.2 Systems of Linear Interval Equations
As with real numbers, systems of linear interval equations can be presented in the
matrix-vector form

Ax = B (2.17)
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where A ∈ IRm×n∗ , x ∈ Rn and B ∈ IRm∗ . The containment set S of the solution is:

S = {x | ax = b,a ∈ A,b ∈ B} (2.18)

As the shape of S can be rather complicated, what is normally sought is the box
that encloses the containment set, denoted the hull, of S, X = hull (S) [11].

There are several different methods available for computing or enclosing this hull.
A straightforward direct method is Gaussian elimination. As noted in [11] and [13],
Gaussian elimination fails whenlk, A is not strongly diagonally dominant or when
elimination requires division by an interval containing zero, and it is therefore only
applicable problems where these conditions are not present.

Another direct method is the hull method. When A is non-singular, this method
computes the exact hull of the solution. The hull method is not used in this project.
For a description of the method, see [11].

An iterative method called the Krawczyk method, avoids the limitations of Gaus-
sian elimination and the hull method, and is therefore more applicable [26, 11]. In
[26] an interval version of the Gauss-Seidel method (sometimes called the Hansen-
Sengupta method) was presented and shown to produce tighter bounds than the
Krawczyk method at approximately the same computational cost. This method is
broadly used and regarded as efficient ([26, 11, 13, 27, 41, 19]), and is therefore used
in this project. The method is described in Section 2.2.1.

2.2.1 The Interval Gauss-Seidel Method

The Interval Gauss-Seidel (IGS) method presented in [26] is, as the name suggests,
an interval version of the real Gauss-Seidel (GS) method (For a description of the
GS method, see e.g. [42]).

Each row of the system in (2.17) describes an equation of the system. The ith
row describes the equation:

Bi =
n−1∑
j=0

Aijxj (2.19)

which can be solved for xi:

xi = 1
Aii

Bi − i−1∑
j=0

Aijxj −
n−1∑
k=i+1

Aikxk

 (2.20)

Given interval bounds X on each element in x, the values of xj and xk in (2.20) are
substituted with these bounds. This yields new bounds Ni on xi:

Ni = 1
Aii

Bi − i−1∑
j=0

AijXj −
n−1∑
k=i+1

AikXk

 (2.21)

The use of extended interval arithmetic guarantees that the solutions to (2.17) con-
tained in X are also contained in N = [N0, N1, ..., Nn]T and thereby also in the
intersection of the two boxes X′ = X ∩ N. This motivates the following iterative
algorithm for contracting the interval bounds of the solutions:
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Algorithm 2.1 Interval Gauss-Seidel step [26]
Input: X ∈ IRn∗ , A ∈ IRn×n∗ , B ∈ IRn∗
1: for i = 0→ n− 1 do
2: Ni ← 1

Aii

(
Bi −

∑i−1
j=0AijX

′
j −

∑n−1
k=i+1AikXk

)
3: X ′i ← Xi ∩Ni

4: end for
5: return X′

If X ′i ⊂ Xi for any i = 0, . . . , n − 1, then Algorithm 2.1 results in a contraction
of X around the solutions of (2.17). If X ′i = ∅ for any i = 0, . . . , n − 1, there is no
solutions within the original bounds X, and the algorithm can be terminated.

Note that in some cases, when zero is contained in the denominator but not
in the numerator, the containment set of the right-hand side of (2.21) consists of
two semi-infinite intervals, as exemplified in Section 2.1.4. If Ni is computed as the
containment set enclosure of these intervals, then Ni = [−∞, ∞] which leads to
X ′i = Xi, i.e. no progression. In stead, labeling the semi-infinite intervals N−i and
N+
i and modifying the intersection step in Algorithm 2.1 to

X ′i ← (Xi ∩N−i ) ∪ (Xi ∩N+
i ) (2.22)

a tighter bound is produced if either (Xi ∩ N−i ) or (Xi ∩ N+
i ) is empty. This im-

provement comes at the price of a very small computational overhead.
The new bound resulting from each loop of Algorithm 2.1 is used in the succeeding

iterations, where the tightness of Ni is partially determined by the results of the
preceding loops. Therefore it may be advantageous to run the iterations in a different
ordering than shown in Algorithm 2.1 [11].

In order for the method to be efficient, i.e. produce reasonably tight bounds, some
form of preconditioner can be applied. The matrix A and the vector B are replaced
by preconditioned counterparts, Â = QA and B̂ = QB where the Q ∈ Rn×n
is a real-valued preconditioning matrix. A simple choice of Q (e.g. used in [11])
is the inverse-midpoint preconditioner, presented in [43]. As the name hints, this
preconditioner is computed as the inverse of the matrix generated by taking the
midpoint of each element in A, i.e. Qinv.mid. = (mid(A))−1.

In [29] the inverse-midpoint preconditioner was shown to be sub-optimal. An
alternative choice preconditioner is described in Section 3.3.

2.3 Summary
In this chapter the fundamentals of finite and extended interval arithmetic were pre-
sented, along with some considerations on practical computational interval arithmetic
and notes on the availablity of software libraries for interval arithmetic. Further, it
was described how systems of linear interval equations can be solved using the inter-
val Gauss-Seidel method.
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Chapter 3

Global Optimization using
Interval Analysis

This chapter describes the application of interval analysis for global optimization.
The purpose is to provide the theoretical background required for understanding the
algorithms used.

Section 3.1 describes the Interval Newton (IN) method, an interval version of
the classical Newton method for finding zeros of a function. Further the Interval
Newton/Generalized Bisection (IN/GB) method, an extension of the IN method, ca-
pable of enclosing all roots of a continuously differentiable function within arbitrarily
narrow bounds [11, 16], is described.

Combined with methods for bounding the range of the objective function (see [15,
44]), the IN/GB method can be used to construct algorithms for global optimization
[44, 17, 18, 11]. In Section 3.2 a method for global optimization is described, where
the IN/GB method is combined with a set of tests designed to qualify or disqualify
areas of the search space as containing possible solutions.

Several improvements (see e.g. [11, 28, 29]) can be made to accelerate the IN/GB
method and the global optimization method of Section 3.2, a few of which are de-
scribed in Section 3.3. In Section 3.4 the steps of the global optimization method of
Section 3.2 are analyzed with focus on the parameter estimation problem, and finally
in Section 3.5 a short summary of the chapter is given.

3.1 The Interval Newton Method
This section describes an interval version of the Newton method – a classical method
for local optimization [45]. To show the concepts of how the method works, the
univariate version of the Interval Newton (IN) method is described in detail in Sec-
tion 3.1.1. The result of the extension of the method to its multivariate version is
given in Section 3.1.2. Finally, some measures to accelerate the convergence of the
method are described. This section is primarily based on [11].

3.1.1 Univariate Version

Given a real continuous function f(x) : R→ R and real points a and b, a < b in the
domain Df of f , such that f is continuously differentiable in (a, b), the mean value

13
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theorem states that there exists a point c ∈ [a, b] such that [42, 16]:

f ′(c) = f(b)− f(a)
b− a

(3.1)

where f ′(γ) = df(x)
dx

∣∣∣
x=γ

. When f(b) = 0, (3.1) can be reordered to

b = a− f(a)
f ′(c) (3.2)

Now consider the case where f ′(c) in (3.2) is replaced by its interval extension F ′(A)
over an interval A where a, b, c ∈ A:

N = a− f(a)
F ′(A) (3.3)

Inclusion isotonicity (Definition 2.2) guarantees that f ′(c) ∈ F ′(A). Now define the
function

Nf (x,X) = x− f(x)
F ′(X) (3.4)

Theorem 3.1 and Corollary 3.1 follow:

Theorem 3.1 [11] The set of all x ∈ X where f(x) = 0, denoted Sf (X), is contained
in Nf (x,X), i.e:

Sf (X) ⊆ X ⇒ Sf (X) ⊆ Nf (x,X) ∀ x ∈ X.
where Sf (X) = {x ∈ X | f(x) = 0}

♦

Proof 3.2 Follows from Theorem 2.2.
�

Corollary 3.1 The set Sf (X) is contained in the intersection X ′ = X ∩ Nf (x,X)
for all x ∈ X, i.e:

Sf (X) ⊆ X ⇒ Sf (X) ⊆ X ∩Nf (x,X) ∀ x ∈ X.
♦

In its original formulation1, the IN method is designed for use with finite interval
arithmetic [16]. Therefore it is assumed that 0 /∈ F ′(X) as division by intervals
containing zero is undefined. Because f is monotonous in X then X contains at
most one zero of f . This method can be shown to converge to this zero under
certain conditions, as stated in Theorem 3.2. The formulation of the method given
in Algorithm 3.1 stems from [16].

Algorithm 3.1 Interval Newton Method (univariate) [16]
Input: X0 ∈ IR∗, f , F ′
1: for i = 0→ n− 1 do
2: Pick a real point xi ∈ Xi

3: Xi+1 ← Xi ∩Nf (xi, Xi)
4: end for
5: return Xn−1

1Presented by R. E. Moore in "Interval Analysis", Prentice-Hall, 1966, which is unfortunately
not available to the authors
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Theorem 3.2 [16, 11] If 0 /∈ F ′(Xk) and xi is chosen such that xi ∈ int(Xi) and
f(xi) 6= 0 for all iterations i ≥ k then Algorithm 3.1 converges to a zero of f if one
exists.

♦

Proof 3.2[16, 11] If 0 /∈ F ′(Xi) then 0 /∈ int
(
f(xi)
F ′(Xi)

)
and thus xi /∈ int (Nf (xi, Xi)).

This means that Nf (xi, Xi) is always "on one side" of xi and thereby Xi+1 = Xi ∩
Nf (xi, Xi) covers only the part of Xi on that side of xi – see Figure 3.1. Thus,
wid(Xi+1) ≤ max(xi−Xi , Xi−xi) < wid(Xi) and Xi converges a zero if one exists
for i→∞.

�

Figure 3.1: Illustration supporting the proof of Theorem 3.2.

In practice, f(x) in (3.4) is evaluated using outward rounded interval arithmetic,
i.e. by evaluating F ([x, x]) and may therefore return a non-degenerate interval [17].
If 0 ∈ F ([xi, xi]) the assumption that 0 /∈ F ′(Xi) ⇒ 0 /∈ int

(
f(xi)
F ′(Xi)

)
does not hold,

but when 0 /∈ F ([xi, xi]) the proof is still valid [11]. From the proof of Theorem 3.2
it can be deduced that xi = mid(Xi) is a sensible choice when 0 /∈ F ′(Xi), because
then wid(Xi+1) ≤ 1

2wid(Xi) [16, 11].

To develop an algorithm that converges even when 0 ∈ F ′(X) it is useful to look at
the possible outcomes of (3.4). The value of Nf (x,X) can be categorized in three
different cases (illustrated in Figure 3.2):

1. X ∩Nf (x,X) = ∅.

2. Nf (x,X) ⊆ X.

3. X ∩Nf (x,X) 6= ∅ and Nf (x,X) \X 6= ∅.

Figure 3.2: Categorization of values of Nf (x, X) in (3.4). Case 1) X ∩ Nf (x, X) = ∅. Case 2)
Nf (x, X) ⊆ X. Case 3) X ∩Nf (x, X) 6= ∅ and Nf (x, X) \X 6= ∅.

For each case, useful conclusions can be drawn regarding the existence of zeros
of f in X. These conclusions are presented in Theorems 3.3-3.5.

Theorem 3.3 (Case 1) [11] If X ∩ Nf (x,X) = ∅, then X contains no zeros of f ,
i.e:

X ∩Nf (x,X) = ∅ ⇒ Sf (X) = ∅
♦

Proof 3.3 By Corollary 3.1 the set Sf (X) of zeros of f in X is also contained in
X ∩Nf (x,X). Therefore, if X ∩Nf (x,X) is empty, then Sf (X) is also empty.



16 Chapter 3. Global Optimization using Interval Analysis

�

In practice, when outward rounding is used, the proof still holds as Nf (x,X) is only
widened by the rounding [11].

Theorem 3.4 (Case 2) [11] If Nf (x,X) ⊆ X, then there exists a single simple zero
(multiplicity 1) of f in X .

♦

For proof of Theorem 3.4, refer to [11, Theorem 9.6.9].

Theorem 3.5 (Case 3) [11] If X ∩ Nf (x,X) 6= ∅ and Nf (x,X)\X 6= ∅, X may
contain an arbitrary number of zeros of f .

♦

Proof 3.5 (By example) If 0 ∈ F ′(X) and f(x̂) 6= 0 for some x̂ ∈ X, thenNf (x̂, X) =
[−∞, ∞], and case 3 applies. There may still be any number of points x ∈ X,x 6= x̂
where f(x) = 0.

�

When 0 ∈ F ′(X) and extended interval arithmetic is used, (3.4) yields infinite
or semi-infinite intervals, and thus Case 3 applies. X may be completely or almost
completely contained in Nf (x,X), and so the iteration in Algorithm 3.1 does not con-
tract the search region and gives no improvement. To resolve this problem, a method
for use with extended interval arithmetic is used [16]. In this method, when there
is no or little improvement, X is split into two or more separate intervals and the
algorithm continues to work on each of these new intervals separately. This method
is called the Interval Newton/Generalized Bisection2 (IN/GB) method. Splitting of
intervals is treated in more detail, for the more general multivariate case, in Sec-
tion 3.1.2. Due to the nature of interval arithmetic, this algorithm does not yield
exact solutions. Instead solutions are defined as intervals X̂ that narrowly enclose a
zero such that 0 ∈ F (X̂) and where wid(X̂) ≤ εw and wid(F (X̂)) ≤ εf for predefined
values of εw and εf .

The main loop of the algorithm consists of four primary steps:

1. Function bound test: A test of whether the function may contain a zero in
the current interval.

2. Solution qualification: A test of whether the current interval qualifies as a
solution.

3. Interval Newton test: A test of the outcome of the IN method.

4. Split, discard or keep interval: Based on the outcome of the Interval New-
ton test, a decision on whether to discard the interval, split it or keep it as is
for further processing.

A work queue W used to store intervals to be processed, and solutions are stored in
the list L. The algorithm is listed in Algorithm 3.2.

2Bisection is the act of dividing into two parts. The term Generalized Bisection is used because
the interval is not necessarily divided in just two.
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Algorithm 3.2 Interval Newton/Generalized Bisection (IN/GB) [11, 16]
Input: X0 ∈ IR∗, F , F ′
1: L ← {} List of solutions
2: W ← {X0} Work queue
3: while W 6= {} do
4: Take an interval X from W
5: if 0 ∈ F (X) then
6: if wid(X) ≤ εw and wid(F (X)) ≤ εf then X is a solution; store it.
7: Append X to L
8: else Perform Newton step
9: N ← Nf (x,X) for some x ∈ int(X)
10: X ′ ← X ∩N
11: if X ′ = X then No progression; split X
12: X−, X+ ← split(X)
13: Append X− and X+ to W.
14: else if X ′ ⊂ X then Progression; keep X ′

15: Append X ′ to W.
16: else if X ′ = ∅ then No solutions in X
17: (X contains no zeros, discard it.)
18: end if
19: end if
20: end if
21: end while
22: return L
Notes: The split(X) splits the interval X at some point x ∈ int(X) and returns the two
parts. Lines 16-17 do nothing. They are included to clarify what happens when X ′ = ∅.

This type of algorithm can be proven to bound all discrete zeros in Sf to arbitrary
accuracy (see e.g. [16] and [11, Theorem 9.6.3]).

3.1.2 Multivariate Version

In its multivariate version where f(x) : Rn×1 → Rn×1 the mean value theorem is
expressed using the Jacobian j ∈ Rn×n of f at a point c ∈ Rn×1 on a straight line
between a ∈ Rn×1 and b ∈ Rn×1 [42, 44]:

f(b) = f(a) + j(c)(b− a) (3.5)

As for the univariate version, let f(b) = 0 and replace j(c) with an interval expansion
of the Jacobian J(A) ∈ IRn×n∗ over the interval box A ∈ IRn×1

∗ such that a,b, c,∈ A.
b is replaced with an interval box N ∈ IRn×1

∗ that encloses the values of b where
f(b) = 0:

J(A)(N− a) = −f(a) (3.6)

The system in (3.6) can be solved for N using the methods discussed in Section 2.2.
The solution for a given f , x and X is denoted Nf (x,X). Just as with (3.4), the
outcome of solving (3.6) falls into one of three categories, as illustrated in Figure 3.3.
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Figure 3.3: Categorization of values of Nf (x, X) in (3.6), 2-dimensional example. Case 1) X ∩
Nf (x, X) = ∅. Case 2) Nf (x, X) ⊆ X. Case 3) X∩Nf (x, X) 6= ∅ and Nf (x, X)\X 6= ∅. The grayed
areas show the intersection X ∩Nf (x, X).

Algorithm 3.2 is trivially extendable to the multivariate case. Some considerations
and details that apply both to the uni- and multivariate case are:

1. Splitting boxes

• In Algorithm 3.2 the interval/box is only split when there is no progression
in an iteration. The algorithm can be made more aggressive, in the sense
that it splits boxes more often, by splitting whenever the progression is
below some threshold. The amount of progression can for example be
defined as the relative change on width or the volume of the box (the
latter is only applicable in the multivariate version) [11, 46].

• A box can be split along any number of any of its axes. The number of
splits and choice of axes affects the convergence of the algorithm. On one
hand the IN method is more efficient for smaller boxes, mandating splits
into many subboxes [11]. On the other hand too many splits result in a
very large work queue containing many split boxes, some of which may
have been discarded using fewer iterations had they not been split.

• A simple approach is to equally split along the axis where the box is widest.
Due to variable scaling, this is not always the most efficient approach. One
way of weighting the dependence of f on each dimension of a box X is
using the weights δj = wid(Xj)

∑n−1
i=0 |Ji,j(X)| [11, eq. 11.8.1]. X is then

split along the axis j with highest δj .
• A straight forward choice is to split the box in half. Sometimes the In-

terval Newton process produces a gap in the box along an axis. When
present, boxes can be split along these gaps to produce narrower subboxes.
However, if the gap is narrow and close to the edge of the box, it may be
more efficient to ignore it [11].

• For more details and discussion on this topic, see e.g. [11, Sec. 11.8] and
[34].

2. Empty interval boxes

• A box is considered empty if it is empty in any of its dimensions.
• An empty box can be considered having a volume of zero.
• A box of volume zero is not empty, but represents a (n− k)-dimensional

plane where k is the number of elements in the box of width zero. As a
consequence of the above, a box of width zero represents a point.

3. Stopping criteria

• When implemented using finite precision, it may be impossible to fulfill
the stopping criteria for some choices of F , εw and εf . This must be
handled by the developer.
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• For a more thorough discussion on stopping criteria, see e.g. [16] and [11,
Sec. 11.5].

3.2 Global Optimization using the Interval Newton
Method

In this project it has been chosen to only work with model functions f that are
twice continuously differentiable. The bounds on the objective function must include
the global optima, i.e. the global optima must not be located on the edge of the
search region. This is chosen to simplify the implementation and are by the authors
considered reasonable limitations.

Further the method described is an unconstrained method. The method is how-
ever in practice constrained by the bounds on the parameters.

Due to this, a couple of observations can be done. Let x̂ denote any global
minimum in the interior of the search space X0, then the following conditions apply
[18, 11]:

1. Any global optimum is located at a stationary points of f , i.e. the gradient of
f satisfies gf (x̂) = 0.

2. In a region around any global optimum, f is locally convex, i.e. the Hessian of
f , hf (x̂) is positive semidefinite.

Note that these are necessary but not sufficient conditions for a global optimum (a
sufficient condition is that f(x̂) ≤ f(x) ∀ x ∈ X0).

As described in Section 3.1, the IN/GB method can be used to enclose the zeros
of a continuously differentiable vector function. Because f is twice continuously
differentiable, the gradient gf is continuously differentiable, and thus the zeros of
gf , can be narrowly enclosed using the IN/GB method. By evaluating the bounds
of the objective function over these intervals and comparing them, the global optima
are found [17, 18].

Not all of the stationary points are local minima and thereby potential global
minima; some are saddle points or local maxima. To avoid spending unnecessary
time on narrowly enclosing these points, the second condition listed above can be
applied. If the interval extension of the Hessian over the box being processed does not
contain any positive semidefinite matrices, the box cannot contain a locally convex
region and thereby cannot contain a global minimum. Thus, the box can be discarded
from the search.

Performing a complete verification that the Hessian is positive semidefinite, e.g.
by checking that all its eigenvalues are non-negative, is computationally expensive
(O(n3)). A computationally much cheaper approach (O(n)) is to check for a neces-
sary but not sufficient condition: If any of the diagonal elements of (Hf )i,i(X) < 0
for i = 0, 1, . . . , n − 1 then Hf evaluated over X is not positive semidefinite and
therefore cannot contain a local minimum [11].

By combining the considerations above, an algorithm in six main steps is con-
structed:

1. Bounds test: A test to check that f may take on a value in X that qualifies
as a global optimum.

2. Monotonicity test: A test to check that f may have a stationary point in X.
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3. Convexity test: A test on the Hessian (Hf )i,i(X) of f over the current box
to check that f might be convex in X.

4. Solution test: A test of whether the current interval qualifies as a solution.

5. Interval Newton test: A test of the outcome of the IN method.

6. Split, discard or keep interval: Based on the outcome of the Interval New-
ton test, a decision on whether to discard the interval, split it or keep it as is
for further processing.

The resulting algorithm is listed in Algorithm 3.3.

Algorithm 3.3 Global optimization using (IN/GB) [18, 46]
Input: X0 ∈ IRn∗ , F , Gf , Hf , ρτ ∈ (0, 1), εf ∈ R+, εx ∈ R+
1: L ← {} List of solutions
2: W ← {X0} Work queue
3: b←∞ Best known upper bound
4: while W 6= {} do
5: Take an interval box X from W
6: [f`, fu]← F (X)
7: if f` ≤ b then Bounds test
8: b← min(b, fu) Update best upper bound
9: if 0 ∈ Gf (X) and 0 ≤ diag(Hf (X)) then Monotonicity+convexity test

10: if wid(X) ≤ εx and wid(F (X)) ≤ εf then Solution test
11: Append X to L Store possible solution
12: else
13: x← mid(X) midpoint of X
14: X̃← Newton(x,X) Interval Newton test
15: ρ← vol(X̃)/vol(X) Improvement from Newton
16: if 0 < ρ ≤ ρτ then Sufficient improvement
17: Append X̃ to W
18: else if ρτ < ρ then Insufficient improvement
19: (X̃a, X̃b)← split(X̃)
20: Append X̃a and X̃b to W
21: end if
22: end if
23: end if
24: end if
25: end while
26: L̃ ← {X̂ | X̂ ∈ L ∧ F (X̂) ≤ b} Filter list of solutions
27: return L̃
Notes: Note that the interval box is discarded when the path through the loop does not
include a step where X (or a contracted or split version thereof) is appended to either W or
L.
The Newton(x,X) function denotes a Interval Newton step, performed by solving the sys-
tem Hf (X)(N(x,X) − x) = −Gf (x) using the Interval Gauss-Seidel method, described in
Section 2.2.1.

Most of the considerations regarding Algorithm 3.2 listed in Section 3.1 on page
18 also apply to Algorithm 3.3, with a few changes and additions:
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1. Splitting boxes

• The metric used to measure progression is the relative change in the vol-
ume of the box, ρ = vol(X̃)

vol(X) ∈ [0, 1]. A large progression results in a low
value of ρ and small progression results in a value of ρ close to 1.

• The dimension along which to split, are computed as
δ ← argmax

i=0,1,...,Ψ−1
(wid(Gi) · wid(Pi)), from [11, eq. 12.13.1].

2. Selecting a box from W to process

• The order in which boxes are processed affects the convergence of the
algorithm, as good choices make the best known upper bound b decrease
faster, thus making it possible to discard larger areas of the search space.

• Many use a best-first approach, where the box inW where the lower bound
of the objective function F (X) is lowest is chosen for processing [32, 34,
33]. Using this approach, processing of promising boxes is prioritized in
the hope that the algorithm will converge faster.

• Another approach, e.g. used in [46, 30], is a depth-first principle, where
the latest interval added to the list is processed first. The result is that
some boxes are quickly contracted and become small with correspondingly
narrow bounds on the objective function. The hope is that these narrow
bounds can quickly yield a low value of b. However, in cases where a
branch of the search tree which does not lead to an improved value of b is
chosen, this approach leads to unnecessary work being done. Therefore,
the depth-first approach is only efficient when low value of b is known in
advance, which is often not the case [32, 34].

• A third approach, used in [18], is the oldest-first approach, where the box
that has been in the work queue the longest is chosen for processing. This
approach promotes search over the whole search tree, thereby making sure
that no branches are left unexamined for longer periods.

• The method used here, which empirically has shown good results, is a
mixture of the depth-first and oldest-first approach where the interval to
be processed are alternately chosen as the oldest and newest interval in
the work queue in order to promote both global and local search.

• For more thorough discussion on this topic, see e.g. [34] and [11].

3. The list of possible solutions

• When the algorithm runs, boxes are appended to the list of solutions L
when the conditions in lines 7 and 10 of Algorithm 3.3 are fulfilled. During
the execution of the algorithm, the value of b changes and some boxes in
L may thereby be invalidated. Therefore the list must be filtered as it is
done in line 26 of Algorithm 3.3.

4. Other algorithms

• Algorithm 3.3 is a fairly simple algorithm for global optimization using
interval analysis, mainly inspired by the algorithm used in [46], but also
using elements from [11]. More advanced algorithms can be constructed
by using several contraction methods in stead of just the IN method and
by applying heuristics to switch between them. An example of such an
algorithm can be found in [11].
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3.3 Accelerating the Convergence
This section describes a set of steps that can be taken to accelerate the convergence
of Algorithm 3.3. Several other methods for accelerating the convergence exist that
are not discussed here, as the scope of this project is limited (see e.g. [11, 18, 41, 47]).
The methods described here are selected because they are fairly easy to implement
and are reported to provide good speedups.

3.3.1 Preconditioning in the IN/GB Method

As mentioned in Section 2.2, the inverse-midpoint preconditioner has been proven to
be sub-optimal in some cases. A linear programming (LP) approach for computing
a preconditioner is presented in [29]. The preconditioner is concluded to be optimal
in terms of the tightness of bounds, but in terms of CPU time it is not always more
efficient than the inverse-midpoint preconditioner. In the concluding remarks in [29]
it is suggested to investigate the use of a sparse preconditioner in order to simplify
the LP problem. This suggestion is picked up in [28], where a hybrid preconditioning
scheme that mixes a sparse or "pivoting" preconditioning approach with the inverse-
midpoint approach. This method is described in this section.

The pivoting preconditioning approach, presented in [28], uses a sparse precondi-
tioner q. One element in each row is assigned a value of one and all other elements
are assigned a value of zero. The non-zero element is called the pivot element and is
labeled qij where i is the row number and j is the position of the pivot element in the
row. For row i, the position of the pivot element j is selected such that, when the
result of the interval Gauss-Seidel step (see Section 2.2.1 on page 10) is computed
using the pivoting preconditioner, element i is either empty or has minimal width.
The row qi is then said to be discarding-optimal if Ni is empty, indicating that there
is no solution in the current interval box, or contraction-optimal if Ni is non-empty
and of smallest width possible for any position of the pivoting element in the qi.

Using this scheme, q need not be formed explicitly, but is applied implicitly
while at the same time performing an interval Gauss-Seidel step. As element i of
the resulting box depends only on row i of q, the rows of q can be constructed
independently. The ith row of q with the jth element as the pivot element is labeled
(qi)j and the result of the interval Gauss-Seidel step using this row is albeled (Ni)j .
The algorithm for performing an interval Gauss-Seidel step while computing and
applying the pivoting preconditioner is shown in Algorithm 3.4.
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Algorithm 3.4 Interval Gauss-Seidel step using pivoting preconditioning [28]
Input: A ∈ IRn×n∗ ,X ∈ IRn×1

∗ ,B ∈ IRn×1
∗

1: wopt =∞
2: for i = 0, 1, ..., n− 1 do
3: for j ∈ 0, 1, ..., n− 1 do
4: Precondition the jth column of A with (qi)j .
5: Compute (Ni)j using the interval Gauss-Seidel method (Algorithm 2.1).
6: (X ′i)j ← (Ni)j ∩Xi.
7: if (X ′i)j = ∅ then
8: Return "no solutions"
9: else if wid((X ′i)j) < wopt then
10: X̂i = (X ′i)j
11: end if
12: end for
13: end for
14: return X̂

Compared to the inverse midpoint preconditioning approach, the pivoting pre-
conditioner provides a relatively computationally cheap way of either discarding or
contracting the box being processed. In some cases, however, the inverse midpoint
approach yields a narrower result. Therefore it has been proposed by Gau and
Stadtherr to combine the results of both approaches [28]. First, the Gauss-Seidel
step is performed using the pivoting preconditioner in the hope that the current box
can be discarded. If not, then the Gauss-Seidel step is performed using the inverse
midpoint preconditioner and the two results are intersected to produce a final result.

3.3.2 Parallelization of the Interval Newton Step

Two methods for performing the Newton step in Algorithm 3.3 have been described,
namely the interval Gauss-Seidel method using inverse midpoint preconditioning
in Section 2.2 and the Gauss-Seidel method using pivoting preconditioning in Sec-
tion 3.3.1. This section describes how the computations performed in each of these
methods can be parallelized.

The interval Gauss-Seidel method using inverse midpoint preconditioner consists
of two main steps; 1) a preconditioning step and 2) an interval Gauss-Seidel step.
Here, the focus is on the second. The interval Gauss-Seidel step from Section 2.2
is repeated below in Algorithm 3.5 for convenience. In the form shown here it runs
through the loop sequentially n times, each iteration dependent on the result from the
last, and it can as such therefore not be parallelized on the outer iteration level. Inside
the loop in the two summations, n − 1 independent multiplications are performed
and the results summed. If n is large, parallelizing these summations can yield a
speedup, but when n is small it is assessed that gain is insignificant.
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Algorithm 3.5 Interval Gauss-Seidel step [26]
Input: X ∈ IRn∗ , A ∈ IRn×n∗ , B ∈ IRn∗
1: for i = 0→ n− 1 do
2: Ni ← 1

Aii

(
Bi −

∑i−1
j=0AijX

′
j −

∑n−1
k=i+1AikXk

)
3: X ′i ← Xi ∩Ni

4: end for
5: return X′

Another possible approach for parallelization is to alter the method in Algo-
rithm 3.5 to make the iterations of the loop independent as shown in Algorithm 3.6.
The iterations of the loop can then be run in parallel, reducing the computation
time to tpar = tseq

n where tseq is the execution time using the form with dependent
iterations. The cost of letting the bounds be independent is that the results for pre-
vious iterations are not used to obtain better bounds. To remedy this, the parallel
method can be run several times in sequence and possibly obtain a better result than
Algorithm 3.5 using less or equal time but more computational resources. Due to
time limitations, this experiment is left as a topic of further research.

Algorithm 3.6 Interval Gauss-Seidel step with independent iterations
Input: X ∈ IRn∗ , A ∈ IRn×n∗ , B ∈ IRn∗
1: for i = 0→ n− 1 do
2: Ni ← 1

Aii

(
Bi −

∑n−1
j=0,j 6=iAijXj

)
3: X ′i ← Xi ∩Ni

4: end for
5: return X′

With the pivoting preconditioning approach in Algorithm 3.4, the precondition-
ing and the Gauss-Seidel step are performed simultaneously. For each element of
the resulting vector N ∈ IRn×1

∗ , the effect of using up to n different pivot positions
is computed. Each of these n2 computations involve a iteration of the loop in Al-
gorithm 3.6, and can be performed in parallel using n2 threads. For each element
in the resulting vector, n of the results of these computations are then compared to
select which is used. This can be done in parallel using n threads.

3.3.3 Narrowing the Gradient and the Hessian

In [48] a method for replacing some interval quantities with the midpoint of the
interval (degenerate intervals in practice) in a special manner when computing the
gradient and the Hessian is presented. Replacing interval quantities with scalars
naturally results in narrower elements of the gradient and Hessian, in turn resulting
in narrower bounds resulting from the Interval Newton method. For details on this
method, see e.g. [48, 16, 11]. As an example, for a 3-dimensional problem, the
gradient and the Hessian can be computed as follows:

G(x,X) = [G1(X1, X2, X3), G1(x1, X2, X3), G1(x1, x2, X3)]T (3.7)

H(x,X) =

 H1,1(X1, x2 , x3 ) H1,2(X1, X2, x3 ) H1,3(X1, X2, X3)
H2,1(X1, X2, X3) H2,2(x1 , X2, X3) H2,3(x1 , x2 , X3)
H3,1(X1, x2 , x3 ) H3,2(X1, X2, x3 ) H3,3(X1, X2, X3)

 (3.8)
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Additionally, according to [11], any negative part of the diagonal elements of H can
be deleted without compromising the inclusion property. By utilizing these methods,
the elements of the gradient and the Hessian can be significantly narrowed without
use of additional computations, resulting narrower bounds, thereby speeding up the
algorithm.

3.4 IN/GB for Parameter Estimation
In this section, this special case is analyzed in terms of parallelism and reusable
computations when evaluating the objective function, gradient and Hessian in Algo-
rithm 3.3.

Note that for the parameter estimation problem, the free variables (parameters)
are denoted p ∈ RΨ×1, the matrix containing the measurement points as columns
is denoted x = [x1,x2, . . . ,xΦ]T ∈ RΦ×Γ where xi ∈ RΓ is the ith row containing
the ith measurement point and the vector containing the measurements is denoted
y ∈ RΦ, respectively. The interval versions of p and x are denoted P ∈ IRΨ×1

∗ and
X ∈ IRΓ×Φ

∗ respectively. This means that p and P take the places of x and X in
Algorithm 3.3.

3.4.1 Evaluation of the Objective Function, Gradient and Hessian

In order to make clear the parallel nature of the computations required to evaluate
the objective function, the gradient and the Hessian, they are derived here in matrix-
vector form. The equations are derived in real form, but are trivially extendable to
interval form by replacing the relevant scalars with intervals.

The objective function f is:

f(p,x,y) =
Φ−1∑
i=0

(yi −m(p,xi))2 = e(p,x,y)Te(p,x,y) (3.9)

where m(p,xi) ∈ R is the model function, e(p,x,y) = y−m(p,x), y = [y1, ..., yΦ]T
and m(p,x) = [m(p,x1),m(p,x2), ...,m(p,xΦ)]T.

The gradient of f is given as:

g(p,x,y) = [g1(p,x,y), g2(p,x,y), . . . , gn(p,x,y)]T (3.10)

gj(p,x,y) = ∂f

∂pj
(p,x,y)

= ∂(yTy + m(p,x)Tm(p,x)− 2m(p,x)Ty)
∂pj

(p,x,y)

= 2
(
∂m
∂pj

(p,x)
)T

(m(p,x)− y) = −2aj(p,x)Te(p,x,y) (3.11)

where aj(p,x) =
[
∂m
∂pj

(p,x1), ∂m∂pj
(p,x2), ..., ∂m∂pj

(p,xΦ)
]T

is a vector containing the
jth element of the gradient of m(p,x), with respect to p evaluated at the points in x.
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The Hessian of f is given as:

h(p,x,y) =


h1,1 h1,2 · · · h1,n
h2,1 h2,2 · · · h2,n
...

... . . . ...
hn,1 hn,2 · · · hn,n

 (3.12)

hj,k(p,x,y) = ∂2f

∂pj∂pk
(p,x,y) = ∂gk

∂pj
(p,x,y)

= 2

( ∂e
∂pj

(p,x,y)
)T
∂m
∂pk

(p,x)−
(

∂2m
∂pj∂pk

(p,x)
)T

e(p,x,y)


= 2

(∂m
∂pj

(p,x)
)T
∂m
∂pk

(p,x)−
(

∂2m
∂pj∂pk

(p,x)
)T

e(p,x,y)


= 2

(
aj(p,x)Tak(p,x)− bj,k(p,x)Te(p,x,y)

)
(3.13)

where bj,k(p,x) =
[
∂2m
∂pj∂pk

(p,x1), ∂2m
∂pj∂pk

(p,x2), . . . , ∂2m
∂pj∂pk

(p,xΦ)
]T

is a vector con-
taining the (j, k)th element of the Hessian of m(p,x), with respect to p evaluated at
the points in x.

It is clear from (3.9)-(3.13) that the computations required to evaluate the func-
tions can be performed in parallel. The operations required are evaluations of the
model function, model gradient, model Hessian and vector dot products of length Φ.

As Algorithm 3.3 requires the evaluation of the objective function in (3.9) before
evaluating the gradient, and requires the evaluation of the gradient in (3.10) before
the Hessian in (3.13), the recurring vectors e and aj can conveniently be reused,
possibly saving a large number of computations when Φ is high or evaluation of the
model functions is costly.

Additionally Algorithm 3.3 uses the the gradient computed a point p in the
interior of the box P currently being processed in the interval Gauss-Seidel method.
This requires the computation of the e vector at p. To make full use of the time
spent on computing e at p, it is used to compute the objective function at p, possibly
resulting in a better best known upper bound (denoted b in Algorithm 3.3) than what
is already known. As p is typically chosen as the midpoint of P, this is simply a
computationally cheap way of sampling of the objective function at mid(P).

3.5 Summary
This chapter gave a description on how interval analysis is used to construct an
algorithm for global optimization. The Interval Newton method, for enclosing zeros
of a function, was presented and described. Further, method to accelerated the
convergence using different measures were described. When applied to the parameter
estimation problem, some of the steps in each iteration of the optimization algorithm
were shown to be highly parallel. It was shown that data can be reused between steps,
lowering the computational cost of each iteration. Further, reuse of data allows for
a low-cost sampling of the objective function at a point in the current interval box,
which may yield an improved upper bound for use in the algorithm.



Chapter 4

The CUDA Platform

This chapter describes the Nvidia CUDA GPU architecture and the CUDA pro-
gramming model. The architecture of the Fermi GPU family is described, followed
by a description of the CUDA programming model. After that the different types of
memory used when programming CUDA are described followed by a conclusion in
Section 4.5.

4.1 GPU Architecture
General Purpose GPU computing has been studied for many years. The first GPU
architecture designed specifically for GPGPU computing was released, along with the
release of CUDA C programming language, by Nvidia in 2006. In 2007 the first GPU
cards designated for high performance computing was released, the Tesla series. In
2008 the Khronos Group specified Open Computing Language (OpenCL). This made
parallel programming platform independent since the OpenCL code can be ported
to a wide range of architectures, including among others Nvidia GPUs, AMD GPUs,
Intel CPUs and Altera FPGAs. The next move forward was the introduction of the
Nvidia Fermi architecture, which added fused multiply add support. In this work
the focus will be on the CUDA programming model, since it, by the authors, is
considered the most mature language at the time of writing.

4.1.1 The Fermi Architecture

CUDA capable GPUs of the Fermi architecture consist of up to 16 Streaming Mul-
tiprocessors (SMs) organized around a bank of DRAM, a cache and a host interface
[49]. Each SM consists of 32 cores and three types of memory; a chache, registers
and shared memory [49]. A core consists of a integer arithmetic logic unit (ALU)
and a floating point unit (FPU). The cores in each SM shares the registers, cache
and shared memory.

The cores in each SM is organized in what Nvidia calls a Single Instruction
Multiple Threads (SIMT) architecture [50], much akin to the SIMD1 architecture in
Flynn’s taxonomy [51]. The overall picture is a form of SIMD within MIMD1, where
the SMs can be regarded as MIMD processors with an internal SIMD structure.

In Figure 4.1 a simplified version of the architecture is shown. The parallel
architecture of the GPU makes it well suited for massively data parallel programs.
Compared to a CPU the amount of cores in a GPU is much higher, but the clock

1By Flynn’s taxonomy, SIMD and MIMD refer to Single Instruction stream - Multiple Data
stream and Multiple Instruction stream - Multiple Data stream [51].
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frequency of each core is lower than the CPU cores. A typical high end CPU core
has a clock frequency around 2-4 GHz, where a typical high end GPU core has clock
frequency around 0.7-1.2 GHz.

The DRAM is divided into four; global-, local-, constant- and texture-memory,
each with different properties. The different types of memory in the SMs and the
DRAM are described further in Section 4.3. The host interface connects the CPU
(called the host) and the GPU (called the device) via a PCI-Express bus. The theo-
retical peak bandwidth is 8 GB/s on the PCIe x16 Gen2, but practical transfer rates
are limited to around 5 GB/s [52]. Measurements using Nvidia samples bandwidth
test, shows a bandwidth of 6 GB/s for a GeForce GTX 4652. The latency of the
PCI-Express bus is approximately 1− 6µs [53].
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Figure 4.1: Simplified Nvidia GPU architecture, based on the Fermi architecture [49].

4.2 CUDA Programming Model
Apart from denoting the GPU architecture, CUDA is also an extension to the C
programming language using a parallel programming model, illustrated in Figure 4.2,
designed to facilitate the use of CUDA capable hardware.

Figure 4.2: Illustration of the CUDA programming model.

The data used in parallel algorithms is often conceptually organized in vectors
and 2 or 3 dimensional matrices , and the programming model is designed to mirror
this organization. Parallel threads are organized in equally shaped one-, two- or
three-dimensional arrays, called blocks, which are in turn organized in a one-, two-

2System: Supermicro X8SAX motherboard, PCI-Express 2.0
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or three-dimensional arrays called the launch grid or just the grid. The dimensions
of the grid, subject to certain bounds, are specified by the developer.

Functions executed on a grid are called kernels. Each thread in the grid executes
an instance of the kernel. As each thread is aware of its position in the grid, the
kernel can be written such that each thread processes different data.

As indicated in the figure, each thread has access to local memory, threads in
each block share access to a block of memory while global- constant and texture
memory is accessible by all threads in the context.

The threads of each block are executed by the SMs in groups of 32 adjacent
threads. Such a group of threads is called a warp. When the threads in a warp
follow the same execution path, the cores run synchronously. When the execution
path of one or more threads in a warp differs from that of the other threads, the
threads in the warp are arranged in sub-groups of threads that follow the same path.
Each sub-group are then executed in turn. This effect, called warp divergence, leaves
all other threads in the warp idle, which is undesirable.

Streams are used to manage concurrency of CUDA operations such as memory
copy and kernel launch. Streams are defined as "A sequence of operations that execute
in issue-order on the GPU" [50]. If multiple streams are used, overlapping between
kernel launch and memory transfer can some times be utilized to hide data transfer
time.

4.3 Memory
As described earlier, the GPU holds different types of memory. To best utilize the
GPU the developer must understand these different kinds of memory, and how the
use of these can affect performance. The description in this section is based on [49]
and [52].

4.3.1 Memory Hierarchy

The different types of memory have different scopes and lifetimes. Some are cached,
some are on-chip and others are off-chip. These features are key when programming
GPUs for maximum utilization and performance.

The registers, located in each SM, are the fastest type of memory, but are limited
in size. For each thread the needed amount of registers are allocated. The allocated
registers are only accessible for the thread it has been allocated to. There is a total
of 32k 32-bit registers per SM for compute capability 2.x and a total of 64k 32-bit
registers per SM for compute capability 3.x. When a thread access a register there
is a latency of approximately 24 clock cycles, but the latency can be hidden if there
are 768 active threads (32 cores per SM times 24 clock cycles is 768 threads).

Each of the SMs has 64 kiB of on-chip memory. The on-chip memory can be
configured in two different ways; 48 kiB shared/16 kiB L1 cache or 16 kiB shared/48
kiB L1 cache [49]. The L1 cache is divided into 128B cache lines. Shared memory can
be accessed by all threads in a block. It is located on-chip and has high bandwidth
and low latency compared to the global and local memory. The size of the shared
memory is limited to 48 KiB per SM. Shared memory is divided into 32 equally
sized memory modules denoted banks. The shared memory banks can be accessed
simultaneously by the threads in an SM. Each of the shared memory banks has a
bandwidth of 4B per two clock cycle. The bandwidth of the shared memory is given
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as

B = b · a · S · f (4.1)

where B is the shared memory bandwidth, b is the bandwidth of each shared memory
bank, a is the number of banks, S is the number of SMs and f is the GPU clock
speed. The Nvidia Geforce GTX 580 has a clock speed of 1544 MHz [54] and 16
SMs. The theoretical shared memory bandwidth can be calculated as

B = 2[B] · 32 · 16 · 1544 [MHz] (4.2)
≈ 1.58 [TB/s] (4.3)

Local memory is located off-chip and thus has a lower bandwidth and higher la-
tency than the registers, for a Nvidia Tesla M2075 the maximum memory bandwidth
is 150 GB/s. The size of the local memory is much larger; 512 KiB per thread. As for
the registers, the scope of local memory is limited to one thread. The local memory
is used by the compiler to place variables that are to large to reside in registers.

Constant memory is read-only and cached. The size of the constant memory is
64 kiB. Since it is cached, all threads of a half-warp3, can read from the constant
cache as fast as if reading from registers, as long all the threads read from the same
address.

Global memory is located off-chip and is the largest compared to the other types
of memory, typically several gigabytes. As the local memory the global memory has
a lower bandwidth and a high latency compared to registers and shared memory.
The global memory is as the name indicates visible to all threads.

Texture memory is read-only and is allocated out of global memory. Texture
memory uses one-, two, or three-dimensional caching. For example, if an element in
a 2 dimensional matrix is accessed, the adjacent elements of the matrix are cached
to allow fast access to these elements afterwards.

The features of the different kinds of memory are summarized in Table 4.1.

Mem. type On-/off-
chip

Cached Access Scope Lifetime

Register On N/A R/W 1 thread Thread
Local Off Yes R/W 1 thread Thread
Shared On N/A R/W All threads in block Block
Global Off Yes R/W All threads + host Host allocation
Constant Off Yes R All threads + host Host allocation
Texture Off Yes R All threads + host Host allocation

Table 4.1: Properties of different types of memory. Based on [52, Table 1, p. 24].

4.3.2 Coalesced Memory Access

Nvidia describes coalesced memory access as "perhaps the single most important
performance consideration" [52]. Threads of the same warp accessing memory, is
divided into a number of coalesced transactions. The number of transactions are
equal to the number of cache lines necessary. An example where all 32 threads of
a warp access adjacent 4-byte words, is shown in Figure 4.3. In this example the
elements accessed are aligned with the 128-byte L1 cache line and therefore only one
cache line is used, and one coalesced transaction.

3A half-warp is either the first or last 16 threads of a warp
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0 128 256 384

Figure 4.3: One cache line is accessed by one warp, resulting in one coalesced memory transaction.
Based on [52, Figure 3, p. 25].

If the elements had not been aligned with the cache line, more cache line would
be need and thus more coalesced transaction. An example of unaligned access to
memory is illustrated in figure Figure 4.4.

0 128 256 384

Figure 4.4: Two cache lines are accessed by the threads of one warp. In this example the access
is not aligned with the cache lines and thus result in two coalesced accesess. Based on [52, Figure 4
p. 26].

The worst case scenario, with respect to memory access, is the case where all 32
threads in a warp needs its own cache line and therefor 32 coalesced transactions.
This case is illustrated in figure 4.5
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Figure 4.5: Worst case access to memory. Each thread from one warp access memory with its own
cache line.

The effective bandwidth effects of strided memory access is illustrated in Fig-
ure 4.7. Stride is the length between the elements accessed by threads in a warp,
illustrated in Figure 4.6. In Figure 4.7 Already with a stride of 2, only half the
bandwidth is achieved [52].

4.4 CUDA for Interval Computations
As described in Section 2.1.5 on page 9, hardware support for directed rounding im-
proves performance when doing computational interval arithmetic. CUDA GPUs of
compute capability 2.0 and above support directed rounding for the following func-
tions via compiler intrinsics: Addition, multiplication, fused multiply-add (FMA),
division, square root and reciprocal value [50]. Contrary to x86 CPUs, where chang-
ing rounding mode is expensive with respect to performance, the CUDA GPUs do
not require changing of the rounding mode of the SM to perform directed rounding,
which gives CUDA GPUs an advantage over a conventional x86 CPU [55].
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Figure 4.6: Strided memory accesss with a stride of 2. Based on [52, Figure 7, p. 28]

Figure 4.7: The effect of strided memory access. Non-caching: only L2 cache is used. Caching:
L1 cache used. From [52, Figure 8, p. 29].

A crude measurement on the performance of performing interval computations
is made. The performance of the CUDA GPU and x86 CPU is measured and the
speedup is found. These measurements are not exact but gives an indication of the
possible speedup when doing interval computations on a CUDA GPU.

On the GPU and the CPU a single-thread program runs a loop that performs
a number of interval additions, multiplications and divisions in double precision.
The time taken to execute the program is measured, and the number of interval
operations per second (IOPS) is measured. As mentioned, both programs only use
a single thread. Therefore, the IOPS measures for the GPU is scaled by the number
of double precision units and the CPU measures are by the number of cores.

The performance is computed as:

p = r · o
te

(4.4)

where r = 100 is the number of times the experiment was repeated, o = 106 is the
number of times the given operation was performed in each experiment and te is
the accumulated time taken to perform the experiments. The scaling factors used
are the number of cores in the GPU and CPU, respectively. The measurements are
shown in Table 4.2. It can be seen that when the performance is scaled the GPU
performs significantly better than the GPU. Especially for the multiplication the
GPU outperforms the CPU.
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Single core Scaled by # of cores
GPU CPU GPU

CPU GPU CPU GPU
CPU

Addition [IOPS] 14.08M 67.16M 0.2096 37.84G 0.2687G 140.8
Multiplication [IOPS] 8.751M 61.96M 0.1412 23.52G 0.2478G 94.91
Division [IOPS] 5.088M 59.55M 0.08544 13.68G 0.2382G 57.41

Table 4.2: Crude measurements and extrapolation of the number of interval operations per second
(IOPS) performed by the GPU and CPU. (The measurements are made for the PyInt_light and
CuInt libraries, described in Section 5.5 on page 48.) The GPU used is a Nvidia GTX TITAN with
2688 single precision cores [56] and the CPU is a 3.07GHz Intel Core i7-950 with 4 cores. For full
specifications on the test system, see Appendix A. The Python code for this experiment can be
found in code/misc/IOPS

.

4.5 Summary
In this chapter the most important features of the GPU were described. When
programming a GPU one must understand the limitation and possibilities of the
architecture, to best utilize the massive parallelism the GPU introduces.

The GPU has different types of memory. It is important to use these different
kinds of memory correctly to maximize performance. The on-chip memory is gener-
ally fast and has low latency, but is limited in size, where the off-chip memory is slow
and has a high latency but a larger size. It is shown that when accessing off-chip
memory it is important to do this coalesced. Further it was show that a CUDA GPU
performs significantly better at performing interval operations, than a CPU.

It has been shown that the GPU has an advantage over the CPU when doing
interval computations, this is due to the fact that x86 architecture most change
rounding mode to do directed rounding.
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Chapter 5

Implementation

This chapter treats the parallelization and implementation of Algorithm 3.3 and some
variations thereof. The implementations are tested and benchmarked Chapter 6.

In Section 5.1 a short and non-exhaustive survey of parallelization strategies for
BB-type algorithms and algorithms for global optimization using interval analysis is
given, followed by a proposed scheme for parallelization of Algorithm 3.3 applied to
the least-squares parameter estimation problem.

The algorithm is implemented in a number of different versions, some using only
the CPU and utilizing the GPU as a co-processor for acceleration. An implementa-
tion utilizing the GPU is described in a basic form in Section 5.2.2 and in a more
advanced and improved form in Section 5.2.3. In Section 5.2.4, a set of algorithmic
variations to the implementation in Section 5.2.3 are described. The base CPU-only
implementation and variations thereof is described in Section 5.3. Some implementa-
tion details, such as how the work pool is handled and how data is reused in different
steps of the algorithm is described in Section 5.4. The implementations make use of
interval analysis software libraries for GPU and CPU. These libraries, described in
Section 5.5, are extended and adapted versions of already existing libraries.

5.1 Parallelization Strategies
Much work has been done in the area of parallel Branch & Bound-type algorithms on
various types of architectures. In [14] a survey and classification of different parallel
Branch & Bound approaches until 1994 is given. The classification divides parallelism
into three types, as described below.

• Type 1: Parallelism in the operations performed on the sub-problems (inner
iteration), e.g. in the bounding method. This type of parallelism does not alter
the structure of the overall algorithm and is therefore easily implemented. It is
well suited for fine-grained parallel systems, i.e. systems where each processor
only processes a small amount of data.

• Type 2: Parallel construction and processing of the search tree (outer iter-
ation). Because the search tree is processed in parallel, some boxes may be
processed that would not have been processed using a sequential algorithm.
This causes unnecessary computations to be performed. This type of paral-
lelism is well suited for coarse-grained parallel systems where each processor
handles large amounts of data, and is according to [14] the most studied type
of parallelism.

35
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• Type 3: Parallel construction of several search trees that use different methods
for branching, bounding, testing, etc, and exchange information. The idea is
that the different approaches may complement each other in order to solve the
problem faster. This approach requires extensive communication and handling
if the same parts of the search area should not be processed more than once.
According to [14] this is the least used and least studied type.

Parallelization of type 2 and 3 results in several nodes of the search tree being
processed simultaneously. Some considerations that must be taken into account
when doing this are:

• Processing time: The time taken to process a node (one outer iteration) may
differ between nodes.

• Communication: Parallel processing of nodes requires a strategy for commu-
nication of bounds in order to lessen the amount of unnecessary work.

• Work distribution: Unused computational resources result in sub-optimal
performance. Therefore a strategy to keep the parallel resources occupied is
important. Furthermore, performance can be gained by implementing a strat-
egy that promotes processing of promising regions of the search space.

Type 2 parallelism has been implemented in many different ways on many different
types of architectures [30, 32, 34, 33, 14]. The survey in [14] covers many different
implementations, and draws some relevant conclusions on that background. It is
concluded that the type 2 form of parallelism is only suitable on SIMD architec-
tures if the operations performed in each iteration are trivial and run in constant
time. On MIMD architectures, for which type 2 parallelism is better suited, the ap-
proaches used when implementing it are classified by two parameters: whether they
use synchronous or asynchronous parallelism and whether they use a single work
pool1 or have multiple pools [14]. Implementations that use different combinations
of the parameters are called Synchronous/Asynchronous Single Pool (SSP/ASP) or
Synchronous/Asynchronous Multiple Pool (SMP/AMP). For SSP and SMP, it is im-
portant that the processing needed for each sub-problem is approximately equal to
avoid idle time. ASP is concluded to be suited only for "problems with a nontrivial
bounding operation, and parallel architectures having a relatively small number of
processors" [14]. For AMP strategies it is concluded that a dynamical load balancing
must be employed in order to achieve high efficiency.

Most of the previous work on parallel Branch & Bound methods either concerns
general frameworks or methods specifically designed for combinatorial optimization
problems. Methods designed for interval global optimization (IGO) algorithms are
more sparse [14, 33]. Some examples of work focusing on global optimization using
interval analysis are [30, 32, 34] and [33]. The approaches, detailed below, all use
type-2 parallelization.

1. Henriksen & Madsen, [30]:

• Parallelization type: Type-2.
• Work pool organization: ASP.

1Work pool: Storage containing the interval boxes to be processed.
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• Control and communication strategy: A master-slave structure, where the
master keeps the work pool from where the parallel workers request boxes
to process and send back resulting subboxes.

• Box selection strategy: Both depth-first and best-first.

2. Berner, [32]:

• Parallelization type: Type-2.
• Work pool organization: AMP.
• Control and communication strategy: The system consists of a central

mediator and a number of worker nodes. The central mediator keeps
track of the best known upper bound and performs work load balancing
between the worker nodes.

• Box selection strategy: Best-first.

3. Ibraev, [34]:

• Parallelization type: Type-2.
• Work pool organization: AMP.
• Control and communication strategy: A Challenge Leadership model,

where the role of master node is shifted between the parallel worker nodes,
depending on which has most recently updated the globally best known
upper bound. When a worker node has no boxes to process, it requests
one or more from the master node.

• Box selection strategy: Best-first.

4. Casado et al., [33]:

• Parallelization type: Type-2.
• Work pool organization: Both ASP and AMP.
• Control and communication strategy (ASP): A number of worker nodes

process interval boxes in parallel. The best known upper bound and the
work pool is kept in shared memory, which is accessed by the worker nodes
by use of a semaphore.

• Control and communication strategy (AMP): A number of worker nodes,
each with its own work pool, process interval boxes in parallel. The best
known upper bound is kept in shared memory and accessed by use of
a semaphore. At each iteration, each worker node checks for any idle
workers. If a busy worker node with more than two boxes in its work pool
detects an idle worker, it moves every other box in its work pool to the
idle workers pool.

• Box selection strategy: Best-first.

Interestingly in [33], which is the only of the four that compares different methods for
parallelization on the exact same optimization algorithm and the same test problems,
it is concluded that the ASP and AMP approaches are approximately equally fast.

Work within the area of parallel Branch & Bound-type algorithms on GPUs
appears equally sparse and seems only to cover combinatorial problems. A number of
papers focus on problems where the bounding operations are sufficiently trivial to be
implemented using a type 2 scheme on the GPU architecture by assigning one thread
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per node of the search tree [57, 58, 59, 60, 61]. This approach for parallelization is not
relevant to the problem at hand, as the operations performed in each sub-problem
are significant more complicated.

5.1.1 GPU Parallelization for the Parameter Estimation Problem

As stated in Section 4.1.1, the CUDA GPU architecture is two-layered, with a SIMD
architecture on the lower (SM) level and a MIMD architecture on the upper layer
(Stream). Therefore a parallelization strategy designed for either MIMD or SIMD is
not a perfect fit for a CUDA GPU. The possibilities of implementing different types
of parallelism for the problem at hand are identified as:

The interval arithmetic operation level (Type 1): Parallelization on this level
consists of parallelizing inner operations of the individual interval arithmetic
operations. For example, an interval multiplication can be performed by doing
8 parallel floating point multiplications followed by 4 parallel comparisons in
turn followed by two parallel comparisons. The comparisons require synchro-
nization of the threads and communication via shared memory. Relative the
the amount of computations being performed, the amount of communication
and synchronization between the threads is large. Further, as the steps in the
example use a decreasing number of threads and because of the SIMD archi-
tecture of each CUDA SM, a number of threads remain idle in the second and
third step.

Inner iteration level (Type 1): As discussed in Section 3.4, parallelization can
be introduced on the inner iteration level by evaluating the objective, gradi-
ent and Hessian functions and the Interval Newton step in parallel. The tasks
mainly consist of computing vectors with independent elements and summing
the elements. The number of elements in the vectors used in the computation of
the objective, gradient and Hessian functions is equal to the number of measure-
ments, Φ. Thus when Φ is high the problem becomes of computing the vector
elements becomes massively parallel. The computations used to compute each
element are the same, and therefore this problem maps well to the architecture
of the CUDA SMs by assigning a thread to each element. Summation of the
vector elements can performed in parallel in a series of reduction steps. As
such summation is well suited for parallelization, but similar to the method
described above for parallelizing on the interval arithmetic level it leaves some
threads idle. Parallel reduction is described further in Section 5.2.1.

Overlapping iteration steps (Type 1): Notice in Section 3.4 on page 25, that
the vectors e, a and b, and the gradient at the midpoint of the box being
processed can be computed independently, as they do not reuse previously
computed data. The gradient at the midpoint of the box being processed is
computed for use in the Newton step in Algorithm 3.3. As noted in Section 3.4,
this computation also makes a computationally cheap evaluation of the objec-
tive function, at the midpoint of the box, possible. As these computations do
not reuse any data, they can be executed in parallel. However, if one test fails,
the vectors used in subsequent tests are not used. For example, if e, a and
b are computed in parallel and the objective function range test fails, then
only e is used. Therefore this method of parallelization can introduce consid-
erable amounts of unused computations compared to a sequential approach to
performing the iteration steps.
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Outer iteration level (Type 2/3): Each interval box in the work queue can be
processed independently in parallel. CUDA streams, each with a controlling
thread on the CPU, can be used as asynchronous worker nodes. In order to
share information, and distribute boxes to be processed, this type of paral-
lelization introduces a communication overhead between the CUDA streams,
through the controlling CPU threads.

To summarize the above, the following conclusions are drawn: Parallelization on
the interval arithmetic operation level does not fit the CUDA GPU architecture well.
The resources are more easily and efficiently used by introducing parallelism on the
inner iteration level, where less communication and synchronization is required and
less idle time is introduced. For both approaches, no unnecessary computations are
performed. Overlapping of iteration steps can be used to speed up each iteration,
as long as unused resources are available. When this is not the case, this approach
for parallelization merely introduces unnecessary computations, slowing down the
algorithm. The same is the case for parallelization on the outer iteration level.

Following the conclusion in [33] that ASP and AMP schemes perform approxi-
mately equally well an ASP scheme is used. This results in a simpler scheme with no
need for dynamic load balancing. This work is limited to a single-GPU implemen-
tation. As streams residing in the same CUDA context (on the same GPU) share
access to global GPU memory, the work pool can potentially be stored there. If the
implementation was to be extended to a multi-GPU system, the work pool would
either have to reside on the CPU, or an AMP scheme with dynamic load balancing
would be necessary.

The proposed parallelization scheme, designed for a single-GPU system, resembles
that of the master-slave scheme used in [30] and the ASP scheme in [33]. The work
pool is kept in shared memory on the CPU. A number of asynchronous parallel
worker nodes, each with a controlling CPU thread and a GPU stream, pick boxes
for processing from the shared memory as needed and return the processed results.
When a worker node updates the best known upper bound, it is communicated to
the other worker nodes via shared memory. The scheme is illustrated in Figure 5.1.
Because of time limitations for the present work, parallelization on the inner iteration
level is prioritized. The implementations described below therefore only use a single
worker node.
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Figure 5.1: Structure of proposed parallelization scheme. The dashed boxes indicate the separation
of the GPU and the CPU system.
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5.2 GPU Accelerated Implementations
In this section the different GPU accelerated implementations developed in the
present work, are presented. Two implementations are presented; 1) a basic version
using type 1 parallelization, and 2) an improved version with reduced communication
and synchronization between the CPU and the GPU. The improved implementation
can be extended with a number of different algorithmic improvements in different
combinations. A number of variations of these improvements are implemented to
test their impact on performance.

5.2.1 Parallel reduction

A central element in the several of the steps in the algorithm is parallel reduction of
a vector of elements, e.g. in the form of a dot product.

An example of a parallel reduction of 8 elements is illustrated in Figure 5.2. In
each step the number of data elements, and consequently the number of threads
used for the reduction, is reduced by half until only the result remains. Assuming
that the number of elements n is a power of two, a parallel reduction requires log2(n)
steps, while a sequential reduction requires n−1 steps. The first step of the reduction
requires n

2 operations, and in each successive step the number of operations is halved.
This means that in step i, n(1/2 − 2−i) threads are idle. In practice (not illustrated
in Figure 5.2) , the data elements are often computed using n threads in the same
kernel as the reduction, thus leaving n(1− 2−i) threads idle in step i.

Step 1

Step 2

Step 3

Active threads

Idle threads

Data elements

Figure 5.2: Illustration of a parallel reduction with 8 input data elements and 1 output element.

As described in Chapter 4 each block holds a certain amount of threads. There-
fore, if the size of the vector to be reduced is larger than twice the number of threads
in each block, the vector must be split and processed by several blocks. The par-
tial result from each block is then written to global memory and a new kernel that
reduces these partial results is then launched. Figure 5.3 illustrates the entire struc-
ture of several blocks performing an element wise function on a split vector, and then
performing a partial reduction, the result of which is further reduced by a second
kernel.

To compute each element in the objective function, gradient and Hessian, the
method shown in Figure 5.3 is used. This results in a structure as illustrated in
Figure 5.4. For example, to compute the Hessian Ψ2 instances of method illustrated
in Figure 5.3 are used, where Ψ denotes the number of parameters to in the prob-
lem. Normally the computation of the Hessian could be reduced, due to the fact
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Figure 5.3: Illustration of three blocks first performing a function f() on each of the elements a
vector x = x1, x2, ..., xN and then reducing using two parallel reductions.

that the Hessian is symmetric, but in this implementation, the method described in
Section 3.3.3 on page 24, is used resulting in a non-symmetric Hessian.

Objective function Gradient Hessian

1

1

1

Figure 5.4: Illustration of how several instances of the structure illustrated in Figure 5.3 are used
to compute the value of the objective-, gradient- and Hessian functions. In the example shown here,
the number of parameters is Ψ = 4.

5.2.2 Implementation 1 - Basic Type 1 Parallelization

In Algorithm 3.3 on page 20 the algorithm was divided into a number of tests. These
tests consist of two parts, namely a computation of a result and a check on this result.
In this implementation the algorithm is accelerated by parallelizing the inner iter-
ations in the computation of the objective function, gradient, Hessian and Interval
Newton step. The general structure of the used to compute the objective function,
gradient and Hessian is as illustrated in Figure 5.4. By storing intermediate results
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in global memory, data is reused as described in Section 3.4. The results of the
computations are transferred to the CPU where the outcome checks are performed.
For each of these transfers a synchronization between the CPU and the GPU oc-
curs. A synchronization of the GPU and CPU requires all work on the GPU to be
completed, and thus no work will execute on the GPU before the synchronization is
complete and a new kernel is launched from the CPU. In each check it is determined
whether to proceed to the next test for the current box, or proceed with a new box.
The implementation uses the inverse-midpoint preconditioning scheme in the Inter-
val Newton test. Due to lack of a GPU implementation for matrix inversion, the
preconditioning is done on the CPU. The Interval Newton computation is run on the
GPU.

Algorithm 5.1 shows the flow and division of tasks between the CPU and the
GPU for the implementation. The Interval Newton check in line 16 of Algorithm 5.1
os detailed in Algorithm 5.2.

Algorithm 5.1 Pseudo code describing Implementation 1 - Basic Type 1 Paral-
lelization
Input:

Search space P0 ∈ IRΨ
∗ .

Model function M , model gradient Gm and model Hessian Hm.
Objective function width and box width thresholds εf ∈ R+ and εp ∈ R+.
Initial best known upper bound b ∈ R+.

1: L ← {} (Solution list) CPU
2: W ← {P0} (Work queue) CPU
3: ρτ ← 0.6 (Bisection threshold) CPU
4: while W 6= {} do CPU
5: P← take new box from W CPU
6: F (P)← Objective function bound computation GPU
7: Objective function bound check on F (P) CPU
8: G(P)← Gradient computation GPU
9: Monotonicity check on G(P) CPU

10: H(P)← Hessian computation GPU
11: Convexity check on H(P) CPU
12: Solution test on P and F (P) CPU
13: Gmid ← Gradient at mid(P) GPU
14: Ĝmid, Ĥ← Preconditioning of Gmid and H CPU
15: Pnew ← Interval Newton computation using Ĝmid and Ĥ GPU
16: Interval Newton check on Pnew See Algorithm 5.2
17: end while CPU
18: Cleanup L CPU
19: return L CPU
Notes: Instead of specifying the search space as a single box P0 it can be specified as a list
of boxes.
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Algorithm 5.2 Interval Newton Check

1: ρ = vol(Pnew)
vol(P) CPU

2: if ρ > Bisection threshold then CPU
3: δ ← argmax

i=0,...,Ψ−1
(wid(Gi) · wid(Pi)) CPU

4: Pa,Pb ← bisect Pnew at dimension δ CPU
5: Append Pa and Pb to W CPU
6: else CPU
7: Append Pnew to W CPU
8: end if CPU

This implementation is simple and serves as a basic presentation of the algorithm.
The purpose of this implementation is to locate performance bottlenecks and present
the basic parallelization of the objective function, gradient and Hessian computations.

A major disadvantage, of this implementation, is the many synchronizations and
data transfers. The amount data transferred is small and thus most of the transfer
time is latency.

To investigate the time between kernels are run, a profiling of GPU activity is
made using the Nvidia Visual Profiler (NVVP) tool [62]. A part of the profiling is
shown in Figure 5.5a. Here, the idle time between kernel launches, caused by the
need for synchronization, is clearly visible. It should be noted that a profiling of this
implementation is very problem specific and should therefor be treated as such. A
reason why it is so problem specific is the fact that the evaluations of the objective
function, gradient and Hessian are all dependent on the amount of measurements and
the number of parameters, and thus more or less work are executed on the GPU.

5.2.3 Implementation 2 - Reduced Synchronization and Communi-
cation

In Implementation 1 the computational part of the tests is done on the GPU and
the checking part done on the GPU. In this implementation most of the checks are
moved to the GPU in order to reduce the need for synchronization and data transfer
between the CPU and the GPU. As for Implementation 1, the base version of this
implementation uses the inverse-midpoint preconditioner for the Interval Newton
step. The implementation scheme is shown in Algorithm 5.3.

As mentioned above it is desired to perform both the computational part and
outcome check for each test on the GPU. If a test fails, the subsequent tests should
not be run. However the GPU cannot launch kernels on its own and therefore the
decision on whether a kernel should be launched must still be taken on the CPU,
requiring synchronization. This problem is solved by introducing a status flag on the
GPU. The CPU then queues the kernels to perform all the tests on the GPU, but
before performing the actual computation each kernel first checks the status flag and
only performs the computation if the flag is clear. If a test fails (or the box qualifies
as a solution) the kernel sets the status flag ans the subsequent kernels do nothing
other than check the status flag and return. After queuing the kernels that perform
the tests, the CPU queues a synchronization point and waits for the GPU to signal
that this point has been reached. In this way all the kernels are run but does not do
any actual computation unless necessary, and unnecessary communication with the
CPU is avoided.

In order to save time on data transfers, page locked memory is used to transfer
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the status flag, the Hessian, the gradient at the midpoint of the current box, the
objective function value and the result of the Newton step from the GPU to the
CPU. Page locked is a scarce memory resource that resides on the host system,
but can be addressed by the GPU, eliminating the need for explicit data transfer.
Further, when using this type of memory, data transfers overlap with code execution
[50].

Algorithm 5.3 Pseudo code describing the second implementation
Input:

Search space P0 ∈ IRΨ
∗ .

Model function M , model gradient Gm and model Hessian Hm.
Objective function width and box width thresholds εf ∈ R+ and εp ∈ R+.
Initial best known upper bound b ∈ R+.

1: L ← {} (Solution list) CPU
2: W ← {P0} (Work queue) CPU
3: ρτ ← 0.6 (Bisection threshold) CPU
4: while W 6= {} do CPU
5: P← take new box from W CPU
6: Enqueue Objective function bound test GPU
7: Enqueue G(P)← Monotonicity test GPU
8: Enqueue H(P)← Convexity test GPU
9: Enqueue status_flag ← Solution test GPU

10: Enqueue Gmid(P)← Gradient at mid(P) GPU
11: Synchronize CPU and GPU CPU
12: if status_flag = discard then CPU
13: Discard P CPU
14: Break CPU
15: else if status_flag = solution then CPU
16: Append P to L CPU
17: Break CPU
18: end if CPU
19: q(P)← mid(H(P))−1 CPU
20: Ĥ(P)← q(P) ·H(P) CPU
21: Ĝmid(P)← q(P) ·Gmid(P) CPU
22: Pnew ← Interval Newton computation using Ĝmid and Ĥ GPU
23: if Status flag not clear then CPU
24: Discard P CPU
25: Break CPU
26: end if CPU
27: wid(G)← Transfer from GPU. CPU
28: Interval Newton check (using wid(G)) See Algorithm 5.2
29: end while CPU
30: Cleanup L CPU
31: return L CPU
Notes: Instead of specifying the search space as a single box P0 it can be specified as a list
of boxes.

As for Implementation 1, the GPU activity is profiled using NVVP. The result
is shown in Figure 5.5b. From this profiling it is evident that the idle time between
kernel executions significantly reduced compared to Implementation 1, resulting in
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improved performance. Since these profilings are done on the same test problem, it
is expected to be a fair comparison and the it is clear that the reduced time between
kernel execution benefits the implementation.

5.2.4 Variations of Implementation 2

As described in Section 3.3 and Section 3.4 a number of algorithmic modifications
can be applied to attempt to accelerate the convergence. In order to investigate the
effect of applying these modifications in different combinations a number of variations
of Implementation 2 are implemented.

The base algorithm, consisting of the objective function range test, monotonicity
test and convexity test, is used with the following algorithmic elements in different
combinations:

Interval Newton with inverse midpoint preconditioner (labeled I). As de-
scribed in Section 3.3.

Interval Newton with pivoting preconditioner (labeled P). As described in
Section 3.3.

Objective function sample at box midpoint (labeled F). As described in Sec-
tion 3.4.

No additional algorithmic elements (labeled N). Only the objective function
range test, monotonicity test and convexity test, followed by a bisection step
of the tests are passed.

The different combinations of these elements are: IPF, IF, IP, PF, I, P, F and N. All
of the variations are benchmarked in Chapter 6 to evaluate the performance of the
different methods and different combinations.

The pivoting preconditioner is implemented as described in Section 3.3.2 using
a grid structure with Ψ blocks with each Ψ × Ψ threads. For each element of the
resulting box, Ψ pivot positions must be tried and compared to get the best result.
Each of the Ψ blocks computes one element of the resulting box and each row, of
threads in a block, computes a candidate for the resulting box for one pivot position,
the best of which is saved in global memory. All communication between threads
happens in shared memory.

5.3 CPU Implementation
In order to measure the speedup achieved by using GPU acceleration, a CPU refer-
ence version of the algorithm is implemented for comparison. To make the compar-
ison of the GPU and CPU implementations as fair as possible, the CPU implemen-
tation is implemented as a combination of Python and C-code. Most of the com-
putationally heavy parts of the algorithm, the evaluation of the model-, objective-,
gradient- and Hessian functions and the Interval Newton steps are implemented in C,
while the flow of the algorithm is controlled by Python. The matrix inversion in the
Interval Newton step using the inverse midpoint preconditioner is done in Python,
using a Fortran LAPACK library (see Appendix A). This resembles the structure of
the GPU implementations closely. The structure of the CPU implementation is listed
in Algorithm 5.4. For comparison, the same set of variations of the base algorithm
as described in Section 5.2.4 are implemented for the CPU version.
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(a) Implementation 1 (b) Implementation 2

Figure 5.5: Profiling time slice of GPU activity for implementations 1 and 2. Each colored block
illustrates execution of a kernel on the GPU. Blocks of the same color are instances of the same
kernel. Grey areas are GPU idle time. The profiling is done using the test problem FDEHYDE,
described in Section 6.2 on page 54, using 4096 simulated measurements.
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Algorithm 5.4 Pseudo code describing the CPU reference implementation
Input:

Search space P0 ∈ IRΨ
∗ .

Model function M , model gradient Gm and model Hessian Hm.
Objective function width and box width thresholds εf ∈ R+ and εp ∈ R+.
Initial best known upper bound b ∈ R+.

1: L ← {} (Solution list)
2: W ← {P0} (Work queue)
3: ρτ ← 0.6 (Bisection threshold)
4: while W 6= {} do
5: P← take new box from W
6: Objective function range test
7: Monotonicity test
8: Convexity test
9: Solution test
10: Gradient at mid(P)
11: Interval Newton test with inverse midpoint preconditioner
12: end while
13: Cleanup L
14: return L
Notes: Instead of specifying the search space as a single box P0 it can be specified as a list
of boxes.

5.4 Implementation Details
This section describes some of the common details, that apply for all the implemen-
tations.

Model function: The algorithm requires interval versions of the model function
m, its gradient gm and its Hessian, hm. These are provided by the user,
implemented with a standard interface in CUDA-C for the GPU versions or in
C/C++ for the CPU version described in Appendix B.

Inverse midpoint preconditioning, non-invertible matrices: In some cases the
matrix mid(H), which is inverted to compute the preconditioner, is singular or
contains non-real elements (±∞), such that the matrix is non-invertible and
preconditioner cannot be computed. In such cases, the Interval Newton step
using this preconditioner is skipped.

Choice of numerical precision: All the implementations described use single pre-
cision (32 bit) floating point for all computations. This choice comes out in
favor of the GPU used, as it is primarily a 32bit architecture with 2866 single
precision cores against 896 double precision units, whereas the CPU used is a
64bit architecture (see Appendix A). From a mathematical perspective it can
be argued that double precision is preferable as it gives tighter bounds. In
practice it may be more efficient to use a mixed precision approach, switching
to double precision when little or no improvement is achieved using single pre-
cision. Unfortunately the double precision library supplied by Nvidia in the
version of CUDA used is concluded to be unstable at the time of writing. For
more on this, see Appendix C.
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Numerical limits: For some problems, the threshold εf may not be attainable
with the numerical precision used for some boxes. For example the algorithm
may reach a point where a box cannot be split any further. Even though
the threshold is not reached, the box may still contain a global minimum.
Therefore, in these situations, the box is added to the list of possible solutions
with a flag indicating that the threshold has not been reached.

Limitation on number of measurements, Φ: In the GPU implementations, the
number of measurements Φ is limited by the number of parameters Ψ to Φmax =
dx,max

Ψ , where dx,max is the maximum x-dimension of a grid of threads. The value
of dx,max depends on the Compute Capability of the GPU (65535 for CC < 3.0
and 231 − 1 for CC ≥ 3.0 [50]). This limitation can trivially be removed by
adding additional layers of reduction in the parallel reduction scheme illustrated
in Figure 5.3. This would leave Φmax limited only by the amount of memory
on the GPU.

5.5 Libraries
The CPU and GPU implementations both rely on libraries for interval computations,
both of which are based on the interval arithmetic library within the Boost C++
Libraries [37, 63]. The libraries are denoted BoostCPU and BoostGPU

For development purposes in the present work, a Python wrapper to BoostCPU
with a few extensions has been developed. The software package, denoted PyInt,
can be found in the code/libs/pyint folder on the enclosed CD. To utilize the CPU
resources more efficiently, a simpler and faster version of this wrapper, denoted PyInt-
light was developed, where most of the functionality was moved from Python to C++
. The main reason that PyInt-light is faster is that in PyInt, each interval is stored as
a Python object. This means that when an array of intervals is created, what is stored
in memory is an array containing pointers to interval objects that may be scattered in
memory. This makes operations on arrays of intervals inefficient. Contrary to PyInt,
in PyInt-light the data is stored contiguously in C++ arrays, making operations
more efficient. The fast implementation can be found in code/libs/PyInt-light
on the enclosed CD. For the GPU implementations, a CUDA version of the Boost
interval library is used. The library is originally presented in [55, ch. 9] and is now
included in the Nvidia CUDA Samples pack. The library is extended to provide more
functionality and higher precision. The extended library is denoted CuInt and can
be found in code/libs/cuint. This section describes the extensions to BoostCPU
and BoostGPU.

5.5.1 CUDA Interval Library – CuInt

The BoostGPU provides most of the functionality of BoostCPU. The library provides
an interval type, support the basic operations (+,−,×, /) on two intervals, intersec-
tion of intervals and squaring of intervals. Some features are missing for the library
to be useful for this project and therfore the library has been extended with the
functionalities listed below.

• Basic operations, +,−,×: Extends the original implementation with sup-
port for operations on double, int and float type variables. (There is no
need to extend the BoostGPU library for division, since this feature is already
implemented).
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• Compound assignment operators, +=,-=,×=: Implemented to simplify cod-
ing and improve readability.

• Contains, contains(x,Y): Function to test whether a x is contained in the
given interval Y ∈ IRn∗ .

• Hull, hull(X,Y): The hull function returns the smallest box that Z ∈ IRn∗
that contains both boxes X,Y ∈ IRn∗ :

hull(X,Y )i =
[
min(Xi, Yi), max(Xi, Yi)

]
for i = 0, . . . , n− 1

• One-part division, X/Y: The CUDA interval library shipped with the CUDA
Samples supports, division by intervals that do not contain zero and two-part
division (see Section 2.1.4). A simple one-part division operator, which re-
turns the union of the results of a two-part division was implemented in the
present work.. Therefore, if zero is contained in the interior of the denominator,
[−∞, ∞] is returned.

• Various non-basic math functions:

– sin(X): Computes sin(X) | X ∈ IR∗
– cos(X): Computes cos(X) | X ∈ IR∗
– exp(X): Computes exp(X) | X ∈ IR∗
– log(X): Computes log(X) | X ∈ IR∗
– pow(X,i): Computes Xi | X ∈ IR∗, i ∈ Z+

The extension of the supported types for the basic operations, the compound
assignment operators and the contains function, are trivial implementations and
are not be described further. For further details, see the source code in the folder
code/libs/cuint/.

As stated above, the library is extended with a set of non-basic functions (sin,
cos, exp, etc.). Directionally rounded versions of these do not exist in the CUDA
library, and therefore, they are was implemented, in the present work, using the nor-
mal version of the given function combined the nextafter(x,d) C-function. The
nextafter(x,d) function returns the next number from x in the direction of the
number d that is representable by the floating point standard used. The function-
ality of nextafter(x,d) differs between Compute Capability < 3.0 and Compute
Capability ≥ 3.0, affecting the results where it is used. For details, see Appendix C.

The non-basic functions above fall into two main categories; 1) those that are
monotonic (exp, log, pow) and 2) those that are not (sin, cos). Enclosures of the
monotonic functions are fairly simple to compute, while the non-monotonic functions
require more handling of special cases.

Consider for example the real exponential function in the CUDA math library
which is guaranteed to have a maximum error of 1 ULP2 [50]. The true value y of
exp(x) for some x lies somewhere in the interval between two values a, b, separated
by 1 ULP, that can be represented using floating point. The value ỹ returned by the
CUDA exp function can be any of these two values, a and b. To return an interval
that encloses y with certainty, 1 ULP is added to either side of ỹ. The principle is

2ULP: Unit in the Last Place – the smallest distance between two numbers that can be repre-
sented in floating point.
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illustrated in Figure 5.6. The method described is trivially extended to take interval
inputs in stead of real inputs. The resulting method is:

exp(X)← [nextafter( exp(X),−∞),nextafter( exp(X),∞)] (5.1)

1 ULP

Figure 5.6: The true value y is rounded to either a or b. To assure that x is contained in the
resulting interval, Ya or Yb is returned if y is rounded to a or b respectively.

The implementation of the non-monotonous sine and cosine functions is more
complex. The implementation is based on inclusion function for the cosine, described
in [64]3. As the functions are very similar, only the implementation of the cosine is
described here.

The cosine function repeats a pattern of piecewise monotonicity. It is non-
increasing in the intervals x ∈ [2nπ, (2n + 1)π] and non-increasing in the intervals
x ∈ [(2n + 1)π, (2n + 2)π], n ∈ Z. It attains its maximum and minimum values of
±1 respectively at x = 2nπ and x = (2n + 1)π, n ∈ Z. Based on this, the inclusion
function is given as:

cos(X) =



[−1, 1 ] if 1 +
⌈
X
π

⌉
≤ X

π

[−1, b ] if
⌈
X
π

⌉
≤ X

π and
⌈
X
π

⌉
is uneven

[ a, 1 ] if
⌈
X
π

⌉
≤ X

π and
⌈
X
π

⌉
is even

[ a, b ] otherwise

(5.2)

a = min
(
cos(X), cos(X)

)
b = max

(
cos(X), cos(X)

)
The cos function has a guaranteed maximum error of 1 ULP [50], and so inclusion
isotonicity is guaranteed in a way similar to the exp function in (5.1).

Exponentiation (Xn, X ∈ IR∗, n ∈ N0) is implemented for non-negative integer
exponents n. As specified in (2.7) on page 6, an interval exponentiation method
must handle a set of special cases. These cases use real exponentiation, which is
implemented based on the method described in [65], listed in Algorithm 5.5, in
downward and upward rounded versions. When the base is non-negative, this is
easily implemented by using either downward or upward rounding multiplication in
line 4 and 6 of Algorithm 5.5. When the base is negative and the exponent is uneven,
the value of y in Algorithm 5.5 changes sign and thus requires the rounding mode,
used in the multiplication in line 4, to be changed to obtain a correct end result.

3In the formulation given here, use of the modulo functions is replaced with checks for evenness or
unevenness, as the behavior of the modulo function for negative numbers is implemented differently in
different programming languages, which may lead to confusion. For an example code showing how the
modulo function differs between Python and C++ , see the code in the folder code/misc/modulo/
on the enclosed CD
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Using different rounding modes in different iterations of the loop is inconvenient.
Instead, logic is implemented in the interval exponentiation method that avoids this.
The implementation of the interval exponentiation method, which closely resembles
the implementation in the Boost CPU interval library, is listed in Algorithm 5.6. As
squaring is often used, square(X) is implemented as a fast special case of the pow
function.

Algorithm 5.5 Real-valued exponentiation method for non-negative integer expo-
nents [65].
Input:

Base x ∈ R.
Exponent n ∈ N0.

1: y ← 1
2: p← x
3: while n > 0 do
4: if n is uneven then y ← y · p end if
5: n← bn/2c
6: p← p · p
7: end while
8: return y

Algorithm 5.6 Interval exponentiation method for non-negative integer exponents.
Input:

Base X = [x`, xu] ∈ IR∗.
Exponent n ∈ N0.

1: if x` < 0 and xu < 0 then
2: a← pow_dn(−xu, n)
3: b← pow_up(−x`, n)
4: if n is uneven then
5: y ← [−b, −a]
6: else
7: y ← [a, b]
8: end if
9: else if x` < 0 and xu > 0 then
10: xmax ← max(−x`, xu)
11: a← pow_up(xmax, n)
12: y ← [0, a]
13: else
14: a← pow_dn(x`, n)
15: b← pow_up(xu, n)
16: y ← [a, b]
17: end if
18: return y

Notes: The pow_dn and pow_up functions denote the method listed in Algorithm 5.5 using
downward and upward rounding multiplication, respectively.
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5.5.2 Python Interval Library – PyInt

The PyInt library, wraps the interval class from the BoostCPU library to the PyInt
interval class. To support matrices and vectors the Numpy4 ndarray class is sub-
classed to an interval array class. Further, some support functions such as a special
interval array constructor function and a special dot function are developed. The
structure of PyInt is illustrated in Figure 5.7.

Boost Interval Class
I

Interval Array Class
Pyint.IA

Interval Class
Pyint.I

Numpy Ndarray Class
ndarray

Interval Array Functions
dot

Iarray

Figure 5.7: Structure of PyInt. The interval class PyInt.I wraped from the Boost interval class.
An interval array class, extends PyInt.I to arrays, and subclasses the Numpy Ndarray class.

The Boost interval class contains interval arithmetic functionality and the PyInt
interval class wraps this functionality to Python. The operations and comparisons
available are the same as in the CUDA interval library in Section 5.5.1.

The PyInt interval array (Indarray) class subclasses the Numpy ndarray class.
This exposes all the functionality of the ndarray class to the Indarray class. This
functionality is extended with some interval specific functions for computing the mid-
point, volume, width, etc. of an interval array. Matrix-vector and matrix-matrix dot
products are implemented to handle multiplication between interval matrices/vectors
and real valued matrices/vectors. (see code/libs/pyint/pyint.py)

A problem with PyInt is that the data in interval arrays is not stored contiguously.
This results in operations such as the dot product being unnecessarily slow because
the CPU cache is not used efficiently. Therefore, PyInt is functionally adequate and
convenient for algorithm development, but too inefficient for a fair comparison with
GPU code. To create a more fair CPU library for use in performance comparisons
between the CPU and GPU, a lightweight version of PyInt, named PyInt-light was
implemented in the present work. In PyInt-light the basic operations (+,−,×, /)
and the non-basic math functions listed in Section 5.5.1 are unavailable from within
Python. Instead the functions used in the global optimization algorithm is pro-
grammed in C++ and called from Python, much like the CUDA implementations.
Data in interval arrays is stored contiguously in PyInt-light making the overall opti-
mization algorithm faster.

5.6 Summary
In this chapter, different strategies for parallelization of the global optimization were
analyzed with focus on the parameter estimation problem. It was selected to focus on
parallelizing the inner loops of the sub-problems in the branch & bound tree. Based
on this, a GPU accelerated implementation, a sequential CPU implementation, some
variations on these implementations and the interval software libraries used were
described.

4Numpy is a Python package for scientific computing [66].
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Benchmarking

This chapter describes the test suite used to benchmark the implementations pre-
sented in Chapter 5 and the results of the benchmarks with the purpose of comparing
the speedup gained by using the GPU accelerated implementation over the CPU ref-
erence implementation. General considerations regarding the benchmarks are treated
in Section 6.1. In Sections 6.2-6.5 each test problem and the benchmarks run on the
problem are described along with the results of the benchmarks, a comparison of the
results for the GPU and CPU and a discussion of the results. Finally a summary is
given in Section 6.6.

6.1 Test Suite
In order to construct a meaningful scheme for testing the performance of the imple-
mentations, a couple of considerations must be taken into account:

a) The time taken to solve a specific problem1 consists of two factors; a base
execution time tb and an uncertainty in the measurement, tn, such that the
total execution time is te = tb + tn. For problems that are solved quickly, tn is
expected to make a relatively larger contribution to te than for problems that
take a long time to solve. Because of this, and because the time available for
testing is limited in this work, more measurements of the execution time are
taken for the problems where te is small.

b) For problems of the same type, but with different data sets and thereby different
solutions, the execution time may vary significantly. This is because the scheme
used for picking an interval to process may turn out to be especially efficient
(or inefficient) at producing a low upper bound of the objective function, as
discussed in Section 3.3.1. Therefore, the time taken to solve similar problems
with different solutions may not be comparable.

The benchmarking has two main objectives: 1) To compare the variations of the
GPU implementation, described in Section 5.2.3, with each other and compare the
variations of the CPU implementation, described in Section 5.3, with each other in
order to find the fastest variation. 2) To compare the fastest variation of the GPU
implementation with the fastest variation of the CPU implementation and measure
the speedup.

1A specific problem is a problem of a specific structure and with specific input data and thereby
a specific solution.

53
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To find the fastest among the variations of the CPU and GPU implementations,
the execution time of each variation is measured for a number of instances of a set
of test problems. For some of these problems, the number of parameters, Ψ, is fixed,
and for other it can be varied. For all the problems, the number of measurements,
Φ, can be varied. Each specific problem is solved a number of times, such that
the accumulated execution time is at least 100 seconds, and the mean value of the
execution time is computed. As limited time is available for benchmarking, a time
limit of 10 minutes for solving each test problem is set. Additionally, the number of
measurements used for testing the CPU and GPU accelerated implementations are
different.

Note that on plots of results in Sections 6.2-6.5, lines are drawn between data
points. These lines are not necessarily representative for the execution time/speedup
between the data points, and should therefore be regarded as a help for the eye rather
than a clear indication of the execution time/speedup between data points. For some
of the variations of the implementations, the benchmark does not complete within
the 10 minute time limit. In these cases, the timeout data points are not plotted.
Tables containing the data points for each of the figures in Sections 6.2-6.5 can be
found in Appendix F.

6.2 Colorimetric Determination of Formaldehyde (FDE-
HYDE)

6.2.1 Problem

This test problem, a four parameter chemistry problem from the collection in [4], orig-
inates from [67] and concerns optimization of the absorbance response for formalde-
hyde as a function of the amount of two other substances added.

The true value of the parameters is selected to be the same as in [4], and the mea-
surements are simulated using measurement points (representing substance volumes)
that lie in the same ranges as in [4]. The search region used in [4] is chosen such that
all parameters are in the range

[
10−4, 105]. This choice seems unreasonably large, as

the starting values are all below 20. Using the search region from [4], the execution
time is prohibitively long, and therefore a somewhat smaller region is used here.

As the measurements are simulated, noise can be added. The purpose of this test
problem is to evaluate the performance of the implementations on a simulated real
world problem with a varying number measurements, Φ. In Table 6.1 the details of
this test problem and the experiments for this problem is specified.
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FDEHYDE

Model: m(p,x) = p0 exp

−
(

x1
x0+x1+2 − p1

)2

2p2
2

 2− 2 exp(−p3x0)
x0 + x1 + 2

Experiment(s):
Experiment 1 - Variable Φ

Ψ 4
ptrue [1.55, 0.57, 0.07, 22.00]T
ΦGPU 100, 2000, 4000,...,16000
ΦCPU 100, 200,300,...,900
Measurements are simulated. Measurement points are
equally distanced in the ranges x0 ∈ [0.1, 3.0] and x1 ∈
[0.2, 6.0].

Parameter bounds: [[
10−4, 101] , [10−4, 101] , [10−4, 101] , [10−4, 102]]T

Tolerances:
εp = 0.001
εf = 0.001

Noise:
Gaussian i.i.d., σ = 0.001

Initial upper bound:
b =∞

Details/notes:
A test problem from the collection in [4]. Originally
from [67].

Table 6.1: FDEHYDE - model function, parameters and search range.

6.2.2 Experiment 1 - Variable number of measurements, Φ
GPU: In Figure 6.1 the results for the variations of the GPU implementation are

shown. From Figure 6.1 it is seen that the PF implementation gives the best
performance. It is also evident that variations that include the F element
perform significantly better than those that do not. The scaling of the execution
time, with respect the number of measurements, is approximately linear.

CPU: In Figure 6.2 the CPU results are plotted. The variations IPF, PF and IF
perform approximately well, with the PF variation being slightly faster than the
other two. Again it is evident that the variations that include the F element
perform significantly better than those that do not. The scaling of the execution
time for these four variations is approximately linear.
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Figure 6.1: FDEHYDE: Experiment 1. Execution time for GPU variations. Variable number of
measurements, Φ = 100, 2000, 4000..., 16000. Fixed number of parameters, Ψ = 4. Detailed results
can be found in Appendix F on page 86 in Table F.1.
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Figure 6.2: FDEHYDE: Experiment 1. Execution time for CPU variations. Variable number of
measurements, Φ = 100, 200, ..., 900. Fixed number of parameters, Ψ = 4. Missing data points for
some of the variations indicate that the benchmark did not complete within the 10 minute time
limit. Detailed results can be found in Appendix F on page 86 in Table F.1.
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6.2.3 GPU and CPU Comparison

The fastest variation for both the GPU and CPU implementations is PF. In Figure 6.3
and in Figure 6.4 the execution times and speedup of the GPU implementation over
the CPU implementation is plotted for Φ = 100, 200, ..., 1800. The time used by
the GPU to solve the problems is nearly constant, while the time used by the CPU
increases approximately linearly with the number of measurements. The minimum
speedup, at Φ = 200, is approximately 5 times and the maximum speedup, achieved
at Φ = 1800 is approximately 37 times.
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Figure 6.3: FDEHYDE: Experiment 1. Execution time for GPU-PF and CPU-PF variations.
Variable number of measurements, Φ = 100, 200, ..., 900. Fixed number of parameters, Ψ = 4.
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Figure 6.4: FDEHYDE: Experiment 1. Speedup, GPU vs. CPU for GPU-PF and CPU-PF vari-
ations. Variable number of measurements, Φ = 100, 200, ..., 1800. Fixed number of parameters,
Ψ = 4.

6.2.4 Discussion

It shows from the comparison that the GPU implementation has a significant ad-
vantage over the GPU implementation for large numbers of measurements. It is
expected that the speedup converges to a stable level at some point, but in the range
shown this effect is not evident. The fact that the execution time for the GPU im-
plementation is almost constant indicates that the parallel resources are not being
occupied. A measurement of the GPU compute utilization using the Nvidia Visual
Profiler at Φ = 1800 shows an compute utilization of 15.8 %, which supports this.
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Common for the CPU and GPU implementations is that the variations that include
the F element are all among the best performing.

6.3 Synthetic Sinusoidal/Polynomial Problem (POLY-
COS)

6.3.1 Problem

This problem is designed by the authors to be variable in the number of parameters.
It exhibits a number of local minima and one global minimum. The measurements
are simulated. The purpose is to have a test problem where both the number of
parameters and the number of measurements can be swept. In Table 6.2 the details
of this test problem and the experiments for this problem are specified.

POLYCOS

Model: m(p, x) =
Ψ−1∑
k=0

(
α · (x− pk)2 − cos(β · (x− pk))

)
where α = 0.05 and β = 3

Experiment(s):
Experiment 1 Experiment 2

Ψ 2,3,4 3
ptrue [−4,−2, 2, 4]T [−4,−2, 2]T
ΦGPU 1024 100, 2000, 4000, ..., 16000
ΦCPU 1024 500, 1000, 1500, ..., 4500
Measurements are simulated with measurement points
equally distanced in the range x ∈ [−2π, 2π].

Parameter bounds:
[−2π, 2π] for all parameters

Tolerances:
εp = 0.001
εf = 0.001

Noise:
σ = 0

Initial upper bound:
b =∞

Details/notes:
The constant β ∈ R+ controls the objective function
value in the local minima and α ∈ R+ controls the
spacing of the local minima.
The initial search region for this test problem is pre-
processed as described in Appendix E.

Table 6.2: POLYCOS - model function, parameters and search range.

6.3.2 Experiment 1 - Variable number of parameters, Ψ
GPU: The results of experiment 1 are plotted in Figure 6.5. In this experiment,

the P, I and N variations are not able to solve the problem with more than two
parameters, within the time limit of 10 minutes. Again, the fastest variation
is PF closely followed by the IPF variation.
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CPU: In Figure 6.6 the results of experiment 1 of the CPU implementations are
shown. It can be observed that none of the variations are able to solve for
more than 3 parameters within the 10 minute time limit. The fastest variation
is IPF.
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Figure 6.5: POLYCOS: Experiment 1. Execution time for GPU variations. Fixed number of
measurements, Φ = 1024. Variable number of parameters, Ψ = 2, 3, 4. The variation that does not
have measurement points for all parameters has reached time out of 10 minutes. Detailed results
can be found in Appendix F on page 86 in Table F.3.
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Figure 6.6: POLYCOS: Experiment 1. Execution time for CPU variations. Fixed number of
measurements, Φ = 1024. Variable number of parameters, Ψ = 2, 3, 4. The variation that does not
have measurement points for all parameters has reached time out of 10 minutes. Detailed results
can be found in Appendix F on page 86 in Table F.4.

6.3.3 Experiment 2 - Variable number of measurements, Φ
GPU: In this experiment, the results for the GPU variations are illustrated in Fig-

ure 6.7. It can again be seen that PF is the fastest variation, closely followed
by IPF. It is worth noting that the simple N variation outperforms the I vari-
ation for problem sizes 12000, 14000 and 16000. Again in this experiment the
variations including element F outperforms the others.

CPU: In Figure 6.8 the results of experiment 2 of the CPU variations are illustrated.
It can be seen that the IPF variation is the fastest in this case, closely followed
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by the PF variation. The N variation is not able to solve the problem for more
than 3500 measurements within the 10 minute time limit.
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Figure 6.7: POLYCOS: Experiment 2. Execution time for GPU variations. Variable number of
measurements, Φ = 100, 2000, 4000, ..., 16000. Fixed number of parameters, Ψ = 4. Detailed results
can be found in Appendix F on page 86 in Table F.5.
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Figure 6.8: POLYCOS: Experiment 2. Execution time for CPU variations. Variable number of
measurements, Φ = 500, 1000, 1500, ..., 4500. Fixed number of parameters, Ψ = 3. Missing data
points for some of the variations indicate that the benchmark did not complete within the 10 minute
time limit. Detailed results can be found in Appendix F on page 86 in Table F.6.

6.3.4 GPU and CPU Comparison

For the POLYCOS problem, two comparisons are made; one for varying number of
parameters and one for a varying number of measurements. In both cases, the PF
variation is the fastest among the GPU variations and the IPF variation is the fastest
among the CPU variations.

The results for varying number of parameters, plotted in Figures 6.9 and 6.10,
show speedups of 4.36 to 5.93 times for 2 and 3 parameters, respectively. In Fig-
ures 6.11 and 6.12 the results for varying number of measurements are shown. The
execution time for the GPU implementation is close to constant compared to the
execution time for the CPU, which increases approximate linearly with the number
of measurements. The measured speedup is 1.43 times for Φ = 100 and increases to
60.4 times for Φ = 12000.
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Figure 6.9: POLYCOS: Experiment 1. Execution time for GPU-PF and CPU-IPF variations. Fixed
number of measurements, Φ = 1024. Variable number of parameters, Ψ = 2, 3.
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Figure 6.10: POLYCOS: Experiment 1. Speedup, GPU vs. CPU for GPU-PF and CPU-IPF
variations. Fixed number of measurements, Φ = 1024. Variable number of parameters, Ψ = 2, 3.
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Figure 6.11: POLYCOS: Experiment 2. Execution time for GPU-PF and CPU-IPF variations.
Variable number of measurements, Φ = 100, 2000, 4000, ..., 12000. Fixed number of parameters,
Ψ = 3.



62 Chapter 6. Benchmarking

100 2000 4000 6000 8000 10000 12000
Measurements [#]

0

10

20

30

40

50

60

Sp
ee

du
p 

[-]

Speedup - POLYCOS - Variable number of measurements

Speedup

Figure 6.12: POLYCOS: Experiment 2. Speedup, GPU vs. CPU for GPU-PF and CPU-IPF
variations. Variable number of measurements, Φ = 100, 2000, 4000, ..., 12000. Fixed number of
parameters, Ψ = 3.

6.3.5 Discussion

For this test problem the execution time increases significantly for more than 3 pa-
rameters. The results for the GPU implementation indicate exponential growth of
the execution time. This is also evident in the fact that none of the CPU implemen-
tations were able to solve for 4 parameters within the 10 minute time limit. The
comparison for variable number of parameters therefore only includes Ψ = 2 and
Ψ = 3, which makes it difficult to conclude on the result, other than the fact that a
small speedup is attained.

For the comparison for varying number of measurements, the situation is the
same as for the FDEHYDE problem. The execution time for the GPU is almost
constant and thus the speedup increases approximately linearly with the number of
measurements. A profiling of the GPU implementation at Φ = 12000 and Ψ = 3
reveals a compute utilization of only 26.8 %. This shows that the GPU resources are
not being fully utilized.

6.4 Synthetic Polynomial Problem (2D_POLY)

6.4.1 Problem

This is a simple two-parameter synthetic model function, designed by the authors
such that the objective function has saddle points and two global minima. The
purpose of this test problem is to illustrate a simple 2 dimensional problem. In
Table 6.3 the details of this test problem and the experiments for this problem is
specified.
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2D_POLY

Model: m(p, x) = −p2
0x− p2

1x+ 0.01p4
0x+ 0.01p4

1x+ 10p1
Experiment(s):

Experiment 1
Ψ 2
ptrue [3, 2]T
Φ 1000, 2000, 4000,...,16000
Measurements are simulated. Inputs are equally dis-
tanced in the range x ∈ [−8, 8].

Parameter bounds:
[[−8, 8] , [−8, 8]]T

Tolerances:
εp = 0.001
εf = 0.001

Noise:
σ = 0

Initial upper bound:
b =∞

Table 6.3: 2D_POLY - model function, parameters and search range

6.4.2 Experiment 1 - Variable number of measurements, Φ
GPU: In Figure 6.13 the results for the variations of the GPU implementation are

shown. It can be seen that the execution times for this problem are significantly
lower than for the other test problems. It can be observed that PF and IPF
are almost equal in performance. PF is slightly faster than IPF for under 10000
measurements, and the opposite is seen for the higher numbers.

CPU: In Figure 6.14 the results of the CPU implementations are plotted. For this
test problem, the IPF variation is the fastest, followed by the IP variation. The
scaling of execution time is approximately linear with respect to the number
of measurements.

1000 2000 4000 6000 8000 10000 12000 14000 16000
Measurements [#]

0.0

0.2

0.4

0.6

0.8

1.0

Ex
ec

ut
io

n 
tim

e 
[s

]

GPU accelerated - 2_D POLY
IPF
PF
IF
IP
I
P
F
N

Figure 6.13: 2D_POLY: Experiment 1. Execution time for GPU variations. Variable number of
measurements, Φ = 1000, 2000, 4000..., 16000. Fixed number of parameters, Ψ = 2. Detailed results
can be found in Appendix F on page 86 in Table F.7.



64 Chapter 6. Benchmarking

1000 2000 4000 6000 8000 10000 12000 14000 16000
Measurements [#]

0

5

10

15

20

25

Ex
ec

ut
io

n 
tim

e 
[s

]

CPU - 2D_POLY
IPF
PF
IF
IP
I
P
F
N

Figure 6.14: 2D_POLY: Experiment 1. Execution time for CPU variations. Variable number of
measurements, Φ = 1000, 2000, 4000..., 16000. Fixed number of parameters, Ψ = 2. Detailed results
can be found in Appendix F on page 86 in Table F.8.

6.4.3 GPU and CPU Comparison

For the GPU implementation, the IPF and PF variations perform approximately
equally well. Which one is slightly faster differs with the number of measurements.
For this comparison, the IPF variation is selected. For the CPU implementation the
situation is not as ambiguous. Here the IPF variation is the fastest, and is thus used
in the comparison.

In Figures 6.15 and 6.16 execution times and speedup is shown. The execution
time for the GPU implementation is approximately constant, while it increases ap-
proximately linearly for the CPU implementation. The measured speedup ranges
from 2.42 times at Φ = 1000 to 26.3 at Φ = 16000.
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Figure 6.15: 2D_POLY: Experiment 1. Execution time for GPU-IPF and CPU-IPF variations.
Variable number of measurements, Φ = 1000, 2000, ..., 16000. Fixed number of parameters, Ψ = 2.
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Figure 6.16: 2D_POLY: Experiment 1. Speedup, GPU vs. CPU for GPU-IPF and CPU-IPF vari-
ations. Variable number of measurements, Φ = 1000, 2000, ..., 16000. Fixed number of parameters,
Ψ = 2.

6.4.4 Discussion

This test problem has proven very easy for the algorithm to solve, and both the CPU
and GPU implementation are able to do so below 5 seconds for the best variations.
Once again, like for the FDEHYDE and POLYCOS test problems, the execution
time for the GPU implementations increases very little with the number of measure-
ments, which points to low utilization of the GPU resources. A profiling of the GPU
implementation for Φ = 16000 shows a compute utilization of 8.3%.

6.5 Sinusoidal Modeling (SINUSOIDAL)

6.5.1 Problem

Sinusoidal modeling is widely used within speech analysis and synthesis e.g. in
[20, 21]. The number parameters can be varied by adding extra tones to the model.
For each tone added to the model, three parameters are added. The data used is
simulated.

In [18] it is stated that: "For a highly oscillatory function f , our algorithm could
be prohibitively slow". This is the case for this test problem, and since the algorithm
used in the present work resembles the algorithm in [18], it is expected that the
problem is hard to solve. In Table 6.4 the details of this test problem and the
experiments for this problem is specified.
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SINUSOIDAL

Model: m(p, x) =
Ω−1∑
k=0

p(3k+0) sin
(
p(3k+1)x+ p(3k+2)

)
where Ω is the model order (number of tones).

Experiment(s):
Experiment 1 Experiment 2

Ψ 3,6 6
ptrue [0.3, 25.13, 4, [0.3, 25.13, 4,

0.8, 37.70, 2]T 0.8, 37.70, 2]T
ΦGPU 256 200, 300, ..., 600
ΦCPU 200 150, 200, ...350
Measurements are simulated. Sampling frequency
fs = 400. Inputs are equally distanced in the range
x ∈

[
0, Φ · 1

fs

]
.

Parameter bounds:
[[0.1, 1] , [0.628, 62.83] , [0, 6.28] , [0.1, 1] ,
[0.63, 62.83] , [0, 6.28]]T

Tolerances:
εp = 0.001
εf = 0.001

Noise:
σ = 0

Initial upper bound:
b =∞

Details/notes:
The problem in it self does not specify the order of
the tones. This means that the algorithm will find Ω!
solutions where the only difference is the ordering of
the tones. As it is not desirable to spend time search-
ing for several solutions that are basically equal, the
search region is preprocessed as described in Appendix
E.

Table 6.4: SINUSOIDAL - model function, parameters and search range.
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6.5.2 Experiment 1 - Variable number of parameters, Ψ
GPU Table F.9 and Figure 6.17 show the results of experiment 1 for the variations

of the GPU implementation. The PF variation performs better than the other
implementations. The variations IP, P, N and I are not able to solve for 6
parameters within the time limit of 10 minutes. Once again it is evident that
the variations that include the F element outperform those that do not.

CPU: In Table F.10 and Figure 6.18 the results of experiment 1 of the CPU imple-
mentations are detailed and illustrated. Only the IPF and PF implementations
are able to solve the 6 parameter problem within the time limit. Among these
two, the PF variation is the fastest.
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Figure 6.17: SINUSOIDAL: Experiment 1. Execution time for GPU variations. Fixed number of
measurements, Φ = 256. Variable number of parameters, Ψ = 3, 6. The variation that does not have
measurement points for all parameters has reached time out of 10 minutes. Detailed results can be
found in Appendix F on page 86 in Table F.9.
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Figure 6.18: SINUSOIDAL: Experiment 1. Execution time for CPU variations. Fixed number of
measurements, Φ = 200. Variable number of parameters, Ψ = 3, 6. The variation that does not have
measurement points for all parameters has reached time out of 10 minutes. Detailed results can be
found in Appendix F on page 86 in Table F.10.

6.5.3 Experiment 2 - Variable number of measurements, Φ
GPU: In Table F.11 and Figure 6.19 the results of experiment 2 for the variations of

the GPU implementation are shown. It can be seen that none of the variations
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IP, P, N and I are able to solve the problem within the time limit for any of
the measurement sizes used. Again PF is the fastest implementation.

CPU: In Table F.12 and Figure 6.20 the results of experiment 2 for the variations
of the CPU implementation are detailed and illustrated. Only IPF and PF are
able to solve for any of these problem sizes. Again, the PF variation performs
best.
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Figure 6.19: SINUSOIDAL: Experiment 2. Execution time for GPU variations. Variable number
of measurements, Φ = 200, 300, ..., 600 Fixed number of parameters, Ψ = 6. Missing data points
for some of the variations indicate that the benchmark did not complete within the 10 minute time
limit. Detailed results can be found in Appendix F on page 86 in Table F.11.
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Figure 6.20: SINUSOIDAL: Experiment 2. Execution time for GPU variations. Variable number
of measurements, Φ = 150, 200, ..., 350 Fixed number of parameters, Ψ = 6. Missing data points
for some of the variations indicate that the benchmark did not complete within the 10 minute time
limit. Detailed results can be found in Appendix F on page 86 in Table F.12.

6.5.4 GPU and CPU Comparison

For both experiment 1 and 2, the PF variation was found to be the fastest for both
the GPU and CPU implementations. Figures 6.21 and 6.22 show the execution times
and speedups measured for experiment 1 (variable number of parameters). Speedups
of 1.89 and 3.56 are measured for Ψ = 3 and Ψ = 6, respectively.

The execution times and speedups for experiment 2 (variable number of mea-
surements) are shown in Figures 6.23 and 6.24 for Φ = 150, 200, ..., 300 and Ψ = 6
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parameters. For both the GPU and CPU, the algorithm is faster for 200 measure-
ments than for 150. The speedup ranges between 2.74 times for Φ = 150 to 4.55
times for Φ = 300.
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Figure 6.21: SINUSOIDAL: Experiment 1 Execution time for GPU-PF and CPU-PF variations.
Fixed number of measurements, Φ = 200. Variable number of parameters, Ψ = 3, 6.
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Figure 6.22: SINUSOIDAL: Experiment 2. Speedup, GPU vs. CPU for GPU-PF and CPU-PF
variations. Fixed number of measurements, Φ = 200. Variable number of parameters, Ψ = 3, 6.
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Figure 6.23: SINUSOIDAL: Experiment 2 Execution time for GPU-PF and CPU-PF variations.
Variable number of measurements, Φ = 150, 200, ..., 300. Fixed number of parameters, Ψ = 6.
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Figure 6.24: SINUSOIDAL: Experiment 2. Speedup, GPU vs. CPU for GPU-PF and CPU-PF
variations. Variable number of measurements, Φ = 150, 200, ..., 300. Fixed number of parameters,
Ψ = 6.
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6.5.5 Discussion

As expected, this test problem has proven to be difficult for the algorithm to solve
when the number of parameters is high. The highest number of measurements for
which the fastest CPU variation was able to solve the problem within the time
limit was Φ = 300. As neither the GPU or CPU implementation were able to
solve the problem for more parameters than 6, the comparison for varying number
of parameters only contains two data points, making it difficult to conclude on the
results, other than concluding that low speedups are observed. However, the speedup
is expected to increase for higher numbers of measurements. The fact that the
execution time for the GPU implementation is almost constant indicates that the
parallel resources are not being occupied. A measurement of the GPU compute
utilization using the Nvidia Visual Profiler at Φ = 300 and Ψ = 6 shows an compute
utilization of 10.0 %, which supports this.

6.6 Summary and Overall Discussion
In this chapter the test suite and four test problems were presented. For each test
problem, one or two experiments were performed to determine which among the
variations of the GPU and CPU implementations. The best performing variation for
the GPU was compared with the best performing variation for the GPU. The results
show some general tendencies:

1. A general tendency is that the comparisons indicate that the resources of the
GPU are not utilized by the implementation. This indication is supported by
profilings of GPU activity, revealing low compute utilization of GPU resources.
This leads to speedup graphs that do not show convergence toward a constant
level. A conclusion that may be drawn from this is, that type-1 parallelization is
not sufficient to occupy the GPU resources, unless the number of measurements
is very high.

2. For the test problems FDEHYDE, POLYCOS and SINUSOIDAL, the GPU
implementation is able to solve problems with significantly higher number of
measurements within the time limit of 10 minutes than the CPU implemen-
tation. Additionally, in the case of the POLYCOS test problem, the GPU
implementation is able to solve the problem for 4 parameters which the CPU
implementation is not.

3. Another tendency is that variations including the F element perform well. The
F element performs a computationally cheap sampling of the objective function
at the midpoint of the box being processed. This indicates that further point
sampling of the objective function may be beneficial.
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Chapter 7

Conclusion and Future
Perspectives

This chapter provides a conclusion on the present work followed by some considera-
tions on future perspectives for further development and research.

7.1 Conclusion
The present work has treated acceleration of global optimization methods using in-
terval analysis. The focus is on the least-squares parameter estimation problem,
which has been accelerated by utilization of the parallel processing capabilities of
Graphical Processing Units (GPUs).

Through analysis of well known Interval Global Optimization (IGO) methods
applied to the parameter estimation problem, it has been concluded that the problem
is well suited for parallelization. This is especially the case for parameter estimation
problems with many data points (measurement points and measurements). Further,
the suitableness of CUDA capable GPUs for interval arithmetic computations has
been evaluated and concluded to be well suited for the purpose.

Previous work on parallel IGO has, to the best knowledge of the authors, only
covered parallelization on the outer-loop level1. The present work has taken a differ-
ent approach and focused on parallelization on the inner-loop level2. Based on this,
methods for parallelization and efficient use of computations, on the inner-loop level
of the algorithm have been presented. These involve: 1) Parallel computation of the
objective function, the gradient and the Hessian, combined with reuse of data be-
tween the computations of the three. 2) A method for parallelization of the Interval
Newton step by use of the Interval Gauss-Seidel method and the pivoting precon-
ditioning scheme presented in [28]. 3) A method for obtaining a computationally
cheap point sample of the objective function has been proposed. This is done in
conjunction with computations related to the Interval Newton step by reuse of data.

An global optimization algorithm for parameter estimation using these methods
has been specified. The applicability of the algorithm used is limited to continuously
differentiable real-valued model functions.

Two parallel implementations of the global optimization algorithm utilizing the
GPU have been presented, along with a sequential reference implementation utilizing
only the CPU. The fastest of the two GPU implementations is selected for compar-

1Parallelization of type 2, following the classification in [14]
2Parallelization of type 1, following the classification in [14]
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74 Chapter 7. Conclusion and Future Perspectives

ison with the CPU implementation. To evaluate the effect of different algorithmic
elements, a number of variations of the base GPU and CPU implementations have
been implemented. In connection with the development of the implementations, ex-
tensions for existing GPU- and CPU software libraries for interval analysis, have
been presented.

The GPU and CPU implementations have been benchmarked in two steps using
a series of four test problems. In the first step, the fastest among the variations of
the GPU implementation and the fastest among the variations of the CPU imple-
mentation was found. In the second step these two were compared against each other
in order to measure the speedup of the GPU implementation over the CPU imple-
mentation. The benchmarks have shown speedups in the range 1.43 to 60.4 times for
various instances the test problems used. A general observation is that the speedup
increases with the number of data points used for the parameter estimation problem.
Analysis of GPU activity for the test cases reveals that the GPU implementation
does not fully utilize the computational resources of the GPU.

7.2 Future Perspectives
It is important to stress that what is compared in the present work is a multi-core
parallel GPU accelerated implementation, implemented specifically for the hardware
used, against a somewhat less specialized sequential single-core CPU implementation.
In [35] a software library that uses the Streaming SIMD Extensions (SSE) on Intel
CPUs to parallelize individual interval arithmetic instructions is presented. Thereby
a significantly more efficient interval library can be implemented than what is avail-
able in the Boost C++ libraries, which was used in the present work. Therefore an
extension of the interval library presented in [35] to include full support for extended
interval arithmetic, used in a CPU implementation of the optimization algorithm
poses an interesting topic of further research.

As stated in the conclusion, the GPU implementation suffers from low utilization
of the computational resources of the GPU. This may possibly be remedied by intro-
ducing parallelism on the outer iteration level in order to occupy more resources. A
second possible improvement to the GPU implementation is the use of the Dynamic
Parallelism capabilities of newer3 Nvidia GPUs. Dynamic Parallelism allows kernels
running on the GPU to launch other kernels, making it possible to move the entire
execution of the algorithm to the GPU. Thereby communication and synchronization
between the GPU and the CPU can be avoided, thus increasing performance.

Lastly, a third possible improvement is the use of a mixed precision scheme. Typ-
ical GPUs have significantly more processing power for single precision computations
than for double precision computations. However, at some point the optimization al-
gorithm may reach its numerical limits using only single precision or the convergence
might be accelerated at some points by using double precision arithmetic to obtain
sharper bounds. Therefore an implementation using a scheme to switch between
different levels of precision may enhance performance. For a general treatment of
mixed precision algorithms, see [69].

3Dynamic Parallelism is available on Nvidia GPUs with Compute Capability 3.5 and above [68].
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Appendix A

Test Platform Specifications

The hardware- and software specifications of the platform used are given below in
Table A.1 and Table A.2, respectively.

Hardware:
CPU: Intel Core i7 950 3.07 GHz (4 cores, Hyper

Threading enabled)
RAM: 12 GB, 1333 MHz (6 blocks of 2 GB)
GPU #1: ASUSTeK Nvidia GTX TITAN (6 GB mem.)
GPU #2: ASUSTek Nvidia GTX 465 (1 GB mem.)
Motherboard: Supermicro X8SAX v2.0 (PCI-E 2.0)

Table A.1: Hardware specifications for the test platform.

Software:
Operating system: Linux Mint 13 Maya (Kernel 3.2.0-23-

generic)
CUDA: v5.0.32
GCC: v4.6
Python: v2.7.3
Pycuda: v2012.1
BLAS: ATLAS BLAS 3.8.4
LAPACK: NetLib LAPACK 3.3.1
Boost C++ Libraries: v1.49

Table A.2: Software specifications for the test platform.
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Appendix B

The Model Function

For both the GPU and CPU implementations, the model, model gradient and model
Hessian functions must be specified by the user. The functions are implemented in
CUDA-C for the GPU and C/C++ for the CPU and included in the code the files
model.cu and model.cpp respectively. Since the GPU versions are implemented as
single-thread device functions, the CPU and GPU versions are basically the same,
only with a slight difference. The interfaces for the functions are listed in Table B.1.

m(p,x) _d_ I model(const I* _R_ p, const double* _R_ x)
gj(p,x) _d_ I modelg(const I* _R_ p, const double* _R_ x,

const int j)
Hj,k(p,x) _d_ I modelH(const I* _R_ p, const double* _R_ x,

const int j, const int k)

Table B.1: Interface specification for the model, model gradient and model Hessian functions. _d_
denotes the __device__ qualifier, which is only used in CUDA-C. _R_ denotes the __restrict__
qualifier, which tells the compiler that the data referenced by the pointer does not overlap with data
referenced by any other pointers.

To get as tight bounds as possible the user most be aware of the effects of depen-
dence described in 2.1.3 on page 7 and the method for obtaining narrower bounds,
described in 3.3.3 on page 24 when implementing the model.

The availability of transcendental functions and other math functions, other than
the basic operators is described in 5.5 on page 48. In the CPU code, these functions
reside in the pyint namespace, and must therefore be prefixed with pyint:: (e.g.
pyint::sin(x)). In the GPU code they reside in the default namespace and this no
prefix is necessary.
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Appendix C

Note on the CUDA Nextafter
Function

This is a note on the nextafter(x,d) function and the CUDA double precision
library, shipped by Nvidia with the CUDA SDK.

nextafter(x,d) function in the CUDA library shipped by Nvidia with the CUDA
SDK. In the CUDA API Reference Manual, the description of the function is:

Calculate the next representable double-precision floating-point value fol-
lowing x in the direction of y. For example, if y is greater than x,
nextafter() returns the smallest representable number greater than x. [70]

However, if one studies the library header files, it turns out that there exists two
different implementations of the functions. Which of the two is used when the code
is compiled depends on the targeted Compute Capability. For Compute Capability
< 3.0 the implementation is (from math_functions_dbl_ptx1.h included in the
Nvidia CUDA toolkit v5.0):

static __forceinline__ double nextafter ( double a, double b)
{

return ( double ) nextafterf (( float )a, (float)b);
}

For Compute Capability≥ 3.0 the implementation is (from math_functions_dbl_ptx3.h
included in the Nvidia CUDA toolkit v5.0):

static __forceinline__ double nextafter ( double a, double b)
{

unsigned long long int ia;
unsigned long long int ib;
ia = __double_as_longlong (a);
ib = __double_as_longlong (b);
if ( __isnand (a) || __isnand (b)) return a + b; /* NaN */
if ((( ia | ib) << 1) == 0ULL) return b;
if ((ia + ia) == 0ULL) {

return __internal_copysign_pos ( CUDART_MIN_DENORM , b); /* crossover */
}
if ((a < b) && (a < 0.0)) ia --;
if ((a < b) && (a > 0.0)) ia ++;
if ((a > b) && (a < 0.0)) ia ++;
if ((a > b) && (a > 0.0)) ia --;
a = __longlong_as_double (ia);
return a;

}
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Observe that in the first code sample, the double precision inputs are typecast to sin-
gle precision and the single precision version of the nextafter function, nextafterf(x,f).
This function is then used to compute a single precision result which is converted
to double precision. This means that the return value is in fact not the next repre-
sentable double precision value, but the next representable single precision value -
possibly a many times larger step.

In the second code sample, used when compiling for Compute Capability < 3.0,
the function takes a step of the correct magnitude. For this implementation how-
ever, an abnormality was observed. In some cases when performing a double precision
multiplication using directed rounding with the __dmul_[rd/ru](x,y) intrinsic, the
result would come out alltogether wrong, and of a very large magnitude. The be-
haviour was observed to occur at seemingly random times when using the global
optimization algorithm and has at the time of writing not been reproduced using
simple code. When using single precision, the abnormal behaviour does not occur.



Appendix D

Containment Sets for Basic
Operations Over the Extended
Real Numbers

x+ y
y

y = −∞ y ∈ R y = +∞

x
x = −∞ −∞ −∞ R∗
x ∈ R −∞ x+ y +∞
x = +∞ R∗ +∞ +∞

Table D.1: Addition over the extended real numbers [11, Table 4.1]

x− y y
y = −∞ y ∈ R y = +∞

x
x = −∞ R∗ −∞ −∞
x ∈ R +∞ x− y −∞
x = +∞ +∞ +∞ R∗

Table D.2: Subtraction over the extended real numbers [11, Table 4.2]

x · y y
y = −∞ y ∈ ]−∞, 0[ y = 0 y ∈ ]0,∞[ y = +∞

x

x = −∞ +∞ +∞ R∗ −∞ −∞
x ∈ ]−∞, 0[ +∞ x · y 0 x · y −∞
x = 0 R∗ 0 0 0 R∗
x ∈ ]0,+∞[ −∞ x · y 0 x · y +∞
x = +∞ −∞ −∞ R∗ +∞ +∞

Table D.3: Multiplication over the extended real numbers [11, Table 4.3]

x

y
y

y = −∞ y ∈ ]−∞, 0[ y = 0 y ∈ ]0,+∞[ y = +∞

x

x = −∞ [0, +∞] +∞ {−∞,+∞} −∞ [−∞, 0]
x ∈ ]−∞, 0[ 0 x/y {−∞,+∞} x/y 0
x = 0 0 0 R∗ 0 0
x = +∞ [−∞, 0] −∞ {−∞,+∞} +∞ [0, +∞]

Table D.4: Division over the extended real numbers [11, Table 4.4]
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Appendix E

Search Region Preprocessioning

For some model functions, the objective function of the parameter estimation problem
is known to be symmetric. An example of this is the model function

m(x,p) = sin(p0x) + sin(p1x) (E.1)

Denoting the true values of the parameters p̂0 and p̂1, and assuming that these are
sufficiently separated, the global optimization algorithm will enclose two solutions to
the problem:

p̃01 = [p̂0, p̂1]T and p̃10 = [p̂1, p̂0]T

This is inefficient, as the algorithm spends time finding two solutions that are ba-
sically equal. Therefore, the initial search region P is preprocessed to remove the
mirrored solution. This is done by removing a number of subregions where p0 > p1.
This is illustrated in Figure E.1

P1

P0

Figure E.1: Illustration of preprocessed search region. The grayed area shows sub-regions discarded
by the preprocessing method.
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Appendix F

Detailed Results

F.1 FDEHYDE

FDEHYDE - GPU results
Φ [#]: 100 2000 4000 6000 8000 10000 12000 14000 16000
tIPF [s] 21.903 22.741 24.324 25.772 27.105 28.599 29.883 31.384 33.077
tPF [s] 14.732 15.503 17.049 18.405 19.818 21.233 22.645 24.193 25.850
tIF [s] 20.097 21.008 22.617 23.978 25.393 26.850 28.283 29.860 31.534
tIP [s] 72.755 71.684 76.828 79.716 83.702 90.258 93.979 98.184 104.15
tI [s] 114.42 87.739 94.637 99.578 108.41 112.91 121.33 127.93 135.51
tP [s] 47.762 47.263 51.922 54.917 57.727 65.674 66.433 71.421 76.447
tF [s] 20.306 23.862 24.584 26.346 28.800 30.710 33.274 35.641 39.057
tN [s] 83.069 84.500 89.533 95.544 104.49 112.04 119.26 127.11 136.66

Table F.1: FDEHYDE: Experiment 1. Execution time for GPU variations. Variable number of
measurements, Φ = 100, 2000, 4000..., 16000. Fixed number of parameters, Ψ = 4. T/O indicates
the time out limit of 10 minutes was reached.

FDEHYDE - CPU results
Φ [#]: 100 200 300 400 500 600 700 800 900
tIPF [s] 48.063 75.051 108.74 134.64 166.75 198.79 228.26 250.73 287.92
tPF [s] 42.758 70.378 104.88 130.96 163.86 196.26 226.18 249.32 287.18
tIF [s] 47.58 75.218 110.44 136.96 170.45 204.15 233.53 256.59 294.33
tIP [s] 161.32 248.83 321.48 403.77 537.56 T/O T/O T/O T/O
tI [s] 268.25 439.74 529.34 565.60 T/O T/O T/O T/O T/O
tP [s] 141.66 227.08 302.72 380.72 492.57 T/O T/O T/O T/O
tF [s] 56.039 95.885 145.09 184.68 237.02 279.50 323.09 362.52 417.12
tN [s] 234.77 403.09 531.73 T/O T/O T/O T/O T/O T/O

Table F.2: FDEHYDE: Experiment 1. Execution time for CPU variations. Variable number of
measurements, Φ = 100, 200, ..., 1800. Fixed number of parameters, Ψ = 4. T/O indicates the time
out limit of 10 minutes was reached.
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F.2 POLYCOS

Experiment 1 - POLYCOS
GPU results

Ψ [#]: 2 3 4
tIPF [s] 0.19717 2.7465 196.86
tPF [s] 0.16022 2.3560 172.19
tIF [s] 0.23999 4.9890 371.67
tIP [s] 0.43693 7.5377 330.75
tI [s] 0.59468 15.262 T/O
tP [s] 0.31947 7.7074 T/O
tF [s] 0.25815 4.6490 367.27
tN [s] 0.63277 23.776 T/O

Table F.3: POLYCOS: Experiment 1. Execution time for GPU variations. Fixed number of
measurements, Φ = 1024. Variable number of parameters, Ψ = 2, 3, 4. T/O indicates the time out
limit of 10 minutes was reached.

Experiment 1 - POLYCOS
CPU results

Ψ [#]: 2 3 4
tIPF [s] 0.69828 13.962 T/O
tPF [s] 0.72386 16.892 T/O
tIF [s] 0.86533 26.915 T/O
tIP [s] 1.5481 38.503 T/O
tI [s] 2.2475 80.923 T/O
tP [s] 1.5894 59.758 T/O
tF [s] 0.9376 26.844 T/O
tN [s] 2.4498 140.90 T/O

Table F.4: POLYCOS: Experiment 1. Execution time for CPU variations. Fixed number of
measurements, Φ = 1024. Variable number of parameters, Ψ = 2, 3, 4. T/O indicates the time out
limit of 10 minutes was reached.

Experiment 2 - POLYCOS - GPU results
Φ [#]: 100 2000 4000 6000 8000 10000 12000 14000 16000
tIPF [s] 2.1483 2.9066 3.2899 3.5666 3.8128 3.9839 4.1046 4.3154 4.5507
tPF [s] 1.9357 2.4116 2.6611 2.8991 3.1049 3.2352 3.3565 3.5475 3.7968
tIF [s] 13.679 26.324 40.182 52.756 67.005 78.54 92.602 106.42 121.26
tIP [s] 5.8132 8.0344 8.9658 9.9190 10.951 11.931 12.940 14.035 15.141
tI [s] 10.562 17.489 21.442 25.453 29.568 34.268 38.535 42.719 47.828
tP [s] 5.5944 8.2228 9.0980 10.119 10.858 11.188 11.876 12.747 13.619
tF [s] 3.2134 4.8658 5.2226 5.5102 5.9018 6.1728 6.4392 6.6705 7.0808
tN [s] 16.445 26.480 30.849 33.214 34.172 35.879 37.666 39.319 43.809

Table F.5: POLYCOS: Experiment 2. Execution time for GPU variations. Variable number of
measurements, Φ = 100, 2000, 4000, ..., 16000. Fixed number of parameters, Ψ = 4. T/O indicates
the time out limit of 10 minutes was reached.
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Experiment 2 - POLYCOS - CPU results
Φ [#]: 500 1000 1500 2000 2500 3000 3500 4000 4500
tIPF [s] 7.6415 13.570 20.831 28.571 36.597 43.838 49.479 57.754 66.055
tPF [s] 9.5561 16.445 25.590 35.129 44.851 53.027 60.041 67.863 76.9
tIF [s] 41.886 79.742 123.09 169.81 215.93 274.78 332.83 393.09 469.19
tIP [s] 21.051 37.757 55.721 74.591 94.232 114.66 135.48 156.86 181.24
tI [s] 41.682 79.314 122.42 168.80 214.68 273.06 330.53 390.80 466.26
tP [s] 31.947 58.258 88.441 117.03 144.96 176.28 212.57 240.44 278.03
tF [s] 13.214 26.201 40.202 52.208 66.267 77.417 91.121 104.51 118.75
tN [s] 68.607 136.65 214.26 282.92 355.07 430.03 518.03 T/O T/O

Table F.6: POLYCOS: Experiment 2. Execution time for CPU variations. Variable number of
measurements, Φ = 500, 1000, 1500, ..., 4500. Fixed number of parameters, Ψ = 3. T/O indicates
the time out limit of 10 minutes was reached.

F.3 2D_POLY

2D_POLY - GPU results
Φ [#]: 1000 2000 4000 6000 8000 10000 12000 14000 16000
tIPF [s] 0.16777 0.16777 0.16818 0.16853 0.16903 0.16977 0.17054 0.17130 0.17263
tPF [s] 0.15629 0.15913 0.16156 0.16535 0.16692 0.17019 0.17151 0.17407 0.17827
tIF [s] 0.24864 0.24935 0.25034 0.25156 0.25282 0.25385 0.25563 0.26084 0.26250
tIP [s] 0.20000 0.20013 0.20057 0.20127 0.20232 0.20257 0.20317 0.20396 0.20548
tI [s] 0.31447 0.31559 0.31680 0.31852 0.32032 0.32141 0.32244 0.32827 0.33084
tP [s] 0.17508 0.17828 0.18049 0.18558 0.18635 0.19030 0.19057 0.19349 0.19744
tF [s] 0.47905 0.48555 0.50466 0.50516 0.51406 0.52228 0.53083 0.53268 0.54286
tN [s] 0.69129 0.71364 0.73285 0.73374 0.75807 0.76793 0.75334 0.76727 0.77998

Table F.7: 2D_POLY: Experiment 1. Execution time for GPU variations. Variable number of
measurements, Φ = 1000, 2000, 4000..., 16000. Fixed number of parameters, Ψ = 2. T/O indicates
the time out limit of 10 minutes was reached.

2D_POLY - CPU results
Φ [#]: 1000 2000 4000 6000 8000 10000 12000 14000 16000
tIPF [s] 0.40544 0.67813 1.2238 1.7682 2.3126 2.8571 3.4009 3.9858 4.5358
tPF [s] 0.54203 0.97963 1.8545 2.7853 3.7160 4.6688 5.5742 6.5936 7.4768
tP [s] 0.59151 1.0691 2.0248 3.0361 4.0464 5.0777 6.0641 7.1547 8.1091
tIP [s] 0.4834 0.81085 1.4643 2.1180 2.7708 3.4237 4.0762 4.7691 5.4274
tN [s] 1.7089 3.0150 5.6405 8.0359 10.895 13.571 15.854 18.686 21.508
tI [s] 0.79717 1.3481 2.4471 3.5455 4.6437 5.7415 6.9214 8.0875 9.2054
tIF [s] 0.61854 1.0414 1.8868 2.7308 3.5742 4.4181 5.3471 6.2614 7.1283
tF [s] 1.2245 2.2729 4.0929 6.2159 8.3857 10.516 12.771 14.118 16.353

Table F.8: 2D_POLY: Experiment 1. Execution time for CPU variations. Variable number of
measurements, Φ = 1000, 2000, 4000..., 16000. Fixed number of parameters, Ψ = 2. T/O indicates
the time out limit of 10 minutes was reached.
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F.4 SINUSOIDAL

Experiment 1 - SINUSOIDAL - GPU results
Ψ [#]: 3 6
tIPF [s] 0.46245 261.32
tPF [s] 0.34064 171.16
tIF [s] 0.44354 313.16
tIP [s] 2.0168 T/O
tI [s] 1.8801 T/O
tP [s] 1.4150 T/O
tF [s] 0.61057 306.77
tN [s] 2.4468 T/O

Table F.9: SINUSOIDAL: Experiment 1. Execution time for GPU variations. Fixed number of
measurements, Φ = 256. Variable number of parameters, Ψ = 3, 6. T/O indicates the time out limit
of 10 minutes was reached.

Experiment 1 - Sinusoidal - CPU results
Ψ [#]: 3 6
tIPF [s] 0.65133 348.31
tPF [s] 0.60585 328.02
tIF [s] 0.62511 475.87
tIP [s] 1.7574 T/O
tI [s] 2.7362 T/O
tP [s] 1.5364 T/O
tF [s] 1.1185 T/O
tN [s] 3.1107 T/O

Table F.10: SINUSOIDAL: Experiment 1. Execution time for CPU variations. Fixed number of
measurements, Φ = 200. Variable number of parameters, Ψ = 3, 6. T/O indicates the time out limit
of 10 minutes was reached.

Experiment 2 - SINUSOIDAL - GPU results
Φ[#] 200 300 400 500 600
tIPF [s] 143.37 197.44 290.98 331.18 303.05
tPF [s] 92.284 124.00 185.88 211.29 194.02
tIF [s] 184.24 196.07 277.46 315.24 277.74
tIP [s] T/O T/O T/O T/O T/O
tI [s] T/O T/O T/O T/O T/O
tP [s] T/O T/O T/O T/O T/O
tF [s] 289.84 207.85 297.03 295.71 263.01
tN [s] T/O T/O T/O T/O T/O

Table F.11: SINUSOIDAL: Experiment 2. Execution time for GPU variations. Variable number
of measurements, Φ = 200, 300, ..., 600 Fixed number of parameters, Ψ = 6. T/O indicates the time
out limit of 10 minutes was reached.
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Experiment 2 - SINUSOIDAL - CPU results
Φ [#]: 150 200 250 300 350
tIPF [s] 395.78 333.13 524.20 616.48 T/O
tPF [s] 344.50 328.03 472.66 562.36 T/O
tIF [s] T/O T/O T/O T/O T/O
tIP [s] T/O T/O T/O T/O T/O
tI [s] T/O T/O T/O T/O T/O
tP [s] T/O T/O T/O T/O T/O
tF [s] T/O T/O T/O T/O T/O
tN [s] T/O T/O T/O T/O T/O

Table F.12: SINUSOIDAL: Experiment 2. Execution time for GPU variations. Variable number
of measurements, Φ = 150, 200, ..., 350 Fixed number of parameters, Ψ = 6. T/O indicates the time
out limit of 10 minutes was reached.
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