
Analysis and Design
Optimization of Offshore

Wind Turbine Support
Structures

Dong et al., 2012

Jeppe Bjørn Jørgensen

Christian Fløe Nissen

Master Thesis

Design of Mechanical Systems

Aalborg University

The 4th of June 2013





 

 

Study Board of Industry and 
Global Business Development 
Fibigerstraede 16 
DK - 9220 Aalborg East 
Phone +45 99 40 93 09 
lft@m-tech.aau.dk 
www.ses.aau.dk 

 
 
 
 
 
 
 
Title:   Analysis and Design Optimization of  
  Offshore Wind Turbine Support Structures 
Semester:   Master Thesis 
Semester theme:  Design of Mechanical Systems 
Project period:  1/2 2013 - 4/6 2013 
ECTS:   30 ECTS 
Supervisors:   Erik Lund and Lars Chr. T. Overgaard 
Project group:  DMS 4, 40. 
 
 
 
_____________________________________ 
Christian Fløe Nissen 
 
 
_____________________________________ 
Jeppe Bjørn Jørgensen 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Number printed: 5 Pieces 
Pages:   111Pages 
Appendix:   13 
Enclosures:   CD 
 
 
 
By signing this document, each member of the group confirms participation on equal terms in the 
process of writing the project. Thus, each member of the group is responsible for the all contents in 
the project. 
 

SYNOPSIS: 
 
The main purpose of this project is to investigate 
different methods for performing a size optimization 
of offshore wind turbine support structures w.r.t. 
fatigue.  A generic jacket model and a load case have 
been provided and it is desired to minimize the mass 
with fatigue as a constraint by using gradient based 
optimization methods. The main focus is a 
development of analytical Design Sensitivity Analysis  
(DSA) for fatigue constraints with non-proportional 
load spectra. 
A 3D MATLAB FE program is developed in order to 
perform the structural analysis and determine the 
accumulated damage. 
Small benchmark examples are used to investigate and 
determine the most suitable methods for damage 
estimation, optimization, and the analytical DSA. 
The DSA is made both numerically and analytically 
by the adjoint- and direct differentiation method in 
order to obtain the gradients of the fatigue constraint 
functions w.r.t. design changes.  
Parametric studies and optimization have been 
performed with the selected methods. A SLP 
algorithm is used and an adaptive move limit strategy 
is developed to obtain successful results.  
It can be concluded, that the developed methods have 
a great potential for use in structural optimization 
since they performed well for the optimization of the 
jacket structure.  
Furthermore, the optimization and analytical DSA of 
fatigue have proven its potential for future work. 





Preface

This report is written by Christian Fløe Nissen and Jeppe Bjørn Jørgensen,

students at fourth semester of the master program ’Design of Mechanical

Systems’ at Aalborg University. The project has been supervised by professor

Erik Lund and associate professor Lars Chr. T. Overgaard.

Reading Guide

Throughout the report references will be used according to the Harvard method.

At the end of the report a full list is compiled with the complete details such

as title, authors, ISBN, publisher, etc.

Figures and tables are numbered according to the chapter where they are pre-

sented, such that the first figure in Chapter 7 is called Figure 7.1 etc. Figures

and tables have captions with explanatory text. Equation references are num-

bered the same way, but they also include a second index with cross reference

to the section number in the chapter. Equations are written inside a paren-

thesis. Matrices are denoted with a bold symbol and an overline is used for

vector notation. The notation is presented in the nomenclature and acronym

list before the content of the report.

Throughout the report both global and local coordinate systems are used.

The global coordinate system will be denoted using capital letters (X,Y,Z)

and a local coordinate system will be written as (x’,y’,z’).

Appendices are placed at the end of the report, and can be seen as supple-

mentary reporting on applied theories, methods, benchmarks etc. included

for the reader to gain more in-depth knowledge on the subject.

A CD is attached to the report containing referenced literature that has been

downloaded from the Internet, the report in PDF format as well as MATLAB

and ANSYS scripts. The MATLAB scripts includes the DSA and optimiza-

tion scripts.
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Resumé

Form̊alet med dette projekt er at udvikle en metode til gradientbaseret

strukturel optimering med hensyntagen til udmattelse. Der lægges stor vægt

p̊a at bestemme designfølsomhederne analytisk, da der i litteraturen ikke er

fundet udviklede metoder til dette.

Projektet tager udgangspunkt i simple bjælkemodeller samt en generisk

model af et offshore vindmølle-fundament udviklet til vanddybder p̊a

mellem 30-50 m med tilhørende lastserier. Et vindmøllefundament designet

som en gitterstruktur anvendes, da designet i høj grad er styret af

udmattelseskriterier. Der lægges i projektet et stort fokus p̊a valget af

metoderne bag modelleringen og optimeringen af fundamentet.

Finite element metoden anvendes til spændingsanalyse i konstruktionen.

Til skadesestimeringen anvendes en rainflow optælling af de beregnede

spændingsspektre, der sammenholdes med Wöhler-kurver. Der tages desuden

hensyn til indflydelsen af middelspændinger i skadesberegningen vha. et

Goodman diagram.

Et klassisk optimeringsproblem opstilles, hvor objektfunktionen udgøres af

den samlede vægt af konstruktionen og en estimering af skaden medtages

som bibetingelse, mens designvariablene udgøres af diametre og tykkelser i

rørprofilerne. Et hovedform̊al med projektet er at bestemme de nødvendige

gradienter af b̊ade objektfunktionen og skadesbibetingelserne analytisk.

Resultatet verificeres med finite difference approksimationer.

I dets nuværende form er der i enkelte tilfælde problemer med den analytiske

bestemmelse af design følsomhederne, hvilket skyldes den implementerede

datah̊andtering.

Indledningsvis afprøves den udviklede optimeringsprocedure p̊a simple

bjælkemodeller inden den anvendes p̊a vindmøllefundamentet. Resultaterne

viser en vellykket implementering af metoden. Det har vist sig, at der

er et stort potentiale for at anvende gradientbaseret optimeringsmetoder
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viii RESUMÉ

med udmattelse som bibetingelse p̊a fundamentmodellen. Gennem analysen

og designoptimeringen af vindmøllefundamentet er det blevet undersøgt og

klarlagt, hvilke metoder, som er mest effektive at anvende. Herunder den

analytiske følsomhedsanalyse.
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Nomenclature

λ Lagrange Multiplier −
ε Normal strain m

m

η Damage −
µ Mean value −
ω Circular eigenfrequency 1

rad

ρ Density kg
m3

σ Normal stress Pa

σ′f Fatigue strength at one reversal Pa

σa Stress amplitude Pa

σm Stress mean Pa

σu Ultimate tensile strength, normal Pa

σy Yield stress, normal Pa

σNF Fully reversed fatigue strength Pa

τ Shear stress Pa

τu Ultimate tensile strength, shear Pa

θx Rotation around the X-axis Rad

θy Rotation around the Y-axis Rad

θz Rotation around the Z-axis Rad

A Cross sectional area m2

A0 Amplitude −

b Exponent of the S-N curve −

d Diameter m
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4 NOMENCLATURE

E Young’s module Pa

f Cost Function −

G Shear modulus Pa

g Constraint Function −

I Area moment of inertia m4

i Table columns index −
Ip Polar moment of inertia m4

Iy Area moment of inertia around the Y-axis m4

Iz Area moment of inertia around the Z-axis m4

j Design variable index −

K Global stiffness matrix −
k Constraint functions index −

L Length m

Le Element length m

M Global mass matrix −
M Moment Nm

n Number of counted cycles −
Nf Number of cycles to fatigue failure −
NAmp Number of amplitude intervals −
NCS Number of cross sectional sample points −
NDOF Number of degrees of freedom −
NE Number of Elements −
Ng Number of constraint functions −
Ni Number of intervals in the rainflow table −
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NMean Number of mean intervals −
Nx Number of design variables −

P Force N

Q First moment of inertia m3

R Centerline radius m

r Radius m

RF Rainflow function −

T Transformation matrix −
T Torsional moment Nm

t Thickness m

tB Beginning time s

U Global displacement vector m

U ′ Nodal displacement vector m

u Displacement in the X-direction m

V Shear force N

v Displacement in the Y-direction m

ν Poisson ratio −

wc Center line deflection m

x Design Variable −

w Displacement in the Z-direction m
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Chapter 1

Introduction

Since the earliest successful attempts of applying structural design optimiza-

tion more and more components and structures in engineering have been de-

signed using various optimization schemes. For many products the design is

governed by fatigue considerations. Thus, it is evident that including fatigue

considerations in optimization may have many benefits. Several previous at-

tempts of including simple fatigue considerations in structural optimization

has been made. However, these attempts have often been quite limited in the

sense that for instance only proportional load spectra can be used. Thus, the

aim of this project is to develop a method for including fatigue considerations

in gradient based optimization for larger non-proportional load spectra.

The design of support structures for Offshore Wind Turbine (OWT)s are

highly dependent on fatigue loadings. Thus, a generic support structure for

an OWT will be used for this project in order to examine the potential of

including fatigue considerations in structural optimization on a relevant ap-

plication.

In contrast to onshore wind turbines, the offshore location calls for a large sup-

port structure on which the wind turbine may be erected. So far the majority

of offshore wind turbines have been erected on water depths often no deeper

than 30 m with support structures being of the gravity based monopile kind.

It can be problematic to erect large wind farms along the cost line due to many

issues, i.e. coast protection. Thus, the tendency is to erect larger wind farms

in deeper waters. For water depths exceeding 30 m support structures of the

monopile type is no longer economical or possible due to the large thicknesses

of the plates used for the pile. Thus, the use of jacket type support structures

are more desirable in order to minimize the Levelized Cost of Energy (LCOE)

9
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for the wind turbine.

In this project a steel jacket support structure, known from the oil and gas

industry, for water depths as high as 50 m is examined, see Figure 1.1.

Figure 1.1: Wind turbine with steel jacket support structure [Dong et al.,

2012].

The jacket structures are made of hollow steel tubes welded together

onshore and transported by ship to the wind farm site. The offshore jacket

structure is affected by both wind and wave loads. The dynamic response

of the jacket structures is larger when they are used for support structure

for wind turbines, than when used for oil and gas platforms. This is due to

the significantly larger influence of the alternating wind loads, which makes

fatigue considerations critical in the design process. The estimated service life

of wind turbines is commonly 20 years or higher. Naturally, the service life of

the support structure cannot be lower than the estimated service life of the

wind turbine.

By the use of gradient based optimization methods in collaboration with

fatigue considerations, an optimum support structure is sought, optimum
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being the lightest structure, and implicitly the cheapest solution, with the

lowest LCOE impact. The optimized jacket structure will have a significant

impact on lowering the LCOE of the OWT for deeper seas since the cost of

the support structure may be as high as 20% of the LCOE dependent on the

water depth and the design concept [Frantzis et al., 2013]. A lighter support

structure may also allow for an easier transportation and on-site mounting.

1.1 Problem Definition

Due to the large number of challenging tasks and the limited time frame for

the project some main focus points have been chosen. These are highlighted

in the following.

The project will aim at developing a method for structural design optimization

with regards to fatigue considerations. The method will be developed using

smaller models before it is applied to the full jacket structure to examine

the potential of the method. In order to lower the LCOE of the OWT it

is chosen to minimize the weight of the jacket structure with fatigue and

manufacturing constraints. The overall aim for the structural optimization is

to obtain a design where all the evaluated points in the structure are at the

fatigue limit. Hence, the material in the structure has been minimized and

distributed in the most efficient way. The manufacturing constraints means,

that symmetry conditions are enforced on the jacket structure. A damage

estimation of the individual structural elements in the jacket support structure

must be performed in order to verify, that the fatigue strength is sufficient.

One objective of the project is to use and implement Finite Element (FE)

based methods for the stress analysis of the jacket structure. This will act as

the base for the design optimization. The outer diameters and wall thicknesses

of the circular hollow tubes, used throughout the report, are the set design

variables. Only linear elastic materials and small deformations are allowed

for the analysis. Thus, a linear FE model can be created and used for the

analysis.

The developed method must be applicable on real life structures with non-

proportional load series. To examine this, the method is applied on a generic

jacket support structure. A number of requirements are set for the optimized

jacket structure in order to evaluate the usability of the developed method on

an actual structure.
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The jacket structure must be:

� Designed for low weight.

� Designed using gradient based optimization methods.

� Designed using fatigue constraints.

� Symmetric in design.

� Able to withstand the applied loads for a service life of 20 years.

� Analyzed by a developed FE program based on 3D frame elements.

The fulfillment of the above requirements will determine the applicability

of the developed method.

The use of gradient based optimization methods in collaboration with fatigue

constraints is still under development. The potential of this optimization

method may be large, but challenges are to make the optimization functional,

efficient, and accurate. During a literature study the topic is examined,

see Zhou et al. [2009] or Holmberg [2013], and it is found, that no one

has developed and published analytical Design Sensitivity Analysis (DSA) of

fatigue constraints with non-proportional load spectra. Thus, the main focus

of this project is to develop an efficient analytical DSA for fatigue constraints

with a non-proportional load spectra. This project serves as one of the first

attempts to develop an efficient analytical DSA.

Thus, it will be the goal of this project to find the most suitable methods

for:

� The damage estimation.

� The set up of fatigue constraints.

� The analytical design sensitivity analysis of fatigue constraints.

� The optimization with fatigue constraints.

The list serves as a an overview of the problem definition, which will be

evaluated as a part of the conclusion. The purpose of using the different

methods is to find an efficient procedure for determining an optimized

structure subjected to fatigue constraints. Computational time and solution

accuracy will be used to compare the different applied methods and to choose
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the best suited method for the overall optimization procedure. The methods

must be benchmarked in order to prove that they are functional and accurate.

1.1.1 Delimitations

Environmental effects on the support structure from the harsh sea environ-

ment will not be considered in the project. Furthermore, fatigue strength of

the welded details in the structure is left unexamined. The effects of temper-

ature, radiation, buckling, impact, creep, relaxation, corrosion, and abrasion

are disregarded as well.





Chapter 2

Jacket Structure

A generic steel jacket support structure designed for a 5 MW OWT and a

single load case are provided for the project. These are presented in this

chapter and described in Vorpahl et al. [2011]. Lastly, an initial treatment of

the provided load spectra is clarified. Appendix A supports this chapter.

2.1 Properties of Jacket Structure

The jacket structure is designed for a water depth of 50 m and has a total

height of 70.15 m. It rests on four piles of length 45 m rammed into the sea

bed. A conical tower of height 68 m, representing a wind turbine tower is

mounted on the jacket structure via a concrete Transition Piece (TP).

The parts can be seen on Figure 2.1a. The corresponding properties for the

coloured parts on Figure 2.1b can be found in Table 2.1. The jacket structure

is assembled from hollow steel tubes with circular cross sections, and x- and

k-connections, which are welded together. Numbering and name conventions

of the legs, k-joints, and x-joints can be seen on Figure 2.2, where the sides

and the braces of the jacket structure are named as well.

Property set Component Color Outer diameter [m] Thickness [mm]
1 x- and mud braces gray 0.8 20
2 leg at lowest level red 1.2 50
3 leg 2 to 4 blue 1.2 35
4 leg crossing TP orange 1.2 40

Table 2.1: Properties of jacket members.

15
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TP

Tower

Piles

(a)

70.15 m

12 m 12 m

8 m8 m

(b)

Figure 2.1: (a) Tower, piles, and TP, (b) jacket structure with measurements
[Vorpahl et al., 2011].

The properties for the steel jacket structure are given by [Vorpahl et al.,

2011] as:

ρ = 7850 kg/m3 E = 2.1e11 Pa ν = 0.3 (2.1.1)

A global Cartesian coordinate system is introduced on Figure 2.2. It is

positioned 20.15 m below the top of the TP according to the Z-coordinate,

which is defined in the upward direction. The origin is placed at the Mean

Sea Level (MSL) in the centerline of the tower. The X-axis is normal to the

sides ’S2’ and ’S4’ seen in Figure 2.2, and its positive direction is towards side

’S4’. The mudline is located at Z = −45 m.

The jacket structure includes a concrete TP, which connects the jacket

structure to the wind turbine tower, see Figure 2.1a. The TP is a rigid concrete

block with a mass of 666 t and a size of 4x9.6x9.6 m. It is positioned on the top

of the jacket structure, where four additional steel members (coloured orange

on Figure 2.1b) are embedded into the concrete. The jacket structure model

is a cantilever frame structure, which is anchored at the mudline, providing

the Boundary Condition (BC) for the model.
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Figure 2.2: Global coordinate system located at MSL and name convention
for the sides, [Vorpahl et al., 2011].

2.2 Load Case

The main loads on the jacket support structure are caused by the wind and

the waves. These loads are obtained by performing a multi body analysis of

the entire OWT assembly using the software HAWC2 from the Risø National

Laboratory. The results from this multi body analysis are provided by the

DTU Wind Energy Group and contain the forces P x and P y, and the moments

Mx and My as seen in Appendix A. These are applied in the center of the

TP.

The loads obtained from the multi body analysis are highly dependent on

the geometry of the jacket structure, since this affects the mass, damping, and

stiffness of the model and thus the dynamical response. As a result, the loads

on the model are design-dependent and will change for each geometry change.

This means, that the multi body analysis should be rerun for every design
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change made during the optimization iterations yielding an updated load case.

The effect of the design changes on the obtained loads is however disregarded

in the project, since a full coupling between the fatigue optimization and the

multi body analysis is impractical for the project purpose.

The obtained load case is calculated for a finite period of time i.e. 15

minutes. Thus, the full load-history for 20 years must be assembled from

several different finite time load cases applied after each other. This will yield

a rough estimation of the applied loads during the 20 years time period. Note,

the wind turbine is assessed to operate only 80% of the time, [Planning, 2013],

which affects the estimation of the Total Life Time (TLT) damage.

2.2.1 Load Case Reduction

Load series reduction can be a helpful tool, but due to the limited time frame

it has not been examined in this project. Thus, only a simple reduction

of the load spectra will be made by applying a smoothing operation of the

load spectra. This is illustrated on Figure 2.3. The smoothing operation can

be made, because the estimated damage will remain unchanged, since only

the load amplitude and its corresponding mean between two turning points

contribute to the damage. Thus, the load spectra used in this project will

only consist of turning points as seen from Figure 2.3.
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Figure 2.3: Example of a load spectrum and the corresponding smoothened
load spectra.



Chapter 3

Solution Approach

The solution strategy of the project is presented in the following, which may

be seen as a guide to the content of the report. This chapter is supported by

Appendix B.

As mentioned in Chapter 1 the purpose of the project is to determine

the most efficient procedures and methods for determining the lightest pos-

sible design able to withstand an applied load spectra. The fatigue life of a

structure is highly affected by the resulting stress amplitude from the applied

dynamic loading. Thus, in order to assess the fatigue life, a stress analysis and

an accumulated damage estimation must be performed. The stress analysis

and the damage estimation are joined in the part of the report known as the

Structural Analysis Part, see Figure 3.1.

Load
Spectrum Structural Analysis

Optimization

Damage 
Mass

Diameter
Thickness

Optimum
Design

Yes

No

Final Design

Figure 3.1: Solution strategy for the project.

The Optimization Part has the purpose of clarifying the methods and

results for mass minimization, without compromising the desired service life.

19
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However, the main focus in this part is to develop the analytical DSA of the

fatigue constraint for a spectra with non-proportional loads.

The FE model is changed in each iteration of the optimization routine,

resulting in an altered damage. As mentioned, the aim for the structural

optimization is to obtain the lightest possible design, where all the evaluated

points in the structure is below the fatigue limit. Such a design will yield

the global optimum solution, but may be hard or even impossible to achieve

in practice. Instead a local optimum solution will be sought, where some

evaluated points will be close to the fatigue limit.

The full optimization procedure, including the FE structural analysis, will be

conducted by the use of several MATLAB R2010b (MATLAB) scripts and

sub-functions, which can be found on the enclosed CD, Appendix N.

The two major parts of the project, the Structural Analysis Part and the

Optimization Part, will be examined individually in more details in the

following sections.

3.1 Structural Analysis Part

One of the main tasks of the Structural Analysis Part is to accurately deter-

mine the stresses in the used FE model as well as estimating the accumulated

fatigue damage from the stress results. A 2D FE beam analysis program has

been provided by Erik Lund. The provided 2D beam program is rewritten

for the analysis of 3D models. This is done by expanding the 2D beam ele-

ment formulation with three additional nodal DOFs to the implemented 3D

element formulation. The 3D frame element is developed based on Bernoulli-

Euler beam theory.

Up to six different load cases are examined in each loop of the structural

analysis. These are a unit load applied in the positive X-, positive Y-, and

positive Z-direction as well as a positive unit moment around the X-, Y-, and

Z-axis. Each load case is examined individually and the global stiffness matrix

is reused in the six load cases. The result is six sets of global displacements

for each DOF in the model. Each displacement set, obtained by a unit load,

is scaled according to the applied load spectra. By superimposing the scaled

displacements, the actual displacement field for a given load sample point is

determined. The model stresses may be found based on this obtained set of

global displacements. Note, this approach requires linearity of the FE model.
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Each load spectrum is sampled in a finite number of load sample points. Thus,

one set of global displacements is obtained for each load sample point. This

results in a stress spectrum for each cross sectional sample point of the FE

model. These are counted by the rainflow method to give a number of mean

and amplitude stresses, and placed into a sorted rainflow table to make the

approach efficient w.r.t damage estimation and DSA. The accumulated dam-

age in each cross sectional sample point may be determined by the use of

Palmgren-Miner’s damage rule. The Structural Analysis Part is illustrated in

Figure 3.2.

Load
Spectrum

Sample
Load

Spectrum

FE 
Analysis

Damage
Rule

Optimization
Final

Design

Structural Analysis

Counting
Stresses

FE ModelGeometry, Unit Loads, 
Boundary Conditions

Figure 3.2: Solution strategy for the Structural Analysis Part.

In this project, simple beam models and the generic jacket structure, both

made from circular hollow profiles, will be used. Thus, the geometric inputs

to the structural analysis is the outer diameter and the wall thickness of each

frame element in the FE model. The output is a predicted damage value in

a predetermined number of sample points in the cross sections of the beams

as well as the mass of each beam. This means a FE analysis of the structure,

a sampling of the applied load spectrum, a counting of the resulting stress

spectrum, and an accumulated damage estimation, are required, as illustrated

in the dotted-line box on Figure 3.2. Different methods for the damage

estimation will be applied in order to determine the most suited method.

The Structural Analysis Part will however consist of the same basic subparts

illustrated in Figure 3.2 regardless of the applied method in the individual

subparts.
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3.2 Optimization Part

The Optimization Part treats the design variables, outer diameter and

thickness, and changes the design with the aim of minimizing the mass of

the used FE model without violating the fatigue constraints. In the process

of fulfilling this aim analytical and numerical methods for the DSA will be

examined. The optimization problem will be defined in details in Chapter 7,

but the main definitions are listed here:

� Objective: Minimize mass.

� Design variables: Profile diameters and thicknesses.

� Design inequality constraints: Damage.

The optimization is performed by applying gradient based optimization

methods. The overall procedure for the Optimization Part remains unchanged

regardless of the used method. An overview of the Optimization Part is given

in Figure 3.3.

Optimum
Design?

Structural Analysis

Final
Design

Optimization

Sensitivity
Analysis

Optimization
Algorithm

Yes

No

Design
Change

Figure 3.3: Solution strategy for the Optimization Part.

The main focus area of the project is an analytical determination of

the design sensitivities. In previous studies, the determination of design

sensitivities has mainly utilized Finite Difference (FD) methods applied on

proportional load spectra. However, this approach is not practical when

optimizing large models due to high calculation times or even applicable real

life load series. Thus, one aim is to reduce the computational effort needed to

determine the design sensitivities by introducing analytical DSA.

A Sequential Linear Programming (SLP) algorithm will be chosen for

the optimization due to its simplicity and transparency. A number of

cross sectional sample points in each element will be used for the analysis.

Aggregated functions will be considered and applied in order to cluster and
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reduce the number of constraints.

Initially, small simple benchmark examples will be used to verify the method

for the optimization using fatigue inequality constraints. After this the method

is applied on the jacket structure to examine the potential of the developed

method on a real life structure. The use of smaller benchmark examples will

ease the validation, since the optimum solution may be known prior to the

optimization, due to the use of parametric studies.

An optimized design should always be analyzed thoroughly in a final

validation before put into production. However, a final validation of the

optimized models will not be attempted in this project, since the focus is

on the developed method.

3.3 Program Development Model

The MATLAB FE program is developed based on the method known as

Structured Program Development (SPD), which is presented in Soerensen

et al. [1988]. The method is a part of the product development model, which

can be seen on Figure 3.4.

Analysis
Requirement
Specification Design

Imple-
menta-

tion

Inte-
gration

Acceptance
test

Mainte-
nance

SPD model

Figure 3.4: Illustration of the parts contained in the SPD model.

The Requirements are determined in the problem definition, section

1.1. The term ’Design’ covers the realization of the requirements and

partitioned into sub processes. Every process is split into sub-modules, with

specific requirements. Implementation covers the module design, module

development, and module testing. The integration contains the coupling of

modules, where processes are linked one by one and tested in connection

with other processes. The acceptance tests serves as a verification of the

requirements.

The method can be used during the development of all the parts of the

MATLAB FE program, but the method is only exemplified for the damage

estimation including the FE model on Figure 3.5.



24 CHAPTER 3. SOLUTION APPROACH

Overall
Design
Concept

Require-

Speci-
fication

Damage
Estimation

Stiffness

Displace-
ments

Damage

Module-
Design

Module-
Development

Module-
Test

Modul-
Integration

Proces-
integra-
tion

Acceptance
testing

Implementation IntegrationDesign

Proces-
Design

Program-
Design

Proces-
Integration

DSA

Optimi-
zation

ment

Stresses

Counting
Stresses

Coding

Figure 3.5: SPD model for the damage estimation in the project.

The modules stiffness, displacements, stresses, counting stresses, and

damage are tested and verified individually before they are combined and

the full program is tested. Thus, the method may ease the debugging on the

larger scale since sub-functions may be verified individually. The modules

are presented and verified continuously throughout the report. A full list of

program functionalities can be found in Appendix B.
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Chapter 4

Finite Element Analysis

A FE beam program is developed for 3D stress analysis of the used

models. The element formulation, assumptions, governing equations, and the

determination of stresses in the cross sections will be described briefly in the

following and details may be found in Appendix C. The bookkeeping will not

be explained in details. The MATLAB FE program will be validated using

benchmark examples analyzed in ANSYS Mechanical APDL v14 (ANSYS) as

well as analytical results. Modeling limitations are examined in Appendix D.

4.1 The 3D Frame Element

The developed MATLAB FE program is an expansion of a 2D beam analysis

code provided at the project start. In order to be applicable for the analysis of

3D models like the generic jacket structure, the original program is modified

by including a 3D frame element in the code.

The element implemented in the MATLAB FE program is a two-node 3D

frame element. This element has six DOFs in each node:

U ′l =
[
u′l v′l w′l θx

′
l θy

′
l θz

′
l

]T
for l = 1, 2 (4.1.1)

where l is the node number. These are three translations and three rotations

as illustrated on Figure 4.1.
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Figure 4.1: Positive directions of the DOFs of the two-node 3D frame element.

The stiffness of the 3D frame element can be seen as a combination of

contributions from a bar and a beam element since it contains both axial,

torsional, and bending stiffnesses. The local stiffness matrix for the 3D frame

element is derived in Appendix C.

4.2 Frame Element Stiffness Matrix

The local stiffness matrix is a 12x12 matrix given by the two nodes with six

DOFs each. By setting up the 12 equations linking the nodal displacements

to the nodal forces and moments, the 3D frame element stiffness matrix in

local coordinate system, K ′e can be obtained, see Figure 4.2.
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Figure 4.2: The local stiffness matrix of a 3D frame element.

This gives the element equilibrium:

K ′e · U ′ = P
′

which is given in the local coordinate system. By the use of the transformation

matrix from Appendix C.1, transformations between global and local
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coordinate systems can be carried out by:

Ke = T T
12x12K

′
eT 12x12 (4.2.1)

The global stiffness matrix may be assembled by several local 12x12 stiffness

matrices which have been transformed using equation (4.2.1). Transformed

local stiffness terms affecting the same global DOF are added in the global

stiffness matrix. Knowing the applied force on the structure and having

assembled the global stiffness matrix enables a determination of the global

displacements from:

KU = P (4.2.2)

This is known as the global equilibrium equation. Stresses in the elements may

be determined from the found displacements as seen in the following section.

4.3 Stresses in Cross Sections

The stresses must be examined in various sample points in the cross section in

order to use the FE program to estimate the damage in the jacket structure.

The normal and shear stresses are examined individually and evaluated in the

local element coordinate system in the following.

The shear and normal stresses in the FE program are computed in a number of

cross sectional sample points, NCS provided by the user. The sampling in the

cross section is conducted along the dashed lines seen in Figure 4.3a. These

are defined from the α-angle given by α = 360◦

NCS
. αInitial is an angle offset value

shown on Figure 4.3a, and it is used to rotate all the cross sectional sample

points by an input value provided by the user.

This approach will not guarantee that a sample point is placed in the exact

spot of the highest damage on the element cross section. This is illustrated

in Figure 4.3b for a cantilevered beam example with six tip loads. As NCS

increases the chance of finding the maximum damage on the cross section

increases as well. However, the calculation time is increased as the number of

cross sectional sample points increases. The suitable number of cross sectional

sample points will be problem dependent.

In order to calculate the damage, a suitable number of cross sectional

sample points must be chosen. This choice is a compromise of computational

time and the needed number of sample points on the cross section. The
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Figure 4.3: (a) The cross section of a frame element with four cross sectional
sample points, illustrated by dashed lines, evenly distributed starting from
the y’-axis. (b) The influence of the number of cross sectional sample points,
NCS on the maximum damage.

bookkeeping for the cross sectional sampling points is shown in Table 4.1 for

four sample points in the cross sections.

Element Element 1 Element 2

Node Node 1 Node 2 Node 1 Node 2

αi [deg.] 0 90 180 270 0 90 180 270 0 90 180 270 0 90 180 270

σi

τ i

Table 4.1: Sampling stresses in a cross section containing four sample points

evenly distributed with αInitial = 0.

Having clarified how the cross sectional sample points are determined and

how they are handled in the bookkeeping, the stresses in the cross section

may be found. The details of the stress calculation can be found in Appendix

C. Note, only the final equations for the stress calculations are presented in

this section. First, the normal stress in the cross sectional sample points is

examined.
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4.3.1 Normal Stresses

Both the axial and the bending stress contribute to the normal stress in

the cross sectional sample points. The axial stress is determined from the

axial force and the bending stresses are determined from an applied bending

moment or transverse force. For details see Appendix C.2. The normal stress

in each cross sectional sample point may be determined by a superposition of

the normal stresses:

σ (d, t) = σaxial(d, t)−
My · d

2 · Iy(d, t)
− M z · d

2 · Iz(d, t)
(4.3.1)

Next, the determination of the shear stresses is examined.

4.3.2 Shear Stresses

Three loads contribute to the shear stress in each cross sectional sample point.

These are the y’- and z’-shear forces as well as the torsional moment. The

procedure for determining the shear stresses in a circular hollow cross section

can be read in detail in Appendix C.3. The total shear stress in each cross

sectional sample point may be determined by a superposition of the y’- and

z’-shear stress:

τy (d, t, α, αInitial) =
V y ·Qy (d, t, β)

Iz(d, t) · 2t
+ τTy (α+ αInitial)

τ z (d, t, α, αInitial) =
V z ·Qz (d, t, 90◦ − β)

Iy(d, t) · 2t
+ τTz (α+ αInitial)

τ tot (d, t, α, αInitial) = τy (d, t, α, αInitial) + τ z (d, t, α, αInitial) (4.3.2)

where β is used to determine the first area moment of inertia and defined

in the interval 0 ≤ β ≤ π
2 , see Figure C.4a.

The sign on the shear force will determine whether the shear stresses from the

two shear forces are added or not, since the shear force is the only parameter

in equation (C.3.3) which may be negative.

In order to examine the shear stress distribution over the cross section, four

cases are set up. Unit shear loads with changing signs are used. This is

examplified by using the properties from row number one in Table 2.1. The

results can be seen on Figure 4.4.

For the case where V y and V z are in the same direction, the maximum shear

stress are in 45◦+i·90◦, where i is zero or a positive integer. For the case where

V y and V z are in the opposite direction, the shear stress increases/decreases
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almost linearly, and it is fluctuating between the maximum and minimum

value of one of the shear components (τy or τ z). Thus, it can be concluded

that the worst case occurs when the sign on the shear forces are equal.
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Figure 4.4: Shear stresses in a hollow circular cross section as a function of

the angle α with αInitial = 0.

Having found the stresses in the cross sectional sample points, the FE code

is verified in the following section.

4.3.3 Scope of Application for the FE Model

In the following it is examined for which design variables the FE-model is

valid. The beam element used for the FE-analysis is based on Bernoulli-Euler

beam theory. Thus, errors in the obtained results must be expected for short

stubby beams. The diameter to length ratio, below which errors will be intro-

duced in the results, is examined in Appendix D. For convenience the main

graph of Appendix D is reprinted on Figure 4.5a. A cantilever prismatic

beam containing the frame elements is used for the investigation, and the tip

deflection is determined by Bernoulli-Euler and Timoshenko beam theory in

order to identify the limitations of the Bernoulli-Euler theory. The diameter

and length are varied for a fixed thickness of 0.02 m. It is concluded, that a
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relationship of 1/10 should be kept between the diameter and the length of

each frame element in order not to violate the Bernoulli-Euler assumptions,

see Figure 4.5a. From Figure D.2b it can be concluded, that the thickness

has only a minor influence with regards to maintaining the Bernoulli-Euler

assumptions.

A limitation is introduced for the thicknesses as well. However, this

limitation is not caused by the Bernoulli-Euler beam theory, but is a result of

the formula used to approximate the first area moment of inertia, Q seen in

equation (C.3.6) in Appendix C.3. The formula approximating Q is only valid

for small tube thicknesses relative to the diameter. In order to examine when

the approximate formula will start to yield unreliable results a test example

is set up. An exact analytical solution is available for a full half circle. Thus,

the deviation between the case of a full half circle by the approximate and

exact analytical solution for Q can be obtained. The relative deviation of

the approximate and exact analytical solution for Q is shown on Figure 4.5b.

Based on Figure 4.5b the limit of the thickness to diameter ratio is set to

1/10, which will introduce an error on less than one percent in the calculated

results.
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Figure 4.5: (a) Relative deviation of tip displacements between the analytic

Timoshenko Model and the FE model for a study of diameter and length. (b)

The deviation between the approximate and exact solution for Q.
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4.4 Verification of FE Program

The MATLAB FE program is verified by a benchmark example in Appendix

C. The verification is made by comparing displacement, stress, and

eigenfrequency results to results obtained using ANSYS or analytical results.

The comparison of the normal stresses are repeated in Table 4.2 and the

comparison of shear stresses are repeated in Table 4.3. It can be concluded,

that the FE program works properly and that results are reliable, since

the deviation in the normal- and shear stresses are relatively low between

MATLAB and ANSYS. The approach for calculating shear stresses is verified

by the use of a simple cantilevered beam, since a direct comparison between

ANSYS and MATLAB results is difficult for even slightly complicated models.

Element Element 4

Node Node 2

α [deg.] 0 45 90 135 180 225 270 315

MATLAB result [ MPa] 0.867 -252.1 -356.2 -250.4 3.3 256.2 360.3 254.5

ANSYS result [ MPa] 0.875 -252.4 -356.7 -250.7 3.3 256.6 360.8 254.9

Difference, % 0.9 0.1 0.1 0.1 0.2 0.2 0.1 0.2

Table 4.2: Normal stresses in eight cross sectional sampling points with

αinitial = 0. Note, percentage difference is calculated from non-rounded values.

Shear stress component τxy τxz

ANSYS result [ Pa] −1532.4 0

MATLAB result [ Pa] −1529.1 0

Difference, percentage 0.2% -

Table 4.3: Comparison between shear stresses obtained from an ANSYS and

a MATLAB analysis of a simple prismatic cantilever beam.

4.5 Sub Conclusion

Through the chapter the element technology, on which the 3D frame elements

are based, has been examined. An implementation of the elements into

the MATLAB FE program was made and the results were verified by a

comparison to ANSYS. The eigenfrequencies, displacements, and stresses have

been verified through a benchmark example of a frame structure in Appendix

C. The MATLAB FE program will be used for the stress analysis of the

used FE models. Accumulated damage in each frame element of the model

will be assessed from the obtained stress values. The model limitations were
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investigated by a benchmark example, and a relationship of ten between length

and diameter was found. Furthermore, it was found that the approximate

formula for determination of the first area moment of inertia yields unreliable

results for thickness to diameter ratios below ten.





Chapter 5

Fatigue

In the following chapter the procedure used for calculating the accumulated

damage will be presented. This includes an introduction to the chosen cycle

counting method and the chosen damage rule. A benchmark example with

known cycle counting results and a known damage value is used for the

verification of the procedure. The procedure is implemented as a part of

the MATLAB FE program. Appendix E supports the present chapter.

5.1 Stress Life Approach

The service life of the jacket structure used in this project should be 20

years. During this time the load spectrum in Appendix A contains more than

1 · 108 cycles. Thus, the stress-life approach for modeling fatigue is chosen.

The approach is based on empirically determined data. This means, that

the accumulated damage is estimated from constant-life diagrams, where no

sequence- or interaction effects are taken into account. It is however possible

to include stress concentrations, joints, surface conditions, mean stress effects,

and others in the S-N curve. The S-N curves are also known as Wöhler curves.

The only effect considered in this project is the influence from the mean stress,

since no information is available for the remaining contributors. The method

for obtaining the damage in a structure can be seen on Figure 5.1. Each part

of the figure is explained in the following sections.

37
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Figure 5.1: Sequential steps in predicting fatigue damage based on the S-N
approach. Modified from Stephens et al. [2001].

5.2 Counting Stresses

Cycle counting methods are needed in order to compare the effect of variable

amplitude loading history to fatigue data obtained with constant amplitude

loading. Both the mean and the amplitudes of the spectrum are needed

in order to take the mean stress effect into account when estimating the

damage. The largest amplitudes are known to be the highest contributors to

the accumulated damage. Thus, a suited counting method capable of counting

all the highest amplitudes must be chosen in order to obtain a reliable damage

estimation.

The cycles must be counted such that the load ranges are maximized. Several

different methods for cycle counting are available. This includes the rainflow

method, range-pair method, racetrack method, level-crossing method, and

peak counting method.

Stephens et al. [2001] presents the rainflow method as the best and most

popular counting method. Furthermore, the rainflow method will be able

to count the largest amplitude ranges in the spectrum. Thus, the rainflow

method in chosen to count the various spectra in this project. See Stephens

et al. [2001] for an in-depth discussion of the rainflow method.

In this project the rainflow counting is carried out by a MATLAB

algorithm found in the script Rainflow.m. The raw output from the rainflow

count is a finite number of columns containing: stress amplitudes, σa, stress

means, σm, number of cycles, n, and the beginning time, tB of each stress cycle.

The cycles are either counted as a reversal or a cycle. The used rainflow script

is available from Nieslony [2003] and has been widely used since 2003. The
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rainflow counting method is verified by a benchmark example in section E.1

of Appendix E.

5.3 Sorting Rainflow Table

In order to calculate the accumulated damage and the design sensitivities

efficiently after the rainflow count, a sorting routine is used to divide the

resulting cycle count into a suited number of predefined intervals. This will

help reduce the total number of terms in the damage calculation and thus the

calculation time. In the following, the sorting routine used on the raw output

from the rainflow count is described. The benefits of using a sorting algorithm

for the DSA is discussed in section 8.3.

The first step in the sorting routine is to set up two intervals, an amplitude

interval and a mean interval. The number of desired amplitude and mean

intervals, NAmp and NMean, may be chosen by the user or by the study in

section 5.6.1. The amplitude interval step, A0,interval, is determined by finding

the maximum amplitude, A0,max, from the raw rainflow count and dividing

this by the number of desired amplitude intervals, NAmp:

A0,interval =
A0,max

NAmp
(5.3.1)

By multiplying A0,interval with 1 to NAmp the upper limit in each interval

may be determined. Take for example A0,max = 100 and NAmp = 4 which

will give the maximum values in the intervals: [25 50 75 100]. Thus, the

four amplitude intervals: 0 < A0 ≤ 25, 25 < A0 ≤ 50, 50 < A0 ≤ 75, and

75 < A0 ≤ 100 are set up.

The set up of the mean intervals is done in a much similar manner. However,

resulting mean values may be both positive and negative. Thus, the maximum

values of the mean interval are determined by:

µinterval = µmin +
(µmax − µmin)

NMean
(5.3.2)

where µmax and µmin are the maximum and minimum mean values determined

from the raw rainflow count. Again the fraction in equation (5.3.2) is

multiplied with 1 to NMean. As an example take µmax = 50, µmin = −50,

and NMean = 4, which will give the maximum values of the intervals:

[−25 0 25 50]. Thus, the four mean intervals: −50 < µ ≤ −25, −25 <

µ ≤ 0, 0 < µ ≤ 25, and 25 < µ ≤ 50 are defined.
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The raw rainflow count is sorted according to the intervals determined above.

Thus, counted stress cycles of almost equal amplitude and mean value will be

stored in the same interval when a sufficient number of intervals are used. The

amplitudes will however not be exactly the same, why a method for choosing

a suited amplitude value in a given interval must be examined. Three possible

approaches are examined for this.

5.3.1 Maximum Amplitude Approach

The first approach is to use the upper interval limits for the amplitude. The

result of this will most likely be an overestimation of the damage based on the

output matrix, since all cycles in each column will get the maximum interval

amplitude value. This approach is denoted the maximum approach.

It should be noted, that the mean value in each interval will always be set

using this approach.

5.3.2 Average Amplitude Approach

The second approach is simply to average the amplitude values in a given

interval. This means the amplitude value for the first interval 0 < A0 ≤ 25 will

be 12.5. Whether this method will result in an over- or an under estimation

of the accumulated damage is highly dependent on the spectrum on which the

rainflow count is carried out. This approach will be referred to as the average

approach.

5.3.3 Equivalent Amplitude Approach

The last approach is based on the determination of an equivalent amplitude

stress which can be determined from:

σa,eq =

(∑p
i=1 ni (σa,i)

m

∑p
i=1 ni

) 1
m

(5.3.3)

where p is the number of contributors in the given interval, σa,eq is the

equivalent amplitude stress, ni is the cycle count for entry i, and m = 3

for normal stress or m = 5 for shear stresses, [Standard, 1999]. Equation

(5.3.3) is derived by setting the damage of the raw rainflow output equal to

the damage found by the use of the equivalent stress amplitude. This means,

that the approach should predict the most accurate damage estimation of the

three. This approach will be referred to as the equivalent approach.
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Each of the three approaches will be applied to the jacket structure, and the

most efficient approach chosen based on the performance of this real life model.

5.3.4 Example of Sorting Routine

An example of an output matrix from the sorting routine can be seen in Table

5.1. Here, the amplitude values used in Table 5.1 are determined by the use

of the maximum approach.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

σai 25 25 25 25 50 50 50 50 75 75 75 75 100 100 100 100

σmi -25 0 25 50 -25 0 25 50 -25 0 25 50 -25 0 25 50

ni

Table 5.1: The output matrix from the sorting routine based on the maximum

approach used on the counted rainflow results. Illustrated for normal stresses.

The total number of intervals is denoted Ni.Having set up the output

matrix, the remaining part is to add up the counted cycles in the correct

amplitude and mean intervals. Note, the amplitude and mean values after

which the various cycles are sorted are always determined from equations

(5.3.1) and (5.3.2) regardless of the procedure used to determine the actual

amplitude value of the output of the sorted rainflow table. Note, an output

matrix illustrated by Table 5.1 will be present for both normal- and shear

stresses for each cross sectional sample point in the analyzed model.

When using the sorted results for the damage calculation, the number of

terms in the Palmgren-Miner expression are reduced significantly. However,

the exact mean and amplitude stress values are no longer available. Hence,

the damage estimated from the sorted rainflow table will be approximate. The

sorting algorithm is verified using a benchmark example in section E.1.

5.4 Component S-N Curve

The amplitude value must be modified to account for mean stresses. This can

be done by using the modified Goodman equation:

σa
σNF

+
σm
σu

= 1 ⇒ σNF = − σa · σu
σm − σu

(5.4.1)

In equation (5.4.1), σa is the stress amplitude, σu is the ultimate tensile

strength, and σm is the mean stress. By the use of equation (5.4.1), σNF
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which is the fully reversed fatigue stress at 2Nf reversals, may be determined.

From the S-N curve, the number of reversals to fatigue failure for a given

stress amplitude can be found by:

σNF = σ′f (2Nf )b ⇒ Nf =
1

2
exp

(
ln(σNF /σ

′
f )

b

)
(5.4.2)

Nf is the cycles to failure, σ′f is the fatigue strength for one reversal, while

b is a material constant corresponding to the slope of the S-N curve in a log-

log diagram. Note, that this approach is similar for shear stresses although

the S-N curve must be altered. Thus, different fatigue data for normal and

shear stresses must be used. The used S-N curve denotes the mean fatigue

life for the material. This means as much as 50% of the material can have

suffered fatigue failure before the fatigue limit is reached.

5.4.1 Fatigue Properties

Material parameters of steel type RQC-100 from [Stephens et al., 2001, Table

A.2] is chosen for this project. This allows for the use of an example

in [Stephens et al., 2001, section 9.6] for the verification of the damage

estimation. Thus, the Wöhler exponents for the S-N curve are set to

b = −0.114. The ultimate tensile stress is σu = 931 MPa and the yield

stress is σy = 883 MPa, while σ′f = 1240 MPa. The cut-off value on the S-N

curve is disregarded in order to keep the approach simple and conservative as

seen on Figure 5.2b. The Goodman diagram used is shown on Figure 5.2a.

This is also the simplest version of the Goodman diagram since the modified

Goodman line is simply mirrored around the amplitude-axis and no effects of

beneficial negative mean stresses are included.

sa

sm
su

sNF

su-

(a)

log(σ )a

log(N )f

σ'f

b

(b)

Figure 5.2: (a) Goodman diagram. (b) Wöhler curve.
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5.5 Cumulative Damage Model

The damage is defined by [Stephens et al., 2001, P. 274] as: ”The damage

caused by one cycle is defined as η = 1/Nf , where Nf is the number of

repetitions of this same cycle that equals the median life to failure”.

The damage can be obtained by a number of different models. The

Palmgren-Miner linear damage rule is usually the preferred method, since

it is difficult to determine whether the use of a more complicated non-linear

damage model will actually result in a more accurate damage estimation.

Since neither the linear or non-linear damage models will give a precise damage

estimation for all experimental data, the simple linear model is often chosen,

[Stephens et al., 2001, P. 276]. Note, Palmgren-Miners damage rule does not

take the load sequence into account. The Palmgren-Miner damage rule, for

one block of a load spectrum, may be written as:

ηblock =

p∑

i=1

ni
Nf i

(5.5.1)

ni being the number of cycles for a given stress amplitude. Nf i is the number

of cycles for which the stress amplitude will fail according to the S-N curve.

Equation (5.5.1) states that failure occurs when the sum of all ratios of cycles

against fatigue cycles equals one.

The load case in Appendix A shows only a single 10 minutes block. In order

to estimate the TLT damage for the generic jacket structure, it is necessary to

scale the damage of one block so it corresponds to a service life of 20 years, as

mentioned in section 2.2. Thus, the damage found in one block is multiplied

by the number of these blocks occurring in a service life of 20 years. It should

be noted, that an operational time of 80% is assumed and that the availability

of the OWT is 100%. Usually more than 1000 different load series are used

to design a wind turbine. Since only one load series is available, the damage

in the generic jacket structure will be estimated by expanding the single load

series to the entire service life as shown by equation (5.5.2).

ηTLT = ηblock ·
(

20 · 365 · 24 · 60 · 60

600

)
· 0.8 (5.5.2)

5.6 Benchmark Example of Damage Estimation

A benchmark example of the damage estimation, presented in Appendix E.1, is

used to verify the algorithm for estimation of the damage. In the example the
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rainflow count, the sorting algorithm, and the calculation of the accumulated

damage are all tested. The benchmark example is taken from [Stephens et al.,

2001, P. 293], and the stress history of the example can be seen in Figure 5.3.

time

Stress, MPa

650
500

-500

Figure 5.3: The stress history of the benchmark example used for the

verification of the fatigue procedure, [Stephens et al., 2001, Figure 9.16].

5.6.1 Damage Estimation and Effect of Interval Subdivision

The main observation made in the verification example is that the number of

intervals for the sorting of the rainflow counting has a high influence on the

estimated damage. It was seen in the validation of the sorting algorithm how

the subdivision of amplitude and mean intervals may lead to large over- or

underestimations of the calculated accumulated damage. A representation of

this is seen in Figures 5.4a, 5.4b, and 5.5 for the three different approaches

for determining the stress amplitude value in the sorted rainflow table.
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Figure 5.4: The percentage deviation between the true damage (0.0139) and

the estimated damage using the (a) maximum amplitude approach and (b)

the average amplitude approach as a function of interval subdivisions.
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Figure 5.5: The percentage deviation between the true damage (0.0139) and

the estimated damage using the equivalent stress amplitude approach as a

function of interval subdivisions.

In Figures 5.4a, 5.4b, and 5.5 the number of amplitude and mean intervals

range from 3 to 35. Generally the accuracy of the damage calculation increases

as the number of intervals are increased, as expected. This follows directly

from the more precise amplitude and mean stress values in the output table

from the sorting algorithm obtained by the higher number of intervals. For

the max and average amplitude approach, Figures 5.4a and 5.4b, the number

of amplitude intervals seems to have a higher influence on the percentage



46 CHAPTER 5. FATIGUE

difference in damage than the number of mean intervals. For the equivalent

amplitude approach, Figure 5.5, the number of amplitude intervals has no

effect above eight, since this number of intervals is capable of representing the

true spectra. The remaining difference is caused by the use of the maximum

mean values. Thus, the number of mean intervals has the highest effect for

this approach for the given example. However, it should be noted that the

scaling of the axis makes the mean effect look more significant in Figure 5.5

than the other two cases.

A rough assessment of the accuracy of each approach can be determined

from the percentage damage difference obtained for the highest number of

amplitude and mean intervals. For the maximum approach the overestimation

of the damage is 10%, whereas the overestimation of the equivalent amplitude

approach is 4%. The average approach underestimates the true damage by

approximately 6%. However, it should be noted that neither of the three

approaches seems to be fully converged at the examined point.

The distinct ’stair’ shape of all three surfaces is a result of the fairly low

number of load sample points used in this analysis. This means, each

individual stress amplitude will have a higher effect on the calculated damage.

Thus, the damage is highly affected whenever a single cycle or reversal switches

from one stress amplitude to another in the sorted rainflow table as a result

of an increased number of intervals. For an infinite number of load sample

points the surface of for instance Figure 5.4a should be smooth.

It is not possible from the stress spectrum in Figure 5.3 to determine which of

the three approaches will be the most appropriate for a real life model. Thus,

the number of interval subdivisions is investigated further for the jacket model

in section 6.3.

5.7 Sub Conclusion

Through the chapter, a method for obtaining the damage in each cross

sectional sample point of the model was established and verified. It was seen

how the number of intervals in the sorted rainflow table and the approach used

for determining the amplitude value had a significant effect on the estimated

damage. The three approaches and the number of intervals must be examined

on the full jacket structure in order to determine the most efficient approach for

a real life application as shown in section 6.3. The obtained damage quantity
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may be used as a part of the input to the optimization. Furthermore, the

method for damage estimation is used for an initial analysis of the jacket

structure presented in the next chapter.





Chapter 6

FE Analysis of Jacket

Structure

This chapter has the purpose of presenting the FE jacket model and an initial

analysis by using the developed MATLAB FE program. The purpose of the

analysis is to determine the initial damage in the cross sectional sample points

of the model to clarify the usability of the structural analysis on a real life

structure. Furthermore, the number of intervals in the sorted rainflow table is

investigated in depth. The effect of sampling the load spectrum is examined

in order to determine how the number of load sample points influence the

damage estimation and computational time.

6.1 FE Jacket Model

The initial cross sectional properties of the frame elements were introduced

in Chapter 2. A cross of frame elements have been introduced in the top

of the FE jacket model, in order to apply the loads in the top center of the

TP. These artificial frame elements have been provided with a stiffness of 100

times the stiffness of the other frame elements in the model. The elements

are numbered from 105 to 108 and the damage in these elements will not be

examined since their only purpose is to create a point for applying the four

load series described in Appendix A. The loads are applied in the center of

the cross as shown on Figure 6.7, and the legs of the model are clamped. The

properties of the model are summarized in Table 6.1. The original mass will

be used to evaluate the optimized structure.

49
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Mass [ kg] Density [ kg/m3] Elements Nodes

562,660 7850 108 57

Table 6.1: Properties of the FE jacket model

6.1.1 Local Member Coordinate System

A local member coordinate system is defined for each element. The local x’-

axis is defined pointing from the lowest node number to the highest, with the

origin located in the lowest node number. On the sides S2 and S4, see Figure

6.1a, the local y’-axis points in the same direction as the global X-axis. For

the sides S1 and S3 the local y’-axis points in the same direction as the global

Y-axis. A special case is the local member coordinate system of the cross in

the top representing the TP. The x’-y’ plane for these elements are chosen to

be normal to the global Z-axis.

                                                                      

Y

X

L3

L1L2

L4

S1

S2

S3

S4Z

(a)

Node 1

Node 2

x'
y'z'

(b)

Figure 6.1: (a) The global coordinate system and numbering of legs and
sides in the jacket model and (b) The local coordinate system for a 3D frame
element.

6.2 Influence of Sampling the Load Cases

The chosen sampling of the load spectrum will have a significant influence on

the damage estimation. Thus, a study of this influence is needed in order to

choose a suitable number of sample points of the load spectrum. The load
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spectrum in Appendix A contains 60,000 data points given for 600 seconds,

which reveals a sampling frequency of 100 Hz. It is sampled by picking the

first entry in the load vector and using a constant sampling frequency until

the end is reached. Several studies from other authors have been made on

the subject of reducing a load spectra to a lower number of sample points

without compromising the accuracy of the damage estimation. The subject

of reducing load spectra is however out of the scope of this project.

The influence of the number of load sample points is examined by the use of

the jacket model loaded with P x, P y, Mx, and My with non-proportional load

spectra. The influence of the load sampling may be illustrated by viewing the

first 100 seconds of the spectra for example used for the force P x, see Figure

6.2. The load spectra for P y, Mx, and My contains similar fluctuations

and show the same sampling tendencies as the load spectrum for force P x.

However, figures for these applied loads are not shown in the report.

The first 100 seconds contains 10,000 data points in the full spectrum. The full

spectrum is sampled with 750, 1,500, 3,000, and 6,000 sample points, which

gives sampling frequencies of 1.25 Hz, 2.5 Hz, 5 Hz, and 10 Hz. It is seen

how a low number of sample points have a significant effect on the resulting

spectrum, since a lot of load peaks are disregarded, cf. Figure 6.2a. These

peaks are of major importance when estimating the accumulated damage,

since this is dominated by the amplitude values.

As expected, the higher number of sampling points represents the original

spectrum more accurate. For shorter time series it is recommended to use

the full spectrum for the damage estimation. However, it is difficult to assess,

from the figures alone, the value of the error introduced by sampling the load

spectrum instead of using the full spectrum. Thus, a small comparison of the

damage in a chosen point in the FE jacket model is made for the four different

sample frequencies. The chosen point is one of the points with the highest

damage. The result may be seen in Table 6.2.
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Figure 6.2: Effect of sampling the load spectrum for force P x with: (a) 750
sample points, (b) 1,500 sample points, (c) 3,000 sample points, and (d) 6,000
sample points.

Load sample points Damage in point 161 Calculation time Difference

Damage750 2.1 · 10−17 55 s 54%

Damage1500 2.5 · 10−17 1 min 34 s 45%

Damage3000 3.1 · 10−17 2 min 59 s 32%

Damage6000 4.0 · 10−17 5 min 37 s 12%

Damage60000 4.6 · 10−17 51 min 10 s -

Table 6.2: The influence of the chosen number of load sample points on

the total accumulated damage in the structural point numbered 161. The

difference in damage is calculated according to a damage of 4.6 · 10−17, which

is determined when the full load spectrum is used.

As expected, the accumulated damage is increased for an increasing

number of sample points, since more load peaks are included in the
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analysis. Furthermore, a higher number of sample points results in a better

approximation of the damage obtained when using the full spectra, which

must be expected as well.

The computation time for one iteration of the structural analysis using all

60,000 sample points is approximately 51 minutes. As seen in Table 6.2 this

may be reduced to approximately 55 s when using 750 load sample points.

However, the underestimation of the damage is increased each time the number

of load sample points are reduced.

6.3 Influence of the Number of Intervals in the

Rainflow Counting

It was shown in section 5.6.1 how the number of intervals, in which the re-

sult from the rainflow counting is sorted, had a significant influence on the

calculated damage. The number of amplitude intervals required depends on

the load spectrum, hence the number of intervals must be determined based

on the load spectrum for the FE jacket model. For the FE jacket model, the

exact accumulated damage quantity is not known prior to the analysis since

this will require that the damage is determined for 60,000 sample points with-

out using the sorted rainflow table. Thus, the choice of a suited number of

intervals cannot be based on the relative error between the true damage and

the calculated damage as was the case in section 5.6.1. Instead, the number

of amplitude and mean intervals are varied and a convergence point of the

damage quantity is sought. The damage is evaluated at an arbitrary chosen

cross sectional sample point in the jacket structure. The number of load sam-

ple points used is 6, 000.

The three approaches for determining the amplitude value, the maximum, av-

erage, and equivalent approaches will all be applied in order to determine the

most efficient method w.r.t. calculation time and accuracy.

In Figures 6.3a, 6.3b, and 6.4 the accumulated damage for sample point 4 in

node 2 of element number 14 is seen. The number of amplitude and mean

intervals, NAmp and NMean respectively, are varied from 3 to 35.
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Figure 6.3: The damage in cross sectional sample point 4 of node 2 in element

14 using the (a) max amplitude approach and (b) the average amplitude

approach.
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Figure 6.4: The damage in cross sectional sample point 4 of node 2 in element

14 using the equivalent stress amplitude approach.

As seen in Figures 6.3a, 6.3b, and 6.4 the number of mean intervals seems

to have a little, if any, effect above 6 subdivisions for all three approaches.

Thus, the number of mean intervals is chosen to NMean = 6. Next, the

needed number of amplitude intervals, NAmp for each of the three approaches

is determined based on Figure 6.5.
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Figure 6.5: The damage in cross sectional sample point 4 of node 2 in element

14 using the maximum amplitude approach, the average amplitude approach,

and the equivalent amplitude approach as a function of amplitude intervals

and NMean = 6

In the following discussion the damage is assumed to be converged at

NAmp = 70.

The maximum approach overestimates the damage quite much for a low

number of amplitude intervals as expected. For the average and equivalent

approaches the damage is underestimated for a low number of amplitude

intervals. However, for both the equivalent and the maximum approach

a clear convergence tendency is seen as the number of amplitude intervals

increases. A slightly less smooth convergence tendency may be observed for

the average approach as well. For each extra subdivision of the amplitude

interval the calculation time is increased linearly. Thus, the lowest number of

amplitude intervals, capable of representing the damage, within an acceptable

deviation, must be chosen. For the maximum approach the convergence curve

seems to level out at around NAmp = 30. The same number of intervals

are chosen for the average method despite its more wavy convergence curve.
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Since the damage is assumed to be fully converged at NAmp = 70, a rough

estimation of the damage accuracy at NAmp = 30 may be assessed. For

the maximum approach the damage is overestimated by approximately 6%,

and the underestimation for the average approach is approximately 6% as

well. The calculation time for the maximum approach using NAmp = 30

is determined to 6 minutes and 15 seconds whereas the calculation time for

the average approach is approximately equal to 6 minutes and 24 seconds.

The convergence curve of the equivalent method is seen to be quite smooth

and to level out around NAmp = 17. The underestimation of the damage

at this number of amplitude intervals is less than 1%. Due to the lower

number of amplitude intervals the calculation time was brought down to

approximately 4 minutes and 30 seconds. It can be concluded, that all three

methods converge towards approximately 5 ·10−23 as the number of amplitude

intervals approaches infinity. The study has been made for several elements in

the FE model and they all show the same tendencies. As a result of the higher

accuracy at the lower number of amplitude intervals the equivalent method

using NAmp = 17 and NMean = 6 is chosen for the further work.

6.4 Initial Analysis of Jacket Model

A structural FE analysis of the jacket model is conducted using the developed

MATLAB FE program to ensure, that the method is applicable on a real life

structure. The moments and forces from the provided load case are used.

The settings in the structural FE analysis are chosen based on the preceding

analysis. Thus, it is chosen to use 17 amplitude intervals, 6 mean intervals,

and the equivalent approach for determining the stress amplitude in the sorted

rainflow table. Furthermore, 750 load sample points are used and 4 cross

sectional sample points in each end of the frame elements are set. The damage

determined in each cross sectional sample point can be seen on Figure 6.6. The

numbering of the cross sectional sample points used in Figure 6.6 follows the

bookkeeping system presented in Table 4.1. It can be seen that a few sample

points in the cross sections have a significantly higher damage than the rest.

The low damage values and the large span in damage between different cross

sectional sample points suggest that the generic jacket structure will benefit

from a structural optimization.

It should be noted, that the damage in elements 101 to 108, which are the
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elements embedded in the TP, are not plotted on Figure 6.6.
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Figure 6.6: The damage determined in each cross sectional sample point in
the FE jacket model for 750 load sample points.

The deformed shape of the FE model, for a unit load in the X-direction

and a unit moment around the Y-axis, can be seen on Figure 6.7. It is verified

from Figure 6.7 that the clamped BC has been imposed properly. Note,

the deformed shape, seen on Figure 6.7, has been scaled to emphasize the

deformation. The deformed shape for at unit force in the Y-direction, and a

unit moment around X-axis are not shown here.
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Figure 6.7: The scaled deformed shape of the jacket model for a unit force

applied in the X-direction and a unit moment around the Y-axis.
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One of the highest loaded points in the jacket model is sample point 161,

which is located in element 21, node 1, cross sectional sample point 1, (see

Table 4.1 for the bookkeeping system). Recall, this point was used in the

analysis in section 6.2.

6.5 Sub Conclusion

The FE jacket model was set up and used for an initial analysis. The damage

was determined in a number of cross sectional sample points in the ends

of each element. It was seen how the number of load sample points had a

significant influence on the accumulated damage. The number of intervals in

the rainflow counting was investigated as well. The amplitude had a larger

influence than the mean for all examined approaches. The number of intervals

for the amplitude was set to 17, while the number of intervals for the mean

was set to 6 and the equivalent approach was chosen. The initial analysis

of the jacket structure showed, that no cross sectional sample points in the

model is close to the fatigue limit. Thus, it may benefit from a structural

optimization.
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Chapter 7

Introduction

The main task of the project is to investigate methods for performing a

size optimization with the purpose of lowering the total mass of the jacket

structure as explained in Chapter 3. In order to use optimization techniques

it is necessary to identify and define the design variables, the cost function and

the constraint function. A DSA is necessary since gradient based optimization

is used.

Based on the problem definition, the design optimization problem can be

set up as:

Minimize: f(x)

Subject to: gk(x) ≤ 0, k = 1, ..., Ng

where x is a vector containing the design variables. f is the cost function

given as the total mass of the model, and gk is a number of inequality

constraints, given as the damage in each cross sectional sample points in the

FE jacket model. Ng is the total number of constraints and k is the constraint

number.

7.1 Design Variables

The design variables are identified as the thickness and diameter of each frame

element in the FE jacket model as explained in Chapter 3. The FE jacket

model contains 108 elements, which yields 216 design variables in total.

The cross sectional area and the second moment of inertia are explicit

functions of the outer diameter and the wall thickness. As seen on Figures

7.1a and 7.1b the relationships are nonlinear. Furthermore, a change in either
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area or second moment of inertia will have a direct influence on the global

stiffness matrix, since it is an explicit function of the two. From the figures

it can be seen that the diameter has a larger influence than the thickness for

most of the designs. Note, that as the diameter increases the influence from

the thickness increases as well.
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Figure 7.1: Parametric study of the design variables outer diameter, d and
thickness, t for: (a) Area, and (b) The second moment of inertia.

The design variables will be considered as continuous during the

optimization.

7.2 Cost Function

Since the objective is to decrease the total mass of the FE jacket model, the

criterion function is defined as the sum of the mass of all elements as shown

in equation (7.2.1).

f(x) = mtotal =

NE∑

i=1

ρAi(x)Li (7.2.1)

where ρ is the density, defined in Chapter 2.

In order to enhance the performance of the optimizer and the convergence,

the cost function will be normalized according to its initial value. Thus, large

numerical differences in the cost function are avoided since the cost function

will have values limited to: 0 < f(x) ≤ 1.
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7.3 Inequality Constraints

The inequality constraint functions are identified as the damage in each cross

sectional sample point in the FE model. Recall, that the used Palmgren-Miner

damage rule use the S-N curve and takes mean stress effects into account by

using the modified Goodman equation. Thus, the inequality fatigue constraint

function can be stated:

gk =

Ni∑

i=1

ni

1
2exp

(
ln(− σai·σu

σmi−σu
/σ′f )

b

) − 1 ≤ 0 (7.3.1)

This is an implicit function of the design variables. Thus, special techniques

are required to perform the DSA for the inequality constraint functions.

7.4 Symmetry Conditions

In order to ease the manufacturing of the jacket structure, it is chosen to

introduce a number of symmetry conditions in the FE jacket model. Besides

the manufacturing point of view, the symmetry conditions ensure that the

jacket structure has the sufficient strength for wind and wave directions

different from the direction in which they are applied in the FE jacket model.

By enforcing symmetry conditions on the jacket structure the number of design

variables for the optimizer may be reduced as well, thus reducing the overall

calculation time. An overview of the applied symmetry is given in Figure 7.2.
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Figure 7.2: Symmetry conditions imposed on the FE jacket model.

As seen on Figure 7.2 the jacket structure is divided into 13 symmetry

groups. This reduces the number of design variables from 2 · 108 to 2 · 13.

It should be noted that it is not necessary to perform a normalization of the

fatigue constraint since it is already defined as the number of cycles divided

by the number of cycles to failure.



Chapter 8

Design Sensitivity Analysis

In order to use gradient based optimization methods the sensitivities of

the cost and constraint functions are needed. In this chapter different

methods for determining the sensitivity of the cost and constraint functions

will be described, derived, and discussed. The most suitable methods will

be determined with the purpose of being applied on the FE jacket model.

The methods treated in the chapter are the Overall Finite Difference (OFD)

Method, as well as an analytical and a semi-analytical Direct Differentiation

Method (DDM) and Adjoint Method (AM). The methods for the DSA are

explained in details in Appendix F, while the methods developed for the FE

jacket model are explained through this chapter. Appendices G and H contain

various equations supporting this chapter as well.

8.1 DSA of Cost Function

The DSA of the cost function introduced in equation (7.2.1) can be made

analytically since the area is given explicitly as a function of the design

variables, d and t. This is shown in equation (8.1.1).

∂Ai(x)

∂d
= πt

∂Ai(x)

∂t
= π(d− 2t) (8.1.1)

∂f(x)

∂xj
=

NE∑

i=1

ρ
∂Ai(x)

∂xj
Li (8.1.2)

By use of equation (8.1.2) the sensitivity of the cost function w.r.t. the design

variables may be found.
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8.2 DSA for Constraint Function

The methods used for the DSA of the constraint function include the DDM,

AM, and OFD. These are explained in details in Appendix F and illustrated on

Figure 8.1 together with the functions needed. The dashed lines illustrate, that

several functions are needed in order to determine the desired quantity. Thus,

all the functions in the dashed lines are needed to determine the displacement

derivative, dU
dxj

and the Lagrange multiplier, λ. The terms needed for the

partial derivative of the constraint function ∂gk
∂xj

and ∂gk
∂U

can be found either

numerically or analytically. Thus, the goal is to determine dgk
dxj

by determining

the described components shown on Figure 8.1.
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Figure 8.1: Methods and procedures for DSA for the constraint function.
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8.2.1 Fatigue Constraint

The starting point for the analytical DSA of the constraint function is equation

(7.3.1), which is repeated below:

gk =

Ni∑

i=1

ni

1
2exp

(
ln(− σai·σu

σmi−σu
/σ′f )

b

) − 1 ≤ 0 (8.2.1)

where the terms σu, b, and σ′f are all material constants. The variables σai

and σmi are the stress amplitude and stress mean values in each interval

of the sorted rainflow table from the rainflow count. These are a function

of the displacements and the design variables as seen in equation (8.2.2).

Furthermore, the amplitude and mean stress are a function of the rainflow

count of the resulting stress spectra. The last variable is the cycle counter, ni

which is a function of the rainflow count and the amplitude and mean stress

variables. Note, the damage from a resulting shear stress is calculated using an

equivalent procedure. The variables and their dependencies are listed below:

σai(RF (U(x), x))

σmi(RF (U(x), x))

ni(RF (σai, σmi)) (8.2.2)

According to these implicit dependencies among the variables, special

techniques for the DSA are required. Note, that in order to eliminate

the dependency on the rainflow counting, the sorted rainflow table from

the rainflow routine is kept fixed during the DSA in the OFD approach.

Instead of redoing the rainflow count for each DSA, resulting in an unwanted

rainflow dependency, the stress values in the original table are simply updated

according to the changes in stress results when a design variable is perturbed.

Thus, equations (8.2.2) can be rewritten as:

σai(U(x), x)

σmi(U(x), x)

ni : constant (8.2.3)

Equation (8.2.3) is the basis in the analytical DSA since the implicit

dependency of the rainflow count is eliminated.
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8.2.2 Sensitivity Analysis

Three different methods are examined for the DSA. These are the DDM,

the AM, and the OFD methods. The DDM and the AM can either be

analytical or semi-analytical. The contributions from the mean and amplitude

displacements are used in the analytical methods since the damage is caused

by a contribution from these two terms. The damage caused by the mean

displacements are accounted for by the modified Goodman line, while the

damage caused by the amplitude is taken directly from the Wöhler curve.

Thus, the full derivative must be assembled from a contribution of the mean

and amplitude displacements.

Analytical and Semi-analytical Methods

The DDM is derived in Appendix F.2. For the DSA of the fatigue constraint

function the DDM is modified in order to match the displacement field to the

stresses at a given time. Thus, the DDM used for the DSA of the fatigue

constraint is given as:

dgk
dxj

=

Ni∑

i=1

(
∂gk−amp
∂xj

)

i

+

(
∂gk−amp

∂U

)T

i

dUamp
dxj

+

(
∂gk−mean
∂xj

)

i

+

(
∂gk−mean

∂U

)T

i

dUmean
dxj

(8.2.4)

where i is the interval number in the sorted rainflow table introduced in

section 5.3, k is the cross sectional sample point number, and j is the design

variable number. The terms ∂gk
∂xj

and ∂gk
∂U

for both the amplitude and mean

are determined either by finite difference approximations or by analytical

methods. dU
dxj

is determined analytically. The analytical determination of ∂gk
∂xj

and ∂gk
∂U

can be found in equations (8.2.8) and (8.2.10). The difference between
∂gk−amp
∂xj

and
∂gk−mean

∂xj
is highlighted in equation (8.2.8). The displacement

sensitivities, dU
dxj

for both amplitude and mean contributions are determined

from the derived equilibrium equation as:

K
dUamp
dxj

=

(
−dK
dxj
· U i−amp

)
; K

dUmean
dxj

=

(
−dK
dxj
· U i−mean

)
(8.2.5)

Again, a clear distinction is made between the contributions from an amplitude

or a mean displacement. The purpose of this distinction is to match the

displacements to the counted stresses, which are split into an amplitude and a
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mean. Note, the applied forces are independent of the design variables. Thus,

they are not included in equation (8.2.5). Again, index i denotes the given

column in the sorted rainflow table, emphasizing the need for determining a

matching displacement field for each non-zero column of the sorted rainflow

table. Besides the DDM, the AM can be applied to determine the design

sensitivities. The AM is derived in Appendix F.3. As for the DDM the AM

is modified with the purpose of using the matching displacement amplitudes

or means with the stress entries in the sorted rainflow stress table. Thus, the

AM for the DSA of the fatigue constraint is given as:

dgk
dxj

=

Ni∑

i=1

(
∂gk−amp
∂xj

)

i

− λi−amp ·
∂K

∂xj
· U i−amp+

(
∂gk−mean
∂xj

)

i

− λi−mean ·
∂K

∂xj
· U i−mean (8.2.6)

KTλi−amp =

(
∂gk−amp

∂U

)

i

; KTλi−mean =

(
∂gk−mean

∂U

)

i

(8.2.7)

where λi, for both amplitudes and means, is a vector containing the Lagrange

multipliers, which is chosen to eliminate the displacement sensitivities dU
dxj

from

equation (8.2.6). Note, a vector containing the Lagrange multipliers must be

obtained for each individual column, i of the sorted rainflow table. As for

equation (8.2.5), a matching displacement field containing both amplitude

and mean values must be determined for each non-zero column of the sorted

rainflow table. This is illustrated by U i−amp and U i−mean. As for the DDM

the derived stiffness matrix is determined analytically and the terms ∂gk
∂xj

and
∂gk
∂U

, using both amplitude and mean displacements, are found using either

analytical or FD methods. As a result, both the DDM and the AM can

be analytical or semi-analytical. The analytical determination of ∂gk
∂xj

will be

explained next.

Damage Derivative of Design Variables

For the damage constraint presented in equation (7.3.1), the partial derivatives

w.r.t. the design variables are given as:

∂gk−amp
∂xj

=
∂gk
∂σai

∂σai
(
U i−amp

)

∂xj
+
∂gk
∂τai

∂τai
(
U i−amp

)

∂xj

∂gk−mean
∂xj

=
∂gk
∂σmi

∂σmi
(
U i−mean

)

∂xj
+

∂gk
∂τmi

∂τmi
(
U i−mean

)

∂xj
(8.2.8)
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The parenthesis indicates that the displacement fields are an input to the

respective terms. The partial derivative of the fatigue constraint w.r.t. the

design variables is split into a contribution from either the amplitude or the

mean stress. This allows for the use of either a matching amplitude or a mean

displacement in equations (8.2.5) or (8.2.6). Note, that the partial derivative

w.r.t. the mean stress cannot be determined when the mean stress equals zero

due to the used Goodman diagram, see Figure 5.2a.

The damage constraint was introduced in equation (7.3.1). Inserting this

into equation (8.2.8) yields:

∂gk−amp
∂xj

=
−2ni

exp




ln

(
−σaiσu

(σmi−σu)σ′f

)
b


σaib

∂σai
(
U i−amp

)

∂xj
+

−2ni

exp




ln

(
−τaiτu

(τmi−τu)σ′f

)
b


 τaib

∂τai
(
U i−amp

)

∂xj

∂gk−mean
∂xj

=
2ni

exp




ln

(
−σaiσu

(σmi−σu)σ′f

)
b


 (σmi − σu) b

∂σmi
(
U i−mean

)

∂xj
+

2ni

exp




ln

(
−τaiτu

(τmi−τu)σ′f

)
b


 (τmi − τu) b

∂τmi
(
U i−mean

)

∂xj
(8.2.9)

The terms:
∂σai(U i−amp)

∂xj
,

∂σmi(U i−mean)
∂xj

,
∂τai(U i−amp)

∂xj
,

∂τmi(U i−mean)
∂xj

are

determined in Appendix G and H for the normal stresses and shear stresses,

respectively. The sign of the first part of each term in (8.2.9) depends

on the shape of the Goodman diagram seen on Figure 5.2a. A rainflow

count of the displacement spectrum is necessary in order to determine

the displacement means and amplitudes needed for the determination of
∂σai(U i−amp)

∂xj
,
∂σmi(U i−mean)

∂xj
,
∂τai(U i−amp)

∂xj
, and

∂τmi(U i−mean)
∂xj

. Note, these

terms are dependent on the displacement field, since moments and shear forces

are determined from the displacements, for instance see equation (G.0.6).

Thus, each ∂gk
∂σai

must have a matching
∂σai(U i−amp)

∂xj
, which means a matching

displacement field should be found for each interval in the sorted rainflow table

from the rainflow count.
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The moments and shear forces will be determined based on a displacement

amplitude in order to determine
∂σai(U i−amp)

∂xj
and

∂τai(U i−amp)
∂xj

. In a similar

procedure the terms
∂σmi(U i−mean)

∂xj
and

∂τmi(U i−mean)
∂xj

will be determined using

a mean displacement value. This is explained further in section 8.3.

At this point, the partial derivative of the damage constraint w.r.t. the design

variables can be determined. A partial derivative term must be found for each

non-zero column in the sorted rainflow table.

The result of this sensitivity analysis will be the sensitivity of each

constraint function w.r.t. each design variable of the model. Thus, the

dimension of the output matrix will be Ng ×Nx.

Damage Derivative of Displacements

In a similar manner as equation (8.2.8), the partial derivatives of the damage

constraint w.r.t. the global displacements may be obtained:

∂gk−amp

∂U
=
∂gk
∂σai

∂σai
(
U
)

∂U
+
∂gk
∂τai

∂τai
(
U
)

∂U

∂gk−mean

∂U
=
∂gk
∂σmi

∂σmi
(
U
)

∂U
+

∂gk
∂τmi

∂τmi
(
U
)

∂U
(8.2.10)

Again i is the interval number in the sorted rainflow table obtained by the

sorting of the rainflow count results, and k is the cross sectional sample point

number. The fatigue constraint function is inserted into equation (8.2.10),

which yields:

∂gk−amp

∂U
=

−2ni

exp




ln

(
−σaiσu

(σmi−σu)σ′f

)
b


σaib

∂σai
(
U
)

∂U
+

−2ni

exp




ln

(
−τaiτu

(τmi−τu)σ′f

)
b


 τaib

∂τai
(
U
)

∂U
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∂gk−mean

∂U
=

2ni

exp




ln

(
−σaiσu

(σmi−σu)σ′f

)
b


 (σmi − σu) b

∂σmi
(
U
)

∂U
+

2ni

exp




ln

(
−τaiτu

(τmi−τu)σ′f

)
b


 (τmi − τu) b

∂τmi
(
U
)

∂U
(8.2.11)

The terms:
∂σai(U)
∂U

,
∂σmi(U)

∂U
,
∂τai(U)
∂U

,
∂τmi(U)

∂U
are determined analytically in

Appendix G and H for the normal stresses and shear stresses, respectively. It

should be noted, that these terms are only dependent of the linear elastic dis-

placement field, and independent of the displacement history of the structure.

Thus, the rainflow count of the displacements is only used when determining
∂gk
∂xj

. The distinction between damage contributions from a stress amplitude

or a stress mean must however still be made due to the need for different

displacement fields, see equations (8.2.4) and (8.2.6).

The obtained results are verified using a FD approximation. The FD

approximation can be used in the semi-analytical approach as well. The

FD scheme for the determination of ∂gk
∂U

keeps the design variables fixed

and makes changes to the global displacements. A displacement spectra is

available for each DOF in the model. The perturbation is chosen to be the

same for all points in the spectra, and it is chosen to be a fraction of the

largest displacement in the spectra. When the displacement spectra have

been perturbed, the stresses are determined and the damage is estimated by

the use of equation (7.3.1). Finally, the FD approximation is found based on

a forward- or a central FD. The central FD finite difference scheme is given

as:

∂gk

∂U
=
g(U + ∆U, x)− g(U −∆U, x)

2∆U
+ o2(∆U)

for 1, ..., NDOF k = 1, ..., Ng (8.2.12)

As seen in equation (8.2.10) both the stress amplitude and mean must be

perturbed in the FD scheme. Thus, two different methods for the displacement

perturbation must be applied. This is illustrated in Figure 8.2 for a forward

perturbation.
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time

Displacement

Original

Perturbated

time

Displacement

Original

Perturbated

(a) (b)

Figure 8.2: (a) Displacement forward perturbation to change mean and (b)

displacement forward perturbation to change amplitude.

The displacement perturbation seen in Figure 8.2(a) will change the mean

displacement, and thus the mean stresses of the seen spectra. Note, that the

amplitude values are unchanged for this displacement perturbation. For the

change of the stress amplitude the forward displacement perturbation seen

in Figure 8.2(b) is used. Note, the mean is unchanged for this displacement

perturbation. Thus, two FD schemes using the two different displacement

perturbation must be made and superposed in order to approximate the

analytically obtained results.

It should be noted, that the FD approximation of
∂gk−amp

∂U
and

∂gk−mean
∂U

are

the only numerical term used for the the semi-analytical DSA since ∂g
∂xj

cannot

be separated into a mean and an amplitude part. Thus, it is only possible to

use FD schemes for the mean and amplitude contributions in the numerical

determination of
∂gk−amp

∂U
and

∂gk−mean
∂U

to obtain the full derivative by the

semi-analytical DDM or AM.

8.3 Implementation and Bookkeeping

A bookkeeping scheme is presented in Table 8.1, and it is based on the sorting

algorithm presented in section 5.3. A table similar to Table 8.1 is available for

each cross sectional sample point. The number of columns in the bookkeeping

scheme has dimensions: Ni = NAmp × NMean. The influence of the number

of chosen intervals on the damage estimation was examined in section 6.3. Ni

should be set as low as possible since this is beneficial according to reducing the

computational time. Table 8.1 is made for illustration purposes only since it

contains three different tables in one. This is illustrated by the bold horizontal

lines. Every
(
∂gk
∂xj

)
i

has dimensions Ng × Nx, and
(
∂gk
∂U

)
i

has dimensions

of Ng × NDOF , and one will be available for each non-zero column of the
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sorted rainflow table. The Lagrange multiplier used in the AM, λi is a vector

calculated for each non-zero column of the sorted rainflow table. Several stress

reversals are grouped in each interval, but only the first beginning time, tB for

each stress reversal is stored in order to match the displacement field to the

given stress interval in the sorted rainflow table. Note, all displacement fields

are stored without a sorting to ensure a displacement field can always be found

from a beginning time. The displacement field is used in the determination

of
(
∂gk
∂xj

)
i

and for the determination of the sensitivity from either equation

(8.2.4) or (8.2.6). It is necessary to find the matching displacement field in

order to maintain the equilibrium state for which the system of equations is

solved.

Several stress reversals of similar amplitude and mean may be stored in

the same interval in the sorted rainflow table. They will however occur at

different times. Only the beginning time of the first stress reversal stored in

an interval is stored, and used to determine a matching displacement field.

Thus, it is assumed that all stresses in an interval can be matched with the

same displacement field, without introducing a significant inaccuracy in the

results. This assumption is treated further in the discussion in Chapter 12.

i 1 2 3 4 5 6 7 8 ... Ni

tB

σai
σmi
nσi

τai
τmi
nτi(
∂gk
∂xj

)
i(

∂gk
∂U

)
i

λi

Table 8.1: Bookkeeping system used in the analytical DDM and AM. A similar
table is available for all cross sectional sample points denoted with index k.
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8.4 Verification of DSA Method

This section has the purpose of verifying the analytical DSA implementation

in MATLAB. A benchmark example of a cantilevered prismatic beam is used

for the verification since it is a simple transparent example. Deficiencies are

still present in the analytical DSA method, which are discussed and illustrated

in Appendix K.

8.4.1 Defining the Benchmark Example

A FE model of a cantilever prismatic beam with fixed/free BCs and a circular

hollow cross section is set up. The length of the beam is set to 1.0 m,

the diameter of each element is 0.1 m, and the thickness of each element is

0.02 m. The tip of the beam is loaded with three fluctuating forces and three

fluctuating moments. The model contains five elements and thus ten design

variables. The model includes four cross sectional sample points in each end

of the individual frame elements. Thus, the model contains a total number of

40 cross sectional sample points, which are numbered on Figure 8.3.
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Figure 8.3: Beam model for verification of the DSA numbered with k =
1, ..., 40.

A total number of six nodes are included in the model. Since the first

node is locked in all DOFs, 30 free DOFs exist in the model. The number

of intervals for the rainflow table is set to 17 for the amplitude and 6 for the

means, which gives a total number of 102 intervals in the rainflow table.

The applied non-proportional load spectra of Figure 8.4 contains 29 load

sample points. For this verification the same spectrum will be used for all

applied loads, but it will be scaled differently for each load, see Figure 8.4.
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Figure 8.4: The load series used for the six applied loads obtained by scaling

the same spectra by six different factors.

8.4.2 Verification and Results

In the following the sensitivity results for dgk
dxj

obtained by the use of the

forward FD, the DDM, and the AM will be compared to a central difference

approximation. The DDM was introduced in equation (8.2.4) and the AM

was introduced in equation (8.2.6). Only results for the first two elements will

be used for the comparison.

No semi-analytical results will be shown since it is only possible to obtain a

FD approximation of
∂gk−amp

∂U
for a mean and an amplitude contribution. The

result of the forward FD approximation can be seen in Table 8.2. The result

of the DDM can be seen in Table 8.3 and the result of the AM is shown in

Table 8.4.
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Diameter Thickness

Element 1

Node 1

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

Node 2

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

Element 2

Node 1

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

Node 2

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

0.4% 0.1%

Table 8.2: The percentage deviations between sensitivities obtained using the

forward FD and the central FD scheme.

Diameter Thickness

Element 1

Node 1

0.2% 0.2%

0.1% 0.1%

0.7% 0.7%

0.4% 0.4%

Node 2

0.2% 0.2%

0.2% 0.2%

0.7% 0.7%

0.4% 0.4%

Element 2

Node 1

0.2% 0.2%

0.2% 0.2%

0.7% 0.7%

0.4% 0.4%

Node 2

0.2% 0.2%

0.2% 0.3%

0.6% 0.6%

0.3% 0.3%

Table 8.3: The percentage deviations between sensitivities obtained using the

DDM and the central FD scheme.
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Diameter Thickness

Element 1

Node 1

0.2% 0.2%

0.1% 0.1%

0.7% 0.7%

0.4% 0.4%

Node 2

0.2% 0.2%

0.2% 0.2%

0.7% 0.7%

0.4% 0.4%

Element 2

Node 1

0.2% 0.2%

0.2% 0.2%

0.7% 0.7%

0.4% 0.4%

Node 2

0.2% 0.2%

0.2% 0.3%

0.6% 0.6%

0.3% 0.3%

Table 8.4: The percentage deviations between sensitivities obtained using the

AM and the central FD scheme.

As seen from the very low percentage deviations in Tables 8.3 and 8.4 the

use of analytical methods for the DSA for the given example yields reliable

results. Thus, it is established, that the analytical results are valid for this

type of load case with a non-proportional load spectra applied. Next, the

calculation times of the various methods are examined.

8.4.3 Calculation Time of DSA Methods

From Tables 8.3 and 8.4 it is seen that the DDM and the AM yields equal

results as expected. It can be concluded, that both methods are capable of

determining the design sensitivities of the given example. The calculation

time for the methods are seen in Figure 8.5.
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Figure 8.5: Comparison of calculation times for the forward FD, central FD,

DDM, and AM.

The comparison of the calculation time is made by computing the DSA

using all four methods for the same example. The combined calculation time

of all four methods denotes 100%.

From Figure 8.5 it is seen that the forward FD approximations of the

gradients is the fastest of the compared methods. The central FD scheme

is approximately twice as slow as the forward, which is expected since twice

as many function evaluations must be used. No extraordinary attempts

of speeding up the analytical DSA, i.e. by using vectorization or parallel

computing, is made. Thus, the analytical methods are slower in their current

state than the forward FD scheme.

At first glance, it might seem unexpected that the DDM is slower than the AM

for the given example, when the number of design variables, 10 is compared

to the number of cross sectional sample points, 40. The time difference is

however caused by an additional ’for-loop’ in the DDM used to determine

the full displacement sensitivities before determining the gradient. Thus, an

additional calculation time should be expected. Some of the drawbacks in

the analytical approach is the large amount of data storage. The number

of function calls are significant even for relatively simple examples. A more

in-depth study of the calculation time in the DSA are presented in Appendix

I.
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8.5 Comparison of Methods for DSA

The choice of method for DSA is highly dependent on the computational time

of each method and the properties of the design model. The number of design

variables and the number of cross sectional sample points have a significant

impact on the choice of method. The DDM requires solution of dU
dxj

for each

design variable in equation (8.2.4), while the AM requires the solution of

equation (8.2.6) for each cross sectional sample point.

8.6 Sub Conclusion

Throughout this chapter it has been shown how to obtain the full derivatives

of the damage constraint w.r.t. the design variables. This was made by an

OFD and the analytical DDM and AM. One of the main considerations is the

setup of the full derivative by the contributions from an amplitude part and a

mean part. Furthermore several implications in the methods was clarified. It

should be noted, that the damage constraint was not differentiable in the case

of a zero mean stress according to the shape of Goodman diagram. This was

a limitation of the DSA together with the limitations presented in Appendix

K. It can be concluded, that if a semi-analytical approach was used, it would

only be possible with a numerical determination of
∂gk−amp

∂U
and

∂gk−mean
∂U

, while

all other terms would be computed analytically. Finally, the analytical DSA

approach has been verified by a benchmark example. Here it was shown, that

the analytical methods yield results within an acceptable accuracy. It can be

concluded, that it is more efficient to compute the sensitivities analytically

if calculation time and precision is compared between the numerical and

analytical approach.



Chapter 9

Optimization Methods

This chapter has the purpose of introducing the considerations regarding the

available methods for use in the optimization as well as a selection of the most

suited methods. Considerations regarding a move limit strategy are made.

A robust optimization algorithm must be chosen, and its advantages and

disadvantages will be clarified. Aggregated functions are introduced for the

post processing of the fatigue constraints. Appendix I supports this chapter.

9.1 Optimization Algorithm

The SLP algorithm is chosen for the optimization due to its simplicity and

transparency. Furthermore, the SLP method is known to be able to handle

many design variables without problems, [Arora, 2012, Sec. 12.5]. A

non-linear optimization problem may be solved using the SLP algorithm by

linearizing the response and constraint functions around a given design point.

The linearized subproblem can be solved using the Simplex method or similar

solving procedures.

In this project a standard SLP algorithm for solving of non-linear optimization

problems is provided by Professor Erik Lund. The provided script has been

modified in order to suit the optimization problems handled in the following

chapter. It should be noted, that the used SLP algorithm will always be

initialized from a feasible starting point in this project, since no globalization

schemes are used. Further information regarding the SLP algorithm may be

found in Lund [2013b] and Arora [2012].

The success of a SLP algorithm is highly dependent on the chosen move limits,

which will be examined next.
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9.1.1 Move limits

Move limits are used in the SLP algorithm to restrict the change in design

variables during each iteration in the optimization algorithm, to ensure the

linear approximations of the subproblem are valid. The choice of suitable move

limits for the design variables may determine whether the SLP algorithm is

successful or not. The choice of the move limits is however highly problem

dependent, which means that the optimization problem at hand must be well

understood before suitable move limits can be set, [Arora, 2012, Sec. 12.5].

Since a linear algorithm is used to solve a non-linear optimization problem,

the move limits should be set low, such that the change in design variables

between each iteration is quite limited.

In this project an adaptive move limit strategy is developed with the purpose

of lowering the number of iterations, and thus the calculation time, before the

optimization algorithm is stopped. A move limit is initialized for each design

variable. The move limits are adjusted according to the change in the given

fatigue constraint. Thus, if the change in the fatigue constraint value from

one iteration to the next is larger than for instance 5% the move limit will be

reduced. However, if this change is below for instance 1% the move limit will

be increased by a small amount. The percentage values for which to decrease

or increase the move limits may vary between different optimization problems.

By allowing an increase in the move limits for small changes in the fatigue

constraints, the number of iterations needed to approach the bound set by the

inequallity fatigue constraints can be lowered. No special conditions is applied

if the algorithm reach an infeasible point since the optimization will always

approach the fatigue bound from a feasible design using small move limits.

9.2 Treatment of Constraint Functions

The max value approach is a simple method to choose the maximum damage

value in an element or symmetry group and use this as the value in the

optimization. Thus, only one gradient needs to be determined, and the

calculation time for each iteration is significantly reduced. Besides this, it

seems logical to use the fatigue value in the highest loaded damage point

in an element or symmetry group, since this will be the weakest point. It

should be noted, that this method may give fluctuations in fatigue constraint

values since the point with the largest fatigue constraint quantity may change
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between iterations.

Aggregated functions can be regarded as strong tools for post processing

of constraints in order to reduce the number of constraints and to avoid

fluctuations. In this project the main purpose of using aggregated functions

is to assemble several constraints into a single constraint. For instance, a

single fatigue constraint value in each element may be calculated based on

the constraint values in all cross sectional sample points of the given element.

Furthermore, the aggregated functions may be employed whenever several

fatigue constraint values are combined to a single constraint value for each

symmetry group. This method is in this report referred to as a local approach.

The term global approach refers to assembling all constraint function values

of the model to a single fatigue constraint value. Only the global approach

will be examined in this project.

9.2.1 Aggregated Constraint Functions

A huge number of aggregated functions are available and the choice of the

most proper method is highly dependent on the problem treated. Three of

the most popular methods of aggregated functions are:

� Kreisselmeier-Steinhauser method.

� Weighted sum method.

� Generalized mean methods.

A study of the different aggregated functions has been performed in order

to choose the most suitable method [Lund, 2013a].

The Kreisselmeier-Steinhauser method can take several forms, but only the

following form is treated:

g(x) = gmax +
1

pks
ln




Ng∑

k=1

epks(gk−g
max)


 (9.2.1)

where pks is a positive integer and gmax denotes the maximum value.

The Kreisselmeier-Steinhauser method will always yield values above the

maximum value of the constraints. The Weighted sum method takes the

form:

g(x) =

Ng∑

k=1

pkwgk (9.2.2)
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where Ng is the number of constraints and pkw is the weight factor. The

Weighted sum method might give results above the maximum value for some

weight factors as well. However, it is quite hard to predict which weight factors

will yield a damage value above the maximum. The Kreisselmeier-Steinhauser

method gives overly conservative results. The result from the weighted sum

method are highly dependent on the chosen weight factors. As a result, these

methods will not be discussed further. The Generalized Mean Method (GMM)

seem to be a suited tool for post processing of damage constraints and it is

the method proposed by Holmberg [2013]. The GMM is preferred for the post

processing of the fatigue constraint values, and it will be presented in details

next.

9.2.2 Generalized Mean Methods

A number of different GMMs have been considered, some of which are

presented in [Holmberg, 2013, Sec 4.1.1]. Based on the area of application in

this project the following GMM has been chosen:

gGMM =


 1

Ng

Ng∑

k=1

(
gpk
)



1/p

(9.2.3)

where Ng is the number of constraints and p is a positive integer. Equation

(9.2.3) represents a global approach for the generalized mean method, but it

can easily be converted to a local approach based on clustering of element

or symmetry group constraint values. The GMM yields a value between the

average and maximum value of gk dependent on the chosen value of p. Thus,

it will always give a value equal to or below the maximum value of gk. If

p = 1 the GMM will yield an average value of the values in gk. The other

extreme case is when p⇒ inf where the GMM will give the maximum value of

the gk values. Thus, the choice of p must be determined carefully dependent

on the problem treated and the results desired. Holmberg [2013] recommends

p = 8 or p = 12. By using the GMM fluctuations in the fatigue constraint

values might be reduced which may be useful or even necessary in order to

ensure convergence. The influence of p will be examined further in Appendix

M. For the maximum value approach it might be beneficial only to calculate

the gradients in the highest loaded cross sectional sample points. This may

reduce the calculation time significantly.
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9.3 DSA of Generalized Mean Method

Analytical methods are needed in order to calculate the sensitivity of the GMM

function. The analytical sensitivity of the GMM can be obtained directly as:

dgGMM

dxj
=


 1

Ng

Ng∑

k=1

(
gpk
)(1/p−1)




 1

Ng

Ng∑

k=1

(
g
(p−1)
k

dgk
dxj

)
 (9.3.1)

This equation shows a global approach for the GMM, but it can easily

be converted to an local approach based on the damage in each element.

The derivative of the constraint function w.r.t. the design variables, dgk
dxj

is

determined from equations (8.2.4) or (8.2.6).

9.4 DSA Verification of Generalized Mean Method

A verification of the implementation of the GMM in the DSA based on a

local element approach is shown by the results in Table 9.1. The analytical

sensitivities from the DDM are compared to sensitivities obtained by a central

FD approach using the cantilevered beam example with a diameter of 0.13 m

and a thickness of 0.004 m. The used load series is similar to the stress series

seen in Figure 5.3. The damage values in the cross sectional sample points in

each element are clustered using the GMM. A maximum deviation of 0.51%

is observed, which is regarded as an acceptable deviation. Thus, it can be

concluded that the sensitivity analysis of the GMM yields reliable results, and

the implementation has been made properly.

Design

Variable

Ele. 1 Ele. 2 Ele. 3 Ele. 4 Ele. 5

d1 0.5% 0 0 0 0

d2 0 0.4% 0 0 0

d3 0 0 0.3% 0 0

d4 0 0 0 0.2% 0

d5 0 0 0 0 0.1%

t1 0.5% 0 0 0 0

t2 0 0.4% 0 0 0

t3 0 0 0.3% 0 0

t4 0 0 0 0.2% 0

t5 0 0 0 0 0.1%

Table 9.1: Percentage deviation between the Central FD approximation and

the analytical approach to obtain the sensitivities of the GMM constraint

function.
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9.5 Sub Conclusion

The SLP algorithm was chosen for the optimization of the jacket structure.

The concept of move limits was introduced and an adaptive move limit

strategy was developed. Aggregated functions were considered for the post

processing of the fatigue constraint values. The GMM was chosen since

the Kreisselmeier-Steinhauser method was too conservative and the weight

factors for the weighted sum method were difficult to establish. An analytical

sensitivity analysis of the GMM was performed in order to obtain the gradient

for use in the optimization process. The analytical sensitivities were verified,

and it was concluded that the analytical sensitivities yield reliable results.

Thus, the methods and tools presented in this chapter will be utilized for the

optimization.



Chapter 10

Optimization Results

In the following the results of the optimization will be examined. For the initial

optimization, simple benchmark examples using the prismatic cantilevered

beam model introduced in Figure 8.3 will be used to verify the chosen

analytical approach. A non-proportional load spectrum will be applied, and

the SLP algorithm with adaptive move limits, introduced in section 9.1, will be

applied. The diameter and thickness design variables will initially be treated

individually since this allows for a prediction of the optimum result, which is

used as the benchmark result, before they are combined in an optimization.

Finally, the optimization approach will be applied to the jacket structure.

This chapter is supported by appendices J, K, L, and M.

10.1 Beam with a Single Force Applied

For the first example a single P y tip load is applied. A diameter and a

thickness optimization are performed separately. The GMM will be used

for the thickness optimization and the combined diameter and thickness

optimization. The choice of p-values in this section is based on a study of

the GMM in section 10.1.3. The same cantilevered beam model will be used

for all benchmark examples and the sensitivities are determined analytically

by the DDM. A second benchmark example utilizing a cantilevered beam with

six applied tip loadings can be found in Appendix L.
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10.1.1 Diameter Optimization

In the following the outer profile diameters will be used as design variables

and the thicknesses will be locked. Due to the simplicity of the beam the

highest constraint function value will always occur in the same cross sectional

sample point, see Figure 8.3. Thus, the maximum value approach is used to

determine the constraint function value in each element since fluctuations are

not encountered. The load spectra used for the the tip loading is seen on

Figure 10.1a.
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Figure 10.1: (a) The applied load spectra for the P y tip force. (b) gk in each

of the five elements and the mass of a single element.

The purpose of the optimization is to reduce the mass of the cantilevered

beam without violating any fatigue constraints. The initial diameter of the

elements is set to 0.07 m and the initial thickness to 0.004 m. A beam length

of 0.6 m is chosen for the analysis. This yields an initial mass of 3.9 kg.

From Figure 10.1b it is seen that the optimization problem at hand is highly

non-linear. This means very small move limits must be set for all design

variables. Due to the simplicity of the optimization problem, the optimum

solution may in fact be predicted from Figure 10.1b. The optimum diameter

for each element must be found when the constraint function value equals

zero and is thus right at the bound. This result is used to validate the

obtained optimum using the SLP algorithm. Note, this is only possible when

the damage in each element is only affected by its own diameter.



10.1. BEAM WITH A SINGLE FORCE APPLIED 89

The adaptive move limit strategy for this problem is defined as:

� For a change in constraint function value larger than 3%, decrease the

move limit by 90%.

� For a change in constraint function value less than 1%, increase the move

limit by 8%.

The SLP algorithm converges in 32 iterations to the result shown in Table

10.1.

Element Diameter, [m] gk(k = 3, 11, 19, 27, 35)

1 0.050 -0.58

2 0.045 -0.52

3 0.040 -0.44

4 0.033 -0.35

5 0.025 -0.66

Table 10.1: Optimum solution for the cantilevered beam model with P y tip

loading.

A comparison between Table 10.1 and Figure 10.1b reveals that the SLP

algorithm converges towards the expected result for all element diameters.

However, it should be noted from Table 10.1, that the values of the fatigue

constraints are not equal to zero, which means the obtained result is not right

at the fatigue bounds. This is a result of the convergence criteria used in the

SLP algorithm, which states that the optimization routine is converged when

the relative design change between two iterations is below 0.1%. The total

reduction in mass for the given example is approximately 47%.

Convergence Criteria

It is examined whether a better design can be obtained using a different con-

vergence criteria. The alternative convergence criteria examined states that

the optimization is converged when the fatigue constraint with the lowest value

is above −0.1. Even though a design close to the fatigue bound is found, the

number of iterations needed before convergence exceeds 150. Thus, the calcu-

lation time is increased by nearly a factor of five. The changes to the design

variables are however so low, due to the very low move limits set near the

constraint bound, that they are neglectable. Thus, from an engineering point

of view, the original convergence criteria w.r.t. the relative change in design
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is kept for the optimization.

10.1.2 Optimization and Stresses

The normal and shear stress distribution in the optimized beam is examined in

the following. Due to the simplicity of the used beam model, it is expected that

the normal stresses in each element in the optimized design will approach the

same value. However, it should be noted that some slight differences between

the stress values should be expected due to the different constraint function

values seen in Table 10.1. An increase in the shear stresses must be expected

from the inner to the outer element due to the stair shape of the optimized

beam. The normal and shear stress distributions are seen in Figure 10.2.

Note, a unit P y load is applied.
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Figure 10.2: (a) The normal stress and (b) the shear stress distribution along

the beam model.

From Figure 10.2a it is seen that the normal stress distribution seems

to converge toward an equal stress distribution. Figure 10.2b reveals that

significant changes are introduced in the shear stresses in the elements near

the tip, where shear stresses are more than doubled.

The result illustrated in Figure 10.2a hints, that the optimization of the beam

w.r.t. fatigue constraints could be much similar to an optimization using

simpler stress constraints. However, it is expected that the differences in

optimized design, determined using the two methods, will become more and
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more profound as designs become more complicated.

A parametric study using stress constraints is examined in Appendix J.

10.1.3 The Influence of the p-value in the GMM

The GMM on element basis is applied to the cantilevered beam model with

a single tip load. The influence of the p-value on the calculated result, the

number of iterations for convergence, and the calculation time is examined.

P-values: p = 1, ..., 15, 30 are used for the current example. The following

move limits and settings have been used for all examined cases:

� For a change in constraint function value larger than 2%, decrease the

move limit by 90%.

� For a change in constraint function value less than 1%, increase the move

limit by 2%.

It is shown in Appendix M, that the obtained results corresponds well with

the results in Table 10.1, where the max value approach is applied for p ≥ 8.

Thus, it is verified that the GMM yields similar results as the maximum

value approach if the p-value is set sufficiently large. Tests with p-values

above 15 showed that numerical implications may arise. Furthermore, it is

recommended to use the GMM with a large p-value rather than the maximum

value approach to reduce the risk of fluctuations. In this case only the largest

value will remain since all the smaller values will be eliminated by the large

p-value. In Appendix M it can be seen, that the p-value has no influence on

the number of iterations or the calculation time. Small fluctuations are seen

in the number of iterations, but a clear pattern is not recognized. Selected

results of Table M.1 can be seen on Figure 10.3. From Figure 10.3b it is seen,

that there is a significant difference between the optimized results using the

low p-values, while the difference between results above p = 8 can be regarded

as minor. Thus, the p-value 1 ≤ p ≤ 8 will be used in this project.
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Figure 10.3: (a) Optimization results for the all the diameters with different p-

values. (b) Zoom on the optimization results for the diameter x1 with different

p-values.

10.1.4 Thickness Optimization

A thickness optimization is performed with the diameters fixed at 0.04 m

in order to investigate the nature of this optimization problem. The profile

thicknesses are initialized at 0.009 m. The initial mass of the model is 4.13 kg.

The GMM is applied and a p-value of 2 is chosen based on the study presented

in section 10.1.3. As for the diameter optimization, a parametric study is used

to predict the solution as shown on Figure 10.4.

From Figure 10.4 it can be seen, that the fixed diameter of 0.04 m gives a

design where the constraint function value in element one for any examined

thickness will be larger than zero. However, the fatigue constraint is not

violated why this diameter is kept for the thickness optimization. From Figure

10.4 the nonlinear behavior of the cost function can be seen as reflected by

the gradient in equation (8.1.1). Thus, the most severe difference between

the diameter optimization and the thickness optimization is the change in

cost function from linear to non-linear behavior. This subproblem must be

linearized as well in order to apply the SLP algorithm.
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Figure 10.4: Parametric study of the fatigue constraints as a function of the

thicknesses with a fixed diameter of 0.04 m.

The adaptive move limit strategy for the optimization problem is defined

as:

� For a change in constraint function value larger than 2%, decrease the

move limit by 90%.

� For a change in constraint function value less than 5%, increase the move

limit by 3%.

These move limits are more restrictive than the move limits used for the

diameter optimization since the constraints are found to be steeper in the

thickness optimization. The results of the thickness optimization for a

diameter 0.04 m can be seen in Table 10.2. These results corresponds well

with the parametric study in Figure 10.4.

Element no. Thickness [m] gGMM
k

1 0.0081 -0.45

2 0.0056 -0.70

3 0.0038 -0.80

4 0.0023 -0.83

5 0.0011 -0.90

Table 10.2: Optimization results from the thickness optimization with at p-

value of 2.
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It can be concluded, that only minor differences occur when optimizing

the thicknesses compared to the optimization of the diameters. However,

the behavior of the cost function is seen to change from linear to non-

linear. As for the diameter optimization the optimization algorithm is seen to

converge toward the predicted thicknesses. The mass of the optimized model

is determined to 2.13 kg, which means a weight reduction of 48% from the

initial design is found.

10.1.5 Diameter and Thickness Optimization

In this section a combined optimization of both the thicknesses and diameters

are performed. It is not possible to obtain parametric plots of the design

space, as made in the preceding sections. Hence, the optimization results

are not given beforehand. The p-value is set to 2. The adaptive move limit

strategy for both the diameters and thicknesses is defined as:

� For a change in constraint function value larger than 3%, decrease the

move limit by 90%.

� For a change in constraint function value less than 1%, increase the move

limit by 4%.

The initial and optimized design can be seen in Table 10.3 together with

the constraint values. The optimization converges in 71 iterations.

Start Design Optimized Design

Diameter Thickness Diameter Thickness gGMM
k

1 0.08 0.004 0.060 0.0031 -0.41

2 0.08 0.004 0.055 0.0029 -0.42

3 0.08 0.004 0.050 0.0028 -0.44

4 0.08 0.004 0.043 0.0025 -0.49

5 0.08 0.004 0.033 0.0023 -0.54

Table 10.3: Results from optimization of both the diameters and thicknesses.

As seen from Table 10.3, both the diameters and thicknesses are decreased

during the optimization and the constraints are not violated. Thus, the

developed method is seen to be applicable for a combined diameter and

thickness optimization.
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10.2 Optimization of Jacket Structure

In Appendix K it is seen how the analytical DSA is not capable of providing

reliable results whenever different load series are used for the different applied

loads as it is the case for the generic jacket structure. Thus, a forward

FD approximation is used for the DSA in the following optimization. The

optimization of the jacket structure is carried out in order to determine the

potential of the mass optimization using the fatigue constraints on a real life

structure. Note, only the outer diameters are used as design variables due

to high calculation times. The diameters of symmetry groups 12 and 13 are

maintained at 1.2 m through the optimization since these are regarded as

artificial elements included in the TP. The profile properties of the original

jacket structure are defined in Table 2.1. By using an iterative parametric

approach a new initial design closer to the optimized solution has been

determined. The purpose of determining the new starting point is to reduce

the number of optimization iterations needed for convergence and thus the

calculation time. The starting point is shown in Table 10.4.

Symmetry group Outer diameter, [m] Thickness, [m]

1-2 0.57 0.015

3-6 0.4 0.01

7 0.15 0.005

8 0.17 0.005

9 0.28 0.005

10 0.23 0.005

11 0.2 0.005

12-13 1.2 0.04

Table 10.4: Starting point for the optimization of the jacket model.

The move limits are initialized to 0.4%, while the adaptive move limit

strategy for this problem is defined as:

� For a change in constraint function value larger than 5%, decrease the

move limit by 90%.

� For a change in constraint function value less than 1%, increase the move

limit by 3%.

The convergence tolerance is set to 0.1%, and no upper and lower bounds

are set on the design variables. The GMM with a p-value of 5 is applied on

each element in order to ensure that no large fluctuations in constraint function
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values occur. After the the GMM is used on each element, the maximum

constraint function value in each symmetry group is determined and used as

the fatigue constraint for the given symmetry group. The gradient of the cost

function for each symmetry group is determined from equation (8.1.2), where

the contribution from each element in a symmetry group is summed.

Since a forward FD approximation is applied for the DSA the calculation

time of each iteration can be assessed from Table 6.2. 13 fatigue constraint

gradients must be calculated in each iteration due to the use of 13 symmetry

groups containing a total of 13 design variables. Using the forward FD

approximation this means the damage in the structure must be determined 14

times. Thus, when 6, 000 load sample points is used, the calculation time for

the gradient determination alone is in excess of an hour on a standard laptop.

As a result, 750 load sample points will be used in the optimization reducing

the calculation time of each iteration to approximately 15 minutes. Note, this

means an underestimation of the damage of up to 54% must be expected, see

Table 6.2.

10.2.1 Results from Optimization of Jacket Model

The results of the optimization can be seen in Table 10.5. The mass of the

jacket model is reduced from an initial value of 562, 660 kg to 69, 554 kg,

a reduction of 87.6%. Note, that the original jacket structure has been

designed according to offshore standards where high safety factors are used.

Furthermore, only a single load case is available and judging from the wind

speeds, it does not represent an extreme load case. Adding to this, that a

number of design driven topics have been delimited, as seen in section 1.1.1,

a large reduction in mass must be expected.

Symmetry Group Diameter [m] Thickness [m] gGMM
k

1 0.54 0.015 -0.54
2 0.28 0.015 -0.99
3 0.29 0.01 -0.28
4 0.22 0.01 -0.61
5 0.19 0.01 -0.99
6 0.30 0.01 -0.64
7 0.002 0.005 -1.0
8 0.095 0.005 -0.07
9 0.10 0.005 -0.33
10 0.12 0.005 -0.99
11 0.11 0.005 -0.01
12 1.2 0.04 -1.0
13 1.2 0.04 -1.0

Table 10.5: Optimization results for the jacket for each symmetry group.
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Note, that the profile parameters of Table 10.5 have been determined using

just 750 load sample points. As a result, these must be increased when all

60,000 load sample points is used in order for the profiles not to suffer fatigue

failure. Studies have shown that even though the damage is underestimated

with as much as 54%, the profile properties should only be increased by a

few percent in order to have the sufficient fatigue strength. This is a result

of the steep constraint functions. From Table 10.5 it is seen that symmetry

groups 7, 12, and 13 are not near the fatigue limit for the optimized result.

Symmetry groups 12 and 13 were not included in the optimization since they

are embedded in the TP. The applied BCs means that the mud braces of

symmetry group 7 carry almost no loading. This is recognized from the very

small outer diameter of symmetry group 7, which suggest that these elements

are redundant. Note, the found profile dimensions for symmetry group seven

is not physically possible. However, this has little if any influence, since the

mud braces are removed from the optimized design.

The remaining symmetry groups are seen to be close to the fatigue limit.

However, a design where all symmetry groups are at the fatigue limit is not

obtained due to the used convergence criteria, which is set according to the

relative design change. Even though the obtained design is not exactly at the

fatigue limit it is accepted as a result of the very steep non-linear behavior of

the constraint functions near the fatigue limit. Thus, only neglectable design

changes can be found by continuing the optimization.

The percentage reduction in diameter for each symmetry group is

illustrated on Figure 10.5.
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Figure 10.5: The percentage reduction of outer diameters for each symmetry

group.

In contrast to the simple beam examples, the design variables in the more

complicated structures can influence the damage in several elements. Thus,

the direct coupling between an element’s design variable and its constraints,

as seen for the simple beam examples, will be lost and the gradient matrix

will contain off-diagonal terms. Thus, the developed move limit strategy may

not be as successful when used on the jacket structure than when used on the

simple beam examples.

A study of where the calculation time is spent during the optimization is

made in Appendix I. The main conclusion is that 87.5% is spent on computing

the gradients, if the gradients are calculated using parallel computing in

MATLAB. 12% is spent on computing the damage, while less than a half

percent is spent on solving the optimization problem. The calculation time is

examined further in Appendix I.

The damage in the cross sectional sample points for the original and

optimized design can be seen on Figure 10.6.
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Figure 10.6: The damage determined in each cross sectional sample point of

(a) the original design and (b) the optimized design of the jacket model.

From a comparison of Figures 10.6a and 10.6b it is seen that the damage in

the cross sectional sample points has been increased for the optimized design

as expected. From Figure 10.6b it is seen that the damage in three cross

sectional sample points has exceeded the fatigue limit of 1. The three cross

sectional sample points belong to symmetry group 3, 8, and 9. However, the

violation of the fatigue limits is not seen in the constraint function values for

symmetry group 3, 8, and 9, see Table 10.5. Thus, the used p-value of 5 in the

GMM must be increased for future optimizations. The damage in symmetry

group 1 to 11 may be seen on Figure 10.7 for the original and the optimized

design in order to evaluate the optimized design.

From Figure 10.7a it is seen that none of the symmetry groups contain

any significant damage in the original design. However, this is changed in

the optimized structure as seen on Figure 10.7b. Note, how several of the

symmetry groups are now much closer to the fatigue limit of one. The

symmetry group closest to the fatigue limit is symmetry group 11. This

symmetry group does not contain any damage values above one, which

suggests that the overall damage values in the symmetry group are high. The

results of Figure 10.7b shows that the diameters of symmetry group 2, 5, and

10 may be lowered even further. However, due to the coupling effects between

diameters and damage values in different symmetry groups, the diameters in

symmetry groups 8 and 11 might have to be increased in order not to exceed

the fatigue limit.
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Figure 10.7: The damage value in symmetry groups 1 to 11 for (a) the original
jacket design and (b) the optimized jacket design.

It is experienced during the various optimization runs, that different converged

designs are found for different chosen starting designs. This hints that the

found design of Table 10.5 is a local optimum.

10.3 Sub Conclusion

In order to use a linear optimization algorithm in combination with the steep

fatigue constraints a suitable move limit strategy was developed. Optimization

performed using the developed move limit strategy in combination with a SLP

algorithm proved to yield satisfactory results for both diameter and thickness

optimization for the simple beam examples. For the simple benchmark

examples the optimized result was seen to converge towards the results

predicted by parametric studies.

The GMM was introduced to remove the risk of fluctuations in the fatigue

constraint values. From results using the GMM it is recommended to use a

p-value between 1 and 8.

An optimization of the jacket structure was carried out using a numerical DSA

scheme due to the current deficiencies in the analytical DSA. The developed

method was seen to be applicable on a larger real life model, and a local

optimum reducing the overall mass with 87% was found. The large mass

reduction might be a result of the delimitation made in the project.
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Conclusion

The main purpose of the project is to examine the use of gradient based size

optimization in correlation with fatigue constraints using non-proportional

load spectra, and to determine the most suited methods. One of the main

focus areas is to determine the gradients using an analytical approach. The

approach, with a numerical DSA, is applied to an OWT support structure in

order to examine if the developed method is applicable for a real life product.

A MATLAB FE program is developed in order to perform the structural

analysis. A 3D frame element based on Bernoulli-Euler beam theory is im-

plemented. Stresses are determined in a predefined number of cross sectional

sample points in the frame elements. The MATLAB FE program is verified

by a result comparison to ANSYS and analytical results. It can be concluded,

that the MATLAB FE program yields reliable stress results.

The accumulated damage estimation is based on Wöhler curves and a mod-

ified Goodman diagram. The rainflow count method is chosen as the cycle

count method for the various non-proportional spectra. Three different sort-

ing algorithms are developed to sort the stresses after the rainflow count. A

successful sorting of the counted stress results will ease both the damage esti-

mation and the DSA. The equivalent damage approach is preferred over the

average damage and maximum damage approaches since fewer intervals can

be used. Finally, the Palmgren-Miner damage rule is applied to determine

the accumulated damage. It is seen, how the overall calculation time can be

reduced by sampling the load spectra with a lower frequency than the original

spectra. However, this introduces an underestimation of the damage, which

the user should be aware of. It is verified, that the structural analysis has
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been implemented properly.

The full derivatives of the damage w.r.t. design variables can be determined

by an OFD approximation or analytically by the DDM or the AM.

The analytical DSA must be split into separate damage contributions from

an amplitude stress and a mean stress. In it current state the analytical ap-

proach is seen to yield unreliable results when using different load series for

the applied loads. The current deficiencies are thought to be related to the

implemented bookkeeping. However, the analytical methods are seen to be

successful for several load cases as well using non-proportional load series. A

restriction in the developed method is that it is not applicable for load spectra

with a zero mean value due to the shape of the Goodman diagram.

The SLP algorithm is chosen due to its simplicity, transparency, and its

ability to handle many design variables. A special adaptive move limit strategy

is developed to account for the non-linear fatigue constraints. The GMM

is used to cluster several constraint functions in an element or symmetry

group. The optimization using the SLP algorithm and the adaptive move

limits proved to converge towards the results predicted by the parametric

studies for the simple beam examples. An optimization of the generic jacket

structure is performed to ensure the developed method is applicable on a

real life structure. Symmetry conditions are imposed on the jacket model to

reduce the number of design variables. It can be concluded, that the developed

method shows great potential when applied on a real life structure.

In excess of 80% of the calculation time during the jacket optimization

iterations is spent determining the gradients numerically. The calculation

time of the DSA is highly affected by the number of load sample points for

both the numerical and analytical approaches.

It should be noted, that the number of sub-function calls and the amount of

data which must be stored is significant even for small models and load spectra

using the developed method. Some recommendations to the future work are

given in the following discussion.
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Discussion

In this project a method of including fatigue constraints in a classical gra-

dient based size optimization problem is sought. The main focus points of

this project are chosen to be an analytical DSA as well as the ability to use

non-proportional load spectra for the applied loads. As seen in section 8.4

and Appendix K some deficiencies are still present in the analytical DSA, but

the ability to handle random amplitude and mean load spectra is achieved for

some cases as well. In the following, some suggestions to the further improve-

ment of the developed method is given.

In [Holmberg, 2013, Figure 12(a)] an alternative approach, which might

reduce the calculation time of the optimization procedure significantly is sug-

gested. The main difference to the procedure employed in this project is, that

the fatigue analysis is moved out of each optimization iteration loop in the

alternate approach by determining a stress equivalent and using stress con-

straints. Thus, the fatigue analysis in this approach is not design dependent.

This approach is however only applicable for proportional load series, which

does not fulfill the aim in this project.

It is experienced, that the calculation time for each iteration in the

optimization of the jacket model is quite high. This is not ideal since a

SLP algorithm is applied on the non-linear optimization problem, and a large

number of iterations using small design changes must be used as a result.

Thus, lowering the calculation time for each iteration would be beneficial.

However, no attempts of speeding up the calculations, for instance by applying

vectorization or parallel computing, are made.
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The overall calculation time may be lowered by a reduction of the applied load

spectra. Due to the limited time frame the topic of load series reduction has

not been examined.

Fatigue studies have shown that compressive mean stresses in a structure

might actually be beneficial for the overall fatigue life of the structure. In

this project however, such beneficial effects from a compressive mean stress is

disregarded in the Goodman diagram.

In section 8.3 it is explained how the matching of stress- and displacement

fields for the analytical DSA is handled. In the bookkeeping it is assumed that

a single displacement field may be used for all stress cycles stored in a given

interval of the sorted rainflow table, Table 8.1. Due to the simplicity of the

beam models this assumption is not violated for the analytical DSA in section

8.4, why reliable results are obtained for this example. However, as different

non-proportional load series are applied on larger and more complicated

structures the results from the analytical DSA becomes unreliable. This

may be a result of the violation of the assumption previously mentioned.

Thus, some suggestions to the improvement of the bookkeeping, to ensure a

functional analytical DSA for all types of load cases, are given in the following.

Further Work

It is assumed, that the unreliable results from the analytical DSA is caused by

the use of a single displacement field for all stress reversals in a given interval.

One approach to eliminate this error in the calculations would be to remove

the sorted rainflow table and use the beginning time of each stress cycle to find

a matching displacement field. However, this approach is not recommended,

since the terms
(
∂gk
∂xj

)
and

(
∂gk
∂U

)
must now be calculated for each stress cycle

and not a small finite number of intervals in the sorted rainflow table, which

will be computationally heavy. Thus, the method will no longer be applicable

on larger load series.

Another approach could be to keep the sorted rainflow table and to determine

the displacement field used for each interval by either finding a mean of- or

by applying a weighted sum function to all displacement fields matching the

stress reversals in the given interval.

As seen from equation (8.2.8) the same displacement field is used as input
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to the partial derivative of both the normal- and shear stresses w.r.t. the

design variable. Thus, it is assumed that the normal- and shear stress in a

given interval occur at the same time. This can however not be guaranteed.

As a result, it is recommended to allow for a used of different displacement

fields when determining the two partial derivative stress terms.

It can be concluded, that a number of challenges within the field of

analytical DSA of fatigue constraints, for use in gradient based optimization,

are still present. Hopefully, this first attempt of developing a suitable method

for analytical DSA of fatigue constraints may ease the future development of

an efficient method, which some day may be applied in the optimization of

real life components for all types of load cases.
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Appendix A

Load Case

This appendix has the purpose of introducing the load case for the jacket

structure. The load spectrum is found by a multi body analysis as explained

in section 2.2. The load case consist of two forces and two moments applied

in the top center of the TP, Px, Py,Mx and My, respectively. These together

with the wind spectrum are presented on the following figures.
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Figure A.1: Wind spectrum.
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Figure A.2: The measured forces in the X- and Y-direction. The mean force
for X-direction is 3,500 kN, while the mean force in the Y-direction is -4.05
kN.
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Figure A.3: The measured moment around the X- and the Y-axes. The mean
moment for X-direction is 756 kNm, while the mean moment in the Y-direction
is 3,408 kNm.





Appendix B

Program

The functionalities of the developed MATLAB FE program is described in

the following appendix. Furthermore, the program structure of an example

main file and some sub-functions for the DSA are illustrated by the use of

flowcharts. An example setup of an analytical DSA may be found on the

enclosed CD.

B.1 Program Functionalities

The program functionalities are presented in the following to give the user

an overview of the possibilities in the developed program. Various analysis

settings may be chosen by the user in the MATLAB FE program. These are

listed as:

� Number of cross sectional sample points.

� Number of load sample points.

� Angle offset for cross sectional sample points, αInitial.

� Perturbation for the FD approximations.

� The choice of load case: Px, Py, Pz,Mx,My,Mz.



The program is capable of computing the following:

� Displacements.

� Stresses.

� Damage.

� Eigenfrequencies.

� Design sensitivities:

Forward FD.

Central FD.

Analytical AM.

Analytical DDM.

� Size optimization.

� Aggregated Function:

Generalized mean method.

Furthermore, material model settings may be defined by the user in case

the material must be altered. Different material parameters may be used for

normal- and shear stresses.

B.2 Program Flow Charts for DSA

This section has the purpose of presenting the program structure, exemplified

for a main function and for the OFD and analytical DSAs. The program

structure is illustrated by the use of flowcharts where calls of the various sub-

functions are highlighted. An example of a main function can be seen in Figure

B.1. The functions for the DSA are shown by Figures B.2, B.3, and B.4 for

the overall FD approach, the AM, and the DDM, respectively.
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Appendix C

Finite Element Analysis

The local element stiffness matrix, K ′e is derived in the following.

Furthermore, the transformation from local to global coordinate system using

transformation matrices and the procedure for finding normal and shear

stresses are described.

Axial stiffness

The axial stiffness of the 3D frame element can be found by considering a two-

node bar element with only axial displacements, u′1 and u′2. The bar element

is illustrated in Figure C.1.

L

u'1 u'2

A,E

P'1 As P'2As

e

Figure C.1: Two-node bar element and force equilibrium, [Cook et al., 2001,

Figure 2.2-1].

From the two nodal displacements u′1 and u′2 the strain in the bar element

can be determined as:

ε =
(u′2 − u′1)

Le
(C.0.1)



from which the axial stress may be found:

σaxial = E · ε =
E

Le

(
u′2 − u′1

)
(C.0.2)

Two force equilibrium equations can be set up based on Figure C.1.

P ′1 +
AE

Le

(
u′2 − u′1

)
= 0 P ′2 −

AE

Le

(
u′2 − u′1

)
= 0 (C.0.3)

On matrix vector form the two equilibrium equations may be written:

{
P ′1
P ′2

}
=
AE

Le

[
1 −1

−1 1

]
·

{
u′1
u′2

}
(C.0.4)

The axial stiffness of the bar element has thus been determined to AE
Le

. Note,

that the element should only be used for small deformations due to the use of

Cauchy’s linear strain definition, equation (C.0.1). Next, the torsional stiffness

of the element may be determined.

Torsional stiffness

A twist along the element may occur when the two DOFs: θx
′
1 and θx

′
2 are

not equal. The torsional stiffness of a two-node element is much similar to the

axial stiffness of the element, and will thus not be derived here.

The torsional stiffness linking the twist to a torsional moment, for a circular

cross section, may be written as, [Cook et al., 2001, P. 27]:

{
M ′x1
M ′x2

}
=
GIp
Le

[
1 −1

−1 1

]{
θx
′
1

θx
′
2

}
(C.0.5)

Thus, the torsional stiffness of the two-node element has been determined to
GIp
Le

. Note, the use of the polar moment of inertia is only valid for circular

cross sections like a solid circular bar or a tube. Next, the bending stiffness is

examined.

Bending stiffness

A two-node beam element is used for the determination of the bending

stiffness. The beam element is based on Bernoulli-Euler theory, which means

transverse shear deformation is neglected. Thus, this element should only be



used for long slender beams. Bending around the z’-axis of the element is

considered first. The two-node beam element has the four DOFs:

U ′ =
[
v′1 θz

′
1 v′2 θz

′
2

]T

Two translations in the y’-direction and two rotations around the z’-axis. By

applying a unit displacement to each of the four DOFs, one by one, the four

displacement curves seen in Figure C.2, can be obtained.
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Figure C.2: (a) FBD near node 1, (b) FBD near node 2, (c) Unit displacement

on v′1, (d) Unit displacement on θz
′
1, (e) Unit displacement on v′2, (f) and unit

displacement on θz
′
2, [Cook et al., 2001, Figure 2.3-1]

From elementary beam theory the displacement curves to each of the four

unit displacements may be determined to:

v′c = 1− 3x′2

Le2
+

2x′3

Le3
v′d = x′ − 2x′2

Le
+
x′3

Le2

v′e =
3x′2

Le2
− 2x′3

Le3
v′f = −x

′2

Le
+
x′3

Le2
(C.0.6)

where the subscripts refer to the given displacement curve in Figure C.2.

These four displacement curves are equal to the shape functions of the beam



element, [Cook et al., 2001, P. 90].

The moment and the shear force may be expressed from:

M ′z = EIz
d2v′

dx′2
V ′y =

dM ′z
dx′

= EIz
d3v′

dx′3
(C.0.7)

By using the displacement curves presented in equation (C.0.6), the

expressions for the moment around the Z-axis and the shear force may be

determined:

M ′z =EIz

((
− 6

Le2
+

12x′

Le3

)
v′1 +

(
− 4

Le
+

6x′

Le2

)
θz
′
1 +

(
6

Le2
− 12x′

Le3

)
v′2

+

(
− 2

Le
+

6x′

Le2

)
θz
′
2

)

V ′y =EIz

(
12

Le3
v′1 +

6

Le2
θz
′
1 −

12

Le3
v′2 +

6

Le2
θz
′
2

)
(C.0.8)

From these two expressions the shear force and moment in nodes 1 and 2, and

thus the bending stiffnesses of the 2D beam element, may be determined.

From Figure C.2(a) and C.2(b), the two force equilibriums and the two

moment equilibriums seen in equation (C.0.9) can be found.

P ′y1 = V ′y P ′y2 = −V ′y

M ′z1 = −M ′z
∣∣
x′=0

M ′z2 = M ′z

∣∣∣∣
x′=Le

(C.0.9)

Note, that the expressions for the bending moment must be evaluated at x′ = 0

for node 1 and x′ = Le for node 2 in order to determine the bending moment

at the node location.

An assembly of the equations combining nodal displacements to nodal forces

and moments yields the 4x4 stiffness matrix for the 2D beam element:





P ′y1
M ′z1
P ′y2
M ′z2





= EIz




12
Le3

6
Le2

− 12
Le3

6
Le2

6
Le2

4
Le

− 6
Le2

2
Le

− 12
Le3

− 6
Le2

12
Le3

− 6
Le2

6
Le2

2
Le

− 6
Le2

4
Le








v′1
θz
′
1

v′2
θz
′
2





(C.0.10)

For bending around the y’-axis, the moment and shear expressions of equation

(C.0.8), may be reused with reversed signs on the rotational terms, and the

DOFs: U ′ = [w′1 θy
′
1 w′2 θy

′
2]
T . This leads to the following set of equations:







P ′z1
M ′y1
P ′z2
M ′y2





= EIy




12
Le3

− 6
Le2

− 12
Le3

− 6
Le2

− 6
Le2

4
Le

6
Le2

2
Le

− 12
Le3

6
Le2

12
Le3

6
Le2

− 6
Le2

2
Le

6
Le2

4
Le








w′1
θy
′
1

w′2
θy
′
2





(C.0.11)

The bending stiffness for rotations around the y’- and the z’-axis have thus

been determined. Next, the 3D transformation matrix is assembled.

C.1 Transformation Matrix

In the 3D beam program used for the FE analysis of the structure,

transformations between different local to global coordinate systems are used

multiple times. In the following, a method for finding the 3D transformation

matrix will be discussed.

In 2D dimensions, rotation from global to local coordinates may be carried

out by the well-known 3x3 matrix seen in equation (C.1.1),

T z =




cos(θ) sin(θ) 0

− sin(θ) cos(θ) 0

0 0 1


 (C.1.1)

since rotations are always around the z’-axis in 2D, and coordinates are thus

always in the same plane. This is however not the case for a 3D analysis.

Consider the beam element in Figure C.3 and its local coordinate system.

x

y z

Node1

Node2

Node3

V2
V3

V13
V1

'

'

'

X

YZ

Figure C.3: A 3D frame element and the three nodes defining its local

coordinate system according to the global coordinate system, (X,Y, Z).

For the 3D frame element seen in Figure C.3 the local x’-axis will always be

defined as going from Node1 to Node2. The coordinates of Node1 is (x′1, y
′
1, z
′
1)

and (x′2, y
′
2, z
′
2) for Node2. In order to define the y’- and z’-axes a third node,



which define the x’y’-plane, must be included. If this third node is not included

the y’- and z’-axes can rotate freely around the x’-axis. Note, that no DOFs

and no stiffness are associated with the third node of the element. Its only

purpose is to define the local coordinate system of the element.

From the coordinates of the three nodes, two vectors V1 and V13, may be

found:

V1 =





x′2 − x′1
y′2 − y′1
z′2 − z′1





V13 =





x′3 − x′1
y′3 − y′1
z′3 − z′1





From the cross product between V1 and V13 the vector along the local z’-axis,

V3 may be determined. The cross product between the newly found V3 vector

and the V1 vector will give the vector V2 along the local y’-axis:

V3 = V1 × V2 V2 = V3 × V1

Three vectors defining the local x’y’z’-coordinate system have thus been

determined from the three nodes. By dividing with the length of each

individual vector, the local coordinate system may be described by the three

unit vectors: e1, e2, and e3:

e1 =
V1

|V1|
e2 =

V2

|V2|
e3 =

V3

|V3|
where |x| denotes the length of the vector x. The columns of the 3x3

transformation matrix can now be assembled from the unit vectors as:

T 3x3 = [e1 e2 e3] (C.1.2)

In the MATLAB beam program, the transformation matrix is used to

transform entries of the local stiffness matrix to entries of the global stiffness

matrix, and later to transform global displacements of two nodes to local

displacements. The global displacements of two nodes yields a total of 12

DOFs, and the dimensions of the local stiffness matrix is 12x12, see Figure

4.2. This means that the 3x3 rotations matrix found in equation (C.1.2) must

be expanded to a 12x12 matrix. This is done following the procedure shown

in equation (C.1.3).

T 12x12 =




T 3x3 0 0 0

0 T 3x3 0 0

0 0 T 3x3 0

0 0 0 T 3x3




(C.1.3)



Note, not every zero entry is represented. Next, the normal and shear stresses

in the cross sectional sample points are determined.

C.2 Normal Stresses

Two stress components contribute to the normal stress in the cross sectional

sample points. These are the axial stress calculated from the normal forces

and the bending stresses determined from the bending moments. The axial

stress may be found by multiplying the axial strain with Young’s modulus.

That is not shown in this appendix.

The normal stress from the applied bending moment is determined from the

bending formula:

σ = −M · h
I

(C.2.1)

where h is the distance from the neutral axis to the sampling point. The

second area moment of inertia and the thickness for a hollow circular cross

section are given by [Goodno and Gere, 2009, P. 398]:

Iy = Iz =
π

4
(r42 − r41) =

π

4

(
(d/2)4 − (d/2− t)4

)
(C.2.2)

t = r2 − r1 d = 2r2 = 2(r1 + t) (C.2.3)

where r1 is the inner radius and r2 is the outer radius.

The bending moments in each node are determined from:

My = EIy
d2w

dx′2
M z = EIz

d2v

dx′2
(C.2.4)

The z’- and y’-coordinates of the cross sectional sample points, used for h

in equation (C.2.1) must be determined. The coordinates are calculated from

the outer diameter d in order to determine the maximum bending moment in

the sample points. The coordinates to the cross sectional sample points may

be found from:

y′ =
d

2
cos (α+ αInitial) z′ =

d

2
sin (α+ αInitial) (C.2.5)

Results from equation (C.2.5) can be compared to Figure 4.3a.

Having determined the sample point coordinates, the normal stress in each

cross sectional sample point may be determined by a superposition of the

normal stresses:

σ
(
x′, y′

)
= σaxial −

My · z′

Iy
− M z · y′

Iz
(C.2.6)



For the sign convention to be correct, the moments must be applied positive

according to the right hand rule, and the coordinates calculated positive

according to the axes seen in Figure 4.3a. Next, the shear stresses in the

cross sectional sampling points are examined.

C.3 Shear Stresses

Three load parameters contribute to the shear stress in the cross sectional

sampling points. These are the applied torsional moment T and the shear

forces V y and V z. Since the cross section of the tubes are circular, the torsional

moment can be determined by:

T = GIp
θx
′
2 − θx′1
L

(C.3.1)

Similarly, the shear forces are determined as:

V z = EIy
d3w

dx′3
V z = EIz

d3v

dx′3
(C.3.2)

The shear stresses stemming from the shear force may be determined from

the shear formula, [Goodno and Gere, 2009, P. 391]:

τy =
V y ·Q
Iz · 2t

(C.3.3)

Note, that the shear stress is assumed to be constant through the thickness of

the cross section since the thicknesses are small compared to the diameters.

For the hollow circular beam cross sections used in this project, the shear

force, the wall thickness, and the moment of inertia will be constant over the

entire cross section. This means these values may be reused for the different

cross sectional sample points. The first area moment, Q however, will vary

depending on which cross sectional sample point is used. This may be illus-

trated from Figure C.4a.

Note, that the angle β and not α is used to define the first area moment. β

is defined between zero and π
2 . By using the symmetry of the cross section

around the y’- and z’-axis, the first area moment for all cross sectional sample

points may be defined from the β-angle. A section of the tube is thought to

be cut free at the position of the cross sectional sampling point, illustrated by

the dashed line in Figure C.4a. For a variation in applied moments, a shear

force must be present on the two cut surfaces in order to obtain equilibrium,
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Figure C.4: (a) The hollow circular cross section. (b) The variation in applied
moments leading to a shear stress on the cross sectional surface as a results
of force equilibrium.

see Figure C.4b. This may also be recognized from V = dM
dx . The shear force

on the cut surface will lead to a shear stress. Since shear stresses flow around

corners, a shear stress must be present on the surface of the cross section as

well, illustrated by τ on Figure C.4b.

The shear stress will however not be constant on the cross section surface,

since the first area moment, used in equation (C.3.3) will vary depending on

where the section cut is made. This is illustrated by Figure C.5.
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Figure C.5: The area cut free from the remaining cross section used to

determine the first area moment, Q.

As the β-angle changes the distance from the z’-axis to the section Center



of Gravity (COG), denoted yc and the area of the section cut loose will change

as well. These two components make up the first area moment:

Q =

∫
yc dA (C.3.4)

The angle-dependent distance from the z’-axis to the section COG and the

angle-dependent area are given as, [Goodno and Gere, 2009, P. 945]:

A (β) = 2βRt yc (β) =
R · sinβ

β
(C.3.5)

where R is the radius to the centerline of the circular hollow cross section

defined as:

R = r2 −
r2 − r1

2

By the use of the two equations in (C.3.5) the angle-dependent first area

moment of the cut section may be written:

Q(β) =
R · sin (β)

β
· 2βRt (C.3.6)

The angle-dependency of the distance to the COG and the first area moment

may be seen in Figure C.6. Note, Figure C.6 is made for a diameter of 0.8 m

and a thickness of 0.02 m.
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Figure C.6: The angle dependent distribution of: (a) the distance to the COG

and (b) the first area moment, Q.

Analytical solutions for the distance to the section COG and the first area

moment are present for the case where β = π
2 , that is a full half circle. For a



full half circle yc(
π
2 ) is determined to 0.503 m, which is represented exact by

equation (C.3.5), see Figure C.6a. Naturally, yc(0) must lie in the centerline

between the two radii at 0.79 m, which is seen in Figure C.6a as well. How-

ever, this point cannot be determined directly from equation (C.3.5) due to

the division by zero.

The first area moment must be zero for β = 0, leading to a shear stress of zero

in this cross sectional location. This is a result of the non-existing area for

cross sectional sample point β = 0. For the full half cycle, the analytical result

yields Q = 0.025 m3, which is seen to be the same on Figure C.6b. Based on

equations (C.3.3) and (C.3.6), the angle-dependent shear stress in the cross

sectional sample points may be determined. An identical expression is used

for finding the shear stress acting in the z-direction, τ z. However a phase shift

on 90◦ must be applied.

The exact analytical solution for Q can be obtained for the case of a full

half circle as [Goodno and Gere, 2009, p. 398]:

Q =
2

3

(
r32 − r31

)
(C.3.7)

Equation (C.3.5) represents the approximate solution, which in contrast

can be used for any value of β. The deviation between the case of a full half

circle by the approximate and analytical solution for Q can be found for dif-

ferent values of diameters and thicknesses by using (C.3.5) and (C.3.7). By

varying the diameter/thickness relationship and determine the deviation, a

suitable limit of the relationship for the thicknesses compared to the diameter

can be found. It can be seen on Figure C.7, that the deviation is less than 1

percent when the diameter/thickness relationship is 10 or larger. Thus, it can

be concluded, that the diameter/thickness relationship should be kept to 10

or larger in order to keep the error sufficiently low.
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Figure C.7: The deviation between the approximate solution for Q compared

to the exact determination of Q for a full half cycle.

The last contributor to the shear stress in the cross sectional sample points

is the torsional load, T . The shear stress distribution from an applied torsional

moment is illustrated on Figure C.8.
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Figure C.8: The sampling locations on the cross section and the torsional

shear stress distribution on a circular hollow profile, αInitial = 0.

As seen from Figure C.8 the torsional shear stress will always be tangential

to the surface of the sample point. The sample point is defined by the angle

α in the interval 0 ≤ α ≤ 2π. The maximum shear stress is determined from:



τT =
T · d
2Ip

(C.3.8)

The contribution to the total shear stress in the y’- and z’-direction may be

found from:

τTy (α+ αInitial) = −τT · sin (α+ αInitial)

τTz (α+ αInitial) = τT · cos (α+ αInitial) (C.3.9)

This may be verified from Figure C.8.

A superposition of the shear stresses obtained from the two shear forces and

the torsional moment will yield the total shear stress in each cross sectional

sample point. The total shear stress can be seen in equation (4.3.2). Next,

the FE code is verified.

C.4 Verification of FE code

A model of a house with a crane is used for the verification of the 3D FE code,

since it contains many details similar to the FE model of the jacket structure.

The model is analyzed using both ANSYS and MATLAB. Eigenfrequencies,

global displacements, and stresses will be compared in order to verify the

FE code. The analysed model is shown on Figure C.9. The analyzed model

consists of 16 elements sharing a total of 11 nodes. All elements have the

same cross section geometry with an outer diameter of 0.1 m and a thickness

of 0.02 m. An arbitrary chosen load on −100 kN is applied in the Y-direction

on node 11.

C.4.1 Eigenfrequencies

The eigenfrequencies of a structure may be determined from the global mass

and stiffness matrices. Thus, by comparing the eigenfrequencies found using

MATLAB to the eigenfrequencies found by ANSYS, the set up of the global

stiffness and mass matrix can be verified.

The material properties are set to ρ = 7800 kg
m3 , E = 210 GPa, and ν = 0.3

in both programs. The local 12x12 mass matrix for the frame element can

be seen in Figure C.10, [ANSYS, 2010, BEAM4 3-D Elastic Beam]. The

assembly of the global mass matrix from the local mass matrix is much like

the assembly of the global stiffness matrix from several local stiffness matrices.
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numbers 1-11 are marked by numbers, while the element numbers are marked
with encircled numbers.
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Figure C.10: The mass matrix for a 3D frame element. Note, Me is the mass

of the element defined as: Me = A · Le · ρ

The eigenfrequencies are determined from the undamped vibration



eigenvalue problem, [Rao, 2005, P. 478]:

det
∣∣K − ω2 ·M

∣∣ = 0 (C.4.1)

where ω
2·π are the positive cyclic eigenfrequencies of the structure in Hz.

These are often sorted in an ascending order and ω contains the circular

eigenfrequencies, 1
rad . The resulting first five eigenfrequencies are compared

in Table C.1

Eigenfrequency number ANSYS result MATLAB result Difference, percentage

1 3.5 3.5 1%

2 4.2 4.2 0.5%

3 5.5 5.4 2%

4 11.4 10.3 10%

5 12.7 11.6 8%

Table C.1: A comparison of the first five eigenfrequencies, obtained by ANSYS

and MATLAB, used to verify the global stiffness matrix. Note, percentage

differences are calculated from non-rounded values.

As seen from Table C.1 the difference in all eigenfrequencies fall within a

10% range. The difference may be a result of a slightly different mass matrix

used in the two programs. The ANSYS elements are based on Timoshenko

beam theory, while the implemented element in MATLAB is a Bernoulli-Euler

element. This has an influence on both the mass and the stiffness matrices

since the shear deformation is included for the Timoshenko beam. Naturally,

this will have an effect on the calculated eigenfrequencies, see equation (C.4.1).

A comparison of the global mass and stiffness matrices between ANSYS and

MATLAB reveals that the largest differences occurs in the mass matrix.

However, this is not shown in the report. The differences in the mass matrices

can be accepted, since they are only used to verify the global stiffness matrix

through the eigenfrequency check above. Some smaller differences are present

in the stiffness matrix as well. In order to examine if these are significant, the

global displacements are compared in the following.

C.4.2 Global displacements

The global displacements are determined by the use of equation (4.2.2).

By checking the global displacements both the global stiffness matrix and

the transformation matrix may be verified. Furthermore, a check of the

global displacements should reveal if the different beam theories, Timoshenko



(ANSYS) and Bernoulli-Euler (MATLAB), will cause a significant change in

the nodal displacements of the model.

Again the house model presented in Figure C.9 is used for the verification.

Since Nodes 1,4,7, and 10 are all locked the model has 42 DOFs. However,

only displacements of Node2 and Node3 are used in the comparison, Table

C.2.

DOF ANSYS result MATLAB result Difference, percentage

u2 3.45 · 10−2 3.44 · 10−2 0.4%

v2 4.91 · 10−5 4.91 · 10−5 0.1%

w2 −1.55 · 10−5 −1.55 · 10−5 0%

θx2 −6.16 · 10−5 −6.06 · 10−5 1.5%

θy2 −1.06 · 10−2 −1.06 · 10−2 0.2%

θz2 −1.94 · 10−2 −1.93 · 10−2 0.3%

u3 3.44 · 10−2 3.43 · 10−2 0.4%

v3 −1.91 · 10−4 −1.91 · 10−4 0.1%

w3 7.72 · 10−5 7.72 · 10−5 0%

θx3 −1.91 · 10−3 −1.90 · 10−3 0.7%

θy3 −6.29 · 10−3 −6.27 · 10−3 0.3%

θz3 −2.65 · 10−2 −2.64 · 10−2 0.5%

Table C.2: Comparison between global displacement results from ANSYS and

MATLAB of node 2 and 3. Percentage differences are determined from non-

rounded values.

Similar results are obtained for the remaining free DOFs. Based on

the percentage deviation listed in Table C.2, the global stiffness and the

transformation matrices have been verified. Furthermore, the check hints

that the different theories have a higher influence on the mass matrix than

on the stiffness matrix, see percentage difference of Table C.1. To examine

the different theories, the tip deflection of a cantilevered beam with constant

length and changing diameter is examined using ANSYS and MATLAB. The

percentage difference between the obtained results may be seen in Figure C.11.
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Figure C.11: The percentage difference between the tip deflection for a

cantilevered beam, determined using ANSYS and MATLAB, as function of

the slenderness ratio.

As seen from Figure C.11 the percentage difference between the two

theories is lowered as the beam becomes more slender as expected. It is

seen that the general rule of thumbs for using the Bernoulli-Euler theory, a

slenderness ratio of 1/10, will result in an approximate deviation of 1 − 2%.

The final result comparison will aim at validating the found stress components.

C.4.3 Stress results

Initially, a comparison between the normal stresses from the two different

analyses is made followed by a comparison of the shear stresses. The stress

values from different cross sectional sample points are compared between

ANSYS and MATLAB. For the shear stresses a comparison to an analytical

results is made as well.

Normal stresses

The normal stresses are compared for eight cross sectional sample points in

each end of the element, seen in Figure C.12. The cross sectional normal

stresses obtained in node two element four of the house, see Figure C.9 are

compared in Table C.3.



Element Element 4

Node Node 2

α [deg.] 0 45 90 135 180 225 270 315

MATLAB result [ MPa] 0.867 -252.1 -356.2 -250.4 3.3 256.2 360.3 254.5

ANSYS result [ MPa] 0.875 -252.4 -356.7 -250.7 3.3 256.6 360.8 254.9

Difference, % 0.9 0.1 0.1 0.1 0.2 0.2 0.1 0.2

Table C.3: Normal stresses in eight cross sectional sampling points with

αinitial = 0. Note, percentage difference is calculated from non-rounded values.

As seen from Table C.3 the MATLAB FE program is capable of calculating

the normal stress in the cross sectional sampling points with only a small

difference to the commercial software ANSYS. Next, the shear stresses are

examined.

Shear stresses

Comparing the shear stresses found by the MATLAB FE program directly

with results obtained using ANSYS is difficult due to the different post

processing used to calculate the shear stress values. Thus, a simple prismatic

cantilevered beam model is used to verify the shear stresses. The cantilever

beam has a length of 0.6 m. The beam consists of five elements with a diameter

of 0.05 m and a thickness of 0.01 m. A vertical force of −1 N is applied at the

end. The results of the ANSYS and the MATLAB analysis are compared in

Table C.4.

Shear stress component τxy τxz

ANSYS result [ Pa] −1532.4 0

MATLAB result [ Pa] −1529.1 0

Difference, percentage 0.2% -

Table C.4: Comparison between shear stress obtained from an ANSYS and a

MATLAB analysis of a simple prismatic cantilever beam.

In both cases the shear stresses are constant along the length of the beam

as expected. The ANSYS result has been obtained by averaging the values of

cross sectional nodes 22, 24, 25, and 27, see Figure C.12, since these lie on an

axis perpendicular to the direction of the applied force. In Figure C.12 the

force is applied in the negative y’-direction.
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Figure C.12: The cross sectional nodes of the ANSYS beam element.

A difference of 0.21% was found between the shear stress from the AN-

SYS and the MATLAB analysis. Thus, the MATLAB FE program is capable

of calculating the shear stresses of the model within an acceptable range of

a commercial available software. Note, the result obtained using ANSYS is

highly affected by the number of circumferential elements used in the cross

section. The ANSYS result shown in Table C.4 is obtained for 64 circum-

ferential elements, but averaged along to section nodes 22, 24, 25, and 27 as

explained above. The use of just eight circumferential elements yields a shear

stress result of −1634.6 Pa

Only a simple example between MATLAB and ANSYS was suitable for the

comparison between the shear stresses. An example with a known analytical

solution will be used to check that the FE program calculates the shear stresses

properly. Four cross sectional sample points will be used. For the special case

of a full half circle, β = π
2 an analytical solution, yielding the maximum shear

stress, is available. The analytical solution for the full half circle is, [Goodno

and Gere, 2009, P. 398]:

τmax =
4V

3A

(
r22 + r2r1 + r21

r22 + r21

)
(C.4.2)

The shear stresses in the four cross sectional sample points of node two in

element four of the small house model are examined. Since torsion is present

in the given element, this is taken into account as well by the use of equation

(C.3.8). The shear stresses determined by MATLAB using equation (4.3.2),

should be equal to the maximum shear values of the cross section in the four



sample points when αInitial = 0. A comparison of the analytical and the

MATLAB shear stresses can be seen in Table C.5.

Element Element 4

Node Node 2

α [deg.] 0 90 180 270

MATLAB [MPa] 19.4 -30.4 -41.3 30.3

Analytical [MPa] 19.1 -30.4 -41.6 30.3

Difference, % 1.5 0 0.7 0

Table C.5: Comparison of MATLAB and analytical shear stress results in

four cross sectional sample points with αInitial = 0 of the small house model.

Percentage differences calculated from non-rounded values.

As seen from Table C.5 the shear stress distribution calculated in MAT-

LAB is able to represent the maximum values in the cross sectional sample

points for the case, where the analytical solution is available.

This concludes the MATLAB FE program verification. Through this

verification, it was shown that the MATLAB code is capable of determining

the eigenfrequencies of the structure being analyzed, the global displacement

vector can be established, and the normal and shear stresses in each cross

sectional sample point can be obtained.



Appendix D

Modeling Limitations

The purpose of this appendix is to determine the domain where the model is

feasible. The jacket structure is designed such that the primary load condition

is tension and compression in the frame elements. However, bending and shear

may still be present and have an effect on the structure. In order to examine

the effect from bending and shear, a cantilevered prismatic beam benchmark

example, shown on Figure D.1 is set up. The situation should simulate one

of the frame elements in the jacket model subjected to a shear/bending force,

with fixed/free BCs. The example is a worst case scenario since bending and

shear force are more severe in this example than in the frame elements in the

jacket model.

P

L

w

z'

x'

Bernoulli-Euler

Timoshenko

z

Figure D.1: Sketch of the benchmark example of a stubby cantilevered beam.
The deformed shape is shown for both Timoshenko and Bernoulli-Euler beam
theory.

The Bernoulli-Euler formulation of the frame elements does not include the

effect of shear deformation. For short stubby beams the contribution from the

shear deformation cannot be neglected. The Timoshenko theory accounts for



the shear contribution as explained in [Dym and Shames, 1991, P. 197]. The

classical rules of thumb can be stated by the following list:

1. The Bernoulli-Euler beam theory will give acceptable results if the beam

length is L > 10 · d. Otherwise the Timoshenko theory will yield more

accurate results.

2. The Bernoulli-Euler solution converges to the Timoshenko when the

beam becomes more slender.

The tip deflection for the analytic Bernoulli-Euler beam can be stated as:

wcBE =
−P zL3

3EIy
(D.0.1)

while the tip deflection according to the analytic Timoshenko beam theory

can be written as:

wcT imoshenko =
−P zL
κGA

− P zL
3

3EIy
(D.0.2)

It has been checked that the tip deflection obtained by the analytic

Bernoulli-Euler solution seen in equation (D.0.1) is equal to the tip deflection

found from the FE program as expected. It is seen from equation (D.0.1) and

(D.0.2) that the only difference is the shear term in (D.0.2). Here κ is the

shear correction factor, which for a hollow cylinder is given as:

κ =
6(1 + ν)(1 + Φ)2

(7 + 6ν)(1 + Φ)2 + (20 + 12ν)Φ2

Φ =
(d− 2t)/2

d/2
(D.0.3)

The guidelines stated above are examined further by the use of the

benchmark example of Figure D.1.

D.1 Comparison of Results

The tip deflection for the analytic Timoshenko beam and the FE program,

based on Bernoulli-Euler assumptions, is compared. First, the two parameters

diameter and length are varied for a fixed thickness of 0.02 m. The relative

deviation between the found tip displacements is plotted as a function of these

two parameters, see Figure D.2a. From Figure D.2a it can be seen that a factor



of ten between the diameter and the length, results in a deviation of less than

2%, which is considered to be acceptable.

Next, the influence of a thickness variation on the tip displacement is

checked. The diameter and the thickness are varied for a fixed length of

10 m and the relative error between the found displacements is plotted as a

function of these, see Figure D.2b. The figure shows, that the variation of the

thickness has little if any influence on the relative error between the calculated

displacements. Again, it is seen that the relative error increases above two

percent as the diameter exceeds 1 m, thus violating the 1/10 relationship with

the length set by the Bernoulli-Euler theory.
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Figure D.2: Relative deviation of tip displacements between the analytic
Timoshenko Model and the FE model for a study of: (a) Diameter and length
with a fixed thickness and 0.002 m and (b) diameter and thickness with fixed
length of 10 m.





Appendix E

Fatigue

This appendix includes a description of the rainflow method and a benchmark

example to verify that the implementation of the damage estimation has been

made successfully.

E.1 Benchmark Example of Damage Estimation

In order to test the rainflow count, the sorting algorithm, and the calculation

of the accumulated damage, a benchmark example from [Stephens et al., 2001,

P. 293] with known damage quantity, is used. The stress history of the example

can be seen in Figure E.1.

time

Stress, MPa

650
500

-500

Figure E.1: The stress history of the benchmark example used for the

verification of the fatigue procedure, [Stephens et al., 2001, Figure 9.16].



E.1.1 Rainflow Counting

First a rainflow count of the stress history of Figure 5.3 is conducted. The

result from the rainflow count can be condensed to the results seen in Table

E.1.

Stress amplitude [ MPa] 500 325 575

Stress mean [ MPa] 0 325 75

No. cycles 3 10 1

Table E.1: Rainflow count result on the stress history seen in Figure 5.3.

A quick manual rainflow count and a comparison to the results obtained

in [Stephens et al., 2001, P. 292] reveals that the rainflow count is correct.

A larger stress history, containing approximately 50 stress peaks, with known

rainflow counting results is tested as well and again the rainflow script proved

to give accurate results. This is however not shown in the report. Next, the

sorting algorithm is tested.

E.1.2 Sorting Algorithm

The purpose of the sorting algorithm is to divide the raw output data from

the rainflow counting script into a number of intervals. The number of

intervals may be specified by the user, and for this example NAmp = 5 and

NMean = 5 are chosen. This will give the amplitude intervals: 0 < A0 ≤ 115,

115 < A0 ≤ 230, 230 < A0 ≤ 345, 345 < A0 ≤ 460, and 460 < A0 ≤ 575. The

obtained mean intervals are: 0 < A0 ≤ 65, 65 < A0 ≤ 130, 130 < A0 ≤ 195,

195 < A0 ≤ 260, and 260 < A0 ≤ 325. An example output from the sorting

algorithm is shown in Table E.2, where the maximum method introduced in

section 5.3 is used.

Stress amplitude [ MPa] 575 345 575

Stress mean [ MPa] 65 325 130

No. cycles 3 10 1

Table E.2: Results of the sorting algorithm. Only intervals with non-zero

cycle numbers are shown.

A comparison between Tables E.1 and E.2 reveals that the sorting routine



has an influence on the obtained results. Stress cycles with an actual amplitude

of 325 MPa, column three of Table E.1, will now appear to have an amplitude

on 345 MPa. Similar observations may be made for mean results, where a

mean value of 75 MPa will change to 130 MPa as a result of the sorting

intervals. Thus, the number of intervals for the sorting algorithm should

be chosen carefully in order to reduce the influence from the sorting on the

obtained accumulated damage. Only an output table using the maximum

approach is shown, but the same argument goes for all three approaches used

to determine the amplitude value in the sorted rainflow table. See section

5.6.1 for an in-depth discussion.

E.1.3 Damage Calculation

For the benchmark example the effect of the mean stress is taken into account

using the procedure described in section 5.4. According to [Stephens et al.,

2001, P. 295] the actual accumulated damage is 0.0139 for the examined

benchmark example. The accumulated damage calculated in the MATLAB

FE program using the maximum damage approach is 0.0338 as a result of the

overestimation of the stress values due to the sorting algorithm. By manually

overwriting the results from the sorting algorithm to the exact stress ampli-

tude and mean values yields an accumulated damage on 0.0139 as expected.

This shows that the accumulated damage may be determined by the use of

the MATLAB FE program.





Appendix F

DSA Methods

This chapter contains the description of three methods used for DSA. This

includes OFD, DDM, and AM. Parenthesis in this section is used to emphasize

the dependency among the variables. When equations from this appendix are

used in the report they will be written in compact form without dependencies.

F.1 Overall Finite Difference Method

One approach for the DSA is to use a FD approximation, which is based on

a Taylor series. The simplest method to obtain the derivative is the forward

FD approach, which is a first order approximation to the derivative and it is

written as:

dgk
dxj

=
gk(U(x+ ∆xj), x+ ∆xj)− gk(U(x), x)

∆xj
+ o(∆xj) (F.1.1)

The central FD approximation needs another evaluation of the function for

each approximation to the gradient. The central FD approach to approximate

the gradient is a second order accurate method, and it can be written as

(F.1.2).

dgk
dxj

=
gk(U(x+ ∆xj), x+ ∆xj)− gk(U(x−∆xj), x−∆xj)

2∆xj
+ o2(∆xj)

(F.1.2)

The two major contributors to errors are truncation- and condition errors.

The truncation error is a result of the neglected terms in the Taylor series.

This error can be reduced by using a small perturbation ∆x or by using



higher order FD schemes. As a result, the central FD has a smaller truncation

error than the forward FD. The condition error is the difference between the

numerical evaluation of the function and its exact value [Haftka and Gürdal,

1992]. Condition errors are typically due to computational rounding. Thus,

selecting a small perturbation lowers the truncation error, but increases the

condition error.

OFD approximations are in general computational inefficient, but popular

since they are easy to implement. The need for an extra analysis for

each perturbation of the design variables makes the OFD approximations

computational heavy. One implication is also to overcome the challenge of

determining a suitable perturbation. Furthermore, the accuracy of the method

can also be difficult to establish.

F.2 Direct Differentiation Method

This section is based on Michaleris and Tortorelli [1994]. The equilibrium

equation is defined by equation (F.2.1).

K(x)U(x) = P (x) (F.2.1)

K(x) is an explicit function of x. The load vector P is independent of the de-

sign variables for all examples used in this report. U(x) is an implicit function

of design x since equation (F.2.1) is a linear system of equations, which needs

to be solved to determine U(x). U(x) and P have length equal to the number

of free DOFs in the FE model and K(x) is a square matrix of equal dimensions.

When using the FE method the system response U(x) must be determined

first since it is needed to evaluate the constraint function, which will be defined

through:

gk(x) = gk(U(x), x) (F.2.2)

To obtain the sensitivity of the constraint function gk(U(x), x) the chain

rule can be used:

dgk
dxj

(x) =
∂gk
∂xj

(
U(x

)
, x) +

∂gTk
∂U

(U (x), x)
dU

dxj
(x) (F.2.3)

The challenging part of determining dgk
dxj

(x) in equation (F.2.3) is to

evaluate the the term dU
dxj

(x). In order to find the last term in (F.2.3) the



equilibrium equation must be differentiated and rearranged as:

∂K

∂xj
(x)U(x) + K(x)

dU

dxj
(x) =

∂P

∂xj
⇓

K(x)
dU

dxj
(x) =

(
∂P

∂xj
− ∂K

∂xj
(x)U(x)

)
(F.2.4)

The derivative of the global stiffness matrix w.r.t. design variables may be

assembled from the derivative of the element stiffness matrix, similar to the

assembly of the global stiffness matrix from several element stiffness matrices.

Often this procedure is quite fast, since a given design variable usually only

affects a few elements in the entire model. For the present example the applied

loads are not dependent on the design variables. Hence the derivative of the

global displacements w.r.t. design variables may be established by:

K(x)
dU

dxj
(x) =

(
−∂K
∂xj

(x)U(x)

)
(F.2.5)

Equation (F.2.5) can be solved for dU
dxj

(x) by solving a linear system of

equations. Thus, the sensitivity of the constraint functions w.r.t. the design

variables may now be determined by the DDM presented in equation (F.2.3).

F.3 Adjoint Method

In the adjoint method the derivative dU
dxj

(x) is eliminated by introducing a

Lagrange multiplier:

ĝk(x) = gk(U(x), x)− λ(x)TR(U(x), x) (F.3.1)

λ(x) acts as a Lagrange multiplier vector and may be chosen arbitrary. The

residual is given by R = P −KU = 0. Differentiation of equation (F.3.1) and

rearranging yields:

dĝk
dxj

(x) =
∂gk
∂xj

(U(x), x)− λ(x)T ·
(
∂K

∂xj
(x)U(x)− ∂P

∂xj
(x)

)
+

dU

dxj
(x)

(
∂gk

∂U
(U(x), x)−KT (x)λ(x)

)
(F.3.2)

The Lagrange multiplier must be determined to eliminate the dU
dxj

(x).



Thus, the following adjoint problem must be solved in order to determine

λ(x) term.

KT (x)λ(x) =
∂gk

∂U

(
U(x), x

)
(F.3.3)

Once λ(x) is determined, equation (F.3.2) will be reduced to:

dĝk
dxj

(x) =
∂gk
∂xj

(U(x), x)− λ(x) ·
(
∂K

∂xj
(x)U(x)− ∂P

∂xj
(x)

)
(F.3.4)

Again the last term in equation (F.3.4) is zero since the load is constant with

respect to x. It should be noted, that a more comprehensive presentation of

the DDM and AM, and examples of these can be read in details in Michaleris

and Tortorelli [1994].



Appendix G

Normal Stress Sensitivity

This section contains the derivatives of the normal stresses. In the first

subsection it is described how the DSA is made according to the design

variables, while in the second subsection is described how the derivatives of

normal stresses w.r.t. global displacements are performed.

G.0.1 Normal Stress Derivatives w.r.t Design Variables

The normal stress is obtained as a combination of two moments and one

normal force as shown by (4.3.1). This can also be written as:

σ (d, t) =
P

A
− Myd sin(α+ αInitial)

2Iy
− M zd cos(α+ αInitial)

2Iz
(G.0.1)

The following variables in equation (G.0.1) depends on the design variables,

x: My, M z, Iy, Iz, d, and A. In the following σ (d, t) will be written as σ for

simplicity. First it will be derived with regards to the variables mentioned:

∂σ

∂x
=

∂σ

∂My

∂My

∂x
+

∂σ

∂M z

∂M z

∂x
+
∂σ

∂d

∂d

∂x
+
∂σ

∂Iy

∂Iy
∂x

+
∂σ

∂Iz

∂Iz
∂x

+
∂σ

∂P

∂P

∂x
+
∂σ

∂A

∂A

∂x

(G.0.2)

The derivatives of the stress with respect to the dependent variables are



obtained as:

∂σ

∂My
= −d sin(α+ αInitial)

2Iy
(G.0.3)

∂σ

∂M z
= −d cos(α+ αInitial)

2Iz
(G.0.4)

∂σ

∂Iy
=
Myd sin(α+ αInitial)

2Iy2
(G.0.5)

∂σ

∂Iz
=
M zd cos(α+ αInitial)

2Iz2
(G.0.6)

∂σ

∂d
= −My sin(α+ αInitial)

2Iy
− M z cos(α+ αInitial)

2Iz
(G.0.7)

∂σ

∂P
=

1

A
(G.0.8)

∂σ

∂A
= − P

A2
(G.0.9)

The derivative ∂A
∂x can be written as:

∂A

∂d
= πt

∂A

∂t
= π(d− 2t) (G.0.10)

The derivative ∂P
∂x is independent of the design variables.

The derivative ∂I
∂x in (G.0.13) is obtained by deriving:

Iy = Iz =
π

4

((
d

2

)4

−
(
d

2
− t
)4
)

(G.0.11)

which can be written as:

∂Iy
∂d

=
∂Iz
∂d

=
π

4

(
1

4
d3 − 2

(
1

2
d− t

)3
)

(G.0.12)

∂Iy
∂t

=
∂Iz
∂t

= π

(
1

2
d− t

)3

(G.0.13)

The derivative ∂d
∂x can be written as:

∂d

∂d
= 1

∂d

∂t
= 0 (G.0.14)



The derivative ∂M
∂x depends on the node number in the frame element. It

can be written for node one as:

∂My1

∂d
= E

∂Iy
∂d

(
− 6

L2
w′1 +

4

L
θ′y1 +

6

L2
w′2 +

2

L
θ′y2

)
(G.0.15)

∂My1

∂t
= E

∂Iy
∂t

(
− 6

L2
w′1 +

4

L
θ′y1 +

6

L2
w′2 +

2

L
θ′y2

)
(G.0.16)

∂M z1

∂d
= E

∂Iy
∂d

(
6

L2
v′1 +

4

L
θ′z1 −

6

L2
v′2 +

2

L
θ′z2

)
(G.0.17)

∂M z1

∂t
= E

∂Iy
∂t

(
6

L2
v′1 +

4

L
θ′z1 −

6

L2
v′2 +

2

L
θ′z2

)
(G.0.18)

and for node two as:

∂My2

∂d
= E

∂Iy
∂d

(
− 6

L2
w′1 +

2

L
θ′y1 +

6

L2
w′2 +

4

L
θ′y2

)
(G.0.19)

∂My2

∂t
= E

∂Iy
∂t

(
− 6

L2
w′1 +

2

L
θ′y1 +

6

L2
w′2 +

4

L
θ′y2

)
(G.0.20)

∂M z2

∂d
= E

∂Iy
∂d

(
6

L2
v′1 +

2

L
θ′z1 −

6

L2
v′2 +

4

L
θ′z2

)
(G.0.21)

∂M z2

∂t
= E

∂Iy
∂t

(
6

L2
v′1 +

2

L
θ′z1 −

6

L2
v′2 +

4

L
θ′z2

)
(G.0.22)

G.0.2 Normal Stress Derivatives w.r.t. Displacements

The derivatives of (G.0.1) w.r.t. the displacements can be obtained as:

∂σ

∂U
=

∂σ

∂My

∂My

∂U
+

∂σ

∂M z

∂M z

∂U
+
∂σ

∂P

∂P

∂U
(G.0.23)

The displacement dependent variables in (G.0.1) includes: My, M z, and

P . The derivatives of the normal stress with respect to the dependent variables

are obtained in (G.0.3) to (G.0.9). The derivatives w.r.t. the displacements



are obtained as:

∂My1

∂U ′
= EIy

∂

∂U

(
−6

L2
w′1 +

4

L
θy
′
1 +

6

L2
w′2 +

2

L
θy
′
2

)
(G.0.24)

∂My2

∂U ′
= EIy

∂

∂U

(
−6

L2
w′1 +

2

L
θy
′
1 +

6

L2
w′2 +

4

L
θy
′
2

)
(G.0.25)

∂M z1

∂U ′
= EIz

∂

∂U

(
6

L2
v′1 +

4

L
θz
′
1 +
−6

L2
v′2 +

2

L
θz
′
2

)
(G.0.26)

∂M z2

∂U ′
= EIz

∂

∂U

(
6

L2
v′1 +

2

L
θz
′
1 +
−6

L2
v′2 +

4

L
θz
′
2

)
(G.0.27)

∂P

∂U ′
= EA

∂

∂U

(
−1

L
u′1 +

1

L
u′2

)
(G.0.28)

Thus, the entries in the local stiffness matrices defined in (C.0.10) and (C.0.11)

have been used. The entries are only used when the corresponding DOF is

active. All the necessary equations for the analytical DSA for the normal

stresses have now been obtained.



Appendix H

Shear Stress Sensitivity

As seen in equation (4.3.2) both the shear force and the torsional moment

add to the total shear stress in the cross sectional sample points. It was seen

earlier that the shear stress stemming from the shear force may be determined

by:

τy =
V yQy
Iz · 2t

τ z =
V zQz
Iy · 2t

(H.0.1)

The shear stress stemming from the torsional moment is found from:

τTy = − Td
2Ip
· sin (α+ αInitial)

τTz =
Td

2Ip
· cos (α+ αInitial) (H.0.2)

By superposition of equations (H.0.1) and (H.0.2), the total shear stress in

the cross sectional sample points are determined:

τ tot = τy + τ z + τTy + τTz (H.0.3)

The torsional moment is given as:

T = GIp

(
θx
′
2 − θx′1
L

)
(H.0.4)

The two shear forces V y and V z are given as:

V y = EIz

(
12

L3
v′1 +

6

L2
θz
′
1 −

12

L3
v′2 +

6

L2
θz
′
2

)

V z = EIy

(
12

L3
w′1 −

6

L2
θy
′
1 −

12

L3
w′2 −

6

L2
θy
′
2

)
(H.0.5)



The first- and second area moment of inertia are determined from:

Iy = Iz =
π

64

(
d4 − (d− 2 · t)4

)

Qy = 2t sin (β) ·
(
d

2
− t

2

)2

Qz = 2t sin
(
β +

π

2

)
·
(
d

2
− t

2

)2

(H.0.6)

and the polar moment of inertia for a circular hollow cross section is given as:

Ip =
π

32

(
d4 − (d− 2t)4

)
(H.0.7)

In order to determine the sensitivity of the damage constraints the partial

derivative of the shear stress w.r.t. both the design variables and the global

displacements must be determined. First, the partial derivative of the shear

stress w.r.t. the design variables xj are determined.

∂τ tot
∂xj

=
∂τ tot
∂V y

∂V y

∂xj
+
∂τ tot
∂Qy

∂Qy
∂xj

+
∂τ tot
∂Iz

∂Iz
∂xj

+
∂τ tot
∂t

∂t

∂xj
+

∂τ tot
∂V z

∂V z

∂xj
+
∂τ tot
∂Qz

∂Qz
∂xj

+
∂τ tot
∂Iy

∂Iy
∂xj

+
∂τ tot
∂T

∂T

∂xj
+

∂τ tot
∂d

∂d

∂xj
+
∂τ tot
∂Ip

∂Ip
∂xj

(H.0.8)

The partial derivatives of the first-, second and polar moments of inertia w.r.t.

the design variables d and t are determined next. The sensitivity of the first

area moment of inertia is given as:

∂Qy
∂d

= 2t sin (β) ·
(
d

2
− t

2

)
;

∂Qz
∂d

= 2t sin
(
β +

π

2

)
·
(
d

2
− t

2

)

∂Qy
∂t

= 2 sin (β) ·
(
d

2
− t

2

)2

− 2t sin (β) ·
(
d

2
− t

2

)

∂Qz
∂t

= 2 sin
(
β +

π

2

)
·
(
d

2
− t

2

)2

− 2t sin
(
β +

π

2

)
·
(
d

2
− t

2

)
(H.0.9)

The sensitivities of the second area moments of inertia are given as:

∂Iy
∂d

=
∂Iz
∂d

=
π

64

(
4d3 − 4 (d− 2t)3

)

∂Iy
∂t

=
∂Iz
∂t

=
π

64

(
8 (d− 2t)3

)
=
π

8
(d− 2t)3 (H.0.10)



The sensitivities of the polar area moment of inertia are found from:

∂Ip
∂d

=
π

32

(
4d3 − 4 (d− 2t)3

)

∂Ip
∂t

=
π

32

(
8 (d− 2t)3

)
=
π

4
(d− 2t)3 (H.0.11)

Next, the sensitivities of the applied shear forces and the torsional moment

are determined. The sensitivity of the torsional moment is given as:

∂T

∂xj
= G

(
θx
′
2 − θx′1
L

)
· ∂Ip
∂xj

(H.0.12)

The derivatives of the two shear forces w.r.t. the diameter and the thickness

are found to be:

∂V y

∂xj
= E

(
12

L3
v′1 +

6

L2
θz
′
1 −

12

L3
v′2 +

6

L2
θz
′
2

)
· ∂Iz
∂xj

∂V z

∂xj
= E

(
12

L3
w′1 −

6

L2
θy
′
1 −

12

L3
w′2 −

6

L2
θy
′
2

)
· ∂Iy
∂xj

(H.0.13)

Naturally, the derivatives of the diameter and thickness w.r.t. the design

variables are:

∂d

∂d
= 1

∂d

∂t
= 0

∂t

∂d
= 0

∂t

∂t
= 1 (H.0.14)

Next, the derivatives of the shear stress w.r.t. to parameters dependent on

the design variables are determined. The derivative of the shear stress w.r.t.

the shear forces and the torsional moment are given as:

∂τ tot
∂V y

=
Qy
Iz · 2t

;
∂τ tot
∂V z

=
Qz
Iy · 2t

∂τ tot
∂T

= − d

2Ip
· sin (α+ αInitial) +

d

2Ip
· cos (α+ αInitial) (H.0.15)

The partial derivatives of the shear stresses w.r.t. the various area moments

of inertia are given as:

∂τ tot
∂Qy

=
V y

Iz · 2t
∂τ tot
∂Iz

= − V yQy
Iz2 · 2t

∂τ tot
∂Qz

=
V z

Iy · 2t
∂τ tot
∂Iz

= − V zQz
Iy2 · 2t

∂τ tot
∂Ip

=
Td

2Ip2
sin (α+ αInitial)−

Td

2Ip2
cos (α+ αInitial) (H.0.16)



Next, the sensitivity of the shear stress w.r.t. the diameter and thickness is

found:

∂τ tot
∂d

= − T

2Ip
sin (α+ αInitial) +

T

2Ip
cos (α+ αInitial)

∂τ tot
∂t

= − V yQy
Iz · 2t2

− V zQz
Iy · 2t2

(H.0.17)

At this point, all derivatives to carry out the analytical sensitivity calculation

using equation (H.0.8) have been found. Next, the derivative of the shear

stress w.r.t. the global displacement vector is examined.

∂τ tot

∂U
=
∂τ tot
∂V y

∂V y

∂U
+
∂τ tot
∂V z

∂V z

∂U
+
∂τ tot
∂T

∂T

∂U
(H.0.18)

The derivatives of the shear stress w.r.t. the two shear forces and the torsional

moment were determined in equation (H.0.15). Thus, only the derivatives of

the shear forces and the torsional moment w.r.t. the global displacements

must be determined in order to calculate the shear stress sensitivity from

equation (H.0.18). These are given as:

∂V y

∂U
= EIz ·

∂

∂U

(
12

L3
v′1 +

6

L2
θz
′
1 −

12

L3
v′2 +

6

L2
θz
′
2

)

∂V z

∂U
= EIy ·

∂

∂U

(
12

L3
w′1 −

6

L2
θy
′
1 −

12

L3
w′2 −

6

L2
θy
′
2

)

∂T

∂U
= GIp ·

∂

∂U

(
θx
′
2 − θx′1
L

)
(H.0.19)

Thus, the shear stress sensitivities w.r.t. the global displacements may be

determined from equation (H.0.18). The terms in (H.0.19) are only used when

the corresponding DOF is active. This concludes the sensitivity analysis of

the shear stresses.



Appendix I

Calculation Time

The purpose of this section is to clarify where in the program the calculation

time is spent, and to make suggestions to where reductions in the calculation

time may be found. First the calculation time of one iteration of the

optimization of the jacket structure will be examined. Next, the calculation

time of the DSA is examined. It should be noted, that no extraordinary

attempts of writing the code efficiently by the use of vectorization or compiling

the code to .mex files are made.

I.0.3 Calculation Time in Optimization

One iteration of the optimization algorithm is performed for the jacket model

where the gradients are computed with the forward FD, and it is investigated

where in the program the computational time is spent. It should be noted

that the calculation time is dependent on the model used. For this study the

jacket model is used. The study is made for two cases: one where gradients are

determined using a single cpu core, and another where two cpu cores are used.

During one iteration one call is made to the structural analysis to determine

the damage, while 14 calls to the structural analysis is made to compute the

gradients by the forward FD. The stress calculation is called 11,250 times

since 750 load sample points is used, which corresponds to the 15 calls to the

structural analysis since 11, 250/750 = 15. The results of the two cases are

shown on Figure I.1.

The main conclusion is that 88% of the calculation time is spent

on computing the gradients, if the gradients are calculated using parallel

computing. 12% of the calculation time is spent on computing the damage,
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Figure I.1: (a) Calculation time spent on different processes for parallel cpu.
(b) Calculation time spent on different processes for single cpu.

while less than a half percent is spent on solving the optimization problem.

When using a single cpu, 93% of the time is spent computing the gradients,

while 7% is spent on computing the damage. Less than 0.2% is spent on

solving the optimization problem for this case. The stress calculation used

in the determination of the gradients and the damage uses 62% of the total

execution time.

It can be concluded, that the major part of the calculation time is spent on

computing the gradients. Thus, this is the area with the largest potential for

reducing the computational time. It is determined, that the computational

time was reduced by 46% by the using of two cpu cores instead of one. Thus,

it can be concluded that it may be beneficial to use parallel computing when

determining the gradients even though some time is spent on establishing the

connection to multiple cpu cores. It would be benificial to rewrite the scripts

for the stress calculation to allow for parallel computing since it is called many

times for even a small number of load- and cross sectional sample points.

It should be noted, that the number of sub-function calls and the amount

of data, which must be stored, is significant even for small models and load

spectra.

I.0.4 Calculation Time in DSA

In this section the calculation time between the different DSA methods is

investigated further, since it is determined, that the DSA is the most time

consuming part of the optimization. The example of Figure 8.3 is used. Six



tip loads are applied and 750 load sample points are used. The distribution

of time spent for the different methods can be seen on Figure I.2.
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Figure I.2: Comparison between calculation times using the DDM, AM, and

central OFD methods.

Figure I.2 is made by calculating the DSA by a central FD scheme, a DDM,

and an AM. The combined time of calculating the three is 100%. Thus, the

calculation time of the various methods may be compared by Figure I.2.
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Figure I.3: Execution time spent on different analytical methods for DSA: (a)

AM. (b) DDM.

A further comparison of the analytical methods are made on Figure I.3.

For the adjoint method the derivative of the stiffness matrix is called 400 times

(10 design variables and 40 cross sectional sample points), while it is called

17,600 times for the direct method. ∂gk
∂xj

and ∂gk
∂U

are called 1760 times for

both methods. The most severe differences are the calculations in the matrix



operations in the end of both methods. The loop in the end of the DDM,

where the derivative of the stiffness matrix is used several times are very time

consuming compared to the determination of the λ in the AM. This is also

the reason why the AM is faster than the DDM for the present example even

though the number of cross sectional sample points are 40 and the number of

design variables are 10 (if both the gradients for the thickness and diameter

sensitivities are computed). It can be concluded, that one of the main hurdles

in the analytical DSA is the huge amount of data storage since large matrices

are generated through the approach.



Appendix J

Parametric Study of Stress

Constraints

An example is defined in order to examine if a simple optimization using a

stress constraint yields similar results as an optimization using the fatigue

constraint. This example uses a static stress constraint for the optimization.

Thus, an equivalent load is determined from the non-proportional load series

shown on Figure 10.1a. By the use of the equivalent amplitude approach in

section 5.3.3 an equivalent static force is determined to 1542.7 N and applied

to the cantilevered beam model as a Py force. It should be noted that this

approach is only applicable since it is a simple cantilevered beam. The stress

constraint is normalized w.r.t. yield stress, σy = 883 MPa, and the results of

the parametric study can be seen on Figure J.1.

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Diameter [m]

M
as

s 
[K

g]
 / 

N
or

m
al

iz
ed

 S
tr

es
s 

 

 

Mass of one element
Normal Stress in Element 1, P = 8
Normal Stress in Element 2, P = 8
Normal Stress in Element 3, P = 8
Normal Stress in Element 4, P = 8
Normal Stress in Element 5, P = 8

Figure J.1: Parametric study of the stress distribution for Py = 1542.7 N and

the stress constraint normalized w.r.t. σy.



Figure J.1 can be compared with Figure 10.1b. It can be seen that the

damage constraint is steeper than the stress constraint. Hence, it might be

easier for an optimization w.r.t. stresses to reach an optimum within the

feasible domain. Furthermore, this optimization gives a design with lower

diameters than for the optimization with the damage as a constraint. This

may be due to mean stress effects since these are neglected in the current

example, and due to a high yield stress. Thus, it can be concluded, that an

optimization with static stresses as a constraint does not yield a design similar

to the optimization using fatigue constraints.



Appendix K

Deficiencies in the Current

Analytical DSA

The analytical DSA is in its current state capable of providing reliable

sensitivity results for a number of various load cases and load combinations.

However, excessive testing has showed, that unreliable results are obtained for

some load scenarios as well. One example of a load scenario, which is causing

problems in the analytical DSA, is shown in the following. The deficiencies in

the DSA may correlate to the assumptions made in the bookkeeping. This is

treated further in the discussion in Chapter 12.

K.1 Different Spectra

The simple cantilevered beam model introduced in section 8.4.1 is used for

the examination. A number of various load spectra will be applied to the tip

end of the prismatic beam model. As seen in section 8.4, both the DDM and

the AM are capable of determining reliable sensitivities for a non-proportional

load series applied to all tip loads. However, this may change whenever dif-

ferent load series are applied to the different applied loads as will be shown.

As in section 8.4, a comparison between the sensitivities obtained using a

DDM, an AM, and a central FD scheme will be used for the examination.

This test will use two different spectra for the forces P y and P z. The

cantilevered beam model of Figure 8.3 is used for the examination. The spectra

can be seen in Figure K.1.
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Figure K.1: Two different load series applied as P y and P z.

It is seen from Figure K.1, that the used spectra are not just a scale of the

same spectra as ı̈t is the case for the example in section 8.4, but two different

spectra. The percentage deviation between the analytical methods and the

central FD approximation can be seen in Table K.1 for the DDM and Table

K.2 for the AM.

Diameter Thickness

Element 1

Node 1

0.6% 0.6%

-0.2% -0.2%

2.1% 2.1%

29.3% 29.3%

Node 2

0.5% 0.5%

2.6% 2.6%

1.8% 1.8%

26.0% 26.0%

Element 2

Node 1

0.5% 0.5%

2.6% 2.6%

1.8% 1.8%

26.0% 26.0%

Node 2

0.4% 0.4%

5.4% 5.4%

1.4% 1.4%

22.8% 22.8%

Table K.1: The percentage deviations between sensitivities obtained using the

DDM and the central FD scheme.



Diameter Thickness

Element 1

Node 1

0.6% 0.6%

-0.2% -0.2%

2.1% 49.2%

29.3% 29.3%

Node 2

0.5% 0.5%

2.6% 2.6%

1.8% 88.9%

26.0% 26.0%

Element 2

Node 1

0.5% 0.5%

2.6% 2.6%

1.8% 36.9%

26.0% 26.0%

Node 2

0.4% 0.4%

5.4% 5.4%

1.4% 9.6%

22.8% 22.8%

Table K.2: The percentage deviations between sensitivities obtained using the

AM and the central FD scheme.

From Table K.1 it is seen that an unacceptable percentage deviation is

introduced in the fourth cross sectional sample point for the case of two dif-

ferent load series. Due to the placement of the four sample points on the cross

section, the inaccuracy in the fourth cross sectional sample points seems to

be related to the P z force. This is supported by the observation made when

reversing the sign on the load series applied to P z which switches the position

of the inaccuracy from sample point four to sample point two. Thus, either

the combination of the two different load series, or the applied P z load series

alone introduce the seen inaccuracies.

Removing the P y force from the present example will reveal whether the load

series used for P z alone will introduce an error in the analytical calculations.

All inaccuracies on the diameter sensitivities are however removed when P y

is removed, and only P z is applied. This suggests that the high percentage

deviations are not caused by the use of a bad choice of load spectrum but

from the combination of different non-proportional spectra.

It can be seen from a comparison between Tables K.1 and K.2 that the two an-

alytical methods calculate the same diameter sensitivities. However, a much

larger percentage deviation is seen for the AM, Table K.2, for some of the

thickness sensitivities. A percentage deviation of up to 89% is seen in some of

the thickness sensitivities, which is unacceptable. Note, that a similar inaccu-

racy is not seen in the diameter sensitivities. The tendency seems to be, that

the inaccuracies in the thickness sensitivities of the AM is somehow linked to



the P y force, since only cross section sample point three seems to be affected.

Reversing the applied P y removes the inaccuracy in sample point three and

introduces an inaccuracy in sample point one instead. Note, the inaccuracy

in thickness sensitivities was not seen for the cantilevered beam example set

up in section 8.4.

Through this appendix the current deficiencies in the analytical methods

for the DSA have been highlighted. Two major deficiencies were shown by the

use of two non-proportional load series for a P y and P z tip load. It was seen

how the AM introduced some inaccuracies in the thickness sensitivity analysis

in one of the four cross sectional sample points. These inaccuracies were not

seen in the DDM.

Both the DDM and the AM yielded equal diameter sensitivities. However, for

both methods an unacceptably large inaccuracy of approximately 30% was

seen in one of the four cross sectional sample points. The inaccuracy seemed

to be linked to the P z force. However, an analysis using only an applied P z

force showed no inaccuracies.

Thus, in its current state, the analytical DSA is not capable of providing

acceptable results for the DSA whenever different load series must be applied

for the different forces. Furthermore, care should be taken when the AM

is used for determination of the thickness sensitivities, or the DDM should

always be preferred.

A further discussion of the causes for the current deficiencies is made in

Chapter 12.



Appendix L

Optimization of Beam with

Six Applied Loads

A second beam example, much like the example introduced in section 10.1,

is set up. Note, the gradients will be determined using the analytical DSA.

However, in this example six loads, P x, P y, P z, Mx, My, and M z are all

applied at the tip of the beam. Again, the model introduced in Figure 8.3 is

used for the optimization. The cross sectional sample point with the maximum

damage is chosen for each element. The initial diameter is set to 0.11 m and

the initial thickness is set to 0.004 m. Thus, the initial weight of the beam is

determined to approximately 6.3 kg. The load spectra seen in Figure L.1a is

applied to all six loads and changes to the fatigue constraints as a function of

the diameter can be seen on Figure L.1b.

The optimum solution, towards which the SLP algorithm should converge,

is again seen as the diameters for which the constraint function value in the

given element equals zero. Note, the length of the beam is maintained at 0.6 m

which means the 1/10 length-diameter ratio is not maintained in the current

example. Thus, slight inaccuracies can be expected in the stress calculations.

The adaptive move limit strategy for this problem is defined as:

� For a change in constraint function value larger than 5%, decrease the

move limit by 80%.

� For a change in constraint function value less than 1%, increase the move

limit by 10%.
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Figure L.1: (a) The load spectra used for all six applied loads in the second
optimization problem. (b) The maximum constraint function value in each of
the five elements and the mass of a single element.

Note, the move limit is set to a low initial value due to the highly non-linear

behavior of the optimization problem, cf. Figure L.1b. The solution obtained

using the SLP algorithm may be seen in Table L.1.

Element Diameter, [m] gk

1 0.087 -0.18

2 0.084 -0.19

3 0.081 -0.20

4 0.077 -0.21

5 0.074 -0.22

Table L.1: Optimized solution for the cantilevered beam model with six

applied tip loads.

A comparison between Figure L.1b and Table L.1 reveals that the SLP

algorithm is stopped near the expected result. As for the example in section

10.1, the optimization algorithm converges before the bounds on each fatigue

constraint is reached, due to the very small design changes near the bounds.

As expected, the diameters of the elements in the beam must be significantly

larger when six loads are applied than when only a single load is applied.

The weight of the optimum design is approximately 4.5 kg, resulting in an

overall reduction of nearly 30%. The lower weight reduction for this example

compared to the example in section 10.1 is a result of the starting point being

closer to the optimized design.



Appendix M

Generalized Mean Methods

This appendix serves as a support for section 10.1.3, and it contains a

parametric study of the beam according to the damage estimation from the

choice of p-value.

M.1 Parametric Study of Generalized Mean

Method

A parametric study of the influence of the p-value is performed for p =

1, 2, 4, 8, 15, 30 using a cantilevered beam with the spectrum shown on Figure

10.1a applied as a Py force. In Figures M.1a to M.1f the constraint function

value is plotted as a function of diameter with a fixed thickness of 0.004 m.

Note, that the results of the figures agrees well with the result of Table M.1.

Furthermore, it can be seen, that for the higher p-values a larger diameter is

needed in order to keep the damage at the same level. This agrees with the

theory presented in section 9.2.2 since a larger p-value has shown to result in

a larger weighted damage.
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Figure M.1: Parametric study of the damage constraint as a function of

diameter for p-values of: (a) p=1, (b) p=2, (c) p=4, (d) p=8, (e) p=15,

and (f) p=30. The thickness is fixed to 0.004 m.



M.2 Optimization Results

Table M.1 contain the optimization results for the beam in section 10.1.3.

p I Time, [s] Constraint function Diameter

1 61 568 −0.60 −0.62 −0.61 −0.64 −0.20 0.05 0.04 0.04 0.03 0.02

2 65 603 −0.59 −0.61 −0.63 −0.50 −0.69 0.05 0.04 0.04 0.03 0.02

3 65 598 −0.58 −0.60 −0.61 −0.65 −0.69 0.05 0.04 0.04 0.03 0.02

4 63 594 −0.57 −0.60 −0.61 −0.66 −0.69 0.05 0.04 0.04 0.03 0.02

5 64 588 −0.58 −0.60 −0.62 −0.65 −0.67 0.05 0.04 0.04 0.03 0.02

6 64 586 −0.57 −0.59 −0.61 −0.64 −0.69 0.05 0.04 0.04 0.03 0.03

7 63 579 −0.56 −0.59 −0.61 −0.63 −0.69 0.05 0.04 0.04 0.03 0.02

8 64 609 −0.57 −0.57 −0.60 −0.66 −0.68 0.05 0.04 0.04 0.03 0.02

9 64 588 −0.56 −0.59 −0.62 −0.65 −0.69 0.05 0.04 0.04 0.03 0.03

10 63 580 −0.57 −0.59 −0.62 −0.65 −0.69 0.05 0.04 0.04 0.03 0.03

11 63 577 −0.56 −0.59 −0.61 −0.65 −0.68 0.05 0.04 0.04 0.03 0.03

12 62 568 −0.57 −0.59 −0.61 −0.65 −0.68 0.05 0.04 0.04 0.03 0.03

13 62 568 −0.56 −0.58 −0.61 −0.64 −0.69 0.05 0.04 0.04 0.03 0.03

14 62 568 −0.56 −0.59 −0.61 −0.65 −0.67 0.05 0.04 0.04 0.03 0.03

15 64 595 −0.57 −0.58 −0.61 −0.63 −0.68 0.05 0.04 0.04 0.03 0.03

30 64 588 −0.57 −0.61 −0.60 −0.64 −0.68 0.05 0.05 0.04 0.03 0.03

Table M.1: Results obtained by optimization process with different p-values

for the gradient and the constraint function.





Appendix N

CD

The enclosed CD contains:

� A DSA Test example

� The optimization framework for jacket structure

� The used rainflow count script

� The ANSYS model of jacket structure

� The report in PDF-format

� The used literature
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