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Preface

This Master Thesis is written by group PED10-1047 of two 10th semester students at the

Department of Energy Technology at Aalborg University in 2013. The theme for this

semester is Power Electronic and Drives.

Reader's guide. The denotation of equations is made by the following principle; the

notation (X.Y) suggests that the equation is the Yth in the Xth chapter. The principle also

applies to tables and �gures. This report uses SI units, as described by The International

System of Units. The appendices contains the laboratory methodology for obtaining the

PMSM drive electrical parameters, the Simulink models of the implemented controllers

and the code transcriptions from the matlab function block used. The appendices are

included as a supplement to the report, if the reader should need knowledge of the methods

used to achieve the results described in the report.

The report is written in LATEX and the layout is as follows; the bibliography is at the end of

the report and the speci�ed details are: Author, year of publishing, url/ISBN/publication.

In the report the references are denoted by [surname of the author, year of publication].

Publication of the entire or parts of this report is allowed only with reference and by

permission with the authors.

A CD-ROM containing the models made in Matlab and Simulink, the articles used, and

a PDF version of the report created during the project is attached to the report.
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Abstract

Predictive control comprises a large family of controllers. Recent development in

microprocessors and Digital Signal Processors (DSP), has encouraged the research of

predictive controllers for power electronics and drives applications.

In this Master Thesis di�erent methods of Predictive Current Control (PCC) for a

permanent magnet synchronous machine (PMSMs) are investigated. Deadbeat and Model

Predictive Control (MPC) are suggested as the most advantageous according simplicity

and �exibility.

These proposed predictive control methods are compared in simulation using Matlab/Simulink

with the classical and widely used Field Oriented Control (FOC). Given inverter dead-

time and actuation delay are in�uential in the predictive controllers, compensation is

suggested and implemented in simulations. The results are discussed and deadbeat was

chosen as the best solution because it provides fast dynamic response and low current

ripple at a sampling frequency implementable in the given micro-controller.

Deadbeat and FOC were implemented in the laboratory using dSpace DS1103 platform.

As a result, deadbeat is found to be a new, intuitive control alternative to the traditional

FOC control scheme o�ering an improved torque response and dynamic performance for

PMSMs control.
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Nomenclature

B Viscous friction coe�cient [Nm·s]

J Motor moment of inertia [kgm2]

JL Load moment of inertia [kgm2]

Ki Controller integral gain [-]

Kp Controller proportional gain [-]

Ld Direct-axis synchronous inductance [H]

Ld Quadrature-axis synchronous inductance [H]

Ls Synchronous inductance [H]

OS Desired overshoot [%]

P Instantaneous power [W]

Sa,b,c Phase a,b or c switching function [-]

T Electrical rotor torque [Nm]

TD System time delay [s]

TL Load torque [Nm]

Ts Sampling time [s]

¯uDTdq Dead-time voltage vector in d-q reference frame[V ]

λPM Rotor permanent magnet �ux [wb]

λSW Weighting factor for switching term [-]

λa,b,c Phase a,b or c �ux linkage [Wb]

λd,q Direct or quadrature axis �ux [wb]

ω Electrical angular velocity [rad/s]

ωm Mechanical angular velocity [rad/s]
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ωn Natural undamped frequency [rad/s]

θ Electrical angular position [rad]

ζ Damping ratio [-]

ea,b,c Phase a, b or c back EMF [V]

fa,b,c Stator quantity (voltage, current or �ux) [-]

fd,q,0 Direct, quadrature or zero-sequence quantity (voltage, current or �ux) [-]

g Cost function [-]

ia,b,c Phase a,b or c current [A]

id,q Direct or quadrature axis current [A]

ipdq Predicted direct or quadrature axis current [A]

p Number of pole pair [-]

tDT Dead-time [µs]

ua,b,c Phase a,b or c voltage [V]

ud,q Direct or quadrature axis voltage [V]

udc DC link voltage [V]
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Introduction 1
Power electronics and drives is a hot topic of study, with a great attempt to further

increase their performance and e�ciency, for many di�erent industrial areas.

In the search for high performance, fast transient response and good control �exibility,

various control techniques have been developed in recent years [Lipo, 1996]. Di�erent

interesting variables such as speed, position, torque and power can be controlled.

The most widespread and veri�ed control technique is the classical Field Oriented Control

(FOC) with Space Vector Modulation (SVM) technique [Irwin et al., 2002]. This control

method uses Proportional-Integral (PI) controllers, and controls the current in a dq

rotating reference frame. This allows to control the machine torque and magnetic

�eld independently. In order to secure a good performance of a FOC controller, the

proportional and integral gains Kp and Ki must be carefully tuned, normally guided by

classical control theory.

Direct torque control (DTC) has also been extensively studied because of its simplicity in

implementation and fast dynamics. DTC controls the torque directly without using any

inner current loop. It regulates the torque by controlling the angle between the stator �ux

and the rotor �ux. The rotor position information is needed in order to locate the rotor

�ux position. A proper voltage vector from the eight possible voltage vectors o�ered by

a two-level inverter will be chosen, according to the desire to increase the torque (and/or

the �ux). The main disadvantages of DTC are that the needed switching frequency is high

and is normally not �xed. As a consequence, the torque ripple will be relatively large when

compared to e.g. FOC. In order to overcome this disadvantage, among many possible,

SVM-DTC has been proposed in literature [Swierczynski and Kazmierkowski, 2002], [Ye

and Zhang, 2010] as a promising solutions. Both achieve lower switching frequencies,

which lead to a reduction of the torque ripple, with a almost similar dynamic response as

a conventional DTC scheme.

New control schemes are being studied in the last decade in order to improve especially

the transient performances of electrical drives. Predictive control is a promising method

that has been developed for this purpose for di�erent applications [Rodriguez and Cortes,
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2012]. Some of the new emerging predictive controllers require a high sampling frequency

and consume large computation power of Digital Signal Processors (DSP). But thanks

to technological development of microprocessors and digital signal processors, these new

types of predictive controllers can be implemented in modern DSPs with a reasonably

low price for power electronics and electrical drive applications. Among many di�erent

control schemes, the predictive controllers are believed to o�er a good dynamic response

and are advantageous towards simplicity and �exibility.

1.1 Predictive control overview

The main principle of predictive control is to use the drive system model to predict

the future behaviour of the variables to be controlled (e.g current). There are di�erent

types of predictive controllers as summarized in [Kennel et al., 2008] depending on the

criterion used to obtain the optimal performance. Basically, there are four di�erent types:

Hysteresis-based, Trajectory-based, Deadbeat and Model-based predictive control (MPC)

[Kennel et al., 2008].

The Hysteresis-based controller maintains the control variable within a given hysteresis

boundary and the controller in its simplest form may be referred to as a bang-bang

controller. The advantages of the hysteresis controller are its simple implementation

and fast response. But it is characterised because it has a non-�xed and high switching

frequency [Moon et al., 2003]. In trajectory-based control the variable is forced to track

a prede�ned trajectory [Kennel et al., 2008].

In deadbeat, the current reference is to be reached in the next sampling period by

using a model of the system to calculate the required output voltage to be generated.

This controller also gives a fast dynamic response but it is often sensitive to model

parameter errors, system delay and the inverter non-linearities which will reduce th

system performance. Di�erent compensation methods, such as delay and dead-time

compensation, can be implemented in the deadbeat controller to improve system

performance.

Model-based predictive control uses a cost function that needs to be minimised.

Furthermore, MPC can be implemented as continuous or �nite control set. The �nite

control set is also called Direct Predictive Control (DPC) [Kouro et al., 2009]. DPC does

not need a modulator like SVM unlike the continuous version. It considers a �nite set

of actuations that correspond to the eight possible switching statues (voltage vectors)

of the inverter. All these eight possible voltage vectors are evaluated for each switching

period, and the one which minimises the cost function is applied for one switching period.

A drawback of the DPC is that the switching frequency is generated directly by the

controller cost function may vary. A variable frequency hinders, for example, a proper

passive EMI �lter design.
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Deadbeat control and MPC have been the most widely investigated control methods

in recent years, with respect performance and parameters sensitivity evaluations.

Furthermore, they o�er an intuitive basis, simplicity, �exibility and enable good

performance according to [Morel et al., 2009]. Therefore, all further focus on this project

will be on the deadbeat and MPC control methods.

On one hand, MPC is one of the most used in practical applications [Kennel et al., 2008].

System constraints are included in both. continuous and �nite set, MPC types, such as

maximum output voltage limits from the inverter, maximum current and etc. Besides this,

the cost functions can be designed to ful�l di�erent goals, like for example, minimising

power losses, switching frequency or common mode voltage [Cortes et al., 2009]. This

can be done by adjusting the weighting factor introduced in the designed cost function.

The cost function is the most important and complex part of MPC. However, it should be

taken into account that a more complex controller also means that even huge computation

power is needed.

The strategy chosen for the MPC cost function design would depend on the application.

Two main cases are found for the case of PMSM. In the case of high power rating,

the switching frequency reduction is of importance so that the switching losses may be

required to be reduced to improve the e�ciency. Properly chosen cost function in MPC,

may ensure the minimum number of switch changes in a steady state while the control

error would be another subject to minimise in the transient period to ensure the system

stability. Another case is for low power servo drives, where the goal is to obtain high

dynamics, avoid oscillations, etc.

On the other hand, Deadbeat control needs less computation power than MPC and it

uses a modulator to produce a �xed switching frequency like in the case for FOC. Also, it

does have higher stress levels on the inverter than MPC, even without optimising the the

cost function to minimise switching frequency [Morel et al., 2009]. However, deadbeat can

include constraints or non-linearities from the real system. Also deadbeats simple control

scheme could get even more complex in order to improve its robustness for parameter

changes. In [Li et al., 2012] they present such a method, for a predictive current controller.

In the Table 1.1 at the end of this section, the di�erent predictive controller types are

compared according to: model parameter sensitivity, stress level on inverter, computation

requirement and if the controller produces a �xed frequency or not.
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1.2 Goals

The main focus of this project is the design and implementation of a high performance

predictive control for PMSM so that its performance is evaluated and compared with the

traditional FOC.

Predictive control is chosen from the di�erent control possibilities because it is easy

and coherent, with a comparable simple controller implementation. It is supposed to

improve the torque response and dynamic performance compared with the classical control

schemes.

The torque is directly dependent on the stator current, therefore, an instantaneous

stator currents control with high accuracy and a short transient period, together with

a high dynamic performance and low current ripple, can potentially improve the torque

performance.

Other goals pursued in this project are to mitigate the computation delay, compensate the

deviation caused by the inverter dead-time and study the predictive controllers sensitivity

to parameter uncertainties.

Di�erent predictive control schemes could ful�l these goals. Taking into account the

simplicity of the implementation and the �exibility for including the di�erent constraints

deadbeat and Model Predictive Control (MPC) are the focus of investigation. Both

predictive controllers and FOC will be modelled in Simulink/Matlab and compared in

simulations.

The simulation results together with the system limitations, from the available set-up, will

be evaluated in order to choose the predictive controller which can ful�l the presented

goals in practice.

The chosen PCC and FOC will be designed and implemented in the laboratory using

dSpace. The simulation models will be veri�ed with the experiments. Based on the

experiment the proposed PCC will be veri�ed as an alternative to the classic FOC for

high performance control of PMSMs.

1.3 Project limitations

One of the characteristics of predictive control is the large computation time required.

The lack of DSPs able to carry on all the required calculations fast enough for power

electronics and drives applications, impede the development of the predictive techniques

in this area. Computation time is still a limitation. The code should be optimised taking

into account that the computation time for practical implementation is limited by the

given dSpace DS1103 platform micro-controller.

It should be noticed that the results obtained are very dependent of the given system,
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these are, the DC-link voltage is not regulable, the PMSM has a low inductance which

bene�ts the high current ripples and the built inverter imposes a maximum switching

frequency. For this project the inverter components are considered ideal, no voltage drop

in transistors or diodes are considered in simulations.

Predictive control comprises a broad class of controllers. Because of time constraint, it is

not possible to preformed an extensive investigation and complete implementation of all

the aspects that could improve the performance of the di�erent methods. A parallel study

of the proposed predictive controllers starting from the most simpler implementation and

investigating inverter dead-time and computation delay.

1.4 Report structure

In this report, Predictive Control for PMSM is investigated. Firstly, a review of the

di�erent control has been done. The test system has been described and the PMSM and

Inverter have been modelled in Chapter 2.

FOC and Deadbeat predictive control have been compared and both are described and

simulated in Chapter 3 and Chapter 4 respectively. Finite Set Model Predictive Control

(MPC) was also implemented in Chapter 5, so a more complete comparison within

the predictive control types has been undertaken. The Matlab/Simulink models are

introduced in the dSpace digital controller and the system has been validated in the

test set-up. Simulation and experimental results respectively are presented at the end of

Chapter 3 and 4 for each one of the developed control schemes. MPC is only analysed

based on simulations. In Chapter 5 the three control schemes are compared in terms of

their sensitibity to model parameter variations. Conclusions and future work are presented

in Chapter 6.

6



Problem Analysis 2
In this chapter, the hardware for the project is presented starting with a general

description of the whole system. Knowledge about the system and its components is

important to be able to model and analyse it correctly. For modelling and simulating the

PMSM, the electrical and mechanical equations of the motor are presented in this chapter.

The electrical part of the model will be discretised so the predictive controllers can be

derived later for both deadbeat and MPC. In order to control the motor in simulations

an inverter model is developed as well.

2.1 System Description

The con�guration of one test bench in the Flexible Drive Systems Laboratory (FDSL) is

show in Figure 2.1.

dSPACE system

Danfoss FC302 inverter 

interface card

Danfoss FC302 inverter 

2.2kW

LEM 
modules

DC Power 

Supply

PC

Simulink with RTW & 

dSPACE Control Desk

PWM1

UDC-IM

PWM2

PWM3
EN

Danfoss FC302 inverter 

interface card

Danfoss FC302 inverter 

15kW

LEM 
modules

DC Power 

Supply

PWM4

PWM5

PWM6
EN

DC

IM PM

IRST-IM

UDC-PM

IRST-PM LEM 
modules

LEM 
modules

DC

Figure 2.1. Schematic of one test setup in the Flexible Drive Systems Laboratory

The test setup consists of two AC motors. One is a 3-phase induction machine from ABB

(M2AA100LA) and the other is a PMSM from Siemens (ROTEC 1FT6084-8SH7). For
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this project the PMSM is used and its speci�cations are listed in Table 2.1. The inductance

and resistance for the PMSM are obtained from measurements. The resistance includes

the cable resistance. A more detailed description of how the resistance and inductance

values were obtained is given in Appendix A. The induction motor is controlled in speed

mode, serving as the load torque for the PMSM. The load inertia JL of the induction

motor is 0.069 kg·m2 and should be added to the inertia of the PMSM. This give a total

inertia of 0.0117 kg·m2.

Table 2.1. Speci�cation of the PMSM

Rated power 9.4 kW Pole pair (p) 4

Rated torque 20 Nm Stator resistance (Rs) 0.203 Ω

Maximum torque 65 Nm Inductance (Ld = Lq) 2.10 mH

Rated current 24.5 A Inertia (J) 0.0048 kg·m2

Maximum current 86 A Permanent magnet �ux (λPM) 0.123 Wb

Rated frequency 300 Hz Torque constant 1.01 Nm/A

A Danfoss FC302 (15 kW) 2-level frequency inverter controls the PMSM motor. The

inverter speci�cations are listed in Table 2.2. In the lab the inverter is connected directly

to a DC supply. The dead time for the inverter is 2.5 µs. This dead-time is �xed by the

inverter hardware to prevent a shoot-through fault. It should be noticed that an inverter

may behave non-linearly. For example, dead-time, IGBT voltage drop and turn on/o�

time will cause voltage error at the inverter output [Jones et al., 2009] and [Summers and

Betz, 2004].

Table 2.2. Speci�cation of frequency inverter

Output Input

Rated voltage 0-Vin 380-500 V

Rated current 32 A 29 A

Rated power 15 kW

Frequency 0-1 kHz

dSpace system (DS1103 PPC) is a real time system with high computation power, with

many analog and digital I/O ports, like a DSP. But the dSpace system features a direct

connection with a PC where the software can compile Simulink models into usable c-code

for the system. In order to increase the computational speed, the Simulink model can be

de�ned in c-code by using s-funcion blocks. The dSpace system handles all the measured

analog signals from the DC-link and the phase currents as shown in Figure 2.1. These

measured values can be shown in a real time interface (RTI) on the PC control desk.

8



This control desk can contain sliders, scops and other user inputs. dSpace also provides

PMW, set and reset signals to the inverter through optic �bers. Some of the hardware

speci�cations for the dSpace system are listed here:

� Motorola PowerPC 750GX running at 1 GHz.

� Slave DSP TI's TMS320F240 Subsystem

� 16 channels (4 x 4ch) ADC, 16 bit, 4 µs,± 10 V

� 4 channels ADC, 12 bit, 800 ns, ± 10V

� 8 channels (2 x 4ch) DAC, 14 bit, 6 µs, ± 10 V

� Incremental Encoder Interface with 7 channels

� 32 digital I/O lines, programmable in 8-bit groups

� Software development tools (Matlab/Simulink, RTI, Control Desk)

2.2 Permanent Magnet Synchronous Machine

In this chapter, the equations used to describe the Permanent Magnet Synchronous

Machine (PMSM) are presented. Also the matrices for dq reference frame transformations

are shown. The equations will be used to make a dq model of the motor in Simulink.

This chapter is based on the literature from [Fitzgerald et al., 2002] and [Novotny and

Lipo, 1996].

The equivalent circuit for one phase of a synchronous machine with a non-salient rotor

may be illustrated in Figure 2.2. Each phase is equally distributed with 120◦ between

each other.

Rx
Lx

exux

ix

Figure 2.2. Equivalent circuit for a single phase of a motor

From Figure 2.2 the voltage equations for a PMSM are given by Equation 2.1.

ua = Ria +
dλa
dt

= Ria + Ls
dia
dt

+ ea

ub = Rib +
dλb
dt

= Rib + Ls
dib
dt

+ eb (2.1)

uc = Ric +
dλc
dt

= Ric + Ls
dic
dt

+ ec
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It is shown that the �ux linkage does not only depend on the current in each phase.

It also depends on the mutual �ux created by the other phase currents and the rotor

position. The complexity of the �ux linkage calculations can be reduced with reference

frame transformation. If the dq0 reference frame is aligned with the rotor magnetic �eld,

it will remove the position dependent inductance components. Figure 2.3 illustrates a

rotating vector with constant magnitude. The dq frame rotates with the rotors velocity,

so that d-axis follows the rotor position θ. Thus the sinusoidal abc components are

converted into DC values in steady state which is easier to control. Equation 2.2 shows

the dq0 transformation in matrix form. The last row of the matrix corresponds to the

zero-sequence component. It is assumed that the three phases in the motor are balanced.

Therefore the zero-sequence component in observed from 2.2 is zero.

a = α

β

d

q

θ

f

fd

fq

fα

fβ

b

c

ω

Figure 2.3. dq reference frame transformation

fdfq
f0

 =
2

3

 cos(θ) cos(θ − 2π
3

) cos(θ + 2π
3

)

−sin(θ) −sin(θ − 2π
3

) −sin(θ + 2π
3

)
1
2

1
2

1
2


fafb
fc

 (2.2)

Equation 2.3 and 2.4 are the motor voltage equations in dq reference frame after

transformation.
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ud = Rid +
dλd
dt
− ωλq (2.3)

uq = Riq +
dλq
dt

+ ωλd (2.4)

Where

λd = Ldid + λPM (2.5)

λq = Lqiq (2.6)

Equation 2.7 describes the instantaneous power in a three phase motor. By combining

Equation 2.2 and 2.7, the instantaneous power using dq components is as given in Equation

2.8. In Equation 2.8 the zero component is also assumed to be zero.

P = uaia + ubib + ucic (2.7)

P =
3

2
(udid + uqiq) (2.8)

The electrical torque produced by the motor is explained with Equation 2.9. If the id
current for example is set to zero the torque can be directly controlled by the iq current.

This is a simple and widely used method for controlling the torque in the motor. There

are two fundamental types of PMSM, with interior rotor permanent magnets or with

surface mounted rotor magnets. The magnets are treated as air region in inductance

determination, for surface mounted magnets the air-gap distribution is uniform and

Ld = Lq (non-salient). Equal inductances in the d-q axes will simplify Equation 2.10

even more and make the torque solely dependent on the iq current.

T =
3

2
p(λdiq − λqid) (2.9)

m

T =
3

2
p ((Ld − Lq)idiq + λPM iq) (2.10)

For a synchronous machine the relationship between the mechanical angular velocity ωm
and the electrical angular velocity ω is described by Equation 2.11. The mechanical

angular velocity is simply multiplied by the number of pole pairs. For the torque

equilibrium in Equation 2.12 the mechanical angular velocity is used. Equation 2.12

can be rearranged to describe the mechanical dynamic of the motor like the speed if,

the electrical torque given by Equation 2.9 and the load torque is known. If the angular

11



speed is integrated the position of the rotor can be obtained, which is needed for the dq

transformations.

ω = pωm (2.11)

T = (J + JL)
dωm
dt

+Bωm + TL (2.12)

2.2.1 Motor model discretisation

To predict the current at sampling time k+1 with the measured position, speed and

currents at sampling time k, a discrete model of the motor is needed. Equations 2.13 and

2.14 are a rearranging of Equation 2.3 and 2.4, where the derivative of the current have

been isolated on the left side of the equal sign.

did(t)

dt
=

1

Ld
ud(t)−

R

Ld
id(t) +

ω(t)Lq
Ld

iq(t) (2.13)

diq(t)

dt
=

1

Lq
uq(t)−

R

Lq
iq(t)−

ω(t)Ld
Lq

id(t)−
ω(t)λPM

Lq
(2.14)

The derivative can also be expressed with Newton's di�erence quotient as shown in

Equation 2.15 if the time steps are approaching zero. In this case the time step ∆t

will be the sampling time of the controller. If the sampling time is small, this will be a

valid approximation for the derivative.

df(t)

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
(2.15)

A Taylor series like Equation 2.16 can also be applied instead of Equation 2.15. If only a

�rst order Taylor series is used, it gives the same result as with Equation 2.15.

f(t+ ∆t) = f(t) + ∆tf ′(t) +
1

2!
∆t2f ′′(t) + ... (2.16)

Equation 2.15 or the �rst order Taylor expansion from Equation 2.16 are substituting the

current derivative which gives Equation 2.17 and 2.18.

id(t+ ∆t)− id(t)
∆t

=
1

Ld
ud(t)−

R

Ld
id(t) +

ω(t)Lq
Ld

iq(t) (2.17)

iq(t+ ∆t)− iq(t)
∆t

=
1

Lq
uq(t)−

R

Lq
iq(t)−

ω(t)Ld
Lq

id(t)−
ω(t)λPM

Lq
(2.18)

If ∆t is equal to a �xed sampling period Ts which is small enough to neglect the changes of

angular velocity ω(k), then the otherwise non-linear back-EMF terms, can be considered

12



as constants [Morel et al., 2009]. This means that Equation 2.17 and 2.18 can be

discretised as shown in Equation 2.19 and 2.20.

id(k + 1) =
Ts

Ld
ud(k) +

(
1− RTs

Ld

)
id(k) +

ω(k)LqTs

Ld
iq(k) (2.19)

iq(k + 1) =
Ts

Lq
uq(k) +

(
1− RTs

Lq

)
iq(k)− ω(k)LdTs

Lq
id(k)− ω(k)λPMTs

Lq
(2.20)

Here in Equation 2.21 the predicted īdq(k + 1) current is presented in matrix form.[
id(k + 1)

iq(k + 1)

]
=

[
1− RTs

Ld

ω(k)LqTs

Ld

−ω(k)LdTs
Lq

1− RTs
Lq

][
id(k)

iq(k)

]
+

[
Ts
Ld

0

0 Ts
Lq

][
ud(k)

uq(k)

]
+

[
0

−ω(k)λPMTs
Lq

]
⇓[

id(k + 1)

iq(k + 1)

]
= A(k)

[
id(k)

iq(k)

]
+ B

[
ud(k)

uq(k)

]
+ C(k)

⇓
īdq(k + 1) = A(k)̄idq(k) + Būdq(k) + C(k) (2.21)

Now a general discretisation of the motor model is obtained. This can be applied to both

a model predictive controller and a deatbeat controller.

2.3 Inverter Model

The Danfoss FC302 is a full bridge Voltage Source Inverter (VSI). Figure 2.4 is a simple

inverter schematic where each IGBT is considered as an ideal switch in this Chapter.

The load impedance representing the PMSM is Y-connected as illustrated in Figure

2.4. The inverter output line-to-line voltage can be described with Equation 2.22. This

equation can easily be derived from Figure 2.5 which shows the resulting line-to-line

voltage according to the switching states.VabVbc
Vca

 = VDC

 1 −1 0

0 1 −1

−1 0 1


SaSb
Sc

 (2.22)

The vector S is the switching function with the value 1 when upper leg semiconductor

is on and 0 when it is o�. Since the two transistors in one inverter leg cannot be turned

on at the same time, it will result in 8 di�erent switching stages where two of those are

zero voltage. The zero voltage vectors correspond to the switching states 111 and 000,

when the three upper switches are either on or o� simultaneously and hence short-circuit

the DC-link capacitor. Figure 2.5 illustrate the eight di�erent switching states and the

resulting line-to-line output voltage from the inverter.
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VDC
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1-Sc1-Sb1-Sa

n

PMSM

Van

Vbn

Vcn
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Figure 2.4. A full bridge three-phase voltage source inverter
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0 V

0

1

0 7

0

1

0

1

0 V

0 V

Figure 2.5. Switching functions and the resulting output line-to-line voltages from a full
bridge inverter

The terminal voltage in the dq model of the PMSM will be line-to-neutral for a Y-

connected motor. Therefore the line-to-neutral voltages are needed. For a balanced

system the line-to-neutral voltages are described with Equation 2.23 as a function of S.VanVbn
Vcn

 =
VDC

3

 2 −1 −1

−1 2 −1

−1 −1 2


SaSb
Sc

 (2.23)

To describe the inverter switching voltages directly in the dq-reference frame Equation

2.23 and 2.2 can be combined. This combination is shown in Equation 2.24 where the two
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matrices have been multiplied together. This equation can be used directly with the dq

motor model, where only the switching states for each inverter leg have to be supplied.

[
Vd
Vq

]
=

2

3

VDC
3

[
cos(θ) cos(θ − 2π

3
) cos(θ + 2π

3
)

− sin(θ) − sin(θ − 2π
3

) − sin(θ + 2π
3

)

]
·

 2 −1 −1

−1 2 −1

−1 −1 2


SaSb
Sc


⇓[

Vd
Vq

]
=

2

3

VDC
3

[
3 cos(θ) 3 cos(θ − 2π

3
) 3 cos(θ + 2π

3
)

−3 sin(θ) −3 sin(θ − 2π
3

) −3 sin(θ + 2π
3

)

]
·

SaSb
Sc


⇓[

Vd
Vq

]
=

2VDC
3

[
cos(θ) cos(θ − 2π

3
) cos(θ + 2π

3
)

− sin(θ) − sin(θ − 2π
3

) − sin(θ + 2π
3

)

]
·

SaSb
Sc

 (2.24)
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Field oriented control 3
Field oriented control (FOC) is a classical approach to control ac-machines. FOC is

implemented in this project in order to validate the performance of the proposed predictive

control through a fair comparison. In this chapter, the FOC and space vector modulation

principles are explained. The PI current controller is designed and the whole system is

simulated and implemented for experimental testing.

In Figure 3.1 the general structure of the current vector control of the PMSM is shown.

SVM

PI

PI

dq

αβ

Danfoss
FC302
Inverter

Motor

dq

abc

+-

+-

θ

θ

0

ia

ib

uq

ud

uα

uβ

iq*

id*
iq

id

Clarke &
Park 

Transform

Park-1 

Transform

 
Clarke-1 

Transform

Figure 3.1. General structure for PMSM with a PI current controller

The main principle of FOC is that it uses a coordinate system that aligns with the rotor

�ux, it is call d-q rotating reference frame. In Section 2.2 the transformation from the 3

phase non-rotating reference frame (abc) to dq reference frame for a PMSM was described.

In that frame, it can be approached an independent control of the electrical torque and

the magnitude of the d-axis �ux, that is by controlling iq and id respectively.

According to Equation 2.10, when Ld=Lq, the torque is only dependent on the iq current.

The �ux is maintained constant by setting i∗d to 0.

The measured stator currents id and iq are subtracted from the reference signals i∗d,

i∗q producing a error signal for the PI controllers, as illustrated in Figure 3.1. The PI

controller generates a output voltage in the rotating reference frame.
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The controller output voltages ud and uq are then transformed to the stationary reference

frame α, β. The obtained uα, uβ voltages is then applied at the motor by using the Danfoss

FC302 Inverter, which is controlled by a Space Vector Modulation (SVM) technique. The

electrical rotor position used in both reference frame transformations is obtained from an

encoder mounted on the motor shaft.

The SVM technique and the controller design are explained in detail in the following

sections.

3.1 Space Vector Modulation

Variable voltage and frequency can be applied from the Danfoss FC302 Inverter. There

are several pulse width modulation (PWM) techniques that have been deeply studied and

applied [da Silva et al., 2011]. The most common ones are carrier-based sinusoidal SPWM

and space vector modulation (SVPWM). The SVPWM determines the switching pulse

width and their position improving the DC-link utilization by 15.15% and facilitating the

digital implementation [Iqbal et al., 2006]. Therfore SVPMW is chosen for this project,

which corresponds to 1.5 times the switching period

The SVPWM uses complex voltage vectors for control. There are eight switch combination

possibilities in a three-phase inverter. Six of these combinations apply an non-zero output

voltage, de�ning the six active vectors. The two left are the zero vectors, these states

corresponds with the short-circuiting of the top or bottom switches in the inverter. In

Figure 3.2 the phase voltage space vectors are represented. The active vectors are marked

from 1 to 6 dividing the plane into six sectors spaced 60 degrees. The maximum amplitude

of them is the maximum voltage that the inverter can deliver 2/3VDC The zero vectors

are positioned at the center of the hexagon.
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Figure 3.2. Space vector representation of inverter

U∗ is the reference vector from the controller. The maximum magnitude of U∗ is Udc/
√

3,

this is the radius of the circle which �ts precisely inside the hexagon. If the reference

vector U∗ > Udc/
√

3 then the inverter is operated in a nonlinear over modulated mode

[Irwin et al., 2002].

The reference U∗ represents the three-phase sinusoidal voltage that is generated by the

SVPWM. U∗ position places it in one of the six sectors on3.2. The sector de�nes the two

actives vectors which, in combination with zero vectors will de�ne the reference. For a

general case where the active vectors are called Ux and Uy, and according the trigonometry

on �gure 3.2 the duty cycles can be de�ned as dx, dy and are obtained as follows:
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~U∗ = |U∗|

[
cos(β)

sin(β)

]
= dx

∣∣∣ ~Ux∣∣∣ [1

0

]
+ dy

∣∣∣ ~Uy∣∣∣ [cos(π3 )

sin(π
3
)

]

= dx
2

3
Udc

[
1

0

]
+ dy

2

3
Udc

[
cos(π

3
)

sin(π
3
)

]
⇓

dx =

√
3 |U∗|
Udc

sin
(π

3
− β

)
(3.1)

dy =

√
3 |U∗|
Udc

sin (β) (3.2)

The residual duty cycle, d0, corresponds with the zero vectors and determines the

magnitude of the reference vector.

d0 = 1− dx − dy (3.3)

The switching sequence is implemented symmetrically where the residual duty cycle d0

will be equally distributed between the two zero vectors.

As an example, the switching signal for each inverter leg for a reference situated in sector

1 is shown in the following Figure:

D1

D2

D3

dxdy

TSW

Figure 3.3. D1, D2 and D3 are the output duty cycles for each inverter leg from the SVM

which are used in the DSP

In this case, according Figure 3.3, the duty cycle for each inverter leg can be obtained

from the calculated times.
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 1

dx
dy

 =

1 0 1

1 −1 0

0 1 −1

 ·
D1

D2

D3


⇓D1

D2

D3

 =
1

2

1 1 1

1 −1 1

1 −1 −1

 ·
 1

dx
dy

 (3.4)

In the same way similar matrices could be calculated for the rest of sectors.

3.2 PI Controller Design

The PMSM model equations 2.3 and 2.4 have been de�ned in Section 2.2. These equations

may be represented in terms of the Laplace transform variable s as shown in Equation

3.5 and 3.6.

ud(s) = (sLd +R)id(s)− ωLqiq(s) (3.5)

uq(s) = (sLq +R)iq(s) + ω(Ldid(s) + λPM) (3.6)

In the previous voltage motor equations, the second term in each of them is the back-EMF

term induced by the opposite axis currents. Due to this term, the dq current control loops

are not independent. In order to overcome this di�culty, a back-EMF decoupling term is

added into the control loop as shown in Figure 3.4 for the case of iq.

iq +-
Kps+Ki
s

1
Lqs+R

iquq,PIe*

+-

ω(Ldid+λPM) ω(Ldid+λPM)

++
uq

Motor

Figure 3.4. iq current loop with an external disturbance and PI controller

This term is introduced after the PI controller as a disturbance with the same value but

opposite sign of the back-EMF term included in the motor model. Therefore, the system

can be simpli�ed to a 2nd order system as shown in Figure 3.5 where iq and id can be

controlled independently.
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iq +-
Kps+Ki
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1
Lqs+R

iquqe*

GPGC

Figure 3.5. Simpli�ed iq current loop

It can be see that, for a non-salient pole machine where Lq=Ld, the current control loop

in both axes would be identical. As shown in Table 2.1 this is the case for the used PMSM

and the PI controller in both current loops are the same.

Time delay will occur in the system, caused by sensor delay, AD conversion and

computation time. Therefore, in Figure 3.7 a 1st order time delay may be added to

the control loop and this will increase the order of the whole system by one. The value

of TD is determined experimentally from the data presented in Figure 3.6. The delay

time from the reference is applied by dSpace to the response is measured, is between 1-2

sampling periods of 0.2 ms. The reason for the uncertainty of the delay time is because

the real reference could be applied at the beginning or at the end of a sampling time.

Hence an average delay time for TD=0.3 ms is chosen for this project.

If the PI controller is designed to have pole zero cancellation the system will behave as a

2nd order system again.
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Figure 3.6. Measured current response with a 0.4 ms delay between the reference and the

measure current
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idq +-
Kps+Ki

s
1

TDs+1
idqudqe*

Delay GDGC

1
Ldqs+R

GP

Figure 3.7. idq current loop with a 1. order delay added

The open loop transfer function is shown in Equation 3.7, where Ki = KpKip. If Kip =
R
L
,

then the zero from the controller Gc will cancel the pole from the plant Gp reducing it to

a 2nd order transfer function as shown in Equation 3.8.

GOL(s) =
Kps+Ki

s
· 1

TDs+ 1
· 1

Ls+R
=

Kp

TDL
· s+Kip

s
· 1

s+ 1
TD

· 1

s+ R
L

(3.7)

GOL(s) =
Kp

TDL
· 1

s
(
s+ 1

TD

) (3.8)

From the open loop transfer function 3.8, the closed loop transfer function is derived, as

show in Equation 3.9, where K = Kp

TDL
. When comparing to the general equation for a 2nd

order system as shown in 3.10, the natural frequency ωn becomes
√
K and the damping

ratio ζ becomes 1
2TD
√
K
.

GCL(s) =
GOL(s)

1 +GOL(s)
=

K

s2 + 1
TD
s+K

(3.9)

Where the general equation for a 2nd order system is:

H(s) =
ω2
n

s2 + 2ζωns+ ω2
n

(3.10)

The Kp and the Ki values for the PI controller with pole zero cancellation in the current

loop, can be calculated according to equation 3.11 and 3.12 respectively. These equations

are valid for both the d- and q-axis current loops. With a desired overshoot of 2%, ζ have

to be 0.78 according to Equation 3.13. Using the inductance and resistance value from

Table 2.1 and the time delay of 0.3 ms, Kp = 2.88 and Ki = 278 are found.

Kp =
L

4ζ2TD
(3.11)

Ki = KpKip = Kp
R

L
(3.12)

ζ =
ln
(

1
OS

)√
ln
(

1
OS

)2
+ π2

(3.13)
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The closed loop step response of the full system with time delay included, is illustrated

in Figure 3.8. A 2% overshoot, as designed can be seen and a settling time of 1.69 ms is

observed.

Step Response
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Figure 3.8. Closed loop step response of the system with time delay included
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Figure 3.9. Closed loop root locus of the system with time delay included

From the root locus presented in Figure 3.9, it can be seen, that the pole zero cancellation

is achieved with the designed PI controller. It should also be noticed that the complex

pole gives a damping of 0.78 as designed.

24



A method to design the PI controller for an ideal system has be described. However,

in real application, inverter nonlinearities, such as dead-time, conduction losses and

threshold voltages of the power devices, will cause output voltage error. Therefore, when

implementing these ideally designedKp andKi values in the laboratory, a di�erent current

response was observed compared with the simulation result as shown in Figure 3.10. The

simulation shows a faster response which can be attributed to the voltage errors present

in the experiment.

The measured current response from both dSpace and the oscilloscope is also compared

in Figure 3.10. DSpace response �ts exactly with the measurements from the oscilloscope,

but it has less ripple due to a lower sampling frequency. Therefore the dSpace

measurements are considered to be valid for all further experiments throughout the report.

In cases where the current ripple has to be analysed, measurements from the oscilloscope

will be used.
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Figure 3.10. Simulation of an ideally system with a designed PI controller having Kp =

2.88 and Ki = 278, compared with the same controller implemented in the

experimental setup

To improve model accuracy, voltage errors need to be implemented in the inverter design.

The dead-time could cause the largest voltage error in the inverter, if the phase currents

are low. Therefore, the e�ects of dead-time have been included in an updated model,

made in PLECS Simulink. The comparative results are shown in Figure 3.11. Both the

simulated and experimental step response is obtained with a PI controller having a Kp =

2.88 and a Ki = 278. From Figure 3.11 it is observed that the simulation �ts well with

the experimental result from dSpace. The current rises fast until it reaches 2.25 A where

the curve break, and after that the current is increasing slow. This occurs because the

controller is designed for an ideal system without any dead-time.
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Figure 3.11. Simulation of a system with inverter dead-time and a designed PI controller

havingKp = 2.88 andKi = 278, compared with the same controller implemented

in the experimental setup

Analytical design of the PI controller for FOC is not the main goal of this project.

Therefore, a new controller is designed experimentally to ensure the fastest and most

adequate response. The tuning of Kp and Ki starts by setting Ki = 0 and increasing Kp

from 0 to a value where oscillations start. Then, Kp is kept constant and Ki is adjusted

to obtain a minimised overshoot, under 2%. By using this method a new set of paremeter

for the PI controller was determined. The proportional gain was found to be Kp=2 and

the integral gain was supose to be Ki=1000. The measured rise time tr is 4.2 ms and it

is de�ned as illustrate in Figure 3.12. This de�nition of rise time is used in the whole

report. No measurable overshoot and steady state is present in Figure 3.12, as designed.
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Figure 3.12. The measured d-axis current step response for the FOC with the PI parameters

as follows: Kp = 2 and Ki = 1000

3.3 Simulation Results

In this section, the FOC simulation model is described and the result from the simulations

is presented. An analysis of the simulated FOC performance characteristics regarding rise

time, overshoot, ripple and steady state error is given at di�erent operating conditions.

This information serve as a comparison for the following section with the experiments

implemented on the laboratory set-up, and in the following chapters with the proposed

predictive controllers.

The simulations of the laboratory system with FOC are conducted in Matlab/Simulink

with the following model:
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Figure 3.13. Simulink model for the FOC

In Figure 3.13 the �rst block is a triggered subsystem containing the two PI controllers and

the SVM described earlier in this chapter. The PI uses the experimentally determined Kp

= 2 and Ki = 1000 values and back EMF decoupling has been introduced. The triggered

subsystem is supposed to emulate the discrete dSpace controller in the laboratory.

According Figure 3.6, dSpace updates the actuation with one till two sampling delays,

therefore, an unit delay was included in the model output. The triggering frequency

(sampling frequency) of the subsystem is synchronized with the 5 kHz carrier frequency

of the PWM generator. The original inverter block was based on Equation 2.24 described

previously in this chapter. In order to include dead-time in the simulations, a new model

of the inverter is created in PLECS, shown in Figure 3.14. The input for the inverter

model is the switching function S and the output is the phase voltages expressed in the

dq reference frame.

2-Level
IGBT

Conv.
R1
R2
R3

V3
Vdc

1
Sabc

1
Vdq

3ph->RRF

abc
dq2

phi

2 +−

1
Blanking Time

s's

Figure 3.14. The Simulink/PLECS inverter model with dead-time implemented

The controller uses dq currents and therefore the PMSM model is directly expressed in

dq reference frame so no further transformations have to be made for the feedback loop.

28



The full motor model is based on Equation 2.3, 2.4 and 2.12. Implementation of these

equations in Simulink is illustrated in Figure 3.15. In the simulations, in order to facilitate

the analysis on the current control, the load torque acting on the motor is a fan load,

which o�ers a speed dependent load torque pro�le. So, the controller may focus on the

current control performance only, and a fair comparison between di�erent current control

methods may be carried out For more detailed description of each model block, please

refer to Appendix B.
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Figure 3.15. The Simulink motor model used for the simulations. The blue blocks are the

mechanical part and the red are electrical.

In the following, the system response to di�erent i∗q steps are shown and analysed. Note

that only the iq and not id is displayed in the �gures. This is because the torque response

and ripple is directly proportional to iq.

Start-up operation (zero speed) and 1000 rpm operation are both tested. The speed is

determined by the fan load for the given iq. Although, when the step happens the increase

in iq means an increase in the torque and therefore also an increase on the speed. It can

be assumed that due to the inertia and the fast torque change than happens at the step

instant, the speed will not change noticeably for the simulated time.

For characterising the transient, overshoot and rising time are measured. Where rising

time is de�ned as the time taken from 10% to 90% of the step height as shown before in

Figure 3.12. For the steady state, the error is presented as a percentage of the average

current iq and the current ripple is measured from peak to peak.

In Figure 3.16 an step from 0-5 A is made at zero speed. It can be observed that the

simulated iq current response has a rising time of 2.3 ms and an overshoot of 5%. This is

over 2% which was the designed criteria in Section 3.2, however, the control parameters

were designed experimentally and simulations uses ideal components with no losses. In

steady state, the current ripple of iq is only 64 mA with an small steady state error of

0.58%.
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Figure 3.16. Motor start up current response starting from 0 rpm

When the speed starts to increase the ripple increases. This is because the back-EMF

increases directly with the speed, and the controller increases the voltage reference to

keep the iq current constant. To produce a higher phase voltages, the SVM must produce

wider switching pulses, hence increasing the current ripple. In 3.17, the motor is now

running at 1000 rpm and the current ripple have increased to 2.04%. At t=0.015 s, an

step current in i∗q from 5 A to 10 A, it is applied.

The rising time is 0.95 ms, and a 36.8% overshoot occurs in Figure 3.17. The integrator

part of the PI controller tries to minimise the steady state error, which in this case reaches

3.15%.
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Figure 3.17. Simulated current step response from 5 A to 10 A at 1000 rpm. The red lines

are the input reference for the controller

Figure 3.18 shows a motor rotational direction change, commanding a i∗q current step from

5 A to -5 A, again at a constant speed of 1000 rpm. A similar transient response to the

previous �gure is measured, with a rising time of 0.96 ms and a overshoot of 33.2%. The

steady state error is invariably 3.15% and the iq current ripple is 2.09 A.
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Figure 3.18. Simulated current step response from 5 A to -5 A at 1000 rpm. The red lines

are the input reference for the controller

3.4 Experimental Results

Using the laboratory system described in Section 2.1, the PMSM is operated in current

control mode using the following parameters for the PI controller, Kp = 2 and Ki = 1000.

The IM is in speed control mode, running at a constant speed of 1000 rpm. Similar test

to the ones described for the simulations in the previous section, are now conducted with

the laboratory set-up and the presented data is captured with dSpace. Both reference,

and current response are plotted for iq and ia.

The experimental result presented in Figure 3.19 is the response to an step from 0 to 5

A at 0 rpm. The rising time is measured as 5 ms. As designed, no overshoot is present.

A small steady state error of 0.14% are measured.
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Figure 3.19. Measured current step response from 0 A to 5 A at 0 rpm

A new step was applied now from 5 A to 10 A at constant speed of 1000 rpm provided by

the IM. The result is presented in Figure 3.20. The rising time is measured as 1 ms, very

closed to the value of 0.96 ms obtained from the simulations. The overshoot is 19.6% and

a steady state error before and after the step from 0.015 to 0.13%.

Since the sampling and the switching frequency is the same for the dSpace system, the

measured currents will appear as a �ltered signal with no switching ripple. Therefore,

measurements of the current ripple, which can not be observed in the �gures, were made

with an oscilloscope. The result for the current ripple at 1000 rpm was measured to be

2.08 A, very close to the value of 2.04 A obtained from the simulations.

Finally, a step command from 5 A to -5 A is applied and the measured result is presented in

Figure 3.21. The rising time is now 5 ms and where no measurable overshoot is occurring.

The steady state error have increased a bit, measuring 0.61% before and 1.05% after the

step command.
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Figure 3.20. Measured current step response from 5 A to 10 A at 1000 rpm
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Figure 3.21. Measured current step response from 5 A to -5 A at 1000 rpm. The red line are

the input reference for the controller
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Deadbeat Control 4
In this chapter, deadbeat predictive control principle and implementation are described.

As it will emerge from simulations and experiment, time delay in digital implementation

and dead-time compensation were considered important for the performance of the

controller. A separated section is used for analysing dead-time compensation. Simulations

and experimental results are presented in the last two sections so that a fair comparison

with a standard FOC can be performed.

Figure 4.1 shows the structure of the deadbeat controller. The deadbeat controller has

replaced the PI used in the classical FOC scheme. As in FOC, a space vector modulation

block (SV-PWM) converts the controller output voltage udq(k) into duty cycles imposed

on the inverter, these are indicated as Sa, Sb and Sc in Figure 4.1. This modulation

ensures a �xed switching frequency, which is of importance in the case that a passive

�lter should be implemented.

i*dq(k)

Inverter

PMSM

idq(k)

Sa

Sb

Sc

2

dq

abc

θ

2

SV-PWMDeadbeat
controller

Eq.u4.1

udq(k)

2

d
dt

ω

Figure 4.1. Principle of the deadbeat controller

Similar to other predictive controllers, deadbeat algorithm is based on the motor model in

order to obtain the voltage reference, that should be applied in order to obtain the desired

current at the end of the switching period, īdq(k + 1). Therefore, it is a straightforward

application of the discretised motor Equation 2.21 from Section 2.2.1. The desired current

is indicated by the reference, however ī∗dq(k+1) is non-available information at the current

moment. If the current reference value ī∗dq(k) is set to be the predictive value to be reached
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for next period īdq(k + 1). Then, Equation 2.21 can be rewritten like the following:

ī∗dq(k) = A(k)̄idq(k) + Būdq(k) + C(k)

⇓
ūdq(k) = B−1

(̄
i∗dq(k)−A(k)̄idq(k)−C(k)

)
(4.1)

⇓

ud(k) =
Ld
Ts

(i∗d(k)− id(k)) +Rid(k)− ωLqiq(k) (4.2)

uq(k) =
Lq
Ts

(
i∗q(k)− iq(k)

)
+Riq(k) + ω (Ldid(k) + λPM) (4.3)

The matrices A, B and C have previously been de�ned in Section 2.2.1.

Speed, ω, and dq current measurements, īdq(k) are derived from the rotor angle acquired

by the encoder and the phases current measurement respectively, at every sampling period.

Due to the computation time, sensors and actuation propagation time, some delay is

introduced in the system. Delay compensation can also be included in deadbeat scheme.

In the conventional scheme just explained, the computation time is considered as zero,

so that the voltage is applied just in the moment when the current is sampled, in instant

(k) as shown in Figure 4.2

tk tk+1 tk+2 t

udq(k)

i*dq(k)

Ts

Calculation 
time

t⟶0

Loading
instant

Prediction
horizont

idq(k)

idq(k+1)
=i*dq(k)

Interrupt 
ADC

Figure 4.2. Ideal timing sequence of deadbeat operation, (green) measurements, (blue)

calculated values

However, in real implementation, the voltage reference calculation requires some time for

being computed. In practical implementation, the controller updates its output once every

sampling period, so that the computed value will be loaded at the end of the sampling

period, or multiples of it.

If udq(k) is ideally applied at instant (k) the desired current idq(k + 1) should be

obtained directly after one sampling time. Taking into account the real operation when

the computation time is non zero, and introducing one sampling delay in the voltage
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application, the current will be updated as in Figure 4.3, where the blue arrows are the

ideal actuation. However, the values are applied with one sampling delay, so that the

actual current is obtained as the black line in the �gure.

tk tk+1 tk+3 t

udq(k)

i*dq(k)

Ts

idq(k) idq(k+1)

idq(k+2)

idq(k+3)
idq(k+4)

tk+4 tk+5 tk+6

Figure 4.3. dq- current in a delayed system, (green) measurements, (blue) predicted actuation

Therefore, in order to avoid the shown oscillations and overshoot due to this delay in

the actuation, the prediction horizon can be extended one more sampling time to instant

(k + 2) as suggested in [Moon et al., 2003].

As shown in Figure 4.4 the voltage udq(k+1) to be applied next period is calculated in the

current period so that the desired current in instant (k+ 2) can be obtained satisfactory:

tk tk+1 tk+2 t

udq(k+1)

i*dq(k)

Ts

Calculation 
time

Loading
instant

Prediction
horizont

idq(k)

idq(k+2)
=i*dq(k)

Interrupt 
ADC

îdq(k+1)

Figure 4.4. Timing sequence of the deadbeat operation with delay compensation, (green)

measurements, (blue) calculated values

The current īdq(k) are measured, while the dq voltage components at instant k are known,

this is because ūdq(k) is the voltage applied at the beginning of the period as result of the
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prediction computation made in the previous sampling period. With this information,

the current ¯̂idq(k + 1) at the beginning of next period can be estimated as in 4.4 .

¯̂idq(k + 1) = A(k)̄idq(k) + Būdq(k) + C(k) (4.4)

Based in the estimated current, udq(k + 1) is calculated in Equation4.5 , so that in tk+2

the real current īdq(k + 2) should be the expected current, making īdq(k + 2) = ī∗dq.

ūdq(k + 1) = B−1
(
ī∗dq(k)−A(k)̄̂idq(k + 1)−C(k)

)
(4.5)

ūdq(k + 1) is the voltage that should be applied at the beginning of the next sampling

period, at instant (k + 1), so that the desired current in (k + 2) is obtained.

The same principle that has just been explained will be used in Chapter 5.2 for

implementing delay compensation in the particular case of MPC, where the delay has

large in�uence in the current ripple.

As shown, with delay compensation, a deadbeat controller can give a good dynamic

performance and high bandwidth of the current controller compared with the FOC. A

drawback of this control method is its sensibility to parameter inaccuracy and voltage

error due to switching non-linearities and dead-time from the inverter, which give steady

state errors. The model parameter sensibility is studied and compared with the other

control schemes in Chapter 6. The next section describes the dead-time consequences

together with a compensation method.

4.1 Inverter dead-time compensation

The inverter non-linearities as the voltage drop in switches and diodes, the turn on and

turn o� time or the added dead time result in a distorted voltage output. That distortion

would depend on the hardware. The use of dead-time is needed in order to avoid the shoot

through phenomena, that is short circuiting the inverter legs. In this section, voltage error

compensation is developed.

Dead-time can seriously a�ect the voltage output, therefore several dead-time compensa-

tion methods has been treated in the literature[Sukegawa et al., 1991], [Munoz and Lipo,

1999] and [Hwang and Kim, 2010] for vector controlled motor drives.

Other references which implements dead-time compensation for PMSM are, adaptive

compensation in [Urasaki et al., 2005] or the more recent compensation technique

presented in [Kim et al., 2010], where a disturbance estimator determine the voltage error

cause by the non-linearities from the inverter, without any current polarity detection.
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The compensation may provide correction in the fundamental and harmonic components

of the voltage. It consists of feed-forwarding a vector correction of the voltage error. The

volts per second lost over an entire cycle is calculated and added to the voltage reference.

The e�ect of the inverter non-linearities is analysed in a phase leg of the PWM inverter

in Figure 4.5
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VDC
ia>0

ia<0
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tDT tDT

Vdc+Vd

Vdc-Vsat

-Vd

toff

tDT+ton

tDT+ton

toff

Vsat

Van

Van

Van

Figure 4.5. Relationship phase current sign vs. rotor angle in the static reference frame

The voltage variation depends on the dead time to switching period ratio, adding the

voltage drop in transistors, Vsat, and diodes, Vd. The average voltage distortion added by

dead-time can be calculated as:

∆V =
tDT + ton − toff

Ts
(Vdc − Vsat + Vd) +

Vsat + Vd
2

(4.6)

Since ton, toff and R are very much dependent on the operation point and the hardware

used. In the literature [Hwang and Kim, 2010] di�erent methods for making an on-line

estimation of ∆V for a FOC control are presented. The dead-time tDT is however a

predetermined value, decided by the software or hardware. In the current case, the dead-

time is implemented in the hardware and chosen as 2.5µs. The biggest part of the voltage

error is due to dead-time, so in this case, the voltage drop in the transistors and diodes

are neglected and therefore simplifying Equation 4.6 to:

∆V =
td · Vdc
Ts

(4.7)
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According to [Hwang and Kim, 2010], the averaged distorted voltage of the three phases

can be expressed as ∆V and dependent on the direction of each phase current. Using

Fourier series, the distorted voltage can be expressed in α−β stationary reference frame.

Since the deadbeat controller is implemented in the d-q rotating reference frame, the

distorted voltage is transformed as well, leading to Equations 4.8 [Hwang and Kim, 2010].

uDTd =
4

π
∆V

(
12

35
sin6ωt+

24

143
sin12ωt+ ...

)
uDTq =

4

π
∆V

(
−1 +

2

35
sin6ωt+

2

143
sin12ωt+ ...

)
(4.8)

As observed in 4.9 These voltage components uDTd and uDTq are subtracted from the

uncompensated voltage when a positive reference i∗q is commanded. Otherwise with a

negative i∗q command, uDTdq is added or subtracted depending the speed direction.

ūdq = ūdq − ūDTdq if i∗q > 0

ūdq = ūdq + ūDTdq if i∗q < 0 and ω < 0

ūdq = ūdq − ūDTdq if i∗q < 0 and ω > 0 (4.9)

The corrected voltage is the controller output for the SVM block.

4.2 Simulations Results

Simulations of the deadbeat controller are performed using the same Simulink model with

dead-time implementation in PLECS as the one used for FOC in Section 3.3, with the

exception of replacing the PI controller with the deadbeat controller. Again, a sampling

frequency of 5 kHz was used. The controller is implemented using a Matlab function

block, which produces a dq output voltage ūdq for the SVM.

Throughout this section, similar tests and analysis to the one performed for FOC are carry

out. To clarify the design process so it is properly understood, in the simulations follow

some steps. First the system is implemented with dead-time included in the inverter

implementation but not calculation delay is taken into account. The response to this

system with and without dead-time compensation is compared. Then, with a dead-

time compensated controller, calculation delay is added. The results are then compared

adding delay compensation . All the simulations for comparison of the controllers with

and without compensation are tested for a step from 0-5 A at 0 rpm.

Further testing at a constant speed of 1000 rpm were made with the complete

implementation including both inverter dead-time and calculation delay compensation.
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The Matlab function code for the �nal design, with all the implemented compensations,

can be found in Appendix C.

In Figure 4.6, an uncompensated controller with dead-time in the inverter but no

implemented system delay is tested at 0 rpm, with a step command from 0 to 5 A.

It is seen, that the deadbeat controller provides low current ripple of 48 mA.
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Figure 4.6. Simulated current response with dead-time from a non-linear inverter

The rising time is 0.194 ms, approximately one sampling time, Ts, as it can be seen in

Figure 4.6, this time is constant for every test. Compared with the FOC from Figure

3.16 with a rising time of 2.3 ms, the deadbeat controller has �ve times faster dynamic

response. However, deadbeat su�ers from steady state errors due to the inverter non-

linearities introduced by the switching and dead-time. The steady state error is measured

as 24.4 % and no overshoot appears. According this results the steady-state error is a big

drawback compared with FOC, therefore, the inverter dead-time compensation scheme

described in Section 4.1 is implemented and the simulation results are shown in Figure

4.7. The reason why no dead-time compensation was necessary in FOC is because, if a

voltage error occur, it also produces a current error, which again will be corrected by the

PI controller. This is not the case for the deadbeat controller since it is only based on the

discrete model equations and contains no integrator.
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Figure 4.7. Simulated current response with dead-time compensation for a nonlinear inverter

With the dead-time compensation the steady state error is greatly reduced to a value of

0.87%. The current ripple is now 55 mA. An Overshoot of 3.8% can be measured now.

Now that the dead-time has been compensated satisfactory. It is known that the controller

loads the actuation after each switching period. This calculation delay is introduced in

the simulation model. In the simulations result, in Figure 4.8, an initial overshoot of

98.9% appears. The steady state error is very similar to the previous with only 0.96%,

but the ripple is increased to 321 mA.
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Figure 4.8. Simulated current response with dead-time compensation and actuation delay

uncompensated
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In order to remove such overshoot, the delay compensation explained previously in this

chapter is added together with the dead-time compensation. The result is shown in Figure

4.9 where the overshoot is reduced to a value of 3.1%. As mentioned before, the rising

time is 0.19 ms.. The steady state error is slightly bigger, 1.18%.
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Figure 4.9. Simulated current response with dead-time and delay compensation

The response is now acceptable for steady state and with a improved transient response

with respect the FOC at zero speed, however, the steady state error is still better for

FOC. The complete system is now tested when the motor is running at a constant speed

of 1000 rpm.

Figure 4.10 shows a step in the iq current from 5 A to 10 A. The rising time is now 0.19

ms. The overshoot has increased to 8.9 %. The steady state error is 9.08 % and the iq
current ripple is 2.14 A. The Ripple for deadbeat is 10 mA higher than the ripple for FOC

even though both use the same SVM technique.
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Figure 4.10. Simulated current step response from 5 A to 10 A. The red lines are the input

reference for the controller

In Figure 4.11 a step from 5 A to -5 A was commanded. The steady state behaviour is

exactly as in previous case. The overshoot has been removed and the rising time is 0.27

ms. Even with a negative current reference the dead-time compensation is working as

expected.
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Figure 4.11. Simulated current step response from 5 A to -5 A. The red lines are the input

reference for the controller

4.3 Experimental Results

For testing the deadbeat controller in the laboratory, the same system set-up and

con�guration for the FOC is employed. A description of the hardware and system set-

up is found in Section 2.1. The controller code used includes both dead-time and delay

compensation and it can be found at Appendix C . For testing the current response, the

PMSM is operated in current control mode and the IM in speed control mode.

The experimental result in Figure 4.12 is the result to an 0-5 A step, at 0 rpm. The

rising time is obtained as 0.2 ms precisely a sampling period and no overshoot. These

two characteristics will be common for every test of deadbeat. The steady state error is

measured as 8.33%, a higher value than the 1.18% in the simulations. The di�erence may

be due to the voltage error in transistors and diodes, which has been dismissed. Therefore,

the deadbeat controller still shows a better iq current transient compared with the FOC

in Figure 3.16
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Figure 4.12. Measured current step response from 0 A to 5 A at 0 rpm

In Figure 4.13 it is commaded an step 5-10 A. The ripple measured with the oscilloscope

is 2 A. The steady state error is 1.87% and 1.91% before and after the step, which is big

compared with FOC in Figure 3.17
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Figure 4.13. Measured current step response from 5 A to 10 A at 1000 rpm

Finally, in Figure 4.14 is presented the results to a 5 to -5 A step. The steady state error
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is 1.90% and 4.93% before and after the step again bigger than in Figure 3.18 for FOC.
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Figure 4.14. Measured current step response from 5 A to -5 A at 1000 rpm
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Finite Set Model Predictive

Control 5
Direct predictive control or Finite set model predictive control is one of the most

researched and used predictive methods [Rodriguez et al., 2013]. This chapter will present

a model predictive controller where di�erent cost functions are compared in simulations

to �nd the best solution for the current case. Also delay compensation will be considered

to minimise the current ripple.

Model Predictive Control uses the system model in order to predict the future behaviour

of the controlled variables. In order to obtain the desired actuation the controller uses

the model information in a cost function. The choosing of this cost function is the main

e�ort once an accurate model is obtained.

The control structure for a �nite set model predictive control is shown in Figure 5.1.

Cost
Function

Predictive
controller

idq
p(k+1)

i*dq(k)

Inverter

PMSM

idq(k)

Sa

Sb

Sc

7

2

dq

abc

θ

2

d
dt

ω

Figure 5.1. Principle of the direct model predictive controller

As shown for the SVM, the three phase inverter has 8 possible switching con�guration, six

of them de�ne the six active voltage vectors and the other two corresponds with the zero

voltage vectors, where either all the upper or lower switches are all on at the same time.

For each of these switching con�guration the inverter voltage output can be calculated

applying Equation 2.24 from the inverter model. The current is measured at sampling

time k and the predictive current controller calculates the seven possible current vectors
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at sampling instant k+1, ipdq(k + 1), corresponding to the six active and the zero vector

voltage using Equation 2.21 from the motor discrete model. These current vectors are

evaluated by a cost function, that will �nd the optimum voltage vector that minimises

the current error. The simplest cost function for this purpose could be the one presented

in Equation 5.1, however, the cost function design will me more extensively studied in

Section 5.1.

g = |i∗d − i
p
d(k + 1)|+

∣∣i∗q − ipq(k + 1)
∣∣ (5.1)

After the optimum switching state is found it will be applied directly to the inverter,

without the use of any modulator like SVM.

A �owchart of the model predictive controller is shown in Figure 5.2. Also the Matlab

code for the controller used in the simulations can be found in AppendixD.

Start

Measure idq(k),θ(k)

n=n+1

n=0

Calculate ipdq(k+1)
Eq. 2.19 & 2.20

Calculate cost function

   2*2* )2()2(  kiikiig p

qq

p

dd

n>7

Apply switching 
state

True

False

Next sampling 
period

Figure 5.2. Flowchart of model predictive current controller
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5.1 Cost function and weighting factor selection

This section will present some basic cost functions that provide current reference tracking.

Also extra terms to reduce switching commutations will be investigated.

The cost functions given in 5.2 and 5.3 can be used in order to evaluate the current error

as it is presented in Reference [Rodriguez and Cortes, 2012]. In this case, the reference

is i∗dq and the predicted values are the idq currents. Equation 5.2 uses the absolute error

between the reference and the predicted current and Equation 5.3 uses the error squared.

g = |i∗d − i
p
d(k + 1)|+

∣∣i∗q − ipq(k + 1)
∣∣ (5.2)

g = (i∗d − i
p
d(k + 1))2 +

(
i∗q − ipq(k + 1)

)2
(5.3)

Both absolute and squared method were simulated at a sampling frequency of 20 kHz.

They seem to follow the reference as shown in Figure 5.3. The average values of the idq
currents when the cost function from Equation 5.2 is used, are id = -0.25 A and iq = 19.51

A. If Equation 5.3 is applied instead the mean values are id = -0.27 A and iq = 19.88 A.

This means that the squared cost function method gives better iq reference tracking and

a slightly better overall performance than the absolute method. The squared method is

therefore chosen for this project.
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Figure 5.3. Predictive current control where the absolute error and the squared error method

for the cost function is compared. The red lines are the idq references where id =

0 A and iq = 20 A
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In Equation 5.4 an additional term has been added which is called the weighting factor.

It is one of the most important and di�cult parts of the MPC design. It allows to give

priority to one or another variable. It can be more complex than tuning a PI.

By adjusting the weighting factor λSW the importance of the switching frequency can be

set. In situations where the switching loses are important λSW can be increased to ful�l

these requirements. The n term from Equation 5.5 sums up the absolute error between

the applied switching function and the one from the previous sampling. For example if

all the switches at sampling instant k should change, the total error value for n will be

equal to 3. The term λSW · n is added to the cost function which will make this speci�c

switching pattern less favourable for choosing. If there is no change in switching state

from last sampling instant, n will be equal to zero, hence no additional term is added to

the cost function and is therefore more favourable for choosing.

g = (i∗d − i
p
d(k + 1))2 +

(
i∗q − ipq(k + 1)

)2
+ λSW · n (5.4)

Where

n = |Sa(k)− Sa(k − 1)|+ |Sb(k)− Sb(k − 1)|+ |Sc(k)− Sc(k − 1)| (5.5)

In Figure 5.4, 5.6 and 5.8 the e�ects of weighting factor are shown. Figure 5.4 and 5.5

shows the MPC controller with no weighting factor and those �gures serves as a reference

for comparison. Figure 5.6 and 5.7 have a weighting factor λSW = 35. In those two �gures

there can be seen a small reduction in the switching frequency but this reduction comes

with a price of higher current ripple and distortion. In Figure 5.8 and 5.9 the weighting is

set to 70. The switching frequency have clearly been reduced according to Figure 5.9 but

the current ripple is increased to almost 20 A from peak-to-peak and current distortion

is increased as well. This is seen in Figure 5.8.

Unfortunately the value of the weighting factor has to be found empirically by trial and

error [Cortes et al., 2009]. With a weighting above 70 it has be noticed that with low

current references the controller only produces zero vectors as an output. A weighting

factor from 20-40 is found to be recommendable for this speci�c motor case. At too low

values there are no big change in switching frequency. At too high values the system

gets unstable. There is noticed a linear relationship between the weighting factor and the

reduction of the average frequency from Figure 5.5, 5.7 and 5.9.
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Figure 5.4. Predictive current control with a switching weighting factor λSW = 0
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Figure 5.5. Spectrum analysis of the phase voltage for the predictive current control with a

switching weighting factor λSW = 0
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Figure 5.6. Predictive current control with a switching weighting factor λSW = 35
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Figure 5.7. Spectrum analysis of the phase voltage for the predictive current control with a

switching weighting factor λSW = 35
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Figure 5.8. Predictive current control with a switching weighting factor λSW = 70
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Figure 5.9. Spectrum analysis of the phase voltage for the predictive current control with a

switching weighting factor λSW = 70

Hard constraints can also be added to the cost functions like in Equation 5.6. The hard

constraints are a safety feature, which limits the current output magnitude. If for example

the predicted current exceeds the maximum limit for the motor a penalty is added to the

cost function. In Equation 5.7 in�nity is added to the cost function if imax is exceeded the
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cost function takes the value g = ∞ which means that this voltage vector is not chosen.

If the predicted current is less than imax, zero is added to the cost function and only the

voltage vector that minimize the current error is chosen.

g = (i∗d − i
p
d(k + 1))2 +

(
i∗q − ipq(k + 1)

)2
+ flim (5.6)

where

flim =

{
∞ if |ipd(k + 1)| or |ipq(k + 1)|> imax
0 if |ipd(k + 1)| and |ipq(k + 1)|≤ imax

(5.7)

Reduction of the inverter commutations when choosing a zero vector can help to reduce

and distribute the switching losses in the inverter. This is achieved by either choosing the

0 (000) or 7 (111) vector based on previous state. For example if the previous state is 4

(011) and the next state have to be a zero vector, then 7 (111) would be the best choice,

because only one inverter leg have to change. If 0 (000) was chosen, two inverter legs

would have to change state. An example is shown in Figure 5.10. The top �gure shows

a case where only the zero vector 0 is chosen. The second �gure shows the choosing of

the zero vectors based on the previous state. Between the two dashed lines switching loss

reduction is achieved.
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Figure 5.10. First plot show if only one zero vector is selected, for this case 0 is chosen. The

second plot shows a more e�ective choosing of the two zero vectors minimizing

inverter commutations
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For this project a cost function with squared current errors is chosen because it provides a

better iq reference tracking. When it comes to switching frequency reduction the weighting

factor λSW is set to zero because a small current ripple is more important for the project.

The hard constraints is implemented in the used cost function to protect the PMSM motor

which have a current limit imax = 86 A.

5.2 Calculation Delay compensation

In this section, the delay compensation which was suggested for deatbeat in Chapter 4 is

further developed for the particular case of MPC. In this case, the interest on implementing

delay compensation is more complex and of bigger relevance. This is because the delay

increases the current ripple, as it will be shown in the following.

Ideally, the optimum voltage calculated is applied at the beginning of the sampling time,

so that the computation time is considered zero and the system operation looks like

Figure 5.11. In real implementation, a delay is introduced in the actuation due to the

large amount of calculations in between the current acquisition and the application of the

new calculated switching states and inverter voltage as shown in Figure 5.12. Note that,

in bene�t of the understanding, the �gure represents a general case, where the voltage

output update happens at the end of the calculation time. However, In this particular

case the actuation loading from the controller only takes place at the end of the sampling

time as shown in Figure 5.13

tk tk+1 tk+2 t

t

Vk(t)

iq
*

iq
p

Ts

Calculation 
time

iq

Figure 5.11. Ideal predictive control operation
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t

Vk(t)

iq
*iq

p

Ts

Calculation 
time

iq

Figure 5.12. Real predictive control operation

According to [Cortes et al., 2012], a way to avoid this delay is to evaluate the current at

instant k+2. Using again Equations 2.19, 2.20 from the discrete motor model, ipdq(k + 2)

is now calculated as shown in Equation 5.8 and 5.9.

ipd(k + 2) =
Ts

Ld
ud(k + 1) +

(
1− RTs

Ld

)
îd(k + 1) +

ω(k)LqTs

Ld
îq(k + 1) (5.8)

ipq(k + 2) =
Ts

Lq
uq(k + 1) +

(
1− RTs

Lq

)
îq(k + 1)− ω(k)LdTs

Lq
îd(k + 1)− ω(k)λPMTs

Lq
(5.9)

In this way, the voltage to apply in instant k+1 is calculated in advance and applied at

the beginning of the switching period tk+1. The future current value i(k+1) is not known

so it should be estimated as î(k + 1). That is again calculated from the discrete model

Equations 2.19 and 2.20 using the measured i(k) and the just applied voltage u(k). This

is shown in 5.10 and 5.11.

îd(k + 1) =
Ts

Ld
ud(k + 1) +

(
1− RTs

Ld

)
îd(k + 1) +

ω(k)LqTs

Ld
îq(k + 1) (5.10)

îq(k + 1) =
Ts

Lq
uq(k + 1) +

(
1− RTs

Lq

)
îq(k + 1)− ω(k)LdTs

Lq
îd(k + 1)− ω(k)λPMTs

Lq
(5.11)

The compensated controller would operate as shown in Figure 5.13.
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Figure 5.13. Predictive control operation with delay compensation

The cost function 5.12 would evaluate the error two sampling time ahead.

g = (i∗d − i
p
d(k + 2))2 +

(
i∗q − ipq(k + 2)

)2
(5.12)

When the future reference values are used in the cost function 5.12, this is considered to

be the same as the actual reference. This is valid when the reference is a constant value

or the switching frequency is much higher than the frequency of the reference variable.

In such cases, a method for calculating future reference should be introduced [Rodriguez

and Cortes, 2012].

In Figure 5.14 a new �owchart including the delay compensation, described in this section,

is shown.
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n=n+1
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Calculate cost function
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Eq. 2.19 & 2.20

True

Figure 5.14. Flowchart of model predictive current controller with delay compensation

With this compensation, it is intended to obtain a reduction on the current error in the

real implementation and therefore avoiding an increase in the current ripple. The results

are shown in simulations.
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5.3 Inverter dead-time compensation

In Section 4.1, the in�uence of the inverter dead-time and its e�ects on the steady state

error was pointed out. The principles explained for deadbeat are valid now, however,

the compensation approach is particularise for MPC. This has be treated in [Imura et al.,

2012]. According the simulations, it will be shown in following section that MPC scheme is

not as a�ected by this voltage error as deadbeat. However, due to the easy implementation

and according to the main goal of obtaining the best performance possible, dead-time

implementation is explained in this chapter. The results obtained in simulations will be

presented in Section 5.4.

In MPC the most appropriate inverter switching state is chosen for each switching period

and give out directly without the need of a modulator. Due to the dead-time within the

switching periods, the calculated udq(k) is not applied along the full period as ideally,

instead, a voltage vector uDTdq is applied during the dead-time. Therefore, the real voltage

applied during a switching period would be as in Equation 5.13.

ūdq(k) =
tDT
Ts

ūDTdq +
Ts − tDT

Ts
ūdq(k) (5.13)

The voltage vector ūDTdq can be calculated using Equation 2.24, it is only needed to obtain

what is the value of Sa, Sb, Sc during dead-time. The inverter performance in this time

gap is dependent on the initial and �nal switching state and the phase current sign.

The in�uence on the sign in the dead-time e�ect was already shown in Figure 4.5. A

closer look is given in Figure 5.15 where the inverter state before with voltage U1, during,

with voltage UDT , and after, with voltage U2, the dead-time is detailed and the currents

indicated. In this case, only leg b is switched.

PMSM

U1, Sabc=[1 0 0]

PMSM

UDT, Sabc=[1 0 0]

PMSM

U2, Sabc=[1 1 0]

Sa Sb Sc

1-Sa 1-Sb 1-Sc

Sa Sb Sc

1-Sa 1-Sb 1-Sc

Sa

1-Sc

Sb Sc

1-Sa 1-Sb

Sa

1-Sc

Dead-time

Figure 5.15. Inverter behaviour during dead-time
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After the analysis of that phenomenon, it can be stated that, if the current phase is

positive the current �ow will be maintain along the dead-time. With a negative current

during dead time it will be deviated to the current direction for next sampling time. In

order to know, each moment, the sign of each of the currents it is enough to know the

rotor angle according to Figure 5.16 where the phase sign of a, b and c respectively are

indicated for each of the sectors. An encoder attached to the motor shaft provides the

position information.
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Figure 5.16. Relationship phase current sign vs. rotor angle in the static reference frame

Once the vector ¯uDTdq is determined, it can be added to ūdq(k) according Equation 5.13. The

new ūdq(k) is used in order to predict real current that will be obtained after one sampling

time for each of the inverter con�gurations. The cost function will chose the corrected

voltage vector which minimises the current error as evaluated in the cost function.

5.4 Simulation Results

The Simulink diagram for the MPC is illustrated in Figure 5.17. The PI and the SVM

block from the FOC simulation in Section 3.3 have been replaced with a Matlab function

block. The output from the MPC block are the switching states, which are applied

directly to the inverter. A more detailed description of the Matlab function code is found

in Appendix D.
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Figure 5.17. Simulink model for the MPC

According to the working principle of MPC, as it has been seen Section 5.1, the switching

frequency is variable and unpredictable. It has been noticed that the mean switching

frequency depends on the operating point, thus depending on the speed.

The MPC algorithm computation time was measured as 36 µs for the dSpace DS1103 with

a microprocessor running at 1 GHz. That means that the maximum sampling frequency

that can be chosen is 27.77 kHz.

In order to make a fair decision based on the sampling frequency, the switching spectrum

for a 25 kHz sampling frequency and a testing speed of 1000 rpm, was analysed. In Figure

5.18 it can be seen that, as expected, the switching frequency is not concentrated to a

�xed number but spread out along the spectrum. The main switching frequency content

is between 0 and 2.5 kHz. It could be estimated that the mean switching frequency is

located in that gap.
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Figure 5.18. Switching frequency spectrum with 25 kHz sampling frequency for 1000 rpm

It would be interesting for the comparison that the mean switching frequency would

reach higher values to be nearer the 5 kHz used for both deadbeat and FOC. However, the

sampling frequency should be greatly increased to 80 kHz. In Figure 5.19 the spectrum for

80 kHz is shown, which may be considered to have 5 kHz mean switching frequency. That

high sampling frequency is not easy to implement in practice due to the very limited time

left for running the controller algorithm in DSP. 25 kHz is chosen for being the maximum

possible sampling frequency with the available hardware.
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Figure 5.19. Switching frequency spectrum with 80 kHz sampling frequency for 1000 rpm

The characteristics of MPC and the design achievements are supported with the

simulations which are presented in the following. Firstly, the basic implementation of
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MPC is simulated at 0 rpm without taking into account the system delay. The e�ect of

an actuation delay is shown and compensation delay is found convenient. Due to the small

e�ect of dead-time in the steady state error the simulations for 1000 rpm, were performed

only with delay compensation. Due to the big ripple occurring in the simulations at

25 kHz, the steps references are 5 A bigger than the ones shown in previous control

implementation, so that the Figures appear more clear.

A step from 0 A to 10 A at zero speed is shown in Figure 5.20. It could be intuitively

said, that the rising time should be a little less than a sampling period, which is 40µs

with a sampling frequency of 25 kHz. However, the rising time is measured to be 56µ. In

MPC for any sampling frequency over 17.8 kHz, this rising time will be invariantly 56µs

at zero speed. The reason for this minimum rising time is given by the inductance di/dt.

That can be seen in 5.14, where uq = 2
3
udc · sin(60)=300 V, iq=10 A, L=2.1 mH, R=0.203

Ω and ω=0 rad/s. Therefore the maximum di/dt is 142 kA/s. This corresponds with the

measured 56µ.

uq = Riq + Lq
diq
dt

+ ω (Ldid + λPM) (5.14)

Besides this rising time the overshoot is also in any case 0%, so that the transient response

is invariable for every zero speed test. In Figure5.20, the current ripple reaches a value

as high as 6.36 A and the steady state error is 5.11%.
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Figure 5.20. Motor start up current response

The MPC has high dynamic performance, but with high amplitude and low frequency

current ripple. The ripple frequency will increase as the rotor gains speed. The ripple

occurs because the MPC can only choose within the seven possible switching stages of

the inverter, which will be applied for the full switching period. In contrast, a SVM,
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for example, is able to reproduce the reference voltage vector by the combination of two

active vector and the zero vectors every switching period, therefore the ripple is reduced.

The ripple amplitude can be reduced by a decrease of the sampling time, in that way,

voltage vector can change more often and track the reference more accurately.

For simulating the real system, a delay time should be implemented in the system in order

to simulate one sampling time delay in the actuation of the controller, as it would appear

in the real system. With the delay implemented, it is observed a great increase in the

current ripple in Figure 5.21, with a value of 16.97 A. The steady state error is decreased

in this case to 2.88%.
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Figure 5.21. Simulated current step response with actuation delay

This increase of the current ripple was uphold in Section 5.2 where also a compensation

method was proposed. The result with this delay compensation is shown in Figure 5.22.

Note that the delay compensation adds one sampling delay between the reference and the

current response. It can be seen a reduction on the current ripple to 6.34 A with steady

state error measured as 5.11%. These values are similar to the ideal case in Figure 5.20.
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Figure 5.22. Simulated current step response with delay compensation

To make a more fair comparison of the ripple di�erence between the delayed

uncompensated and the compensated MPC controller, both will now be tested for di�erent

steps at 1000 rpm. An step command from 10A to 20A for the uncompensated system in

Figure 5.23 and the compensated systems in Figure 5.24.
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Figure 5.23. Simulated current step response from 10 A to 20 A for the delayed system,

running at 1000 rpm
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Figure 5.24. Simulated current step response from 10 A to 20 A with delay compensation,

running at 1000 rpm

The rising time for both the delay compensated and uncompensated implementations are

70 µs, again limited by the inductance but with a higher value due to the speed increase,

now adding the speed dependent term in Equation 5.14. The overshoot is, again, 0%

for both. Besides, with the delay compensation, the ripple has been reduced from 17.44

A to 6.34 A. It should be noticed that the current ripple is independent of the speed

since the ripple value have not change from Figure 5.22 to 5.24. The steady state error is

measured as 8.94% for the uncompensated controller and 2.50 % for the one with delay

compensation.

For further veri�cation of the �nal delay compensated model, Figure 5.25 shows a step

from 10 A to -10 A. The motor current rising time is 90 µs, but still with a steady state

error of 2.50% and current ripple of 5.986 A
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Figure 5.25. Simulated current step response from 10 A to -10 A with delay compensation,

running at 1000 rpm

In the previous, only delay compensation was implemented. It should be possible to

decrease the steady state error if the dead-time compensation proposed in Section 5.3 is

implemented. The observed steady error for 1000 rpm without dead-time compensation is

already small in the ranges of the measured for FOC and smaller than for deadbeat with

inverter dead-time included. It was considered that the increase of complexity in the code

and computation time was not worthy for this case. However, dead-time compensation

was implemented and its e�ect was validated comparing a totally uncompensated MPC

controller and one which included dead-time compensation. Both systems perform

similarly and only the steady state is a�ected.

A similar performance to the uncompensated system with an improvement of the steady

state error was obtained. Firstly, a step from 10 A to 20 A was commanded. With the

non-compensated control method, the steady state error at 10 A was measured to be

2.74% and 1.74% for 20 A. With dead-time compensation, the error is reduced to 0.611%

and 0.5982% and the steady state is, therefore improved.

According to the simulations, the current ripple introduced by the MPC is much higher

than for deadbeat. This is a big drawback. If MPC has to be comparable with deadbeat,

some technique fore reducing the current ripple should be introduced, such as an increase

of the sampling frequency or the addition of some kind of modulation scheme. In [Morel

et al., 2009] a simple modulation approach called Two-Con�guration Predictive Control
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was introduced and a similar approach was also given in [Drobnic et al., 2009] and [Nemec

et al., 2009] in order to minimise the current ripple.

It was observed that at low current reference or too low sampling frequency, the MPC

does not work properly, giving out just zero vectors. If one voltage vector is applied for

a full sampling time and if the sampling periods are too long or if the reference is too

low, then the resulting current will greatly deviated from the reference by the end of the

sampling period. Therefore any of active vector will never produce a minimum for the

cost function which will apply only zero vectors. Only the transient response is still faster

for MPC, however, this is due to the much higher sampling frequency which is needed.

It can be conclude that for this speci�c system deadbeat is the best option and the only

predictive control that it was possible to implement on the available hardware.
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Predictive control parameter

sensitibity 6
As mentioned, one of the main characteristics of predictive control is that it is based on

a good knowledge of the model. Once a satisfactory Matlab/Simulink model has been

made for each of the presented control schemes, it is found of interest to add a �nal

chapter where the predictive control schemes can be validated regarding its robustness

and sensitivity against uncertainties in the model parameters.

For the classical control theory, which is used in the FOC, an analytical approach can

be used to determine the e�ects of parameter uncertainties and variations. A change in

the plant can simply be analysed by looking for instance at pole zero location or the step

response. For the deadbeat and the MPC described in this report, the classical control

theory, based on Laplace transformation to the frequency domain, can not be applied since

they use a discrete time model. Therefore, this chapter will be based on the simulation

results.

The simulations data for this comparison uses a non-ideal inverter with a 2.5 µs dead-

time. There could be an incongruence between the motor parameters (resistance and

inductance) used in the controller implementation and the actual motor value. This can

be due to a not precise knowledge of the parameters or possible variations during operation

because of, for example, temperature changes. The in�uence of the parameters error is

analysed for changes in the resistance and inductance. In the simulations, variations

are applied to one of the parameters while the other is kept at its rated value. This

makes it possible to see the e�ect of the parameter variations separately. The d and q

reference currents are 0 A and 10 A respectively, with the motor running at 1000 rpm.

The switching frequency for deadbeat and FOC was set as 5 kHz. For the MPC, the

sampling frequency is 25 kHz , so that as it was shown in Figure 5.18 the mean switching

frequency may be in the around 1.25 kHz.

Current ripple and steady state error are compared using bar charts. The steady state

error is calculated with Equation 6.1 where the the di�erence between the reference and

the average of the idq current for n data points. The ripple is de�ned by 6.2. idq is the
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simulated current data for a period of 30 ms.

ĩdq,ss = i∗dq −
1

n

n∑
j=1

idq,j (6.1)

∆idq = idq,max − idq,min (6.2)

In Figure 6.2 a simulation with no parameter changes is made to serve as a reference for

the comparison. As it has been already seen in previous simulations, MPC has a current

ripple two times bigger that FOC and deadbeat. It should be noticed that the average

switching frequency for MPC is much smaller than the 5 kHz used for FOC and deadbeat.

If MPC were simulated with a 80 kHz sampling frequency, so that the average switching

frequency can be considered 5 kHz, then, the current ripple is reduced to 2.14 A which is

the same current ripple measured for deadbeat.

When comparing FOC and deadbeat current ripple the values are quite even, this is

because they are using the same SVM.

In the right hand graph, steady state error is compared. From this, it is obviously that

the main drawback from deadbeat is the steady state error. The steady state error in

iq for deadbeat, is the largest even though, no dead-time compensation was included in

either MPC or FOC. Due to the integration part of the PI controller in FOC, the steady

state error is minimised. A steady state error of 1.73 A in the id current is caused by

an uncompensated delay in the rotor position feedback for the deadbeat controller. In

Figure 6.1 two di�erent simulations result for deadbeat are presented.
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Figure 6.1. Deadbeat simulations with an ideal system without delay and a non-ideal system

with a delay added to the angle feedback

In the �rst plot the simulation is performed with no delay in the control system and the

motor running at 1000 rpm. The steady state error for id in the non-delayed system is

only 0.28 A. The second plot in Figure 6.1, when a delay is added to the rotor position

feedback the id steady state error increases to 1.73 A. Therefore, at especially high speed,

a rotor position estimation is needed to improve steady state performance for deadbeat

controller. This has not be investigated in this report.
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The resistance is temperature dependent and therefore, the motor model resistance have
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been decreased and increased with 50% in Figure 6.3 and6.4 respectively. The current

ripple is decreased for MPC and maintained for the others. When it comes to steady

state error the deadbeat is the most sensible to resistance error.

Deadbeat is based on Equation 4.1, direct application of the motor drive model. If there

is an error in the resistance, the calculated reference voltage ūdq(k), will give a di�erent

current response īdq(k+1), than the desired. The actual steady state current will be either

higher or lower than the used in the controller motor model, adding up or decreasing the

steady state error as it may be observed in the Figures 6.3 and 6.4, respectively.

A di�erent case for the MPC, where a �nite set of inverter voltage vectors are being taking

into account and the current error is evaluated using a cost function. A variation in the

parameters will deviate the obtained īdq position from the predicted value, this is why

the current ripple is a�ected. However, each of the possibilities from the set of inverter

voltage vectors are deviated in the same amount so that the average current value, and

therefore, the steady state error, is not a�ected so much.

The steady state error for FOC is not a�ected because it is not using a motor model in

order to obtain the voltage reference.
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Figure 6.3. Steady state error and and peak-to-peak current ripple with half of the rated

resistance
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Figure 6.4. Steady state error and and peak-to-peak current ripple with a 50 % increase of

the rated resistance
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From Figure 6.5 and 6.6 the inductance is decreased and increase with 50 % respectively.

It should be noticed that in Figure 6.5, the y-axis scale for the current ripple is changed.

A variation of the inductance is, for all the cases, inverse proportional to the current

ripple. The current ripple decreases when the inductance increases and viceversa. FOC

and deadbeat variates evenly. However, the most a�ected is clearly MPC. As mention

before, the use of a �nite set for MPC make it really sensitive to parameter uncertainties,

mainly a�ecting the current ripple. Besides, a low inductance in the motor increases the

di/dt, which directly result in a big deviation from the reference, it is seen that the ripple

triplicates the current reference of 10 A for a halved inductance.

Looking at the steady state error both MPC and deadbeat are a�ected. Again deadbeat

is the most a�ected.
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Figure 6.5. Steady state error and and peak-to-peak current ripple with half of the rated

inductance
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Figure 6.6. Steady state error and and peak-to-peak current ripple with double of the rated

inductance

It could be concluded that if the motor parameter varies from the used in the controller

design, FOC barely varies its performance. However, the predictive controllers are

noticeable a�ected. Deadbeat always shows the biggest steady state error and it is also

in the steady state error where the main variations happens. However, in any of the

cases, the deadbeat steady state error never surpass 1%. MPC is the most a�ected for
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uncertainties in the parameters, in this case, the biggest performance variation is observe

with inductance variations.

The behaviour of the predictive controllers, when error in the model parameters, could

be improved using parameter estimation techniques for on-line estimation of the model

parameter in order to get a more accurate result.
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Conclusion 7
This project is comprised of the analysis, design and implementation of Predictive Current

Control for a PMSM. The goal was to obtain an alternative to the classical FOC method

with improved dynamics.

Deadbeat and MPC were the proposed predictive control methods for this report.

Matlab/Simulink models for the two predictive controllers and the FOC were successfully

developed. Simulations were run at both zero speed and 1000 rpm.

Inverter dead-time was included in the model. The voltage error due to the inverter

dead-time causes steady state error. The integral part of FOC works to decrease this

error. Therefore the FOC simulation and experimental results have the lowest steady

state error of the implemented methods, with a range from almost zero to 3.15%. MPC

shows an small steady state error which could be reduced with dead-time compensation

to values under the 1%. However, because of the complexity introduced by the dead-time

compensation, the code is not used for MPC. Whereas, for deadbeat, inverter dead-time

compensation is critical, the error is reduced in more than 10%. Overall, the steady

state error for deadbeat is the biggest of the tested control methods but its result is still

considered satisfactory.

The calculation delay can degrade the predictive control performance. If the delay

compensation is implemented in simulations, the current ripple for MPC is reduced in

a 65% of its value and for deadbeat the overshoot is reduced in more than a 90% of

the initial overshoot value. However, even with the calculation delay compensation, the

current ripple for MPC is still signi�cantly bigger than for deadbeat with a sampling

frequency of 25 kHz.

The MPC is operated without a modulator, so the switching frequency is not constant. It

has been proved that MPC requires a sampling frequency in the ranges of 80 kHz in order

to obtain mean switching frequencies of 5 kHz, which was the switching frequency chosen

for deadbeat and FOC. It should be noticed that with a sampling frequency of 80 kHz for

MPC the current ripple is the same as deadbeat and FOC. Deadbeat has the advantage

of using SVM which implies a �x switching frequency. Another advantage of Deadbeat is
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that it can be directly substituted with the PI controller from the FOC scheme.

The given laboratory set-up imposes a maximum sampling frequency of 27.77 kHz

from the micro-controller. With a sampling frequency of 25 kHz, MPC has shown an

unacceptable high current ripple. Therefore, deadbeat is the predictive control chosen for

the implementation in the laboratory with dSpace. The simulation models for FOC and

deadbeat were veri�ed experimentally.

It can be said that the predictive controllers implementation is intuitive and relatively

easy compared with the classic schemes. However, the predictive controller is based

on a discrete model of the motor drive in order to be able to predict the future value.

Therefore, the main di�culty comes in the precision required in model parameters. In

the last chapter of this project, the sensitivity to motor parameter errors in the controller

implementation is analysed. High sensitivity is a new drawback for MPC. Deadbeat

sensitivity is re�ected in an increase of the steady state error, however, for the tested

conditions it never surpasses 1% and the transient response is never a�ected.

According to the experimental results, although in steady state FOC is still better,

deadbeat has an acceptable steady state performance with a very low current ripple

and an improved transient response, with no overshoot and a rising time 5 times faster

than the FOC. Deadbeat is proved as a good alternative to FOC with a improved torque

response and dynamic performance.

7.1 Future Work

Deadbeat has shown to be a substantial improvement in the transient response compared

to the classical FOC scheme. The deadbeat predictive controller provides current ripple

that can compete the FOC. However, it is hard for deadbeat to improve upon the low

steady state error found in FOC. The designed deadbeat controller included dead-time

compensation, however it neglected the voltage error due to the voltage drop in transistors

and diodes and the on-o� switching time in the transistors, this is because their in�uence

is smaller and their value is variable and di�cult to obtain. For a maximised accuracy it

would be of interest the development of an on-line voltage error estimation which would

include that inverter non-linearities.

Deadbeat is simple and it ful�ls the goals regarding dynamic response but MPC could also

turn out to be an interesting option. The MPC can provide at least the same transient

response as deadbeat and in order to improve the steady state response, the ripple can be

reduced by using some modulation technique as proposed in [Morel et al., 2009], [Nemec

et al., 2009] and [Drobnic et al., 2009]. The modulator would o�er an advantageous �x

frequency as well.

Besides, it should be noticed that a smaller DC-link voltage, a higher sampling frequency

or a higher motor inductance are all factors which would improve the MPC current ripple.
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Any of the factor helps to make the current to variate less and therefore, they facilitate a

more precise tracking of the current reference. Therefore, in another test set-up with those

characteristics MPC and deadbeat could be more fairly compared. Unlike in deadbeat, in

case of implementing MPC, thanks to the cost function, new constraints could be added,

such as switching losses minimisation.

It has been mentioned the importance of the parameter accuracy in order to design a

good predictive controller. An on-line estimation of the model parameters would be used

so that they can be updated in real time in the controller motor model.
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Parameter determination A
This appendix will describe how to measure the inductance and resistance for the PMSM.

This serves as veri�cation of the values provided from the datasheet.

The Ld inductance can be determined with the rotor in zero position (θ = 0). At zero

position the d-axis is aligned with phase a. If the motor is connected as illustrated in

Figure A.1 with a DC power supply or the inverter, the voltages and currents becomes:

va = −2vb = −2vc (A.1)

ia = −2ib = −2ic (A.2)

vab =
3

2
vd (A.3)

ia = id (A.4)

ia
NS

ib

ic

q

d

vab

a

b

c

va

vc

vb

-         +

-  
   

   
 +

-         +

Figure A.1.

If only a d-axis current is applied, the motor will not produce any torque, keeping the

rotor locked in zero position. With a zero speed and q-axis voltage and current set to
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zero the d-axis voltage equation is simpli�ed as shown in Equation A.5. Since it is not

possible to measure vd and id directly with an oscilloscope, Equation A.6 replaces these

d-axis voltage and currents with a measurable line-to-line voltage and phase currents with

respect to Equation A.3 and A.4.

vd = Rid + Ld
did
dt

(A.5)

m

vab =
3

2
Ria +

3

2
Ld
dia
dt

(A.6)

When applying a step voltage with a Delta-Elektronika DC power supply, the stator

resistance is determine by measuring the line-to-line voltage vab and phase a current in

steady state as shown in Equation A.7. vab and ia was measured in the lab to be 1.901 V

with a Fluke 179 multimeter and 6.24 A with a Tektronix oscilloscope. This makes the

resistance of a single phase 0.203 Ω, including the cable from the inverter to the motor.

The resistance value from the datasheet is 0.18 Ω without a cable.

R =
2
3
vab,ss

ia,ss
(A.7)

The inductance can be determine by applying a step voltage to the motor, which behaves

as a 1st order RL circuit. The measured system response shown in Figure A.2 is used to

determine the electrical time constant τ , which represents the time it takes the current

response to reach approximately 63.2 % of it's steady state value. τ is 10.2 ms as shown in

Figure A.2, this gives a inductance value of 2.1 mH using Equation A.8. According to the

datacheet the �eld inductance is 2.0 mH which almost �ts with the measured inductance.

For veri�cation of the simulink model parameter, the d-axis current response was

compared with the a measure response from the lab, under the same conditions. The

result of the simulation is presented in Figure A.2 with the measured response. There is

a good agreement between the simulation and the measurement. Therefor the the found

electrical parameters for the PMSM is found valid.

Ld = τR (A.8)
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FOC Simulink model B
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Matlab code for deadbeat

controller C
function udq = fcn(idref, iqref, id, iq, w, Vdc, R, Ld, Lq, Lambda_PM,~ 
Ts1, Td, phi) 
%% Initialisation 
global udq01; 

%% Motor Model (Estimated current vector for k+1) 
id1 = (1 - (R*Ts1)/Ld)*id + (Ts1*udq01(1,1»/Ld + (w*Lq*Ts1*iq)/Ld; 
iq1 = (1 - (R*Ts1)/Lq)*iq + (Ts1*udq01(2,1»/Lq - (w*Ld*Ts1*id)/Lq -~ 
(w*Ts1*Lambda_PM)/Lq; 

%% Deadbeat control (voltage output for k+1) 
ud1p = Ld/Ts1*(idref - (1-(R*Ts1)/Ld)*id1 - «w*Ld*Ts1)/Ld)*iq1); 
uq1p = Lq/Ts1*(iqref - (1-(R*Ts1)/Lq)*iq1 + «w*Ld*Ts1)/Lq)*id1 +~ 
w*Ts1*Lambda_PM/Lq); 

%% Voltage Compensation 
delta_u = (Td/Ts1)*(Vdc); 

delta ud 
delta_uq 

(4/pi)*delta_u*«12/35)*sin(6*phi)+(24/143)*sin(12*phi»; 
(4/pi)*delta_u*(-1+(2/35)*cos(6*phi)+(2/143)*cos(12*phi»; 

% delta_u sign depending on iq sign 
if iqref >= 0 

a = -1; 
else 

a = 1; 

end 

if w > 0 && iqref < 0 
b -1; 

else 
b 1; 

end 

%Compensated voltage output for k+1 
ud1 b*a*delta_ud+ud1p; 
uq1 = b*a*delta_uq+uq1p; 

%% Voltage restriction (linear area maximum amplitude- Vdc/sqrt(3» 
if sqrt(ud1 A 2+uq1 A 2»Vdc/sqrt(3) 

else 

ud1 = «Vdc/sqrt(3»/sqrt(ud1 A 2+uq1 A 2»*ud1; 
uq1 = «Vdc/sqrt(3»/sqrt(ud1 A 2+uq1 A 2»*uq1; 
udq1 = [ud1; uq1]; 
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function udq = fcn(idref, iqref, id, iq, w, Vdc, R, Ld, Lq, Lambda_PM,~ 
Ts1, Td, phi) 
%% Initialisation 
global udq01; 

%% Motor Model (Estimated current vector for k+1) 
id1 = (1 - (R*Ts1)/Ld)*id + (Ts1*udq01(1,1»/Ld + (w*Lq*Ts1*iq)/Ld; 
iq1 = (1 - (R*Ts1)/Lq)*iq + (Ts1*udq01(2,1»/Lq - (w*Ld*Ts1*id)/Lq -~ 
(w*Ts1*Lambda_PM)/Lq; 

%% Deadbeat control (voltage output for k+1) 
ud1p = Ld/Ts1*(idref - (1-(R*Ts1)/Ld)*id1 - «w*Ld*Ts1)/Ld)*iq1); 
uq1p = Lq/Ts1*(iqref - (1-(R*Ts1)/Lq)*iq1 + «w*Ld*Ts1)/Lq)*id1 +~ 
w*Ts1*Lambda_PM/Lq); 

%% Voltage Compensation 
delta_u = (Td/Ts1)*(Vdc); 

delta ud 
delta_uq 

(4/pi)*delta_u*«12/35)*sin(6*phi)+(24/143)*sin(12*phi»; 
(4/pi)*delta_u*(-1+(2/35)*cos(6*phi)+(2/143)*cos(12*phi»; 

% delta_u sign depending on iq sign 
if iqref >= 0 

a = -1; 
else 

a = 1; 

end 

if w > 0 && iqref < 0 
b -1; 

else 
b 1; 

end 

%Compensated voltage output for k+1 
ud1 b*a*delta_ud+ud1p; 
uq1 = b*a*delta_uq+uq1p; 

%% Voltage restriction (linear area maximum amplitude- Vdc/sqrt(3» 
if sqrt(ud1 A 2+uq1 A 2»Vdc/sqrt(3) 

else 

ud1 = «Vdc/sqrt(3»/sqrt(ud1 A 2+uq1 A 2»*ud1; 
uq1 = «Vdc/sqrt(3»/sqrt(ud1 A 2+uq1 A 2»*uq1; 
udq1 = [ud1; uq1]; 

udql [udl; uql]; 
end 

%% Save current state 
udqOl = [udlp;uqlp] ; 
udq = udql; 
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Matlab code for MPC D
D.1 Delay compensation04-06-13 00: 15 Bl ... /MPC delay compensation 1 of 2 

function Sabc_now = fcn(idref, iqref, id, iq, w, phi, Vdc, R, Ld, Lq,~ 
Lambda_PM, Ts, imax) 
%% Initialisation 
persistent state_1; 
if isempty(state_1) 

state 1 = 1; 
end 

%% Switching functions 
S = [0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 1 1]; 

%% Voltage applied k+1 (I use the voltage I just applied to calculate~ 
the current at the end of the period) 
ud = Vdc*2/3*( S(state_1,1)*cos(phi) + S(state_1,2)*cos(phi - 2*pi/3) +~ 
S(state_1,3)*cos(phi + 2*pi/3)); 
uq = Vdc*2/3* (-S(state_1,1) *sin(phi) - S(state_1,2)*sin(phi - 2*pi/3) -~ 
S(state_1,3)*sin(phi + 2*pi/3)); 

%% Motor Model (Estimated current vector for k+1) 
id1 = (1 - (R*Ts)/Ld)*id + (Ts*ud)/Ld + (w*Lq*Ts*iq)/Ld ; 
iq1 = (1 - (R*Ts)/Lq)*iq + (Ts*uq)/Lq - (w*Ld*Ts*id)/Lq -~ 
(w*Ts*Lambda_PM)/Lq; 

%% Terminal Voltage (dq transformation) 
ud1 = Vdc*2/3*( S(:,l)*cos(phi) + S(:,2)*cos(phi - 2*pi/3) + S(:,3)*cos~ 
(phi + 2*pi/3)); 
uq1 = Vdc*2/3*(-S(:,1)*sin(phi) - S(:,2)*sin(phi - 2*pi/3) - S(:,3)*sin~ 

(phi + 2*pi/3)); 

%% Motor Model (Predicted current values for k+2) 
idp2 = (1 - (R*Ts)/Ld)*id1 + (Ts*ud1)/Ld + (w*Lq*Ts*iq1)/Ld ; 
iqp2 = (1 - (R*Ts)/Lq)*iq1 + (Ts*uq1)/Lq - (w*Ld*Ts*id1)/Lq -~ 
(w*Ts*Lambda_PM)/Lq; 

%% Cost Function's 
% Uncomment to use cost function with absolute error 
% g = abs(idref-idp2) + abs(iqref-iqp2); % Standart current control ~ 
cost function with absolut values 

% Uncomment to use cost function with the error squared 
% g = (idref-idp2) .A2 + (iqref-iqp2) .A2; % Current control cost~ 

function which gives better refrence 
% tracking when more termes is added to the cost function compaed with ~ 
the using of absolut values. 
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04-06-13 00: 15 Bl ... /MPC delay compensation 1 of 2 

function Sabc_now = fcn(idref, iqref, id, iq, w, phi, Vdc, R, Ld, Lq,~ 
Lambda_PM, Ts, imax) 
%% Initialisation 
persistent state_1; 
if isempty(state_1) 

state 1 = 1; 
end 

%% Switching functions 
S = [0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 1 1]; 

%% Voltage applied k+1 (I use the voltage I just applied to calculate~ 
the current at the end of the period) 
ud = Vdc*2/3*( S(state_1,1)*cos(phi) + S(state_1,2)*cos(phi - 2*pi/3) +~ 
S(state_1,3)*cos(phi + 2*pi/3)); 
uq = Vdc*2/3* (-S(state_1,1) *sin(phi) - S(state_1,2)*sin(phi - 2*pi/3) -~ 
S(state_1,3)*sin(phi + 2*pi/3)); 

%% Motor Model (Estimated current vector for k+1) 
id1 = (1 - (R*Ts)/Ld)*id + (Ts*ud)/Ld + (w*Lq*Ts*iq)/Ld ; 
iq1 = (1 - (R*Ts)/Lq)*iq + (Ts*uq)/Lq - (w*Ld*Ts*id)/Lq -~ 
(w*Ts*Lambda_PM)/Lq; 

%% Terminal Voltage (dq transformation) 
ud1 = Vdc*2/3*( S(:,l)*cos(phi) + S(:,2)*cos(phi - 2*pi/3) + S(:,3)*cos~ 
(phi + 2*pi/3)); 
uq1 = Vdc*2/3*(-S(:,1)*sin(phi) - S(:,2)*sin(phi - 2*pi/3) - S(:,3)*sin~ 

(phi + 2*pi/3)); 

%% Motor Model (Predicted current values for k+2) 
idp2 = (1 - (R*Ts)/Ld)*id1 + (Ts*ud1)/Ld + (w*Lq*Ts*iq1)/Ld ; 
iqp2 = (1 - (R*Ts)/Lq)*iq1 + (Ts*uq1)/Lq - (w*Ld*Ts*id1)/Lq -~ 
(w*Ts*Lambda_PM)/Lq; 

%% Cost Function's 
% Uncomment to use cost function with absolute error 
% g = abs(idref-idp2) + abs(iqref-iqp2); % Standart current control ~ 
cost function with absolut values 

% Uncomment to use cost function with the error squared 
% g = (idref-idp2) .A2 + (iqref-iqp2) .A2; % Current control cost~ 

function which gives better refrence 
% tracking when more termes is added to the cost function compaed with ~ 
the using of absolut values. 

04-06-13 00: 15 Bl ... /MPC delay compensation 2 of 2 

% Uncomment to use cost function with switching reduction 
% n = abs(S(:,l) - S(state 1,1)) + abs(S(:,2) - S(state_1,2)) + abs(S ~ 
( : , 3) - S (s ta te 1, 3) ) ; 
% g = (idref-idp) .A2 + (iqref-iqp) .A2 + 35*n; % Current control with~ 
minimization of switching 
% frequency. The weighting factor is emperical dertermined and if ~ 
increased the frequency decreases 
%(for this motoer a typical values would be between 20-40. The range is ~ 
from o-??) 

% Hard constraints of stator current 
f = zeros(8,1); 
for j = 1:8 

if abs(idp2(j,1)) > imax I I abs(iqp2(j,1)) > imax 
f(j,l) = inf; 

end 
end 
g = (idref-idp2) .A2 + (iqref-iqp2) .A2 + f; 

%% Finds the vector index with the minimum value 
m = find(g == min(g),l); 
state = m(l,l); 

%% State change minimizer 
if state 2 I I state == 3 I I state 4 I I state 
II state 7 

elseif state 1 -- 2 I I state 1 
state 1; 

else 
state 8; 

end 

%% Save current state 
state 1 = state; 

-- 4 I I state 1 6 I I 

5 I I state 6~ 

state 1 -- 1 

%For testing like dSpace we apply the state one period before and we~ 
delay the signal like dSpace would do 
state_now = state; 
Sabc now S(state_now,:) .'; 
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D.2 Inverter dead-time compensation

function Sabc = fcn(idref, iqref, id, iq, w, phi, Vdc, R, Ld, Lq,~ 

Lambda_PM, Ts, Td, imax) 

%% Initialisation 
persistent state_I; 

if isempty(state_l) 
state 1 = 1; 

end 
g_optimal = inf; 

state = 0; 

%% Switching function 
S = [0 0 0; 1 0 0; 1 1 0; 0 1 0; 0 1 1; 0 0 1; 1 0 1; 1 1 1]; 

%% Phases [a b c] sing (plus(p), minus(m» depending on the 6 sectors 
PS=[l -1 -1;1 1 -1;-1 1 -1;-1 1 1; -1 -1 1; 1 -1 1]; 

% Locate phi in its section 
if phi<O 

phi=2*pi+phi; 

end 
if phi>2*pi 

phi=phi-2*pi; 

end 

% Locate the current in the sector (phases sign) 

if (1l*pi/6)<phillphi<=(pi/6) 
m= PS(l,:); 

elseif (pi/6)<phillphi<=(pi/2) 
m=PS(2,:); 

elseif (pi/2)<phillphi<=(5*pi/6) 
m=PS(3,:); 

elseif (5*pi/6)<phil Iphi <=(7*pi/6) 
m=PS (4, : ) ; 

elseif (7*pi/6)<phil Iphi <=(3*pi/2) 
m=PS (4, : ) ; 

else 
m=PS (6, : ) ; 

end 

% Trigonometric functions 

cos 1 cos (phi); 
sin 1 = sin(phi); 

%Define A, Band C 

idq = lid; iq]; 
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A [l-(R*Ts/Ld) Ts*w*Lq/Ld; -Ts*w*Ld/Lq l-(R*Ts/Lq)]; 
B = [Ts/Ld 0; 0 Ts/Lq]; 
C [0; -(Ts*w*Lambda_PM)/Lq]; 

M [cos_1 sin 1; -sin 1 cos_1]; 
D (Vdc*(2/3»*[1 -0.5 -0.5; 0 sqrt(3)/2 -sqrt(3)/2]; 

for j = 1:8 
%Obtain dead-time switching states 

if S(j,l)==S(state 1,1) 
Sdta= S(j,l); 

e1seif S(state_1,1)==1 
if m(l)== 1 

Sdta= 1; 
else 

Sdta= 0; 
end 

else 

end 

if m(l)== 1 
Sdta= 0; 

else 
Sdta= 1; 

end 

if S(j,2)==S(state_1,2) 
Sdtb=S(j,2); 

elseif S(state_1,2)==1 
if m(l)== 1 

Sdtb= 1; 
else 

Sdtb= 0; 
end 

else 
if m(l)== 1 

Sdtb= 0; 
else 

Sdtb= 1; 
end 

end 

if S(j,3)==S(state 1,3) 
Sdtc= S(j,3); 
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elseif S(state_l,3)==1 
if m(l)== 1 

Sdtc= 1; 
else 

Sdtc= 0; 
end 

else 

end 

if m(l)== 1 
Sdtc= 0; 

else 
Sdtc= 1; 

end 

Sdt=[Sdta Sdtb Sdtc]; 
udt = M*D*Sdt. ' ; 
udq = udt*(Td/Ts)+«Ts-Td)/Ts)*M*D*S(j,:) .'; 
idqp = A*idq+B*udq+C; 

%% Cost Function 
% Hard constraints of stator current 
f = 0; 

if abs(idqp(l,l» > imax I I abs(idqp(2,1» > imax 
f = inf; 

end 
g = (idref-idqp(l,l» .A2 + (iqref-idqp(2,1» .A2 + f; 

end 

%% 
if 

I I 

if g < g_optimal 
g_optimal = g; 
state = j; 

end; 

State change minimizer 
state -- 2 I I state --
state -- 7 

Sabc = S (state, :) . ' . , 

3 I I state -- 4 I I 

% Normal output 
elseif state 1 -- 2 I I state 1 4 I I state -

state = 1; 
Sabc = S (state, :) . ' ; 

else 
state = 8; 

Sabc = S (state, :) . ' ; 
end 

state -- 5 I I state 

1 6 I I state 1 

-- 6'" 

1 

04-06-13 00:14 Block: MPC Deadtime compe ... 

%% Save current state 
state 1 = state; 

4 of 4 
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