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Dansk resume

Overlevelses data betegner en speciel type data som findes i mange empiriske studier, så som
i epidemiologi, økonomiske studier og demografiske studier. Overlevelses data betegner en
type data som måler tiden frem til en given hændelse. Variablen man er interesseret i er
tiden frem til hændelses målt fra et givet begyndelses tidspunkt. Dette betyder at overlevelses
data er opsamlet sekventielt, og dette har betydning for strukturen af dataet. Specielt vil
denne opsamlings metode betyde at censureret hændelsestidspunkter kan forekomme for dele
af studiepopulationen. En censurering betyder at den faktiske hændelsestid ikke er kendt. I
stedet har man observeret en censureringstid som enten er større eller mindre end den faktiske
hændelsestid. Den mest almindelige censureringsmekanisme er højre censurering, hvilket vil
sige at tidspunktet for hændelses er større end det observerede censureringstidspunkt. Struk-
turen af overlevelses data betyder at traditionelle statistiske metoder ofte ikke kan anvendes
på overlevelses data. Specielt er manglen på fuld information for dele af studiepopulationen
et problem. En række statistiske modeller er udviklet specielt til at håndtere denne type data.
En populær regressions model for overlevelses data er den proportionelle hazards Cox model.
Dette er en semi-parametrisk regressionsmodel, brugt til at analysere effekten af en række
kovariater på hazard funktionen.

I dette speciale er en ny metode til at analysere overlevelses data studeret. Denne metode
bygger på pseudo-observationer kendt fra jackknife metoden. For hvert individ i studie popu-
lationen er en mænge af pseudo-observation udregnet, hvilket giver et fuldstændigt data sæt.
Dette fuldstændige data sæt giver mulighed for at analysere overlevelses data med standard
statistiske modeller, så som generaliseret lineær modeller. Dette giver mulighed for mere
generelle analyser af overlevelses data end standard overlevelses modeller tillader. I dette
speciale et regressions modeller baseret på pseudo-observationer sammenlignet med den tra-
ditionelle Cox model.
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1
Introduction

Survival data is a special type of data which arises in a number of applied settings such as
medicine, biology, epidemiology, economics, and demography. The term survival data is used
for data which measures the time to some event of interest. In the simplest case the event
of interest is dead; however, the event of interest may also cover events like the onset of
some disease or other complications. In this project, the terms event, dead, and failure will
synonymously be used as the occurrence of some event of interest.

Survival data possess a number of features which makes it differ from other types of data.
The main different lies in the way the survival data is measured. In other types of data, the
responses are measured instantaneously and independent of the size of the response variable.
In survival data the response variable is the event time, which is measured sequentially from
the beginning of the study. This means that for survival data the large responses take longer
time to measure than smaller responses. This way of measuring has a number of consequences,
which must be dealt with when the survival data is analysed.

One consequence of the way survival data is measured is the occurring of censored data.
The event time is said to be censored if the time of the event is not observed directly, but all
that is known is that the event occurred either before or after some observed time, called the
censoring time. The most common censoring mechanism is right censoring, which means that
the event occurs at some time point after the observed censoring time. In some situations, right
censoring occurs if an individual simply has not experienced the event before the termination
time of the study. In other situations right censoring occurs if an individual leave the study
before it is completed. If this early exit from the study is due to reasons unrelated to the
event of interest, the right censoring is said to be independt of the event time. Less common
censoring mechanisms include left censoring and interval censoring. An individual is said to
be left censored if the event time is known to occur prior to the observed censoring time.
Interval censoring means that the event is known to occur at some time within an interval.
In this project, the term censored data will almost always refere to right censoring. Though,
som eof the methods might be generalised to left censoring of interval censoring.
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1. Introduction 3

Due to the structure of survival data, statistically models for analysing this type of data
have been developed as an independent area within statistics. Broadly the methods for
analysing survival data can be divided into non-parametric methods, parametric methods,
and semi-parametric methods. Non-parametric methods serve to draw inference about the
event time distribution based on observed, possible censored data. Non-parametric methods
include the Kaplan-Meier estimator and the Nelson-Aalen estimator introduced in chapter
3. These methods may be of interest on their own right or they may serve as a precursor to
more detailed analysis. Often the observed data contain some additional information about
each individual, which can be used as covariates in a regression analysis. Parametric methods
may be used for maximum likelihood estimation of the unknown parameters in the regression
model. However, from a practical point of view, the main objective when modelling survival
data is to assess the effect of the covariates on the outcome of the regression model. This
outcome is often given as a function well suited to describe the information in survival data,
these functions are discussed in chapter 2. The event time distribution is often of secondary
interest. This means that specifying a full parametric model may be a too strict assumption for
the purpose of the analysis. More efficient results can often be obtained by a semi-parametric
model. A semi-parametric model is a model in which the effect of the covariates is assumed
to be parametric, but the effect of the time variable is given by some unspecified function.

A broad range of semi-parametric models have been developed for the purpose of analysing
survival data. One of the most popular models is the Cox proportional hazards model. This
model is a flexible model which is well suited in many applied settings. Inference on this model
is based on a partial likelihood approach, in which the problem with censored data is handle
by putting most emphasis on the observed event times.

In spite of the variety of models for analysis survival data, the occurrence of censored data
put a restriction on the possibilities within analysis for this type of data. One example is graph-
ical methods, such as residual plots, which is inconvenient due to censored event times. If no
censoring occurs in the data, standard statistically models could be used to analyse the data.
Standard statistically models often allows for more general analysis than the methods of sur-
vival data. In this project, jackknife pseudo-observations are considered as a tool for analysing
survival data. Pseudo-observations address one of the main problems with survival data, i.e.
not having appropriate responses for all individuals in the study. Hence, this approach is a
step in the direction of analysing censored survival data by standard statistically methods.
The approach were first suggested by Andersen et al. [2003] for performing generalised linear
regression analysis of survival data. The method is based on a set of pseudo-observations
defined for each individual in the study. The pseudo-observation approach is a must general
method which may be applied in a number of applications. The aim of this project is to
illustrate the potential and efficiency of this approach for regression analysis. Further, the
potential of the methods for topics related to the Cox proportional hazards model is likewise
considered.



2
Basic quantities

This chapter is written based on Klein and Moeschberger [1997] and Hosmer and Lemeshow
[1999].

In this chapter some basic quantities used to describe the distribution of survival data is
considered. Let X be a nonnegative random variable denoting the time to some event. The
distribution of X can be described by the cumulative distribution function F (t) = P(X ≤ t)

and when X is a continuous random variable, also by the density function f(t) = d
dtF (t).

However, other functions are better suited to describe the distribution of time-to-event data.
For survival data, one is often interested in the probability of surviving beyond the time t,
this probability is given by the survival function. The hazard function describes the risk of an
event in the next instant, given that the event has not occurred prior to the time t. These four
functions all characterise different features of the distribution of X and given one of them, one
can uniquely determine the others. Other parameters of interest for describing survival data
are the mean survival time and the related restricted mean survival time, these two parameters
are intuitive appealing in applied settings.

2.1 Continuous random variables

In this section, the basic functions for describing the survival distribution of non-negative
continuous random variable X are given.

The survival function

The survival function is the most basic quantity to describe survival data. It gives the prob-
ability of observing an event beyond the time t.

4



2. Basic quantities 5

Definition 2.1 The survival function of a non-negative random variable X is given by:

S(t) = P(X > t), t ≥ 0.

The survival function is related to the cumulative distribution function and the density
function in the following way

S(t) = 1− F (t)

=

∫ ∞
t

f(u)du. (2.1)

The density function can hence be written in terms of the survival function as

f(t) = − d

dt
S(t).

Equation (2.1) implies that

S(0) =

∫ ∞
0

f(u)du = 1, (2.2)

and further

S(∞) = lim
y→∞

S(y)

= lim
y→∞

∫ ∞
y

f(u)du

= 0. (2.3)

From (2.2) and (2.3) it is seen that the survival function is a decreasing function taken values in
the range of zero to one. Furthermore, equation (2.3) implies that an individual eventually is
expected to experience the event if this just live long enough. In many contexts where survival
data appear this assumption is reasonable, for instance if the event of interest is dead, which
will occur for everybody in time. However, in some settings it is unlikely that all individual in
the study eventually will experience the event, for instant if the event of interest is the time
of start smoking, which may or may not occur to everybody.

Many different types of survival functions occur, however due to the above discussion,
they all have the same basic shape. Figure 2.1 shows the survival curve from the Weibull
distribution with scale parameter λ = 1 and three different values of the shape parameter
α. The rate of change in the survival function indicates the risk of an event over time. In
the figure it appears that subjects with a Weibull survival function with α = 1.1 have a more
favourable survival rate in the beginning of the study period, whereas, subjects with a Weibull
survival function with α = 0.5 have a more favourable survival rate at the ending of the study
period. Though a distinctly comparison the three survival rates are difficult as the survival
curves tends to coincide.
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Figure 2.1: The Weibull survival functions with three different values of the shape parameter α.

The survival function gives the initial probability of an individual to survive from the time
origin to a time point beyond the time t. Hence, the changes in the risk of an event with time
are not captured in the survival function; another function which more properly describes this
is the hazard function.

The hazard function

The hazard function describes the instantaneous risk of an event at time t, given that the event
has not occurred prior to time t. That is, the hazard function gives conditional information
on how the risk of an event changes with time.

Definition 2.2 The hazard function for a random variable X is defined as

h(t) = lim
∆t→0

P(t ≤ X < t+ ∆t|X ≥ t)
∆t

By the definition of h(·), the quantity h(t)∆t may be considered as an approximate con-
ditional probability of an event in the interval [t, t+ ∆t). However, the hazard function itself
is not a probability, but may rather be considered as the rate for which the risk of an event
changes with time. The values of the hazard function can vary between zero and infinity, and
the shape of h(·) can possess many different forms, reflecting the changes in the risk of an
event with time.
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Figure 2.2: The hazard function from the Weibull distribution for three different values of the shape
parameter α.

Figure 2.2 shows the three Weibull hazard functions corresponding to the survival functions
in figure 2.1. In the figure it is seen that the tendency from the survival curves in figure 2.1
is much more clear from the hazard function. Individuals with Weibull hazard function with
α = 1.1 has an increased risk of the event over time, whereas, individuals with Weibull
hazard function with α = 0.5 have a decreasing risk of event over time. Hence the survival
function and the hazard function differently describes the same aspects of the data. Though,
the hazard function is often more informative about the event pattern in the data than the
survival function, as the hazard function gives conditional information on the events.

The density function of X is defined as the derivative of the cumulative distribution func-
tion, that is

f(t) =
d

dt
F (t)

= lim
∆t→0

F (t+ ∆t)− F (t)

∆t

= lim
∆t→0

P(t ≤ X < t+ ∆t)

∆t
.

From this it is seen that the hazard function can be written as

h(t) = lim
∆t→0

P(t ≤ X < t+ ∆t)

∆t · P(X ≥ t)

=
f(t)

S(t)
(2.4)

= − d

dt
ln [S(t)] . (2.5)
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A function related to the hazard function is the cumulative hazard function.

Definition 2.3 Let X be a random variable with hazard function h(·), the cumulative
hazard function of X is defined by

H(t) =

∫ t

0
h(u)du.

From a practical point of view, the hazard function h(·) is often of main interest, as this
function is more intuitive clear. However, the cumulative hazard function H(·) is often easier
to estimate from a given data set.

By equation (2.5) and the fundamental theorem of calculus, the cumulative hazard function
and the survival function is related in the following way

H(t) = − ln [S(t)] , (2.6)

and hence

S(t) = exp [−H(t)] (2.7)

= exp

[
−
∫ t

0
h(u)du

]
. (2.8)

Combining equation (2.4) with equation (2.8) one gets that the density function can be written
in terms of the hazard function as

f(t) = h(t) exp

[
−
∫ t

0
h(u)du

]
. (2.9)

The mean survival time

Another parameter of interest is the mean survival time µ = E[X], which may be written as

µ =

∫ ∞
0

S(t)dt,

where S(·) is the survival function of X. This parameter is intuitive appealing as it gives the
expected lifetime for an individual with survival function S(·).

When analysing survival data right censoring often occur. This means that the tail of the
survival time distribution may be difficult to estimate and hence an estimate of µ may be
heavily biased. A parameter related to the mean survival time is the restricted mean survival
time.
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Definition 2.4 The restricted mean survival time for a random variable X is defined by

µτ = E[min(X, τ)],

for τ > 0.

This parameter gives the expected lifetime over the interval [0, τ ]. In similarity with the
mean survival time, the restricted mean may be written as

µτ =

∫ τ

0
S(t)dt.

The restricted mean survival time is less sensitive to the occurrence of right censoring in a
given sample than the overall mean µ.

2.2 Discrete random variables

In this section, the discrete analogue to the functions described in the previous section is given.
Let X be a discrete random variables taking values t0 < t1 < t2 < · · · and let p(·) denote the
probability function

p(ti) = P(X = ti), i = 0, 1, 2, . . .

The discrete survival function is then given by

S(t) =
∑
ti>t

p(ti). (2.10)

The hazard function at time ti is given by the conditional probability of failing at time ti,
given survival until time ti, that is

h(ti) = P(X = ti|X ≥ ti) =
p(ti)

S(ti−1)
,

whith the convenience that S(t0) = 1. Note that p(ti) = S(ti−1)− S(ti) from which it follows
that

h(ti) = 1− S(ti)

S(ti−1)
.

The discrete survival function (2.10) may be written as a product of conditional survival
functions

S(t) =
∏
ti≤t

S(ti)

S(ti−1)
,

and it follows that the survival function may be written in terms of the hazard function

S(t) =
∏
ti≤t

[1− h(ti)] .



3
Counting processes

This chapter is written based on Fleming and Harrington [1991], Andersen et al. [1993], and
Klein and Moeschberger [1997].

Survival data consist of observations gathered over a period of time, and it is natural to
model this type of data as a stochastic process. Counting process methods provide exact ways
for studying incomplete data. In this chapter an introduction to counting process theory is
given. The main object of this chapter is to define non-parametric estimators of the cumulative
hazard function and the survival function.

Definition 3.1 A stochastic process N(t), t ≥ 0 is called a counting process if it fulfils
the following properties: N(0) = 0; N(t) < ∞ a.s. and the sample paths of N(t) are with
probability one right-continuous and piecewise constant with jump of size +1.

Suppose a right censored sample with n individuals is given. Let Tj = min(Xj , Cj) be
the study time for individual j = 1, . . . , n and let δj = 1[Xj ≤ Cj ]. Here the event time Xj

and the censoring time Cj are assumed to be independent, continuous random variables. The
process Nj(t) = 1[Tj ≤ t, δj = 1] is then a counting process defined for each individual j.
Summing over Nj(t) one gets a counting process

N(t) =

n∑
j=1

Nj(t), (3.1)

which counts the number of events occurring prior to and including the time t.

The focus in this chapter is restricted to counting processes defined for right censored
samples, though the theory may be applied in a more general setting. For a given right
censored sample, the sample paths of the counting process N(·) given in (3.1) describes the
times of events. Further, the difference N(t) − N(s) is the number of events in the interval

10



3. Counting processes 11

(s, t]. However, at a given time t additional information on the sample may available, such
as knowledge on censoring prior to t. The history of a counting process at time t is the
accumulated knowledge of the sample prior to and including the time t, and is denoted Ft.
The history is assumed to be increasing, that is Fs ⊆ Ft, for all s < t.

Let N(·) be a given counting process and let t− denote the time just prior to but not
including the time t, then the quantity dN(t) is defined as

dN(t) = N
(
[t+ dt]−

)
−N

(
t−
)

dt > 0.

That is, dN(·) is the change in the counting process over the interval [t, t + dt). If dt is
sufficiently small then the quantity dN(t) is a zero-one random variable, meaning that either
an event occur in the interval [t, t+ dt) or no event occur in the interval.

Definition 3.2 The intensity process λ(·) of a counting process N(·) is defined as

λ(t) = lim
dt→0

P (dN(t) = 1|Ft−)

dt
.

For a right censored sample, the probability of individual j failing in a small interval
[t, t+ dt) is given by

P (t ≤ Tj < t+ dt, δj = 1|Ft−) , j = 1, . . . , n. (3.2)

For Tj < t the probability in (3.2) is obviously equal zero. For Tj ≥ t, the probability is given
by

P (t ≤ Tj < t+ dt, δj = 1|Ft−) = P (t ≤ Xj < t+ dt, Cj ≥ t+ dt|Xj ≥ t, Cj ≥ t)
= P (t ≤ Xj < t+ dt|Xj ≥ t) · P (Cj ≥ t+ dt|Cj ≥ t)

=
[F (t+ dt)− F (t)]

S(t)
· P (Cj ≥ t+ dt|Cj ≥ t)

=
f(t)dt

S(t)
· P (Cj ≥ t+ dt|Cj ≥ t)

≈ h(t)dt,

for dt sufficiently small. Her h(·) is the hazard function given in definition 2.2

Let Y (t) be the risk set at time t, that is Y (·) is process describing the number of individuals
at risk at some given time;

Y (t) =

n∑
j=1

1[Tj ≥ t].
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Then for dt sufficiently small

P (dN(t) = 1|Ft−) = E [dN(t)|Ft− ]

= E
[
#{j : Tj ∈ [t, t+ dt), δj = 1}

∣∣Ft− ]
= Y (t)h(t)dt,

where N(·) is the counting process in (3.1). Hence, for a right censored sample the intensity
function is given by λ(t) = Y (t)h(t).

Definition 3.3 Let N(·) be a counting process with intensity function λ(·), the cumulative
intensity process is then defined by

Λ(t) =

∫ t

0
λ(u)du, t ≥ 0.

The general theory of martingales is a concept which arises naturally in the context of
counting processes. A martingale is a stochastic process with the property that the expected
value of the next observation from the process given the history is equal to the present obser-
vation. A stochastic process M(·) is called a martingale if it fulfils

E[M(t)|Fs] = M(s), for all s ≤ t. (3.3)

Definition 3.4 Let N(·) be a counting process with cumulative intensity function Λ(·),
then the counting process martingale is defined as

M(t) = N(t)− Λ(t).

The counting process martingale has the property that

E[dM(t)|Ft− ] = E[dN(t)− dΛ(t)|Ft− ]

= E[dN(t)|Ft− ]− E[λ(t)|Ft− ]

= 0, (3.4)

where the last equality follows because λ(t) has a fixed value given Ft− . The property in (3.4)
is equivalent with the martingale property in (3.3), this can be seen by

E[M(t)|Fs]−M(s) = E[M(t)−M(s)|Fs]

= E
[∫ t

s
dM(u)

∣∣Fs]
=

∫ t

s
E [dM(u)|Fs]

=

∫ t

s
E
[
E[dM(u)|Fu− ]

∣∣Fs]
= 0. (3.5)
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This means that the counting process martingale M(·) given in definition 3.4 is indeed a
martingale.

In the general theory of martingales, a process X̃(·) is called the compensator of a given
processX(·) if the processX(·)−X̃(·) is a martingale. From the definition ofM(·) in definition
3.4 it is seen that Λ(·) is the compensator of the counting process N(·). The counting process
martingale can be considered as a zero mean noise which arises when the compensator Λ(·) is
subtracted from the counting process N(·).

Another quantity related to counting processes is the predictable variation process of the
counting process martingale. This quantity is defined as the compensator of the processM2(·)
and denoted 〈M〉(·). Consider the increment of the process M2(·)

dM2(t) = M2
(
[t+ dt]−

)
−M2(t−)

=
(
M(t−) + dM(t)

)2 −M2(t−)

= (dM(t))2 + 2M(t−)dM(t).

Since

E
[
2M(t−)dM(t)|Ft−

]
= 2M(t−)E [dM(t)|Ft− ] = 0,

it follows that

E
[
dM2(t)|Ft−

]
= E

[
(dM(t))2

∣∣Ft−] .
Hence the increment of the compensator of M2(·) is equal to the conditional variance of the
increment of M(·), that is

d〈M〉(t) = E
[
(dM(t))2

∣∣Ft−] = Var[dM(t)|Ft− ].

Note that the process M2(·) − 〈M〉(·) is a martingale by similar arguments as in (3.5). As
noted previously, if the interval [t+ dt) is sufficiently small, then dN(t) is a zero-one random
variable, the variance of dM(t) is then given by

Var[dM(t)|Ft− ] = Var[dN(t)− dΛ(t)|Ft− ]

= Var [dN(t)− E[dN(t)|Ft− ]|Ft− ]

= Var [dN(t)|Ft− ]

= dΛ(t)(1− dΛ(t))

≈ dΛ(t).

3.1 The Nelson-Aalen estimator

The theory of counting processes allows a relatively simple derivation of quantities based on
censored data. One of these quantities is the Nelson-Aalen estimator of the cumulative hazard
function H(·), given in definition 2.3.
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Suppose a right censored sample is given, then the increment of N(·) given in (3.1) can be
written as

dN(t) = Y (t)h(t)dt+ dM(t),

where M(·) is the counting process martingale corresponding to N(·).

Assuming Y (t) > 0, then this can be rewritten as

dN(t)

Y (t)
= h(t)dt+

dM(t)

Y (t)
. (3.6)

The process Y (·) is predictable, meaning that it is fixed given the history just prior to time t.
From equation (3.4) it follows that

E
[

dM(t)

Y (t)

∣∣Ft−] =
E[dM(t)|Ft− ]

Y (t)
= 0.

This means that the last term on the right-hand side of equation (3.6) can be considered as a
zero-mean noise given the history. The variance of this noise is given by

Var
[

dM(t)

Y (t)

∣∣Ft−] =
Var[dM(t)|Ft− ]

Y (t)2
=

d〈M〉(t)
Y (t)2

.

Let J(t) = 1[Y (t) > 0] and define 0/0 = 0, then integrating on both side of equation (3.6)
gives ∫ t

0

J(u)

Y (t)
dN(t) =

∫ t

0
J(u)h(u)du+

∫ t

0

J(u)

Y (u)
dM(u). (3.7)

The integral

Ĥ(t) =

∫ t

0

J(u)

Y (t)
dN(t) (3.8)

is the Nelson-Aalen estimator of the cumulative hazard function H(·). This estimator is
essentially the sum over event times up to and including time t, relative to the corresponding
number of individuals at risk. For right-censored data, the integral∫ t

0
J(u)h(u)du

is the actual cumulative hazard function H(·), omitting the contributions of h(·) when the risk
set is empty. The last integral on the right hand-side of equation (3.7) is a stochastic integral
with respect to a martingale, and hence the integral itself is a martingale Andersen et al.
[1993]. This integral can be considered as the statistically uncertainty in the Nelson-Aalen
estimator.
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3.2 The Kaplan-Meier estimator

An estimator of the survival function given in definition 2.1 is the Kaplan-Meier estimator,
which may be derived from the Nelson-Aalen estimator. This is based on the discrete rep-
resentation of the survival function and the Nelson-Aalen estimator. For a discrete random
variable the survival function is given by S(t) =

∏
tj≤t(1−h(tj)). The Kaplan-Meier estimator

is then given by

Ŝ(t) =
∏
Tj≤t

[
1− dĤ(Tj)

]
,

where Ĥ(·) is the Nelson-Aalen estimator.

The Kaplan-Meier estiamtor is a wildly used non-parametric estimator of the survival
function. It may be thought of as an conditional survival function, resulting from a partitioning
of the time scale and estimating the survival function on each partitioning. If no censoring
occurs in the data, the Kaplan-Meier estimator reduces to one minus the empirical distribution
function. It can be shown that the Kaplan-Meier estimator has non-negative bias, which
converges to zero at an exponential rate for n approaching infinity Fleming and Harrington
[1991].

An estimate of the variance of the Kaplan-Meier estimator is given by the Greenwood
estimate

v̂ar[Ŝ(t)] =
(
Ŝ(t)

)2
∫ t

0

dN(s)

Y (s) [Y (s)−∆N(s)]
,

where N(·) is the counting process in (3.1) and ∆N(s) = N(s)−N(s−).



4
Semiparametric proportional hazards models

Unless otherwise stated this chapter written based on Klein and Moeschberger [1997] and
Kalbfleisch and Prentice [2002].

In this chapter regression methods for survival data is considered. As noted in chapter 2
functions like the hazard function and the survival function are well suited for describing the
information of interest in survival data. Hence, regression models for survival data is cantered
on these functions and especially the hazard function is frequently used as the outcome in the
models.

A class of models used to analyse the effect of a set of covariates on the survival probability is
the family of semiparametric hazard models. Suppose a right censored sample of n independent
and identical distributed (i.i.d.) individuals are given. The data then consist of the triplets
(Tj , δj ,Zj), j = 1, . . . , n, where Tj = min(Xj , Cj), δj = 1[Xj ≤ Cj ], and Zj = [Zj1, . . . , Zjp]

>

is a vector of covariates. In the following assume furthermore that the event times Xj and
the censoring times Cj are continuous independent random variables. Let h(t|Zj) denote the
conditional hazard function for an individual with covariates Zj . The class of semiparametric
hazard models is given by the family of functions which can be written as

h (t|Zj) = h0(t)c
(
β>Zj

)
, j = 1, . . . , n. (4.1)

Here h0(·) is an unspecified non-negative function called the baseline hazard function, c(·) is
a non-negative function of the covariates called the link function, and β = [β1, . . . , βp]

> is
a vector of unknown parameters. Note that the distribution corresponding to the baseline
hazard function is left unspecified.

One or more components of the covariate vector Zj may depend on the time t, in which case
the covariates are said to be time-dependent. If the value of the covariate vector is constant
over time, then Zj is said to be a fixed-covariate vector. In the rest of this project it is assumed
that the covariates do not depend on time, and the case of time-depend covariates will not be
comment further.

16
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4.1 The Cox proportional hazards model

One important case of the model (4.1) is the Cox proportional hazards model, where the link
function c(·) is given by

c
(
β>Zj

)
= exp

[
p∑
l=1

βlZjl

]
= exp

[
β>Zj

]
.

The model (4.1) then becomes

h (t|Zj) = h0(t) exp
[
β>Zj

]
, (4.2)

which can be rewritten as

log

[
h(t|Zj)
h0

]
= β>Zj .

Hence the Cox proportional hazards model may be considered as a linear model in the loga-
rithm of the ratio hj(t|Zj)

h0(t) . Each βh is then interpreted as the change in the log of the ratio
hj(t|Zj)
h0

per unit change in Zh, assuming all other covariates constant. Note that the baseline
hazard function h0(·) may be regarded as the conditional hazard function for an individual
with all covariates constant equal zero.

A key feature of the Cox proportional hazards model is that the hazard function of two
individuals with covariates Z′ and Z′′ respectively are proportional, this is seen by

h(t|Z′)
h(t|Z′′)

=
h0(t) exp

[
β>Z′

]
h0(t) exp [β>Z′′]

= exp
[
β>
(
Z′ −Z′′

)]
, (4.3)

which is constant over time. The ratio in (4.3) is called the relative risk (hazard ratio) of an
event for an individual with covariates Z ′ compared to an individual with covariates Z ′′.

Note that the relative risk in (4.3) may be written as

h(t|Z′)
h(t|Z′′)

= exp
[
βh(Z ′h − Z ′′h)

]
exp

∑
l 6=h

βl(Z
′
l − Z ′′l )

 .
This means that when Z ′h and Z ′′h differ by a unit and Z ′l = Z ′′l , l 6= h, the exponential of each
βh is the relative risk of an event.

From the relations given in chaper 2, it follows that the conditional density function and
the conditional survival function corresponding to the Cox proportional hazards model are
given by

f (t|Z) = λ0(t) exp
(
β>Z

)
exp

[
− exp

(
β>Z

)∫ t

0
λ0(u)du

]
S(t|Z) = exp

[
− exp

(
β>Z

)∫ t

0
λ0(u)du

]
.
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Inference on the unknown parameters in ordinary generalised linear models is often based on
the method of maximum likelihood estimation (MLE). However, for semiparametric models it
is not possible to specify an explicit expression of the full likelihood function, as the distribution
corresponding to the baseline hazard function is not specified. Instead the estimation of the
unknown parameters β are obtained by maximisation of the partial likelihood. Before any
further discussion on estimation of the unknown parameters in the model (4.2) some notion
on the partial likelihood in a general setting will be introduced.

4.1.1 The partial likelihood

This section is written based on Cox [1975].

Suppose a given data set consists of sampled values from a random vector Y with density
function f(y,θ,β). The parameter θ is considered to be a nuisance parameter and β is the
parameter of primary interest. Suppose that a one-to-one transformation exist between Y and
a set of random variables A1, B1, . . . , Ak, Bk. Let A(i) = (A1, . . . , Ai) and B(i) = (B1, . . . , Bi),
i = 1, . . . , k and assume that the joint density of A(k) and B(k) can be written as

k∏
i=1

f(bi|b(i−1), a(i−1),θ,β)
k∏
i=1

f(ai|b(i), a(i−1),β). (4.4)

The information on β based on the first term of (4.4) may be inextricably linked with the
nuisance parameter θ. In this case inference on β may be based solely on the second term of
(4.4) called the partial likelihood of β based on {Ai} in the sequence {Ai, Bi}.

The partial likelihood of β is hence given by

L(β) =
k∏
i=1

f(ai|b(i), a(i−1),β). (4.5)

The partial likelihood (4.5) is not a likelihood in the traditional sense. However, as seen in the
following, the partial likelihood function possesses some of the same properties as an ordinary
likelihood function and hence the partial likelihood function may be treated as an ordinary
likelihood.

Let Hi = (B(i), A(i−1)) and consider the score components of (4.5) given by

Ui =
∂

∂β
ln [f(Ai|Hi,β)] =

[
∂

∂βl
ln [f(Ai|Hi,β)]

]
1×p

i = 1, . . . , k.

Assume that the usual regular conditions hold for the conditional density function of Ai given
Hi = hi, then it follows that E[Ui|Hi = hi] = 0 and hence

E [Ui] = E [E[Ui|Hi]] = 0. (4.6)
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The total score function for the partial likelihood is given by

U(β) =
∂

∂β
ln[L(β)] =

k∑
i=1

Ui.

From the property in (4.6) it follows that E[U(β)] = 0. Furthermore, suppose that Hj = hj
is given then for all i < j it follows that Ui is fixed and this implies that

E
[
UiU

>
j

]
= E

[
E
[
UiU

>
j

∣∣Hj

]]
= E

[
UiE

[
U>j
∣∣Hj

]]
= 0.

Hence, the score components U1, . . . , Uk have zero mean and are uncorrelated. The variance
of Ui is given by

Var [Ui] = E
[
UiU

>
i

]
= −E

[
∂2

∂β∂β>
ln [f(Ai|Hi,β)]

]
.

Let

Ii = −E
[

∂2

∂β∂β>
ln [f(Ai|Hi,β)]

]
= −

[
E

∂2

∂βg∂βh
ln [f(Ai|Hi,β)]

]
p×p

.

It then follows that the total score U(β) has zero mean and covariance matrix given by the
expected Fisher information

I(β) = −E
[

∂2

∂β∂β>
ln [L(β)]

]
=

k∑
i=1

Ii.

Under the conditions that the Ui, i = l, . . . , k possess some degree of independence and the
variances Ii are not too disparate, one may apply the central limit theorem to U(β) as k →∞.
This implies that the distribution of U(β) approach a normal distribution with mean zero and
covariance matrix I(β).

4.1.2 The partial likelihood for distinct event times

In this section the partial likelihood for the Cox proportional hazards model in (4.2) will be
discussed. The partial likelihood function for this model was first proposed by Cox [1972].
The basic notion used in the construction of the partial likelihood for this model is that the
time interval between two successive event times provides no information on the effect of the
covariates on the hazard of event. Furthermore, the construction of this partial likelihood
assumes that the survival times are measured in continuous time eliminating the possibility
of ties in the data. In practice, however, data is often sampled at discrete time which may
result in several individuals having the same survival time. Hence modifications of the partial
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likelihood are needed in order to account for possible ties in the data. In this section the
case of tied data will be ignored; approximation of the partial likelihood for tied data will be
discussed in the next section. As discussed in the previous section, the partial likelihood is
constructed by considering only the part of (4.2) which solely depends on β; in this case the
baseline hazard function h0(·) is considered as a nuisance parameter.

Suppose a given right censored sample consist of n individuals, from which k individuals
have an observed event time and n− k individuals have a censored event time. Let t1 < t2 <

· · · < tk denote the ordered observed event times, and let Ri denote the risk set at time ti,
i = 1, . . . , k. That is Ri is a set consisting of all the individuals with event or censoring time
greater than or equal to ti. Hence, Ri is given by

Ri = {j : Tj ≥ ti} .

The partial likelihood function is constructed by considering the probability of individual
i failing in the small interval [ti, ti + dti) conditioned on the risk set. That is, the probability
of the individual failing in the interval [ti, ti + dti) is the individual actually observed failing,
conditioned on one individual from the risk set fails in the interval [ti, ti+dti). In the notation
of section 4.1.1, let Bi contain information on censoring in the interval [ti−1, ti) and the
information that one individual from the risk set fails in the small interval [ti, ti + dti). Let
Ai be the information that subject i fails in the interval [ti, ti + dti).

The ith term in the partial likelihood (4.5) is given by

Li(β) = f
(
ai|b(i), a(i−1),β

)
. (4.7)

The conditioning on b(i), a(i−1) gives information on all censoring and failure times prior to the
time ti, and the information that an event occur in the interval [ti, ti + dti). For dti sufficient
small the term (4.7) then becomes

Li(β) =
h (ti|Zi) dti∑
j∈Ri

h (ti|Zj) dti

=
h0(ti) exp

(
β>Zi

)∑
j∈Ri

h0(ti) exp (β>Zj)

=
exp

(
β>Zi

)∑
j∈Ri

exp (β>Zj)
. (4.8)

Then each individual with an observed event time contribute to the partial likelihood function
with the probability given in (4.8), so that

L(β) =
k∏
i=1

exp
(
β>Zi

)∑
j∈Ri

exp (β>Zj)
. (4.9)

Note that the partial likelihood depends on the observed event times ti through the order of
them, not on the actual value of them.
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The estimates of the parameters β are found by maximising the partial likelihood function,
which is equivalent to maximisation of the logarithm of the partial likelihood. The log-partial
likelihood is given by

l(β) = log [L(β)]

=

k∑
i=1

β>Zi −
k∑
i=1

log

∑
j∈Ri

exp
(
β>Zj

) . (4.10)

The maximum of (4.10) can then be obtained by solving the p equations U(β) = 0, where the
score function is given by

U(β) =
k∑
i=1

(Zi − Ei(β)) , (4.11)

for

Ei(β) =
∑
j∈Ri

Zj exp
(
β>Zj

)∑
l∈Ri

exp (β>Zl)
.

This means that Ei(β) is the expectation of Zi with respect to the distribution

pi(β) =
exp

(
β>Zj

)∑
l∈Ri

exp (β>Zl)
,

on the risk set Ri at time ti.

The observed Fisher information is the matrix given by

I(β) = −
[

∂2

∂β∂β>
l(β)

]
p×p

where the (g, h)’th element is given by

Ig,h(β) =
k∑
i=1

∑
j∈Ri

ZjgZjh exp
[
β>Zj

]∑
j∈Ri

exp [β>Zj ]

−
k∑
i=1

[∑
j∈Ri

Zjg exp
[
β>Zj

]∑
j∈Ri

exp [β>Zj ]

][∑
j∈Ri

Zjh exp
[
β>Zj

]∑
j∈Ri

exp [β>Zj ]

]
.

The discussion in section 4.1.1 suggests that the partial likelihood (4.9) may be treated as
an ordinary likelihood on the assumption that certain conditions are fulfilled. The significance
of the estimated values of the unknown parameters β based on the partial likelihood may
then be assessed by standard large-sample likelihood theory. Let β̂ denote the MLE of the
unknown parameters β obtained by maximisation of the partial likelihood. Counting process
theory can be used to show that β̂ is a consistent estimator of β with an asymptotic zero
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mean normal distribution and an estimated covariance matrix given by I(β)−1 Kalbfleisch
and Prentice [2002], that is

β̂ ≈d N(β, I(β)−1). (4.12)

Under the usual regularity conditions, the observed Fisher information then converges a.s. to
the expected Fisher information, hence the observed Fisher information may be used as an
estimator for the covariance matrix of β̂.

Three main test exists to test the global null hypothesis H0 : β = β0. The Wald test is
based on the asymptotic normal distribution of β̂. The asymptotic result (4.12) implies that
the quadratic form (β̂ − β0)I(β0)(β̂ − β0)> has an asymptotic chi-squared distribution with
p degrees of freedom when β0 = β. The Wald statistic is given by

χ2
W

= (β̂ − β0)I(β̂)(β̂ − β0)>,

which has an asymptotic chi-squared distribution with p degrees of freedom under the null
hypothesis.

The score test is based on the assumption of asymptotic normal distribution for the score
function (4.11) associated with the partial likelihood. As discussed in section 4.1.1 the score
function has an asymptotic normal distribution when certain regularity and independence
conditions are fulfilled. The score statistic is given by

χ2
S

= U(β0)I−1(β0)U(β0)>,

which likewise has an asymptotic chi-squared distribution with p degrees of freedom under
the null hypothesis. The score statistic has the advantage that it can be computed without
calculating the MLE β̂.

The third test is the likelihood ratio test, given by

χ2
LR

= −2
[
l(β0)− l(β̂)

]
.

A Taylor series expansions of l(β0) around β̂ may be applied to show, that this test statistic
has an asymptotic chi-squared distribution with p degrees of freedom under the null hypothesis
Azzalini [2002].

4.1.3 The partial likelihood when ties are present

Often survival times are recorded to the nearest day, week, or month, meaning that the
survival data is sampled at discrete time rather than continuous time. This way of gathering
the survival data often causes ties in the data, i.e. several individuals have the same event time.
The construction of the partial likelihood in (4.9) assumes that no ties are present in the data,
and hence this likelihood must be modified in order to handle ties. Several modifications of
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the partial likelihood (4.9) has been proposed; of these an exact partial likelihood function due
Kalbfleisch and Prentice [2002], an approximation due to Breslow [1974], and an approximation
due to Efron [1977] are notable. Before any further discussion on these modifications of the
partial likelihood some more notations are needed.

Let Di = {i1, . . . , idi} be the set containing all individuals with an event at time ti and let
Qi be the set of the di! permutations of the elements of Di. Further, let P = (p1, . . . , pdi) be
an element of Qi and let Ri(P, r) denote the risk set Ri − {p1, . . . , pr−1}, for 1 ≤ r ≤ di.

The modification of the partial likelihood function due to Kalbfleisch and Prentice [2002]
is constructed by taking the average of all likelihood functions that arises when breaking the
ties in all possible ways. The contribution at each ti to the likelihood is given by

1

di!
exp

(
β>si

) ∑
P∈Qi

di∏
r=1

 ∑
l∈Ri(P,r)

exp
(
β>Zl

)−1

.

Here si be the sum over the covariates for individuals with an event at time ti, that is si =∑
j∈Di

Zj . The corresponding partial likelihood is then given by

L(β) =

k∏
i=1

exp
(
β>si

) ∑
P∈Qi

di∏
r=1

 ∑
l∈Ri(P,r)

exp
(
β>Zl

)−1

. (4.13)

This likelihood function provides an exact partial likelihood function when ties are present.
However, the computations of this likelihood can be very time consuming when the number
of ties in the data is high.

An approximation of the exact likelihood is given by Breslow [1974] and defined as

L(β) =
k∏
i=1

exp
(
β>si

)∑
j∈Ri

exp [β>Zj ]
di
. (4.14)

This likelihood is a fairly simple approximation of the exact partial likelihood, and by default
it is used by many statistical packages.

The approximation due to Efron [1977] is given by

L(β) =
k∏
i=1

exp
(
β>si

)∏di
j=1

[∑
h∈Ri

exp (β>Zh)− j−1
di

∑
l∈Di

exp (β>Zl)
] . (4.15)

This approximation is closer to the exact likelihood than the approximation in (4.14), however
when the number of ties in the data is small, the two approximations give similar results.

When no ties are present, that is when di = 1 for all i, then the likelihoods (4.13), (4.14),
and (4.15) are all equal to the partial likelihood in (4.9).
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4.1.4 A discrete model analogue to the Cox proportional hazards model

The main interest when using the Cox proportional hazards model to analyse survival data is
often the relative risk of an event. This means that the focus is often restricted to estimation
of the parameters β. However, in some studies it may be of interest to estimate the survival
information of an individual with covariatesZj . In order to obtain this information, estimate of
the baseline hazard function, the baseline cumulative hazard function, or the baseline survival
function is needed. Given an estimate of any of these three functions, estimates of the other
functions may then be determined by the relationships given in chapter 2. In the next section
an estimation method for estimating these functions are presented. The method relies on a
discrete model analogue to the Cox proportional hazards model, hence before the estimation
method is presented, this discrete model will be considered.

The discrete model considered in this section is based on the survival function for the Cox
proportional hazards model applied to a discrete model. The survival function for the Cox
proportional hazards model is given by

S(t|Z) = S0(t)exp(β>Z), (4.16)

where S0(t) is a baseline survival function.

Assume X is a discrete random variable taken values 0 < t1 < t2 < · · · . If the hazard
function corresponding to a discreate baseline survival function S0(·) at time ti has value
h(ti) = P(X = ti|X ≥ ti), then

S0(t) =
∏
ti≤t

(1− h(ti)). (4.17)

Inserting this discrete baseline survival function, the survival function relation (4.16) becomes

S(t|Z) =
∏
ti≤t

(1− h(ti))
exp(β>Z). (4.18)

Let h(ti|Z) denote the discrete hazard function for an individual with covariates Z, then

1− h(ti|Z) = P(T > ti|T ≥ ti,Z)

=
S(ti|Z)

S(ti−1|Z)

=

∏
tj≤ti(1− h(tj))

exp(β>Z)∏
tj≤ti−1

(1− h(tj))
exp(β>Z)

= (1− h(ti))
exp(β>Z).

It follows that a discrete analogue of the Cox proportional hazards model is given by

h(ti|Z) = 1− (1− h(ti))
exp(β>Z). (4.19)
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Let

dH(t|Z) = H([t+ dt]−
∣∣Z)−H(t−|Z)

= P (X ∈ [t, t+ dt)|Z) .

For dt sufficiently small, the model (4.19) may then be written as

dH(t|Z) = 1− (1− dH0(t))exp(β>Z). (4.20)

If dt is sufficiently small and dH0 is replaced with a continuous hazard function h0(t)dt, then
the model (4.20) gives the Cox proportional model (4.2).

4.1.5 Estimation of the hazard function and the survival function

Suppose a sample of n i.i.d. individuals are given and let t1, . . . , tk be the event times. Let
Di denote the set of individuals failing at time ti and let di be the number of individuals in
Di. Suppose mi individuals are censored in the interval [ti, ti+1), i = 0, . . . , k, where t0 = 0

and tk+1 = ∞ and let ti1, . . . , timi be the censoring times in the interval. The likelihood of
the data can then be written as

L =
k∏
i=1

∏
l∈Di

[
S(t−i |Zl)− S(ti|Zl)

] mi∏
l=1

S(til|Zl)

 . (4.21)

Maximisation of this likelihood with respect to the baseline survival function is obtained by
letting S0(t) = S0(ti) for ti ≤ t < ti+1. That is, the survival between two successive event
times is assumed constant. Assuming constant survival function between two successive event
times gives a discrete model in which the cumulative baseline hazard function is a sum of
discrete hazard components, that is

H0(t) =
∑
j|tj≤t

(1− αj). (4.22)

With the assumption of a discrete model where S0(t) = S0(ti) for ti ≤ t < ti+1, the likelihood
function (4.21) may be modified

L =

k∏
i=1

∏
l∈Di

[S(ti−1|Zl)− S(ti|Zl)]
∏
l∈Bi

S(ti|Zl)

 , (4.23)

where Bi denotes the set of individuals censored in the interval [ti, ti+1).

From (4.22) it follows that

dH0(t) = 1− αi, for t = ti.

That is, αi = 1−dH0(ti) may be regarded as the probability of an individual surviving through
the interval [ti, ti+1). Hence, the baseline survival function can then be written as a product of
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αi, i = 1, . . . , k. The MLE of S0(t) can then be obtained by the MLE of αi and the likelihood
(4.23) may be maximised with respect to αi rather than S0(t).

The relation between the survival function and the hazard function for the model (4.20)
may be expressed by the product

S(ti|Z) =
∏

j|tj≤ti

(1− dH(tj |Z))

=
∏

j|tj≤ti

(1− dH0(u|Z))exp(β>Z)

=
∏

j|tj≤ti

(1− (1− αj))exp(β>Z)

=
∏

j|tj≤ti

α
exp(β>Z)
j . (4.24)

Using (4.24) the term
∏
l∈Di

[S(ti−1|Zl)− S(ti|Zl)] in the likelihood function (4.23) can be
written as

∏
l∈Di

[S(ti−1|Zl)− S(ti|Zl)] =
∏
l∈Di

 ∏
j|tj≤ti−1

α
exp(β>Zl)
j −

∏
j|tj≤ti

α
exp(β>Zl)
j


=
∏
l∈Di

(1− αexp(β>Zl)
i

) ∏
j|tj≤ti−1

α
exp(β>Zl)
j

 . (4.25)

Inserting the survival function (4.24) and the expression (4.25) the likelihood in (4.23) becomes

L =

k∏
i=1

∏
l∈Di

(1− αexp(β>Zl)
i

) ∏
j|tj≤ti−1

α
exp(β>Zl)
j

 ∏
l∈Bi

 ∏
j|tj≤ti

α
exp(β>Zl)
j


=

k∏
i=1

∏
j∈Di

(
1− αexp(β>Zj)

i

) ∏
l∈Ri−Di

α
exp(β>Zl)
i

 . (4.26)

Assume the unknown parameters β are estimated. The MLE of αm, m = 1, . . . , k may then be
found by maximising the log likelihood function corresponding to (4.26). Taking the logarithm
of this likelihood the log likelihood function is

l =

k∑
i=1

∑
j∈Di

log

(
1− αexp(β>Zj)

i

)
+

∑
l∈Ri−Di

exp
(
β>Zl

)
log (αi)

 (4.27)

Differentiating (4.27) with respect to αm, m = 1, . . . , k gives

∂

∂αm
log(L) = −

∑
j∈Dm

exp
(
β>Zj

)
1− αexp(β>Zj)

m

· α
exp(β>Zj)
m

αm
+
∑
l∈Rm

exp
(
β>Zj

)
αm

−
∑
l∈Dm

exp
(
β>Zj

)
αm
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The MLE of αm may then be obtained as a solution to the equation∑
j∈Dm

exp
(
β>Zj

)
1− αexp(β>Zj)

m

=
∑
l∈Rm

exp
(
β>Zj

)
. (4.28)

When there are no ties in the data, that is when dm = 1 the solution of (4.28) is given by

α̂m =

1−
exp

(
β̂>Zm

)
∑

l∈Rm
exp

(
β̂>Zl

)
exp(−β̂>Zm)

,

where β̂ is the MLE of the unknown parameter β. When ties occur in the data, no closed
form solution exists to the equation (4.28), and hence numerical methods must be applied to
solve the equation.

Given the estimates α̂m, m = 1, . . . , k, the estimate of the baseline hazard function is then

ĥ0(t) = 1− α̂m. (4.29)

for tm ≤ t < tm+1. And the baseline survival function S0(t) can be estimated by

Ŝ0(t) =
∏

m|tm≤t

α̂m. (4.30)

The estimated value of S0(t) is zero for t ≥ tk, unless censored survival times occur at times
greater than tk, in which case Ŝ0(t) is undefined for t > tk.

By equation (2.6) the cumulative baseline hazard function H0(t) can be estimated by

Ĥ0(t) = − ln
(
Ŝ0(t)

)
= −

∑
m|tm≤t

ln (α̂m) . (4.31)

The estimates (4.29), (4.30), and (4.31) can then be used to estimate the survival information
for an individual with covariates Z. An estimate of the hazard function for an individual with
covariates Z is given by

ĥ(t|Z) = ĥ0(t) exp
[
β̂>Z

]
, (4.32)

where ĥ0(t) is the estimate of h0(t) given in (4.29). Furthermore, the corresponding cumulative
hazard function can be estimated by integrating both sides of equation (4.32), that is∫ t

0
ĥ(u|Z)du = exp

(
β̂>Z

)∫ t

0
ĥ0(t)du,

from which it follows that

Ĥ(t|Z) = exp
(
β̂>Z

)
Ĥ0(t).

From equation (2.7) it follows that the survival function for the individual with covariates Z
can be estimated by

Ŝ(t|Z) =
(
Ŝ0(t)

)exp(β̂>Z)
.



5
Pseudo-observations

Unless otherwise stated is this chapter written based on Andersen et al. [2003], Klein and
Andersen [2005], and Andersen and Perme [2010].

In this chapter jackknife pseudo-observations are considered as a method for analysing
survival data. The method were first proposed by Andersen et al. [2003] as an approach
for performing generalised linear regression analysis on survival data. The theory of pseudo-
observations for regression analysis is based on the pseudo-observations known from the jack-
knife method Miller [1974]. The jackknife is a non-parametric method used to study the
precision of some estimate of an unknown population parameter. Pseudo-observations for
regression analysis are an extension of this method, where estimators based on the entire
sample are used to perform regression analysis on the individual level. Pseudo-observations
address one of the main problems with survival data, i.e. not having appropriate responses
for all individuals in the study. This means that the pseudo-observations may also be used for
graphical assessment of the model assumptions in a regression analysis.

The basic idea of the pseudo-observations is simple. Let X1, . . . , Xn be i.i.d. copies of a
random variable X. Furthermore, let θ = θ(X) be a parameter of the form

θ = E[φ(X)] =

∫
φ(x) dFX(x),

where φ(·) is some function of X. The function φ(·) and thereby θ may be multivariate.

Suppose an unbiased (or approximately unbiased) estimator θ̂ = θ̂(X) of θ is available,
that is

E[θ̂] =

∫
θ̂(x)dFX(x) = θ.

Here the notion θ̂(X) indicates that the estimator is based on the entire sample
X = {X1, . . . , Xn}. For each individual in the study, the pseudo-observations know from the
jackknife theory are defined in terms of the estimator θ̂.

28
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Definition 5.1 Let X1, . . . , Xn be i.i.d. random variables and let θ̂(X) be an unbiased
(or approximately unbiased) estimator of the parameter θ = E[φ(X)]. For each Xj the
pseudo-observation is defined by

θ̂j(X) = nθ̂(X)− (n− 1)θ̂−j(X), j = 1, . . . , n,

where θ̂−j(·) is an estimator similar to θ̂(·) based on the observations i 6= j.

Note that if the estimator θ̂ is chosen as the sample mean, then the j’th pseudo-observation
is simply given by φ(Xj). In general, the pseudo-observation θ̂j may be considered as the
contribution of subject j to the estimate of E[φ(X)] based on a sample of size n.

The intuition for performing regression analysis based on the pseudo-observations relies
on some appealing features concerning the expected value of the pseudo-observations. Let
Z1, . . . ,Zn be i.i.d. covariates, where each Zj = [Zj1, . . . , Zjp]

>. Then it is easily seen
that θ̂ is also an unbiased estimator of θ with respect to the joint distribution of X and Z.
Furthermore,

θ =

∫
φ(x)dFX(x) =

∫ ∫
φ(x)dFXZ(x,Z) =

∫
E[φ(X)|Z = z]dFZ(z), (5.1)

which means that θ may be represented as the marginal mean of the conditional expectation
of φ(X) given Z. Replacing the distribution FZ(·) in (5.1) with the empirical distribution
F̂Z(·), one can interpret θ̂ as an estimator of the average of E[φ(X)|Z].

Define the random variables

θj(Zj) = EX [φ(Xj)|Zj ], j = 1, . . . , n, (5.2)

and let θ̃(Z) denote the average of θj(Zj), that is

θ̃(Z) =
1

n

∑
i

θi(Zi).

Then

EXZ [θ̃(Z)] = EZ [θ̃(Z)] =
1

n

∑
i

EZ [θi(Zi)] = θ,

which means that θ̃(Z) is also an unbiased estimator of θ with respect to the joint distribution
FXZ(·, ·). Consider now the leave-one-out estimator

θ̃−j(Z) =
1

n− 1

∑
i 6=j

θi(Zi),

which is based on the observations i 6= j. Then θj(Zj) in (5.2) may be represented as

θj(Zj) = nθ̃(Z)− (n− 1)θ̃−j(Z).
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Similar calculations applied to θ̂(X) defines the pseudo-observation θ̂j(X) from definition 5.1,

θ̂j(X) = nθ̂(X)− (n− 1)θ̂−j(X).

Since EXZ [θ̂(X)] = θ = EXZ [θ̃(Z)] it follows that θ̂j(X) has the same expectation as θj(Zj)
with respect to FXZ(·, ·), that is

EXZ [θ̂j(X)] = EXZ [θj(Zj)]. (5.3)

It follows that the pseudo-observation θ̂j(X) and the conditional mean θ(Zj) estimates the
same parameter in the sense of (5.3).

Example 5.1 (Survival probabilities) Let X1, . . . , Xn be n i.i.d. survival times with sur-
vival function S(t0) = E[1[Xj > t0]] a time t0. In this example the function of interest φ(·) is
given by

φ(Xj) = φt0(Xj) = 1[Xj > t0], j = 1, . . . , n,

and the parameter θ is the survival function S(·) evaluated at time t0.

The survival function may be estimated by the Kaplan-Meier estimator Ŝ(·), which is an
approximately unbiased estimator of S(·). The j’th pseudo-observation is then given by

Ŝj(t0) = nŜ(t0)− (n− 1)Ŝ−j(t0), (5.4)

where Ŝ−j(·) is the Kaplan-Meier estimator of S(·) based on the observations i 6= j.

A multivariate version of this is to study a grid of fixed time points t1, . . . , tk simultaneously.
In this case

φ(Xj) = [φt1(Xj), . . . , φtk(Xj)] = [1[Xj > t1], . . . ,1[Xj > tk]] ,

with parameters

θ = [θ(t1), . . . , θ(tk)] = [S(t1), . . . , S(tk)].

�

When θ is a multivariate parameter of dimension k, then k pseudo-observations are defined
for each individual j as follows

θ̂jl = nθ̂(tl)− (n− 1)θ̂−j(tl), l = 1, . . . , k.

Example 5.2 (The restricted mean survival time) Let the setting be as in example 5.1.
The restricted mean survival time is defined as µτ = E[min(X, τ)], for τ > 0. In this example
the function φ(·) is given by

φ(X) = φτ (X) = min(X, τ),
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and the parameter of interest is θ = µτ . The restricted mean may be written in terms of the
survival function µτ =

∫ τ
0 S(t)dt and µτ may be estimated by

µ̂τ =

∫ τ

0
Ŝ(t)dt,

where Ŝ(·) is the Kaplan-Meier estimator. The j’th pseudo-observation is then given by

µ̂τj = n

∫ τ

0
Ŝ(t)dt− (n− 1)

∫ τ

0
Ŝ−j(t)dt =

∫ τ

0
Ŝj(t)dt, j = 1, . . . , n, (5.5)

where Ŝj(·) is the pseudo-observation given in example 5.1.

�

Example 5.3 (Competing risks cumulative incidences function) Consider a compet-
ing risks analysis, that is an analysis in which a subject may fail from any one of K causes.
This may be represented by a latent failure time approach, in which it is assumed that there are
K potential failure times X̃1, . . . , X̃K for each individual. One observes X = min(X̃1, . . . , X̃K)

and a variable ε = r if X = X̃r, r = 1, . . . ,K.

The competing risks probabilities may be summarised by either the cause specific hazard
function or the cumulative incidence function. The cause specific hazard function for cause r
is defined by

hr(t) = lim
∆t→0

P(t ≤ X̃r < t+ ∆t | X ≥ t)
∆t

, r = 1, . . . ,K.

This function gives the instantaneous risk of failure due to cause r, given that no failure has
occurred prior to time t. The cumulative incidence function for cause r is defined by

Fr(t) = E[1[X ≤ t, ε = r]] =

∫ t

0
hr(u) exp

[
−
∫ u

0

K∑
i=1

hi(v)dv

]
du. (5.6)

This function gives the probability of failing due to cause r prior to time t in the presence of
all causes of failure.

In this example the parameter of interest is the cumulative incidence function for cause r
θ = Fr(t) and the function φ(·) is given by φ(X) = φtr(X) = 1[X ≤ t, ε = r].

Suppose a right-censored sample with n individuals are given. For each individual j, the
data consists of the triplet (Tj , δj , εj), where Tj is the study time, δj indicates whatever the
j’th individual are censored or not, and εj indicate which competing risks caused the event.
Let Y (t) denote the risk set at time t and let Nr(t) be a counting process given the number
of individuals failing due to cause r prior to time t, that is

Nr(t) =
n∑
j=1

1[Tj ≤ t, δj = 1, εj = r].
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The cumulative incidence function (5.6) may be estimated by the Aalen-Johansen estimator
given by

F̂r(t) =

∫ t

0

∏
v<u

(
1−

∑K
r=1 dNr(v)

Y (v)

)
dĤr(u),

where Ĥr(·) is the Nelson-Aalen estimator for the cumulative cause-r specified hazard function
given by

Ĥr(t) =

∫ t

0

dNr(u)

Y (u)
.

The Aalen-Johansen estimator is an approximately unbiased estimator of Fr(t) Andersen et al.
[1993]. The j’th pseudo-observation corresponding to Fr(·) at time t0 is then given by

F̂jr(t0) = nF̂r(t0)− (n− 1)F̂−jr (t0), r = 1, . . . ,K. (5.7)

�

Before any further comments on regression analysis with pseudo-observations, some general
properties of the pseudo-observations are considered. In the following let Tj = min(Xj , Cj)

be the study time for individual j and let δj = 1[Xj ≤ Cj ].

5.1 Properties of the pseudo-observations

Studies of the pseudo-observations and their properties have so far been restricted to the case
of the survival function (example 5.1), the restricted mean survival time (example 5.2), and
the competing risks cumulative incidence function (example 5.3).

In a study of pseudo-observations in the context of the jackknife method, Tukey [1958]
conjectured that the pseudo-observations may be treated as though they are i.i.d. Graw et al.
[2009] showed that this is indeed the case when the pseudo-observations are calculated based
on the competing risks cumulative incidence function and when n approaches infinity. In
the case of no competing risks, the estimated cumulative incidence function F̂r(t) reduces
to 1 − Ŝ(t) Fleming and Harrington [1991] and hence the property of i.i.d. also holds for
pseudo-observations defined for the survival function and the restricted mean survival time.
The results have not yet been proven in a general setting. Furthermore, it follows directly
from the definition of the pseudo-observation and the unbiased assumption of θ̂ that each
pseudo-observation is an (approximately) unbiased estimator of θ.

Figure 5.1 shows how the pseudo-observation for the survival function in example 5.1 may
change over time. Note that the pseudo-observation is defined for all individuals at all time



5. Pseudo-observations 33

points no matter study time or censoring status for each individual. Figure 5.1 (a) shows
the pseudo-observation for an individual in a data set where no censoring occur. In this case
the formula for Ŝj(t) in (5.4) simplifies to the indicator function Ŝj(t) = 1[Xj ≥ t]. Hence
the pseudo-observation is equal to one while subject j is still alive and then jumps down to
zero when he fails. Figure 5.1 (b) and (c) shows the pseudo-observation for an individual
with event time Xj = 1 and an individual with censoring time Cj = 1, respectively, in a
data with roughly 25% censoring (n = 250). As the pseudo-observation for each individual
is calculated using the Kaplan-Meier estimator based on the entire sample, the value of the
pseudo-observation changes at each event time in the data and it is constant between two
successive event times. It is observed that the pseudo-observation for an individual still at
risk at a given time point is above one. This is caused by the lowering of the risk set before
Tj when omitting individual j in Ŝ−j(·). The risk set is decreasing over time, this means
that the difference between Ŝ(·) and Ŝ−j(·) is increasing with t and hence the value of the
pseudo-observation is likewise increasing. For an individual with observed event time (figure
5.1 (b)) the end of follow up causes a jump in the value of the pseudo-observation, which is
due to omitting the event in Ŝ−j(·). In figure 5.1 (c) the censoring of the event time causes a
turning point in the value of the pseudo-observation. As the value of the pseudo-observation
is constant between two successive event times, the turning point is at the first event time
after the censoring time Cj = 1.
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Figure 5.1: The pseudo-observation for the survival function over time. (a) The pseudo-observation for an
individual with event time Xj = 1 in a data set with no censoring. (b) The pseudo-observation for an

individual with event time Xj = 1 in a censored data set. (c) The pseudo-observation for an in individual
with censored event time Cj = 1.

Figure 5.2 shows the pseudo-observations for the restricted mean survival time in example
5.2 for all individuals in a data set with no censoring. The dotted line shows the truncated
time τ = 4 and the dashed line shows the equality between the pseudo-observation and the
observed event time. When no censoring occur in the data, the pseudo-observation for the
survival function reduces to Ŝj(t) = 1[Xj > t]. Hence in this case, equation (5.5) implies
that the pseudo-observation for the restricted mean is equal to the observed event time when
Xj ≤ τ and equal to τ otherwise.

Figure 5.3 shows plots of the pseudo-observation for the restricted mean survival time
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Figure 5.2: The pseudo-observations for the restricted mean survival time for all individuals in a data set
with no censoring. The dotted line marks the truncated time and the dashed line marks the equality between

the pseudo-observation and the observed event time.

for all individuals in the data with various degree of censoring (top=25%, middle=50%,
bottom=75%) and various values of τ (left=0.5, middle=1, right=2). In a censored data
set, the pseudo-observation for the survival function is above one before an event or censoring
time, see figure 5.1 (b) and (c). For an individual with censored event time, this pseudo-
observation remain positiv after the time of censoring, while this pseudo-observation for an
individual with observed event time become negative after the time of event. Hence for Cj ≤ τ ,
it follows from equation (5.5) that the pseudo-observation for the restricted mean survival is
greater than the actual event time for censored individuals. In the case of 25% censoring,
the pseudo-observations for individuals with observed event time seems to follow the actually
observed event time quite well. In the case of 50% and 75% censoring the pseudo-observations
are mostly below the true event time. The somewhat remarkable picture in the case of 75%

censoring with estimated survival times below zero does of course not make sense from a
practical perspective. However, 75% censoring are contrary unlikely in an empirical setting.

Figure 5.4 shows the pseudo-observation for the cause-1 cumulative incidence function F1(·)
in the case where no censoring occur in the data. The plots show how the pseudo-observation
may develop over time for a single individual. Figure 5.4 (a) shows the pseudo-observation
for an individual failing due to cause 1 at time Xj = 1 and figure 5.4 (b) shows the pseudo-
observation for an individual failing due to cause 2. Similar to the pseudo-observation for the
survival function, the pseudo-observation for F1(t) reduces to the indicator F̂j(t) = 1[Xj ≤
t, ε = 1] in the case of no censoring, see appendix A.1.

Figure 5.5 shows the pseudo-observation corresponding to F1(·) in a data set where censor-
ing occur. The figure shows the pseudo-observation over time for three different cases. Figure
5.5 (a) shows the pseudo-observation over time for an individual censored at time Cj = 2. Fig-
ure (5.5) (b) and (c) shows the pseudo-observation for individuals with observed event time;
an individual failing due to cause 1 and an individual failing due to cause 2, respectively. For
all three cases the pseudo-observation is decreasing below zero at the beginning of the study.
For the individual with an observed event time due to cause 2 the pseudo-observation con-
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Figure 5.3: The pseudo-observation for the restricted mean for each individual with various degree of
censoring (top=25%, middle=50%, bottom=75%) and various choices of τ (left=0.5, middle=1, right=2).

Censored individuals are marked with grey dots and uncensored individuals are marked with black dots. The
dotted line marks the truncated time and the line of equality is marked by the dashed line.
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Figure 5.4: The pseudo-observation for the cumulated incidence function (for cause 1) over time in a data
with no censoring. (a) The pseudo-observation for an individual failing due to cause 1. (b) The

pseudo-observation for an individual failing due to cause 2.

tinue to decrease. For the individual with censored event time the pseudo-observation starts
to increase after censoring time. As for the pseudo-observation for the survival function, the
turning point is at the first event time occurring in the data after the observed censoring time.
For the individual with observed event time due to cause 1 the pseudo-observation jumps to
some value above one at the observed event time Xj = 2 and then continue to decrease.
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Figure 5.5: The pseudo-observation for the cumulative incidence function (for cause 1) in time in a censored
data set. (a) The pseudo-observation for a censored individual. (b) The pseudo-observation for an individual

failing due to cause 1. (c) The pseudo-observation for an individual failing due to cause 2.

5.2 Regression models based on pseudo-observations

When analysing survival data one is often interested in describing the survival experience of an
individual based on some covariates. Traditional regression models for survival data is often
based on the hazard function, which for many applied settings is a suitable approach. However,
in some situations it might be desirable with more general regression models when analysing
survival data. In this section, pseudo-observations are used for performing generalised linear
regression analysis on survival data.
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Consider the generalised linear model

g(θj) = α+ β>Zj , (5.8)

where g(·) is some link function and θj is given in (5.2).

If a fully parametric model is specified, the model (5.8) may be fitted using standard
maximum likelihood estimation. However, as noted previously a fully parametric model may
not be appropriate in some applied settings. Andersen et al. [2003] suggested to replace the
function φ(·) by a pseudo-observation, and then estimate the unknown parameters by using
the generalised estimation equation (GEE) based on the pseudo-observations.

Note that, for each individual j the parameter θj may be multivariate, that is
θj = [θj1, . . . , θjk]

>. Hence, for each θjl, l = 1, . . . , k one may specify a model of the form

g(θjl) = αl + β>Zj , (5.9)

where the notation αl indicates that the intercept may depend one the time tl.

Allowing the intercept in the model (5.9) to depend on time gives k + p parameters β∗ =

[α1, . . . , αk, β1, . . . , βp]
> to be estimated. When the GEE is used for estimation, the estimate

of β∗ is given as the solution to the equation

U(β∗) =

n∑
j=1

[
∂

∂β∗
g−1(α+ β>Zj)

]>
V −1
j

[
θ̂j − g−1(α+ β>Z)

]
=

n∑
j=1

Uj(β
∗) = 0, (5.10)

where g−1(α + β>Zj) is short for the k-vetor with elements g−1(αl + β>Zj), l = 1, . . . , k.
The matrix Vj is a k× k working covariance matrix of the pseudo-observations θ̂j , which may
account for the correlation inherent in the pseudo-observations defined for each individual.

Let β̂∗ denote the solution to (5.10). As the pseudo-observations are used for the estimation
rather than the observed data, the usual asymptotic properties of the estimates following
from the GEE Liang and Zeger [1986] do not directly apply to this setting. Graw et al.
[2009] studied the asymptotic properties of β̂∗ obtained from the estimation equations (5.10),
based on pseudo-observations corresponding to the cumulative incidence function. The results
showed that the estimated regression parameters β̂∗ are asymptotic normally distributed and
consistent estimates of β∗. The mean of β̂∗ is β∗ and the covariance matrix can be estimated
by the sandwich estimator

Σ̂ = I(β̂∗)−1v̂ar(U(β̂∗))I(β̂∗)−1,

where

I(β∗) =
n∑
j=1

(
∂

∂β∗
g−1(β∗>Zj)

)>
V −1
j

(
∂

∂β∗
g−1(β∗>Zj)

)
, v̂ar(U(β∗)) =

n∑
j=1

Uj(β
∗)Uj ∗ (β∗)>.
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The central part of the proof by Graw et al. [2009] is the finding that

E[F̂jr(t)|Zj ] = g−1(β∗>Zj) + op(1), (5.11)

from which it follows that E[U(β∗)] = 0 for the true parameter β∗.

The results found by Graw et al. [2009] relies on two assumptions; the censoring times Cj is
independent of (Xj , δj ,Zj) and only time points t < τ such that SC(τ) > ν > 0 are considered.
Here SC(·) denotes the survival function for the censoring distribution. By arguments as in
section 5.1, the asymptotic results also holds for pseudo-observations corresponding to the
survival function in example 5.1 and the restricted mean survival time in example 5.2. The
results have not been proven in a general setting.

Notice that once the pseudo-observations have been calculated, one might consider a num-
ber of models for analysing the data. However, the number and position of time points, for
which the pseudo-observations are calculated, is a choice which must be made prior to the
analysis. One time point is enough to obtain estimates of the regression parameter, however,
more times point may be more efficient for capturing the trend in the event distribution. One
choice is to place the time points at equally spaced percentiles of the data. This choice will
place focus at regions with dense observed study times. Another choice is to place the time
points at equally spaced study times, which will give a more varied representation of the ob-
served data. However, the portion and position of censored data may also have some impact
one the best suitable choice, cf. the plots in section 5.1. Klein and Andersen [2005] studied the
number of time points in the context of competing risks. The results showed that increasing
the number of equally spaced time points did not have a significant impact on the precision
of the estimated regression parameters. Although this is confirmed in the example below, one
may conjecture that the best choice is related to the structure of the observed data.

Example 5.4 (Regression analysis on the survival function) Consider the pseudo-
observations for the survival function in example 5.1. In that example the function φ(·)
was given as the indicator function φt0(Xj) = 1[Xj > t0]. Suppose one wishes to perform
regression analysis on this function. The outcome of the regression analysis θj is then given
by S(t0|Zj). Choosing the link function as the cloglog-function, one gets the model

cloglog(S(t0|Zj)) = log (− log (S(t0|Zj)) , j = 1, . . . , n

= α0 + β>Zj , (5.12)

where α0 = log (H0(t0)) and H0(·) is a cumulative hazard function. The model (5.12) cor-
respond to the Cox proportional hazards model as this model has survival function given
by

S(t|Zj) = S0(t)exp(β>Zj) = exp
(
−H0(t) exp

(
β>Zj

))
.

The model (5.12) may be extended to a multivariate model by simultaneous considering a grid
of time points t1, . . . , tk. A model is then specified at each time point tl by

log (− log (S(tl|Zj))) = αl + β>Zj , l = 1, . . . , k, (5.13)
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where αl = log(H0(tl)).

To illustrate the use of pseudo-observations in regression analysis, the model (5.13) is
fitted to a simulated data set. Event times (n = 250) were simulated from a Cox proportional
hazards model with constant baseline hazard function h0(t) = 2.5. For each individual a
uniform distributed covariate z1 ∼ Uni(−1, 1) and a normal distributed covariate z2 ∼ N(0, 1)

were simulated with parameters β1 = 3 and β2 = −1, respectively. Exponentially distributed
data were superimposed to obtain roughly 25% censored data. For each individual a pseudo-
observation were calculated at equally spaced time points within the range of the observed
times. The number of time points were given as 5, 10, 20, and all observed times (250),
respectively. The pseudo-observations for each individual, calculate at different time points,
were assumed to be independent. 500 replicates of the simulated data were generated and for
each replication the model (5.13) were fitted. For comparison the Cox proportional hazards
model were likewise fitted to the data.

Table 5.1 shows the results of the analysis based on 10 time points. The table shows
the average of the 500 estimated regression parameters and their corresponding standard
deviations together with the average of the standard errors of the regression parameters. The
GEE model based on the pseudo-observations seems to perform quite well, though with a small
bias on the estimated regression parameters. Comparing with the traditional Cox proportional
hazards model, both the standard deviation of the 500 replicated analysis and the average of
the standard error of the regression parameters seems to be higher for the model based on the
pseudo-observations. Though, the standard deviation and the standard errors are agreeable.

For comparison the average of the regression parameters and their standard errors for the
analysis based on 5, 20, and all time points are shown i figure 5.6. Figure 5.6 (a) shows the
estimates of the parameter β1 = 3 and figure 5.6 (b) shows the estimate of the parameter
β2 = −1. These plots indicate that the performance of the model seems to be quite robust
with respect to the number of time points. No precision seems to be gained by including all
time points in the study.

Andersen et al. [2003] suggested to estimate the baseline hazard function by averaging
over the point estimates α̂l. The logarithm of the cumulated baseline hazard function can
be written as log(H0(t)) = log(h0(t)) + log(t). The baseline hazard function can hence be
estimated by

ĥ0 = exp

[
1

k

k∑
i=1

log
(
Ĥ0(ti)

)
− log(ti)

]
.

The mean of the 500 estimated baseline hazard functions based on 10 time points was
ĥ0(t) = 2.56, which is in agreement with the true baseline hazard function h0(t) = 2.5 (SD =

0.26).
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Pseudo-observations The Cox proportional hazards model
Parameters Est. SDsim SEest Est. SDsim SEest

β1 3.06 0.25 0.25 3.02 0.20 0.20

β2 −1.02 0.11 0.11 −1.00 0.09 0.09

Table 5.1: The results after fitting a GEE model based on 10 pseudo-observations for each individual and
the Cox proportional hazards model. The results shows the average of the estimated regression parameters
and their standard deviations of 500 replicates of the data. Furthermore, the averages of the standard errors

of the regression parameters are likewise given.
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Figure 5.6: The results after fitting a GEE model based on pseudo-observations. The plots show the average
of the estimated regression parameters and their corresponding standard errors for models based on 5, 10, and
20 equally spaced time points. Further, estimates for a model based on all observed study times (250) are
likewise given. (a) Shows the estimates of the parameter β1 = 3. (b) Shows the estimates of the parameter

β2 = −1.

�

The results from the example above show that the GEE model based on the pseudo-
observations are not quite competitive to the traditional Cox proportional hazards model.
However, the strength of the method based on the pseudo-observations arises in situations
where no standard models exist. An example is regression analysis on the restricted mean
survival time µτ . From standard regression models on the hazard function it is possible to
assess the effect of the covariates on the restricted mean survival time by the relations given
in chapter 2. However, often the assumed model relating the covariates to the hazard function
gives rises to complicated relations between µτ and the covariates. Pseudo-observations allow
for direct modelling between the covariates and restricted mean survival time.

Correlation structure in the GEE model

In this project the GEE model is used for the regression analysis. However, notice that once
the pseudo-observations have been calculated, one might consider analysing the data by other
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models for longitudinal data. An important property of the GEE model is the incorporation
of the correlation structure inherent in the pseudo-observations for each individual. Further,
one may even use some incorrect working covariance matrix, but the resulting regression
parameters are still consistent and asymptotic normally distributed.

The GEE model estimates the parameters β∗ by solving the equations given in (5.10). It
is assumed that Vj can be expressed in terms of a correlation matrix Rj

Vj = A
1/2
j RjA

1/2
j ,

where Aj is a diagonal matrix with elements Var[θ̂jl]. Further, it is assumed that the variance
Var[θ̂jl] can be written as a function of the mean value µjl = E[θ̂jl|Zj ], that is Var[θ̂jl] = v(µjl),
for some function v(·). The choice of the correlation matrix Rj will affect the efficiency of the
estimates, and in general it is desirable to choose Rj close to the true correlation structure in
the data. Fitzmaurice et al. [2008]

Klein and Andersen [2005] studied the choice of the working covariance matrix in the
competing risks situation based on the pseudo-observation for the cause-r cumulative incidence
function. In this study three different covariance matrices were considered. The simplest is
the independence, that is the pseudo-observations for each individual, calculated at k different
time points, are assumed to be independent and the correlation matrix Rj is chosen to be
the k × k identity matrix I. The second choice of the working covariance matrix is the exact
covariance matrix when no censoring occurs in the data. When no censoring occur in the data
the pseudo-observation (5.7) reduces to the indicator function of a type r event occurring prior
to time t, see figure 5.4. This means that

Cov
(
θ̂jl, θ̂jm

)
= Fr(tl) [1− Fr(tm)] , tl ≤ tm.

Let Fr(tl|Zj) = g−1(αl + β∗>Zj), it follows that an exact covariance matrix is given by

vjlm = Fr(tl|Zj)[1− Fr(tm|Zj)], tl ≤ tm, (5.14)

for j = 1, . . . , n and l,m = 1, . . . , k. The third covariance matrix considered by Klein and
Andersen [2005] is a common covariance matrix V , which is defined by the sample covariance
matrix with elements

vlm =
1

n

n∑
j=1

(θ̂jl − θ̄l)(θ̂jm − θ̄m), (5.15)

where θ̄l is given by the sample mean

θ̄l =
1

n

n∑
j=1

θ̂jl.

In terms of bias of the regression parameters Klein and Andersen [2005] found no systematic
different between the three choices of working covariance matrices.
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The exact covariance matrix The common covariance matrix
Parameters Est. SDsim SEest Est. SDsim SEest

β1 3.06 0.25 0.25 3.08 0.25 0.26
β2 -1.02 0.11 0.11 -1.02 0.12 0.11

Table 5.2: The results of fitting a GEE model based on the pseudo-observations with exact correlation
structure and the common correlation structure. The table shows the average of the 500 estimated regression
parameters and the corresponding standard deviation. Further, the average of the 500 estimated standard

error are likewise given.

Similar studies have not been conduct for regression analysis based on pseudo-observations
for the survival function and the restricted mean. However as mentioned previously, the
Kaplan-Meier estimator may be regarded as a special case of the Aalen-Johansen estimator
with no competing risks. Hence, working covariance matrices similar to those mentioned
above may be applied in regression analysis based on the pseudo-observations for the survival
function and the restricted mean. In fact, when no censoring occur in the data, pseudo-
observations for the survival function reduce to the indicator function Ŝj(t) = 1[Xj ≥ t] and
an exact covariance matrix similar to (5.14) may be chosen with elements

vjlm = Sj(tl|Zj) [1− Sj(tm|Zj)] , tl ≤ tm. (5.16)

Example 5.5 (Example 5.4 continued) In example 5.4 a model corresponding to the Cox
proportional hazards model were introduced by fitting a GEE model based on the pseudo-
observations for the survival function. In that example the pseudo-observations calculated for
each individual were assumed to be independent. For comparison, consider now a GEE model
with working covariance matrix given by the exact covariance matrix (5.16) and a common
covariance matrix (5.15), respectively. Let the setting be as in example (5.4). In table 5.2
the mean of the estimated parameters and their standard deviation is given together with the
mean of estimated standard errors of the parameters estimated by the sandwich estimator,
see table 5.1 for the results based on the independence assumption. In agreement with Klein
and Andersen [2005] no significant different is found between the three different covariance
matrices.

�

5.3 Pseudo-residuals

Assessment of model adequacy is an important part of the data analysis. If the model assump-
tions are violated the results of the model are invalid. A residual plot is a very common method
to assess the model assumptions for a fitted regression model. However, graphical methods
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are often improper for time-to-event data due to censoring in the data. Pseudo-observations
may be used in graphical evaluations of regression models for incomplete data. Perme and An-
dersen [2008] suggested to use pseudo-residuals to evaluate the model assumptions of the Cox
proportional hazards model and the additive hazard model. These pseudo-residuals may also
be used in the more general setting where regression models are based on pseudo-observations
as discussed in section 5.2.

Checking the Cox proportional hazards model using pseudo-observations

Consider a Cox proportional hazards model as given in (4.2). The pseudo-observations for the
survival function in example 5.1 may be used to assess the model assumptions for this model.

For each individual in the study, let Ŝ(t|Zj) denote the predicted survival function for the
fitted Cox proportional hazards model. Perme and Andersen [2008] suggested to evaluate the
assumptions of the Cox proportional hazards model by comparing the pseudo-observation with
the predicted value of the survival function for each individual. That is, the pseudo-residuals
are defined by

ε̂j(t) =
Ŝj(t)− Ŝ(t|Zj)√
Ŝ(t|Zj)[1− Ŝ(t|Zj)]

, j = 1, . . . , n. (5.17)

If no censoring occur in the data, the pseudo-observation Ŝj(t) reduced to the indicator of
Xj > t. Hence, the denominator of (5.17) is an estimate of the conditional standard error of
Ŝj(t) given Zj in the case of no censoring.

The pseudo-residuals defined in (5.17) may be used to check the proportional hazards
assumption for the Cox proportional hazards model and for determining the functional form
of a covariate which best explain the effect on the conditional hazard function. Suppose a
Cox proportional hazards model (4.2) has been fitted to a given data set. To determine if
the model is correctly specified, the residuals (5.17) are plotted against a covariate for each
individual j at a number of fixed time points. If the model fits the data well, no trend should
be seen in the residual plots.

Figure 5.7 shows the pseudo-residuals of a fitted Cox proportional hazards model for
four different data sets. Each data set (n = 1000) were fitted using a single covariate
Z ∼Unif(−1, 1) with an assumed linear effect of Z. The four data sets were simulated from
the model (4.2) with constant baseline hazard function h0(t) = 2.5; one data set were con-
structed to meet the assumptions of the model and three data sets were constructed such
that the model assumptions are violated. Exponential distributed data were superimposed to
obtain roughly 25% censored data. The residuals were calculated at four different time points
corresponding to the 20’th, 40’th, 60’th, and 80’th percentiles of the observed study times.

The top row of figure 5.7 shows the pseudo-residuals for a data set where the assumptions of
the fitted model are met. The data were constructed to follow the model described above with
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Figure 5.7: The pseudo-residuals for four different data sets calculated at four different time points. The top
row shows the pseudo-residuals for a data set, where the assumptions of the model are met. The three other
rows shows the pseudo-residuals for data sets where the assumptions of the model are violated. The columns

are the pseudo-residuals calculated at four different time point.

parameter β = −2 and a linear effect of the covariates. The second row of the figure shows
the pseudo-residuals for a data set where the true regression parameter β is constructed as a
function of the time t; β(t) = 2 for t ≤ τ and β(t) = −2 for t > τ . The value of τ were chosen
as the expected median of the event times. This construction implies that the proportional
hazards assumption of the model (4.2) is violated. The effect of Z is assumed linear. The third
row of the figure shows the pseudo-residuals for a data set where the parameter β = −2 is
constant in time, but the effect of the covariates is quadratic rather than linear. The residuals
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plotted in the bottom row of figure 5.7 are calculated based on a data set where both the
effect of Z is quadratic and the regression parameter is a function of time as described above.

The grey dots in figure 5.7 represent the residuals and the black curve is the smoothed
average of the residuals calculated by using local polynomial regression fitting. For all 16

plots, the residuals tend to fall in three groups. The top group consists of the individuals still
at risk at the time at which the pseudo-observations are calculated. The pseudo-observation
for these individuals is above one and increases with time until either event or censoring, see
figure 5.1 (b) and (c). The bottom group of residuals belongs to the individuals with an
event time prior to the time at which the pseudo-observations are calculated. The pseudo-
observations for these individuals are negative, see figure 5.1 (b) and hence the pseudo-residuals
for these individuals are likewise negative. The group in the middle consists of the individuals
with a censoring time prior to the time point at which the pseudo-observations are calculated.
The pseudo-observations for these individuals remain positive, see figure 5.1 (c), and hence the
pseudo-residuals of these individuals will be in between the pseudo-residuals for the individuals
still at risk and the pseudo-residuals for the failed individuals.

The trend in the data is illustrated by the smoothed average given by the black curves in
the residual plots. The plots in the top row of figure 5.7 were based on a data set were the
assumptions of the model are meet. For all of the four time points, the smoothed average
seems to be rather horizontal and hence the assumptions of constant parameter and no non-
linear effect of the covariates are well reflected in the plots. The second row of the figure were
based on the data set with the regression parameter given as a function of time t. The change
form positive β to negative β at the expected median event time is seen in the change of the
smoothed curve from the two leftmost plots to the two rightmost plots. The third row in the
figure was based on a data set with a quadratic effect of the covariates. This quadratic effect
of the covariates is quite obvious from the residual plots at all four time points. Further, the
shape of the curve is fairly similar at all four time points; this reflects the constant parameter
over time. At the bottom row of the figure, the smoothed curves indicate both the quadratic
form of the covariate and the functional form of the true regression parameter. Though, the
quadratic form of Z is not as obvious as seen in the third row of the figure.

From this example it appears that the pseudo-residuals provide a useful method for assess-
ment of the model assumptions in a Cox proportional hazards model.



6
Regression splines

This chapter is written based on Green and Silverman [1994] and Hastie et al. [2001].

In the previous chapter pseudo-observations were used for generalised linear regression
analysis of survival data containing censored event times. The method were used to define a
model corresponding to the traditional Cox proportional hazards model, though the strengthen
of this method appears mainly in situations where no standard regression models exist. In
this chapter spline functions are used for estimation of the intercept in the regression model,
when the intercept is assumed to be a function of the time t.

A spline is a function constructed based on polynomial segments which satisfy certain
conditions of smoothness. Let [a, b] be an interval on R and let τ = {τ1, . . . , τr} be real
numbers, called knots, satisfying

a < τ1 < · · · < τr < b.

Further, let a be denoted by τ0 and b denoted by τr+1.

Definition 6.1 A function sτ : [a, b] → R is said to be a spline function of order d if it
fulfils

• sτ (t) is a polynomial of order d on each interval [τi, τi+1], i = 0, 1, . . . , r.
• sτ (t) ∈ Cd−1[a, b]

A spline function or order d and with r knots have (r+1)(d+1) parameters to be estimated.
The second condition of definition 6.1 means that the spline sτ (·) and its derivatives up to the
d− 1’th order are continuous at all points on the interval [a, b] and in particular at all knots
τ . This means that d constrains are put on each knot, leaving (r+ 1)(d+ 1)− rd = r+ d+ 1

degrees of freedom to determine the spline function.

46
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In figure 6.1 a spline function of order 3 with three knots is plotted. A spline function of
order 3 is called a cubic spline. The vertical lines in the plot indicate the intervals for which
each polynomial segment is defined.

●

●

●

●

●
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0
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Figure 6.1: A cubic spline function with three knots. The vertical lines indicate the intervals at which each
polynomial segment is defined.

The piecewise polynomial structure of the spline functions makes them suitable for flexible
estimation of unknown functions. Suppose a data set is given, the parameters in the spline
function may then be chosen in some proper way for capturing important patterns in the
data, and hence estimate the function underlying the data. This idea may be transferred to
regression models for estimation of non-parametric relations in a model.

Suppose a data set consists of n i.i.d. individuals is given. In section 5.2 pseudo-observations,
calculated at k different time points, were used to fit a model of the form

g(θjl) = αl + β>Zj , j = 1, . . . , n, l = 1, . . . , k, (6.1)

where θjl is given in (5.2) and g(·) is some link function.

The notation αl in (6.1) indicates that the intercept of the model may depend on the time
tl. In practice this is implemented by including an indicator of each tl in the covariate vector
Zj . In example 5.4 this method where used to obtain point estimates of the baseline hazard
function h0(·) in the Cox proportional hazards model. However, a more flexible method for
estimating h0(·) is to base the estimation on spline functions, which also allows for estimating
the value of h0(·) at any given time t.

The idea may be stated in a general setting by considering the semi-parametric model

g(θjl) = ϕ(tl) + β>Zj , (6.2)
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where ϕ(·) is some unknown function. Suppose ϕ(·) may be estimated by some spline function
sτ (·). The idea is then to write sτ (·) as a linear combination of some basis splines, that is,
a set of spline function spanning the space of splines of the same order and with the same
knots as sτ (·). The model is then linear in these basis functions and may be fitted by ordinary
estimation methods. This approach is known as regression spline approximation. In this report
the GEE is used for estimation.

A common basis used is the B-spline basis. In addition to the r knots given above, the
construction of a B-spline basis of order d requires 2(d + 1) additional knots. The B-spline
basis is defined recursively by

Bi,h+1(t) =
t− τi

τi+h − τi
Bi,h(t) +

τi+h+1 − t
τi+h+1 − τi+1

Bi+1,h(t),

Bi,0(t) =

{
1 τi ≤ t < τi+1

0 otherwise,
,

where h = 0, . . . , d and i = 0, . . . , r + 2(d+ 1)− 1.

A spline function of order d can then be written as

sτ (t) =

r+d∑
i=0

γiBi,d(t) = γ>B(t),

where B(t) = [B0,d(t), . . . , Br+d,d(t)]
> is the B-spline basis and γ = [γ0, . . . , γr+d]

> are pa-
rameters to be estimated.

The number and positions of the knots are important for the complexity of the spline
function. In regions with dense knot spacing the spline function is fairly complex, whereas at
regions with few knots, the spline function tends to be more smooth. One may choose either
equally spaced observations or equally spaced percentiles of the observed data for the knot
positions. However, several general methods exist for choosing the number and positions of
the knots.

Consider now the unknown function ϕ(·) from the model (6.2). This function may be
estimated by a linear combinations of B-spline basis functions, that is

ϕ(t) ≈ γ>B(t). (6.3)

The regression model of interest is then given by

g(θjl) = γ>B(tl) + β>Zj . (6.4)

If ϕ(·) is a continuous function a spline approximation γ>B(·) always exists, such that

sup
∣∣ϕ(t)− γ>B(t)

∣∣→ 0, for r →∞,
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where r is the number of knots de Boor [1978].

When the approximation sign in (6.3) is replaced by a equality sign, the asymptotic results
regarding the regression parameters found by Graw et al. [2009] may directly be applied to
the model (6.4). When the relation in (6.3) is truly an approximation some care must be
taken. However, when the approximation in (6.3) is reasonable the results seem likewise to be
applicable. The central part of the proof by Graw et al. [2009] rely on the property

E[θ̂jl|Zj ] = g−1(ϕ(t) + β>Zj) + op(1). (6.5)

When the error term resulting from the approximation of the function ϕ(·) by the spline
function γ>B(t) is negligible, it is reasonable to assume that the property (6.5) also holds
when ϕ(·) is replaced by γ>B(·).

Let γ̂ denote the estimate of the parameters γ in (6.3) and let Σ̂ = Cov(γ̂) be an estimated
covariance matrix of γ̂. A pointwise variance function of the estimate ŝτ (·) = γ̂>B(·) is then
given by

v(t) = Var[ŝτ (t)] = B>(t)Σ̂B(t).

In section 4.1.5 a maximum likelihood approach was used to estimate the baseline hazard
function for the Cox proportional hazards model. The approach was based on a discrete
analogue to the traditional Cox proportional hazards model. In the example below a method
based on pseudo-observations and cubic splines are suggested as an alternative method for
estimating the baseline hazard function.

Example 6.1 (Estimation of h0(·) in the Cox proportional hazards model) In ex-
ample 5.4 a model corresponding to the Cox proportional hazards model were introduced
by fitting a GEE model based on the pseudo-observation given in (5.4). The model considered
is given by

cloglog(S(t|Zj)) = log

(∫ t

0
h0(u)du

)
+ β>Zj . (6.6)

Often the interest of the Cox proportional hazards model is restricted to the parameters
β. Though, it may be of interest to estimate the baseline hazard function h0(·), as this will
give information on the survival experience for each individual in the sample.

Andersen et al. [2003] suggested to estimate the baseline hazard function at different time
points, by allowing the intercept of the model (6.1) to depend on time, see example 5.4.
However, this approach only allows one to estimate the baseline hazard function at the time
points for which the pseudo-observations are calculated. A different approach is to base the
estimation of h0(·) on spline functions.
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Figure 6.2: The baseline hazard function estimated by a regression spline. The solid line indicates the
estimate of the baseline hazard function and the dotted lines indicate af 95% CI. The dots indicate the point

estimates of the baseline hazard function proposed by Andersen et al. [2003].

In this example, cubic regression splines are used to estimate the logarithm of
∫ t

0 h0(u)du

from which h0(·) can be deduced. The model considered is given by

cloglog(S(t|Zj)) = γ>B(t) + β>Zj , (6.7)

where

B(t) =
r+3∑
i=0

Bi,3(t).

Survival data (n = 250) were simulated from a Cox regression model with constant baseline
hazard function h0(t) = 2.5. Two covariates were considered; a uniform distributed covariate
z1 over the interval [−1, 1] and a standard normal distributed covariate z2, with parameters
β1 = −1 and β2 = 1, respectively. Exponentially distributed data were superimposed to
obtain roughly 25% censoring. A GEE model based on the pseudo-observations were fitted
with the pseudo-observations calculated at 125 equally spaced time points.

The logarithm of the cumulated baseline hazard function was estimated by including B-
spline basis functions in the GEE model. The knots used in the estimation were given by the
25’th, 50’th, and the 75’th quantile of the study times. For comparison the point estimates of
the baseline hazard function suggested by Andersen et al. [2003] is likewise calculated. Figure
6.2 shows the estimated baseline hazard function with a 95% pointwise confidence interval
(CI) indicated by dotted lines. The dots indicates the point estimates of the baseline hazard
function suggested by Andersen et al. [2003].
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The spline-estimate of the baseline hazard function seems to be agreeable with the true
baseline hazard function h0(t) = 2.5. Though, the estimate is quite fluctuating at the be-
ginning of the time scale. In example 5.4 it was seen that the pseudo-observations tend to
produce large standard errors on the regression parameters. A similar trend is seen in figure
6.2 with a large 95% CI on the estimated baseline hazard function. The trend is especially
clear in the region with few observations.

�



7
The new pseudo-observation

In chapter 5 jackknife pseudo-observations were introduced as a method for performing gen-
eralised linear regression analysis on survival data. The results of the small simulation study
in example 5.4 showed that though the bias of the estimated regression parameters is quite
small, the parameters have a large variability. A significant part of this variability is related to
the variability in the pseudo-observations, when they are considered as functions over time. In
this chapter a different estimator is proposed for performing regression analysis on the survival
function. The estimator is defined to more precisely resemble the information in the observed
data. The hope is that this information will give more efficient regression estimates.

Consider the pseudo-observation for the survival function in example 5.1 given by

Ŝj(t) = nŜ(t)− (n− 1)Ŝ−j(t), j = 1, . . . , n (7.1)

where Ŝ(·) is the Kaplan-Meier estimator.

Each pseudo-observation (7.1) may be considered as the contribution of individual j to
the Kaplan-Meier estimate of the survival function S(·). Hence, each pseudo-observation is
to some extend an estimate of the survival probability for each individual. However, as seen
in figure 5.1, each pseudo-observation takes value outside the range of [0, 1] when censoring
occur in the data set. From this it appears that the information given by the observed data
is not fully utilised in the definition of the pseudo-observation. For an individual with an
observed event time, the survival probability is estimated by some number above one prior
to the observed event time, hereafter the survival probability is estimated by some number
below zero. The same holds for an individual with a censored event time; prior to this observed
censored time the survival probability is estimated by some number above one.

A more proper utilisation of the observed data is to estimate the survival probability by
conditioning on the observed data. Figure 7.1 shows a plot of an estimator of the probability

52
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P(Xj > t|Xj ≥ Tj), where Xj is the event time for individual j and Tj is the observed study
time. The estimators used in the plots are given by

θ̂j(t) =

{
1 for t < Tj
0 for Tj ≤ t

(7.2)

when Tj is an observed event time, and

θ̂j(t) =

{
1 for t < Tj
Ŝ(t)

Ŝ(Tj)
for Tj ≤ t

(7.3)

when Tj is a censored event time. Here Ŝ(·) is the Kaplan-Meier estimator.

Figure 7.1 (a) is a plot of the estimator (7.2) over time and figure 7.1 (b) is a plot of the
estimator (7.3) over time. Both the estimators stay inside the valid range of [0, 1]. Further,
the estimator (7.2) utilises the observed information for an individual with observed event
time, by estimating the survival probability by one prior to the observed event time and after
the event has occurred, the survival probability is estimated by zero. For an individual with
censored event time, the information that the event happens at some time after the observed
time is utilised by estimating the survival probability by one prior to this censored time. After
the observed censored time, the survival probability is estimated by some number between
zero and one.
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Figure 7.1: The new pseudo-observation for a single individual over time. (a) The new pseudo-observation
for an individual with observed event time Xj = 1. (b) The new pseudo-observation over time for an

individual with observed censored event time Cj = 1.

In chapter 5 the pseudo-observation (7.1) were used for generalised linear regression analysis
of censored survival data. The idea is that once the pseudo-observations have been calculated
one may use the pseudo-observations for a various number of analysis. However, calculation of
the pseudo-observations (7.1) is computational heavy. Calculation of the pseudo-observations
for a sample with n individuals, requires calculations of the Kaplan-Meier estimator for n+ 1

samples. For comparison, the proposed estimator in (7.3) only requires calculation of the
Kaplan-Meier estimator for a single sample.
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7.1 Properties of the new pseudo-observation

In this section, some properties regarding the distribution of the new pseudo-observations (7.2)
and (7.3) are considered.

First consider the estimator (7.2) for an individual with observed event time, this estimator
may be written in terms of the indicator function θ̂j(t) = 1[Xj > t]. The mean value of this
estimator is then given by

E[θ̂j(t)] = E[1[Xj > t]]

= SX(t).

The variance of this estimator is given by

Var[θ̂j(t)] = SX(t) [1− SX(t)] = SX(t)FX(t).

The estimator (7.3) is a bit more complicated as this estimator depends on both the event time
distribution and the censoring distribution. Let Cj denote the censoring time for individual j
and suppose this is independent of the event time Xj . Further, let ŜX(n) denote the Kaplan-
Meier estimator of the event times based on a sample with n individuals. The mean value of
the estimator (7.3) is then given by

E[θ̂j(t)] = E[1[Xj ∧ Cj > t]] + E

[
1[Cj ≤ t ∧Xj ]

ŜX(n)(t)

ŜX(n)(Cj)

]

= E[1[Xj > t]1[Cj > t]] + E

[
1[Cj ≤ t ∧Xj ]

ŜX(n)(t)

ŜX(n)(Cj)

]

= SX(t)SC(t) + E

[
1[Cj ≤ t ∧Xj ]

ŜX(n)(t)

ŜX(n)(Cj)

]
. (7.4)

Consider the second term of the right hand side of (7.4). The Kaplan-Meier estimator is an
uniformly consistent estimator of the survival function on the interval [0, t] for all t < u, where
u = sup{t : P(X > t) > 0} Fleming and Harrington [1991]. This means that for t < u the
second term of (7.4) can be rewritten as

E

[
1[Cj ≤ t ∧Xj ]

ŜX(n)(t)

ŜX(n)(Cj)

]
=

∫ t

0

∫ ∞
c

ŜX(n)(t)

ŜX(n)(c)
dFX(x)dFC(c)

=

∫ t

0

ŜX(n)(t)

ŜX(n)(c)

∫ ∞
c

1dFX(x)dFC(c)

−−−→
n→∞

∫ t

0

SX(t)

SX(c)

∫ ∞
c

1dFX(x)dFC(c)

=

∫ t

0

SX(t)

SX(c)
SX(c)dFC(c)

= SX(t)FC(t). (7.5)
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It follows that the mean value of θ̂j(t) in (7.3) converges in probability to the survival function
of the event times:

E[θ̂j(t)] −−−→
n→∞

SX(t)SC(t) + SX(t)FC(t) = SX(t). (7.6)

That is, the estimator θ̂j(t) in (7.3) is an asymptotic unbiased estimator of the survival function
SX(t).

The variance of the estimator θ̂j(t) in (7.3) can be written as

Var[θ̂j(t)] = E
[
θ̂j(t)

2
]
−
(
E[θ̂j(t)]

)2
.

The first term on the right hand side of this variance is given by

E
[
θ̂j(t)

2
]

= E [1[Xj ∧ Cj > t]] + E

[
1[Cj ≤ t ∧Xj ]

Ŝ2
X(n)(t)

Ŝ2
X(n)(Cj)

]

+2E

[
1[Xj ∧ Cj > t]1[Cj ≤ t ∧Xj ]

Ŝ2
X(n)(t)

Ŝ2
X(n)(Cj)

]

= SX(t)SC(t) +

∫ t

0

∫ ∞
c

Ŝ2
X(n)(t)

Ŝ2
X(n)(c)

2
dFX(x)dFC(c). (7.7)

By the consistency of the Kaplan-Meier estimator, the second term on the right hand side of
(7.7) converges in probability to a term given by:∫ t

0

∫ ∞
c

Ŝ2
X(n)(t)

Ŝ2
X(n)(c)

dFX(x)dFC(c) −−−→
n→∞

∫ t

0

S2
X(t)

S2
X(c)

SX(c)dFC(c) = S2
X(t)

∫ t

0

1

SX(c)
dFC(c).

It follows that the variance of the estimator θ̂j(t) converges in probability to:

Var[θ̂j(t)] −−−→
n→∞

[
SX(t)SC(t) + S2

X(t)

∫ t

0

1

SX(c)
dFC(c)

]
− S2

X(t). (7.8)

This variance depends on the censoring distribution and hence a proper expression of the
variance can only be obtained in some special cases.

An upper bound of the variance in the limit is given by

lim
n→∞

Var[θ̂j(t)] = SX(t)SC(t) + S2
X(t)

∫ t

0

1

SX(c)
dFC(c)− S2

X(t)

≤ SX(t)SC(t) + SX(t)FC(t)− S2
X(t)

= SX(t)FX(t).

Similar, a lower bound of the variance is found by

lim
n→∞

Var[θ̂j(t)] = SX(t)SC(t) + S2
X(t)

∫ t

0

1

SX(c)
dFC(c)− S2

X(t)

≥ SX(t)SC(t) + S2
X(t)FC(t)− S2

X(t)

= SX(t)FX(t)SC(t).
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Consider now two pseudo-observations θ̂i(t) and θ̂j(t) for individual i and j, respectively.
The two pseudo-observations are independent if E[θ̂i(t)θ̂j(t)] = E[θ̂i(t)]E[θ̂j(t)]. In the case of
two uncensored individuals it follows from the independence of Xi and Xj that the pseudo-
observations are likewise independent. When subject i is uncensored and subject j is censored,
the mean value E[θ̂i(t)θ̂j(t)] is given by

E[1[Xi > t]1[Xj ∧ Cj > t]] + E

[
1[Xi > t]1[Cj ≤ t ∧Xj ]

ŜX(n)(t)

ŜX(n)(Cj)

]
. (7.9)

By arguing as above, the limit of (7.9) is given by

lim
n→∞

E[θ̂i(t)θ̂j(t)] = S2
X(t)SC(t) + S2

X(t)FC(t)

= S2
X(t).

This means that in this case θ̂i(t) and θ̂j(t) i 6= j are asymptotic independent. Consider now
the case where both θ̂i(t) and θ̂j(t) are pseudo-observations for censored individuals, the mean
value E[θ̂i(t)θ̂j(t)] is then given by

E [1[Xi ∧ Ci > t]1[Xj ∧ Cj > t]] + E
[
1[Xi ∧ Ci > t]1[Cj ≤ t ∧Xj ]

SX(n)(t)

SX(n)(Cj)

]
+ E

[
1[Xj ∧ Cj > t]1[Ci ≤ t ∧Xi]

SX(n)(t)

SX(n)(Ci)

]
+ E

[
1[Ci ≤ t ∧Xi]

SX(n)(t)

SX(n)(Ci)
1[Cj ≤ t ∧Xj ]

SX(n)(t)

SX(n)(Cj)

]
.

By similar arguments as a above, the limit of the mean value E[θ̂i(t)θ̂j(t)] is then given by

lim
n→∞

E[θ̂i(t)θ̂j(t)] = S2
X(t)S2

C(t) + S2
X(t)SC(t)FC(t) + S2

X(t)SC(t)FC(t) + S2
X(t)F 2

C(t)

= S2
X(t)[1 + F 2

C(t)− 2FC(t)] + 2S2
X(t)FC(t)SC(t) + S2

X(t)F 2
C(t)

= S2
X(t) + 2S2

X(t)F 2
C(t)− 2S2

X(t)FC(t) + 2S2
X(t)FC(t)SC(t)

= S2
X(t).

From this is follows that the two pseudo-observations θ̂i(t) and θ̂j(t), i 6= j are asymptotically
independent.

7.2 Regression analysis based on the new pseudo-observation

The idea introduced by Andersen et al. [2003] of performing regression analysis based on the
old pseudo-observation (7.1) may be adapted to the new pseudo-observation in (7.2) and (7.3).

Consider the generalised linear model

g
(
E[1[Xj > t]

∣∣Zj ]) = α+ β>Zj ,
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New pseudo-observations Old pseudo-observation
Parameters Est. SDsim SEest Est. SDsim SEest

β1 2.79 0.21 0.20 3.06 0.25 0.25

β2 −0.92 0.09 0.09 −1.02 0.11 0.11

Table 7.1: The results after fitting a GEE model based on the new pseudo-observation and the old
pseudo-observation, respectively. The results shows the average of the estimated regression parameters and

their standard deviations of 500 replicates of the data. Furthermore, the averages of the standard errors of the
regression parameters are likewise given.

where g(·) is some link function and the intercept α may depend on the time t. The idea is
to replace the function φt(Xj) = 1[Xj > t] by the pseudo-observation when fitting the model.
Graw et al. [2009] showed that the GEE model gives consistent and normally distributed
estimates of the regression parameters when the function φ(·) is replaced by the pseudo-
observation (7.1). An essential part of the proof by Graw et al. [2009] rely on the property

E[Ŝj(t)|Zj ] = g−1(α+ β>Zj) + op(1). (7.10)

For the asymptotic results to hold for regression analysis based on the new pseudo-observation,
one might be able to argue similar as in Graw et al. [2009]. However, at the due date of this
project I had not been able to show the property (7.10) for the new pseudo-observation.

Example 7.1 (Regression analysis on the survival probability) In example 5.4 a
model corresponding to the Cox proportional hazards model were defined by fitting a GEE
model based on the pseudo-observation (7.1) with link function given as the cloglog-function.
A similar model is obtained by regression analysis based on the new pseudo-observation. In
this example, the performance of the new pseudo-observation is compared to the old pseudo-
observation by fitting a GEE model with link function given as the cloglog-function.

Survival data (n = 250) were simulated from a Cox proportional hazards model with
constant baseline hazard function h0(t) = 2.5. In the data, two covariates were included; a
uniform distributed covariate z1 over the interval [−1, 1] and a standard normal distributed
covariate z2, with parameters β1 = 3 and β2 = −1, respectively. Exponential distributed data
were superimposed to obtain roughly 25% censoring. The GEE model were fitted by calcu-
lating the pseudo-observations at 10 equally spaced study times, and the pseudo-observations
defined for each individual were supposed to be independent. Each analysis were replicated
500 time. The average of the estimated regression parameter and the corresponding standard
deviations were calculated. The average of the estimated standard errors of the parameters
was likewise calculated based on the sandwich estimator. The results of the analysis are given
in table 7.1.

The results show a considerable large bias on the estimated regression parameters based
on the new pseudo-observation compared to the results based on the old pseudo-observation.
However, the variability of the estimates based on the new pseudo-observation is considerable
smaller than the estimates based on the old pseudo-observation.
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The exact covariance matrix The common covariance matrix
Parameters Est. SDsim SEest Est. SDsim SEest

β1 2.78 0.20 0.20 2.80 0.21 0.20
β2 -0.92 0.10 0.09 -0.92 0.09 0.09

Table 7.2: The results after fitting a GEE model based on the new pseudo-observation. The results shows
the estimates based on a model with the exact covariance matrix and the common covariance matrix,

respectively.

In example 5.5 two addtional working covariance matrices were considered for the GEE
model based on the old pseudo-observation. The covariance matrices considered were a co-
variance matrix, which is the exact covariance when no censoring occurs in the data and a
common working covariance matrix V as given in (5.15). For an individual with observed
event time, the new pseudo-observation may be written in terms of the indicator function
θ̂j(t) = 1[Xj > t], and hence an exact covariance matrix of the pseudo-observations is given
by a matrix with elements

vilm = Si(tl|Zj)[1− Si(tm|Zj)], tl < tm. (7.11)

In table 7.2 the results of fitting the same data to a GEE model based on the new pseudo-
observation with working covariance matrix given by the exact covariance (7.11) and the
common covariance given in (5.15) is given. The table shows the average of the estimated
parameters and their standard deviation of 500 replicates of the analysis. The average of
the standard errors of the parameters estimated by the sandwich estimator is likewise given.
Similar to the results found in example 5.5, no systematic different were found when using
different covariance matrices.

�

Example 7.2 (Estimation of h0(·) in the Cox proportional hazards model) In ex-
ample 6.1 cubic regression splines were used to estimate the the baseline hazard function
in the Cox proportional hazards model. The model considered were given by

cloglog(S(t|Z)) = sτ (t) + β>Z, (7.12)

where

sτ (t) =
r+3∑
i=0

γiBi,3(t),

is a cubic spline function.

In this example the model (7.12) is fitted based on the new pseudo-observations. Survival
data (n = 250) were simulated from a Cox regression model with constant baseline hazard
function h0(t) = 2.5. Two covariates were considered; a uniform distributed covariate z1 over



7. The new pseudo-observation 59

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0
1

2
3

4
5

The new pseudo−observation

Time

E
st

im
at

ed
 b

as
el

in
e 

ha
za

rd
 fu

nc
tio

n

●

●●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●●
●
●
●
●
●
●
●

●
●
●

●●●
●

●

●

●

●
●

●●
●
●●

●

●
●
●●●
●

●●

●
●●●
●
●
●

●

●●
●●●●

●●

●
●
●●

●●●●●●
●
●
●

●●
●●●

●
●
●
●
●
●
●●
●●●

●●
●
●
●
●

●
●

●
●

● ●●

●

●

●

●●

●

● ●

●

●

●

●
●

●

●

Figure 7.2: The baseline hazard function estimated by the regression spline. The solid line indicates the
estimate of the baseline hazard function and the dotted lines indicate af 95% CI. The dots indicate the point

estimates of the baseline hazard function proposed by Andersen et al. [2003].

the interval [−1, 1] and a standard normal distributed covariate z2, with parameters β1 = −1

and β2 = 1, respectively. Exponentially distributed data were superimposed to obtain roughly
25% censoring. A GEE model based on the pseudo-observation calculated at 125 equidistance
time points. The knots used in the estimation of the spline function were given by the 25’th,
50’th, and the 75’th quantile of the study times. For comparison the point estimates of the
baseline hazard function suggested by Andersen et al. [2003] is likewise calculated. Figure
7.2 shows the estimated baseline hazard function based on the new pseudo-observation. A
95% pointwise CI is indicated by dotted lines. The dots indicates the point estimates of the
baseline hazard function suggested by Andersen et al. [2003].

Similar to example 6.1, the estimated baseline hazard function seems to be agreeable with
the true baseline hazard function h0(t) = 2.5. For comparison with the results based on the
old pseudo-observation see figure 6.2. However, the 95% CI of the estimated baseline hazard
function based on the new pseudo-observation is much smaller than the 95% CI of the estimate
based on the old pseudo-observation. The trend is especially apparent at the end of the time
scale where few observations occur. This observation is in tune with the results found in
example 7.1.

�

Example 7.3 (The resricted mean survival time) In example 5.2 an estimator of the
restricted mean survival function E[min(Xj , τ)] for τ > 0 were found by integrating over the
pseudo-observation (7.1). A similar estimator is obtained by integrating over the estimator
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Figure 7.3: Crude restricted mean survial time

(7.2) for individuals with observed event time and the estimator (7.3) for individuals with
observed censored event time.

For an individual with observed event time, the estimator (7.2) may be written in terms of
the indicator function θ̂j(t) = 1[Xj > t], and hence an estimate of the restricted mean survival
time is simply given by the true restricted survival time

µ̂τ = min(Xj , τ).

For an individual with observed censored event time, the estimate of the restricted mean
function is given by

µ̂τ =

∫ τ

0
θ̂j(t)dt

=

∫ Tj

0
1dt+

∫ τ

Tj

Ŝ(t)

Ŝ(Tj)
dt

= Tj +
1

Ŝ(Tj)

∫ τ

Tj

Ŝ(t)dt.

In figure 7.3 the pseudo-observations for the conditional restricted mean survival time are
plotted against the true restricted survival time for a simulated data set. The plot shows the
estimated conditional restricted mean survival time for three different values of τ ; the median
of the observed study times (left), the 95th percentile of the observed study times (middle),
and the maximum observed study time (right). For individuals with censored event time the
estimated conditional restricted mean survival time is smaller than the true survival time in
all three plots. For individuals with observed event time the estimated value of the conditional
restricted mean survival time follows the true survival time.

�
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Discussion and conclusion

The inherent structure of survival data entail that standard statistical models cannot be used
for analysis this type of data. Especially the occurrence of censored data is a technicality,
which must be dealt with when analysing survival data. Survival data is often summarized
through the hazard function and the survival function. These functions serve to describe
important aspects of the survival experience in a given data set. The mean survival time is
another parameter of great interest, which gives the expected time until some event occur.
However, due to right censoring the mean survival time is often ill determined beyond a certain
range. A related quantity is the restricted mean survival time which is less sensitive to right
censoring. Traditional regression analysis of survival data is hence concentrated on relating
covariates to these functions, with the hazard function playing the most prominent role. Often
the functions themself are not of primary interest. From a practical point of view, one is often
more interested in the effect of the covariates. From this perspective, semi-parametric models
have been used as the primary tool for regression analysis of survival data; here the Cox
proportional hazards model is one of the most popular methods.

In this project jackknife pseudo-observations have been studied as a tool for analysing
survival data. Pseudo-observations adress the problem of not having appropriate observations
for all individuals in the study. The approach is based on a set of pseudo-observations defined
for each individual in the study. The pseudo-observations allow one to analyse the effect of a
set of covariates on the event times by models more general than the standard models used for
survival data. In section 5.2 the GEE approach based on pseudo-observations were used to fit
a generalised linear model for functions of the event times. The advantage of this approach
is that it allows one to model the event times by generalised linear models without specifying
a full parametric model. The justification for the use of pseudo-observations in the GEE
approach is based on some neat results found by Graw et al. [2009] concerning the estimated
regression parameters.

In section 5.2, regression analysis based on pseudo observations were compared to the
traditional Cox proportional hazards model. A small simulation study showed that the model

62
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based on pseudo-observations is not competitive to this standard method of analysing survival
data. The weakness of the pseudo-observation approach is mainly the relative large standard
errors of the estimated regression parameters; this variation is related to the variability in the
set of pseudo-observations. The question regarding the number of time points for which the
pseudo-observations are calculated were also considered. The results showed that increasing
the number of equidistant time points did not increase the performance of the model. However,
in a general setting it is reasonable to believe that the number and position of the time points
will affect the performance of the regression analysis. For the regression analysis to perform
well, the survival structure in the true event distribution must be captured by the pseudo-
observations. Hence, improper positions of the pseudo-observations will reasonable effect the
efficiency of the analysis.

In chapter 6 cubic regression splines based on pseudo-observations were used to estimate
the baseline hazard function of the Cox proportional hazards model. This is a simple method
which allow for a flexible estimation of the baseline hazard function. A simple example with
a constant baseline hazard function was considered. The results show that the approach is a
reliable method for estimation of this hazard function. In general cubic regression splines are
flexible functions and it is reasonable be believe that the method will perform well for more
complex functions. In chapter 6 it was argued that when the error term resulting from the
spline approximation of the unknown function is negligible, the resulting regression parameters
will possess the same desirable properties found by Graw et al. [2009]. However, if the spline
approximation introduce a large error term, a corresponding bias on the estimated parameters
is expected.

In chapter 7 a new pseudo-observation was proposed for estimating survival probabilities.
The motivation behind the definition of this new pseudo-observation is the large estimated
variance obtained from regression analysis based the old pseudo-observation. The new pseudo-
observation was defined to more proper capture the information given by the observed data. A
small simulation study showed that the new pseudo-observation tend to give estimated regres-
sion parameters with less variability compared to the old pseudo-observation. Though, a large
bias on the regression parameters resulting from this new pseudo-observation was observed.
During the period of this project attempt has been made to prove asymptotic properties for
the new pseudo-observation similar to those found by Graw et al. [2009]. However, a bias
related to the censoring distributed was encountered. This suggests that the range of the new
pseudo-observations might be inadequate for compensation of the uncertainty related to the
survival experience for censored individuals. In contrast, the definition of the old pseudo-
observation causes this estimator to take values outside the range of [0, 1], from which the
variability in the regression results is caused by. However, these unusually values seem to
compensate each other to produce estimates capturing the information in the true underlying
event distribution. This discussion suggests a trade-off between bias and variation on the
estimated regression results. The old pseudo-observation seems to produce estimates which
on average produce accurate estimates. However, the variability makes these estimates less
reliable in a single sample. The potential of the new pseudo-observation rely on its ability to
produce regression results with high reliability, though accounting for the bias.
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One may consider to reduce the bias of the estimated regression parameters resulting from
the new pseudo-observation by a two-step estimation method. The first step is to estimate
some initial regression parameters based on the sample of individuals with observed event time
only. The new pseudo-observation for individuals with observed event time is simply given
by θ̂j(t) = 1[Xj > t]. It follows directly from the results of Liang and Zeger [1986] that this
estimator will produce consistent estimates of the true regression parameters, though a large
variance is expected due to omitting censored individuals. The next step is then to predict
the value of S(·|Zj) for censored individuals, based on these initial parameters. The new
pseudo-observation for censored individuals given in (7.3) may then be modified as follows

θ̂j(t) =

{
1 for t < Cj
S(t|Zj)
S(Cj |Zj) for Cj ≤ t

.

The final regression analysis is then based on all individuals in the study, including censored
individuals. Though, rather than using the estimator proposed in chapter 7, the analysis
is based on the above estimator for censored individuals. This estimator will increase the
computational burden, however, the bias of the resulting regression parameters is expected to
decrease will maintaining the small variance. Due to time pressure, this method has not been
considered in the study.

The generalisation of jackknife pseudo-observations for analysis of survival data a is relative
new method with the first article printed in 2003 (Andersen et al. [2003]). The method is not
yet fully developed, and more reseach is needed to answer a number of unanswered questions,
like the best choice regarding the number and position of the time points for which the pseudo-
observations are calculated. In this project, the efficiency of the pseudo-observations has been
addressed together with some practical considerations for capable regression results. The idea
of pseudo-observations for survival analysis has been proposed in a general setting, though
studies of the pseudo-observations have so far been restricted to three special estimators.
The results found in this project show that the pseudo-observations have a potential as a
general method for analysing survival data in a number of ways. The potential of the pseudo-
observation relies on their ability to generalise survival data by introducing proper observations
for all individuals in the study. This allows for analysis of survival data by methods usually
restricted to data with full information. The approach based on pseudo-observations is not
competetive to traditional methods used to analyse survival data. However, the pseudo-
observations alows for general statistical methods to supplement the tradtional survival data
methods.
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A
Appendix

A.1 The cumulative incidence function

The section is written based on Binder et al. [2012].

In chapter 5 the Aalen-Johansen estimator were used to define pseudo-observations for
the cumulative cause-r incidence function in a competing risks analysis. In section 5.1 it
was claimed that in the case of no censoring, the pseudo-observation reduces to an indicator
function F̂jr(t) = 1[Xj ≤ t, εj = r]. The justic for this is given below. Suppose a sample with
n individuals are given and let Nr(·) be the counting process defined by

Nr(t) =

n∑
j=1

1[Tj ≤ t, δj = 1, εj = r],

where Tj = min(Xj , Cj), δj = 1[Xj ≤ Cj ], and εj indicates which competing risks caused the
event. Further, let Y (·) denote the risk set and let Ĥr(·) denote the Nelson-Aalen estimator
for the cause-r specified hazard function.

Consider the Aalen-Johansen estimator of the cause-r cumulative incidence function given
by

F̂r(t) =

∫ t

0

∏
v<u

(
1−

∑K
r=1 dNr(v)

Y (v)

)
dĤr(u)

=

∫ t

0
ŜX(u−)dĤr(u),

where Ŝ(·) denote the Kaplan-Meier estimator of the survival function for all event times in
the study and K is the number of competing risks. It can be shown that Y (t)

n = ŜX(t−)ŜC(t−),
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where ŜC(·) is the Kaplan-Meier estimator for the censoring disribution. From this it follows
that the Aalen-Johansen estimator can be rewritten as

F̂r(t) =

∫ t

0
ŜX(u−)

dNr(u)

Y (u)
=

∫ t

0
ŜX(u−)

dNr(u)

nŜX(u−)ŜC(u−)
=

1

n

n∑
j=1

∫ t

0

dNr(u)

ŜC(u−)
. (A.1)

When no censoring occur in the data ŜC(t) = 1 and the Aalen-Johansen estimator in (A.1)
reduces to

F̂r(t) =
Nr(t)

n
.


	Introduction
	Basic quantities
	Continuous random variables
	Discrete random variables

	Counting processes
	The Nelson-Aalen estimator
	The Kaplan-Meier estimator

	Semiparametric proportional hazards models
	The Cox proportional hazards model
	The partial likelihood
	The partial likelihood for distinct event times
	The partial likelihood when ties are present
	A discrete model analogue to the Cox proportional hazards model
	Estimation of the hazard function and the survival function


	Pseudo-observations
	Properties of the pseudo-observations
	Regression models based on pseudo-observations
	Pseudo-residuals

	Regression splines
	The new pseudo-observation
	Properties of the new pseudo-observation
	Regression analysis based on the new pseudo-observation

	Discussion and conclusion
	Bibliography
	Appendix
	The cumulative incidence function


