

Thesis Title:
SpideyBC – Static Resource
Analysis of Safety-Critical
Java Applications

Area:
Embedded and Distributed
Systems

Field of Study:
Software Engineering

Project Period:
1st February 2013 - 31st

May 2013

Project Group:
sw101f13

Participants:
Mikkel Todberg
Jeppe Lund Andersen

Supervisor(s):
René Rydhof Hansen
Andreas Dalsgaard

Number of Pages:
91

This report documents the design and develop-
ment of a software tool for statically analysing
memory usage in Safety-Critical Java (SCJ) ap-
plications. The project acts as a natural extension
of our previous work, A study of Safety-Critical
Java and its Specification Applied[36], in which
we investigated the SCJ specification draft from
September 2012 and developed a level 1 compli-
ant use-case library of the Cubesat Space Protocol.
From this work, we highlighted the difficulty of
being able to properly specify the required storage
parameters – an aspect that especially proved dif-
ficult for SCJ newcomers and to embedded system
development in general.
The developed tool, SpideyBC, draws on well es-
tablished concepts from static program analysis in-
cluding adaptions of acknowledged WCET tech-
niques such as the Implicit Path Enumeration
Technique (IPET). With SpideyBC, the developer
can analyse one or more Java methods such as
the handleAsyncEvent methods in order to find
the maximum dynamic memory consumption and
worst-case JVM stack sizes. The results are pre-
sented in a report that in a convenient and vi-
sual way shows information regarding worst-case
execution paths, call graphs, control flow graphs,
stacks etc. Furthermore, by using this tool, devel-
opers can analyse all methods that allocates in a
private memory area, the mission memory area or
the immortal memory area in order to get an in-
dication of the worst possible storage size for the
memory region in question – thus making the de-
veloper able to specify the respective storage pa-
rameters of an SCJ application.

PREFACE

This project has been developed by two Software Engineering master’s students from
Aalborg University in the spring of 2013. The report documents the master’s thesis
in the period of 1st of February 2013 until 31st of May 2013 and is the conclusion of
the Software Engineering study.

The contents of this report is a combination of theoretical and practical material. As
a result, the reader is expected to have a background knowledge that is equivalent to
having completed 9th semester of Computer Science or Software Engineering.

We use the following conventions throughout this report, unless otherwise stated:

• “We” refers to the reader and authors. When used in relation to referencing the
previous work by the authors, “we” refers to the authors exclusively

• The introduction of new terms or names are represented in cursive

• All references to classes, variables, methods and other implementation specific
entities are represented in monospace – for example java.lang.Object

• Source code listings may omit parts of the code that are not relevant for a
particular illustration. The omitted parts will be replaced with “...”

Source material referenced in this report will be denotated with a number in square
brackets that represents an entry in the bibliography. Consulting this entry pro-
vides information about the source. For example, [32], is an article written by Tórur
Biskopstø Strøm and Martin Schoeberl in 2012 and is about a desktop 3D printer in
Safety-Critical Java.

All source code for the software product and evaluation related configurations are
available on our GitHub repository[2].

Finally, we would like to thank our supervisors René Rydhof Hansen and Andreas
Engelbredt Dalsgaard for supervising our previous project and this master’s thesis.

Enjoy reading! Group sw101f13

Page 3 of 91

CONTENTS

1 Introduction 7
1.1 The Problem . 8

1.1.1 Explicitly Stating Memory Requirements in SCJ 8
1.1.2 Pushing for Garbage Collection 8

1.2 Contribution . 9
1.2.1 Approach . 9

2 Prerequisites 11
2.1 Real-Time and Embedded Systems . 11

2.1.1 Scheduling . 12
2.2 Safety-Critical Java . 12

2.2.1 Compliance Levels . 13
2.2.2 Memory Model . 13
2.2.3 Storage Parameters . 14

3 Static Program Analysis 16
3.1 Background . 16
3.2 Control Flow Graphs . 17

3.2.1 Call Graphs . 18
3.2.2 Interprocedural and Intraprocedural Analysis 18
3.2.3 Context-Sensitivity . 19
3.2.4 Example . 19

3.3 Pointer Analysis . 20
3.3.1 Andersen-Style Points-To Analysis 21

4 Worst-Case Execution Time Analysis Methods 25
4.1 WCET Analysis Overview . 25
4.2 Static WCET Analysis Methods . 26

4.2.1 Path-based Calculation . 27
4.2.2 Implicit Path Enumeration Technique (IPET) 28

5 The JVM and Java Bytecode 33
5.1 Overview of the JVM . 33
5.2 JVM Run-time Memory Areas . 34

5.2.1 Private Thread Area . 34
5.2.2 Heap . 35
5.2.3 Method Area . 36

5.3 Java Bytecode . 36

6 SpideyBC - Tool for Static Memory Analysis 38
6.1 Requirements . 38

Page 4 of 91

CONTENTS

6.1.1 Dynamic Memory Allocation of Methods 38
6.1.2 JVM Stack Size . 39
6.1.3 Presentation of Results . 40
6.1.4 Restrictions for Programs . 40

6.2 Analysis Approach and Supporting Framework 40
6.2.1 High-Level Analysis Technique 41
6.2.2 Framework . 41

6.3 Design . 42
6.3.1 Overall Components . 42
6.3.2 WALA Types and CFG Representation 43
6.3.3 CFG or ICFG . 44
6.3.4 Low-level Concerns . 45
6.3.5 Input Parameters . 46

6.4 Implementation . 46
6.4.1 Construction of CG and CFGs 47
6.4.2 Traversal & ILP Constraints Generation 49
6.4.3 Handling Loops . 52
6.4.4 Handling Arrays . 54
6.4.5 Worst-Case Stack Analysis . 56

6.5 ILP Constraints Generation Example 59
6.6 The Final Tool . 61

6.6.1 Front End . 61
6.6.2 Analysis Report . 62

7 Evaluation 65
7.1 Approach . 65
7.2 Setup . 66

7.2.1 Memory Access and Layout on JOP 66
7.3 Results . 67

7.3.1 Watchdog Results . 68
7.3.2 RepRap Results . 68
7.3.3 Using the Results in the Watchdog 69

8 Reflection & Future Work 70
8.1 Reflection . 70

8.1.1 Model Checking . 70
8.1.2 Evaluation . 70
8.1.3 Analysing the SCJ Infrastructure 71
8.1.4 Analysing the Standard Library 71

8.2 Future Work . 72
8.2.1 Increase Precision in Loops . 72
8.2.2 Increase Precision at Branches 73
8.2.3 Generalising the Architecture Input Model 74
8.2.4 Synthesis of Analysis Results 74
8.2.5 Support for Recursion . 74
8.2.6 Analysis of Standard Libraries and Infrastructure 75

9 Conclusion 76

Bibliography 79

A Andersens Algorithm for C Programs 80

B LibCSP based Watchdog in SCJ 83

Page 5 of 91

CONTENTS

B.1 Introduction . 83
B.2 Tasks and Temporal Requirements . 84
B.3 Modifying the Watchdog to use CSP 85

C Analysis Report 88

D Summary 91

Page 6 of 91

CHAPTER

ONE

INTRODUCTION

Embedded systems constitute approximately 99% of the worlds production of micro-
processors[8]. When these exhibit real-time properties and are applied in critical en-
vironments, it becomes a necessity to verify correctness throughout execution. The
software used in aircrafts is an example of a safety-critical system. In the United
States, the Federal Aviation Administration (FAA) requires aircraft software to be cer-
tified against the rigid Software Considerations in Airborne Systems and Equipments
Certification (DO-178B) standard[13]. As an example, for the stringent certifica-
tion level A, object code that is not directly traceable to source code, must undergo
additional verification processes – this is also a requirement for all compiler made
optimisations[12, 16].

One challenge in certifying safety-critical applications is that certification often
must be performed on the exact same object code that is used in the final product.
In avionics, it is a requirement that the code used in validation is also the code that
ends up in the aircraft. Thus, one must not intertwine application code and measure-
ment code for worst-case execution time analysis, and remove the measurement code
afterwards[21, 35]. In other words, “Test what you fly and fly what you test”[35].

Static program analysis deals with examining items of software without executing
the program in question[38]. The object code is the artifact from which the desired
information about the program is deduced. This is in direct contrast to dynamic
analysis. There are, however, limitations in the use of static analysis as there is no
general solution to the halting problem[40]. Thus one must often choose between an
over- or under approximation. Nonetheless, static analysis is applied for many types
of problems, notably for determining worst-case execution time of real-time systems.

The Safety-Critical Java (SCJ) specification, under JSR-302[34], is an attempt
to leverage the benefits of Java for developing safety-critical applications amendable
for certification against rigid standards. In order to achieve this, SCJ differs from
Standard Edition Java in different ways. SCJ uses a scoped memory model instead
of a garbage collected heap, which requires the programmer to have knowledge on
the memory requirements of the application. It is therefore necessary to be able to
reason about resource consumption.

In this master’s thesis, we look at static program analysis of bytecode compiled
Java applications in terms of analysing resource usage. Note that resource usage is
not only restricted to dynamic memory, but can also cover e.g. exceptions and locks.
Furthermore, we will show how we can use and adapt well-established techniques for
other types of program analysis for this purpose.

Page 7 of 91

CHAPTER 1. INTRODUCTION

1.1 The Problem
In our previous work in relation to Safety-Critical Java and its specification, we identi-
fied several areas for future work[36]. Empirical evidence from this study showed how
it was necessary to analyse and reason about the resource usage of SCJ applications.
In this case, the resource in question was memory. In the following, we clarify why
this topic is relevant and point out the currently cumbersome method of manually
having to reason about memory usage through source code inspection.

1.1.1 Explicitly Stating Memory Requirements in SCJ
One of the main issues we encountered in our previous work, was the difficulty of
specifying storage parameters for periodic and aperiodic handlers (see Section 2.2 for
a brief recap of the significant parts of SCJ). As a result of the scoped memory model,
the developer is required to explicitly specify backing store sizes for all memory re-
gions. This is illustrated in Listing 1.1 for the private memory region of a periodic
event handler. Furthermore, depending on the underlying platform other memory re-
quirements may be necessary. Currently, these value must be found manually through
source code inspection. This can be error prone, considering that the specified value
must be safe to avoid a run-time exception.

Listing 1.1: Specifying memory requirements for a periodic handler in SCJ

1 PeriodicEventHandler peh = new PeriodicEventHandler(
2 new PriorityParameters(10),
3 new PeriodicParameters(new RelativeTime(0, 0), new RelativeTime(10, 0)),
4 new StorageParameters(1024, null)) {
5 public void handleAsyncEvent() {
6 /*
7 * This handler is invoked every 10 ms
8 * and has a backing store of 1024 bytes
9 */

10 }
11 };
12 peh.register();

In the previous study, working with the scoped memory model was found to be one
of the largest deviations when coming from Standard Edition Java. Assistance in the
use of this memory model was considered to be of great benefit.

1.1.2 Pushing for Garbage Collection
Analysing the resource usage in terms of memory is, however, not only beneficial for
determining backing store sizes of memory regions in SCJ. The problem with the
scoped memory model, is that it significantly changes the way a SCJ program will
be written compared to a standard Java application. This was also highlighted in
a RepRap 3D Printer use case[32]. The memory model introduces issues, e.g. with
dangling references that the programmer must ensure will not occur. In the latest
version of the DO-178B standard from the fall of 2012, requirements for the use
of garbage collection have been specified. Being able to employ automatic memory
management in SCJ, with the use of garbage collection, is now a possibility. This also
requires knowledge of memory resource usage by handlers.

Investigating garbage collection in SCJ has previously been done[30]. The authors
use a time based approach where the garbage collector runs in its own thread and is
scheduled along with the remaining handlers (mutators). Determining the lowest pos-
sible period for the collector while guaranteeing the system never runs out of memory,
requires knowledge of the maximum amount of bytes allocated in each handler release

Page 8 of 91

CHAPTER 1. INTRODUCTION

along with their frequencies. As with the previous stated issue of specifying backing
store sizes, this currently requires the programmer to manually perform this analysis.

1.2 Contribution
From the described problem, the main contribution of this master’s thesis is to present
how to perform static resource analysis on Java bytecode and an implementation of a
tool that captures this idea. The master’s thesis will be based on the following thesis
question:

How can the principles of static program analysis be applied for resource
analysis of Java applications?

In order to work with this problem, we delimit ourselves to the following:

• The primary focus will be memory as the resource, but with the opportunity of
extending the analysis to other types of resources

• The analysis must provide a safe upper bound on memory usage

• We focus on support for SCJ applications, but work at the bytecode level. This
allows analysis, in theory, to be performed on any source program that compiles
to Java bytecode such as a Scala program

• We work on the basis of the SCJ specification draft from 6th of December,
2012[34]. In our previous work, we worked on a previous version. Anything
based on our previous work where changes have been made that affects this,
will be emphasized in this master’s thesis.

• We use the SCJ level 0 and level 1 compliant JVM implementation for the Java
Optimized Processor (JOP)[27] that was also used in our previous work

In addition, we will focus on solving the following subsidiary tasks:

• Provide an easy to use interface for the analysis tool

• Present the analysis results in a clear and understandable way for the developer
to use

As a part of our previous work[36], the network-layer delivery protocol Cubesat Space
Protocol (CSP) was implemented as a library under SCJ restrictions. This has later
been integrated in a full Watchdog use case. As a part of evaluating the implemented
analysis tool, this CSP based Watchdog will be presented and used as a program
under analysis. Furthermore, the public available implementation for the RepRap 3D
Printer in SCJ will also be used to evaluate the tool.

1.2.1 Approach
A notable example of a type of static analysis performed on many real-time applica-
tions is worst-case execution time (WCET) analysis. We argue that existing methods
for this type of analysis can be transferred to and applied for resource analysis. When
performing WCET analysis, the desired result is a cost for the program under analysis
– in this case execution time. Memory usage can be considered a cost in the same
way. To show the applicability of these methods, we begin with a survey of different
methods for finding the WCET of a program. With a clarification of these methods,
we use this to determine an approach for answering the stated question. The follow-
ing is an outline of the remaining chapters that reflects the approach for solving the
problem:

Page 9 of 91

CHAPTER 1. INTRODUCTION

Chapter 2 We begin with a brief summary of the prerequisites based on our previous
work. This will describe concepts of embedded, real-time and safety-critical
systems as well as the core concepts of Safety-Critical Java. Furthermore, we
provide more detailed information on the storage parameters in SCJ as these
are necessary to understand for this master’s thesis

Chapter 3 After this, we will cover theory of static analysis. We examine concepts
that are necessary in order to realise the indented analysis

Chapter 4 With our approach being based on looking at methods for determining
WCET, this chapter will build upon the static analysis and examine techniques
in this area

Chapter 5 Doing memory analysis of Java bytecode requires knowledge on the un-
derlying JVM. This chapter will provide details on the underlying JVM that
executes bytecode

Chapter 6 and 7 With the necessary theory in place, this chapter describes require-
ments, design and implementation of a tool that performs the intended analysis.
Furthermore we provide an evaluation of the tool by using it on two SCJ use
cases – the CSP based Watchdog and the RepRap

Chapter 7 and 8 We end this master’s thesis with a reflection on the work done as
well as ideas for future work

Page 10 of 91

CHAPTER

TWO

PREREQUISITES

This chapter provides a brief recapitulation of the essential prerequisites based on
our previous work, A Study of Safety-Critical Java and its Specification Applied[36].
The parts on embedded and real-time systems were primarily based on the book
Real-Time Systems and Programming Languages[8]. The part on Safety-Critical Java
was based on the specification draft from September 2012, but is compliant with the
current version from December 2012[34]. For more details on the subjects, we refer
to these materials.

In addition to a brief recap, the aspect of specifying memory requirements in
SCJ applications will be described. This is based on the StorageParameters class
and virtual methods, that must be overridden, that are used to parameterise the
applications memory requirements as was also seen in problem outline in Section 1.1.
This serves to identify the different concrete parameters of the class along with their
purposes. Ultimately, this is what the resulting analysis and tool should assist the
developer in specifying.

2.1 Real-Time and Embedded Systems
An embedded system can be thought of as a subsystem residing in a larger system.
In this report, we use the following definition of on an embedded system:

“Any information processing activity or system which participates in
a larger system and interact directly with the real world.”[8]

Examples of embedded systems are anti-braking systems, video game consoles, traffic
lights and dishwashers. Those systems that must respond to external input before
some specified time has elapsed are referred to as, real-time systems. We define a
real-time system as:

“Any information processing activity or system which has to respond to
externally generated input stimuli within a finite and specified period.”[8]

The distinction between an embedded system and a real-time system can be seen by
considering a traffic light and a breaking system for cars. Assume that the traffic
light solely operates on a timer. This makes the traffic light absent of the real-time
property. The vehicles breaking system on the other hand, must respond to external
user input within a specified time when the driver activates it.

Real-time systems can be categorised as being either hard, soft or firm. For hard
real-time systems it is imperative that the system responds before reaching its respec-
tive deadlines, while soft real-time systems occasionally are allowed to miss deadlines,

Page 11 of 91

CHAPTER 2. PREREQUISITES

however, doing so can cause operational degeneration. Refer to [36] for more infor-
mation on these topics.

2.1.1 Scheduling
A scheduling algorithm in a real-time setting must guarantee that all participating
tasks abide their temporal requirements. Note that the term, task, encompasses an
underlying thread together with scheduling information, which could be its period,
deadline, priority and release offset. In concurrent programs, the scheduler will create
an ordering of task execution such that the functional output remains the same if the
program is correct. The definition that we use for scheduling is thus:

“The activity of restricting the non-determinism found in concurrent
systems by ordering the execution of tasks, such that they meet their
temporal requirements.”[34]

Several scheduling strategies exists including Value-Based Scheduling (VBS), Earliest
Deadline First (EDF), Cyclic Executive (CE) and Fixed-Priority Scheduling (FPS).

Before putting a newly developed real-time system into use, the system must be
verified as being schedulable. Testing for schedulability involves predicting the worst-
case behaviour of the system under the particular scheduling algorithm. For each
task this entails obtaining its worst-case execution time (WCET). After obtaining
the WCET values, which are safe (over-)approximations, a test for schedulability
can be performed such as the Response-Time Analysis (RTA) in case the scheduling
algorithm is FPS. Refer to [36] for more information about scheduling, scheduling
algorithms and schedulability tests.

As previously stated, methods for determining WCET will be examined in order
to utilise this for the analysis required in this project. Chapter 4 will go into further
details on this topic.

2.2 Safety-Critical Java
Safety-Critical Java (SCJ) applications are developed under a strict programming
model that, amongst other things, places restrictions on available language constructs.
The intuition behind the platform is to encapsulate specific responsibilities into logical
structures each having distinct purposes. The basic building blocks are:

• Safelet

• Mission(s)

• Event handler(s)

A SCJ application must define one or more missions, each claiming responsibility of
one or more encapsulated event handlers. The event handlers can either be of peri-
odic or aperiodic type. Periodic event handlers are periodically executed with defined
release cycle times, whereas aperiodic event handlers are triggered by events and are
without any lower bound on inter arrival times. As an example, the software of an
unmanned rover taking earth samples on Mars can consist of missions for naviga-
tion, communication, earth sampling and driving. Furthermore the communication
mission could contain two event handlers for periodically checking pending inbound
transmissions and aperiodically sending sample results back to base whenever these
have been obtained. The safelet is the application defining class creating the missions
and setting the overall storage size.

Page 12 of 91

CHAPTER 2. PREREQUISITES

2.2.1 Compliance Levels
Different types of applications vary in terms of size and complexity as they must
adhere to different functional requirements and be applied in various domains. It is
furthermore of great interest to reduce this complexity as it reduces the cost and time
of the certification process. SCJ defines three levels of compliance for this purpose,
with the levels ranging from 0 to 2 – 0 being the lowest offering the least amount of
programming flexibility. The main features of the levels are:

Level 0: The scheduler is a cyclic executive where each mission is broken
down into fixed size computation parts and run in sequence. The computation
parts within missions (event handlers) must be distributed amongst a number
of frames (minor cycles) whose duration must be set. It is thus up to the de-
veloper to create the schedule (major cycle). Task priorities are ignored and
synchronization mechanisms not needed. It is, however, advised to assign pri-
orities and use synchronised methods in case the application should run at a
higher compliance level. Object.wait, Object.notify and synchronized blocks
are prohibited

Level 1: The scheduler is a fixed-priority scheduler with priority ceiling emu-
lation. This opens up for concurrency and thus also preemption. In order to
ensure mutual exclusion, synchronized methods can be used. Both periodic
and aperiodic event handlers are allowed at this level

Level 2: Same scheduler and event handler types as in level 1, but with ad-
ditional support for no-heap real-time threads. The largest difference between
level 1 and 2 applications, is the ability to create nested missions in level 2. In
addition, Object.wait and Object.notify are allowed

2.2.2 Memory Model
SCJ uses the scoped memory model based on that of RTSJ. As a result, there is no
garbage collection and the general notion of a heap is gone. In the scoped memory
model objects are allocated in an allocation context (scope) and are bulk deallocated
when the context exits.

SCJ defines the three named memory areas, immortal memory, mission memory
and private memory. The immortal memory area contains static fields and objects
created during the initialization phase. Objects that are allocated in this area will
persist throughout the entire execution and are accessible by all underlying event
handlers, which makes it an ideal place to store shared data structures. Mission
memory area exists throughout the lifetime a missions. Allocations are done during
the mission initialization phase and are available for all handlers that execute under
the mission. Lastly, when an event handler is released, an anonymous private memory
area is allocated, which persists only throughout the handlers job execution. In
addition, it is possible to enter any number of private nested scopes.

When any of these scopes exits, every enclosed object gets deallocated. For event
handlers this happens when the handleAsyncEvent terminates, for missions, when
it is terminated and when the application terminates, the immortal memory area is
deallocated.

Figure 2.1 illustrates the different memory regions of a level 1 SCJ application
with one mission having two periodic event handlers and one aperiodic event handler.

Page 13 of 91

CHAPTER 2. PREREQUISITES

Time

PEH
(Priority 2)

M
iss

io
n

SO
 1

SO
 2

SO
 3

PEH
(Priority 5)

APEH
(Priority 7)

Timer event Triggered event Timer event Timer event

PEH
(Priority 2)

Preempted

Immortal Memory
Shared by all handlers across missions

Mission Memory
Shared by all handlers in the mission

Private
Memory

PEH
(Priority 5)

Private
Memory

Private
Memory

Private
Memory

Private
Memory

Figure 2.1: The memory areas of a level 1 SCJ application

2.2.3 Storage Parameters
Listing 2.1 shows an extract of the Safelet interface and the abstract Mission class.
An implementation of the Safelet interface requires the programmer to implement
the immortalmemorySize method and thus specify the size of the immortal memory
area in bytes. If the available memory is less than the requested size, safelet ini-
tialisation aborts. For each created mission, the developer must specify the missions
memory size (in bytes) in terms of implementing the abstract missionMemorySize
method. This number determines the size of the MissionMemory area and includes all
encompassed backing store memory areas. In other words, the storage used for all
contained ManagedSchedulable objects within the mission, will use this memory1.

Listing 2.1: Method signatures in the Safelet interface and the abstract Mission class
for specifying the immortal and mission memory sizes

1 @SCJAllowed
2 public interface Safelet<MissionLevel extends Mission> {
3 public long immortalMemorySize();
4 ...
5 }
6

7 @SCJAllowed
8 public abstract class Mission {
9 abstract public long missionMemorySize();

10 ...
11 }

Listing 2.2 shows constructors in the PeriodicEventHandler and AperiodicEventHandler
classes. Besides specifying common task information, instances of StorageParameter
must be supplied.

1A ManagedSchedulable object could for example be a periodic or an aperiodic event handler.

Page 14 of 91

CHAPTER 2. PREREQUISITES

Listing 2.2: The constructors in PeriodicEventHandler and AperiodicEventHandler both
accepting instances of the StorageParameter class

1 public abstract class PeriodicEventHandler extends ManagedEventHandler {
2 public PeriodicEventHandler(
3 PriorityParameters priority,
4 AperiodicParameters release,
5 StorageParameters storage) { // <-- difficult part
6 ...
7 }
8 ...
9 }

10

11 public abstract class AperiodicEventHandler extends ManagedEventHandler {
12 public AperiodicEventHandler(
13 PriorityParameters priority,
14 AperiodicParameters release,
15 StorageParameters storage) { // <-- difficult part
16 ...
17 }
18 ...
19 }

In order to instantiate an instance of StorageParameters, several storage parameters
must be known. The constructor of StorageParameters is shown in Listing 2.3. In
Line 3, the backing store size represents the worst-case scope usage (in bytes) by the
associated ManagedSchedulable object. The term backing store is used for a range of
memory allocated that e.g. a handler is allowed to use (including nested scopes). The
sizes array in Line 4 must contain configuration parameters for the virtual machine
such as the native stack size and Java stack size. It follows that the number and
meaning of these values are vendor specific. The messageLength in Line 5 covers
the memory dedicated to the ManagedSchedulable ThrowBoundaryError exception
including method identifiers in the stack backtrace. The stackTraceLength in Line 6
is the number of elements in the StackTraceElement array which is associated with
the ThrowBoundaryError exception. The maxMemoryArea in Line 7 is the maximum
amount of memory per release in the private memory area. Finally, maxImmortal and
maxMissionMemory in Line 8 and 9 represents the maximum size the ManagedScheduble
occupies in immortal memory and mission memory respectively.

Listing 2.3: The constructor in the StorageParameter class

1 public class StorageParameters {
2 public StorageParameters(
3 long totalBackingStore,
4 long[] sizes,
5 int messageLength,
6 int stackTraceLength
7 long maxMemoryArea,
8 long maxImmortal,
9 long maxMissionMemory) {

10 ...
11 }
12 ...
13 }

Note that the SCJ implementation in the JOP repository only uses the first param-
eters in the constructor, namely totalBackingStore and sizes. In the remaining
parts of the report, we will thus focus on these two parameters as a consequence of
using JOP as the target platform.

Page 15 of 91

CHAPTER

THREE

STATIC PROGRAM ANALYSIS

The following is based on unpublished lecture notes by Michael Schwartzbach[31] and
the book Worst-Case Execution Time Aware Compilation Techniques for Real-Time
Systems[21]. Additional sources are referred to as usual. In the previous chapter the
essential prerequisites were described. Before continuing with more details on current
methods for WCET analysis, we first describe the foundations of static program
analysis. The existing WCET analysis methods use this theory and will be used in
our analysis as well.

3.1 Background
Static program analysis is an important topic in several areas of computer science.
For a given program P , it can be of great interest to know different properties of P .
Questions that we may wish to ask can for example be:

• Does P ever throw an exception?

• Does a variable ever change value after its initial assignment?

• Will a null value ever be dereferenced?

For the purpose of this master’s thesis, the relevant question to ask about a pro-
gram would be how much dynamic memory a program allocates in the worst case at
run-time? Unfortunately, many such properties cannot be determined by a program
analysis without tradeoffs, which is a result deeply manifested in theory of computabil-
ity. Despite such properties being undecidable, it is possible to make approximations
that still provide useful results. Figure 3.1 illustrates the types of approximations an
analysis can be, compared to the exact behaviour of the program. Furthermore,
for some desired analysis, this can be proved to be sound, meaning that the analysis
will only produce valid facts. That is, intuitively, the analysis works as intended.
An analysis that is both sound and complete captures the exact behaviour of the
program, but is undeciable.

Consider an example of the problem of determining whether a specific type of
exception will occur in the execution of some function in a program. An analysis
of this may respond no if it is certain that such an exception will not occur, or yes
if such an exception may or may not occur. Even though the results are an over-
approximation, being able to state that no exceptions of a certain type would occur
in that function, is a strong property to be able to say about a program. Similarly,
analysis for determining cases where null value deferencing will happen are often also
over-approximations as they are used to establish that null pointer exceptions cannot
occur in the program. Given the nature of many problems, an analysis that is an

Page 16 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

Over-approximate

 All program behaviour

Under-
approximate

Figure 3.1: Types of approximations in relation to the exact program behaviour

over-approximation will be most appropriate. Moreover, the goal is to be as precise
as possible and, in the case of an over-approximative analysis, avoid as many false
positives as possible.

With these ways of avoiding the undecidable nature of many of the analysis prob-
lems, static program analysis is applied in several ways. Notable examples of appli-
cation are in compilers for optimisation purposes and verification of programs. In the
following sections we describe some of the core concepts in static program analysis
that are used underneath the types of static program analysis that will be discussed
in subsequent chapters, as well as, used in this project.

3.2 Control Flow Graphs
Besides the already mentioned sources in the beginning of this chapter, this section
is also based on Control-Flow Analysis[5]. The type of analysis problem we work
with, relies on the concrete execution flow through the program. Static analysis that
requires knowledge of the control flow of the program under analysis, uses a control
flow graph (CFG). These types of analysis are also called flow-sensitive analysis. On
the other hand, if the results for a sequence of statements S1S2..Sn remains the same
for all permutations of the sequence, the analysis is called flow-insensitive. Informally,
a CFG is a representation of the program and its possible execution paths or the flow.
A CFG is constructed using control flow analysis (CFA). This will not be discussed
in further details, but we note that algorithms are available for this purpose.

Before introducing a CFG formally, we begin with the fundamental basic block.
Basic blocks are abstractions over the different program execution points and they
constitute the underlying building blocks of a CFG. A basic block is defined as the
following:

Definition 3.1. “A basic block is a maximal sequence of instructions that can be
entered only at the first instruction and exited only from the last instruction.”[21]

As an example, a basic block may represent a sequence of instructions with the first
instruction being the jump target of a preceding basic block with its last instruction
being the jump instruction. It is important to note that only the last instruction in
a basic block may branch to other parts in the program.

With basic blocks as the building blocks, a programs flow is represented by a
control flow graph, defined as the following:

Definition 3.2. A control flow graph is a directed graph G = (V ,E, i), where node

Page 17 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

V corresponds to basic blocks and edges E ⊆ V × V connect two nodes vi, vj ∈ V iff
vj is executed immediately after vi. i ∈ V represents the start node, called source,
which has no incoming edges: @v ∈ V : (v, i) ∈ E.[21]
A special type of a CFG can represent both the control flow within a single function
and across function calls. Such a CFG is called an interprocedural control flow graph
(ICFG). In an ICFG, call nodes (callers) are connected to entry nodes in the target
functions (callees). Note that multiple targets may exist in the case of e.g. function
pointers or dynamic dispatching. Exit nodes are similarly connected to return nodes
for the calling function.

With a CFG representing the control flow of a program, a path through a CFG is
defined as the following (using an ICFG):
Definition 3.3. A path π through the control flow graph G = (V ,E, i) is a sequence
of basic blocks (v1, ..., vn) ∈ V ∗, with v1 = i and ∀j ∈ 1, ...,n− 1 : (vj , vj+1) ∈ E. [21]
Finally, a program is defined as the following:
Definition 3.4. All possible paths through the control flow graph G = (V, E, i)
starting at i and ending in a sink constitute a program ϕ. A sink represents a block
s ∈ V with @v ∈ V : (s, v) ∈ E.[21]
As can be derived from these definitions, the goal, for our purpose, is to find the path
π through a given program, which allocates the most memory resources. It should be
noted that we work with bounded applications meaning that the maximum depth of
recursive calls and loop iterations are known in advance.

3.2.1 Call Graphs
A different graph data structure often found in use, is a Call Graph (CG). Compared
to a CFG, a CG describes which functions can be called by each function. A call
graph is defined as follows[4]:

• Each node corresponds to a single function in the program

• Each call site (a place where a function can be invoked) corresponds to a node

• If a function f may be called at call site s, then there is an edge going from
s to f

Note that different variants exist. Often there is no node for individual call sites, but
simply an edge going from the node of a function, f , to each node that f calls (or
may call in the case of e.g. function pointers). A CG can be derived from an ICFG,
as this includes calling relationships among functions as part of its basic blocks.

3.2.2 Interprocedural and Intraprocedural Analysis
An analysis can work on a single function at a time or on an entire program (whole
program analysis). An analysis is said to be intraprocedural if it works on a single
function at a time[4]. In the case of function calls, worst-case assumptions have to be
made in regard to parameters for intraprocedural analysis. An interprocedural analysis
works on the program flow and works across boundaries of a function. This could e.g.
be necessary for an analysis related to the use of data objects pointed to by pointers.
An interprocedural analysis will track information from a call site to its target(s). As
an example, if a function is called with an argument, the argument is included in the
subsequent analysis of the basic blocks within in that function – for intraprocedural
analysis, this would not be possible as functions are analysed in isolation with worst-
case assumptions being made about a functions formal arguments. An interprocedural
analysis can be an approach to increase precision, as worst-case assumptions does not
necessarily have to be made at every call site.

Page 18 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

3.2.3 Context-Sensitivity
An interprocedural analysis using a ICFG or a CG, can take contexts into account.
This is called a context-sensitive analysis[4]. As an example, the context of a node
within the CG could include call information, as well as any other relevant informa-
tion for that matter, making it possible to tell from which other function the function
is called. Similarly a context-insensitive analysis does not take contexts into account.
Because the behaviour of a function often depends on the originating call site, pre-
cision can be improved by a context-sensitive analysis that include call information.
This, however, requires additional analysis information to be maintained.

3.2.4 Example
Let us consider an example of a control flow graph for a program. Consider a simple
Java program that calculates the nth Fibonacci number in an iterative approach.
Such a program could be written as provided in Listing 3.1.

Listing 3.1: Calculating the nth Fibonacci number

1 int FindNthFibonacciNumber(int n) {
2 if (n == 0) return 0;
3 if (n == 1) return 1;
4

5 int current = 0;
6 int previous = 1;
7 int result = 0;
8

9 for (int i = 3; i <= n; i++)
10 {
11 result = current + previous;
12 current = previous;
13 previous = result;
14 }
15

16 return result;
17 }

A possible control flow graph for the FindNthFibonacciNumber method may be con-
structed as is illustrated in Figure 3.2 (note that for illustration purposes we keep the
level of basic blocks on the actual Java source code in this example rather than on
bytecode instructions).

entry if (n == 0) if (n == 1)

int current = 0
int previous = 1

int result = 0
int i =3 if (i <= n)

result = current +
previous

current = previous
previous = result

exit return result

i = i + 1

return 0

return 1

Figure 3.2: A possible CFG for the Java program provided in Listing 3.1

Page 19 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

Control flow graphs appear in many places concerning static program analysis, and
these will be extensively used throughout the remaining project.

3.3 Pointer Analysis
Pointer analysis is a type of static analysis that determines possible run-time values
of pointers[17]. Pointer analysis is relevant for programs produced in languages that
has pointer functionality, such as C. For Java and Java bytecode programs, this is also
relevant as object references can be considered simple pointers. Consider the sample
Java program provided in Listing 3.2. Here the invocation of the toString method
in Line 26 depends on the referenced object type at run-time. This is where a pointer
analysis can provide information about what the reference variable o may reference,
and thereby ultimately we can say something about which toString methods may be
invoked.

Listing 3.2: What can variable o reference?

1 public class A {
2 @Override
3 public String toString() {
4 return "This is A";
5 }
6 }
7

8 public class B {
9 @Override

10 public String toString() {
11 return "This is B";
12 }
13 }
14

15 public class ToStringPrinter {
16 public static void main(String[] args) {
17 Object o = null;
18 switch(args[0]) {
19 case "A":
20 o = new A();
21 break;
22 case "B":
23 o = new B();
24 break;
25 }
26 System.out.println(o.toString());
27 }
28 }

Similar to many of the other analysis problems previously presented, a complete anal-
ysis of pointer targets is also undecidable[17], thus different approaches that makes ap-
proximations have been proposed. These approximations are conservative and sound
over-approximations. The result of a pointer analysis is, for each pointer variable p,
the set of (possible) targets that p may point to. This information is then typically
used for other subsequent analysis. Because others are dependant on the pointer anal-
ysis for their own analysis, the precision of the approximation is important. However,
other properties are also important such as the speed if working on projects with
many SLOC. One may therefore wish to sacrifice some precision for speed for certain
types of analysis. We here present the intuition behind the well known Andersens
algorithm that performs points-to analysis. We refer to [26] that makes a comparison
between the different significant types of pointer analysis for additional approaches.

Page 20 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

3.3.1 Andersen-Style Points-To Analysis
Andersens algorithm is a flow-insensitive and context-insensitive approach[26]. The
algorithm is originally made for analysing pointers in the C programming language[6].
However, it has also been applied in the analysis of Java applications for analysing
object dereferencing as well as examined with support for context-sensitivity[19].

Andersens can be described as the creation of a conceptual points-to graph that
is maintained and updated as statements are examined. Each node vi corresponds to
pointer variable pi in the program. A directed edge e from node v1 to v2 indicates
that pointer variable v1 may point to v2 at some point in the execution. This points-
to graph is created under a number of constraints specified for the possible pointer
manipulations.

We will now show Andersens points-to algorithm and how it is applied for the
Java programming language. This is slightly less complex than for C as only simple
object references are available. We refer to Appendix A for a similar example in C
that illustrates Andersens algorithm in its original form.

Algorithm and Example for the Java Language

We here use set constraints and notation from [31] to describe Andersens algorithm.
Let 〈type〉 and 〈size〉 denote an application type name and a constant value (or vari-
able having an integer constant value) respectively. Let 〈type〉_object_instance− i
and 〈type〉_array_instance− i denote an object instance and an array instance in-
stantiated at site i respectively. For each reference variable id in the program, JidK
denotes the set of possible targets to which id may reference.

The analysis assumes that all reference manipulations in the program are one of
the following four kinds (derived from [31]):

1. id = new 〈type〉()
2. id = new 〈type〉[〈size〉]
3. id1 = id2
4. id = null

The following constraints are specified for each of these reference manipulations (ex-
cept null value assignment), that is used to create the points-to graph:

id = new 〈type〉() : {〈type〉_object_instance−i} ⊆ JidK
id = new 〈type〉[〈size〉] : {〈type〉_array_instance−i} ⊆ JidK

id1 = id2 : Jid2K ⊆ Jid1K

The result is a points-to function that for a reference variable p, returns possible
targets that p may reference. The points-to function is defined as follows:

pt(p) = JpK

The general intuition behind these constraints, is that in the case that a reference
variable v1 is assigned another reference variable v2, all possible targets of v2 are
possible targets of v1. We refer to [31] that provides details on The Cubic Algorithm
that can be used for creating the points-to graph based on these constraints. The
worst-case time complexity of creating and solving these constraints is O(n3).
Consider the following sequence of statements with reference manipulation from a
Java program:

Vehicle v1, v2, v3;
v1 = new Car();
v2 = new Boat();

Page 21 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

v3 = new Plane();
v1 = v2;
v3 = null;
v3 = v1;

Assume we are interested in knowing possible targets of v1, that is, we wish to know
the set returned by the function pt(v1). The following constraints are produced for
the program:

Car_object_instance−1 ⊆ Jv1K
Boat_object_instance−1 ⊆ Jv2K
Plane_object_instance−1 ⊆ Jv3K
Jv2K ⊆ Jv1K
Jv1K ⊆ Jv3K

Let us consider how the resulting points-to graph is constructed, under these con-
straints. Figure 3.3(a) illustrates the inclusion of the newly allocated Car object
instance as a possible target for the variable v1 (dashed edges indicates new relation-
ship added). The same principles applies for Figure 3.3(b) and 3.3(c), such that v2
and v3 now includes a Boat and Plane object instance respectively.

Car_instance-1v1

v3

Boat_instance-1

Plane_instance-1

v2

(a) From constraint Car_object_instance −
1 ⊆ Jv1K

Car_instance-1v1

v3

Boat_instance-1

Plane_instance-1

v2

(b) From constraint Boat_object_instance−
1 ⊆ Jv2K

Car_instance-1v1

v3

Boat_instance-1

Plane_instance-1

v2

(c) From constraint P lane_object_instance−
1 ⊆ Jv3K

Figure 3.3

The fourth constraint, illustrated in Figure 3.4(a), lets v1 point to all targets of v2

Page 22 of 91

CHAPTER 3. STATIC PROGRAM ANALYSIS

making v1 point to a Boat object instance as well. The final constraint makes v3
include the Car and Boat object instances. This can be seen in Figure 3.4(b).

Car_instance-1v1

v3

Boat_instance-1

Plane_instance-1

v2

(a) From constraint Jv2K ⊆ Jv1K

Car_instance-1v1

v3

Boat_instance-1

Plane_instance-1

v2

(b) From constraint Jv1K ⊆ Jv3K

Figure 3.4

This result also shows how Andersens algorithm is an over-approximation. From
inspecting the source code, we can surely say that v3 will reference Boat_instance−1
through v1s assignment to v2. Yet, the analysis will report that Car_instance−1
is also a possible target, as a result of being an over-approximation. Being flow-
insensitive, the order of statements does not have any impact on the results. The
results will be the same for all sequence permutations of the statements.

Page 23 of 91

CHAPTER

FOUR

WORST-CASE EXECUTION TIME ANALYSIS
METHODS

This chapter is based on the article The Worst-Case Execution-Time Problem –
Overview of Methods and Survey of Tools[39] and WCET Analysis of Java Bytecode
Featuring Common Execution Environments[14]. Furthermore, the WCET overview
is based on our previous work[36]. In the previous chapter we introduced static pro-
gram analysis. Control flow graphs were introduced as a way to represent a program,
and pointer analysis as a type of static analysis to determine possible targets of point-
ers or references. This chapter presents an overview of the currently used methods for
WCET analysis. These (with the exception of measurement-based approaches) rely
directly on the introduced concepts from static program analysis. We begin with a
brief outline of the problem at hand and how different approaches attempt to address
the problem based on our previous work. We then go into details with the methods
that are based on a static analysis approach. The goal is to provide an overview of
options for how we can perform our analysis using existing well known techniques.

4.1 WCET Analysis Overview
As it was described in Section 2.1.1, it is necessary to know the worst-case execution
time of a real-time task in order to determine schedulability. Intuitively, a guaranteed
bound on the execution time could be found by providing the tasks with the worst-case
input and record the execution time. However, the worst-case input is in general hard
to derive and therefore not feasible. Worst-Case Execution Time (WCET) analysis of
real-time programs is the process of determining an upper bound on the execution time
on a specific piece of hardware. Two properties are used to evaluate methods. Safety
describes if the method provides estimates or actual bounds. Precision describes
how close provided bounds or estimates are to actual values. For hard real-time and
safety-critical systems we are interested in methods that provide safe bounds such
that safe schedulability is ensured. Precision is important as the amount of programs
deemed not schedulable but in reality would be, increases as an analysis becomes
more imprecise. Here the goal is to be as tight as possible.

The different methods that address the problem are generally classified as one of
the following overall approaches:

End-to-end measurement the tasks of the real-time system are executed either
on the actual hardware or using a simulator on one or more inputs. Metrics
that are measured can be e.g. CPU cycles or time. Figure 4.1 illustrates the
problem and how measurement based approaches only provides estimates that
are not safe. These measurements are typically called the minimal and maximal

Page 24 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

observed times

Static analysis technique methods classified as static analysis techniques are based
on not executing the code as described in Chapter 3. As illustrated in Figure
4.1, these provide safe upper bounds with some unprecision. This safety makes
the approach attractive for hard real-time and safety-critical systems, and is
also the reason we are considering these methods for our analysis

Hybrid As a result of challenges in both end-to-end measurement and static analysis,
hybrid analysis is also found. In a hybrid based approach, different parts of the
program are analysed using different approaches. The results are then combined

time

measured
times

Measured execution times

time of all
executions

Possible execution times

Example lower and upper bound provided by a method
with some unprecision

distribution of times

Figure 4.1: The WCET analysis problem and notation - from the previous work[36]
that was adapted and modified from the article The Worst-Case Execution-Time
Problem Overview of Methods and Survey of Tools[39].

With this brief overview, we look at examples of well-known WCET analysis based on
the static analysis approach in the following. A method that is particulary interesting
is the Implicit Path Enumeration Technique (IPET), that has become a popular and
much applied method, but we also present a more simple approach. End-to-end
measurement and hybrid methods are not considered as these are not viable for our
analysis, for reasons previously stated. For additional static methods we refer to [39]
that provides an overview.

4.2 Static WCET Analysis Methods
The static analysis methods are generally organised using two types of analysis[18,
10]. High-level analysis, or program path analysis, determines the execution path
(e.g. using a control flow graph) in which the program will exhibit the worst-case
execution time and the value of the actual bound. This also includes the control
flow analysis to create the control flow graph that represents possible program flows.
Low-level analysis, or microarchitecture modelling, determines the computation time
of each atomic unit of flow such as an individual instruction or basic block on a given
architecture[11]. The high-level information thus uses the low-level results about
execution time of blocks to determine the path in the graph with an upper bound.
The low-level analysis is complicated by the complexities of hardware architectures
that affects execution time, such as caches. This is very execution time specific and

Page 25 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

the focus will be on the high-level analysis of the methods in the following. JOP
was created to eliminate (or reduce) these complexities by leaving out many such
performance techniques in order to be more predictable and analysable.

A complete WCET analysis is undecidable, and in order to make an approxi-
mation, restrictions must be put on the program under analysis. This is done in
order to make all parts of a task analysable. The following are some typical program
restrictions when using static WCET analysis methods[25, 18]:

• Recursion is not allowed. Recursive algorithms must be replaced by iterative
ones

• No function pointers

• Loops must be bounded (which is typically specified explicitly using annota-
tions)

• No dynamic data structures

Looking at these from the perspective of safety-critical systems and SCJ, these are
not terrible restrictions on the programming model. E.g. reflection is not available
in SCJ, thus no dynamic data structures and thereby class loading is possible. The
restriction of function pointers can also be lifted, by the use of a points-to analysis
as previously described. With the general requirement of working with bounded and
full available programs at compile-time, we continue with examples how to perform
the high-level analysis of calculating the execution time bound of a program.

4.2.1 Path-based Calculation
The path-based approach to calculate the bound can be considered the “naive ap-
proach”. It is based on the use of graph algorithms to explore all possible execution
paths of a program in search for the longest path[11]. Paths are therefore visited ex-
plicitly. There are different concrete algorithms to perform the calculation, however,
in the cited material this works (abstractly) as follows:

Algorithm 1: Path-based calculation
Data:
CFG← Control flow graph for a program

1 begin
2 LongestPath← null
3 repeat
4 LongestPath← next longest path in CFG using Dijkstra’s algorithm
5 until LongestPath is feasible;
6 end

Flow facts are used to specify whether a path is feasible or not. Flow facts are con-
sidered hints on the program flow[21] (e.g. a fact may express that two specific nodes
cannot occur in the path). This can be considered a step to increase precision, as
the worst execution path found will be the most expensive that is feasible according
to the facts. An approach as this where execution paths are explicitly enumerated
to find the worst case path, however, suffers from time complexity increasing expo-
nentially with the depth of conditionals. Listing 4.1 illustrates a Java program with
a conditional inside a loop. In this case the loop alone has 21000 unique execution
paths. As this is a typical case in Java programs, this approach is not very feasible.
Similarly execution frequencies of all nodes must be known in advance, e.g. in case of
loops, before explicitly traversing execution paths. It should be noted that variations

Page 26 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

and improvements have been made, e.g. by considering only one iteration of a natural
loop.

Listing 4.1: Exponential blowup in possible execution paths - adapted and modified
example from Performance Analysis of Embedded Software Using Implicit Path Enumera-
tion[18]

1 private void badMethodToAnalyse() {
2 for(int i = 0; i < 1000; i++) {
3 if (i < 50) {
4 // do something
5 }
6 else {
7 // do something else
8 }
9 }

10 }

4.2.2 Implicit Path Enumeration Technique (IPET)
A different approach that has become popular for high-level analysis, is the Implicit
Path Enumeration Technique (IPET) in which the WCET analysis is made into an
Integer Linear Programming (ILP) problem[18, 24]. The JOP platform used in this
project also uses this approach for its provided WCET tool[29]. As the name implies,
it implicitly considers all execution paths when obtaining a solution (the bound on
execution time) rather than doing so explicitly like in the previous method. IPET pro-
vides the count of visited nodes (which was assumed to be known for the path-based
approach), that is, in the worst-case how many times a given node is executed[11].

An integer linear programming problem consists of an objective function, a set of
non-negative decision variables restricted to be integers and a set of constraints. The
goal is to maximise or minimise the objective function such that the constraints are
satisfied.

Let CFG be the control flow graph for a program ϕ and BBi ∈ CFG be a basic
block from the control flow graph. The objective function for determining WCET is
then defined as the following[29]:

WCET = max
N∑

i=1
ciei (4.1)

where N is the total amount of basic blocks, ei is a positive integer representing
the execution frequency of BBi and ci is the execution time of BBi. Intuitively, we
can see that by maximising the function, we will get the worst-case execution time.
The constraints that should be satisfied, are derived from the control flow graph.
These constraints describe the possible program flow, which results in the implicit
enumeration of possible execution paths. Two types of constraints are distinguished
between, flow and loop constraints. These are also called structural and functional
constraints respectively.

The flow constraints are derived directly from the CFG and are expressed by
defining the execution frequency ei for BBi as the following[29]:

ei =
∑
j∈Ii

fj =
∑

k∈Oi

fk (4.2)

where f is a set of decision variables denoting the execution frequency of edges, Ii is
the set of incoming edges to BBi and Oi is the set of outgoing edges from BBi.
Loop constraints require some knowledge on how loops are modelled in a CFG. Con-
sider the example CFG illustrated in Figure 4.2. A loop header is the entry node

Page 27 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

loop body

loop
header

...

BBi

BBi+1

...

Figure 4.2: A natural loop in a CFG

of a loop. This will always be entered at least once, and is formally the node that
dominates every node that is a part of the loop, called the loop body. A natural loop
is one in which there is only a single header.

Assume some loop header q. Let Fh be the set of frequencies for each incoming
edge to q that enters the loop, and fl be the frequency of the single outgoing edge from
the q to its body. The loop constraint is then defined as (modified for clarification
purposes)[29]:

fl ≤ n
∑

fe∈Fh

fe (4.3)

where n is the explicit bound on the loop. Note that the back edge(s) from the loop
body to the loop header are not part of the set Fh.

Finally, in order to bootstrap the process, a start node S and a termination node T
is added to the graph and assigned special constraints. Let fs be the single outgoing
edge from S to the first basic block and ft be the incoming edge(s) to T. Then the
following constraints are specified:

fs = 1
ft = 1 (4.4)

Intuitively, these constraints specify that we start and exit the program a single time.
Note that there can easily be more than one incoming edge to the termination node
depending on how the CFG is constructed.

To summarise, we have an objective function to maximise, a set of constraints and
a set of decision variables that comprise the ILP problem. The final step of finding
the optimal solution, can be done using an available LP solver that takes the problem
as input and as a result will provide the worst-case execution time as output as well
as the values of the decision variables.

Example

We here provide an example to illustrate IPET and how it is used to perform high-level
analysis by transforming the problem into an ILP problem. Note that this sample
is similar to ones provided in the cited material, but here at the level of Java source
code. We assume that loop bounds be explicitly annotated in the source program as

Page 28 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

done for JOP and that the execution time cost of basic blocks are provided by some
low-level analysis. Consider the example program in Listing 4.2 (the lines are marked
with how they could be matched to basic blocks).

Listing 4.2: Sample Java program to analyse

1 private void someRealTimeTask() {
2 BB1: int y = 0;
3 int j = 0;
4

5 BB2: while(j < 20) { //@WCA loop <= 20
6 BB3: for(int i = 0; i < 50; i++) { //@WCA loop <= 50
7 BB4: if (i == 42) {
8 BB5: y = 42;
9 }

10 else {
11 BB6: someCalculation();
12 }
13 }
14 BB7: j = j + 1;
15 }
16 }

A possible CFG for this program that is to be used in transforming the analysis into
an ILP problem is illustrated in Figure 4.3 with edges labelled with the name of a
decision variable. In addition, each basic block is associated with an example of an
execution time cost provided by a low-level analysis.

entry exitBB1 BB2

BB3

BB4

BB5 BB6

BB7

fs f1

f2

f3

f4 f5

f6 f7

f8

f9

ft

C: 2 C: 3

C: 5

C: 3

C: 2 C: 7

C: 2

Figure 4.3: A possible CFG for Java program in Listing 4.2 with decision variables
on edges and execution time costs for basic blocks

Given the example program and CFG representation, the objective function that
should be maximised is defined as:

WCET = 2e1 + 3e2 + 5e3 + 3e4 + 2e5 + 7e6 + 2e7 (4.5)

Page 29 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

The flow/structural constraints, represented by and extracted from the CFG are as
follows:

fs = 1
e1 = fs = f1

e2 = f1 + f9 = ft + f2

e3 = f2 + f6 + f7 = f3 + f8

e4 = f3 = f4 + f5

e5 = f4 = f6

e6 = f5 = f7

e7 = f8 = f9

ft = 1 (4.6)

As can be seen both in the source program, two loops are present. In the CFG,
the loop headers are represented by the basic blocks BB2 for the while-loop and
BB3 for the for-loop. The bounds on these should be represented by the loop, or
functional constraints, as these are not directly represented in the CFG, but depends
on the functionality of the program. Upper bounds on each loop are provided by the
programmer through the use of annotations as seen in Listing 4.2 in the syntax used
for applications targeting JOP and using the JOP WCET analysis tool. Using these
bounds, the loop constraints are:

f2 ≤ 20f1

f3 ≤ 50f2 (4.7)

The objective function(4.5) subject to the flow(4.6) and loop constraints(4.7) can then
be solved with respect to maximisation of the objective function by using one of many
available LP solvers. The result of this will be the maximum value of the objective
function (in this case, the computed worst-case execution time) and the values of the
decision variables that satisfies the solution. For the provided example, the value of
the objective function maximised is:

WCET = 15205 (4.8)

with the following values for the decision variables that satisfies the constraints (om-
mitting fs and ft):

f1 = 1
f2 = 20
f3 = 1000
f4 = 0
f5 = 1000
f6 = 0
f7 = 1000
f8 = 20
f9 = 20

(4.9)

In the path-based method all execution paths were explicitly considered, but here the
result is not a concrete path, but rather a count for each of the nodes of how many
times they are executed. This count is the values of the decision variables. The actual

Page 30 of 91

CHAPTER 4. WORST-CASE EXECUTION TIME ANALYSIS METHODS

path can, however, be traced. The worst-case execution path can be defined as an ex-
tension to Definition 3.3 of a path through a control flow graph provided in Section 3.2.
With the execution frequency ei for each basic block BBi known, the worst-case ex-
ecution path is the longest sequence of nodes (v1, ..., vn) such that ∀i ∈ N : ei > 0.
In the previous example, we can thus see that the worst-case execution path (with
single loop iterations) would be (BB1,BB2,BB3,BB4,BB6,BB3,BB7,BB2).

Considerations of IPET

IPET has become a popular approach to the high-level analysis for WCET of real-time
systems. A problem is that solving ILP is NP-complete. While the time-complexity
of the path-based approach increases exponentially with the depth of conditionals,
from a theoretical standpoint, transforming the problem into an ILP problem is not
better. Two immediate reasons can be associated with the popularity of the approach.
First, several algorithms are available for solving ILP problem that provides optimised
techniques in the area. Second, the type of ILP problems for WCET analysis can often
have polynomial time solutions and does not experience the exponential blowup[18].
IPET is therefore considered an attractive approach, that can also be used for the
analysis required in this project.

Page 31 of 91

CHAPTER

FIVE

THE JVM AND JAVA BYTECODE

The following is based on the JVM specification by Oracle[20]. The Java Virtual Ma-
chine (JVM) is an abstract computing machine that is generally written in software
and running on top of a real hardware platform – hence the word virtual. Like an
ordinay computing machine, it has its own instruction set and handles different mem-
ory areas at run-time, however, it differs as being independent from the underlying
hardware and operating system. With these properties, and the fact that it reads
a generic class file format, the JVM attains portability making it attractive to use
in many situations. In this chapter, we briefly describe the JVM and the bytecode
it executes. It should be noted that this chapter describes the JVM based on the
specification for Standard Edition Java. While notable differences exists between this
and a Safety-Critical Java compliant JVM, the basic core concepts appear in both.
Likewise, the used SCJ implementation for JOP in this project, is based on an exist-
ing JVM that is also compliant with RTSJ. Whenever differences exists, these will be
emphasised.

5.1 Overview of the JVM
The steps of compiling and executing JVM compliant applications is illustrated in
Figure 5.1. Note that from now on, we will focus on Java applications running on the
JVM, however, the same principles are valid for all languages that can be expressed
in the class file format such as Scala. In addition, it should be noted that the JVM
specification is open as to many of the inner workings, thus actual implementations
will vary.

public'static'
''''''''''void'main(..

Java source files
(.java)

Scala source files
(.scala)

'object'Main'{
''''def'main(..

Java compiler

Scala compiler

'Code:
'''Stack=5,'
'''Locals=13
'''0: aload_0
'''1: invokestatic
''''..

Class files
with bytecode instructions

(.class)

JVM

Class
loader

Run-time
Areas

Execution
Engine

Native
Methods
Interface

Figure 5.1: The steps of compiling and executing applications on the JVM

Page 32 of 91

CHAPTER 5. THE JVM AND JAVA BYTECODE

Java source files, i.e. those with a .java file extension, are first compiled using a
java compiler such as Oracles, javac. The compiler will output .class files for the
respective .java files, each containing information about a particular class. By default,
only line numbers and source file information is included in the class files, however,
setting the compile flag, g, will include all debugging information[22]. When running
an application, the JVM reads and executes the bytecode instructions within the
respective class files. Traditionally, when the JVM reads a constructor invocation
instruction in bytecode and it is the first access, the JVM dynamically finds the
binary class representation matching the type name and then creates a new class.
In a linking phase, the class is then combined into the run-time state of the Java
Virtual Machine such that it can be executed. Finally, <cinit> is invoked, which
initialises the class or interface. For the SCJ implementation of the JVM, however,
every class is loaded and initialised prior to the instantiation of the Safelet class[28].
This requirement favours real-time application development as possible class loading
and initialisation does not have to be checked and included in the WCET analysis.
Additional differences between a JVM for execution of bytecode e.g. Standard Edition
Java and SCJ exists. We refer to the SCJ specification for this information.

5.2 JVM Run-time Memory Areas
During program execution, the JVM manipulates several run-time memory areas.
Some of the memory areas are persistent throughout the entire execution whereas
others are allocated on-the-fly. This section will outline these areas as well as their
respective usage. Some of the concepts in the following sections, will be based on an
ongoing code example, provided in Listing 5.1. The program contains a method for
calculating the square root of an arbitrary integer value.

Listing 5.1: Sample Java program

1 package program.simple;
2 import java.lang.Math;
3

4 class SimpleJavaProgram {
5 public double SquareRoot(int x) {
6 return Math.sqrt(x);
7 }
8 public static void main(String args[]) {
9 SimpleJavaProgram p = new SimpleJavaProgram();

10 double result = p.SquareRoot(16);
11 }
12 }

5.2.1 Private Thread Area
Figure 5.2 illustrates the run-time areas with two executing threads. Upon thread cre-
ation, a private memory area is allocated, which stores a stack of frames (JVM stack)
and a program counter (pc) for keeping track of the currently executing instruction
within a thread. Upon method invocation and termination, a frame is respectively
pushed to, and popped from, the stack. A frame contains an array of local variables,
an operand stack and a reference to the constant pool. Each single local variable and
a single element on the operand stack is a unit of the same size (an integer). The local
variables span all variables in the method implementation including parameter argu-
ments1. By using the class file disassembler, javap, on the class file representing the
Java application in Listing 5.1, a formatted and more human readable version of the

1For instance methods, a reference to this is always present.

Page 33 of 91

CHAPTER 5. THE JVM AND JAVA BYTECODE

Method Area
- Class info
- Run-time constant pool
- Static fields
- Code for methods

Heap
- Object instances
- Array instances

Thread 1

...

PC Register

Local Variables

Operand
stack

Frame 1

Frame 2

Local Variables

Operand
stack

JVM Stack

Frame N

Thread 2

PC Register

Local Variables

Operand
stack

Frame 1
JVM Stack

Frame N

Figure 5.2: The run-time memory areas

bytecode can be inspected. Listing 5.2, shows the Code attribute for the SquareRoot
method, in which the local variable information is kept.

Listing 5.2: Code attribute showing locals and the local variable table

1 public double SquareRoot(int);
2 ...
3 Code:
4 stack=2, locals=2, args_size=2
5 ... // bytecode instructions
6 LineNumberTable:
7 line 7: 0
8 LocalVariableTable:
9 Start Length Slot Name Signature

10 0 6 0 this Lprogram/simple/SimpleJavaProgram;
11 0 6 1 x I

As seen in Line 8-10 in the Listing, there are two local variables, which are the
mandatory this for instance methods, and the integer (I) variable x. Besides the
number of local variables being known at compile-time, the maximum required depth
of the operand stack is also available in the class file as seen in Line 4. Here values of
long and double occupies two units in the depth, where each remaining data types
uses one unit. The depth of the stack represents the maximum height that is required
at some particular time for the JVM to execute the instructions for the method. The
args_size on the same line is the number of parameter arguments including this as
the method in question is an instance method. The JVM stack is either of a fixed
size or dynamically expandable depending on the JVM implementation.

5.2.2 Heap
The heap is a shared memory region storing object instances and arrays – see Fig-
ure 5.2. The memory is allocated upon JVM startup and remains persistent through-
out execution. Depending on the JVM implementation, different garbage collection
algorithms can be used to reclaim dead objects or arrays. The heap can either be of
a fixed size or dynamically expandable depending on the JVM implementation. In

Page 34 of 91

CHAPTER 5. THE JVM AND JAVA BYTECODE

SCJ, the concept of the Heap is gone (or this implicitly becomes the Immortal Mem-
ory Area). Instead the collective memory region used for storing object instances
and arrays are divided into the individual scoped memory regions as described in
Chapter 2.

5.2.3 Method Area
The method area is like the heap, a shared memory region between all participat-
ing threads – see Figure 5.2. For each class it, amongst other things, stores class
information covering field and method data, a run-time constant pool and code for
methods and constructors. The area is created upon JVM startup. Listing 5.3 shows
the first part of the constant pool for the decompiled class file for the Java application
in Listing 5.1.

Listing 5.3: Constant pool for the Java application in Listing 5.1.

1 class program.simple.SimpleJavaProgram
2 SourceFile: "program.java"
3 minor version: 0
4 major version: 51
5 flags: ACC_SUPER
6 Constant pool:
7 #1 = Methodref #6.#27 // java/lang/Object."<init>":()V
8 #2 = Methodref #28.#29 // java/lang/Math.sqrt:(D)D
9 #3 = Class #30 // program/simple/SimpleJavaProgram

10 #4 = Methodref #3.#27 // program/simple/SimpleJavaProgram.
11 "<init>":()V
12 #5 = Methodref #3.#31 // program/simple/SimpleJavaProgram.
13 SquareRoot:(I)D
14 #6 = Class #32 // java/lang/Object
15 #7 = Utf8 <init>
16 ...

5.3 Java Bytecode
The bytecodes constitute the virtual instruction set of the JVM. These instructions are
directly executed by the JVM and are the least unit of execution as well as the object
code of a Java program. Each instruction has the length of a single byte, but may
require additional operands, each with a length of a single byte as well. The complete
Java bytecode instruction set is particularly interesting. Both instructions, that may
be considered simple, found in native hardware (e.g. to manipulate registers), are
found in the set, as well as more high level instructions supporting the high level
features of the Java language. The instruction iadd with two operands, performs a
simple addition of two integers and leaves the result as TOS (top of stack) on the
operand stack of the executing frame. A similar instruction is typically found in
hardware instruction sets. In contrast, the instruction newarray allocates a new array
of a specified type as the operand, and leaves a reference to the newly created array
as the TOS. Examples of other higher level instructions are new, for allocating a new
object, and invokevirtual for method invocation through dynamic dispatching.

The previously introduced class files contains the bytecode instructions produced
by the compiler for the individual methods. Listing 5.4 shows an extract of the
class file with bytecode instructions for the main method of the previous Java sample
program from Listing 5.1. Compiling the Java program with a canonical Java compiler
produces the same, or a semantically equivalent, sequence of bytecode instructions.
In the resulting sequence of bytes, the details of e.g. creating a new object can be
seen. A new object instance of the type SimpleJavaProgram is created in Line 5 with

Page 35 of 91

CHAPTER 5. THE JVM AND JAVA BYTECODE

the new bytecode instruction that also leaves the reference to the newly created object
as the TOS. The #3 indicates the third entry in the constant pool – see Listing 5.3.
Following this creation the constructor is invoked in Line 7 using the invokespecial
instruction. With the new object instance initialised, the remaining instructions in
the sequence invokes the method to perform a square root calculation. This approach
of having a JVM work at the bytecode level, is the enabling power of letting other
programming languages, such as Scala or Clojure, utilise the JVM.

Listing 5.4: Bytecode in class file

1 public static void main(java.lang.String[]);
2 ...
3 Code:
4 Stack=2, Locals=4, Args_size=1
5 0: new #3; //class program/simple/SimpleJavaProgram
6 3: dup
7 4: invokespecial #4; //Method "<init>":()V
8 7: astore_1
9 8: aload_1

10 9: bipush 16
11 11: invokevirtual #5; //Method SquareRoot:(I)D
12 14: dstore_2
13 15: return
14 ...
15 }

Page 36 of 91

CHAPTER

SIX

SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

This chapter will cover the development of SpideyBC – a tool that performs static
analysis of SCJ applications for worst-case memory usage1.

We start by presenting the requirements for the tool, which are elicited through
a combination of considering the initial problems in Section 1.1 and examining the
StorageParameters class in SCJ. Next, there will be a choice of framework supporting
the static analysis. The following sections will describe the design and implementation
of the tool with emphasis on specific challenges and how these are handled.

Note that from this point, we work on the basis of SCJ applications exclusively
and at the bytecode level.

6.1 Requirements
We identify three overall requirements for the tool:

• Analysis of dynamic memory

• Analysis of the JVM stack

• Presentation of results

These requirements will be elaborated in this section. Following the requirements,
restrictions on the programs under analysis are provided.

6.1.1 Dynamic Memory Allocation of Methods
In Section 2.2.3 we saw how the developer must explicitly state backing store sizes for
Immortal Memory, Mission Memory and for each event handler, its Private Memory
Area (including additional parameters for any nested scopes). The sizes of these areas
are directly dependent on the amount of dynamic memory allocated in the execution of
the initialisation methods for the safelet and missions, as well as handleAsyncEvent for
each handler invocation. In addition, the dynamic memory allocated in constructors
and auxiliary methods must also be included when specifying the sizes.

1The name of the tool is an abbreviation of spider and Java bytecode and symbolises a spider
webbing the bytecode to create structure.

Page 37 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

The following bytecode instructions (omitting operands) result in allocation of
dynamic memory:

• new - creates a new object
• newarray - creates a new array of primitive types
• anewarray - creates a new array of references
• multianewarray - creates a new multidimensional array

Given this, the tool must be able to take as input, one or more method signatures as
entry point(s) and provide a safe upper bound on dynamic memory allocation. As
an example, assume the developer wants to know the worst-case dynamic memory
allocation for the release of a periodic or aperiodic event handler. A fully qualified
method signature to the handler would be provided as an input entry point. As
the method may include invocations of other methods, we will obtain a more precise
analysis result by working on an interprocedural level – i.e. analysing referenced
methods and transferring analysis information between these from callers to callees.

Figure 6.1 illustrates this graphically.

SomeHandler.handleAsyncEvent()

Analysis Entry Point

...

SomeClass.method()

...

...

Figure 6.1: Starting analysis from the method, SomeHandler.handleAsyncEvent. All
dynamic memory allocated in the referenced method, SomeClass.method, are included

In relation to specifying the different storage parameters in a SCJ application, the
developer can analyse the dynamic memory of several methods after which the results
can be combined. The aggregated result will then give an indication of a worst possible
memory usage. For example, the value used to specify a missions MissionMemorySize
can be estimated by analysing the methods of all contained handler classes. Similarly,
for the safelets immortalMemorySize, the methods of all participating missions must
be analysed. The same idea applies to specifying totalBackingStore sizes.

6.1.2 JVM Stack Size
In addition to dynamic memory, the developer is also required to parameterise the
JVM stacks for handlers. This requires knowledge of the maximum size for the stack
of a handler, which is dependent on two parameters – the size of each frame (local
variables and the operand stack) and the depth of the stack. Given this, the tool
must determine a safe bound of the JVM stack sizes starting from the input method
signatures. Figure 6.2 illustrates the concept of specifying a JVM stack size by de-
termining the worst-case size using the sizes of frames (known at compile-time) and
knowledge of possible method invocations.

Page 38 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Local Variables

Operand stack
Frame 1
(x bytes)

Local Variables

Operand stack
Frame 2
(y bytes)

...

Local Variables

Operand stack
Frame n
(z bytes)

JVM stack size

Figure 6.2: The JVM stack size

6.1.3 Presentation of Results
Results of the analysis are only usable to the extent that they are presented. A simple
approach would be, in the case of dynamic memory, to output the amount of bytes
allocated in the worst-case starting from the invocation of a method. However, we
argue that it is necessary to provide additional details such that the developer is able
to gain knowledge on what leads to the result. The tool must provide information on
the path taken in the program in the worst-case. The challenge is that the programmer
works at the source level of e.g. Java, while we work at the bytecode level. Traceability
is therefore important. Being able to trace the instructions involved in the worst-case
path back to the original source code, will give the end user useful feedback on where
allocations happen and on the overall worst-case execution path.

6.1.4 Restrictions for Programs
In Section 4.2, typical restrictions imposed on programs for static analysis were listed.
Similarly, in order to meet the requirements for this tool, a few restrictions in relations
on programs under analysis are necessary. We require the following in order to work
with finite programs:

Explicit loop bound annotations All loops must be explicitly bounded using an-
notations.

No recursion Recursion is not allowed, and must thus be substituted with iteration.

No reflection The entire program must be available at compile-time – this is triv-
ially satisfied as reflection is not allowed in SCJ.

Furthermore, we require that class files contain the extended debug information –
see Section 5.1 for javac. This is required to include local variable information. As
source file information and line numbers are included by default, the requirement of
traceability is trivially satisfied. Also, having line number information available both
enables annotation retrieval and prevents additional verification effort according to
DO-178B’s requirement stating that additional verification must be performed if the
object code is not traceable to the original source code[12].

6.2 Analysis Approach and Supporting Framework
Before describing the design and implementation of the tool, this section presents the
approach used for analysis of the program flow. Furthermore we base the tool on an

Page 39 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

existing framework that provides many of the foundations required. We provide an
overview of such appropriate and available frameworks and state the one used for this
tool.

6.2.1 High-Level Analysis Technique
As a part of our approach to this project, which was described in Section 1.2.1, we
argued that looking for methods used in static WCET analysis would be useful for
memory analysis. In Section 4.2, two methods were described. The IPET method
was found to be a well known approach for high-level analysis of program flow for
hard real-time systems. By substituting the cost of each node as execution time with
that of a dynamic memory allocation cost, this technique is applicable for the tool.

It was stated that the use of IPET, based on solving ILP problems, often can be
done in polynomial time. There may also be cases of applications in which this is
not possible, thus solutions are found in exponential time. For this tool this is not
considered a major issue as (1) SCJ applications will typically be relatively small and
(2) the tool is not used on a live system (it is static analysis), thus analysis time will
not impact a deployed live system.

We therefore base our high-level analysis for dynamic memory allocation on the
use of IPET as this is a “tried and tested” technique.

6.2.2 Framework
In order to analyse the memory usage of an application, the concepts and theories of
static program analysis (Chapter 3) will have to be applied. Based on the semantics
of the Java bytecode, it must be possible to construct a (I)CFG in which underlying
instructions can be traced back to the source code as traceability was a requirement.
In addition, we should be able to perform points-to analysis when handling dynamic
dispatching to produce more precise and tight analysis results compared to simple
analysis of the class hierarchy.

We will use a framework that is capable of supporting CFG (or ICFG) genera-
tion as well as supporting points-to analysis. The reason for choosing an existing
framework is that these generally include performance optimised algorithms and im-
plementations. These therefore provide increased performance and precision. Several
Java bytecode operating frameworks are available[33, 23, 15, 3]:

• BCEL: The Byte Code Engineering Library is a toolkit for performing static
analysis and dynamic creation or transformation of Java class files. BCEL can,
for example, be used to substitute the default class loader with a custom class
loader, that intercepts requested class files at run-time in order to perform
transformations before these are loaded into the JVM and executed. The static
analysis part of BCEL mainly revolves around manually inserting analysis code
into the class files upon class loading. The WCA tool for JOP is based on the
BCEL framework

• ASM: ASM contains many of the same features as in BCEL including class file
creation and transformation. It is designed with simplicity and performance in
mind, which makes it an attractive framework to use in many situations

• SOOT: Soot provides both analysis of bytecode and manipulation. It is mainly
used to produce optimised bytecode, but was originally made for the purpose of
comparing different analyses. It provide several kinds of internal representations
and points-to analysis algorithms

• WALA: The T.J. Watson Libraries for Analysis, or simply WALA, is a col-
lection of analysis libraries for analysing Java bytecode and other related lan-

Page 40 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

guages such as JavaScript. Some of its most significant features include analysis
of class hierarchies, interprocedural data-flow analysis, pointer analysis, (I)CFG
construction and call graph construction

Each of the above libraries could in theory be used as the supporting framework for
performing bytecode analysis. In this project we will use WALA. First of all, WALA
natively supports many useful data structures and concepts out of the box such as
pointer analysis and I(CFG) construction. A second reason for choosing WALA, is
that it has been used in the creation of a “points-to analysis tool” for finding illegal
references in SCJ applications – i.e. detecting references made to objects in scopes
with shorter lifetimes, which can lead to dangling references[9]. By using WALA
as opposed to the other libraries, an analysis suite for SCJ applications could be a
potential idea, in which all tools uses the same underlying framework.

6.3 Design
In this section we describe elements of the important design decisions of SpideyBC.
We emphasise that many design decisions are not described here due to the size and
magnitude of the tool. Focus is therefore on overall elements and in particular how
it is used.

6.3.1 Overall Components
To separate overall concerns, SpideyBC is divided into three components, each having
a clear responsibility. These components correspond to a partitioning of the whole
analysis into three distinct phases in a linear sequential order. Figure 6.3 illustrates
the components and how they correspond to phases of the analysis.

Build Analyse AftermathCFG, CG Results
Stack&size
&&&241b
Dynamic&m
&&&2013b

Report

Figure 6.3: Overall components for separation of concerns in SpideyBC

Briefly, each component is responsible for the following:

Build Handles initial setup and initialisation of the analysis based on input (such
as the program to be analysed). The result is the data structures (such as the
means of getting necessary CFGs and the overall CG) required for the actual
analysis

Analyse Takes the data structures constructed and may perform additional manip-
ulations on these if necessary. Performs the actual worst-case dynamic memory
analysis using the IPET technique using the data structures and specified en-
try points, as well as worst-case JVM stack size analysis. The result is data
structures containing the results of the whole analysis

Aftermath Takes the raw analysis results and processes these to generate a user
friendly result for the developer. This phase and the associated component is
directly responsible for the requirements related to presentation. The output is
a report that encapsulates and displays all relevant aspects of the analysis in a
presentable way

Page 41 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

6.3.2 WALA Types and CFG Representation
In this section we briefly cover some of the most interesting data types in WALA.
These types are constructed and used in the build and analysis phases and will fre-
quently be referred to during the implementation. The types are described in Ta-
ble 6.1.

Call graph items

IMethod Interface representing a Java method. An
object of this type will, amongst other
things, have methods for obtaining differ-
ent parts of the method signature and for
retrieving the maximum number of local
variables and maximum stack height

CGNode Interface representing a Java method
(IMethod) appearing in a given context.
Some of the interesting instance meth-
ods include getting its context (Context),
CFG (ControlFlowGraph) and for obtain-
ing information regarding its call sites (if
any) along with the associated target(s)

CallGraph Interface representing a call graph con-
sisting of interconnected call graph nodes
(CGNode). The call graph can be context-
sensitive, which means that there can be
multiple call graph nodes (CGNode) for a
single method (IMethod)

CFG items

IInstruction Interface representing a Java bytecode in-
struction

IBasicBlock<T> Interface representing a basic block of an
instruction type T. The basic block con-
tains one or more Java bytecode instruc-
tions. (IInstruction). An implementing
object will have instance methods for it-
erating through its instruction(s) and for
figuring out whether or not the block is
an entry or exit block

ControlFlowGraph<I, T extends
IBasicBlock<I>>

Interface representing a control flow
graph. Must be parametrised with I and
T, where I is a type that implements
IInstruction. With an object of this
type, basic graph functionality is avail-
able such as getting the entry node or
getting the predecessors/successors of a
node. The graph can be traversed by it-
eration. Each node (T) is uniquely identi-
fiable in the graph

Page 42 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

InterproceduralCFG Class representing an interprocedural
control flow graph where its basic blocks
(and their instructions) are on SSA form
(ISSABasicBlock and SSAInstruction).
Besides providing basic graph operations,
it is possible to retrieve constitut-
ing CFGs, however, on SSA form
(ControlFlowGraph<SSAInstruction,
ISSABasicBlock)

Other items

SlowSparseNumberedLabeledGraph
<T, U>

Class representing an extended graph
having labelled edges. The type can for
example be parametrised with a subtype
of IBasicBlock as T and String as U

Table 6.1: Commonly used WALA types and their descriptions

6.3.3 CFG or ICFG
Transforming the problem of worst-case memory allocation into an ILP problem can
be done in two overall approaches. One can use a strategy of solving smaller in-
dividual problems using intraprocedual CFGs or to solve one big problem using an
interprocedural CFG. The two ideas are illustrated in Figure 6.4.

Analysis Entry Point

...

...

...

Analysis Entry Point

...

...

ClassB.doSomethingElse()ClassA.doSomething()

SharedClass.run()

(a) Solving one large ILP problem per analysis
entry point

ClassA.doSomething() ClassB.doSomethingElse()
Analysis Entry PointAnalysis Entry Point

SharedClass.run()

...

...

...

(b) Solving ILP problems for each referenced
call graph node and combining the results in a
bottom-up approach

Figure 6.4: The ICFG and CFG approach

Figure 6.4(a) shows the first approach of conducting an analysis on an application with
two entry points; ClassA.doSomething and ClassB.doSomethingElse. Both entry
points contains invoke instructions that resolves to the SharedClass.run method.
Starting from one of these entry points, the basic blocks will be visited and linear
constraints generated. Upon encountering an invoke instruction, the basic blocks of
the possible target(s), will be included in the ILP problem formulation.

Page 43 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Figure 6.4(b) shows the other approach on the same application. Starting from
a call graph entry node, the CFG of the node is retrieved and an ILP problem con-
structed for the node only. Upon encountering an invoke instruction while traversing
the basic blocks of the CFG, the resolved callee node(s) are handled as isolated cases
in terms of constructing ILP problems. In relation to the figure, the computed ILP
solution of the SharedClass.run is used as the cost for the basic block containing the
invoke instruction in each of ClassA.doSomething and ClassB.doSomething.

For this project, we will use the latter approach of solving separate ILP problems
and combining the results in a bottom-up approach. What makes this approach
superior compared to the other, is that ILP results for call graph nodes can be saved
for later usage. Thus, when analysing, say ClassB.doSomethingElse, after already
having analysed ClassA.doSomething, the result for SharedClass.run can be fetched
instead of being recalculated – This can not be done with the other approach, whereas
instead one large problem for the whole ICFG would have to be computed for each
entry point.

6.3.4 Low-level Concerns
The low-level part of SpideyBC is concerned with the size of types in memory. For a
basic block containing one of the previously listed bytecode instructions that results
in dynamic memory allocation, the cost must be the size of the type that an object
is instantiated from.

The size of a type is dependant on the underlying platform. Despite Java primitive
types have defined sizes that determines the range of values they can hold, a particular
platform may have constraints in terms of data alignment. This means that any
address reference to memory must be divisible by some integer, and as a result padding
is used[4]. Similarly, a type with two integer fields may be cleverly optimised by the
compiler such that some bits are shared. As a result, a class with a number of fields
of integer types may take up less memory than one with less fields of integer types if
only the first type is optimised.

One approach to handle this would be to target SpideyBC specifically for e.g.
JOP and use the way objects are stored for this platform and not let the developer
be concerned with this. However, this is not very scalable.

Instead, SpideyBC is designed to take a model of the underlying platform as input,
together with the application to be analysed. This model specifies the actual sizes of
how reference types are stored in memory for the target platform. Listing 6.1 provides
an example of the format for such a model specified in a JSON file.

Listing 6.1: Example model for an application to be analysed that specifies size of
types in bytes

1 {
2 ReferenceSize: 4,
3 PrimordialTypeSizes: [
4 {"java.lang.Object": 1},
5 {"java.lang.Exception": 10}
6],
7 ApplicationTypeSizes: [
8 {"com.example.MyObject": 5},
9 {"[I": 8},

10 {"[[I": 12}
11]
12 }

In the provided example, all sizes are in bytes. Line 2 specifies the size of references
and is required. The size for actual types are divided into two arrays for primordial
and application types. As an example, Line 8 specifies that the type MyObject takes

Page 44 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

up five bytes in memory, Line 9 specifies that an integer array of length one takes up
eight bytes and Line 10 specifies that a two-dimensional integer array takes up length
12 for the length 1x1. Note that for arrays, the size entered must be for that of a
single element.

The reason for this design approach is as follows:
• Providing the low-level details as input to the analysis allows for reuse on other

platforms
• Embedded programmers in general can be expected to have good knowledge on

their target platform and how data objects are stored in memory. It is therefore
not considered a major issue to provide these details

• SCJ applications are not expected to be very large, and not expected to perform
many dynamic allocations in the execution phase, but rather set up necessary
objects during the initialisation. In reality, the number of types the developer
need to specify in the model will therefore not be expected to be many

6.3.5 Input Parameters
The model that parametrises the low-level parts of the analysis and a JAR archive
of the application are the two main inputs to SpideyBC. In addition, other input
parameters can be specified such as the signatures of the methods to be analysed.
SpideyBC takes the following command-line arguments (and possible values):

-jvm_model – Path to JSON file containing the model

-application – Path to JAR archive containing the application under analysis

-jar_includes_std_libraries – True if the application JAR includes everything
required to run (e.g. compiling SCJ applications to JOP includes all standard
libraries available for the platform as a part of the archive). False if the applica-
tion JAR includes only the target application under analysis. In this case, the
SE Java library available on the executing machine will be included and used
in the analysis, which may severely increase analysis time2

-source_files_root_dir – Path to the root directory of the source files for the
application provided in the JAR. Files containing types are assumed to be or-
ganised according to their package hierarchy. This is used to provide results
in context to the original source files as well as for extracting loop and array
annotations

-output_dir – Path to a directory where SpideyBC can store analysis results

-main_class – The fully qualified type containing the main method

-entry_points – Full method signature name(s) for entry points to the analysis
(separated by comma)

Before continuing with the implementation details, the design and overall program
flow is summarised in Figure 6.5

6.4 Implementation
This section will describe different parts of the SpideyBC implementation. We focus
on parts that present challenges and how these have been solved as well as those
elements of the tool that present the most important functionality. The full source
code is available on GitHub[2].

2In fact, it is recommended to use WALA with SE Java versions below 1.5.

Page 45 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

SpideyBC

Build
(setup analysis

environment and CFGs)
Wala

framework

Model Program
JAR

Analysis
Parameters

Analyse
(memory analysis)

 Aftermath
(save results and create report)

Results

Figure 6.5: Overview of the SpideyBC tool

6.4.1 Construction of CG and CFGs
The main objective of the build component is to construct the necessary data struc-
tures for the subsequent analysis. This involves the use of WALA to produce the
structure of the class hierarchy, call graph and control flow graphs. The build com-
ponent is implemented in the sw10.spideybc.build package. The implementation
performs four overall steps:

1. Create analysis scope that determines which types are to be analysed, and divide
these into primordial and application scope. This includes creating a mapping
between type names and source files, which can be done by scanning the user
supplied source files root directory for files. All types in application scope are
expected to have a corresponding source file

2. Create class hierarchy from the analysis scope using WALA. The class hierarchy
can be used to provide details on types in the analysis

3. Perform analysis that constructs the overall CG from the main method entry
point. This includes pointer analysis. Each node of type CGNode in the con-
structed call graph provides an interface to get the corresponding CFG for that
node.

4. The final step sets up a singleton of the type AnalysisEnvironment that the
analysis component may use to get all the constructed data structures. This
type contains fields for accessing e.g. the class hierarchy and CG

Listing 6.2 provides an extract of the AnalysisEnvironmentBuilder type that im-
plements the listed steps. The provided method, buildZeroXCFAAnalysis, performs
the third step of constructing the CG. WALA provides different algorithms for con-
structing a CG. In SpideyBC, the CG and underlying CFGs are constructed using
a variant of Andersens algorithm for pointer analysis. This is seen in Line 10. This
constructs a CG with a context-sensitivity of depth of three. Reasons for enabling
context-sensitivity will be elaborated in the next section as this is related to one of
the applications used in the evaluation.

Page 46 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Listing 6.2: Creating the call graph with context-sensitivity

1 private CallGraph buildZeroXCFAAnalysis(AnalysisScope analysisScope,
2 ClassHierarchy classHierarchy) {
3

4 AnalysisOptions options = buildEntryPoint(analysisScope,
classHierarchy);

5

6 Util.addDefaultSelectors(options, classHierarchy);
7 Util.addDefaultBypassLogic(options, analysisScope, Util.class.

getClassLoader(), classHierarchy);
8

9 AnalysisCache cache = new AnalysisCache();
10 nCFABuilder builder = new nCFABuilder(3, classHierarchy, options,

cache, null, null);
11

12 return builder.makeCallGraph(options);
13 }

WALA provides a very customisable interface of how a pointer (PointerKey) and
a heap location (InstanceKey) are abstracted. These abstractions are also used in
conjunction with the pointer analysis. As an example, targets can be dinstinguished
between individual allocation sites compared to only a concrete type. We here use the
default value of letting abstractions be based on simply the types in the class hierarchy.
Similarly, one can provide special abstractions of a context for the context-sensitivity,
by implementing a context selector and types that abstracts different contexts. This
allows for different variations of context-sensitivity rather than method invocations. In
[9], the authors model SCJ memory scopes as contexts and utilise the pointer analysis
for checking invalid assignment. WALA provides default context and selector for
method calls. This means that in the analysis of the call graph, one can get a context
consisting of the method invocations that leads to the node in question. In SpideyBC,
we use this provided context selector, nCFAContextSelector (this is implicitly used
when the relevant argument for nCFABuilder is null). This provides the described
context based on call-strings, such that a context for a given CGNode instance in the
call graph is the call-string of the last n invocations (in this case three). Each context
is represented by an instance of CallStringContext. If no context-sensitivity is used,
the context Everywhere is used to represent a single context for each method.

Context-Sensitivity Requirement

The callstring consists of the three latest invocations up to and including a particular
node. This was added as the solution to a limitation in the tools ability to handle
generic types when analysing the CSP based Watchdog use case during the evaluation
in Chapter 7.

Listing 6.3 shows an extract of the CSP queue data structure that was implemented
that takes a type argument for the type of the elements that are stored in a queue.
The problem here is found in Line 14, where the dispose method is invoked on a
particular element in the queue. In the CSP implementation, a connection may have
a queue of packets, and invoking dispose on a connection will invoke reset on its
packet queue. Furthermore we often have a queue of connections, in which each
connection in the queue has a queue of packets.

Listing 6.3: Generic queue data structure used in the CSP implementation

1 public class Queue<T extends IDispose> {
2 ...
3 protected final class Element {
4 public T value;
5 public Element next;
6 }

Page 47 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

7

8 public synchronized void reset() {
9 Element element = null;

10 for(byte i = 0; i < count; i++) {
11 ...
12 if (element.value != null) {
13 element.value.dispose();
14 element.value = null;
15 }
16 element = (element.next == null ? start : element.next);
17 }
18 ...
19 }
20 ...
21 }

The concrete issue is that a connection implements the IDispose interface. As a
result, the pointer analysis states that the invocation of dispose in Line 13 may be
on a connection object. Because this then invokes reset on its queue of packets, the
static analysis will go into a loop. I reality we know the never-ending loop will never
occur, because a connection does not have a queue of connections. We collect calling
context about the latest three invocations in the analysis. When evaluating possible
targets of a invoke instruction, if either possible target is found in the callstring of
the CGNode being evaluated, that path is not considered.

6.4.2 Traversal & ILP Constraints Generation
The analysis component, implemented in the sw10.spideybc.analysis package, uses
the data structures available from the AnalysisEnvironment instance. The worst-case
dynamic memory allocation analysis takes entry in the Analyzer class. This iterates
over each analysis entry point and traverses the call graph and the control flow graph
starting from each of these. As stated in Section 6.3.3, this works by creating an ILP
problem for each CGNode in the call graph, and use the results from depending nodes
in a bottom-up manner. In the following we provide the general algorithms for the
implementation followed by more details on selected parts of this first analysis.

Algorithms

Memory analysis starts for each entry point provided as input to the analysis in the
call graph. This is illustrated in Algorithm 2.

Algorithm 2: Starting dynamic memory analysis from each of the entry nodes
in the call graph
Input: entries← Entry point nodes in the call graph

1 analysisResults← ∅
2 foreach node n in entries do
3 result← analyzeNode(n)
4 analysisResults.add(result)
5 end

As can be seen the analyzeNode operation provides the actual analysis details of con-
structing an ILP problem for a specific CGNode and solving this. This operation is
outlined abstractly in Algorithm 3.

Page 48 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Algorithm 3: The analyzeNode operation - traversing a CGNode for generating
linear constraints and solving the ILP problem
Input: n← node in CG

1 analysisResults← Analysis results
2 cfg ← NIL
3 loopheaders ← NIL
4 problem ← new empty ILP problem
5 if analysisResults contains n then
6 return results for n
7 end
8 cfg ← makeNumberedLabeledGraph(n.cfg)
9 loopheaders← getLoops(cfg)

10 foreach basicblock b in cfg.bfsOrdering() do
11 problem.addV ariableToObjectiveFunction(b)
12 if b.isEntry then
13 problem.addEntryConstraint(b)
14 else if b.isExit then
15 problem.addExitConstraint(b)
16 else
17 if b.isInvocation then
18 costForBlock ← max(getCostForPossibleTargets(b))
19 else
20 costForBlock ← getCostForBlock(b)
21 end
22 problem.addF lowConstraints(b)
23 problem.addCostConstraints(b)
24 if loopheaders contains b then
25 problem.addLoopConstraintFromHeader(b)
26 end
27 end
28 end
29 nodeResult← solveProblem(problem)
30 analysisResults.add(nodeResult)
31 return nodeResult

The essence of the analyzeNode operation is that it recursively calls itself on possible
target nodes when results are not available (Line 18) through getCostForPossibleTargets.
As can be seen, all results for individual call graph nodes are stored in a global results
pool that allows the reuse of results should a method be invoked from different places.
The CFG for the particular node being analysed is extracted from WALA and prepro-
cessed, seen in Line 8, before the traversal. The makeNumberedLabeledGraph operation
converts the standard ControlFlowGraph to a SlowSparseNumberedLabeledGraph. We
do this to label each edge with a unique identifier that is used as the decision variable
in the ILP problem. Line 11 registers the particular basic block as a part of the
objective function to be maximised. Line 13 and 15 adds the trivial constraints of
setting the execution frequency for the start and end node to one. The remaining
constraints added in Lines 22, 23 and 25 adds the constraints as described in Section
4.2.2. We refer to the source code for full implementation details. In the following we
briefly describe how the cost of a single basic block that is not an invocation (Line 20)
is determined using the input model and the structure of the final results for each
CGNode. In Section 6.4.3, we elaborate on the getLoops operation (Line 9).

Page 49 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Computing Cost of Basic Blocks

The cost for a single basic block is for the dynamic memory analysis extracted from
the provided input model. If the basic block contains one of the dynamic memory
allocating instructions, the type is examined and the cost is looked up from the model.
If the block does not contain any of these instructions (or is an invoke) the cost is zero.
The implementation, however, is made such that it would be possible to count other
types of resources. The interface ICostComputer<T extends ICostResult> contains
the method getCostForInstructionInBlock that can be used to implement some
cost-determining policy. Note that additional methods must be implemented as a
part of the interface. In our case, the actual implementation performs a look-up
in the model based on the type found in the particular instruction provided as an
argument (if the type is not found in the model a warning is provided). An extract
of this implementation is seen in Listing 6.4. The actual traversal and generation of
constraints are therefore not directly coupled to memory analysis, but simply uses an
implementation of the ICostComputer interface to determine cost of instructions that
comprise a basic block.

Listing 6.4: Providing cost for an instruction by implementing ICostComputer

1 @Override
2 public CostResultMemory getCostForInstructionInBlock(
3 SSAInstruction instruction,
4 ISSABasicBlock block,
5 CGNode node) {
6

7 /* CostResultMemory implements ICostResult */
8 CostResultMemory cost = new CostResultMemory();
9

10 TypeName typeName = ((SSANewInstruction) instruction).getNewSite().
getDeclaredType().getName();

11 String typeNameStr = typeName.toString();
12

13 if (typeNameStr.startsWith("[")) {
14 setCostForNewArrayObject(cost, typeName, typeNameStr, block);
15 } else {
16 setCostForNewObject(cost, typeName, typeNameStr, block);
17 }
18

19 return cost;
20 }

The interface ICostResult must be implemented to store cost results. The most
important method on this interface is getCostScalar that is used to get a scalar cost
for the instruction that can be used in the ILP problem. Similarly when results are
aggregated for e.g. a CGNode, the cost scalar returns the aggregated cost. For our
analysis, the implementation simply keeps an integer field with the allocation size in
bytes that are returned directly as seen in Listing 6.5. However, in the case that the
resource would be a non-integer value, this would have to be converted into an integer
value in the implementation.

Listing 6.5: The cost scalar for our memory analysis is simply the allocated byte
size

1 @Override
2 public long getCostScalar() {
3 return allocationCost;
4 }

Page 50 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Computing Cost of CGNode

After the complete ILP problem is constructed for a CGNode the result is computed
(the objective function is maximised). We use the open-source LP solver lpsolve[1].
The result is stored in an instance that implements the ICostResult interface, where
getCostScalar returns the result for the whole CGNode (in this case the amount of
bytes allocated in the worst case). Results for each CGNode are stored in a single-
ton of the type AnalysisResults, that contains a dictionary mapping a CGNode to
its ICostResult if this has been computed. Furthermore, the analysis results also
contains context about the results (such as the trace for basic blocks in the CGNode
that resulted in the worst case cost).

An example of how the ILP problem is formulated by the tool for an example Java
application in the format for lpsolve is provided in Section 6.5 after the implementa-
tion.

6.4.3 Handling Loops
In order to generate the loop constraints for a CGNode, the CFG is analysed for all
loops. In short, for each loop we require to know (1) the loop header, (2) the nodes
that constitutes the loop body and (3) the bound on the loop. The functionality for
this is implemented in the class CFGLoopAnalyzer, which is located in the package
sw10.animus.analysis.loopanalysis.

Identifying loops is a well-studied problem as programs spend the majority of time
executing in loops[4]. Depending on the programming language, several types of loop
constructs are often available. From an analysis point of view, how these constructs
are mapped to bytecode, is not important. We need to find the loop headers and
the natural loop that constitute the body. In [4], an approach is described that can
be said to work in three overall steps and is based on two algorithms (step one and
three):

1. Create a depth-first spanning tree (DFST) and a depth-first ordering

2. Using the depth-first ordering, identify all nodes that has an incoming edge
classified as a retreating/back edge3 – these are the loop headers. An edge
t→ s is a back edge if s dominates t, that is, s must always be visited before t

3. Construct the natural loop of the back edge which constitutes the loop body

The depth-first ordering is the reverse of a postorder traversal, in that, it visits a node
and then visits each child in a right-to-left manner. We thus perform a depth-first
search that constructs the DFST and numbers the nodes to give the ordering. In the
following we describe the steps in detecting loop headers and basic blocks in the loop
body. Finally we describe the format supported in the implementation for specifying
loop annotations.

3Note that it is not theoretically always the case that back and retreating edges are the same set
for a graph. This is, however, the case for almost any program - we refer to the cited material for
further information on this topic.

Page 51 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

DFST, Depth-First Ordering and Detecting Loop Headers

The algorithm begins by initialising all nodes in the CFG to unvisited and then calls
the search operation on the entry node, n0. This is seen in Algorithm 4.
Algorithm 4: Initialisation and starting the search operation[4]
Input: cfg ← input CFG

1 T ← ∅
2 foreach node n in cfg do
3 mark n “unvisited”
4 end
5 c← number of nodes in cfg
6 search(n0)

The significant operations happens in the recursive search(n) procedure, provided in
Algorithm 5. Note that dfn[n] denotes the depth-first ordering number for node n, T
is the DFST for the input CFG and c is a counter for the ordering.

Algorithm 5: search(n) procedure for creating the DFST and depth-first
ordering[4]
Input: n← node in CFG

1 mark n “visited”
2 foreach successor s of n do
3 if s is “unvisited” then
4 add edge n→ s to T
5 search(s)
6 end
7 end
8 dfn[n] = c
9 c← c− 1

Figure 6.6 illustrates a simple CFG and how each node would be numbered. The
nodes in the CFG will be visited in the order A−C −D −E −B. The depth-first
ordering will be the reversed visitation order as shown in the figure.

1

3

4

5

2

A

B
C

D

E

Figure 6.6: Numbering the nodes in depth-first ordering

For the second step, the depth-first ordering on each node can then be used to check
for retreating edges that are also back edges. An edge going from node s → t in the
CFG, is a back edge in the case that dfn[s] ≥ dfn[t]. In such a case, note t is a loop

Page 52 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

header. Such an example can be seen in Figure 6.6 for the edge E → C. In the
implementation we perform this check as a part of the depth-first search traversal.
More precisely, this is done as a part of the iteration of successor nodes in Lines 2-7
from Algorithm 5. In practice, it should also be noted that it is not necessary to
construct the actual DFST for this purpose, only the ordering is needed.

Finding the Loop Body

In the final step, the body of a loop is found. Having found a back edge s → t, the
natural loop of the back edge is t and all nodes that can reach s without going through
t[4]. Finding the natural loop of a back edge can be done as follows in Algorithm 6.
The resulting set, loop, contains all nodes that are part of the loop.

Algorithm 6: Constructing the natural loop of a back edge[4]
Input: cfg ← input CFG, backEdge← detected back edge (s→ t)

1 loop← {s, t}
2 mark t as “visited”
3 Perform a reverse DFS starting from s until t is visited
4 Add each node visited to the loop set

Annotating Loop Bounds in Source Programs

Bounds on the found loops are the final information needed in order to specify the loop
constraints. The implementation supports both our own defined annotation as well
as annotations supported by the WCA tool in the JOP repository. This enables us to
use our tool on existing applications targeting JOP without modifying the bounds.
Listing 6.6 shows an example Java method that includes different loop constructs
including valid annotations. Annotations are extracted during the build phase in
which the source files are scanned when types for the analysis scope are associated
with their corresponding source file. The implementation for extracting annotations
is located in the package sw10.animus.util.annotationextractor.

Listing 6.6: Annotating loops in source files

1 private void annotations() {
2 Object obj = null;
3 for(int i = 0; i < 100; i++) { //@ loopbound = 100
4 obj = new Object();
5 }
6

7 int j = 0;
8 while(j < 50) { //@WCA loop <= 50
9 int z = 0;

10 do { //@loopbound = 100
11 obj = new Object();
12 z = z + 1;
13 } while (z < 100);
14 j = j + 1;
15 }
16 }

6.4.4 Handling Arrays
Arrays must be handled in a special way as these present several challenges:

1. Alignment: Arrays are structures that store elements of a particular type and
in a continuous sequence with padding in between to enforce data alignment on

Page 53 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

the target platform. This raises the problem of specifying the size while taking
alignment into consideration

2. Multidimensionality: Arrays can be multidimensional and must thus be
treated differently. For example, a one-dimensional and a two-dimensional array
of integers are two different types

3. Array length: Arrays must be instantiated with a predefined length (set as a
constant or variable)

In the following, we will explain how each of these challenges are solved.
The alignment issue is handled by making the assumption that we can multiply

the length of the array by the size of the array element type appearing in the supplied
model. We believe that this is a fair assumption to make, as the elements of an array
are stored in a continuous sequence in memory – the padding between the elements
must thus be the same no matter how many elements it contains.

Multidimensional arrays can be treated much like one dimensional arrays. The
compiler-made types of a one dimensional array of integers compared to a two di-
mensional array of integers are [I and [[I respectively. The developer is therefore
required to specify in the model how much an element within each array type occupies
in bytes, as was also seen in Listing 6.1 from Section 6.3.4. For calculating the total
size of an array, the length(s) must be multiplied with the size in the model. For
example in case of a 2x4 2d array of element size 4, its total size is 2 · 4 · 4 = 32 bytes.

As mentioned in Section 6.1.1, there are three bytecode instructions for creating
arrays, namely newarray, anewarray and mulianewarray. When any of these instruc-
tions are encountered by the getCostForInstructionInBlock method (see Listing
6.4) within the memory cost computer, the array cost must be deduced. As seen
in the Listing, if the instruction in question contains a left square bracket, it must
be one of the available array allocation instructions. As a consequence, the method
setCostForNewArrayObject is called for determining its cost. Listing 6.7 shows the
implementation of this method.

Listing 6.7: Getting the array length from the bytecode or source code before
calculating the array cost

1 private void setCostForNewArrayObject(CostResultMemory cost,
2 TypeName typeName,
3 String typeNameStr,
4 ISSABasicBlock block) {
5

6 IBytecodeMethod method = (IBytecodeMethod)block.getMethod();
7 int lineNumber = method.getLineNumber(block.getFirstInstructionIndex());
8

9 Integer arrayLength = tryGetArrayLength(block);
10

11 if(arrayLength == null) {
12 Map<Integer, Annotation> annotationsForMethod;
13 annotationsForMethod = extractor.getAnnotations(method);
14

15 if (annotationsForMethod.containsKey(lineNumber)) {
16 Annotation arrayAnno = annotationsForMethod.get(lineNumber);
17 arrayLength = Integer.parseInt(arrayAnno.getAnnotationValue());
18 } else {
19 /*
20 * Warning: allocates array without
21 * specified memory length annotation
22 */
23 ErrorPrinter.printAnnotationError(AnnotationType.AnnotationArray,

method, lineNumber);
24 }
25 }

Page 54 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

26 try {
27 int allocCost = arrayLength * model.getSizeForQualifiedType(typeName);
28 cost.allocationCost = allocCost;
29 cost.typeNameByNodeId.put(block.getGraphNodeId(), typeName);
30 } catch(NoSuchElementException e) {
31 /* Warning: model does not contain array type */
32 ErrorPrinter.printModelError(ModelType.ModelEntry, method, lineNumber,

typeName);
33 }
34 }

For determining the cost, the array length must be known. The tryGetArrayLength
method in Line 6 tries to extract the previous bytecode instruction as this will hold
the length if the array is defined with a constant length in source code. If the method
returns null, the array is required to have a source code annotation that specifies
its length. This will happen if the size is determined at run-time. Listing 6.8 shows
different types of array allocations as well as the required annotation format in case
the length is a variable.

Listing 6.8: Array allocations

1 int[] arrayOfInts = new int[10];
2

3 float[][] arrayOfFloats = new float[10][5];
4

5 MyObject[] arrayOfMyObjects = new MyObject[20];
6

7 double[] arrayOfDoubles = new double[len]; //@ length = 10

After obtaining the length, through bytecode or annotation, the cost can be computed
as seen in Listing 6.7 in Line 25-27.

6.4.5 Worst-Case Stack Analysis
In order to find the worst-case JVM stack size from a given call graph node, the
most expensive path starting from that node must be found. As stated in Sec-
tion 6.1.2, the longest path is not necessarily the most expensive as stack frames
often vary in size. After having run the dynamic memory analysis, the analysis results
(AnalysisResults) will contain all call graph nodes (of type CGNode) together with
their respective dynamic memory analysis results on instances of CostResultMemory.
The following additional fields on the CostResultMemory type are used for the stack
analysis:

maxLocals: The maximum number of local variables

maxStackHeight: The maximum operand stack height

stackCost: The sum of maxLocals and maxStackHeight

accumStackCost: The sum of the most expensive (worst-case) path including
the node itself. Will initially be 0 for all nodes

During the traversal of the call graph in the dynamic memory analysis, the maxLocals
and maxStackHeight fields are set for a specific CGNode upon finishing the analysis for
this. Thus, the necessary information required for determining the worst-case stack
size is available after the first analysis. Note that we are able to consider the total
cost of a CGNode as the sum of the maxLocals and maxStackHeight field, stored in the
stackCost field. This can be done as each local variable and a single stack element is
the same unit in size as described in the JVM details in Section 5.2.1.

Page 55 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Algorithm 7 shows the Analyze operation that initiates the process of calculating
the most expensive path and its accumulated stack cost for each entry node.

Algorithm 7: Analyze procedure for initiating the JVM stack size analysis for
each entry point
Input: entries← Entry point nodes in the call graph

1 foreach node n in entries do
2 dist(n)
3 end

Algorithm 8 shows the recursive dist operation that accepts a node (CGNode) as its
only parameter.

Algorithm 8: Pseudo code of the dist procedure
Input: n← node in CG

1 succs← successor nodes of n
2 max← −1
3 cost← −1
4 maxSucc← NIL

5 if succs not empty then
6 repeat
7 s← succs.next()
8 cost← dist(s) + n.stackCost
9 if cost > max then

10 maxSucc← s

11 max← cost

12 end
13 until succs is empty;
14 storeTrace(n,maxSucc)
15 n.accumStackCost← max

16 return max

17 else
18 n.accumStackCost← n.stackCost
19 return n.stackCost
20 end

The algorithm will be explained through the simple call graph shown in Figure 6.7.

Page 56 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

L: 3
S: 2
C: 5
A: 0

A

L: 1
S: 1
C: 2
A: 0

L: 1
S: 2
C: 3
A: 0

B

C

L: 2
S: 2
C: 6
A: 0

D

1

2

3

4 5

6

L: locals
S: stack
C: stackCost
A: accumStackCost

Figure 6.7: Simple call graph. The solid directed arrows represent edges whereas the
dashed numbered arrows represent the execution flow of the algorithm. The values
on each node represents the initial values before running the algorithm

The numbers in the dashed lines in the figure corresponds with the numbers below
and will explain what happens in each step. Assume that there is a single entry point
A so that dist will be called a single time with A when running Algorithm 7.

1. As node A has successors (B and C), dist(B) is called in Line 8

2. As node B has successors (C), dist(C) is called in Line 8

3. As node C does not have any successors, C’s accumulated stack cost is set to its
own stack cost (A: 3) before returning the value. This happens in Line 18-19

4. Execution returns to the call site in Line 8 with dist(C) having evaluated to
3. This makes dist(C) + n.stackCost evaluate to 3 + 2, which gives 5. In Line
9, cost is greater than max (5 > −1) and the maximum successor is set to C
along with max updated to 5. As B does not have any other successors, the
loop breaks and the path from B to C is saved. Next B’s accumulated stack
cost is set to max (5). Finally max is returned. This happens in Line 14-16.

5. Execution returns to the call site in Line 8 with dist(B) having evaluated to 5.
This makes dist(B) + n.stackCost evaluate to 5 + 5, which gives 10. In Line
9, cost is greater than max (10 > −1) and the maximum successor is set to B
along with max updated to 10. As A still has a successor (D), dist(D) is called
in Line 8.

6. As node D does not have any successors, D’s accumulated stack cost is set to its
own stack cost (A: 6) before returning the value. This happens in Line 18-19.

7. Execution returns to the call site in Line 8 with dist(D) having evaluated to 6.
This makes dist(D) + n.stackCost evaluate to 6 + 5, which gives 11. In Line
9, cost is greater than max (11 > 10) and the maximum successor is set to D
along with max updated to 11. As A does not have any other successors, the

Page 57 of 91

loop breaks and the path from A to D is saved. Next A’s accumulated stack
cost is set to max (11). Finally max is returned. This happens in Line 14-16.

In the last step, we see that the path from A to D constitutes the worst-case path as
it evaluates to 11 compared to the path from A to B to C, which only evaluates to 10
even though this is a longer path.

6.5 ILP Constraints Generation Example
To round off the implementation, this section presents a brief example of a small Java
program, its representation in bytecode and the corresponding linear constraints that
SpideyBC generates for the open-source lpsolve framework. The example takes its
starting point in the small Java program provided in Listing 6.9.

Listing 6.9: Sample Java program

1 public static void main(String[] args) {
2 Object obj = null;
3 for(int i = 0; i < 20; i++) { //@ loopbound = 20
4 obj = new Object();
5 }
6 int[] newArray = new int[10]; //@ length = 10
7 }

Using the standard javac compiler, the bytecode in Listing 6.10 is provided.

Listing 6.10: Bytecode for the method in Listing 6.9

1 public static void main(java.lang.String[]);
2 Code:
3 Stack=2, Locals=3, Args_size=1
4 0: aconst_null
5 1: astore_1
6 2: iconst_0
7 3: istore_2
8 4: goto 18
9 7: new #3; //class java/lang/Object

10 10: dup
11 11: invokespecial #15; //Method java/lang/Object."<init>":()V
12 14: astore_1
13 15: iinc 2, 1
14 18: iload_2
15 19: bipush 20
16 21: if_icmplt 7
17 24: bipush 10
18 26: newarray int
19 28: astore_2
20 29: return
21 }

As can be seen, two different types are instantiated at run-time – a plain Object and
an integer array of length 10. The model in Listing 6.11 specifies examples of low-level
details necessary to perform the analysis (note that these values are not targeted a
specific platform, but simply for illustration purpose).

Page 58 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Listing 6.11: Input model for the sample program

1 {
2 ReferenceSize: 4,
3 PrimordialTypeSizes: [
4 {"java.lang.Object": 1}
5],
6 ApplicationTypeSizes: [
7 {"[I": 5},
8]
9 }

Providing the application and the model as input to the tool results in the CFG in
Figure 6.8 being constructed, for the CGNode that corresponds to the main method.

bb1

bb5

bb0

bb2

bb3

bb4

bb6

bb7

bb8

Figure 6.8: CFG constructed for the sequence of bytecode instructions in Listing 6.10

Using the model, annotations in the source files and the constructed CFG, the ILP
problem listed in Listing 6.12 is constructed using the open-source lpsolve project.

Listing 6.12: Constraints generated for the CFG illustrated in Figure 6.8

1 LP PROBLEM: Maximize
2 1*bb0 + 1*bb1 + 1*bb2 + 1*bb3 + 1*bb4 + 1*bb5 + 1*bb6 + 1*bb7 + 1*bb8
3 Subject To
4 1*f0 = 1
5 0*f0 + -1*bb0 = 0
6 1*f0 + -1*f1 = 0
7 0*f0 + -1*bb1 = 0
8 1*f5 + -1*f2 + -1*ft0 = 0
9 1*f5 + -1*bb2 = 0

10 1*f2 + -1*f3 + -1*ft1 = 0
11 0*f2 + -1*bb3 = 0
12 1*f3 + -1*f4 = 0
13 0*f3 + -1*bb4 = 0
14 -1*f5 + 20*f1 = 0
15 1*f1 + 1*f4 + -1*f5 + -1*f6 = 0
16 0*f1 + 0*f4 + -1*bb5 = 0
17 1*f6 + -1*f7 + -1*ft2 = 0
18 50*f6 + -1*bb6 = 0

Page 59 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

19 1*f7 + -1*ft3 = 0
20 0*f7 + -1*bb7 = 0
21 -1*bb8 + 0*ft0 + 0*ft1 + 0*ft2 + 0*ft3 = 0
22 1*ft0 + 1*ft1 + 1*ft2 + 1*ft3 = 1

The results for the constructed problem are seen in Listing 6.13. Here it can be seen
that the resulting upper bound on memory allocation is 70 bytes. Results for basic
block variables describe the total cost for the block. Results for the edge variables
(f prefixed) describes the execution frequency in the solution. Thus in the provided
results, we can see that basic block six will in the worst-case allocate 50 bytes, and
the program will go through the edge labelled f3 20 times.

Listing 6.13: Results for the ILP problem in Listing 6.12

1 Objective: 70
2 {f6=1, f7=0,
3 bb8=0, bb6=50,
4 bb7=0, bb4=0,
5 bb5=0, bb2=20,
6 bb3=0, bb0=0,
7 bb1=0, ft1=0,
8 ft0=0, ft3=0,
9 ft2=1, f1=1,

10 f0=1, f3=20,
11 f2=20, f5=20,
12 f4=20}

6.6 The Final Tool
Having described the overall design and selected implementation details in the pre-
vious sections, this section briefly presents the final result and how SpideyBC looks
like in action for programmers.

6.6.1 Front End
A front end provides the entry point to the application compared to running the tool
through the command line. This is seen in Figure 6.9. Here the programmer can
select and enter relevant inputs, run the analysis and see status of the analysis.

Figure 6.9: SpideyBC front end for running analysis on an application

Page 60 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

6.6.2 Analysis Report
The final report generated by the tool is web-based and is created in a local folder
provided as an input parameter. This provides the programmer with both the memory
sizes of the dynamic memory and JVM stack sizes on each entry point as well as the
additional details and traces. The significant elements of reports will be highlighted
in the following sections. Refer to Appendix C for viewing additional screenshots of
the report than those presented here.

Worst-Case Dynamic Memory Allocation

Results for the worst-case dynamic memory allocation for the provided entry point
method signatures are available using the Allocations menu. Figure 6.10 shows how
the overall memory cost in bytes are displayed for each of the entry points the pro-
grammer provided.

Figure 6.10: Worst-case dynamic memory allocation results per entry point method
signature

Furthermore, the programmer can see a highlight of the trace for the path taken in
the selected entry point method, as seen in Figure 6.11.

Figure 6.11: Trace for the execution path in the selected entry point method that
leads to the worst-case memory cost

Finally, aside from seeing the control flow graph for the entry method, the programmer
can choose to see details for the selected entry point method. This provides additional
information on which types, and how many instances, contribute to the estimated
worst-case cost. This is seen in Figure 6.12.

Page 61 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Figure 6.12: Details on which types and allocation count that result in the worst-case
cost

Call Graph Exploration

A subset of the call graph is visually presented in a way such that it can be explored
by the developer in order to follow the worst-case path for the dynamic memory
analysis. Expanding the fake root node reveals all analysed entry methods, which can
be further expanded to reveal their referenced methods as long as these participate
in the worst-case allocation path. For each node belonging to the application scope
(coloured green), the developer can view the source code with background highlighting
of the affected lines. Nodes belonging to the primordial scope (coloured red) cannot
be expanded nor can these be source code inspected. Nodes marked with a “C” are
either directly or indirectly responsible for dynamic memory allocation – directly if
they themselves allocate memory and indirectly if any of their children do. The call
graph can be seen in Figure 6.13.

Figure 6.13: Exploring the call graph. Clicking on a node will reveal all possible
callees. Double clicking on an application node will reveal its source file with possible
highlights. Hovering on a node marked with a “C” will show its allocation cost

Worst-Case Stack Size

The JVM stack menu shows the worst-case JVM stacks for each provided entry
method. Besides getting the stack sizes in bytes, the developer can visually view
the participating frames each containing information about the method signature,
the maximum number of local variables, the maximum stack height and an accumu-
lated size for the frame itself and all frames below. This is seen in Figure 6.14.

Page 62 of 91

CHAPTER 6. SPIDEYBC - TOOL FOR STATIC MEMORY ANALYSIS

Figure 6.14: The worst-case stack size is shown in details by the frames that would
be on the JVM stack as well as their respective sizes

Page 63 of 91

CHAPTER

SEVEN

EVALUATION

In the previous chapter, the worst-case memory consumption tool SpideyBC was
introduced. This chapter will present an evaluation of the two primary features,
dynamic memory and JVM stack analysis. The evaluation is done by using the tool
on two SCJ use cases. The goal is to evaluate the precision of bounds provided by
the tool in these cases. In order to compare the precision, the traces in the output
reports are used to manually inspect the parts of the programs under analysis where
allocations occur. We thus compare the resulting bounds from specific parts of the
programs with behaviour that would be expected at run-time.

7.1 Approach
The tool is evaluated on two SCJ applications. The first is an SCJ application for a 3D
RepRap printer[32]. The use case was presented at the JTRES workshop in 2012 and
the source code is available as a part of the JOP GitHub repository. The second use
case is a watchdog application developed by us based on the implementation of CSP
for SCJ in our previous work[37]. The Watchdog serves to monitor the availability of
different modules in a distributed setting. Appendix B provides a description of the
implemented Watchdog for reference. The source code for the Watchdog use case is
available at our GitHub repository[2].

We identify the following steps for the evaluation on the two applications:

1. Identify the entry points that should be analysed – we here focus on the handlers
of the applications as analysing other parts of the application often involves
infrastructural code that increases the complexity – a topic that will be discussed
in the reflection in Chapter 8.1

2. Specify the input model for the required types

3. Run the tool on the input parameters

4. Examine the results by inspecting the traces to compare the results with what
would happen at run-time

Our approach is based on analysing these applications as-is. The only modifications
will be to fill in required annotations. Step 2 will be based specifically on the JOP
architecture, the platform used in this project as well as the platform originally tar-
geted in the two applications. Step 4 describes how we will do the actual evaluation of
the provided results. We consider an inspection of the specific locations in the source
code where allocations occur the best way to compare against the values provided
by the tool. As no tool is available for performing the analysis on SCJ applications,

Page 64 of 91

CHAPTER 7. EVALUATION

this currently requires manual inspection and estimation of how many instances are
allocated (this was the starting problem that the master’s thesis is based on!)1. We do
not consider this an issue, however. Because the applications were originally imple-
mented for the scoped memory model not many instances are allocated in handlers,
thus the complexity of allocation patterns are expected to be (relatively) lower than
in a traditional Java program.

7.2 Setup
In the following we describe the second step of setting up input models. We note
that the run configurations that were created to run the analysis within the Eclipse
environment as well as the input model for each application are available on our
GitHub repository[2]. These provide everything that encapsulates what is described in
this section and what produces the results to be presented in the following section. For
easily reproducing the results, an evaluation folder has been created in the repository,
which contains the models, application jars and configuration files for the visual front
end of the tool. Note that some of the properties within the configuration files will
need to be changed as these point to local hard drive locations.

For the input model in each analysis, the input model must be specified with
correct type sizes for the target platform. This requires some knowledge of the under-
lying hardware. We briefly describe details of JOP that are necessary for specifying
the correct type sizes.

7.2.1 Memory Access and Layout on JOP
JOP is a 32-bit architecture, with a word size of 32 bits[28]. Furthermore, each field of
a primitive type is 32-bit aligned (except for long and double, that are 64-bit aligned).
This means that a single field in a class of e.g. the byte type will take up 32 bits, or
4 bytes, when allocated. References are similarly 32 bits in size and aligned.

JOP uses a special memory layout in which all object references goes through an
indirection called a handle. This is used in relation to the garbage collector for non-
SCJ applications. On startup, a fixed region of the memory is reserved for handles,
and each handle always takes up the same size. Figure 7.1 illustrates the use of
handles. Aside from a reference to the object instance, the handle contains e.g.
garbage collector related information and reference to the run-time structure with
class fields, method table and so on. In the case the object is an array, the handle
contains the length.

1The SCJ specification mentions a SizeEstimator class which can give a conservative upper bound
on the amount of memory required to store objects. However, as this class is not implemented for
the target platform (JOP), this can not be utilised.

Page 65 of 91

CHAPTER 7. EVALUATION

Handle area

Used
object
handle

Used
object
handle

Used
object
handle

unused

mem ref
mtab

aux data

...

Array

Object

Reference

Object
Field1
...

FieldnField1
...

Fieldn

Elem1
...

Elemn

Figure 7.1: Handle indirection used in JOP

This also means that because all classes are initialised at start in SCJ, all class related
data is stored in immortal memory. When a new object is instantiated, a handle is
reserved and only the instance fields are allocated in memory. As an example, consider
a class with three static fields and two instance fields. The static fields will reside in
immortal memory, and when objects are instantiated of the type, only memory for
the two instance fields will be allocated.

An example is the PacketCore type used for CSP packets that are used in the
Watchdog application. This class contains ten static fields and two integer instance
fields. Each of these instance fields takes up 4 bytes in memory, and as a result,
allocating a new object of this instance will have a cost of 8 bytes.

7.3 Results
Table 7.1 shows the analysis results for the event handlers in the two use case
applications. The first column represents the respective class names in which the
handleAsyncEvent methods are defined.

CSP based Watchdog

Handler class Dynamic memory (bytes) Stack size (bytes)
PEHModulePinger 80 53
PEHModuleResponseChecker 0 14
PEHSystemRecovery 0 11
RouteHandler 0 32
ISRHandler 0 27

RepRap

Handler class Dynamic memory (bytes) Stack size (bytes)
CommandParser 288 60
CommandController 264 45
HostController 0 23
RepRapController 0 15

Table 7.1: Worst-case memory allocations and maximum JVM stack sizes for the event
handlers. The values are extracted from the reports after having run the analysis

Page 66 of 91

CHAPTER 7. EVALUATION

Before running SpideyBC on the Watchdog, source code annotations used for debug-
ging purposes are removed in order to ensure that all missing loop bounds and array
lengths are reported such that they can be specified and set in accordance to the appli-
cation under analysis. This is not necessary for the RepRap as the source already has
valid loop annotations (supplied by the JOP development team for the WCA tool).
The input models for both the Watchdog and the RepRap are left blank. By doing
this, SpideyBC will report, in the initial run, the absence of every type that (may)
be allocated in the model. The source code of these types can then be inspected in
order to calculate the respective sizes using the approach described in Section 7.2.1.
Having obtained this information, the types and their sizes can be entered into the
model before re-running the tool.

7.3.1 Watchdog Results
For the Watchdog application, only the handler in class PEHModulePinger, is respon-
sible for dynamic memory allocation. By inspecting the source code and bounding
the number of observable modules to ten through a loop annotation, ten instances
of type PacketCore will be allocated – refer to Appendix B to view the loop in the
handleAsyncEvent method. The PacketCore instances will be allocated in the refer-
enced read method of the Connection instance. An instance of PacketCore occupies
8 bytes as it contains two integer fields. This yields a total of 10 · 8 = 80 bytes and
matches the result produced by SpideyBC.

7.3.2 RepRap Results
Compared to the Watchdog, the RepRap is a more comprehensive use case and is
thus also more interesting from an analytical perspective. Upon running the tool on
the RepRap, three types were reported missing from the model:

Primordial type: java.lang.IllegalArgumentException

Application type: org.reprap.Parameter

Application type: [C

In addition, an array length annotation was missing. By inspecting the array dec-
laration and the surrounding code, a worst-case annotation for the length could be
inserted.

From Table 7.1, it can be seen that dynamic allocations occur from the handler
methods of the CommandParser (288 bytes) and the CommandController (264 bytes).
What is common for both of these methods is that they eventually invoke the ar-
ray allocating method, whose length was just specified with an annotation. Besides
allocating this array, this method also allocates another array of the same size and
type2(char). With this information, the two arrays occupy 264 bytes. According to
the SpideyBC reports, the CommandParser allocates another 24 bytes, which originates
from the previously missing type, org.reprap.Parameter.

Again, the SpideyBC output values matches what you would expect in terms of
dynamic memory allocation. In regards to the JVM stack sizes, by disassembling the
java class files and viewing the respective frame sizes, the computed worst-case stack
sizes also seems reasonable.

2As this other array is declared with a constant length, SpideyBC is able to figure out its length
automatically.

Page 67 of 91

CHAPTER 7. EVALUATION

7.3.3 Using the Results in the Watchdog
After having obtained the worst-case memory sizes for the Watchdog, the parameters
for the StorageParameters instances can be set for the different handlers. This can
be seen in Listing 7.1.

Listing 7.1: Setting the parameters for the StorageParameters instances in the Watch-
dog

1 /* PEHModulePinger */
2 storage = new StorageParameters(80, new long[] { 53 }, 0, 0);
3 ...
4 /* PEHModuleResponseChecker */
5 storage = new StorageParameters(0, new long[] { 14 }, 0, 0);
6 ...
7 /* PEHSystemRecovery */
8 storage = new StorageParameters(0, new long[] { 11 }, 0, 0);
9 ...

10 /* RouteHandler */
11 storage = new StorageParameters(0, new long[] { 32 }, 0, 0);
12 ...
13 /* ISRHandler */
14 storage = new StorageParameters(0, new long[] { 27 }, 0, 0);

Page 68 of 91

CHAPTER

EIGHT

REFLECTION & FUTURE WORK

In the previous chapters we introduced the worst-case memory consumption analysis
tool SpideyBC, and performed an evaluation of this on two use cases. In this chapter
we reflect on selected parts of the process, restrictions in the approach taken and how
the analysis could be done differently. Furthermore we present ideas for future work
primarily in relation to the implemented tool but also for analysing SCJ programs in
general.

8.1 Reflection
This section will reflect on some of the most significant choices and the tool itself.

8.1.1 Model Checking
Our approach to our initial problem was based on looking for techniques for deter-
mining WCET as these could be adapted to memory usage instead of execution time.
As IPET is a dominant approach in this area, we utilised IPET in terms of calculating
the worst-case dynamic memory consumption of a set of entry methods. However,
the possibilities in applying model checking would have been an interesting approach
as well. In terms of working specifically towards garbage collection in SCJ, model
checking could have been an approach where a model of a system with a garbage
collector could be used to verify the safety of an application. We still believe that
IPET is a suitable solution for SpideyBC, however, note that it could be extended to
use model checking.

8.1.2 Evaluation
For evaluating SpideyBC, we ran the tool on two SCJ use case applications – our
Watchdog and the RepRap in the JOP repository. The main focus in the evalua-
tion was on dynamic memory analysis and revolved around analysing the application
handler methods in order to be able to specify the total backing store sizes of each
handler. To verify the produced dynamic memory result of a handler, we investigated
the source code in conjunction with considering the generated report information.
Furthermore on this basis, we were able to justify the results. We are aware that this
is an informal approach that should entail some degree of scepticism, however, as no
other formal memory analysis tool is available to our knowledge for SCJ applications,
this was considered a suitable approach, also considering the relatively small scale
programs. Note that there has been work towards integrating analysis functionality
in the WCA tool for determining worst-case heap allocations (WCHA) in RTSJ appli-

Page 69 of 91

CHAPTER 8. REFLECTION & FUTURE WORK

cations, however, as we were unable to find this functionality by inspecting the WCA
source code, this will not be considered.

The JVM stack analysis results were not elaborated in great detail – this is a
result of the difficulty of verifying that the produced sizes actually are the worst-
case JVM stack sizes. The naive approach of simply following method invocations
in the source code whilst adding the frame sizes for all program paths is a brute
force approach in which it becomes necessary to consider all paths individually. For
non-trivial programs this is not a viable technique.

By reflecting on the evaluation, we would have liked to have spent more effort on
validating the results and the results produced by SpideyBC in general. Ideally, it is
desirable to show that the analysis is in fact sound.

8.1.3 Analysing the SCJ Infrastructure
With SpideyBC, we are able to provide a safe upper bound on the worst-case memory
consumption of an event handler. As a consequence, we are able to specify the storage
parameters (StorageParameters) instance that is necessary in the constructor call of
a user defined implementation of an event handler (periodic or aperiodic). Besides
being able to specify the total backing store of a handler scope, we can parameterise
the JVM stack size of the underlying thread in which the handler is bound. For the
tool to be fully applicable for enabling developers to specify all remaining memory
areas, namely missionMemorySize, immortalMemorySize and the StorageParameters
instance for the mission sequencer in the Safelet implementation’s getSequencer
method, other methods than just the handlers must be analysed as well.

As an example, for the missionMemorySize, a missions initialize method must
be analysed as the objects allocated in this scope are allocated in Mission memory. In
this method, all participating event handler objects are instantiated, which involves
calling the constructors. These constructors must immediately call their base class
constructors with the supplied arguments, which are defined within the infrastructure.
Also, each handler is registered to the mission with a call to register, which is a base
class method on either PeriodicEventHandler or AperiodicEventHandler depending
on the handler type. To be able to analyse the initialize method of a mission, the
methods (and their referenced methods) in the native SCJ classes must be analysed
as well. This entails adding infrastructural allocated types (primordial) to the model
and creating source code annotations for loops and arrays. In case the SCJ types are
linked to the application in a binary format, this would not be possible. If the source
code is available and editable, there are still many challenges to overcome. First,
there are numerous SLOC to consider as SCJ is rather large as it also uses RTSJ
related classes. The biggest challenge is to be able to specify the required annotations
as these often depend on the input originating from the user application. In other
words, as the infrastructural annotations are application dependent, analysing another
SCJ application requires changing many of the annotations to match the application
under analysis.

8.1.4 Analysing the Standard Library
During the implementation part, we encountered an issue concerning the String ob-
ject within the standard library. Creating a String variable, creates a constant in the
constant pool and is thus treated like any other primitive type. Concatenating two
strings, however, translates the compiled Java code into creating a StringBuilder in-
stance that is initialised with the first String and on which append is called with the
second String. In the source code of the append method, a new underlying array is
created with twice the size of the previously held String, hereby requiring an annota-
tion. Upon copying the previous String content into the new array, several loops are

Page 70 of 91

CHAPTER 8. REFLECTION & FUTURE WORK

involved which must also be annotated. Given that the source code is available such
that it can be annotated, if the SCJ application manipulates several String objects,
the library annotations must be set according to the worst-case String with respect
to its length. This will in turn, always result in a pessimistic allocation cost.

The String concatenation example is an example of an implicit use of the standard
library that must be taken care of. Similarly, explicit usage of the standard library
must also be handled.

8.2 Future Work
In this section we present proposals for future work on the tool and a particular topic
related to general program analysis of SCJ applications.

8.2.1 Increase Precision in Loops
As the tool provides a safe upper bound, the next step is to increase the precision
by tightening the bound. The majority of execution time is spent in loops[4], thus
it makes sense to look at how to optimise this. Consider the program in Listing 8.1
with a single loop.

Listing 8.1: Example loop with a "costly" path that will only execute in one iteration

1 public void loopingMethod() {
2 for(int i = 0; i < 20; i++) {
3 if (i == 5) {
4 createManyObjects();
5 } else {
6 createSingleObject();
7 }
8 }
9 }

Assume that the branch in Line 4 results in a higher cost than that of Line 6. However,
the first branch will only be executed one time during the loop. With IPET using
the flow and loop constraints, the most expensive path in a loop will be evaluated as
if it was executed during each iteration. Concretely this means that in the example
program, the resulting cost of the loop will be 20 (the loop bound) times the cost of
the createManyObjects method invocation.

Figure 8.1 illustrates a possible CFG for the program in Listing 8.1, where BB3
and BB4 corresponds to the createManyObjects and createSingleObject invocations
respectively.

In addition to the set of constraints that would currently be derived, we are inter-
ested in adding two more flow constraints as follows:

f2 = f4 ≤ 1
f3 = f5 ≤ 19 (8.1)

Here we tighten the bound of the analysis by providing more context about the
program. Because such additional constraints can improve the precision significantly,
it should be examined how this can be done and incorporated into the tool. Ideally
this should be derived by the tool given the program as input, e.g. by the use of
data-flow analysis, however, the programmer could also provide hints for the analysis.

Page 71 of 91

CHAPTER 8. REFLECTION & FUTURE WORK

entry

BB1

BB2

BB3 BB4

BB5

BB6

exit

fs

f1

f2 f3

f4 f5

f6

f7

ft
C: 0

C: 0

C: 5C: 20

C: 0

C: 0

bound <= 20

Figure 8.1: CFG for the method in Listing 8.1

8.2.2 Increase Precision at Branches
Similar to the loops, branching is a significant part the programs and it is desirable to
tighten the bound by looking at these. During the execution, different paths may be
mutually exclusive or always be executed together, despite not being part of the same
branching block. Consider the program in Listing 8.2 that stores sensor readings or
reports an error if a sensor is deemed to have failed if the value is above a certain
threshold.

Listing 8.2: Example program storing sensor readings

1 public void processSensorMeasurements(double[] measurements) {
2 bool sensorFailed = false;
3 for(double value : measurements) {
4 if (value > 100.0) {
5 sensorFailed = true;
6 }
7 else {
8 storeResult(value);
9 /* Do something more */

10 }
11

12 if (sensorFailed) {
13 generateError();
14 break;
15 }
16 }
17 }

In the program we can see that Line 5 is always executed with lines 13 and 14.
Similarly, Line 8 is mutually exclusive with lines 13 and 14. Such cases have previously
been described and examined[18].

Let ei and ej denote the execution frequency of BBi and BBj respectively. In
the case that BBi and BBj are always executed together, the authors suggest the
following constraint be added to the set[18]:

ei = ej (8.2)

Page 72 of 91

CHAPTER 8. REFLECTION & FUTURE WORK

Mutual exclusion between blocks are more difficult but also provides the real increase
in precision. Again, let ei and ej denote the execution frequency of BBi and BBj . In
the case that BBi and BBj are mutually exclusive, the constraint are as follows[18]:

(ei = 0 & ej = 1) | (ei = 1 & ej = 0) (8.3)

The trade off for this approach is that we now have two actual sets, because the con-
straint in 8.3 is not a linear constraint. Thus we must transform the set of constraints
into two sets that splits up the disjunction. As more of these disjunctive constraints
are added, the amount of constraint sets that must be solved increases exponentially.

Similar to the improvements in loops, it would be ideal if the tool could derive
these constraints whenever possible. With the trade off of having to now solve more
sets, it could also be desirable to support turning such features on and off.

8.2.3 Generalising the Architecture Input Model
Currently the input model must contain memory sizes for each type that is allocated
in some path starting from the entry points. We showed how these were derived for
the JOP, however, this can be considered cumbersome for the programmer.

Alternatively, it would be desirable to look into other ways of handling the low-
level details. As an example, the SCJ specification defines the SizeEstimator class[34]
that can provide upper memory bounds on class instantiations on a concrete platform
and its SCJ implementation. This is, however, currently not implemented on JOP,
but in a complete SCJ version this can be considered a way to automate this process.
Additionally, from the specification, this is emphasised to only be an estimate, thus
resulting in a further imprecise analysis. Another approach could be to look into how
a more general model of the underlying architecture could be specified with enough
details to calculate type sizes algorithmically.

8.2.4 Synthesis of Analysis Results
Currently the analysis results are provided for the programmer through the analysis
report that is the final output of the tool. We previously described how the pro-
grammer could specify safelet and mission initialisation methods as well as handlers
as entry points and aggregate the results for setting all storage parameters. In the
evaluation we saw how the results were used to specify storage parameters for the
handlers of the Watchdog application.

Instead, the tool could perform synthesis by combining the analysis results and
the input program and produce Java code where the storage parameters are filled
in. In a more extreme approach, the tool could perform bytecode manipulation and
produce the direct object code that would be equivalent to having compiled the SCJ
application with the storage parameters specified.

8.2.5 Support for Recursion
In Section 6.1.4 the restrictions for programs under analysis were listed in which we
required that there be no recursion. This requirement could be lifted, however, by the
use of a same approach as we saw with bounding loops. The tool could be extended
with the support for bounded recursion, e.g. by annotating the recursive invocation
with the maximum depth. While recursive algorithms can be transformed to use
iteration (and vice versa), it can be desirable to have recursion for a more declarative
code.

Page 73 of 91

CHAPTER 8. REFLECTION & FUTURE WORK

8.2.6 Analysis of Standard Libraries and Infrastructure
As we described, analysis of standard libraries (in particular related to strings) and
the infrastructure is troublesome. Not only for this analysis, but we also experienced
this when performing WCET analysis of the Watchdog application. One particular
issue is the need for specifying loop bounds, and in a standard library this must be
set to the highest possible value of all parts of the application that use the particular
piece of code. As a result, precision is lost. Current attempts towards analysing
code dependent on standard libraries and underlying infrastructure can be considered
“defensive”, as in the approach is usually by trying to work around these, exclude
them completely or make very pessimistic assumptions.

We argue that any work done towards enabling analysis of standard libraries
and infrastructure is beneficial as it will both assist in the analysis we have worked
with but also for e.g. WCET analysis. One such approach to facilitate the analysis
can be suggested as follows that uses existing Java features. Consider the example
implementation of some library method in Listing 8.3. The loop bound is parametrised
rather than provided directly at the iteration site. The actual value will be provided
at each call site, such that one bound does not need to cover all possible call sites.

Listing 8.3: Suggestion for parametrisation of loop bounds in libraries

1 class StdApi {
2 public static void someStdLibMethod(string[] values) {
3 for(string value : values) { //@ loop bound = <arg_length_bound>
4 // Do something with value
5 }
6 }
7 }

Listing 8.4 illustrates examples of two clients of the method, where the bound is
provided using Java annotations.

Listing 8.4: Suggestion for providing arguments to loop bound parameters using
Java annotations

1 public void someUserOfStdLib(string[] values) {
2 String[] names = new String[20];
3 ...
4 @Bounds(arg_length_bound=20)
5 StdApi.someStdLibMethod(names);
6 }
7

8 public void someOtherUserOfStdLib(string[] values) {
9 String[] fruits = new String[10];

10 ...
11 @Bounds(arg_length_bound=10)
12 StdApi.someStdLibMethod(fruits)
13 }

Page 74 of 91

CHAPTER

NINE

CONCLUSION

During this master’s thesis we worked on the following problem:

How can the principles of static program analysis be applied for resource
analysis of Java applications?

The problem was delimited to the focus on worst-case memory consumption based
on problems that were highlighted in our previous work. In SCJ the developer must
manually specify sizes of scoped memory regions and the JVM stack for each handler.
This requires that the programmer manually inspect the source code to provide these
sizes which is error-prone. Additionally, a new version of the DO-178B standard that
has been a target standard to certify applications against in the design of SCJ, has
opened up for the use of garbage collection. This also requires knowledge on the
memory consumption of the application.

The problem was approached by looking at static program analysis in general and
more concretely, how it is used to perform worst-case execution time analysis. As
a result, we were able to implement the tool SpideyBC that performs the analysis
on SCJ applications at the bytecode level. The problem of determining an exact
static analysis of memory consumption is undecidable. Because we are interested in a
safety property, the tool provides an over-approximation that is a safe upper bound.
Furthermore, in order to work with finite programs, restrictions were imposed on
programs that can be analysed.

In general static program analysis, we discovered that by using control flow graphs,
it is possible to construct a representation of the possible execution flows of a program.
In order to handle dynamic dispatching a pointer analysis can be used to analyse
possible targets of a reference.

For determining the worst-case memory consumption in terms of dynamic memory
allocation for the memory regions, we were able to use the widely popular IPET
approach fromWCET analysis. With this approach, the problem of determining a safe
upper bound on dynamic memory allocation was transformed into an integer linear
programming problem using the program representation. This could then be solved
using any available implementation of an algorithm for solving linear programming
problems.

For determining a safe upper bound on the JVM stack size, the analysis results
of the pointer analysis could be used. By using a call graph that represents method
invocation relationships and the information on stack requirements for a method,
that is available at compile-time, the upper bound was determined by finding the
most expensive path through the call graph.

The tool was evaluated using two SCJ use cases. We found that the tool is able
to use the implemented techniques to perform the desired analysis.

Page 75 of 91

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] LPsolve, 2013. Binaries and source code available at http://sourceforge.
net/projects/lpsolve/.

[2] SpideyBC – Tool for Static Memory Analysis of Java Bytecode, 2013. Git
repository available at https://github.com/jlandersen/sw10/tree/
master/Code.

[3] WALA – T.J Watson Libraries For Analysis, 2013. The official WALA Wiki doc-
umentation available at http://wala.sourceforge.net/wiki/index.
php/Main_Page/.

[4] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1986.

[5] F. E. Allen. Control Flow Analysis. In Proceedings of a Symposium on Compiler
Optimization, pages 1–19, New York, NY, USA, 1970. ACM.

[6] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. Technical report, 1994.

[7] A. Burns. Preemptive Priority-Based Scheduling: An Appropriate Engineer-
ing Approach. In Advances in Real-Time Systems, chapter 10, pages 225–248.
Prentice Hall, 1994.

[8] A. Burns and A. Wellings. Real-Time Systems and Programming Languages:
Ada 95, Real-Time Java and Real-Time POSIX.

[9] A. E. Dalsgaard, R. R. Hansen, and M. Schoeberl. Private Memory Allocation
Analysis for Safety-Critical Java. In Proceedings of the 10th International Work-
shop on Java Technologies for Real-time and Embedded Systems, JTRES ’12,
pages 9–17, New York, NY, USA, 2012. ACM.

[10] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustavsson, and H. Hansson. Towards
Industry Strength Worst-Case Execution Time Analysis, 1999.

[11] J. Engblom, A. Ermedahl, and F. Stappert. Comparing Different Worst-Case
Execution Time Analyis methods. In Work-in-Progress session of the 21st IEEE
Real-Time Systems Symposium, RTSS 2000, Orlando, Florida, USA, 2000.

[12] Federal Aviation Administration. Guidelines for Approving Source Code to
Object Code Traceability, 2002. This is an electronic document. Date of
publication: December 1, 2002. Date retrieved: November 28, 2012. Docu-
ment available at http://www.faa.gov/aircraft/air_cert/design_
approvals/air_software/cast/cast_papers/media/cast-12.pdf.

Page 76 of 91

http://sourceforge.net/projects/lpsolve/
http://sourceforge.net/projects/lpsolve/
https://github.com/jlandersen/sw10/tree/master/Code
https://github.com/jlandersen/sw10/tree/master/Code
http://wala.sourceforge.net/wiki/index.php/Main_Page/
http://wala.sourceforge.net/wiki/index.php/Main_Page/
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-12.pdf
http://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-12.pdf

BIBLIOGRAPHY

[13] Federal Aviation Administration. Software Approval Guidelines, 2003. This
is an electronic document. Date of publication: June 3, 2003. Date re-
trieved: November 28, 2012. Document available at http://www.airweb.
faa.gov/Regulatory_and_Guidance_Library/rgOrders.nsf/0/
640711b7b75dd3d486256d3c006f034f/$FILE/Order8110.49.pdf.

[14] C. Frost, C. S. Jensen, B. Thomsen, and K. S. Luckow. WCET Analysis of Java
Bytecode Featuring Common Execution Environments. Master’s thesis, Aalborg
Universitet, 2011.

[15] L. Hendren, P. Lam, J. Lhoták, O. Lhoták, and F. Qian. Soot, A Tool for Ana-
lyzing and Transforming Java Bytecode, 2003. Date retrieved: May, 2012. Slides
available at http://www.sable.mcgill.ca/soot/tutorial/pldi03/
tutorial.pdf.

[16] V. Hilderman and T. Baghi. Avionics Certification: A Complete Guide to DO-
178 (Software), DO-254 (Hardware). Avionics Communications, Incorporated,
2007.

[17] M. Hind. Pointer Analysis: Haven’t We Solved This Problem Yet? In Proceed-
ings of the 2001 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for
Software Tools and Engineering, PASTE ’01, pages 54–61, New York, NY, USA,
2001. ACM.

[18] Y. S. Li and S. Malik. Performance Analysis of Embedded Software using Im-
plicit Path Enumeration. In Proceedings of the 32nd annual ACM/IEEE Design
Automation Conference, DAC ’95, pages 456–461, New York, NY, USA, 1995.
ACM.

[19] D. Liang, M. Pennings, and M. J. Harrold. Evaluating the Impact of Context-
Sensitivity on Andersen’s Algorithm for Java Programs. SIGSOFT Softw. Eng.
Notes, 31(1):6–12, Sept. 2005.

[20] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley. The Java Virtual Machine
Specification - Java SE 7 Edition, 2012.

[21] P. Lokuciejewski and P. Marwedel. Worst-Case Execution Time Aware Compi-
lation Techniques for Real-Time Systems. Springer, 1 edition, 2011.

[22] Oracle. javac – Java Programming Language Compiler, 2013. Documentation
available at http://docs.oracle.com/javase/6/docs/technotes/
tools/windows/javac.html.

[23] OW2 Consortium. ASM, 2013. Binaries and source code available at http:
//asm.ow2.org/.

[24] P. Puschner and A. Schedl. Computing Maximum Task Execution Times – A
Graph-Based Approach. Journal of Real-Time Systems, 13:67–91, 1997.

[25] P. P. Puschner and C. Koza. Calculating the Maximum, Execution Time of
Real-Time Programs. Real-Time Syst., 1(2):159–176, Sept. 1989.

[26] D. Rayside. Points-To Analysis. University lecture notes., 2005. Date re-
trieved: April, 2012. Document available at http://www.cs.utexas.edu/
~pingali/CS395T/2012sp/lectures/points-to.pdf.

[27] M. Schoeberl. JOP: A Tiny Java Processor Core for FPGA, 2008. Date retrieved:
December 10, 2012. Date last modified: February 24, 2008. Web site available at
http://www.jopdesign.com.

Page 77 of 91

http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgOrders.nsf/0/640711b7b75dd3d486256d3c006f034f/$FILE/Order8110.49.pdf
http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgOrders.nsf/0/640711b7b75dd3d486256d3c006f034f/$FILE/Order8110.49.pdf
http://www.airweb.faa.gov/Regulatory_and_Guidance_Library/rgOrders.nsf/0/640711b7b75dd3d486256d3c006f034f/$FILE/Order8110.49.pdf
http://www.sable.mcgill.ca/soot/tutorial/pldi03/tutorial.pdf
http://www.sable.mcgill.ca/soot/tutorial/pldi03/tutorial.pdf
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/javac.html
http://docs.oracle.com/javase/6/docs/technotes/tools/windows/javac.html
http://asm.ow2.org/
http://asm.ow2.org/
http://www.cs.utexas.edu/~pingali/CS395T/2012sp/lectures/points-to.pdf
http://www.cs.utexas.edu/~pingali/CS395T/2012sp/lectures/points-to.pdf
http://www.jopdesign.com

BIBLIOGRAPHY

[28] M. Schoeberl. JOP Reference Handbook: Building Embedded Systems with a
Java Processor. Number ISBN 978-1438239699. CreateSpace, 2009. This is an
electronic document. Document available at http://www.jopdesign.com/
doc/handbook.pdf.

[29] M. Schoeberl and R. Pedersen. WCET Analysis for a Java Processor. In Pro-
ceedings of the 4th International Workshop on Java Technologies for Real-Time
and Embedded Systems, JTRES ’06, pages 202–211, New York, NY, USA, 2006.
ACM.

[30] M. Schoeberl and J. Vitek. Garbage Collection for Safety-Critical Java. In
Proceedings of the 5th International Workshop on Java Technologies for Real-
Time and Embedded Systems, JTRES ’07, pages 85–93, New York, NY, USA,
2007. ACM.

[31] M. I. Schwartzbach. Lecture Notes on Static Analysis. 2009.

[32] T. B. Strøm and M. Schoeberl. A Desktop 3D Printer in Safety-Critical Java. In
Proceedings of the 10th International Workshop on Java Technologies for Real-
time and Embedded Systems, JTRES ’12, pages 72–79, New York, NY, USA,
2012. ACM.

[33] The Apache Software Foundation. Apache Commons BCEL, 2013. Bina-
ries and source code available at http://commons.apache.org/proper/
commons-bcel/.

[34] The Open Group. Safety-Critical Java Technology Specification, 2012. Internal
document dated December 2012.

[35] S. Thesing. Safe and Precise WCET Determination by Abstract Interpretation
of Pipeline Models. PhD thesis, 2004.

[36] M. Todberg and J. L. Andersen. A Study of Safety-Critical Java and its Speci-
fication Applied, 2012.

[37] M. Todberg and J. L. Andersen. Cubesat Space Protocol and Watchdog Im-
plementations in Safety-Critical Java, 2012. Git repository available at https:
//github.com/Todberg/SW9/tree/master/Code.

[38] B. Wichmann, A. Canning, D. Clutterbuck, L. A. W. , N. J. Ward, and D. W. R.
Marsh. Industrial Perspective on Static Analysis. Software Engineering Journal,
10(2):69–75, 1995.

[39] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The Worst-Case Execution-Time
Problem - Overview of Methods and Survey of Tools. ACM Trans. Embed. Com-
put. Syst., 7(3):36:1–36:53, May 2008.

[40] W. Wögerer. A Survey of Static Program Analysis Techniques. 2005.

Page 78 of 91

http://www.jopdesign.com/doc/handbook.pdf
http://www.jopdesign.com/doc/handbook.pdf
http://commons.apache.org/proper/commons-bcel/
http://commons.apache.org/proper/commons-bcel/
https://github.com/Todberg/SW9/tree/master/Code
https://github.com/Todberg/SW9/tree/master/Code

APPENDIX

A

ANDERSENS ALGORITHM FOR C PROGRAMS

Letmalloc−i denote a pointer target for an allocation site i. The result is the function
pt(p) that for a pointer variable p returns the set of possible pointer targets to which
p may point to. For each variable id in the program, JidK denotes the set of possible
targets to which id may point. The analysis assumes that all pointer manipulations
in the program are one of the following six kinds (other types of pointer manipulation
can be normalised to these)[31]:

1. id = malloc

2. id1 = &id2
3. id1 = id2
4. id1 = ∗id2
5. ∗id1 = id2
6. id = null

The following constraints are specified for each of these pointer manipulations, that
is used to create the points-to graph[31]:

id = malloc : {malloc−i} ⊆ JidK
id1 = &id2 : {&id2} ⊆ Jid1K
id1 = id2 : Jid2K ⊆ Jid1K
id1 = ∗id2 : &id ∈ Jid2K⇒ JidK ⊆ Jid1K
∗id1 = id2 : &id ∈ Jid1K⇒ Jid2K ⊆ JidK

The resulting points-to function is then defined as the following:

pt(p) = JpK

The general intuition behind these constraints, is that in the case that a pointer
variable v1 points to another pointer variable v2, all possible targets of v2 are possible
targets of v1. We refer to [31] that provides details on The Cubic Algorithm that can
be used for creating the points-to graph based on these constraints. The worst-case
time complexity of creating and solving these constraints is O(n3).

Consider the following sequence of statements with pointer manipulation:

var p, q, x, y, z;
p = malloc
x = &z
y = x
q = p
p = *y

Page 79 of 91

APPENDIX A. ANDERSENS ALGORITHM FOR C PROGRAMS

Assume we are interested in knowing possible targets of q. That is, we wish to know
the set returned by the function pt(q). The following constraints are produced for the
program:

malloc−1 ⊆ JpK
{&z} ⊆ JxK
JxK ⊆ JyK
JpK ⊆ JqK
&x ∈ JyK⇒ JxK ⊆ JpK

Let us consider how the resulting points-to graph is constructed, under these con-
straints. Figure A.1(a) illustrates the trivial inclusion of the newly allocated target
as a possible target for the variable p (dashed edges indicates the new relationship
between pointers). This is a result of the first constraint. From the second constraint,
Figure A.1(b) illustrates the effect in the points-to graph. As x is assigned the address
of z, z becomes an element in the set of possible targets for x.

malloc-1p

x z

y

q

(a) From constraint malloc−1 ⊆ JpK

malloc-1p

x z

y

q

(b) From constraint {&z} ⊆ JxK

Figure A.1

The third constraint makes z a possible target of y as illustrated in Figure A.2(a).
The fourth constraint is similar, with malloc−1 becoming a possible target of q.

malloc-1p

x z

y

q

(a) From constraint JxK ⊆ JyK

malloc-1p

x z

y

q

(b) From constraint JpK ⊆ JqK

Figure A.2

The fifth constraint is the most interesting one. Because we make an assignment of
the value produced by dereferencing y to p, this requires all possible targets of y to
become possible targets of p. This is illustrated in Figure A.3(a). However, from
the fourth constraint, this also makes these new targets of p possible targets of q as
illustrated in Figure A.3(b), which is also the final points-to graph.

Page 80 of 91

APPENDIX A. ANDERSENS ALGORITHM FOR C PROGRAMS

malloc-1p

x z

y

q

(a) From constraint &x ∈ JyK⇒ JxK ⊆ JpK

malloc-1p

x z

y

q

(b) (Continued) From constraint &x ∈ JyK ⇒
JxK ⊆ JpK

Figure A.3

As a result, we can here see the solution to what possible targets of q are:

pt(q) = JqK = {malloc−1, z}

Page 81 of 91

APPENDIX

B

LIBCSP BASED WATCHDOG IN SCJ

This chapter briefly describes the CSP based Watchdog from our previous work, which
was used in the tool evaluation described in Chapter 7. In total, three watchdog
variants have been created that can be found on GitHub[37]:

Watchdog (Level 0) Implementation conforming to compliance level 0 under a
cyclic executive scheduler.

Watchdog (Level 1) Implementation conforming to compliance level 1 under a
fixed-priority scheduler.

Watchdog (Level 1) CSP Same as the above implementation, but instead of em-
bedding I2C communication directly into the software, the developed CSP li-
brary is utilised, enabling the possibility of using different communication in-
terfaces depending on the hardware configuration.

The level 1 CSP based version that will be described in this chapter is based on
modifying the non CSP based level 1 version.

B.1 Introduction
The Watchdog is based on the following problem setting. In a distributed system
multiple modules communicate to accomplish a task as seen in Figure B.1. In case of
failure in one or more modules, the system should take appropriate actions as other
modules may be dependent on the failed module(s). The Watchdog has the single
goal of detecting such failures of any module and take appropriate action.

Figure B.1: Five separate modules working on a common task in a distributed setting.

Page 82 of 91

APPENDIX B. LIBCSP BASED WATCHDOG IN SCJ

B.2 Tasks and Temporal Requirements
The tasks required for the Watchdog depends on the communication flow. The Watch-
dog can be designed to be the master such that it initiates and monitors each module,
or each module can act as master that regularly contacts and resets a timer in the
Watchdog. A multi-master approach in this distributed setting with modules contact-
ing the Watchdog, could lead to starvation of one or more modules due to repeated
bus congestion, leading (incorrectly) to the Watchdog assuming a module failure.

Instead the original Watchdog was designed to act as the sole master on the bus,
in which failure of each module on the bus is checked one by one. Therefore the
Watchdog consists of three periodic event handlers performing the following duties:

Pinger This task periodically pings a number of registered modules and stores the
response (if any) in a shared data structure.

Checker This task checks all module responses in the shared data structure and sets
a recovery flag in case a module has failed to reply.

Recovery This task executes a recovery routine taking some user-defined appropriate
action if the recovery flag it set.

Table B.1 shows the tasks along with related scheduling assignments. In addition to
the application specific tasks, the CSP implementation extends the set with a routing
task and one for incoming packets on the I2C bus.

Task Type Period Deadline Priority
Pinger Periodic 500 200 5
Checker Periodic 500 100 10
Recovery Periodic 500 50 15
Routing (CSP) Periodic 5 3 20
I2C (CSP) Aperiodic - - 25

Table B.1: Task Set

The periods of the tasks are assigned such that the Watchdog begins its monitor cycle
every half second. We assign priorities according to deadline monotonic priority or-
dering. We argue that despite deadline enforcement and detection not being available
in SCJ, it is suitable to consider deadlines due to the precedence relationship between
the tasks - not only must both the Pinger and Checker tasks be done executing when
either is to be released at a new period, the Pinger task must run before the Checker
which we in turn want to run before the Recovery handler. The deadline of the Pinger
is set on the pessimistic assumption that each module communication times out 10
ms after the Watchdog initiates communication with it (in which case it is considered
failed). In the worst case where the maximum of 10 modules times out, 100 ms will
be spent on this alone. In order to correct the priorities and take the precedence re-
lationship into account, we need the Checker and Recovery handlers to enforce these
to run in a serial manner, despite all being assigned the same period. As in Burns [7]
we do this by stretching the deadline of the Checker and Recovery handler tasks and
relate their deadline to the start of the transaction with the Pinger, and not their
own period and create a new transformed task set as listed in Table B.2. An alterna-
tive approach could be to provide the Checker and Recovery handlers with an initial
offset, which would avoid creating a critical instant. Note that this transformed task
set also includes initial estimated computation times, that the implementation must
not exceed (based on a pessimistic assumption for each task).

Page 83 of 91

APPENDIX B. LIBCSP BASED WATCHDOG IN SCJ

Task Type Period Computation Time Deadline Priority
Pinger Periodic 500 150 200 15
Checker Periodic 500 20 300 10
Recovery Periodic 500 40 350 5
Routing (CSP) Periodic 5 4 5 20
I2C (CSP) Aperiodic - 2 3 25

Table B.2: Transformed Task Set

B.3 Modifying the Watchdog to use CSP
The non CSP based version was implemented first, which handles I2C communication
directly as a part of the application. This section assumes that the reader is aware of
implementation specific details in the previous version. We refer to the listed GitHub
repository for this.

To incorporate the CSP library in the Watchdog, all communication classes deal-
ing with I2C and their respective packages are removed - i.e. sw901e12.comm and
sw901e12.comm.modules. The field, receivedResponseOnLastPing, originally located
on the now deleted ModulePinger is transferred to the Module class itself. This class
is also extended with fields for CSPAddress, CSPPort and MACAddress. In the mission,
an array of modules are created with different properties depending on the execution
context (board or simulator). The registration process of a module for the simulator
and the board can be seen in Listing B.1.

Listing B.1: Module for the simulator and the board.

1 /* Simulator Module */
2 int MACAddress = Config.MAC_ADDRESS;
3 int CSPAddress = Config.CSP_ADDRESS;
4 int CSPPort = 0x01;
5 slaves[0] = Module.create("Module 1", MACAddress, CSPAddress, CSPPort);
6 IMACProtocol loopbackInterface = InterfaceLoopback.getInterface();
7 loopbackInterface.initialize(MACAddress);
8 manager.routeSet(CSPAddress, loopbackInterface, MACAddress);
9

10 /* Board Module */
11 int MACAddress = 0x01;
12 int CSPAddress = 0x01;
13 int CSPPort = 0x01;
14 slaves[0] = Module.create("Module 1", MACAddress, CSPAddress, CSPPort);
15 IMACProtocol I2CInterface = InterfaceI2C.getInterface();
16 I2CInterface.initialize(MACAddress);
17 manager.routeSet(CSPAddress, I2CInterface, 0xFF);

When run in the simulator, the MACAddress and CSPAddress values for each module
remains the same and are fetched from a Config class (its source and destination
addresses are always the node is itself). The CSPPort value, however, must vary
in order to distinguish between connections. Next the module is created with the
mentioned parameters and added to the array of slave modules. The interface is
set to Loopback with the same MACAddress and the node registered in the routing
table. When run on the board, the MACAddress and CSPAddress must have different
addresses than that of the Watchdog, as the modules no longer reside within the
same application. Now it is also necessary to supply a proper next hop MAC address
to the requested interface based on the network topology (in the example, 0xFF).
The implementation of the handleAsyncEvent is changed to use the CSP API. The
changed Pinger can be seen in Listing B.2.

Page 84 of 91

APPENDIX B. LIBCSP BASED WATCHDOG IN SCJ

Listing B.2: The Pinger handler.

1 @Override
2 @SCJAllowed(Level.SUPPORT)
3 public void handleAsyncEvent() {
4 if (Config.DEBUG) {
5 console.println("PEHModulePinger");
6 }
7 for (Module slave : slaves) {
8 conn = manager.createConnection(slave.getCSPAddress(), slave.

getCSPPort(), CSPManager.TIMEOUT_SINGLE_ATTEMPT, null);
9

10 if(conn != null) {
11 packet = manager.createPacket();
12 packet.setContent(42);
13 conn.send(packet);
14 Packet response = conn.read(10);
15 slave.setResponse(response != null ? true : false);
16 conn.close();
17 }
18 }
19 }

In the old implementation of the Pinger handler, the ModulePinger object for each
slave was fetched and its ping method invoked as this would know the correct pro-
cedure of how to ping the particular slave device. This is no longer necessary when
using CSP, as the protocol handles this internally using various implementations of
MAC-layer protocols. The updated Checker handler can be seen in Listing B.3.

Listing B.3: The Checker handler.

1 @Override
2 @SCJAllowed(Level.SUPPORT)
3 public void handleAsyncEvent() {
4 if(Config.DEBUG) {
5 console.println("PEHModuleResponseChecker");
6 }
7 for (Module slave : slaves) { // @WCA loop<=10
8 if(slave.getResponse() == true) {
9 slave.resetResponse();

10 } else {
11 mission.executeRecovery = true;
12 break;
13 }
14 }
15 }

The Checker, has not changed much apart from going directly to the slave module
in order to check the response flag. Finally the Recovery handler can be seen in
Listing B.4.

Listing B.4: The Recovery handler.

1 @Override
2 public void handleAsyncEvent() {
3 if(Config.DEBUG) {
4 console.println("PEHSystemRecovery");
5 }
6

7 if(mission.executeRecovery) {
8 if(Config.DEBUG) {
9 console.println("Initiating system recovery...");

10 }
11 recovery.executeRecovery();
12 }

Page 85 of 91

APPENDIX B. LIBCSP BASED WATCHDOG IN SCJ

13 }

This handler did not require any changes and could be used as is. Finally, it should
be noted that in addition to the original three periodic event handlers, the routing
handler is now also present. This has a period of 5 ms, and runs with the highest
priority (20). Because the routing handler is not a part of the precedence relationship
between the original tasks, the deadline of the routing handler is the same as its
period.

Page 86 of 91

APPENDIX

C

ANALYSIS REPORT

Figure C.1: Summary page with results and tool arguments

Figure C.2: Callgraph page with direct source code access

Page 87 of 91

APPENDIX C. ANALYSIS REPORT

Figure C.3: Allocations page showing affected source code lines

Figure C.4: Allocations page showing the actual allocations and origin

Figure C.5: Visual control flow graph of an analysed method

Page 88 of 91

APPENDIX C. ANALYSIS REPORT

Figure C.6: Worst-case stack page (with details) for the analysed methods

Page 89 of 91

APPENDIX

D

SUMMARY

This project describes the development of the tool SpideyBC – a worst-case memory
consumption (WCMC) analysis tool for Java bytecode applications. The goal of the
project is to show how an established static analysis technique for worst-case execution
time (WCET) analysis can be used for memory analysis.

Java is a popular programming language, and in the recent years, attempts have
been made to make use of Java technology in the area of real-time and safety-critical
systems development. Safety-Critical Java (SCJ) is a restricted version of Java that
aims to support the development of applications in Java that can be certified against
rigid standards. A key difference in the SCJ specification is the replacement of auto-
matic memory management through a garbage collected heap with a scoped memory
model. This provides predictable and analysable memory allocation and dealloca-
tion behaviour, but requires the developer to reason about memory usage. Sizes of
memory regions and JVM stacks must be explicitly stated in the programs for the
underlying infrastructure.

To prevent the developer from having to intertwine analysis code with application
code for WCMC analysis, we use static analysis techniques as the foundation. By
using static program analysis techniques, the applications being analysed are never
actually executed. Two types of static analysis are performed on the input application
– dynamic memory and JVM stack sizes. As part of the input, the developer provides
a set of methods that acts as the analysis entry points. The two types of analysis are
then performed for each of the entry points.

The fundamental technique for the analysis is to provide a safe upper bound on
allocation of dynamic memory, which is done using the well known Implicit Path
Enumeration Technique (IPET) that is also applied in the area of WCET analysis.
IPET is fundamentally based on transforming the WCET problem into an integer
linear problem that considers all possible paths through a program implicitly. By
changing the cost of different points in the program representation from execution
time to memory allocation sizes, the tool is able to provide safe upper bounds starting
from each of the entry points. The developer can use these bounds to state the
required sizes of memory regions in the SCJ application, as opposite to doing this
through manual inspection of the program. For the analysis of the maximum sizes of
JVM stacks, we use the representation of a programs possible method invocations to
determine the most expensive stack size.

The result of the project is a tool that performs these analysis. The tool is eval-
uated by using it on two SCJ use cases. The first use case is a RepRap 3D printer
that was presented at the JTRES workshop in 2012. The second use case is con-
structed and presented as a part of this project. The use case is a watchdog that
monitors modules in a distributed system. The Watchdog incorporates the Cubesat

Page 90 of 91

APPENDIX D. SUMMARY

Space Protocol implementation from our previous project. The results show that the
tool provides safe upper bounds on the provided input. Using the tool, we have been
able to identify the memory parameters required to be specified in the applications.
Furthermore, we present directions for future work on the tool namely to tighten the
bound provided such that the precision is increased. As a final remark, we would like
to emphasise that while the scope of the project has been SCJ applications, working
at the bytecode levels presents the possibility of applying it on other types of Java
programs.

Page 91 of 91

	Introduction
	The Problem
	Explicitly Stating Memory Requirements in SCJ
	Pushing for Garbage Collection

	Contribution
	Approach

	Prerequisites
	Real-Time and Embedded Systems
	Scheduling

	Safety-Critical Java
	Compliance Levels
	Memory Model
	Storage Parameters

	Static Program Analysis
	Background
	Control Flow Graphs
	Call Graphs
	Interprocedural and Intraprocedural Analysis
	Context-Sensitivity
	Example

	Pointer Analysis
	Andersen-Style Points-To Analysis

	Worst-Case Execution Time Analysis Methods
	WCET Analysis Overview
	Static WCET Analysis Methods
	Path-based Calculation
	Implicit Path Enumeration Technique (IPET)

	The JVM and Java Bytecode
	Overview of the JVM
	JVM Run-time Memory Areas
	Private Thread Area
	Heap
	Method Area

	Java Bytecode

	SpideyBC - Tool for Static Memory Analysis
	Requirements
	Dynamic Memory Allocation of Methods
	JVM Stack Size
	Presentation of Results
	Restrictions for Programs

	Analysis Approach and Supporting Framework
	High-Level Analysis Technique
	Framework

	Design
	Overall Components
	WALA Types and CFG Representation
	CFG or ICFG
	Low-level Concerns
	Input Parameters

	Implementation
	Construction of CG and CFGs
	Traversal & ILP Constraints Generation
	Handling Loops
	Handling Arrays
	Worst-Case Stack Analysis

	ILP Constraints Generation Example
	The Final Tool
	Front End
	Analysis Report

	Evaluation
	Approach
	Setup
	Memory Access and Layout on JOP

	Results
	Watchdog Results
	RepRap Results
	Using the Results in the Watchdog

	Reflection & Future Work
	Reflection
	Model Checking
	Evaluation
	Analysing the SCJ Infrastructure
	Analysing the Standard Library

	Future Work
	Increase Precision in Loops
	Increase Precision at Branches
	Generalising the Architecture Input Model
	Synthesis of Analysis Results
	Support for Recursion
	Analysis of Standard Libraries and Infrastructure

	Conclusion
	Bibliography
	Andersens Algorithm for C Programs
	LibCSP based Watchdog in SCJ
	Introduction
	Tasks and Temporal Requirements
	Modifying the Watchdog to use CSP

	Analysis Report
	Summary

