
Virtual Savannah:

Master Thesis

Aalborg University

Daniel Collado
Spring 2013

AI for the simulation
of an ecosystem

The present report documents the implementa-
tion of an AI framework for wildlife simula-
tion purposes. The Virtual Savannah project is
used as a base to analyze the improvements
that dynamic agent-based behaviour can add to
a simulation compared to scripted behaviour,
where events are predefined.

With the help of flocking AI and combined
steering behaviours, a set of different animals
have been given autonomous AI, and in some
cases strategic thinking and decision making.

TheThe results have been tested by running a
series of simulations on different setups, to-
gether with a stress test. A quantitative and
qualitative analysis has been performed, con-
cluding that the emergent behaviour and dyna-
mism has been succesfully achieved, although
further improvements for robustness and
added complexity are needed to complement
some of the behaviours.

3

59

30th of May 2013

Matthias Rehm

MED10

Master Thesis

Virtual Savannah: AI for the simulation
 of an ecosystem

PREFACE

This report is the documentation of the work carried out as Master Thesis of the Mas-
ter’s programme at Medialogy, Aalborg University. The name of the project is “Virtual
Savannah: AI for the simulation of an ecosystem.”

An appendix DVD is enclosed. On this DVD the following material is present:

• Source code for the simulation (Unity project).

• An audiovisual production presenting the results of the work done.

• A digital version of this report.

iv

CONTENTS

1 Introduction 1

2 Problem Analysis 3
2.1 Game AI . 3
2.2 Decentralized AI . 5
2.3 Flocking . 6
2.4 Steering Behaviours . 7
2.5 Problem Analysis Summary . 9

3 Problem Statement 10

4 Design and Implementation 11
4.1 Animal Behaviour Design . 11
4.2 Game Design in Unity . 14
4.3 Behaviour Scripting . 16

5 Simulation Testing 44
5.1 Setup . 45
5.2 Results . 46

6 Discussion 48
6.1 Conclusions . 48
6.2 Aalborg Zoo Meeting . 51
6.3 Future lines of work . 52

Bibliography 54

A AI Framework Source Code 56

v

CHAPTER 1

INTRODUCTION

Aalborg Zoo (Zoo 2013) has been working together with students from Aalborg Uni-
versity to create virtual environments where animal behaviour can be studied. The
project “Virtual Savannah” (Eskildsen et al. 2013) is an example of how a team from
Aalborg University created this environment, implementing different features that
represent the life in the savannah, like the seasons, interaction between animals, an-
imal life cycle, etc.

The goal of the Virtual Savannah was to serve as an application to study the be-
haviour of animals in their natural habitat that can be later seen in the zoo live. This
application would give a lot of useful information, making use of parameters that
could be tweaked, different events during different seasons and information about
each animal amongst others.

However, the behaviour of the animals and the events in the simulation were script-
ed, which means that once the simulation started, the same events would happen
unless the parameters were tweaked manually. Same conditions would give rise to
the same behaviours and the same events, making the simulation useful to some ex-
tent, but static when it comes to show the dynamics of the savannah.

Scripting behaviours makes them predictable and unable to cover the vast space of
possibilities that can happen in an environment where different species coexist. This
is due to the inability of the animals to react to each situation, and thus, the scripting
is needed in order to tell them what to do and when to do it.

This is why it is needed for the animals to think by themselves, becoming actors able
to process the information that is the environment around them. When they gain
autonomy, no pre-scripted actions need to be commanded, and they simply react to
the situation.

The intelligence used by the actors gives the possibility of being able to react to any

1

2 CHAPTER 1. INTRODUCTION

scenario. The fact that every animal acts on its own free will will make the simulation
a dynamic experience, never giving rise to the same experience twice.

Initial Problem Statement

Based on these thoughts, the following problem statement has been phrased:

How is it possible to create a dynamic environment where animals act on their own
will.

To research on this topic, an AI framework will be implemented. The game engine
Unity (Technologies 2013) has been chosen as the development tool for the work
presented in this report.

CHAPTER 2

PROBLEM ANALYSIS

To form the basis for the implementation of an AI framework, the following subjects
will be treated in this chapter:

• Game AI.

• Decentralized AI.

• Flocking.

• Steering behaviours.

2.1 Game AI

When trying to create an AI for a real time application, it is important to follow a
model that takes into account all the limitations of running in a frame basis. From
the possible input, or environment scanning, to the execution where all the data is
analyzed and computed (strategy, decision making, movement) and finally the out-
come displayed on screen. This is well represented by the AI model presented in
(Illington and Funge 2009, pp.32), as we can see in figure 2.1.

Depending on its purpose, an AI can be more or less complex. However, small changes
in behaviour can give the illusion of greater intelligence, while adding advanced
algorithms of big complexity doesn’t always result in a better AI. This is known as
the “Complexity Fallacy” (Illington and Funge 2009, pp.19). This is why finding the
simple but significant mechanics in agent behaviour is key to balance resource con-
sumption and performance, and achieve greater efficiency.

Strategy can be used to improve the coordination of a given group of agents. Al-
though it slightly highjacks the idea of having non-supervised autonomous charac-
ters, a certain degree of information can be shared amongst peers in order to orga-
nize and achieve more complex strategies with little effort. “Half Life” (Corporation

3

4 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.1: The game AI model.

1998) exploited this aspect with great results. In the game, the enemies would as-
sume different roles when attacking, increasing the intelligence of the characters and
introducing an added challenge for the player, who had to study the enemy before
acting.

In order to build a proper AI, apart from the algorithms a proper infrastructure is
needed. An important aspect of it is how the AI retrieves information from the game
efficiently, in order to make decisions. This is known as “perception”: defining how
much each character knows about the world that surrounds them. Creating this in-
terface with the world is a significant part of the effort when building an AI. In this
work, the use of Unity’s in built utilities like collision detection and physics layers
(unity3d.com 2013b,a) will make this task easier.

Movement is a really important factor when trying to simulate intelligent behaviour,
and a bigger one when it comes to collective movement. Different algorithms can
turn decisions into motion, and the level of complexity of the motion can be im-
proved by adding features like obstacle avoidance or fleeing from enemies. This as-
pect of the simulation is crucial for the work presented in this report, and will be
covered extensively in section 4.3 of this report: Scripting Behaviours.

If the aim of the AI is to produce autonomous characters, it is recommended to have
a bottom-up design, where the behaviour of each character is designed, and the AI
required to implement it is created afterwards. The general outcome of the simula-
tion will be determined by the combination of the interactions between the different
agents’ behaviours. Designing how the agent will react in each situation will deter-
mine the decision making process, chosing the most suitable course of action de-
pending on the context. The next chapter covers the advantages and disadvantages

2.2. DECENTRALIZED AI 5

of having such decentralized AI system.

2.2 Decentralized AI

In a big and complex environment such as a virtual savannah, controlling all the da-
ta, events and decisions of all the elements in the simulation would require a huge
amount of time and resources. As discussed in section 1, simply scripting the events
would undermine the dynamics and randomness of the simulation, reducing the re-
alism, and therefore a distributed AI model is needed in order to break down the
work into simpler parts.

A distributed AI consisting on a multi-agent system provides a way of coping with
the bulk of decision making, however this requires the creation of an interface agent-
world, previously defined as “perception”. This infrastructure will provide a medium
through which each character will analyze the environment, and make simple cal-
culations to decide the next movement.

The most amazing aspect of multi-agent system is what is denominated as “Emer-
gent Behaviour”. Emergence is the way complex systems and patterns arise out of a
multiplicity of relatively simple interactions. A very simple yet clear definition can
be found in (Buckland 2005, pp.118):

Emergent behavior is behavior that looks complex and/or purposeful to the observ-
er but is actually derived spontaneously from fairly simple rules. The lower-level
entities following the rules have no idea of the bigger picture; they are only aware
of themselves and maybe a few of their neighbors.

The fact that the workload has been broken down into simple small units, increases
the efficiency of the computation. However the agent AI needs to be as simplified as
possible, since now the computational cost will increase proportonially, even expo-
nentially depending on the AI and how well coded it is.

There are disavantages to this approach, some of them being:

• Smaller control over the actors decisions and possible situations they may get
into. Giving them the freedom to chose may lead to undesired situations.

• Unability to deal with all the possible situations effectively, giving rise to bugs
or glitches. The AI needs to be robust to achieve uneventful simulations.

• The need for tuning and tweaking the AI in order to achieve an overall balanced
behaviour interaction. Every time a new feature is added, the system must be
tested to make sure it is balanced with the rest of behaviours.

6 CHAPTER 2. PROBLEM ANALYSIS

• Unablity to monitor an overall state of the environment. The fact that no cen-
tralized system is keeping track of the whole simulation makes it difficult to
debug on most cases.

For the purposes of this work, a distributed model is chosen to simulate the savan-
nah environment designed within the scope of the project, and to serve as proof of
concept for distributed AI frameworks. Nevertheless, a good programmer will com-
bine different techniques at hand in order to create an overall robust and efficient AI,
whether this techinques are centralized or distributed.

A common representation of a multi-agent system is often seen in animal simula-
tions like flocks, herds, swarms or schools. All these are gathered under the category
of “Boids” (Reynolds 1987). The “Boid” model for a artificial life simulation is ex-
plained in the following chapter.

2.3 Flocking

In 1986 Craig Reynolds developed an artificial life program called Boids. The pogram
would simulate a flock of birds navigating together in a realistic manner. He pub-
lished a paper on the topic in 1987 (Reynolds 1987), on the proceedings of the ACM
SIGGRAPH (SIGGRAPH SIGGRAPH) conference. As many other life simulators, Boids
would make use of the emergent behaviour by creating complex behaviour from
simple autonomous agents. However this paper would become a reference to any
life simulation by using simple rules like separation, cohesion and alignment that
have a greater emergence outcome. More complex rules like obstacle avoidance and
goal seeking could be added on top. Ever since, this AI model has been known as
“flocking” in the academic AI world.

The importance of Reynold’s paper was due to the great improvent his approach sup-
posed compared to previous traditional life simulation methods. Also, the adaptabil-
ity of this approach to simulate different behaviours by adjusting the steering and
other parameters, makes it easy to emulate different group behaviours. The com-
mon applications are on the flocking of birds, fish schools, herding animals and in-
sect swarms. Ever since the publication of his work, many games and films have also
used it to simulate animal behaviour. A good example for an animation would be
Disney’s “Lion King” (Studios 1994) (figure 2.2) where a stampede is simulated using
this technique. Games like Pikmin (EAD 2001) (figure 2.3) also have been using it to
handle the movement of crowds.

Further improvements have been developed since, like the incorporation of fear ef-
fects (Delgado-Mata et al. 2007) or leadership behaviour (Hartman and Benes 2006).
Also, multiple applications for this AI system have been found in different domains,
like visualization (Moere 2004) and optimization(Cui and Shi 2009).

2.4. STEERING BEHAVIOURS 7

Figure 2.2: Stampede in Disney’s Lion King.

Figure 2.3: Ingame screenshot of the game Pikmin.

The factor that this approach uses to create emergence is the movement that results
of using a specified set of rules. This different rules create forces with different goals
that, when blended together, create a final force which is considered the “decision”
the agent has taken. This decision is normally complemented by an additional lay-
er of general decision making and state control, as shown in chapter 4.3 where the
Combined Steering Behaviours are explained in depth.

2.4 Steering Behaviours

Movement is key to simulate herding behaviour. The interactions between the ani-
mals need to be realistic, and the best way to produce this illusion of inteligence is
trying to match the emergence seen in their natural habitat when they navigate to-
gether. This is what the flocking approach is trying to do, hence adequate movement
algorithms that adapt to this AI model need to be discussed.

Movement algorithms take data about their own state and the state of the world, and
come up with an output representing the desired movement to do next. This is de-
picted in figure 2.4.

The input taken varies depending on the algorithm. Some algorithms only require
the character’s position and orientation, while others need to process the world’s ge-
ometry to perform different checks. The output can also come in different forms,
from a simple direction to move towards, to a set of acceleration parameters. The
first kind doesn’t account for acceleration or slowing down, it is defined as “Kinemat-
ic”; the latter output type does, and these kind of algorithms are known as “Steering

8 CHAPTER 2. PROBLEM ANALYSIS

Figure 2.4: The movement alorithm structure from (Illington and Funge 2009, pp.41).

Behaviours”.

On a side note, the direction the character is facing at a given moment will be defined
as orientation, while the angular speed at which it is rotating will be referred to
as rotation. This clarification is made since it is easy to mistake one for another,
and the Unity engine defines as rotation what we define here as orientation. Also,
velocity defines the motion vector, while speed defines velocity’s magnitude.

Kinematic behaviours are algorithms that create a movement output using the char-
acter’s position and orientation. A target velocity is calculated, allowing the char-
acter’s velocity to change instantly if the situation so requires. Many games need
this kind of behaviours for many reasons: reaction time, robotic behaviour, game
mechanics, and many other reasons. However this kind of movement can look very
unrealistic, since it doesn’t follow Newton’s laws of motion, where velocities can’t
change instantly. In order to reduce the impact of this seemingly odd behaviour
(compared to the real world), the current velocity can be changed over time, smooth-
ing the motion when required.

“Steering behaviours” is the name given by Craig Reynolds to the movement algo-
rithms in his paper about life simulation (Reynolds 1987). This kind of algorithms
account for the current motion of the actor. Instead of just defining a target velocity,
the algorithm also uses the current velocity and rotation (apart from the position and
orientation) in order to calculate the steering output, creating more realistic move-
ment patterns that obey the laws of physics more faithfully. The steering output
consists on an angular acceleration and a linear acceleration, which are later used
to update the character’s velocity, rotation, position and orienteation.

Combined steering behaviours (like flocking or herding) consist on the blending of
different steering methods. The integration of the different steering methods can be

2.5. PROBLEM ANALYSIS SUMMARY 9

done by giving different weights to each one fo them, or by prioritizing one before
another in some cases. Selecting a set of steering methods and assigning weights to
each of them will define the resulting behaviour. Each of the steering methods used
in this work are thoroughly explained in chapter 4.3, and the source code (exhaus-
tively commented for better understanding) is listed in the annex.

2.5 Problem Analysis Summary

This section will provide a summary of the problem analysis chapter in this report.
Throughout the problem analysis the following problem statement has been exam-
ined:

How is it possible to create a dynamic environment where animals act on their own
will.

AI methods used in computer games to control characters have been examined to
conclude that a decentralized model is needed in this case. A succesful example of
decentralized animal behaviour can be found in the flocking AI, which combines
steering methods to create the emergent behaviour of animal groups.

Once concluded that the flocking AI is the better suited to achieve the initial prob-
lem statement, it is needed to define the environment to which it will be applied. In
section 4.1 the simulation scope and actors are defined, as well as their respective
behaviours.

CHAPTER 3

PROBLEM STATEMENT

Based on the problem analysis the following problem statement has been phrased:

How is it possible to implement a flocking AI and adapt it to different animal be-
haviours to create a dynamic environment.

The creation and evaluation of a distributed AI framework applied to a virtual savan-
nah simulation using in Unity will be described. Different setups will be created to
evaluate a set of hypothesis and ultimately the problem statement will be revised.
The purpose of the AI framework is to create a dynamic simulation with realistic an-
imal behaviour and movement patterns.

10

CHAPTER 4

DESIGN AND IMPLEMENTATION

In this chapter the following topics will be covered:

• Animal Behaviour Design: An explanation of the design choices made for the
animal behaviour in the simulation.

• Game Design in Unity: A description of how the Unity 3D Engine was used to
set up the simulation.

• Behaviour Scripting: A presentation of the steering methods scripted to move
the animals in the simulation.

4.1 Animal Behaviour Design

As explained in chapter 1, one of this simulation’s objective is to represent the ani-
mals’ movement patterns realistically. In order to achieve this, some design choices
have been taken to try and describe each animal’s behaviour in the wilderness. Dif-
ferent steering behaviours and small state machines have been used to define how
they will react to certain events, and how the interaction will be between members
of their own species and other species.

Since the purpose of this simulation is not being precise about the actual interactions
between species, there might be inaccuracies between the way the actors behave in
the simulation and the way they do in the wilderness. These choices were made for
the sake of the steering behaviours and movement patterns adequate display and for
simplicity.

4.1.1 Zebra

The zebra has been the herd animal of choice for the simulation. The zebras will be-
have differently depending on whether they are alone or in company of other mem-

11

12 CHAPTER 4. DESIGN AND IMPLEMENTATION

bers of the herd.

When alone, the zebras will wander aimlessly around the map, at a slow pace. If the
zebras are gathered in a herd -a herd consists of two or more zebras- they will wander
together while behaving in the following manner:

• They will keep some distance between each other, not to bump into neigh-
bours.

• They will try to stick with the herd, not drifting away from it.

• They will try to keep up with the herd, not falling behind or speeding away
from it.

• They will try to have a similar alignment, facing the same direction.

• They will show small differences in alignment and speed.

Whether the zebra is alone or in a herd, when encountering a lion, it will always try
to flee from it, running in the opposite direction. However, if the zebra is in a herd,
it will try to stay with the rest of its fellow zebras while fleeing as much as possible.
Nevertheless the urge for survival and run away from the predator is stronger than
the need for staying with the herd, and if required, the zebra will run away from the
rest in an attempt to save its life. If more than one lion is approaching, the zebra will
try and run away from them all towards the safest direction.

4.1.2 Lion

Te lion has been the predator of choice for this simulation. They will track the herd
of zebras down and try to catch a prey. Depending on whether they are a pack or an
individual, they will use different hunting strategies.

The lion’s behaviour is broken down into different states:

• Idle

• Preparing for attack

• Attacking

• Eating

• Retreating

When Idle, the lion will wander at a slow pace until it finds a herd of zebras. If there
are more than one lion, they will do the same, but navigating together as a pack, close
to each other, but mantaining a certain separation between themselves. Once they
identify a zebra or a herd, the lion or lions immediately switch to the “Preparing for

4.1. ANIMAL BEHAVIOUR DESIGN 13

attack” state.

The “Preparing for attack” state is the only one in which hunting alone or in a pack
makes a difference. When alone, the lion will approach the herd slowly, getting close
without being noticed. Once it is close enough it will switch into the “Attacking”
state. On the other hand, if there are several lions, a surrounding attack will be
performed. The alpha lion will approach from the front, close to the herd, but far
enough not to be noticed, and the rest will go around the herd, to the opposite side,
doing the same from the opposite direction. Once overy lion is in the designated po-
sition, the whole pack will switch into the “Attacking” state.

When a lion switches into the “Attacking” state, it will look for the nearest prey, and
fully acceleraty towards it. Hunting in a pack should increase the chances of catch-
ing a prey, since the attack is being done from two opposite fronts, drawing the herd
against the rest of the lions. The acceleration and the element of surprise are the
strong points of the lions, since they can run just as fast as a zebras, however they
have less stamina and if they don’t get a catch fast, the zebras will just flee away since
they have much more stamina and can keep a high running pace for an extended
period of time.

Once the attacking has been performed, there are two possible outcomes. If any of
the lions gets a catch on a prey, the rest of the pack will notice it, and the whole pack
will switch into the “Eating” state. However if the predators don’t manage to get any
of the zebras, they will eventually get tired, with their stamina lowered. In this case,
they will go into the “Retreating” state.

When in the “Eating” state, the lions will have hunted a prey, and they all will forget
about the rest of the herd and gather around the dead zebra, eating. They will remain
like this until the end of the simulation.

Once the lion is in the “Retreating” state, it will lower down its running pace to re-
cover stamina, and gather with the rest of the pack if there are more lions, while
wandering around the savannah. They will remain like this until the end of the sim-
ulation.

The fact that the “Eating” and “Retreating” states are final states in the simulation,
will serve as a parameter for testing later on and determine whether or not the li-
ons have been succesful on their hunting attempt. If the lions went back to attempt
another hunt after retreating, they would keep trying until they were succesful. As
discussed in chapter 1, the aim of the simulation is to create a coherent yet random
outcome on each simulation.

4.1.3 Elephant

The elephant is the neutral actor in the simulation. The elephant will always wander
alone, and will pay no attention to any of the animals on the savannah since none of

14 CHAPTER 4. DESIGN AND IMPLEMENTATION

them pose a threat to him. The lions and zebras will only try not to collide with him,
and go around him if he is on their way. This same behaviour is displayed by the rest
of the animals with other obstacles, like trees or big rocks.

4.2 Game Design in Unity

When creating a simulation using Unity, there are different aspects that need to be
taken care of. In this chapter, the implementation of the simulation in the Unity3D
engine will be described, explaining each of the elements used in the game scene
and how the physics engine proved to be of great use. The scripting aspect of the
simulation will be discussed in the following chapters.

The main assets for the simulation (terrain, models, textures and animations) were
taken from the Savannah project as menctioned in chapter 1. However, none of the
previous project scripts were used in this simulation, creating all used behaviours
from scratch. The scene was stripped from all interactivity, leaving only the ter-
rain and using the available assets to create the prefabs that will be our actors in
the scene.

An important design choice was to remain in a two and a half dimension environ-
ment (Illington and Funge 2009, pp.43) to simplify the navigation and adapt it to
the actual needs of the simulation. Movement in three dimensions is simple to im-
plement, however orientation becomes a tricky problem in this case, and is best to
avoid unnecessary complications. In two and a half dimensions, we deal with a three
dimensional position, however leave the vertical axis to be dealt with by the force of
gravity. In this project the two and a half dimension space consists in the X and Z axis
movement through the plane that the savannah terrain creates, where the remain-
ing half dimension is the orientation our actor is facing represented as a single value,
which is confined to the [-180..180] space. Since the scene is essentially a plane, the
vertical alignment will not be taken into account, and the movement will take place
in the [X,Z] plane.

There is a prefab for each animal, which consists on the animal’s mesh with ani-
mations and textures, together with a set of game objects with colliders tagged and
layered for the proper detection of one another, and the correspondent scripts for
each of them.

In th Zebra Prefab (figure 4.1) the root game object named “ZebraPrototype” and
tagged as “Zebra” contains a detection trigger collider and the “HerdingBehaviour”
script. This game object is in the “DefaultDetection” layer. The Zebra mesh is parent-
ed to the root game object. Another game object called “ZebraCollider” containing
another trigger collider and a kinematic rigidbody is also parented to the root game
object. It is also tagged as Zebra, however it is included in the “ZebraDetection” layer.

4.2. GAME DESIGN IN UNITY 15

Figure 4.1: The zebra prefab in the Unity editor.

In the Lion Prefab (figure 4.2) the root game object, named “LionPrototype” and
tagged as “Lion” contains a detection trigger collider and the “PackBehaviour” script.
This game object is in the “DefaultDetection” layer. The Lion mesh is parented to
the root game object. Another game object called “LionCollider” containing another
trigger collider and a kinematic rigidbody is also parented to the root game object. It
is also tagged as Lion, however it is included in the “LionDetection” layer.

Figure 4.2: The lion prefab in the Unity editor.

In the Elephant Prefab (figure 4.3) the root game object, named “ElephantPrototype”
and tagged as “Elephant” contains the “LonerBehaviour” script. This game object is
in the “DefaultDetection” layer. The Elephant mesh is parented to the root game ob-
ject. Another game object called “ElephantCollider” containing a trigger collider is
also parented to the root game object. It is also tagged as Elephant, however it is in-
cluded in the “Obstacles” layer.

16 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.3: The elephant prefab in the Unity editor.

The setup of the prefabs in layers, different colliders, rigid bodies and tags has to do
with the interactions handled by the physics engine. Unity requires at least one of
the two game objects that are interacting through their colliders to have a rigid body
attached, since the collisions are calculated through the physics engine. The rigid-
bodies are only needed to trigger the events, that’s why they are marked as kinematic,
and the physics engine doesn’t do any of the movement calculation.

The colliders in the root game object of the prefabs are used as an area of detection,
to map the surroundings in search of other actors (that’s why the elephant doesn’t
have one), while the colliders in the parented game objects serve as a way to be de-
tected. Once another collider enters our detection zone, the tags they are labeled
with serve as identifiers to determine what kind of animal they are. To solve the
problem of non desired interactions between two colliders (such as a detection zone
entering another detection zone) we make use of the layers in the physics engine. As
you can see in figure 4.4, there is a matrix of booleans determining which layers can
interact with each other. In this case we only need the “DefaultDetection” layer not
to interact with other elements of the same layer.

The physics engine also offers utility functions such as ray casting. These have been
useful when looking for objects to avoid, such as elephants, trees or rocks. In the fol-
lowing chapter the scripting handling all these interactions (from collisions and tags
to ray casting) will be explain in depth.

4.3 Behaviour Scripting

In this chapter the scripting used to simulate animal behaviour is explained in depth.
Different steering scripts have been implemented. When combined and blended
properly they can achieve remarkable movement patterns that create the illusion of

4.3. BEHAVIOUR SCRIPTING 17

Figure 4.4: The layer interaction matrix from the physics engine.

intelligence and emergent behaviour as well as cooperation in the animal world.

As explained in section 2.4, the steering behaviours provide a steering output that
can be blended in order to recreate certain movement patterns. The Steering class
(listing 4.1) has been created in order to handle this output and also to handle some
basic operations. The Steering functionalities are the following:

Listing 4.1: Extract from Steering Class C# script

1 public class Steering {
2 //Steering
3 public Vector3 linearAcceleration = Vector3.zero; //Linear

acceleration
4 public float angularAcceleration = 0f; //Angular acceleration
5

6 [...]
7

8 //Adds another steering to this one, given a specific

18 CHAPTER 4. DESIGN AND IMPLEMENTATION

weight
9 public void Add(Steering newSteering, float weight)

10 {
11 linearAcceleration += newSteering.linearAcceleration * weight;
12 angularAcceleration += newSteering.angularAcceleration * weight;
13 }
14

15 //Crops down to the specified maximums
16 public void Crop(float maxLinearAcceleration, float

maxAngularAcceleration)
17 {
18 //Linear
19 if (linearAcceleration.magnitude > maxLinearAcceleration)
20 {
21 linearAcceleration.Normalize();
22 linearAcceleration *= maxLinearAcceleration;
23 }
24

25 //Angular
26 if (Mathf.Abs(angularAcceleration) > maxAngularAcceleration)
27 {
28 angularAcceleration /= Mathf.Abs(angularAcceleration);
29 angularAcceleration *= maxAngularAcceleration;
30 }
31 }
32

33 [...]

• Storing linear ang angular acceleration for any given steering output.

• Resetting the steering to zero (useful since it is recalculated on every frame).

• Adding weighted stering. This makes it very easy to blend different steering
outputs.

• Cropping down to maximums. Given a maximum linear and angular acceler-
ations, if the currently stored ones exceed them, they are cropped down.

• Mapping to an angular range. This static method is used to translate the Unity
rotation range [0..360] to the one used for the steering [-180..180].

The code shown in this section is exhaustively commented, and thus the descrip-
tions focus on the functionalities and the calculation process, rather than on a line-
by-line explanation. The complete code can be found at the end of this report, in the
annex.

4.3. BEHAVIOUR SCRIPTING 19

4.3.1 Simple Steering Scripts

The following scripts are classes designed to be called from other behaviours. They
do not extend MonoBehaviour as usually Unity scripts do, since they are not sup-
posed to be attached to any game objects or make use of any of the Unity callbacks.
Instead they are dinamically created and used to be blended with other steering
methods.

Different steering scripts will provide a certain type of steering output:

• Linear output: Only the linear acceleration is calculated.

• Angular output: Only the angular acceleration is calculated.

• Complete output: Calculates both linear and angular acceleration.

All the following classes have at least one GetSteering() method, which returns
the steering output given a set of parameters. More than oneGetSteering()method
is implemented on some of the classes in order to adapt to the overloading needs that
some of the subclasses have.

Note that some of the classes extend other steering methods. This is done for the
purpose of code optimization, modularity and usability. They will delegate some
part of the steering calculation to the subclass and avoid code repetition.

Align

The first steering class is AlignBehaviour . It returns the steering needed to rotate
towards a certain orientation value. No linear movement is considered in this steer-
ing method, so the linear steering value returned will always be the zero vector.

The main GetSteering() method (listing 4.2) takes a list of GameObjects and calcu-
lates their average orientation in order to steer towards it. The second method is
overloaded, and it does the exact same thing, except for the fact that the taken argu-
ment is not a list of GameObjects, but a Quaternion with a specified orientation. The
method does exactly the same, skipping the part where it needs to calculate the aver-
age orientation, since the target orientation is already specified. The reason to create
two different methods is to ensure code optimization using subclasses, as explained
later. The rest of the arguments taken by these methods are the same: the object’s
transform, rotation speed, maximum rotation speed and maximum angular acceler-
ation. The transform and rotation speed are used to calculate the steering outcome;
the maximum rotation and maximum angular acceleration are used as control pa-
rameters.

Listing 4.2: GetSteering method from Align Class C# script

1 [...]

20 CHAPTER 4. DESIGN AND IMPLEMENTATION

2 //Returns the steering for align given a list of elements
in range

3 public Steering GetSteering(List<GameObject> targets, Transform
transform, float rotationSpeed, float maxRotation, float
maxAngularAcceleration)

4 {
5 alignSteering.Reset();
6

7 if (targets.Count > 0)
8 {
9 //Calculate the average orientation of the neighbouring

elements
10 Quaternion newTarget = Quaternion.identity;
11 Vector3 auxVector = Vector3.zero;
12 //Loop through each target
13 foreach (GameObject target in targets)
14 {
15 auxVector += target.transform.rotation.eulerAngles;
16 }
17 //Average
18 auxVector /= targets.Count;
19 newTarget = Quaternion.Euler(auxVector);
20

21 //Naive direction to the target
22 float rotationDelta =

Steering.MapToRange(newTarget.eulerAngles.y) -
Steering.MapToRange(transform.eulerAngles.y);

23 float rotationSize = Mathf.Abs(rotationDelta);
24 float targetRotation = 0f;
25

26 //Fix for transitions between -180 to +180 and vice versa
27 float openAngleFactor = 1f;
28 if (rotationSize > 180)
29 openAngleFactor = -1f;
30

31 //If we are there, we do nothing
32 if (rotationSize < targetRadius)
33 {
34 return alignSteering;
35 }
36 //If we are outside the slow radius, we turn at maximum

rotation
37 else if (rotationSize > slowRadius)
38 {
39 targetRotation = maxRotation;
40 }
41 //Otherwise we calculate a scaled rotation
42 else

4.3. BEHAVIOUR SCRIPTING 21

43 {
44 targetRotation = maxRotation * rotationSize / slowRadius;
45 }
46

47 //The final target rotation combines speed (already in the
variable) and direction

48 targetRotation *= (rotationDelta / rotationSize) *
openAngleFactor;

49

50 //Acceleration tries to get to the target rotation
51 alignSteering.angularAcceleration = targetRotation -

rotationSpeed;
52 alignSteering.angularAcceleration /= timeToTarget;
53

54 //Check if the acceleration is too great
55 float absAngularAcceleration =

Mathf.Abs(alignSteering.angularAcceleration);
56 if (absAngularAcceleration > maxAngularAcceleration)
57 {
58 alignSteering.angularAcceleration /=

absAngularAcceleration; //Get the sign of the
acceleration

59 alignSteering.angularAcceleration *=
maxAngularAcceleration; //Set it to maximum permitted

60 }
61 }
62 else
63 {
64 Debug.LogWarning("No neighbours found, Align aborted.");
65 }
66

67 return alignSteering;
68 }
69 [...]

Whether it is a group of game objects with an average orientation or a specified
Quaternion with an orientation, the aim of the class is to steer towards it. Before
returning any value, the methods check for specified thresholds. The first threshold
is the “target radius”, which specifies how close to the target orientation we have to
be in order to consider we have achieved the orientation we wanted. The second one
is the “slow radius”. This is a larger value, and specifies the threshold within which
we have to start slowing down our rotaion speed in order to have a safe landing in-
to the target radius, and don’t go past it. The steering calculation for each of these
zones are:

• If our current orientation is within the specified target radius we don’t return
any steering, since we consider we are already where we want to be.

22 CHAPTER 4. DESIGN AND IMPLEMENTATION

• If our current orientation is out of a specified slow radius (a larger value than
the target radius) we return the maximum rotation speed in the direction of
the target orientation. Since we are too far away from the target rotation, we
have no need to slow down.

• If our current orientation is not within the target radius, nor out of the slow ra-
dius, we are within the slowing zone. This zone is implemented so the rotation
steering returned is smaller the closer we get to the target radius. This means
we interpolate from the maximum rotation speed (when the orientation is at
the limit of the slow radius) to zero rotation speed (when we reach the target
radius).

Once we have calculated the rotation speed we want to achieve, we need to calculate
the angular acceleration required, since the steering values are returned in terms of
linear and angular acceleration. In order to calculate this angular acceleration, our
current rotation speed is subtracted form the target rotation speed, and later divid-
ed by the time value that represents the time we want to take in order to achieve this
angular speed (this time parameter is called timeToTarget). After this, we make sure
our acceleration value doesn’t surpass the specified maximum angular acceleration
(and if it does, crop it down to the maximum), and then return it.

Face

The face behaviour’s class FaceBehaviour, has also the goal of achieving a target
orientation, however in this case the aim is to orient towards a target, instead of
achieving the target’s current orientation. Due to the similiarity withAlignBehaviour,
FaceBehaviour is a subclass of it, and will delegate some of its functionalities.

There are two GetSteering() methods in this class. The first one is taking the cur-
rent velocity of the object and rotating to face that direction. The second one (listing
4.3) takes a specific position in the world and rotates to face that location. Like in
AlignBehaviour, the aim is to have different overloaded methods in order to adapt
for subclasses that will delegate functions to this one.

Listing 4.3: GetSteering method from Face Class C# script

1 [...]
2 //Returns the steering trying to face a specific position
3 public Steering GetSteering(Vector3 position, Transform transform,

float rotationSpeed, float maxRotation, float
maxAngularAcceleration)

4 {
5 faceSteering.Reset();
6 Vector3 direction = position - transform.position;
7 //If zero, we make no changes
8 if (direction.magnitude == 0f)

4.3. BEHAVIOUR SCRIPTING 23

9 return faceSteering;
10

11 //Create the target rotation
12 Quaternion target = Quaternion.Euler(new Vector3(0f,

Steering.MapToRange(Mathf.Atan2(direction.x, direction.z) *
Mathf.Rad2Deg), 0f));

13

14 //Fetch it to align, and return the steering
15 return base.GetSteering(target, transform, rotationSpeed,

maxRotation, maxAngularAcceleration);
16 }
17 [...]

The only difference between the two methods is that in the one where the current
velocity of the object is taken, a world position is calculated by adding the velocity
vector to the current position of the object, where in the second method the position
is already given in the parameters. Once a position to be faced is calculated or given,
the required target rotation is calculated by using the direction vector towards the
specified location, and then it is delegated to the base class AlignBehaviour.

Wander

The wandering movement’s class, WanderBehaviour, calculates the steering for an
actor to move aimlessly about, but in a controlled manner. A random direction is
calculated, but with control parameters that allow for direction, rotation and speed
limits. Due to having in common some of its functionalities with FaceBehaviour,
WanderBehaviour is a subclass of it, and delegates some of the workload to it.

Figure 4.5: The wander behaviour.

There is only one GetSteering() method in the class (listing 4.4), which calculates
a target location to delegate to FaceBehaviour from a set of given parameters. As
depicted in figure 4.5, the direction is calculated by using three variables: the “wan-
der offset”, the “wander radius” and the “change rate”. Since calculating a random

24 CHAPTER 4. DESIGN AND IMPLEMENTATION

direction from our current location would provide a highly variable outcome, a more
contained orientation range is calculated by placing a circumfarence at a certain dis-
tance in front of our current location. The distance at which the circumference lays
is the “wander offset”, while the size of the circumference is defined by the “wander
radius”. The higher the radius value is, the bigger the range of our angular spectrum.
The same happens if our offset decreases. By tweaking these two, the desired wander
maneuverability is achieved.

Listing 4.4: GetSteering method from Wander Class C# script

1 [...]
2 //Returns the steering for wander
3 public Steering GetSteering(Transform transform, float

maxRotation, float rotationSpeed, float maxLinearAcceleration,
float maxAngularAcceleration)

4 {
5 //Calculate the target to delegate to Face
6 //Update the wander target local orientation
7 wanderOrientation = Steering.MapToRange(wanderOrientation +

RandomBinomial() * wanderChangeRate);
8

9 //Calculate the total combined target orientation
10 targetOrientation = Steering.MapToRange(wanderOrientation +

Steering.MapToRange(transform.eulerAngles.y));
11

12 //Calculate the center of the wander circle
13 circleCenter = transform.position + transform.forward *

wanderOffset;
14

15 //Calculate the target location
16 wanderTarget = circleCenter +

RotationToVector3(targetOrientation) * wanderRadius;
17

18 //Delegate to Face to handle rotation steering
19 wanderSteering = base.GetSteering(wanderTarget, transform,

rotationSpeed, maxRotation, maxAngularAcceleration);
20

21 //Set linear acceleration to maximum in the direction of the
orientation

22 wanderSteering.linearAcceleration = maxLinearAcceleration *
RotationToVector3(Steering.MapToRange(transform.eulerAngles.y));

23

24 return wanderSteering;
25 }
26 [...]

In order to change direction at a certain rate within this range is by defining a “change
rate”. A specific point in the circumference is selected by calculating a “wander orien-

4.3. BEHAVIOUR SCRIPTING 25

tation”, which varies in one direction or another at a “change rate” speed. Notice how
a random number close to zero is calculated in order to modify our current “wander
orientation” by calling RandomBinomial(). This provides an easy way of obtaining
small values close to zero by multiplying two random numbers between -1 and 1 and
returning the result, which can be positive or negative, thus achieving variation in
both directions. Once the new “wander orientation” is calculated, the specified po-
sition (depicted as “target”) is given in absolute value to the FaceBehaviour, which
calculates the angular steering.

Unlike the previus steering methods, WanderBehaviour also provides linear steer-
ing. In this case the linear steering is calculated simply by taking the normalized
direction towards the “wander target” and multiplying it by the maximum linear ac-
celeration recieved as a parameter. The rest of the parameters received are the ones
required by the FaceBehaviour to calculate its steering.

Seek

The seek’s steering class SeekBehaviour provides the steering needed to be drawn
towards a specified location. The GetSteering() method (listing 4.5) receives a
desired target location, the Transform of the actor and the maximum linear accel-
eration permitted. The function caluclates the vector from our current position to
the target position, and normalizes it to get the direction of the desired acceleration.

Listing 4.5: GetSteering method from Seek Class C# script

1 [...]
2 //Returns the steering for seek given a target position

to reach
3 public Steering GetSteering(Vector3 targetPosition, Transform

transform, float maxLinearAcceleration)
4 {
5 seekSteering.Reset();
6

7 //Calculate strength of the attraction
8 Vector3 direction = targetPosition - transform.position;
9 direction.y = 0f; //We make sure no vertical alignment is taken

into account
10 float distance = direction.magnitude;
11 //If we have arrived, we don’t need to steer
12 if (distance < arriveThreshold)
13 return seekSteering;
14 //Otherwise, we calculate the strength of the attraction
15 float strength = Mathf.Min(attractionCoefficient * distance *

distance, maxLinearAcceleration);
16

17 //Add acceleration
18 direction.Normalize();

26 CHAPTER 4. DESIGN AND IMPLEMENTATION

19 seekSteering.linearAcceleration += strength * direction;
20

21 return seekSteering;
22 }
23 [...]

In order to calculate the magnitude of the acceleration, an attraction coefficient
(which serves as a control variable) is multiplied by the distance to the location
squared, so the closer the current location is to the target, the weaker the force is
and vice versa. After the force is calculated, a check is made so it doesn’t exceed the
maximum linear acceleration. This steering class only provides linear steering. An
“arrive threshold” variable is used to consider whether or not the location is already
reached, and thus no steering is required.

Flee

Flee’s steering class FleeBehaviour does exactly the opposite of FleeBehaviour.
This class uses two different GetSteering() functions. Both methods use a target
location the actor wants to flee from, the only difference is in the first one (listing 4.6)
a list of elements is given, and their center of mass is used as target location, where
in the second one the target location is already given as a parameter.

Listing 4.6: GetSteering method from Flee Class C# script

1 [...]
2 //Returns the steering for flee given a set of targets to

avoid
3 public Steering GetSteering(List<GameObject> targets, Transform

transform, float maxLinearAcceleration)
4 {
5 fleeSteering.Reset();
6

7 if (targets.Count > 0)
8 {
9 Vector3 gravityCenter = Vector3.zero;

10 //Loop through each target
11 foreach (GameObject target in targets)
12 {
13 gravityCenter += target.transform.position;
14 }
15

16 //We’ve gone through all the targets, divide to get the
average

17 gravityCenter /= targets.Count;
18

19 //Calculate strength of the repulsion
20 Vector3 direction = transform.position - gravityCenter;

4.3. BEHAVIOUR SCRIPTING 27

21 direction.y = 0f; //We make sure no vertical alignment is
taken into account

22 float distance = direction.magnitude;
23 float strength = Mathf.Min(repulsionCoefficient /

(distance*distance), maxLinearAcceleration);
24

25 //Add acceleration
26 direction.Normalize();
27 fleeSteering.linearAcceleration += strength * direction;
28 }
29 else
30 {
31 Debug.LogWarning("No targets found, aborted.");
32 }
33

34 return fleeSteering;
35 }
36 [...]

The linear acceleration’s direction is the vector to the target location normalized and
inverted (this can be done simply by subtracting the locations in the inverse order,
and then normalizing it). To calculate the strength of the repulsion a simillar formula
to the one in SeekBehaviour is used, however this time the coefficient (used as a
control variable) is a repulsion one, and the squared distance is inverted, so the clos-
er the actor is to the target location, the stronger the repulsion. A check is done in
case the resulting acceleration is bigger than the maximum allowed, and the linear
steering is returned. No angular steering is returned.

Obstacle Avoidance

The ObstacleAvoidenceBehaviour script steers towards a safe location in order
not to collide with obstacles that may be in the way. In this case, the only obstacles
to avoid are the elephants and the trees. There is only one GetSteering() method
(listing 4.7), which uses two variables to calculate the safe location: “look ahead” and
“avoid distance”. The first one determines the distance at which the scan for possible
obstacles is done in front of the actor. The second one determines how far from it
the actor needs to steer in order to avoid the obstacle.

Listing 4.7: GetSteering method from Obstacle Avoidance Class C# script

1 [...]
2 //Returns the steering for obstacle avoidance
3 public Steering GetSteering(Transform transform, Vector3 velocity,

float maxLinearAcceleration)
4 {
5 obstacleAvoidanceSteering.Reset();
6

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

7 Vector3 targetPosition = Vector3.zero;
8 int raycastLayer = 12;//Obstacles layer
9 RaycastHit hit;

10 //Check in front
11 if (Physics.Raycast(transform.position, transform.forward, out

hit, lookAhead, 1 << raycastLayer))
12 {
13 targetPosition = hit.point + hit.normal * avoidDistance;
14 obstacleAvoidanceSteering = base.GetSteering(targetPosition,

transform, maxLinearAcceleration);
15 return obstacleAvoidanceSteering;
16 }
17 else//Check the sides
18 {
19 //Left
20 Vector3 leftRayDirection = (transform.forward -

transform.right).normalized;
21 if (Physics.Raycast(transform.position, leftRayDirection,

out hit, lookAhead, 1 << raycastLayer))
22 {
23 targetPosition = hit.point + hit.normal * avoidDistance;
24 obstacleAvoidanceSteering =

base.GetSteering(targetPosition, transform,
maxLinearAcceleration);

25 return obstacleAvoidanceSteering;
26 }
27 else//Right
28 {
29 Vector3 rightRayDirection = (transform.forward +

transform.right).normalized;
30 if (Physics.Raycast(transform.position,

rightRayDirection, out hit, lookAhead, 1 <<
raycastLayer))

31 {
32 targetPosition = hit.point + hit.normal *

avoidDistance;
33 obstacleAvoidanceSteering =

base.GetSteering(targetPosition, transform,
maxLinearAcceleration);

34 return obstacleAvoidanceSteering;
35 }
36 else
37 {
38 return obstacleAvoidanceSteering;
39 }
40 }
41 }
42 }

4.3. BEHAVIOUR SCRIPTING 29

43 [...]

The scan for obstacles in front of the actor is done by raycasting forward. In order
not to interact with undesired elements (for instance, another animal that is not an
elephant), a specific layer is set for all the elements in the scene considered obstacles
(figure 4.4). The raycast only collides with this specified layer, thus ignoring the rest.

The first step when raycasting is scanning our immediate forward position. To spec-
ify the casted ray, the current position of the actor is used, the “forward” vector is
retrieved (built-in utility in Unity) to determine the direction, and the above menc-
tioned “look ahead” distance to determine the length of it. If an obstacle is detected,
the target location we want to steer towards is calculated by retrieving the location
of the collision and adding the normal of the geometry in the hit point as depicted in
figure 4.6 multiplied by the “avoid distance”.

Figure 4.6: The obstacle avoidance behaviour.

Since ObstacleAvoidenceBehaviour is a subclass of SeekBehaviour, after find-
ing the target location the actor needs to steer towards, it is delegated to the base
class to calculate the linear steering. No angular steering is calculated in either class.

Only raycasting ahead of the actor makes it possible for obstacles to be approached
sideways and not being noticed. To prevent this, at the end of the first raycast, if no
obstacle is found, another raycast is done in a 45 degree angle to the right and left
sides. In order to avoid unnecessary checks, the secondary raycasts will only be done
if the previous ones have been negative. If no obstacle is found at the end of all the
ray casting, no steering is returned.

Separation

SeparationBehaviour uses a single GetSteering() method (listing 4.8). It re-
ceives a list of elements from which the actor needs to keep some distance in order
not to bump into them. A threshold is set to check which of the elements of the list
is too close and therefore the actor needs to be separated from. A “decay coefficient”

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

is used as a control parameter to calculate the strength of the repulsion.

Listing 4.8: GetSteering method from Separation Class C# script

1 [...]
2 public Steering GetSteering(List<GameObject> targets,

Transform transform, float maxAcceleration)
3 {
4 separationSteering.Reset();
5

6 if (targets.Count > 0)
7 {
8 //Loop through each target
9 foreach (GameObject target in targets)

10 {
11 //Check if the target is close
12 Vector3 direction = target.transform.position -

transform.position;
13 float distance = direction.magnitude;
14 if (distance < threshold)
15 {
16 //Calculate strength of the repulsion
17 float strength = Mathf.Min(decayCoefficient /

(distance * distance), maxAcceleration);
18

19 //Add acceleration
20 direction.Normalize();
21 separationSteering.linearAcceleration += -strength *

direction;
22 }
23 }
24 }
25 else
26 {
27 Debug.LogWarning("No neighbours found, Separation aborted.");
28 }
29

30 //We’ve gone through all the targets, return the result
31 separationSteering.linearAcceleration.y = 0f;
32 return separationSteering;
33 }
34 [...]

The script loops through the list of elements, checking if they are too close. If so, the
strength of the repulsion is calculated in the same manner as in the FleeBehaviour
but using the “decay coefficient” instead, while the direction is the vector from the
actor’s position to the corresponding element, normalized and inverted. The result-
ing linear steering is added to the total steering (after checking it doesn’t exceed the
maximum linear acceleration), alltogether with the rest of the resulting steerings for

4.3. BEHAVIOUR SCRIPTING 31

each of the elements in the list. In the end it is averaged by the total number of ele-
ments in the list. No angular steering is calculated in this script.

Cohesion

The CohesionBehaviour makes sure that the actor stays close to his neighbours
by steering towards their center of mass. The class has only one GetSteering()
method (listing 4.9) which receives the list of neighbours, the actor’s transform and
the maximum linear acceleration.

Listing 4.9: GetSteering method from Cohesion Class C# script

1 [...]
2 //Returns the steering for cohesion
3 public Steering GetSteering(List<GameObject> targets, Transform

transform, float maxAcceleration)
4 {
5 cohesionSteering.Reset();
6

7 if (targets.Count > 0)
8 {
9 Vector3 gravityCenter = Vector3.zero;

10 //Loop through each target
11 foreach (GameObject target in targets)
12 {
13 gravityCenter += target.transform.position;
14 }
15

16 //We’ve gone through all the targets, divide to get the
average

17 gravityCenter /= targets.Count;
18

19 //Calculate strength of the attraction
20 Vector3 direction = gravityCenter - transform.position;
21 float distance = direction.magnitude;
22 float strength = Mathf.Min(attractionCoefficient * distance,

maxAcceleration);
23

24 //Add acceleration
25 direction.Normalize();
26 cohesionSteering.linearAcceleration += strength * direction;
27 }
28 else
29 {
30 Debug.LogWarning("No neighbours found, Cohesion aborted.");
31 }
32

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

33 cohesionSteering.linearAcceleration.y = 0f;
34 return cohesionSteering;
35 }
36 [...]

In order to calculate the location to steer towards (the center of mass of the group),
the method loops through all the elements, adding up their position and averaging
by the total number of elements. Once the center of mass is calculated, the distance
from the actor to the neighbour’s center of mass is multiplied by an “attraction coef-
ficient” to calculate the force of the attraction (reducing it if it exceeds the maximum
linear acceleration), while taking the direction to the target location and normalizing
it in order to get the direction of the linear steering. Finally, the direction is multi-
plied by the strength to get the final linear steering. No angular steering is calculated
in this class.

Velocity Matching

The CohesionBehaviour tries to steer in order to match the velocity of the ac-
tor’s neighbours. The only GetSteering() method (listing 4.10) receives the list
of neighbours, the actor’s current velocity, and the maximum linear acceleration.

Listing 4.10: GetSteering method from Velocity Matching Class C# script

1 [...]
2 //Returns the steering for velocity matching
3 public Steering GetSteering(List<GameObject> targets, Vector3

velocity, float maxAcceleration)
4 {
5 velocityMatchingSteering.Reset();
6

7 if (targets.Count > 0)
8 {
9 Vector3 averageVelocity = Vector3.zero;

10 //Loop through each target
11 foreach (GameObject target in targets)
12 {
13 if(target.tag=="Zebra")
14 averageVelocity +=

target.GetComponent<HerdingBehaviour>().GetVelocity();
15 if(target.tag == "Lion")
16 averageVelocity +=

target.GetComponent<PackBehaviour>().GetVelocity();
17 }
18

19 //We’ve gone through all the targets, divide to get the
average

20 averageVelocity /= targets.Count;

4.3. BEHAVIOUR SCRIPTING 33

21

22 //Acceleration tries to get to target velocity
23 velocityMatchingSteering.linearAcceleration =

averageVelocity - velocity;
24 //If the vector is too small, we ignore it.
25 //This is made so they dont alway have the exact same

orientation + velocity (more realistic)
26 if (velocityMatchingSteering.linearAcceleration.magnitude <

1f)
27 {
28 velocityMatchingSteering.linearAcceleration =

Vector3.zero;
29 }
30 //Time to target
31 velocityMatchingSteering.linearAcceleration /= timeToTarget;
32

33 //Check if the acceleration is too fast.
34 if (velocityMatchingSteering.linearAcceleration.magnitude >

maxAcceleration)
35 {
36 velocityMatchingSteering.linearAcceleration.Normalize();
37 velocityMatchingSteering.linearAcceleration *=

maxAcceleration;
38 }
39 }
40 else
41 {
42 Debug.LogWarning("No neighbours found, Velocity Matching

aborted.");
43 }
44

45 velocityMatchingSteering.linearAcceleration.y = 0f;
46 return velocityMatchingSteering;
47 }
48 [...]

The function loops through the elements in the list in order to retrieve their linear
velocity, adding them up and averaging it by the number of elements in the list in or-
der to calculate the average velocity. Once the target velocity is calculated, the linear
steering is calculated by subtracting the actor’s velocity from it (resulting in a “veloci-
ty difference” vector). If this vector is too small, it is considered that the velocities are
simillar enough, and no steering is returned. If the vector is big enough, it is divided
by the “time to target” variable in order to calculate the final linear acceleration to be
returned. This “time to target” variable represents the time that it takes to reach the
target velocity.

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.3.2 Combined Steering Behaviours

Once the basic steering behaviours have been implemented, a script must be created
so they can be blended and used in the simulation by attching them to aGameObject.

The following combined behaviours extend the MonoBehaviour class in order to
recieve event callbacks and interact with other components. Some of the callbacks
commonly use are:

• Awake(): Is called when the script instance is eing loaded. Used to initialize
variables.

• Update(): Is called once per frame. It is used here for calling debugging func-
tions that need to be persistenly drawn on sreen on every frame.

• FixedUpdate(): Is called every fixed framerate frame, which is every step of
the physics engine. This is used to recalculate the steering and define the new
position and orientation by calling UpdatePositionAndRotation().

• OnTriggerEnter(): It is called when another collider enters the trigger at-
tached to this GameObject.

• OnTriggerExit(): It is called when another collider exits the trigger attached
to this GameObject.

The OnTriggerEnter/Exit events are used to track the other animals moving in
our surroundings. The triggers attached to them will serve as detection zones, and
when another animal enters them, they are added to the list of “herd” or “pack” de-
pending on their tags. These different collider settings are explained in chapter 4.2.

The blending of the different steering behaviours will result in a final Steering
output. Once this information is calculated it is used to determine the new posi-
tion and orientation for the actor, and this is done by calling the above menctioned
UpdatePositionAndRotation() function that every one of these combined steer-
ing behaviours have. Before explaining what the function does, some common vari-
ables need to be defined. Unity provides the data structures containing the postion
and orientation of any given GameObject, however it is needed to create variables
when trying to track the linear and rotation speed and creating a non-kinematic
movement:

• Properties

Velocity: Stores the current linear speed of the actor.

Rotation speed: Stores the current angular speed of the actor.

• Control variables

Maximum linear speed: Limit on the linear speed.

Maximum rotation speed: Limit on the angular speed.

4.3. BEHAVIOUR SCRIPTING 35

Maximum linear acceleration: Limit on the linear acceleration.

Maximum angular acceleration: Limit on the angular acceleration.

These variables are initialized to certain values, however on every FixedUpdate()
linear and angular speed need to be recalculated using the steering output. This is
done by using the simplified Newton-Euler-1 integration update (listing 4.11) (Illing-
ton and Funge 2009, pp.47).

Listing 4.11: UpdatePositionAndRotation method from the combined steering behaviours.

1 [...]
2 //Does the calculations for the position and rotation

update
3 private void UpdatePositionAndRotation(Steering steering)
4 {
5 //Using Newton-Euler-1 integration
6 transform.position += velocity * Time.deltaTime;
7 Vector3 auxVector = new

Vector3(Steering.MapToRange(transform.eulerAngles.x),
Steering.MapToRange(transform.eulerAngles.y) +
(rotationSpeed * Time.deltaTime),
Steering.MapToRange(transform.eulerAngles.z));

8 transform.rotation = Quaternion.Euler(auxVector);
9

10 //Update velocity and rotation
11 velocity += steering.linearAcceleration * Time.deltaTime;
12 if (velocity.magnitude > currentMaxSpeed) //Max Speed control
13 {
14 velocity = velocity.normalized * currentMaxSpeed;

//Normalize and set to max
15 }
16

17 rotationSpeed += steering.angularAcceleration * Time.deltaTime;
//Max rotation control

18 if (rotationSpeed > maxRotation)
19 {
20 rotationSpeed /= Mathf.Abs(rotationSpeed); //Get sign
21 rotationSpeed *= maxRotation; //Set to max rotation
22 }
23 }
24 [...]

The source code for the combined steering behaviours can be found in the annex
at the end of the report. Unlike the previous scripts, this ones are extensive and for
practical reasons have been decided not to be included in the chapter.

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

Herd

The script implementing the herd behaviour, HerdingBehaviour contains two lists:
one storing all the neigbouring herd members, and another one storing all the neigh-
bouring predators. Other variables and constants in this class are used for different
purposes, covering the different functionalities the script implements.

An importnat aspect of the HerdingBehaviour are the possible states it can be in.
There are only two possible HerdState: Idle or Fleeing. This state definition will
help in the calculation of some parameters as explained below.

The initializations are done in theInitializeVariables()method, which is called
in the Awake() event. A random initial steering is also called in this event. These ini-
tializations consist on the creation of the steering behaviours, the random creation
of an age for the actor and the stamina maxed out.

The callback used for updating the state of the actor is the FixedUpdate() func-
tion. This callback is called for each step of the physics engine. The function calls a
method which updates the currents stamina, another one that updates the current
maximum speed, and the last one which updates the position and orientation of the
actor by retrieving the steering output from the GetSteering() function.

The reason the maximum speed needs to be updated is because depending on his
state, a herd member will be running at a certain speed relative to their current max-
imum. It is important to understand the difference between the ABS_MAX_SPEED
constant, which determines the maximum speed at which a herd member can go at
any time, and the currentMaxSpeed variable, which determines our current maxi-
mum speed according to the herd member’s state, age, stamina and absolute maxi-
mum speed. These calculations give raise to different speeds on different states, but
also different speed on different levels of stamina and different age ranges within the
herd. If the herd member is too old or too young, it won’t be able to run as fast as a
regular adult; if it is too tired because his stamina is low, it will speed down gradually.

The age is calculated by using the MAX_AGE constant, which determines the maxi-
mum age any herd member can be. A random number is calculated between 1 and
MAX_AGE and set up as the actor’s age. Afterwards, the SetAgeModifier() method
is called to calculate the speed modifier for the age ageModifier. Another constant
MAX_AGE_MOD is used to set a maximum to this speed modifier, and depending on
whether the herd member it is too old or two young, this modifier will increase or
decrease. Notice it is interpolated, so the older or younger the actor is, the bigger the
modifier. In this case members older than 20 years old will be considered old, and
younger than 5 years old will be considered young. The rest will not have any age
speed modifier.

Stamina is set to the maximum defined by MAX_STAMINA at the initialization. Ev-
ery FixedUpdate() the UpdateStamina() function calculates the gain or loss of

4.3. BEHAVIOUR SCRIPTING 37

stamina by comparing the current speed to the absolute maximum speed. If the
speed is too close to the maximum, the actor starts to lose stamina gradually, while
if the speed is relatively low, the actor will start recovering stamina. If the current
stamina goes below a “exhausted threshold” (which is simply a percentage of the
maximum stamina), the actor is considered to be exhausted, and a speed modifier
is calculated in the same manner as the age modifier. The use of another constant
named MAX_STAMINA_MOD is used to calculate the modifier, and interpolation is al-
so used in this case, so the lower the stamina, the bigger the sped modifier.

As discussed before, the per-frame update of position and orientation requires new
information about the steering of the actor. In order to calculate it, theGetSteering()
method handles all the blending required and returns it. Since the steering is recal-
culated at every physic’s engine step, the Steering variable is reseted in the begin-
ning of the method to avoid any previously calculated steering to be added on top.

After making sure the steering is resetted, the first thing to do is a check on whether
there is any other herd members near the actor or not, since a different set of steer-
ing behaviours will be used for each case. If there are one or more neighbours, the
steering behaviours blended are the following:

• Linear steering behaviours:

Velocity Matching: Makes sure the herd will try to head the same way.

Separation: Prevents the herd members from bumping into each other.

Cohesion: Ensures the unity of the herd, making members to stay near
they neighbours.

• Angular steering behaviours:

Align: Tries to orient the actor the same way his neighbours are aligned.

Face: Tries to orient the actor towards the current velocity vector.

• Complete steering behaviours:

Wander: Used to add a bit of randomness to the movement and don’t give
the feeling of perfect, robot-like coordination.

In the other hand, if there are no neighbours nearby, only the wander behaviour is
used, letting it handle both angular and linear steering.

After the check for neighbours is done, a check for predators determines the state of
the herd. If there are one or more predators, the state of the actor is set to Fleeing,
and a blend of the FleeBehaviour is added on top of the previously calculated
steering. If there are no predators around, the state of the actor is set as Idle. On top
of that, the ObstacleAvoidenceBehaviour is added, since it is always required for
the herd members to avoid obstacles no matter the situation.

38 CHAPTER 4. DESIGN AND IMPLEMENTATION

Finally, the resulting steering is cropped down to the defined maximum angular and
linear accelerations, and it is returned for the UpdatePositionAndRotation() to
calculate our new movement.

A function named Killed() is called whenever a predator manages to kill a herd
member. This function notifies the rest of the herd, calling their NotifyDeath()
function, which removes the deceased member from their neighbours list, if it was
in the list.

The function DrawDebug(), called every frame using the Update() callback, al-
though irrelevant for steering purposes, was of great help when debugging the force
vectors that conformed the different steering behaviours blended. A set of boolean
checkboxes were set in the editor for an easy debug of the whole herd and individual
herd members (figure 4.7). This specially helped when balancing forces and setting
up control parameters and constants.

Figure 4.7: Herd debugging on the Unity editor.

Pack

The script implementing the pack behaviour, PackBehaviour also contains two
lists: one storing all the neigbouring pack members, and another one storing all the
neighbouring preys (herd members). Other variables and constants in this class are

4.3. BEHAVIOUR SCRIPTING 39

used for different purposes, covering the different functionalities the script imple-
ments.

PackBehaviour has a set of states it can be driven into. The states and their defini-
tions are the following:

• Wandering: Wander aimlessly around.

• PreparingForAttack: Move towards the attack positions.

• Attacking: Run towards the closest prey to try and catch it.

• Eating: Go towards the spot where a prey was caught.

• Retreating: Wander at a slow pace, regaining stamina.

The initializations follow the same structure as in HerdingBehaviour(), where the
InitializeVariables() and RandomInitialSteering() functions are called
in the Awake() callback. The difference is, even though the same stamina system is
used, the age in the predators is not used, and instead a system of power hierarchy is
implemented.

The predator’s power level is a random number between 0 and 100. This is used to
determine the alpha male of the pack while hunting. Basically the pack member with
the highest power level is considered the alpha male, and the rest of the pack is noti-
fied and assume their roles as non-alpha. This has only consequences when hunting.

The FixedUpdate() callback is exactly the same as in HerdingBehaviour(): it
updates the current stamina, the maximum speed and the position and orientation
given a steering output.

The way the GetSteering() method is implemented in this class is different from
the one implemented inHerdingBehaviour. The predators behave differently whether
or not they are alone or in a pack, and whether or not there are preys around or
not. Besides this, they have many different states that also use different steering be-
haviours and blends. In order to make it easy to move from one state to another, a
state machine is implmented, and functions implementing the behaviour blending
are called. The functions are the following:

• SteerForWanderInPack() blends:

Linear: Velocity Matching, Spearation, Cohesion.

Angular: Align, Face.

• SteerForWanderAlone() blends:

Complete: Wander.

40 CHAPTER 4. DESIGN AND IMPLEMENTATION

• SteerForPreparationAlone() blends:

Linear: Seek, Flee.

Angular: Face.

• SteerForAttackingAlone() blends:

Linear: Seek.

Angular: Face.

• SteerForEating() blends:

Linear: Seek.

Angular: Face.

• SteerForPreparation() blends:

Linear: Seek, Flee, Separation.

Angular: Face.

• SteerForAttacking() blends:

Linear: Seek.

Angular: Face.

Some of the functions have the exact same implementation, however they are kept
in different calls for two reasons: making the code more understandable and leaving
an option for the different steering calls to be modified independently if they need
to be changed in the future.

The GetSteering() method starts by resetting the Steering to start a new be-
haviour blend. A check for preys is done afterwards. If there are no preys the predator
will wander, and depending whether or not he is alone or with other predators, the
functionSteerForWanderAlone()or the functionSteerForWanderInPack()will
be called. If in the other hand preys are on sight and the actor is in the Wandering
state, it will automatically change into the PreparingForAttack state. Next the
pack list is checked to determine whether or not there are more predators in the
pack or the actor is alone hunting.

If the predator is not alone and therefore hunting in a pack, the current state is
checked:

• PreparingForAttack:

If the alpha male hasn’t been set, theSetUpHierarchy() function is called
in order to crown one. Tis function looks for the pack member with the most
power, and notifies the rest. If all the pack members are in position for attack-
ing, the state is changed to Attacking, and SteerForAttacking() is called.
If not, SteerForPreparation() is called.

4.3. BEHAVIOUR SCRIPTING 41

• Attacking:

If a prey hasn’t been caught by another pack member previously, a check
is run to see if the actor has caught one in this moment (if otherwise there is
a kill, SteerForEating() is called). If the prey is killed this very frame, the
rest of the pack is notified, and SteerForEating() is called. The state of the
predator is changed to Eating. If no prey has been caught a check is run to see
if the predator is tired. If so, the state is changed to Retreating(), otherwise
SteerForAttacking() is called.

• Eating:

This is an end-state in the simulation. The actor will be callingSteerForEating
until the end of the simulation.

• Retreating:

This is also an end-state in the simulation. The actor will be callingSteerForWanderInPack()
until the end of the simulation.

If the predator is hunting alone, the state is also checked, with different consequences:

• PreparingForAttack:

If the predator is not in position for attack, SteerForPreparationAlone()
is called, otherwise SteerForAttackingAlone() is, and the state is set to
Attacking.

• Attacking:

A check is done to see if the predator has gotten close enough to catch a
prey. If so, the prey is killed, SteerForEating() is called, and the state is set
to Eating. If no prey is yet caught, the predator’s stamina is checked. If it’s
tired, the state is changed to Retreating. Otherwise, it continues to attack by
calling SteerForAttackingAlone().

• Eating:

This is an end-state in the simulation. The actor will be callingSteerForEating
until the end of the simulation.

• Retreating:

This is also an end-state in the simulation. The actor will be callingSteerForWanderInPack()
until the end of the simulation.

On top of the already blended steering behaviours,theObstacleAvoidenceBehaviour
is added. It is always required from the predators to avoid obstacles no matter the
situation or state.

Finally, the resulting steering is cropped down to the defined maximum angular and
linear accelerations, and it is returned for the UpdatePositionAndRotation() to

42 CHAPTER 4. DESIGN AND IMPLEMENTATION

calculate the new movement.

In order to do the different checks and calculate attacking positions, several utility
functions have been implemented. The full code can be seen in the annex, but here
are some relevant methods briefly explained:

• CalculateAttackPosition(): Calculates the attack position according to
whether or not the actor is the alpha male or one of the rest. The herd’s center
of mass and perimeter are used as parameters to define the final position.

• InPositionForAttack(): Checks whether or not the predator is in the at-
tack position.

• AllInPositionForAttack(): Checks whether or not all predators in the
pack are in the attack position.

• GetClosestTarget(): Selects the closest of the preys in sight.

• CatchedPrey(): Checks whether or not the predator is close enough to kill
the prey.

In this class, the functionDrawDebug(), was also called every frame using theUpdate()
callback. Although irrelevant for steering purposes, proved extremely useful when
debugging the vectors that conformed the different behaviours, and also the calcu-
lations for attacking. A set of boolean checkboxes were set in the editor for an easy
debugging process, just like with the zebras. This specially helped when balancing
forces and also setting up control parameters and constants.

Loner

The LonerBehaviour is extremely simple compared to the two previous combined
steering behaviours, since the only aim of the script is for an actor to wander without
any regard towards other actors, except for other obstacles.

The Awake() event calls the initialization of variables and a random intial steering,
like seen on the two previous scripts. In this case there are no extra properties, so
only the behaviours are initialized.

The FixedUpdate() function only calls for UpdatePositionAndRotation(), re-
trieving the steering through the GetSteering() function.

The GetSteering() function resets the steering, and always does the same blend-
ing:

• Linear: Obstacle avoidance.

• Angular: Face.

4.3. BEHAVIOUR SCRIPTING 43

• Complete: Wander.

The steering is then cropped down to the maximum linear and angular accelera-
tions.

CHAPTER 5

SIMULATION TESTING

This chapter describes the testing process of the simulation. The following testing
hypothesis work as a manifestation of the purpose of the experiment:

The predators’ success rate significantly varies depending on their numbers and
their strategy.

The predators’ success rate is not significantly affected by the number of zebras in
the herd.

During the final stages of implementation, the different parameters defining the be-
haviours were tweaked to achieve the desired emergent behaviour. The aim of this
tweaking process was to achieve a robust simulation, able to react properly to any
possible situation. Different aspects of the simulation are expected to adapt to their
designed weight into the general outcome. In this case, the number of predators is
assumed to increase the success rate, while the number of zebras should not affect
the outcome. The elephants and other obstacles don’t have a specified use for the
outcome, and are supposed to be a random factor in the simulation since they affect
both preys and predators.

Although not specified as a goal, code optimization is an important factor to any sim-
ulation, and even more when dealing with a big number of animals, as this project is
supposed to do. Also a framework like this is supposed to work along other resource-
consuming processes, like visual effects and possibly other game mechanics. These
are the reasons why a stress test has also been performed in order to fathom the lim-
its of the simulation.

In the following sections the setup used for the experiment is described, and the re-
sults showcased.

44

5.1. SETUP 45

5.1 Setup

In this section the setup for the experiment is described.

The experiment was conducted on the unity editor using a computer with the fol-
lowing specifications:

• Model: ASUS Notebook N61Jq Series

• Processor: Intel(R) Core(TM) i7 CPU Q720 @ 1.60 GHz 1.60 GHz

• Ram: 4 GB

• Graphic card: ATI Mobility Radeon HD 5730

The total number of simulations were 300, divided into six different setups:

• 1st: 3 lions, big herd: 50 simulations.

• 2nd: 2 lions, big herd: 50 simulations.

• 3rd: 1 lion, big herd: 50 simulations.

• 4th: 3 lions, small herd: 50 simulations.

• 5th: 2 lions, small herd: 50 simulations.

• 6th: 1 lion, small herd: 50 simulations.

A big herd consisted on 30 zebras; a small one consisted on 10 zebras. The reason for
the variation in the number of predators and the number of zebras is to put to test
the hypothesis above mentioned. The starting positions of each animal were exactly
the same in all cases, and if a certain animal had to be removed from the simulation,
only its GameObject was disabled, to ensure the exact same position once it was ac-
tivated again.

The placement consisted on the herd of zebras in the middle of the map. Nearby, an
elephant was placed north-west of the herd, facing the zebras’ direction. The lions
were placed further to the west of the herd. The reason for this setup is ensuring that
the maximum number of different situations is mapped through the testing. Having
an elephant facing the herd will make sure there will be an interaction with it in most
cases, alltogether with some other static obstacles like the trees on the scene.

For the stress test, an increasing number of zebras has been placed for each iteration.
These six iterations have gone from 10, 20, 30, 40, 50 to 60 zebras. The zebras have
been placed alone, without other animals, however some static obstacles like trees
or rocks still remain in the scene.

The different simulations were run, reocrding the outcome for each of the scenarios.

46 CHAPTER 5. SIMULATION TESTING

5.2 Results

Table 5.1 shows the success rates for each of the setups. A successful simulation is
the one where the lions manage to hunt a prey. A failed simulation is one in which
the lions end up retreating without having caught any zebra.

Setup Success Fail Simulations Rate
1: 3 Predators (Big Herd) 21 29 50 0.42
2: 2 Predators (Big Herd) 12 38 50 0.24
3: 1 Predator (Big Herd) 4 46 50 0.08
4: 3 Predators (Small Herd) 28 22 50 0.56
5: 2 Preadtors (Small Herd) 29 21 50 0.58
6: 1 Predator (Small Herd) 0 50 50 0
TOTAL 94 206 300 0.31

Table 5.1: Number of successful and failed simulations on each setup, together with the success rate.

Tables 5.2 and 5.3 show the success rates according to number of predators hunting.
When hunting in a pack (more than one lion), the predators use a more advanced
strategy.

Setup Success Fail Simulations Rate
3 Predators 49 51 100 0.49
2 Predators 41 59 100 0.41
1 Predator 4 96 100 0.04

Table 5.2: Number of successful and failed simulations according to the number of predators, together with the
success rate.

Setup Success Fail Simulations Rate
Pack (>1 predators) 90 110 200 0.45
Alone (1 predator) 4 96 100 0.04

Table 5.3: Number of successful and failed simulations according to the strategy used, together with the success
rate.

Table 5.4 shows the success rates according to the size of the herd.

Table 5.5 shows the frame rates according to the size of the herd. The framerate fluc-
tuates during the simulation, and so an averaged value has been recorded.

5.2. RESULTS 47

Setup Success Fail Simulations Rate
Big Herd 37 113 150 0.25
Small Herd 57 93 150 0.38

Table 5.4: Number of successful and failed simulations according to the herd’s size, together with the success
rate.

Setup Frame Rate
10 zebras 185 fps
20 zebras 142 fps
30 zebras 106 fps
40 zebras 71 fps
50 zebras 42 fps
60 zebras 17 fps

Table 5.5: Frame rate according to the herd’s size.

CHAPTER 6

DISCUSSION

This chapter consists on an analysis of the results from both quantitative and quali-
tative approaches. The quantitative analysis will be discussed from the point of view
of the previously phrased testing hypothesis, while the qualitative analysis will be
discussed according to the goals set in chapter 1, resolving on whether or not the AI
framework achieves them. Furthermore, future lines of work will be discussed, an-
alyzing feedback from Aalborg Zoo’s staff members, and definig possible improve-
ments.

6.1 Conclusions

In order to draw conclusions from the work presented, the problem statement phrased
in chapter 3 must be evaluated:

How is it possible to implement a flocking AI and adapt it to different animal be-
haviours to create a dynamic environment.

To solve this problem, a distributed AI framework has been implemented using steer-
ing methods and combined steering behaviours. The framework has been later on
tested and evelauated.

6.1.1 Quantitative Analysis

From a quantitative point of view, the results need to be analyzed from different an-
gles. Although the ideal balance between successful and failed simulations would be
50%, the overall outcome shows a satisfying balance: 31%, which means that one of
every three simulations will result in the lions successfully hunting a prey.

48

6.1. CONCLUSIONS 49

Most of the weight on the failure side is due to the low success percentage on test
cases 3 and 6, where a single lion was attemptiong to hunt. This shows a vast dif-
ference between hunting alone or with other lions. The average success rate when
hunting alone is 4%, while the average when hunting in a pack is 45%, as showcased
in table 5.3.

As seen in 5.2 the average success rate increases in an 8% when adding a third lion
rather than having just 2. This cannot be directly attributed to the increase in the
number of lions, since when analyzing the 5.1 table, it can be appreciated that in the
cases where the herd is small, adding a third lion decreases the success rate. Proba-
bly further testing with an increasing number of lions would be required in order to
establish a correlation.

Analyzing table 5.4, the average success rate when using a big herd is 25%, while be-
ing 38% when using a small one. Although there’s no clear factor determining why,
some observations while testing indicate that it may be caused by a stronger and
therefore faster reaction to predators when more herd members are nearby. Howev-
er when looking at the cases where only one lion is hunting, the big herd case is the
only one where the lion manages to get any prey. During the testing it was observed
that the more zebras in the herd, the more likely it is for one to get caught between
obstacles, or awkward situations, providing the lion an easy catch.

Given these results it can be concluded that:

• The hypothesis The predators’ success rate significantly varies depending on
their numbers and their strategy. is proven true for the strategy part, however
the data concerning the increasing number of predators is inconclusive.

• The hypothesis The predators’ success rate is not significantly affected by the
number of zebras in the herd. is proven false. The results show an increase of
13% success rate for a small herd.

Taking a look at the stress test table 5.5, an almost linear decrease in frame rate can
be appreciated as the number of zebras increases. During the testing, small frame
rate drops happened when a certain number of zebras were interacting with obsta-
cles (around 5 to 15 fps, depending on the number of zebras). It is important to no-
tice how real herds of zebras can get as big as 200.000 members. Although it is very
unlikely to currently achieve such numbers, it is important to optimize as much as
possible in order to increase the maximum number of zebras that can be handled in
the same scene. The current maximum for the computed used for testing is around
60, but at that stage the framerate is already low (around 15 to 20 fps).

6.1.2 Qualitative Analysis

One of the fears when using obstacles in the simulation was they would become a
decisive factor on the success rate. During the testing it could be appreciated how

50 CHAPTER 6. DISCUSSION

obstacles played a positive or negative role for each animal depending on the situ-
ation. In some cases they would keep the predators away from the zebras, and in
some others the zebras would be cornered by them. Sometimes the obstacles would
drive the zebras towards the lions, and sometimes away from them. This is how the
obstacles were intended to be, an extra aspect of interaction between animals, but
random enough not to affect the overall hunting outcome.

Another succesful aspect is how the predator’s tactics work effectively. It can be ap-
preciated how the tactics give the leverage to hunt more efficiently, and how the
number of lions executing the maneuver is not of such importance.

By simply running some iterations it can be easily seen that there are many things
that can be improved. To begin with, whenever the herd spreads too much, the herd’s
perimeter grows, and the distance from which the lions attack is proportional to this
perimeter. If this happens, the lions attack from too far away, and this leads to them
being tired too fast, lowering their chances of hunting a zebra.

In some of the iterations, the herd has been divided into two or even three, because
of the combination of static and moving obstacles. In some cases the two groups
manage to get back together, however this does not always happen. Even if only 1
zebra wanders away from the rest, this still supposes a problem, since the lions take
all the zebras into account when calculating the perimeter of the herd.

An undesired situation takes place when, after the lions becoming tired and retreat-
ing, a zebra trying to avoid an obstcle or another lion bumps into one of the re-
treating predators. However since the predator is retreating, the zebra will not be
killed. This situation was not contemplated while implementing the behaviours, and
is something that should definately be fixed.

While testing the setups where there is only one lion, it could be easily appreciated
that the few succesful hunts were due to eventful circumstances, like an elephant
cornering a zebra between himself and a tree. This situations would happen more
often with a higher number of zebras on scene.

Another aspect that wasn’t completely satisfying was the targetting. At first, target-
ting the closest prey seemed like a good way of maximizing success, however this
gave rise to situations where the lions would hesitate, retargetting from one zebra to
another. Also, targetting zebras with a certain speed would make the lion drift away
when the direction of the zebra’s speed was different from the predator’s speed di-
rection. This could be minimized by predicting trajectories. This aspect was one of
the most concerning ones when analyzing the outcome of the simulation because it
diminishes the realism and feel of the animal behaviour. In the real world, predators
use predictions of where their preys are heading towards, and react accordingly.

Although obstacle avoidance successfully worked as intended, some situations where
the elephant approached other animals from the side were not handled as well as

6.2. AALBORG ZOO MEETING 51

the ones where the obstacles would be coming from the front. Also, in some occa-
sions the herd would cluster too much when trying to avoid obstacles (getting too
close and bumping onto each other). Even though it was intended for the separation
to become less important when trying to avoid obstacles and flee from predators,
sometimes it looks too unrealistic.

The heavy conditions under which the testing was conducted were trying to cover
all possibilities in animal interaction, and because of this, all the previous analysis
was possible. However in further iterations where the framework is used for specific
scenarios or new purposes, an ad hoc testing should be performed to make sure the
animal behaviour adapts to the desired outcome.

From a qualitative point of view, the simulation was a success. An emergent be-
haviour is appreciated, and different situations involving predators, preys and obst-
cles are handled with minor fixable errors. The designed behaviours for each animal
are executed as designed, and every iteration of the simulation gives rise to new sit-
uations, given the same starting conditions. Even though many aspects can be im-
proved, the general outcome satisfies the problem statement and accomplishes the
defined goals.

6.2 Aalborg Zoo Meeting

As explained in chapter 1, this project was done in collaboration with Aalborg Zoo.
On the 14th of May 2013, a presentation of the work here implemented was done at
the Zoo, receiveing feedback from the Zoo’s staff members Rikke Kruse Nielsen (Ed-
ucation Officer) and Susanne Solskov (Marketing Manager).

It was made clear that the final purpose of this AI framework is to eventually be in-
cluded into an application the Zoo can use to educate children on how animals be-
have in their natural habitat. Most of the feedback recieved was concerning the po-
tential of the framework and how it could be improved on future iterations in order
to fit the application’s goals.

The overall reaction was satifactory, the animal behaviour was good. They were con-
cerned on how this framework could adapt to either a simple simulation (only defin-
ing the initial conditions) or an interactive one. It was explained to them that it could
go either way, since additional animals could be introduced during the simulation,
and differents parameters could be tweaked too. Since the primary target audience
would be children, there was a special interest on a possible interface and how this
interface would work in order to change parameters and add or remove animals in
real time. As a proof of concept, the simulation doesn’t have any interface indicators
of the state of the animals, and this was an important factor to them, since the user
would need to be aware of the events on the simulation.

52 CHAPTER 6. DISCUSSION

A faithful representation of the predator’s behaviour in their environment should be
implemented in order to become a proper educative application. The strategy used
to hunt in pack was just for showcasing purposes, and it should be changed to adapt
to reality (for instance, hunting against the wind and hiding in the bushes, instead of
surrounding). Other complex behaviours were discussed to be introduced in the fu-
ture, like fight between zebras for dominance, male zebras trying to keep their herd
together and protected, and newborns sticking with their mothers.

Other biological indicators would help the implementation of new behaviours, like
definition of gender, thirst level, huger level, etc. Using these, more complex be-
haviours could make the herd search for food, water, protection, etc.

6.3 Future lines of work

In this section, the possible improvements in future iterations are defined, reflecting
on the analysis of the results and the feedback from Aalborg Zoo’s staff members.
There are several techincal aspects that can be improved. The first one would be the
targetting system for the lions. The current system only selects the closest zebra and
moves towards it. A better solution would be identifying the closest zebras, and pre-
dicting their next movement and speed. That would be useful for avoiding drifting
and indecision.

The obstacle avoidance scirpt could also be improved in order to account for the
obstacles approaching from the sides and from behind. Also a better blend with
the separation beaviour would avoid massive clustering of zebras in some situations
when trying to avoid obstacles.

A system should be implemented in order to avoid permanent division in the herd.
After one or more herd members separate from the herd for whatever reason, they
should automatically steer back with the bulk of the zebras. An easy solution would
be increasing the detection zone for the zebras when they are too far away from the
herd’s center of gravity, and when they manage to get back with the rest, set it back
to normal size.

One of the improvements that need to be done in order to avoid lions getting ex-
hausted too soon, is to change their attack postions from being directly proportional
to the herd’s perimeter (which can vary if they spread too much, or they are divid-
ed) into being at a fixed distance away from the perimeter. Right now they separate
from the herd 8 times the herd’s radius, so as soon as the radius increases, the dis-
tance escalates proportionally. Instead, a fixed distance from the perimeter should
be defined, so the change in the herd’s distribution over the map doesn’t affect their
attack position so drastically, and leads them to get tired before they reach the ze-
bras. Also, the fact that the lions don’t kill a zebra once they’re exhausted even if the
zebra bumps into them doesn’t make sense. They should kill the prey if they have

6.3. FUTURE LINES OF WORK 53

the chance to.

In order to adapt the framework for an educational application, research on the real
behaviour of lions hunting should be done and implemented on the pack behaviour.
Also, an interface displaying the state of the animals and the events happening dur-
ing the simulation would be needed.

Using new biological indicators like thirst, hunger and gender, complex behaviours
could be implemented in order to showcase other aspects of each species’ behaviour
and their interactions with other animals, whether they are from their own species
or another:

• Zebras looking for water sources when thirsty.

• Lions trying to hunt more dangerous preys when they are starving.

• Male zebras fighting for dominance.

• Newborns in the herd, sticking close to their mother.

• Male zebras trying to keep their herd together and looking out for predators.

Whatever the application this framewrok is used for, it would be necessary to run
some new testing with the new features in order to tweak and adapt the parameters
to the new setup.

BIBLIOGRAPHY

(2013). Aalborg zoo website. http://www.aalborgzoo.dk/.

Buckland, M. (2005). Programming Game AI by Example. Wordware Publishing.

Corporation, V. (1998). Half life. Sierra Entertainment.

Cui, Z. and Z. Shi (2009). Boid particle swarm optimisation. International Journal of
Innovative Computing and Applications 2(2), 77–85.

Delgado-Mata, C., J. I. Martinez, S. Bee, R. Ruiz-Rodarte, and R. Aylett (2007). On the
use of virtual animals with artificial fear in virtual environments. New Generation
Computing 25(2), 145–169.

EAD, N. (2001). Pikmin. Nintendo GameCube Game.

Eskildsen, S., K. Rodil, and M. Rehm (2013). Identification and Analysis of Primary
School Children’s Knowledge Acquisition. IGI global.

Hartman, C. and B. Benes (2006). Autonomous boids. Computer Animation and
Virtual Worlds 17(3-4), 199–206.

Illington, I. and J. Funge (2009). Artificial Intelligence for Games (2nd ed.). Morgan
Kaufmann Publishers.

Moere, A. (2004). Time-varying data visualization using information flocking boids.
IEEE Symposium on Information Visualization, 97–104.

Reynolds, C. (1987). Flocks, herds, and schools: A distributed behavioural model.
Computer Graphics 21(4), 25–34. (SIGGRAPH’87 Conference Proceedings).

SIGGRAPH, A. Acm siggraph website.

Studios, W. D. (1994). The lion king. Motion Picture.

Technologies, U. (2013). Unity3d. http://unity3d.com/.

54

http://www.aalborgzoo.dk/
http://unity3d.com/

BIBLIOGRAPHY 55

unity3d.com (2013a). Layer-based collision detection. http://unity3d.com/
support/documentation/Components/Layer%20Based%20Collision%
20detection.html.

unity3d.com (2013b). Physics. http://unity3d.com/support/
documentation/Manual/Physics.html.

http://unity3d.com/support/documentation/Components/Layer%20Based%20Collision%20detection.html
http://unity3d.com/support/documentation/Components/Layer%20Based%20Collision%20detection.html
http://unity3d.com/support/documentation/Components/Layer%20Based%20Collision%20detection.html
http://unity3d.com/support/documentation/Manual/Physics.html
http://unity3d.com/support/documentation/Manual/Physics.html

APPENDIX A

AI FRAMEWORK SOURCE CODE

Listing A.1: Steering Class C# script

1 using UnityEngine;
2 using System.Collections;
3

4 public class Steering {
5 //Steering
6 public Vector3 linearAcceleration = Vector3.zero; //Linear

acceleration
7 public float angularAcceleration = 0f; //Angular acceleration
8

9 public Steering()
10 {
11 linearAcceleration = Vector3.zero;
12 angularAcceleration = 0f;
13 }
14

15 public void Reset()
16 {
17 linearAcceleration = Vector3.zero;
18 angularAcceleration = 0f;
19 }
20

21 //Adds another steering to this one, given a specific weight
22 public void Add(Steering newSteering, float weight)
23 {
24 linearAcceleration += newSteering.linearAcceleration * weight;
25 angularAcceleration += newSteering.angularAcceleration * weight;
26 }
27

28 //Crops down to the specified maximums
29 public void Crop(float maxLinearAcceleration, float

maxAngularAcceleration)

56

57

30 {
31 //Linear
32 if (linearAcceleration.magnitude > maxLinearAcceleration)
33 {
34 linearAcceleration.Normalize();
35 linearAcceleration *= maxLinearAcceleration;
36 }
37

38 //Angular
39 if (Mathf.Abs(angularAcceleration) > maxAngularAcceleration)
40 {
41 angularAcceleration /= Mathf.Abs(angularAcceleration);
42 angularAcceleration *= maxAngularAcceleration;
43 }
44 }
45

46 //Static method for mapping angles into the -180/+180 space
47 public static float MapToRange(float rotation)
48 {
49 //First, map it down to 360º
50 rotation = rotation % 360f;
51 //Now, map it to -180º + 180º
52 if (rotation > 180)
53 rotation = rotation - 360;
54 return rotation;
55 }
56

57 }

Listing A.2: Align Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * Align tries to achieve the average orientation of the neighbouring

elements
6 * @Author: Daniel Collado
7 */
8 public class AlignBehaviour {
9

10 //Align
11 private Steering alignSteering; //Data structure containing

steering information
12 private Transform targetRotation; //Target rotation
13 private float targetRadius = 1f; //Threshold for arrival
14 private float slowRadius = 20f; //Threshold for landing
15 private float timeToTarget = 0.1f; //Time to achieve target speed
16

58 APPENDIX A. AI FRAMEWORK SOURCE CODE

17 //Constructor
18 public AlignBehaviour()
19 {
20 alignSteering = new Steering();
21 }
22

23 //Returns the steering for align given a list of elements in range
24 public Steering GetSteering(List<GameObject> targets, Transform

transform, float rotationSpeed, float maxRotation, float
maxAngularAcceleration)

25 {
26 alignSteering.Reset();
27

28 if (targets.Count > 0)
29 {
30 //Calculate the average orientation of the neighbouring

elements
31 Quaternion newTarget = Quaternion.identity;
32 Vector3 auxVector = Vector3.zero;
33 //Loop through each target
34 foreach (GameObject target in targets)
35 {
36 auxVector += target.transform.rotation.eulerAngles;
37 }
38 //Average
39 auxVector /= targets.Count;
40 newTarget = Quaternion.Euler(auxVector);
41

42 //Naive direction to the target
43 float rotationDelta =

Steering.MapToRange(newTarget.eulerAngles.y) -
Steering.MapToRange(transform.eulerAngles.y);

44 float rotationSize = Mathf.Abs(rotationDelta);
45 float targetRotation = 0f;
46

47 //Fix for transitions between -180 to +180 and vice versa
48 float openAngleFactor = 1f;
49 if (rotationSize > 180)
50 openAngleFactor = -1f;
51

52 //If we are there, we do nothing
53 if (rotationSize < targetRadius)
54 {
55 return alignSteering;
56 }
57 //If we are outside the slow radius, we turn at maximum

rotation
58 else if (rotationSize > slowRadius)

59

59 {
60 targetRotation = maxRotation;
61 }
62 //Otherwise we calculate a scaled rotation
63 else
64 {
65 targetRotation = maxRotation * rotationSize / slowRadius;
66 }
67

68 //The final target rotation combines speed (already in the
variable) and direction

69 targetRotation *= (rotationDelta / rotationSize) *
openAngleFactor;

70

71 //Acceleration tries to get to the target rotation
72 alignSteering.angularAcceleration = targetRotation -

rotationSpeed;
73 alignSteering.angularAcceleration /= timeToTarget;
74

75 //Check if the acceleration is too great
76 float absAngularAcceleration =

Mathf.Abs(alignSteering.angularAcceleration);
77 if (absAngularAcceleration > maxAngularAcceleration)
78 {
79 alignSteering.angularAcceleration /=

absAngularAcceleration; //Get the sign of the
acceleration

80 alignSteering.angularAcceleration *=
maxAngularAcceleration; //Set it to maximum permitted

81 }
82 }
83 else
84 {
85 Debug.LogWarning("No neighbours found, Align aborted.");
86 }
87

88 return alignSteering;
89 }
90

91 //Returns the steering for align given a target orientation
92 public Steering GetSteering(Quaternion newTarget, Transform

transform, float rotationSpeed, float maxRotation, float
maxAngularAcceleration)

93 {
94 alignSteering.Reset();
95

96 //Naive direction to the target
97 float rotationDelta =

60 APPENDIX A. AI FRAMEWORK SOURCE CODE

Steering.MapToRange(newTarget.eulerAngles.y) -
Steering.MapToRange(transform.eulerAngles.y);

98 float rotationSize = Mathf.Abs(rotationDelta);
99 float targetRotation = 0f;

100

101 //Fix for transitions between -180 to +180 and vice versa
102 float openAngleFactor = 1f;
103 if (rotationSize > 180)
104 openAngleFactor = -1f;
105

106 //If we are there, we do nothing
107 if (rotationSize < targetRadius)
108 {
109 return alignSteering;
110 }
111 //If we are outside the slow radius, we turn at maximum rotation
112 else if (rotationSize > slowRadius)
113 {
114 targetRotation = maxRotation;
115 }
116 //Otherwise we calculate a scaled rotation
117 else
118 {
119 targetRotation = maxRotation * rotationSize / slowRadius;
120 }
121

122 //The final target rotation combines speed (already in the
variable) and direction

123 targetRotation *= (rotationDelta / rotationSize) *
openAngleFactor;

124

125 //Acceleration tries to get to the target rotation
126 alignSteering.angularAcceleration = targetRotation -

rotationSpeed;
127 alignSteering.angularAcceleration /= timeToTarget;
128

129 //Check if the acceleration is too great
130 float absAngularAcceleration =

Mathf.Abs(alignSteering.angularAcceleration);
131 if (absAngularAcceleration > maxAngularAcceleration)
132 {
133 alignSteering.angularAcceleration /= absAngularAcceleration;

//Get the sign of the acceleration
134 alignSteering.angularAcceleration *= maxAngularAcceleration;

//Set it to maximum permitted
135 }
136

137 return alignSteering;

61

138 }
139

140 }

Listing A.3: Face Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * Face tries to rotate towards the current velocity vector
6 * @Author: Daniel Collado
7 */
8 public class FaceBehaviour : AlignBehaviour {
9

10 //Face
11 private Steering faceSteering; //Data structure containing

steering information
12

13 //Constructor
14 public FaceBehaviour()
15 {
16 faceSteering = new Steering();
17 }
18

19 //Returns the steering trying to face our velocity
20 public Steering GetSteering(Transform transform, Vector3

currentVelocity, float rotationSpeed, float maxRotation, float
maxAngularAcceleration)

21 {
22 faceSteering.Reset();
23

24 //We want to face our current velocity
25 //If zero, we make no changes
26 if (currentVelocity.magnitude == 0f)
27 return faceSteering;
28

29 //Create the target rotation
30 Quaternion target = Quaternion.Euler(new Vector3(0f,

Steering.MapToRange(Mathf.Atan2(currentVelocity.x,
currentVelocity.z) * Mathf.Rad2Deg), 0f));

31

32 //Fetch it to align, and return the steering
33 return base.GetSteering(target, transform, rotationSpeed,

maxRotation, maxAngularAcceleration);
34 }
35

36 //Returns the steering trying to face a specific position
37 public Steering GetSteering(Vector3 position, Transform transform,

62 APPENDIX A. AI FRAMEWORK SOURCE CODE

float rotationSpeed, float maxRotation, float
maxAngularAcceleration)

38 {
39 faceSteering.Reset();
40 Vector3 direction = position - transform.position;
41 //We want to face our current velocity
42 //If zero, we make no changes
43 if (direction.magnitude == 0f)
44 return faceSteering;
45

46 //Create the target rotation
47 Quaternion target = Quaternion.Euler(new Vector3(0f,

Steering.MapToRange(Mathf.Atan2(direction.x, direction.z) *
Mathf.Rad2Deg), 0f));

48

49 //Fetch it to align, and return the steering
50 return base.GetSteering(target, transform, rotationSpeed,

maxRotation, maxAngularAcceleration);
51 }
52

53 }

Listing A.4: Wander Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 /*
4 * The wander behaviour return the steering of a character moving

aimlessly about.
5 * Author: Daniel Collado
6 */
7 public class WanderBehaviour : FaceBehaviour {
8

9 //Wander
10 private Steering wanderSteering; //Data structure containing

steering information
11 private Vector3 wanderTarget = Vector3.zero; //New target for

wander behaviour
12 private float wanderOffset = 60f; //Offset of the wander circle
13 private float wanderRadius = 7.5f; //Radius of the wander circle
14 private float wanderChangeRate = 1f; //Maximum rate at which the

wander orientation can change
15 private float wanderOrientation = 0f; //Holds the current

orientation (local) of the wander target
16 private float targetOrientation = 0f; //Holds the current

orientation (world) of the wander target
17 private Vector3 circleCenter = Vector3.zero; //Holds the position

of the center of the wandering circle
18 //Constructor

63

19 public WanderBehaviour()
20 {
21 wanderSteering = new Steering();
22 }
23

24 //Returns the steering for face
25 public Steering GetSteering(Transform transform, float

maxRotation, float rotationSpeed, float maxLinearAcceleration,
float maxAngularAcceleration)

26 {
27 //Calculate the target to delegate to Face
28 //Update the wander target local orientation
29 wanderOrientation = Steering.MapToRange(wanderOrientation +

RandomBinomial() * wanderChangeRate);
30

31 //Calculate the total combined target orientation
32 targetOrientation = Steering.MapToRange(wanderOrientation +

Steering.MapToRange(transform.eulerAngles.y));
33

34 //Calculate the center of the wander circle
35 circleCenter = transform.position + transform.forward *

wanderOffset;
36

37 //Calculate the target location
38 wanderTarget = circleCenter +

RotationToVector3(targetOrientation) * wanderRadius;
39

40 //Delgeate to Face to handle rotation steering
41 wanderSteering = base.GetSteering(wanderTarget, transform,

rotationSpeed, maxRotation, maxAngularAcceleration);
42

43 //Set linear acceleration to maximum in the direction of the
orientation

44 wanderSteering.linearAcceleration = maxLinearAcceleration *
RotationToVector3(Steering.MapToRange(transform.eulerAngles.y));

45

46 return wanderSteering;
47 }
48

49 //Returns a length 1 vector with the specified orientation
50 private Vector3 RotationToVector3(float orientation)
51 {
52 float orientationRads = orientation * Mathf.Deg2Rad;
53 return new Vector3(Mathf.Sin(orientationRads), 0f,

Mathf.Cos(orientationRads));
54 }
55

56 //Returns a random number between -1 and 1 where values around 0

64 APPENDIX A. AI FRAMEWORK SOURCE CODE

are more likely.
57 private float RandomBinomial()
58 {
59 return Random.value - Random.value;
60 }
61 }

Listing A.5: Seek Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 /*
4 * Seek steers towards a specified target
5 * @Author: Daniel Collado
6 */
7 public class SeekBehaviour {
8

9 //Seek
10 private Steering seekSteering; //Data structure containing

steering information
11 private float attractionCoefficient = 100f; //Holds the constant

coefficient to calculate reoulsion
12 private float arriveThreshold = 10f; //Distance at which we

consider we’ve arrived to our destination, and no more
steering is applied.

13

14 //Constructor
15 public SeekBehaviour()
16 {
17 seekSteering = new Steering();
18 }
19

20 //Returns the steering for seek given a target position to reach
21 public Steering GetSteering(Vector3 targetPosition, Transform

transform, float maxLinearAcceleration)
22 {
23 seekSteering.Reset();
24

25 //Calculate strength of the attraction
26 Vector3 direction = targetPosition - transform.position;
27 direction.y = 0f; //We make sure no vertical alignment is taken

into account
28 float distance = direction.magnitude;
29 //If we have arrived, we don’t need to steer
30 if (distance < arriveThreshold)
31 return seekSteering;
32 //Otherwise, we calculate the strength of the attraction
33 float strength = Mathf.Min(attractionCoefficient * distance *

distance, maxLinearAcceleration);

65

34

35 //Add acceleration
36 direction.Normalize();
37 seekSteering.linearAcceleration += strength * direction;
38

39 return seekSteering;
40 }
41 }

Listing A.6: Flee Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * Flee steers away from the element that is being avoided.
6 * @Author: Daniel Collado
7 */
8 public class FleeBehaviour {
9

10 //Flee
11 private Steering fleeSteering; //Data structure containing

steering information
12 private float repulsionCoefficient = 1000f; //Holds the constant

coefficient to calculate repulsion
13

14 //Constructor
15 public FleeBehaviour()
16 {
17 fleeSteering = new Steering();
18 }
19

20 //Returns the steering for flee given a set of targets to avoid
21 public Steering GetSteering(List<GameObject> targets, Transform

transform, float maxLinearAcceleration)
22 {
23 fleeSteering.Reset();
24

25 if (targets.Count > 0)
26 {
27 Vector3 gravityCenter = Vector3.zero;
28 //Loop through each target
29 foreach (GameObject target in targets)
30 {
31 gravityCenter += target.transform.position;
32 }
33

34 //We’ve gone through all the targets, divide to get the
average

66 APPENDIX A. AI FRAMEWORK SOURCE CODE

35 gravityCenter /= targets.Count;
36

37 //Calculate strength of the repulsion
38 Vector3 direction = transform.position - gravityCenter;
39 direction.y = 0f; //We make sure no vertical alignment is

taken into account
40 float distance = direction.magnitude;
41 float strength = Mathf.Min(repulsionCoefficient /

(distance*distance), maxLinearAcceleration);
42

43 //Add acceleration
44 direction.Normalize();
45 fleeSteering.linearAcceleration += strength * direction;
46 }
47 else
48 {
49 Debug.LogWarning("No targets found, Cohesion aborted.");
50 }
51

52 return fleeSteering;
53 }
54

55 //Returns the steering for flee given a single target to avoid
56 public Steering GetSteering(Vector3 target, Transform transform,

float maxLinearAcceleration)
57 {
58 fleeSteering.Reset();
59

60 //Calculate strength of the repulsion
61 Vector3 direction = transform.position - target;
62 direction.y = 0f; //We make sure no vertical alignment is taken

into account
63 float distance = direction.magnitude;
64 float strength = Mathf.Min(repulsionCoefficient / (distance *

distance), maxLinearAcceleration);
65

66 //Add acceleration
67 direction.Normalize();
68 fleeSteering.linearAcceleration += strength * direction;
69

70 return fleeSteering;
71 }
72

73 }

Listing A.7: Obstacle Avoidance Behaviour C# script

1 using UnityEngine;
2 using System.Collections;

67

3

4 public class ObstacleAvoidanceBehaviour: SeekBehaviour {
5

6 //Obstacle Avoidance
7 private Steering obstacleAvoidanceSteering; //Data structure

containing steering information
8

9 //Raycast
10 private float lookAhead = 30f; //Distance at which we

check for obstacles in front of us
11 private float avoidDistance = 20f; //Distance that we want to

separate from the obstacle
12

13 //Constructor
14 public ObstacleAvoidanceBehaviour()
15 {
16 obstacleAvoidanceSteering = new Steering();
17 }
18

19 //Returns the steering for seek given a target position to reach
20 public Steering GetSteering(Transform transform, Vector3 velocity,

float maxLinearAcceleration)
21 {
22 obstacleAvoidanceSteering.Reset();
23

24 Vector3 targetPosition = Vector3.zero;
25 int raycastLayer = 12;//Obstacles layer
26 RaycastHit hit;
27 //Check in front
28 if (Physics.Raycast(transform.position, transform.forward, out

hit, lookAhead, 1 << raycastLayer))
29 {
30 targetPosition = hit.point + hit.normal * avoidDistance;
31 obstacleAvoidanceSteering = base.GetSteering(targetPosition,

transform, maxLinearAcceleration);
32 return obstacleAvoidanceSteering;
33 }
34 else//Check the sides
35 {
36 //Left
37 Vector3 leftRayDirection = (transform.forward -

transform.right).normalized;
38 if (Physics.Raycast(transform.position, leftRayDirection,

out hit, lookAhead, 1 << raycastLayer))
39 {
40 targetPosition = hit.point + hit.normal * avoidDistance;
41 obstacleAvoidanceSteering =

base.GetSteering(targetPosition, transform,

68 APPENDIX A. AI FRAMEWORK SOURCE CODE

maxLinearAcceleration);
42 return obstacleAvoidanceSteering;
43 }
44 else//Right
45 {
46 Vector3 rightRayDirection = (transform.forward +

transform.right).normalized;
47 if (Physics.Raycast(transform.position,

rightRayDirection, out hit, lookAhead, 1 <<
raycastLayer))

48 {
49 targetPosition = hit.point + hit.normal *

avoidDistance;
50 obstacleAvoidanceSteering =

base.GetSteering(targetPosition, transform,
maxLinearAcceleration);

51 return obstacleAvoidanceSteering;
52 }
53 else//Right
54 {
55 return obstacleAvoidanceSteering;
56 }
57 }
58 }
59 }
60

61 }

Listing A.8: Separation Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * Separation tries to avoid getting too close to neighbouring

elements
6 * @Author: Daniel Collado
7 */
8 public class SeparationBehaviour {
9

10 //Separation
11 private Steering separationSteering; //Data structure containing

steering information
12 private float threshold = 25f; //Holds the threshold to take action
13 private float decayCoefficient = 20f; //Holds the constant

coefficient of decay for the inverse square law force
14

15 //Constructor
16 public SeparationBehaviour()

69

17 {
18 separationSteering = new Steering();
19 }
20

21 public Steering GetSteering(List<GameObject> targets, Transform
transform, float maxAcceleration)

22 {
23 separationSteering.Reset();
24

25 if (targets.Count > 0)
26 {
27 //Loop through each target
28 foreach (GameObject target in targets)
29 {
30 //Check if the target is close
31 Vector3 direction = target.transform.position -

transform.position;
32 float distance = direction.magnitude;
33 if (distance < threshold)
34 {
35 //Calculate strength of the repulsion
36 float strength = Mathf.Min(decayCoefficient /

(distance * distance), maxAcceleration);
37

38 //Add acceleration
39 direction.Normalize();
40 separationSteering.linearAcceleration += -strength *

direction;
41 }
42 }
43 }
44 else
45 {
46 Debug.LogWarning("No neighbours found, Separation aborted.");
47 }
48

49 //We’ve gone through all the targets, return the result
50 separationSteering.linearAcceleration.y = 0f;
51 return separationSteering;
52 }
53 }

Listing A.9: Cohesion Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * Cohesion tries to move towards the center of gracity of

70 APPENDIX A. AI FRAMEWORK SOURCE CODE

neighbouring elements
6 * @Author: Daniel Collado
7 */
8 public class CohesionBehaviour {
9

10 //Cohesion
11 private Steering cohesionSteering; //Data structure containing

steering information
12 private float attractionCoefficient = 0.1f; //Holds the constant

coefficient to calculate attraction
13

14 //Constructor
15 public CohesionBehaviour()
16 {
17 cohesionSteering = new Steering();
18 }
19

20 //Returns the steering for cohesion
21 public Steering GetSteering(List<GameObject> targets, Transform

transform, float maxAcceleration)
22 {
23 cohesionSteering.Reset();
24

25 if (targets.Count > 0)
26 {
27 Vector3 gravityCenter = Vector3.zero;
28 //Loop through each target
29 foreach (GameObject target in targets)
30 {
31 gravityCenter += target.transform.position;
32 }
33

34 //We’ve gone through all the targets, divide to get the
average

35 gravityCenter /= targets.Count;
36

37 //Calculate strength of the attraction
38 Vector3 direction = gravityCenter - transform.position;
39 float distance = direction.magnitude;
40 float strength = Mathf.Min(attractionCoefficient * distance,

maxAcceleration);
41

42 //Add acceleration
43 direction.Normalize();
44 cohesionSteering.linearAcceleration += strength * direction;
45 }
46 else
47 {

71

48 Debug.LogWarning("No neighbours found, Cohesion aborted.");
49 }
50

51 cohesionSteering.linearAcceleration.y = 0f;
52 return cohesionSteering;
53 }
54 }

Listing A.10: Velocity Matching Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * Velocity Matching tries to achieve the average velocity of the

neighbouring elements
6 * @Author: Daniel Collado
7 */
8 public class VelocityMatchingBehaviour {
9

10 //VelocityMatching
11 private Steering velocityMatchingSteering; //Data structure

containing steering information
12 private float timeToTarget = 0.1f; //Holds the time over which to

achieve target speed
13

14 //Constructor
15 public VelocityMatchingBehaviour()
16 {
17 velocityMatchingSteering = new Steering();
18 }
19

20 //Returns the steering for velocity matching
21 public Steering GetSteering(List<GameObject> targets, Vector3

velocity, float maxAcceleration)
22 {
23 velocityMatchingSteering.Reset();
24

25 if (targets.Count > 0)
26 {
27 Vector3 averageVelocity = Vector3.zero;
28 //Loop through each target
29 foreach (GameObject target in targets)
30 {
31 if(target.tag=="Zebra")
32 averageVelocity +=

target.GetComponent<HerdingBehaviour>().GetVelocity();
33 if(target.tag == "Lion")
34 averageVelocity +=

72 APPENDIX A. AI FRAMEWORK SOURCE CODE

target.GetComponent<PackBehaviour>().GetVelocity();
35 }
36

37 //We’ve gone through all the targets, divide to get the
average

38 averageVelocity /= targets.Count;
39

40 //Acceleration tries to get to target velocity
41 velocityMatchingSteering.linearAcceleration =

averageVelocity - velocity;
42 //If the vector is too small, we ignore it.
43 //This is made so they dont alway have the exact same

orientation + velocity (more realistic)
44 if (velocityMatchingSteering.linearAcceleration.magnitude <

1f)
45 {
46 velocityMatchingSteering.linearAcceleration =

Vector3.zero;
47 }
48 //Time to target
49 velocityMatchingSteering.linearAcceleration /= timeToTarget;
50

51 //Check if the acceleration is too fast.
52 if (velocityMatchingSteering.linearAcceleration.magnitude >

maxAcceleration)
53 {
54 velocityMatchingSteering.linearAcceleration.Normalize();
55 velocityMatchingSteering.linearAcceleration *=

maxAcceleration;
56 }
57 }
58 else
59 {
60 Debug.LogWarning("No neighbours found, Velocity Matching

aborted.");
61 }
62

63 velocityMatchingSteering.linearAcceleration.y = 0f;
64 return velocityMatchingSteering;
65 }
66 }

Listing A.11: Herding Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*
5 * HerdingBehaviour combines different steering behaviours to

73

simulate herd movement
6 * Each steering method has its own weight into the mixture
7 * @Author: Daniel Collado
8 */
9 [RequireComponent(typeof(Collider))]

10 public class HerdingBehaviour : MonoBehaviour {
11

12 //Neighborhood
13 private List<GameObject> herd; //List with all the

neighbours within our range
14

15 //Predators
16 private List<GameObject> predators; //List with all the

predators within our range
17

18 //States in which the herd can be
19 public enum HerdState
20 {
21 Idle,
22 Fleeing
23 }
24

25 private HerdState herdState = HerdState.Idle; //State of the herd
26

27 //Steering
28 private Steering herdSteering; //Data structure containing

steering information
29 private Vector3 velocity = Vector3.zero; //Linear speed
30 private float rotationSpeed = 0f; //Rotation speed
31 private float currentMaxSpeed = 3f; //Current maximum linear

speed
32 private float maxRotation = 45f; //Maximum rotation speed
33 private float maxLinearAcceleration = 5f; //Maximum linear

acceleration
34 private float maxAngularAcceleration = 45f; //Maximum angular

acceleration
35

36 //Individual traits
37 private float age = 0f; //Age of the animal. Too

old or too young will decrease its speed
38 private float ageModifier = 0f; //Malus that modifies our

maximum speed depending on our age
39 private float currentStamina = 0f; //Stamina that we currently

have left.
40 private float effortFactor = 0f; //Variable [0..1]

indicating how much effort are we using according to our speed
41 private float restThreshold = 0.3f; //Point below which our

effort lets us gain stamina

74 APPENDIX A. AI FRAMEWORK SOURCE CODE

42 private float effortThreshold = 0.6f; //Point above which our
effort makes us use stamina

43 private float staminaModifier = 0f; //Malus that modifies
maximum speed depending on our tiredness

44 private float exhaustedThreshold = 0.25f; //Percentage of our
stamina at which we become tired and gain a malus in speed

45

46 //Constants
47 private const float ABS_MAX_SPEED = 7f; //Absolute maximum linear

speed for any herd member
48 private const float MAX_AGE_MOD = 1f; //Maximum value for the

speed modifier according to age.
49 private const float MAX_STAMINA = 80f; //Time at which we can hold

maximum speed, then we tire down.
50 private const float MAX_STAMINA_MOD = 1f; //Maximum value for the

speed modifier according to stamina
51 private const float MAX_AGE = 25f; //Zebras can live up to

around 25 years in the wilderness (40 in captivity)
52

53 //Behaviours
54 //Linear
55 private VelocityMatchingBehaviour velocityMatchingBehaviour;

//Behaviour for velocity matching
56 private float velocityMatchingWeight = 0.2f; //Weight for

velocity matching
57

58 private SeparationBehaviour separationBehaviour; //Behaviour for
separation

59 private float separationWeight = 0.7f; //Weight for
separation

60

61 private CohesionBehaviour cohesionBehaviour; //Behaviour for
cohesion

62 private float cohesionWeight = 0.1f; //Weight for
cohesion

63

64 private FleeBehaviour fleeBehaviour; //Behaviour for
flee

65 private float fleeWeight = 1.0f; //Weight for flee
66

67 private ObstacleAvoidanceBehaviour obstacleAvoidanceBehaviour;
//Behaviour for obstacle avoidance

68 private float obstacleAvoidanceWeight = 2.0f; //Weight for
obstacle avoidance

69

70 //Angular
71 private AlignBehaviour alignBehaviour; //Behaviour for

align

75

72 private float alignWeight = 0.25f; //Weight for align
73

74 private FaceBehaviour faceBehaviour; //Behaviour for
face

75 private float faceWeight = 0.75f; //Weight for face
76

77 //Combined
78 private WanderBehaviour wanderBehaviour; //Behaviour for

wander
79 private float wanderWeight = 1.0f; //Weight for wander
80

81 //Debug
82 public bool debugHerd = false; //Flag for general

script debugging
83 public bool debugStates = false; //Flag for state

debugging
84 public bool debugVelocity = false; //Flag for

velocity debugging
85 public bool debugSeparation = false; //Flag for

separation debugging
86 private Vector3 separationVector = Vector3.zero; //Vector for

separation debugging
87 public bool debugCohesion = false; //Flag for

cohesion debugging
88 private Vector3 cohesionVector = Vector3.zero; //Vector for

cohesion debugging
89 public bool debugVelocityMatching = false; //Flag for

velocity matching debuggin
90 private Vector3 velocityMatchingVector = Vector3.zero; //Vector

for velocity matching debugging
91 public bool debugFlee = false; //Flag for avoid

debugging
92 private Vector3 fleeVector = Vector3.zero; //Vector for avoid

debugging
93 private float vectorDebugFactor = 10f; //Factor to scale

debuggin vectors
94

95 //Initialization
96 void Awake()
97 {
98 InitializeVariables();
99 RandomInitialSteering();

100 }
101

102 //Setting up varibales
103 private void InitializeVariables()
104 {
105 herd = new List<GameObject>();

76 APPENDIX A. AI FRAMEWORK SOURCE CODE

106 predators = new List<GameObject>();
107 herdSteering = new Steering();
108

109 //Behaviours
110 velocityMatchingBehaviour = new VelocityMatchingBehaviour();
111 alignBehaviour = new AlignBehaviour();
112 separationBehaviour = new SeparationBehaviour();
113 cohesionBehaviour = new CohesionBehaviour();
114 faceBehaviour = new FaceBehaviour();
115 wanderBehaviour = new WanderBehaviour();
116 fleeBehaviour = new FleeBehaviour();
117 obstacleAvoidanceBehaviour = new ObstacleAvoidanceBehaviour();
118

119 //Age
120 age = Random.Range(1f, MAX_AGE);
121 SetAgeModifier();
122

123 //Stamina
124 currentStamina = MAX_STAMINA;
125 }
126

127 //Give a random initial acceleration
128 private void RandomInitialSteering()
129 {
130 velocity = new Vector3(Random.value, 0f, Random.value);
131 velocity.Normalize();
132 velocity *= Random.Range(0.1f, currentMaxSpeed / 4);
133

134 herdSteering.linearAcceleration = new Vector3(Random.value, 0f,
Random.value);

135 herdSteering.linearAcceleration.Normalize();
136 herdSteering.linearAcceleration *= Random.Range(0.1f,

maxLinearAcceleration);
137 }
138

139 //Per-frame update
140 void Update()
141 {
142 DrawDebug();
143 }
144

145 //Method to handle all the visual debugging
146 private void DrawDebug()
147 {
148 if (debugVelocity)
149 {
150 Debug.DrawLine(transform.position, transform.position +

velocity * vectorDebugFactor, Color.white);

77

151 }
152 if (debugCohesion)
153 {
154 Debug.DrawLine(transform.position, transform.position +

cohesionVector * vectorDebugFactor, Color.red);
155 }
156 if (debugSeparation)
157 {
158 Debug.DrawLine(transform.position, transform.position +

separationVector * vectorDebugFactor, Color.green);
159 }
160 if (debugVelocityMatching)
161 {
162 Debug.DrawLine(transform.position, transform.position +

velocityMatchingVector * vectorDebugFactor, Color.blue);
163 }
164 if (debugFlee)
165 {
166 Debug.DrawLine(transform.position, transform.position +

fleeVector * vectorDebugFactor, Color.magenta);
167 }
168 }
169

170 //Physics update
171 void FixedUpdate()
172 {
173 UpdateStamina();
174 UpdateMaxSpeed();
175 UpdatePositionAndRotation(GetSteering());
176 }
177

178 //Steering blending method
179 public Steering GetSteering()
180 {
181 herdSteering.Reset();
182

183 Steering st;
184

185 if (herd.Count > 0) //If we have neighbours, we behave as a herd
186 {
187 //Settings
188 maxRotation = 45f;
189

190 //Linear
191 //Velocity Matching
192 st = velocityMatchingBehaviour.GetSteering(herd, velocity,

maxLinearAcceleration);
193 velocityMatchingVector = st.linearAcceleration;

78 APPENDIX A. AI FRAMEWORK SOURCE CODE

194 herdSteering.Add(st, velocityMatchingWeight);
195 //Separation
196 st = separationBehaviour.GetSteering(herd, transform,

maxLinearAcceleration);
197 separationVector = st.linearAcceleration;
198 herdSteering.Add(st, separationWeight);
199 //Cohesion
200 st = cohesionBehaviour.GetSteering(herd, transform,

maxLinearAcceleration);
201 cohesionVector = st.linearAcceleration;
202 herdSteering.Add(st, cohesionWeight);
203 //Wander (Linear + Angular)
204 herdSteering.Add(wanderBehaviour.GetSteering(transform,

maxRotation, rotationSpeed, maxLinearAcceleration,
maxAngularAcceleration), 0.1f);

205

206 //Angular
207 //Align
208 herdSteering.Add(alignBehaviour.GetSteering(herd, transform,

rotationSpeed, maxRotation, maxAngularAcceleration),
alignWeight);

209 //Face
210 herdSteering.Add(faceBehaviour.GetSteering(transform,

velocity, rotationSpeed, maxRotation,
maxAngularAcceleration), faceWeight);

211 }
212 else//We behave as a wandering individual
213 {
214 //Settings
215 maxRotation = 5f;
216 //Wander (Linear + Angular)
217 herdSteering.Add(wanderBehaviour.GetSteering(transform,

maxRotation, rotationSpeed, maxLinearAcceleration,
maxAngularAcceleration), wanderWeight);

218 }
219

220 //Check fo predators
221 if (predators.Count > 0)
222 {
223 herdState = HerdState.Fleeing;
224 //We add the avoid steering
225 st = fleeBehaviour.GetSteering(predators, transform,

maxLinearAcceleration);
226 fleeVector = st.linearAcceleration;
227 herdSteering.Add(st, fleeWeight);
228 }
229 else
230 {

79

231 herdState = HerdState.Idle;
232 }
233

234 //Obstacle avoidance
235 herdSteering.Add(obstacleAvoidanceBehaviour.GetSteering(transform,

velocity, maxLinearAcceleration), obstacleAvoidanceWeight);
236

237 //Crop down to the maximums
238 herdSteering.Crop(maxLinearAcceleration,

maxAngularAcceleration);
239

240 return herdSteering;
241 }
242

243 //Does the calculations for the position and rotation update
244 private void UpdatePositionAndRotation(Steering steering)
245 {
246 //Using Newton-Euler-1 integration
247 transform.position += velocity * Time.deltaTime;
248 Vector3 auxVector = new

Vector3(Steering.MapToRange(transform.eulerAngles.x),
Steering.MapToRange(transform.eulerAngles.y) +
(rotationSpeed * Time.deltaTime),
Steering.MapToRange(transform.eulerAngles.z));

249 transform.rotation = Quaternion.Euler(auxVector);
250

251 //Update velocity and rotation
252 velocity += steering.linearAcceleration * Time.deltaTime;
253 if (velocity.magnitude > currentMaxSpeed) //Max Speed control
254 {
255 velocity = velocity.normalized * currentMaxSpeed;

//Normalize and set to max
256 }
257

258 rotationSpeed += steering.angularAcceleration * Time.deltaTime;
//Max rotation control

259 if (rotationSpeed > maxRotation)
260 {
261 rotationSpeed /= Mathf.Abs(rotationSpeed); //Get sign
262 rotationSpeed *= maxRotation; //Set to max rotation
263 }
264 }
265

266 //Events
267 void OnTriggerEnter(Collider other)
268 {
269 if (other.transform.parent.gameObject !=

this.gameObject)//Check it’s not our own collider

80 APPENDIX A. AI FRAMEWORK SOURCE CODE

270 {
271 if (other.tag == "Zebra")
272 {
273 herd.Add(other.transform.parent.gameObject);
274 if (debugHerd)
275 {
276 Debug.Log("New entry: " + other.transform.parent.name

+ ", number of elements: " + herd.Count);
277 }
278 }
279 else if (other.tag == "Lion")
280 {
281 predators.Add(other.transform.parent.gameObject);
282 if (debugHerd)
283 {
284 Debug.Log("New predator: " +

other.transform.parent.name + ", number of
predators: " + predators.Count);

285 }
286 }
287 }
288 }
289 void OnTriggerExit(Collider other)
290 {
291 if (other.tag == "Zebra")
292 {
293 herd.Remove(other.transform.parent.gameObject);
294 if (debugHerd)
295 {
296 Debug.Log("Element exitted, number of elements: " +

herd.Count);
297 }
298 }
299 else if (other.tag == "Lion")
300 {
301 predators.Remove(other.transform.parent.gameObject);
302 if (debugHerd)
303 {
304 Debug.Log("Predator exitted, number of predators: " +

predators.Count);
305 }
306 }
307 }
308

309 //Getters
310 public Vector3 GetVelocity()
311 {
312 return velocity;

81

313 }
314

315 //Utilities
316 //Calculates the speed modifier according to age
317 private void SetAgeModifier()
318 {
319 if (age < 5f)//1 to 5 years, young.
320 {
321 ageModifier = ((5f - age) / 5f) * MAX_AGE_MOD;
322 }
323 else if (age > 20f)//20 o 25 years, old.
324 {
325 ageModifier = ((age - 20f) / 5f) * MAX_AGE_MOD;
326 }
327

328 //It has to be negative
329 ageModifier *= -1f;
330 }
331 //Calculates the current max speed, taking into account age

modifier and stamina
332 private void UpdateMaxSpeed()
333 {
334 switch (herdState)
335 {
336 case HerdState.Idle:
337 currentMaxSpeed = Mathf.Min(ABS_MAX_SPEED / 5f,

ABS_MAX_SPEED + ageModifier + staminaModifier);
338 break;
339 case HerdState.Fleeing:
340 currentMaxSpeed = ABS_MAX_SPEED + ageModifier +

staminaModifier;
341 break;
342 }
343 }
344 //Updates our current stamina
345 private void UpdateStamina()
346 {
347 //Depending at which speed we’re running, we may be losing or

gaining stamina.
348 //We take (ABS_MAX_SPEED + ageModifier) as an individual

asbolute max speed for reference
349 //We lose stamina at a 1/s rate, and gain it at the same.
350 effortFactor = velocity.magnitude/(ABS_MAX_SPEED + ageModifier);
351 if (effortFactor <= restThreshold)//We’re not using any effort,

we gain stamina
352 {
353 currentStamina += Time.deltaTime;
354 }

82 APPENDIX A. AI FRAMEWORK SOURCE CODE

355 else if (effortFactor >= effortThreshold) //We’re putting
effort, we lose stamina

356 {
357 currentStamina -= Time.deltaTime;
358 }
359

360 //Control stamina doesn’t go above max or below min
361 if (currentStamina > MAX_STAMINA)
362 currentStamina = MAX_STAMINA;
363 if (currentStamina < 0f)
364 currentStamina = 0f;
365

366 //Calculate stamina modifier
367 if (currentStamina < exhaustedThreshold * MAX_STAMINA)//We are

getting tired (below exhaustedThreshold of our total
stamina)

368 {
369 staminaModifier = MAX_STAMINA_MOD * (currentStamina /

(MAX_STAMINA*exhaustedThreshold));
370 staminaModifier *= -1f;//It’s a malus, need to make it

negative
371 }
372 else//We still have stamina left
373 {
374 staminaModifier = 0f;
375 }
376 }
377 //This animal dies, abandoning the herd.
378 public void Killed()
379 {
380 foreach (GameObject go in herd)
381 {
382 go.GetComponent<HerdingBehaviour>().NotifyDeath(this.gameObject);
383 }
384 this.gameObject.SetActive(false);
385 }
386 //Removes the dead member from the herd list
387 public void NotifyDeath(GameObject deadMember)
388 {
389 herd.Remove(deadMember);
390 }
391 }

Listing A.12: Pack Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 using System.Collections.Generic;
4 /*

83

5 * PackBehaviour combines different steering behaviours to simulate a
pack mentality

6 * @Author: Daniel Collado
7 */
8 [RequireComponent(typeof(Collider))]
9 public class PackBehaviour : MonoBehaviour {

10

11 //Pack
12 private List<GameObject> pack; //List with all the pack

members within our range
13 //Herd
14 private List<GameObject> herd; //List with all the preys

within our range
15

16 //States in which the predator can be
17 public enum PackState
18 {
19 Wandering,
20 PreparingForAttack,
21 Attacking,
22 Eating,
23 Retreating
24 }
25

26 private PackState packState = PackState.Wandering; //State of the
pack

27

28 //Steering
29 private Steering packSteering; //Data structure containing

steering information
30 private Vector3 velocity = Vector3.zero; //Linear speed
31 private float rotationSpeed = 0f; //Rotation speed
32 private float currentMaxSpeed = 7f; //Maximum linear speed
33 private float maxRotation = 45f; //Maximum rotation speed
34 private float maxLinearAcceleration = 5f; //Maximum linear

acceleration
35 private float maxAngularAcceleration = 45f; //Maximum angular

acceleration
36

37 //Constants
38 private const float ABS_MAX_SPEED = 7f; //Absolute maximum linear

speed
39 private const float MAX_STAMINA = 40f; //Time at which we can hold

maximum speed, then we tire down.
40 private const float MAX_STAMINA_MOD = 3f; //Maximum value for the

speed modifier according to stamina
41

42 //Pack behaviour

84 APPENDIX A. AI FRAMEWORK SOURCE CODE

43 private Vector3 preparationPosition = Vector3.zero; //Position we
need to be fore the attack starts

44 private GameObject targetPrey = null; //Prey we are currently
chasing

45 private float catchThreshold = 5f; //Distance at which we
can kill a prey

46 private float powerLevel = 0f; //Variable that defines
the overall power of this predator

47 private int rank = 0; //Variable that defines
the rank of this predator in the pack hierarchy

48 private GameObject alphaMale = null; //Variable containing
the alpha male of the pack

49 private bool hierarchySet = false; //Variable determining
whether or not a hierarchy has been set yet

50 private Vector3 herdCenter = Vector3.zero; //Variable containing
the center of gravity of the herd

51 private bool preyCatched = false; //Variable determining
if any of the pack members has gotten a kill

52

53 //Individual traits
54 private float currentStamina = 0f; //Stamina that we currently

have left.
55 private float effortFactor = 0f; //Variable [0..1] indicating

how much effort are we using according to our speed
56 private float restThreshold = 0.3f; //Point below which our effort

lets us gain stamina
57 private float effortThreshold = 0.6f; //Point above which our

effort makes us use stamina
58 private float staminaModifier = 0f; //Malus that modifies maximum

speed depending on our tiredness
59 private float exhaustedThreshold = 0.25f; //Percentage of our

stamina at which we become tired and gain a malus in speed
60

61 //Behaviours
62 //Linear
63 private VelocityMatchingBehaviour velocityMatchingBehaviour;

//Behaviour for velocity matching
64 private float velocityMatchingWeight = 0.2f; //Weight for

velocity matching
65

66 private SeparationBehaviour separationBehaviour; //Behaviour for
separation

67 private float separationWeight = 0.7f; //Weight for
separation

68

69 private CohesionBehaviour cohesionBehaviour; //Behaviour for
cohesion

70 private float cohesionWeight = 0.1f; //Weight for

85

cohesion
71

72 private SeekBehaviour seekBehaviour; //Behaviour for
seek

73 private float seekWeight = 1.0f; //Weight for seek
74

75 private FleeBehaviour fleeBehaviour; //Behaviour for
seek

76 private float fleeWeight = 1.0f; //Weight for seek
77

78 private ObstacleAvoidanceBehaviour obstacleAvoidanceBehaviour;
//Behaviour for obstacle avoidance

79 private float obstacleAvoidanceWeight = 2.0f; //Weight for
obstacle avoidance

80

81 //Angular
82 private AlignBehaviour alignBehaviour; //Behaviour for

align
83 private float alignWeight = 0.25f; //Weight for align
84

85 private FaceBehaviour faceBehaviour; //Behaviour for
face

86 private float faceWeight = 0.75f; //Weight for face
87

88 //Combined
89 private WanderBehaviour wanderBehaviour; //Behaviour for

wander
90 private float wanderWeight = 1.0f; //Weight for wander
91

92 //Debug
93 public bool debugPack = false; //Flag for pack debugging
94 public bool debugStates = false; //Flag for pack state debugging
95 public bool debugPreparation = false; //Flag for preparation

debugging
96 public bool debugAttack = false; //Flag for attack debugging
97 private Vector3 seekVector = Vector3.zero; //Debug vector for seek
98 private Vector3 fleeVector = Vector3.zero; //Debug vector for flee
99 private float vectorDebugFactor = 10f; //Factor for scaling debug

vectors
100

101 //Initializations
102 void Awake()
103 {
104 InitializeVariables();
105 RandomInitialSteering();
106 }
107

108 //Setting up varibales

86 APPENDIX A. AI FRAMEWORK SOURCE CODE

109 private void InitializeVariables()
110 {
111 packSteering = new Steering();
112 pack = new List<GameObject>();
113 herd = new List<GameObject>();
114

115 //Behaviours
116 wanderBehaviour = new WanderBehaviour();
117 velocityMatchingBehaviour = new VelocityMatchingBehaviour();
118 alignBehaviour = new AlignBehaviour();
119 separationBehaviour = new SeparationBehaviour();
120 cohesionBehaviour = new CohesionBehaviour();
121 faceBehaviour = new FaceBehaviour();
122 wanderBehaviour = new WanderBehaviour();
123 seekBehaviour = new SeekBehaviour();
124 fleeBehaviour = new FleeBehaviour();
125 obstacleAvoidanceBehaviour = new ObstacleAvoidanceBehaviour();
126

127 //Give a random power level
128 powerLevel = Random.Range(0f, 100f);
129 //Stamina
130 currentStamina = MAX_STAMINA;
131

132 }
133

134 //Give a random initial acceleration
135 private void RandomInitialSteering()
136 {
137 //Give a random initial acceleration
138 velocity = new Vector3(Random.value, 0f, Random.value);
139 velocity.Normalize();
140 velocity *= Random.Range(0.1f, currentMaxSpeed / 4);
141

142 packSteering.linearAcceleration = new Vector3(Random.value, 0f,
Random.value);

143 packSteering.linearAcceleration.Normalize();
144 packSteering.linearAcceleration *= Random.Range(0.1f,

maxLinearAcceleration);
145 }
146

147 //Update
148 void Update()
149 {
150 DrawDebug();
151 }
152

153 //Debug function
154 private void DrawDebug()

87

155 {
156 if (debugPreparation && (packState==

PackState.PreparingForAttack))
157 {
158 Debug.DrawLine(transform.position, preparationPosition,

Color.white);
159 Debug.DrawLine(transform.position, transform.position +

seekVector * vectorDebugFactor, Color.green);
160 Debug.DrawLine(transform.position, transform.position +

fleeVector * vectorDebugFactor, Color.red);
161 }
162 if (debugAttack && (packState == PackState.Attacking))
163 {
164 Debug.DrawLine(transform.position, transform.position +

seekVector * vectorDebugFactor, Color.green);
165 Debug.DrawLine(transform.position,

targetPrey.transform.position, Color.white);
166 }
167 }
168

169 //Physics update
170 void FixedUpdate()
171 {
172 UpdateStamina();
173 UpdateMaxSpeed();
174 UpdatePositionAndRotation(GetSteering());
175 }
176

177 //Steering method
178 public Steering GetSteering()
179 {
180 packSteering.Reset();
181

182 if (herd.Count == 0)//No preys
183 {
184 packState = PackState.Wandering;
185 if (pack.Count > 0)//Wander with pack
186 {
187 SteerForWanderInPack();
188 }
189 else//Wander alone
190 {
191 SteerForWanderAlone();
192 }
193 }
194 else//Preys on sight
195 {
196 if (packState == PackState.Wandering)

88 APPENDIX A. AI FRAMEWORK SOURCE CODE

197 packState = PackState.PreparingForAttack;
198 if (pack.Count > 0)//Hunt in pack
199 {
200 switch (packState)
201 {
202 case PackState.PreparingForAttack:
203 if (!hierarchySet)
204 SetupHierarchy();
205

206 if (!AllInPositionForAttack())
207 {
208 SteerForPreparation();
209 }
210 else
211 {
212 SteerForAttacking();
213 packState = PackState.Attacking;
214 }
215 break;
216 case PackState.Attacking:
217 if (!preyCatched)
218 {
219 if (CatchedPrey())
220 {
221 KillPrey();
222 NotifyCatch();
223 SteerForEating();
224 packState = PackState.Eating;
225 }
226 else
227 {
228 if (Tired())
229 {
230 packState = PackState.Retreating;
231 }
232 else
233 {
234 SteerForAttacking();
235 }
236

237 }
238 }
239 else
240 {
241 SteerForEating();
242 }
243 break;
244 case PackState.Eating:

89

245 SteerForEating();
246 break;
247

248 case PackState.Retreating:
249 SteerForWanderInPack();
250 break;
251 }
252 }
253 else//Hunt alone
254 {
255 switch (packState)
256 {
257 case PackState.PreparingForAttack:
258 if (!InPositionForAttack())
259 {
260 SteerForPreparationAlone();
261 }
262 else
263 {
264 SteerForAttackingAlone();
265 packState = PackState.Attacking;
266 }
267 break;
268 case PackState.Attacking:
269 if (CatchedPrey())
270 {
271 KillPrey();
272 SteerForEating();
273 packState = PackState.Eating;
274 }
275 else
276 {
277 if (Tired())
278 {
279 packState = PackState.Retreating;
280 }
281 else
282 {
283 SteerForAttackingAlone();
284 }
285 }
286 break;
287 case PackState.Eating:
288 SteerForEating();
289 break;
290

291 case PackState.Retreating:
292 SteerForWanderAlone();

90 APPENDIX A. AI FRAMEWORK SOURCE CODE

293 break;
294 }
295 }
296 }
297

298 //No matter in which state, we always want to have the obstacle
avoidance behaviour

299 //Obstacle avoidance
300 packSteering.Add(obstacleAvoidanceBehaviour.GetSteering(transform,

velocity, maxLinearAcceleration), obstacleAvoidanceWeight);
301

302 //Crop down to the maximums
303 packSteering.Crop(maxLinearAcceleration,

maxAngularAcceleration);
304

305 return packSteering;
306 }
307

308 //Steering calls
309 private void SteerForWanderInPack()
310 {
311 //Linear
312 //Velocity Matching
313 packSteering.Add(velocityMatchingBehaviour.GetSteering(pack,

velocity, maxLinearAcceleration), velocityMatchingWeight);
314 //Separation
315 packSteering.Add(separationBehaviour.GetSteering(pack,

transform, maxLinearAcceleration), separationWeight);
316 //Cohesion
317 packSteering.Add(cohesionBehaviour.GetSteering(pack, transform,

maxLinearAcceleration), cohesionWeight);
318

319 //Angular
320 //Align
321 packSteering.Add(alignBehaviour.GetSteering(pack, transform,

rotationSpeed, maxRotation, maxAngularAcceleration),
alignWeight);

322 //Face
323 packSteering.Add(faceBehaviour.GetSteering(transform, velocity,

rotationSpeed, maxRotation, maxAngularAcceleration),
faceWeight);

324 }
325 private void SteerForWanderAlone()
326 {
327 //Wander (Linear + Angular)
328 packSteering.Add(wanderBehaviour.GetSteering(transform,

maxRotation, rotationSpeed, maxLinearAcceleration,
maxAngularAcceleration), wanderWeight);

91

329 }
330 private void SteerForPreparationAlone()
331 {
332 Steering st;
333 //Linear
334 //Seek (preparation position)
335 st = seekBehaviour.GetSteering(preparationPosition, transform,

maxLinearAcceleration);
336 seekVector = st.linearAcceleration;
337 packSteering.Add(st, seekWeight);
338 //Flee (herd center)
339 st = fleeBehaviour.GetSteering(herdCenter, transform,

maxLinearAcceleration);
340 fleeVector = st.linearAcceleration;
341 packSteering.Add(st, fleeWeight);
342

343 //Angular
344 packSteering.Add(faceBehaviour.GetSteering(transform.position +

velocity, transform, rotationSpeed, maxRotation,
maxAngularAcceleration), 1.0f);

345 }
346 private void SteerForAttackingAlone()
347 {
348 //Linear
349 targetPrey = GetClosestTarget();
350 //Seek
351 Steering st =

seekBehaviour.GetSteering(targetPrey.transform.position,
transform, maxLinearAcceleration);

352 seekVector = st.linearAcceleration;
353 packSteering.Add(st, seekWeight);
354 //Angular
355 packSteering.Add(faceBehaviour.GetSteering(targetPrey.transform.position,

transform, rotationSpeed, maxRotation,
maxAngularAcceleration), 1.0f);

356 }
357 private void SteerForEating()
358 {
359 //Linear
360 //Seek
361 Steering st =

seekBehaviour.GetSteering(targetPrey.transform.position,
transform, maxLinearAcceleration);

362 seekVector = st.linearAcceleration;
363 packSteering.Add(st, seekWeight);
364 //Angular
365 packSteering.Add(faceBehaviour.GetSteering(targetPrey.transform.position,

transform, rotationSpeed, maxRotation,

92 APPENDIX A. AI FRAMEWORK SOURCE CODE

maxAngularAcceleration), 1.0f);
366 }
367 private void SteerForPreparation()
368 {
369 Steering st;
370 //Linear
371 //Seek (preparation position)
372 st = seekBehaviour.GetSteering(preparationPosition, transform,

maxLinearAcceleration);
373 seekVector = st.linearAcceleration;
374 packSteering.Add(st, seekWeight);
375 //Flee (herd center)
376 st = fleeBehaviour.GetSteering(herdCenter, transform,

maxLinearAcceleration);
377 fleeVector = st.linearAcceleration;
378 packSteering.Add(st, fleeWeight + 40.0f);
379 //Separation
380 packSteering.Add(separationBehaviour.GetSteering(pack,

transform, maxLinearAcceleration), separationWeight);
381

382 //Angular
383 packSteering.Add(faceBehaviour.GetSteering(transform.position +

velocity, transform, rotationSpeed, maxRotation,
maxAngularAcceleration), 1.0f);

384 }
385 private void SteerForAttacking()
386 {
387 //Linear
388 targetPrey = GetClosestTarget();
389 //Seek
390 Steering st =

seekBehaviour.GetSteering(targetPrey.transform.position,
transform, maxLinearAcceleration);

391 seekVector = st.linearAcceleration;
392 packSteering.Add(st, seekWeight);
393 //Angular
394 packSteering.Add(faceBehaviour.GetSteering(targetPrey.transform.position,

transform, rotationSpeed, maxRotation,
maxAngularAcceleration), 1.0f);

395 }
396

397 //Utilities
398 //Returns true if we are close enough to the preparation point,

false otherwise
399 //Also updates preparation position
400 public bool InPositionForAttack()
401 {
402 float positionThreshold = 20f;

93

403 preparationPosition = CalculateAttackPosition();
404 if ((preparationPosition - transform.position).magnitude <

positionThreshold)
405 {
406 return true;
407 }
408 else
409 {
410 return false;
411 }
412 }
413 //Calculates the preparation position
414 private Vector3 CalculateAttackPosition()
415 {
416 //First, we calculate the herd center
417 herdCenter = Vector3.zero;
418 foreach (GameObject go in herd)
419 {
420 herdCenter += go.transform.position;
421 }
422 herdCenter /= herd.Count;
423

424 //Then we calculate the perimeter (radius) by calculating the
average distance of the zebras to the center of the herd,
and multiplying by two

425 float radius = 0f;
426 foreach (GameObject go in herd)
427 {
428 radius += (go.transform.position - herdCenter).magnitude;
429 }
430 radius /= herd.Count;
431

432 Vector3 direction = Vector3.zero;
433 float distanceFactor = 8f;
434 //Now, depending on our rank, we will calculate our attack

position
435 if (rank == 0)//Alpha male, attack from the front to move the

preys towards the rest of the pack
436 {
437 //We proceed to point the closest position that is x times

as far as the perimeter from the center of the herd.
438 direction = transform.position - herdCenter;
439 direction.Normalize();
440 direction *= radius * distanceFactor;
441 }
442 else//Lower ranked predators, they will be opposite of the

alpha male, receiving the scared preys
443 {

94 APPENDIX A. AI FRAMEWORK SOURCE CODE

444 if (alphaMale != null) //wait until an alpha male is crowned
445 {
446 //We calculate the opposite position of the alpha male
447 direction = herdCenter - alphaMale.transform.position;
448 direction.Normalize();
449 direction *= radius * distanceFactor;
450 }
451 }
452

453 //We will attack from there, return the value
454 return herdCenter + direction;
455 }
456 //Returns the closest prey
457 private GameObject GetClosestTarget()
458 {
459 float auxF = Mathf.Infinity;
460 GameObject auxGO = null;
461 foreach (GameObject go in herd)
462 {
463 float distance = (go.transform.position -

transform.position).magnitude;
464 if (distance < auxF)
465 {
466 auxGO = go;
467 auxF = distance;
468 }
469 }
470 return auxGO;
471 }
472 //Returns true if we catched our prey, false otherwise
473 private bool CatchedPrey()
474 {
475 if ((targetPrey.transform.position -

transform.position).magnitude < catchThreshold)
476 {
477 preyCatched = true;
478 Debug.Log("CATCH");
479 return true;
480 }
481 else
482 {
483 return false;
484 }
485 }
486 //Disables the prey’s game object, it died.
487 private void KillPrey()
488 {
489 targetPrey.GetComponent<HerdingBehaviour>().Killed();

95

490 }
491 //Ranks the members of the pack from strongest to weakest,

assigning roles
492 private void SetupHierarchy()
493 {
494 //NOTE: The "alpha male" will be rank 0, and the bigger the

rank number, the lower this predator is in the pack
hierarchy

495 rank = 0;
496 //See what is our rank according to the power level of each

member of the pack
497 foreach (GameObject go in pack)
498 {
499 if (go.GetComponent<PackBehaviour>().GetPower() > powerLevel)
500 {
501 rank++;
502 }
503 }
504

505 //If we are the alpha male, we notify the others (he will serve
as a reference for the positioning)

506 if (rank == 0)
507 {
508 foreach (GameObject go in pack)
509 {
510 alphaMale = this.gameObject;
511 go.GetComponent<PackBehaviour>().SetAlphaMale(this.gameObject);
512 }
513 }
514

515 hierarchySet = true;
516 }
517 //Checks if all the members of the pack are in position for

attacking, returning false otherwise
518 private bool AllInPositionForAttack()
519 {
520 bool ready = InPositionForAttack();
521 foreach (GameObject go in pack)
522 {
523 ready = ready &&

go.GetComponent<PackBehaviour>().InPositionForAttack();
524 }
525 return ready;
526 }
527 //Notify the rest of the pack that a prey has been catched and

it’s time to eat
528 private void NotifyCatch()
529 {

96 APPENDIX A. AI FRAMEWORK SOURCE CODE

530 foreach (GameObject go in pack)
531 {
532 PackBehaviour ps = go.GetComponent<PackBehaviour>();
533 ps.ChangeState(PackState.Eating);
534 ps.PreyCatched(targetPrey);
535 }
536 }
537 //Recieves the notification for catched preys
538 public void PreyCatched(GameObject catchedPrey)
539 {
540 preyCatched = true;
541 targetPrey = catchedPrey;
542 }
543 //Returns wether or not the lion is tired
544 private bool Tired()
545 {
546 return (currentStamina < exhaustedThreshold * MAX_STAMINA);
547 }
548

549 //Does the calculations for the position and rotation update
550 private void UpdatePositionAndRotation(Steering steering)
551 {
552 //Using Newton-Euler-1 integration
553 transform.position += velocity * Time.deltaTime;
554 Vector3 auxVector = new

Vector3(Steering.MapToRange(transform.eulerAngles.x),
Steering.MapToRange(transform.eulerAngles.y) +
(rotationSpeed * Time.deltaTime),
Steering.MapToRange(transform.eulerAngles.z));

555 transform.rotation = Quaternion.Euler(auxVector);
556

557 //Update velocity and rotation
558 velocity += steering.linearAcceleration * Time.deltaTime;
559 if (velocity.magnitude > currentMaxSpeed) //Max Speed control
560 {
561 velocity = velocity.normalized * currentMaxSpeed;

//Normalize and set to max
562 }
563

564 rotationSpeed += steering.angularAcceleration * Time.deltaTime;
//Max rotation control

565 if (rotationSpeed > maxRotation)
566 {
567 rotationSpeed /= Mathf.Abs(rotationSpeed); //Get sign
568 rotationSpeed *= maxRotation; //Set to max rotation
569 }
570 }
571

97

572 //Events
573 void OnTriggerEnter(Collider other)
574 {
575 if (other.transform.parent.gameObject !=

this.gameObject)//Check it’s not our own collider
576 {
577 if (other.tag == "Zebra")
578 {
579 herd.Add(other.transform.parent.gameObject);
580 if (debugPack)
581 {
582 Debug.Log("New herd entry: " +

other.transform.parent.name + ", herd size: " +
herd.Count);

583 }
584 }
585 else if (other.tag == "Lion")
586 {
587 pack.Add(other.transform.parent.gameObject);
588 if (debugPack)
589 {
590 Debug.Log("New predator: " +

other.transform.parent.name + ", number of
predators: " + pack.Count);

591 }
592 }
593 }
594 }
595 void OnTriggerExit(Collider other)
596 {
597 if (other.tag == "Zebra")
598 {
599 herd.Remove(other.transform.parent.gameObject);
600 if (debugPack)
601 {
602 Debug.Log("Herd member exitted, herd size: " +

herd.Count);
603 }
604 }
605 else if (other.tag == "Lion")
606 {
607 pack.Remove(other.transform.parent.gameObject);
608 if (debugPack)
609 {
610 Debug.Log("Predator exitted, number of predators: " +

pack.Count);
611 }
612 }

98 APPENDIX A. AI FRAMEWORK SOURCE CODE

613 }
614

615 //Getters
616 public Vector3 GetVelocity()
617 {
618 return velocity;
619 }
620 public float GetPower()
621 {
622 return powerLevel;
623 }
624

625 //Setters
626 public void SetAlphaMale(GameObject am)
627 {
628 alphaMale = am;
629 }
630

631 //Method that changes states
632 public void ChangeState(PackState newState)
633 {
634 packState = newState;
635 }
636

637 //Updates our current stamina
638 private void UpdateStamina()
639 {
640 //When attacking, depending at which speed we’re running, we

may be losing or gaining stamina.
641 //We lose stamina at a 1/s rate, and gain it at the same.
642 effortFactor = velocity.magnitude / ABS_MAX_SPEED;
643 if (effortFactor <= restThreshold)//We’re not using any effort,

we gain stamina
644 {
645 currentStamina += Time.deltaTime;
646 }
647 else if (effortFactor >= effortThreshold) //We’re putting

effort, we lose stamina
648 {
649 if(packState == PackState.Attacking)//Only if attacking
650 currentStamina -= Time.deltaTime;
651 }
652

653 //Control stamina doesn’t go above max or below min
654 if (currentStamina > MAX_STAMINA)
655 currentStamina = MAX_STAMINA;
656 if (currentStamina < 0f)
657 currentStamina = 0f;

99

658

659 //Calculate stamina modifier
660 if (currentStamina < exhaustedThreshold * MAX_STAMINA)//We are

getting tired (below exhaustedThreshold of our total
stamina)

661 {
662 staminaModifier = MAX_STAMINA_MOD * (currentStamina /

(MAX_STAMINA * exhaustedThreshold));
663 staminaModifier *= -1f;//It’s a malus, need to make it

negative
664 }
665 else//We still have stamina left
666 {
667 staminaModifier = 0f;
668 }
669 }
670

671 //Calculates the current max speed, taking into account stamina
modifier

672 private void UpdateMaxSpeed()
673 {
674 switch (packState)
675 {
676 case PackState.Wandering:
677 SetupWandering();
678 break;
679 case PackState.PreparingForAttack:
680 SetupPreparing();
681 break;
682 case PackState.Attacking:
683 SetupAttacking();
684 break;
685 case PackState.Eating:
686 SetupEating();
687 break;
688 }
689 }
690

691 //Settings for each state
692 private void SetupWandering()
693 {
694 currentMaxSpeed = Mathf.Min(ABS_MAX_SPEED / 3f, ABS_MAX_SPEED +

staminaModifier);
695 rotationSpeed = 5f;
696 }
697 private void SetupPreparing()
698 {
699 //Set up variables for preparing to attack

100 APPENDIX A. AI FRAMEWORK SOURCE CODE

700 if (rank == 0)
701 {
702 currentMaxSpeed = Mathf.Min(ABS_MAX_SPEED / 2f,

ABS_MAX_SPEED + staminaModifier);
703 }
704 else
705 {
706 currentMaxSpeed = ABS_MAX_SPEED + staminaModifier;
707 }
708

709 maxRotation = 45f;
710 }
711 private void SetupAttacking()
712 {
713 //Set up variables for attacking
714 currentMaxSpeed = ABS_MAX_SPEED + staminaModifier;
715 maxRotation = 45f;
716 }
717 private void SetupEating()
718 {
719 //Set up variables for eating
720 currentMaxSpeed = Mathf.Min(ABS_MAX_SPEED / 4f, ABS_MAX_SPEED +

staminaModifier);
721 maxRotation = 5f;
722 }
723

724 }

Listing A.13: Loner Behaviour C# script

1 using UnityEngine;
2 using System.Collections;
3 /*
4 * LonerBehaviour consists on a wander behaviour simulating a lone

animal wandering about
5 * @Author: Daniel Collado
6 */
7 public class LonerBehaviour : MonoBehaviour {
8

9 //Steering
10 private Steering lonerSteering; //Data structure containing

steering information
11 private Vector3 velocity = Vector3.zero; //Linear speed
12 private float rotationSpeed = 0f; //Rotation speed
13 private float maxSpeed = 0.5f; //Maximum linear speed
14 private float maxRotation = 10f; //Maximum rotation speed
15 private float maxLinearAcceleration = 5f; //Maximum linear

acceleration
16 private float maxAngularAcceleration = 45f; //Maximum angular

101

acceleration
17

18 //Behaviours
19 private WanderBehaviour wanderBehaviour; //Behaviour for

wander
20 private float wanderWeight = 1.0f; //Weight for wander
21

22 private FaceBehaviour faceBehaviour; //Behaviour for
face

23 private float faceWeight = 1.0f; //Weight for face
24

25 private ObstacleAvoidanceBehaviour obstacleAvoidanceBehaviour;
//Behaviour for obstacle avoidance

26 private float obstacleAvoidanceWeight = 2.0f; //Weight for
obstacle avoidance

27

28 //Initialization
29 void Awake()
30 {
31 InitializeVariables();
32 RandomInitialSteering();
33 }
34

35 //Setting up varibales
36 private void InitializeVariables()
37 {
38 lonerSteering = new Steering();
39

40 wanderBehaviour = new WanderBehaviour();
41 faceBehaviour = new FaceBehaviour();
42 obstacleAvoidanceBehaviour = new ObstacleAvoidanceBehaviour();
43 }
44

45 //Give a random initial acceleration
46 private void RandomInitialSteering()
47

48 {
49 velocity = new Vector3(Random.value, 0f, Random.value);
50 velocity.Normalize();
51 velocity *= Random.Range(0.1f, maxSpeed / 4);
52

53 lonerSteering.linearAcceleration = new Vector3(Random.value,
0f, Random.value);

54 lonerSteering.linearAcceleration.Normalize();
55 lonerSteering.linearAcceleration *= Random.Range(0.1f,

maxLinearAcceleration);
56 }
57 //Physics update

102 APPENDIX A. AI FRAMEWORK SOURCE CODE

58 void FixedUpdate()
59 {
60 UpdatePositionAndRotation(GetSteering());
61 }
62

63 //Steering method blending
64 public Steering GetSteering()
65 {
66 lonerSteering.Reset();
67

68 //Wander (Linear + Angular)
69 lonerSteering.Add(wanderBehaviour.GetSteering(transform,

maxRotation, rotationSpeed, maxLinearAcceleration,
maxAngularAcceleration), wanderWeight);

70 //Face (angular)
71 lonerSteering.Add(faceBehaviour.GetSteering(transform,

velocity, rotationSpeed, maxRotation,
maxAngularAcceleration), faceWeight);

72 //Obstacle avoidance
73 lonerSteering.Add(obstacleAvoidanceBehaviour.GetSteering(transform,

velocity, maxLinearAcceleration), obstacleAvoidanceWeight);
74

75 //Crop down to the maximums
76 lonerSteering.Crop(maxLinearAcceleration,

maxAngularAcceleration);
77

78 return lonerSteering;
79 }
80

81 //Does the calculations for the position and rotation update
82 private void UpdatePositionAndRotation(Steering steering)
83 {
84 //Using Newton-Euler-1 integration
85 transform.position += velocity * Time.deltaTime;
86 Vector3 auxVector = new

Vector3(Steering.MapToRange(transform.eulerAngles.x),
Steering.MapToRange(transform.eulerAngles.y) +
(rotationSpeed * Time.deltaTime),
Steering.MapToRange(transform.eulerAngles.z));

87 transform.rotation = Quaternion.Euler(auxVector);
88

89 //Update velocity and rotation
90 velocity += steering.linearAcceleration * Time.deltaTime;
91 if (velocity.magnitude > maxSpeed) //Max Speed control
92 {
93 velocity = velocity.normalized * maxSpeed; //Normalize and

set to max
94 }

103

95

96 rotationSpeed += steering.angularAcceleration * Time.deltaTime;
//Max rotation control

97 if (rotationSpeed > maxRotation)
98 {
99 rotationSpeed /= Mathf.Abs(rotationSpeed); //Get sign

100 rotationSpeed *= maxRotation; //Set to max rotation
101 }
102 }
103 }

Listing A.14: Camera Control C# script

1 using UnityEngine;
2 using System.Collections;
3

4 public class CameraControl : MonoBehaviour {
5

6 private float cameraSpeed = 5f;
7 private float zoomStep = 20f;
8 private float minZoomDistance = 1f;
9 private float maxZoomDistance = 300f;

10

11

12 // Update is called once per frame
13 void Update () {
14 ProcessInput();
15 }
16

17 private void ProcessInput()
18 {
19 float hInput = Input.GetAxis("Horizontal");
20 float vInput = Input.GetAxis("Vertical");
21 float wInput = Input.GetAxis("Mouse ScrollWheel");
22 //Translation
23 Vector3 translationVector = new Vector3(hInput, 0 , vInput);
24 translationVector *= cameraSpeed;
25 transform.Translate(translationVector);
26 //Zoom
27 if (wInput > 0f)
28 {
29 if(transform.position.y >= minZoomDistance)
30 transform.position -= transform.up * zoomStep;
31 }
32 else if (wInput < 0f)
33 {
34 if(transform.position.y <= maxZoomDistance)
35 transform.position += transform.up * zoomStep;
36 }

104 APPENDIX A. AI FRAMEWORK SOURCE CODE

37 }
38 }

	Introduction
	Problem Analysis
	Game AI
	Decentralized AI
	Flocking
	Steering Behaviours
	Problem Analysis Summary

	Problem Statement
	Design and Implementation
	Animal Behaviour Design
	Zebra
	Lion
	Elephant

	Game Design in Unity
	Behaviour Scripting
	Simple Steering Scripts
	Align
	Face
	Wander
	Seek
	Flee
	Obstacle Avoidance
	Separation
	Cohesion
	Velocity Matching

	Combined Steering Behaviours
	Herd
	Pack
	Loner

	Simulation Testing
	Setup
	Results

	Discussion
	Conclusions
	Quantitative Analysis
	Qualitative Analysis

	Aalborg Zoo Meeting
	Future lines of work

	Bibliography
	AI Framework Source Code

