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1.Chapter

1Introduction
Error correcting codes are a method of correcting errors in data transmitted
over an inaccurate channel. One traditional method, linear block codes,
work by dividing the data to be transmitted into messages and additional
redundant data is then appended to each message, the message and and
redundancy combined being called the codewords. The redundant data can
then be used to correct errors that occur in transmission. A disadvantage
of this method is that to decode the data, it is necessary to know where
one codeword ends and another one starts. If the transmission channel is
of a kind that can lose bits without the receiver knowing, the alignment
of codeword borders can be lost. This is the problem convolutional codes
attempts to solve. Unlike linear block codes, convolutional codes encode
data as continous streams. Each symbol is encoded using not only the current
data, but also a specified number of preceding symbols. This still means a
missing symbol can cause decoding errors, but it is possible to reestablish
decoding afterwards.

Convolutional codes represent their codewords with vectors with entries
in the polynomial ring over finite fields. Rings are a generalization of the con-
cept of fields, where there is no requirement of a multiplicative inverse. Many
of the known results of finite fields also apply in some way for polynomial
rings.

Like with linear block codes, convolutional codes can be represented by
generator matrices that, in this case, have polynomials as entries. There is the
concept of equivalence, where two generator matrices can be transformed into
each other by a unimodular matrix, the module-equivalent of a non-singular
matrix. This leads to certain notions of canonical forms, in particular using
a so called left prime generator matrix to represent a code.

The usual method of comparing codewords in linear block codes, the Ham-
ming distance, can be extended to convolutional codes, and another method,
called the j-column distance, also exists. In the same vein, an analogue of
the singleton bound and other bounds that constrain the performance of
convolutional codes also have a role to play.

The Viterbi algorithm is a useful minimum distance decoding algorithm
for convolutional codes. It works by interpreting the received data as a graph
and using a path finding algorithm inspired by Dijkstra’s algorithm to find
the codeword closest to the received word.
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1.Chapter

2Foundations of Con-
volutional Codes

2.1 Modules
In order to describe convolutional codes, it is necessary to use modules,
so a short introduction to this construction is given here. A module is a
generalization of a vector space, where the scalars are no longer required to
be a field, but can instead be rings.

This section relies on [9] for most of the definitions relating to modules,
[11] for the theorem about a free module over a PID and [8] for the definition
of a unimodular matrix.

Definition 2.1.1 (Module). A (left) module is M over a ring R with mul-
tiplicative identity 1R is an abelian group with operation +, and a scalar
product

· : R × M → M,

satisfying the following conditions:

• α(βm) = (αβ)m

• (α + β)m = αm + βm

• α(m + n) = αm + αn

• α(m + n) = αm + αn

• 1Rm = m

This is just a restatement of the axioms of a linear space, where field is
replaced with ring.

Unlike linear spaces, not all modules have a basis. For example, if one
considers the module of rational numbers Q over the ring of whole numbers
Z. This can be shown by a simple argument. Assume all rationals are in
irreducible form. Obviously a single rational number can not be a basis,
since any rational not sharing a denominator of the candidate can not be
reached by multiplication with a whole number. Then, by induction. Any
pair of rational numbers a

b
, c

d
, are linearly dependent, shown by multiplying

one by its denominator and the numerator of the second bca
b

= ac, giving a
multiple of the second rational. Finally, assume for n ≥ 2 that any set of n
rationals are linearly dependent. Then, for a set of n + 1 rationals pick one
and multiply it to be a multiple of one of the others, as done above, showing
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CHAPTER 2. FOUNDATIONS OF CONVOLUTIONAL CODES

that any n + 1 rationals are linearly dependent. There exists no basis for the
rationals over the whole numbers.

Even though not all modules have a basis, since all vector spaces are
modules some obviously do. A module with a basis is called a free module.
Definition 2.1.2 (Free Module). A module M is a free module if and only
if it has a basis.

For modules, the equivalent to the dimension of a linear space is called
the rank of the module.
Definition 2.1.3 (Rank of Module). The minimum cardinality of a basis
spanning a module M is called the rank of M .

Submodules of a free module over a PID are free modules, by the following
reasoning.
Theorem 2.1.1. Let R be a PID and M a finitely generated free module
over R with rank m ≥ 1. Further, let K be a submodule of M . Then, K is a
free R-submodule with rank n ≤ m.
Proof. The proof is by induction. If m = 1, then M ∼= R and every submod-
ule is an ideal with rank ≤ 1, and the generator for each ideal works as a
basis.

Assume that the theorem holds up to m−1: If K = {0} then the theorem
holds by an empty basis. Otherwise, consider the following. Let πi : M → R
be the projection map that gives the ith entry of an element of the module
in a basis. Then ker πi is a free module over R with rank m − 1. For some
i ∈ [m], πi(K) ̸= {0}. In that case, πi(K) is a nonzero ideal. Because it
is an ideal, it is also a free submodule of M with rank 1. Therefore, the
intersection ker πi ∩K is a submodule of ker πi. By the induction hypothesis,
the rank of ker πi ∩ K ≤ m − 1.

Let α be a generator for πi(K) and v ∈ K be an element such that
πi(v) = α. It is clear that K = ker πi ∩ K ⊕ vR, since all elements of K can
be represented by a linear combination of an element of K that is zero in the
ith entry and a multiple of a generator of all the i entries of elements of K.
If {v1, . . . , vm−1} is a basis for ker πi ∩ K, then it can be extended to a basis
of K = ker πi ∩ K ⊕ vR by adding v as v is a generator for vR. Hence, K
has a basis and rank K ≤ m ≤ n.

If you have a basis for a module or a pair of modules, you can represent
linear maps as matrices, and if the ring is abelian matrix multiplication is
even associative.

It then makes sense to ask if it is possible to have matrix inverses, which
motivates the definition of unimodular matrices.
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2.2. CONVOLUTIONAL CODES

Definition 2.1.4 (Unimodular matrix). A k × k matrix U(z) with entries
in a ring R is a unimodular matrix if there exists a k × k matrix V (z) such
that

U(z)V (z) = V (z)U(z) = I

2.2 Convolutional Codes
Conventional error-correcting codes work by dividing the data to be trans-
mitted into blocks and adding redundant information. These block codes
have the disadvantage, that in the instance where your channel drops bits
and you loose track of the time index of your symbols, for example when
communicating with a satellite, it is difficult to find the alignment of your
blocks and thus apply the error-correction.

This is the problem solved by convolutional codes. To decode convolu-
tional codes, only the previous couple of symbols are needed. This is relative
to the index of the word to be decoded, and does not depend on any global
alignment properties. Therefore convolutional codes are suitable for channels
with unreliable index of symbols.

This section references [1] and [8] for basic definitions of convolutional
codes, and [3] for the existence proofs for different canonical forms of gener-
ator matrices.

Definition 2.2.1 (Convolutional Code). Let k ≤ n be positive whole num-
bers. A (n, k)q convolutional code C is a Fq[z]-submodule of Fq[z]n with rank
k. A matrix G(z) whose rows form a basis for the submodule is called a
generator matrix of C.

As with linear block codes, there are multiple generator matrices of the
same code, although for modular matrices it doesn’t follow automatically
that two matrices with the same rowspace can be transformed into each
other with a linear bijection. It therefore makes sense to consider when two
generator matrices of a code are considered equivalent.

Definition 2.2.2 (Equivalence of Generator Matrices). Two generator ma-
trices G(z), G̃(z) of an (n, k)q convolutional code C are called left equivalent
if there exists a unimodular matrix U(z) ∈ Fq[z]k×k, such that

G̃(z) = U(z)G(z)

Similarly, they are called right equivalent if there exists a unimodular matrix
V (z) ∈ Fq[z]k×k, such that

G̃(z) = G(z)V (z)

4



CHAPTER 2. FOUNDATIONS OF CONVOLUTIONAL CODES

Finally, in general they are called equivalent if

G̃(z) = U(z)G(z)V (z)

The following basic row and column operations can be defined on poly-
nomial matrices

1. Multiplication of a row (column) by a constant c.

2. The adding of one row (column) multiplied by a polynomial b(z) to
another row (column).

3. The exchange of any two rows (columns).

Each of these operations can be represented by simple unimodular matrices,
namely the result of applying these operations to the identity matrix, and
the determinant is nonzero and doesn’t depend on z, i.e the determinant is
in Fq \ {0}. For row operations the matrix is applied on the left, for column
operations a matrix is applied on the right.

Again, like with linear codes, there exists canonical forms of generator
matrices in the equivalence classes of equivalent generator matrices.

It is possible to represent a generator matrix in upper triangular form.
This is called column Hermite form.

Theorem 2.2.1 (Column Hermite Form). Let G(z) ∈ Fq[z]k×n, with k ≤ n.
Then there exists a unique unimodular matrix U(z) such that,

U(z)G(z) =


h11(z) h12(z) · · · h1k(z) h1,k+1(z) · · · h1n(z)

h22(z) · · · h2k(z) h2,k+1(z) · · · h2n(z)
. . . ... ... ...

hkk(z) hk,k+1(z) · · · hnn(z)

 ,

where the hii are monic polynomials with deg hii > deg hji for all i, j ∈ [k]
such that j < i. This is called the column Hermite form.

Proof. The proof works by repeatedly applying row operations to G(z) until
it is in the correct form. Since row operations can be represented by matrices
applied from the left, by associativity U(z) is the product of these matrices.
The method works similarly to Gaussian elimination.

1. First, assuming that the first column of G(z) is not identically zero,
pick an element with minimal degree and exchange so that it is the
first row.
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2.2. CONVOLUTIONAL CODES

2. Divide all entries of the columns ai1 with the entry in the first row a11
using polynomial division, giving ai1 = a11qi1 + ri1, and for each row
beneath the first, subtract qi1 times the row.

3. If not all remainders ri1 are identically zero, pick a remainder of minimal
degree, exchange it to the first row and go to step 2

4. Once the entries beneath a11 are identically zero, apply the whole al-
gorithm to the submatrix with the first column and first row removed.

Since the remainder of division is of lower degree than divisor, the process
terminates. If the entries on the diagonal of the resulting matrix are not
identically zero, one can use row addition to reduce the degree of entries
above the diagonal entry, whereas if an entry on the diagonal is identically
zero then all the entries above it are zero as well.

All of this is done using row operations, so it can be represented using
matrices and the product of these is a U(z) satisfying the theorem.

It is possible to represent a matrix in lower triangular form. This is called
row Hermite form.

Theorem 2.2.2 (Row Hermite Form). Let G(z) ∈ Fq[z]k×n, with k ≤ n.
Then there exists a unique unimodular matrix V (z) such that,

G(z)V (z) =


h11(z) 0 · · · 0
h21(z) h22

... ...
... . . . ... ...

hk1(z) hk2 · · · hkk 0 · · · 0

 ,

where the hii are monic polynomials with deg hii > deg hij for all i, j ∈ [k]
such that j < i. This is called the row Hermite form.

Proof. The proof of this theorem is done using the same method as for the
column hermite form, except that column operations are used instead of row
operations, and all mentions of columns and rows are transposed.

A corollary follows from the previous two results. It is already known
that row and column operations are invertible linear operations with scalar
nonzero determinant, but it turns out that any square matrix with scalar
nonzero determinant is equivalent to the identity matrix.

Corollary 2.2.1. If the determinant of a square polynomial matrix G(z) is
in Fq \ {0}, then it can be written as the product of row (column) operations.
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CHAPTER 2. FOUNDATIONS OF CONVOLUTIONAL CODES

Proof. The proof will be done for the case of row operations. The argument
for column operations is essentially identical, just with columns and rows
transposed.

First, put the matrix in column Hermite form U(z)G(z). Since U(z)
consists of a product of row operations whose determinants are nonzero
scalar values, the determinant of U(z)G(z) is in Fq \ {0}. Therefore, since
det U(z)G(z) = h11h22 · · · hkk is a nonzero scalar each hii must also be in
Fq \ {0}, and hence hji identically zero for all j < i. It can therefore be
concluded that U(z)G(z) is a diagonal matrix with scalars in the diagonal
entries. By applying row scaling this matrix can be turned into the iden-
tity matrix. The product of the row scalors and U(z) is a product of row
operations that transforms G(z) into the identity matrix, and since row op-
erations have inverses that are also row operations, the inverse of this matrix
is a product of row operations that transforms the identity matrix into G(z).

In other words, G(z) is a product of row operations.

Finally, there is a form where a generator matrix is represented by a di-
agonal matrix. This would be the analogue of a systematic generator matrix
for convolutional codes.

Theorem 2.2.3 (Smith Form). Let G(z) ∈ Fq[z]k×n, with k ≤ n. Then
there exists unique unimodular matrices U(z) and V (z) such that,

U(z)G(z)V (z) =


γ1(z) 0 · · · 0

γ2(z) ... ...
. . . ... ...

γk(z) 0 · · · 0

 ,

where for every i ∈ [k], γi is a monic polynomial with the property that γi+1
divides γi. These polynomials are uniquely determined by G(z) and are called
the invariant polynomials of G(z).

Proof. Start with G(z), and do the following steps.

1. Choose an entry with least degree that is not identically zero. By row
and column exchange, move it to the (1, 1) entry.

2. Do polynomial division of all entries of the first row and first column
by g11, giving:

gi1 = g11qi1 + ri1, g1j = g11q1j + r1j,

for all i ∈ [k], j ∈ [n].

7



2.2. CONVOLUTIONAL CODES

3. If all these divisions have zero remainders move to the next step, oth-
erwise do the following.
If the entry is of the form gi1, then add the first row multiplied by qi1,
this will result in (i, 1) having the value ri1 which has a lower degree
than g11. Exchange the entry with g11 and go to the second step.
If the entry is of the form g1j, then do the same with column addition
and multiplication with q1j.

4. When all the remainders are zero, do row addition to zero out the first
column and column addition to zero out the first row, except for g11.

5. If any of the entries gij with i, j ≥ 2 have nonzero remainders after
division by g11 then add the jth column to the first and go to the
second step.

Since the degree of the (1, 1) entry is strictly decreasing, this process will
eventually terminate and all remainders will eventually be zero. The resulting
matrix from this process has the correct entry in the upper left entry for the
desired diagonal matrix and the lower right part is divisible by this entry.
To finish the process, iteratively apply the process to the submatrices with
rows and columns corresponding to the finished diagonal entries removed,
and apply scalar row multiplication with the leading coefficients of entries to
ensure the entries are monic.

The result is a diagonal matrix, where the lower entries are divisible by the
higher entries. This is matrix is obtained by row and column operations that
can be represented by unimodular matrices applied on the left and right.

Definition 2.2.3 (Row Degree). Let G(z) be a polynomial matrix. The
maximal degree of any entry in the ith row of G(z) is called the ith row
degree, and is often denoted νi.

Two equivalent generator matrices have equal k×k minors, up to multipli-
cation by a constant, because they differ by multiplication by a unimodular
matrix and multiplication by a matrix with determinant in Fq \ {0} only
changes the determinant by a constant factor. Hence, the following defini-
tion makes sense.

Definition 2.2.4 (Degree of Code). Let C be an (n, k)q convolutional code.
The maximal degree of all the k × k minors of a generator matrix of C is
called the degree of C, and is denoted by δ. The notation (n, k, δ)q is used
to denote a code with rank k and degree δ in Fq[z]n. For every i ∈ [k], the
largest degree of an entry in the ith row of a generator matrix of C, is called
the ith row-degree of C.

8



CHAPTER 2. FOUNDATIONS OF CONVOLUTIONAL CODES

For a generator matrix G(z) of an (n, k, δ)q convolutional code C, with
row-degrees ν1, . . . , νk, it holds that δ ≤ ν1 + · · · + νk. If they are equal, then
G(z) is called row-reduced and is a minimal generator matrix for C.

An important propery of polynomial matrices is left-primeness.

Definition 2.2.5 (Left Prime Matrix). A polynomial matrix G(z) ∈ Fq[z]k×n

with k ≤ n, is called left prime if for all factorizations G(z) = U(z)G̃(z) where
U(z) ∈ Fq[z]k×k and G̃(z) ∈ Fq[z]k×n, the left matrix U(z) is unimodular.

The importance of the property can be seen from the following equivalence
result, which shows that left-primeness correspond to many properties that,
at first glance, one might assume are different.

Theorem 2.2.4 (Equivalence theorem for left prime). Let G(z) ∈ Fq[z]k×n,
with k ≤ n. The following are equivalent

1. G(z) is left prime

2. The Smith form of G(z) is [Ik 0].

3. The row Hermite form of G(z) is [Ik 0].

4. G(z) has a right inverse polynomial matrix

5. There exists a L(z) ∈ Fq[z](n−k)×n such that[
G(z)
L(z)

]

is unimodular.

6. The ideal generated by all the kth order minors of G(z) is Fq[z].

7. For all u(z) ∈ Fq(z)k, where Fq(z) is the field of rational functions with
coefficients in Fq, u(z)G(z) ∈ Fq[z]n implies u(z) ∈ Fq[z]k.

8. rank G(λ) = k for all λ ∈ Fq, where Fq denotes the algebraic closure of
Fq.

If G(z) is a left prime generator matrix for a convolutional code C, then
C is considered a noncatastrophic code. Let C be a noncatastrophic (n, k, δ)q

convolutional code and G(z) ∈ Fq[z]n×k be a generator matrix for C. Then
there exists a matrix H ∈ Fq[z](n−k)×n such that

Hc(z)T = 0 ⇔ c(z) ∈ C

called the parity check matrix.
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2.3. DISTANCES OF CONVOLUTIONAL CODES

2.3 Distances of Convolutional Codes
Distances between codewords are an important way to measure a codes abil-
ity to correct errors. A basic assumption in error correction is that some
errors are more likely than others, and the distance metric used implicitly
reflects the partial order of assumed probabilities. Convolutional codes al-
lows for a version of the Hamming weight, corresponding to the scenarion
where all single-symbol errors are considered independently equally likely.

This section uses [1] and [8] for basic definitions of distance metrics and
[10] and [4] for the singleton and column distance bounds and necessary
prerequisite lemmas and theorems. In addition [4] is also the source for the
lemma used in defining MDP, the MDP criterion and the fact that the dual
of an MDP convolutional code is MDP.

A generalization of Hamming weight can thus be defined for polynomial
vectors.

Definition 2.3.1 (Weight and Distance of Convolutional Code). The weight
wt(c(z)) for c(z) ∈ Fq[z]n is defined as

wt(c(z)) =
deg(c(z))∑

i=1
wt(ci)

where wt(ci) is the Hamming weight of the ith coefficient of c(z). This, of
course, induces a distance d(c1(z), c2(z)) = wt(c2(z) − c1(z)).

In addition to weight, it is also possible to define an analogue to minimum
distance. The free distance of a code is defined as follows.

Definition 2.3.2 (Free Distance). The free distance of a code C is defined
as

dfree = min{wt(c(z) | c(z) ∈ C, c(z) ̸= 0}

The relationship between free distance and error detection and correction
capacity is the same as with linear block codes.

Theorem 2.3.1. If C is a code with free distance d then the code can always
detect up to d − 1 errors and correct up to ⌊d−1

2 ⌋ errors.

The proof of this is the same as for linear block codes, as it only depends
on the distance one is taking the minimum of being a metric.

Another way to measure distance of codewords exists, the so called col-
umn distance. The column distance has relevance to erasure channels, where
the location of errors is known, as opposed to general errors where the er-
rors can happen in any of the symbols of the vector. The column distance

10



CHAPTER 2. FOUNDATIONS OF CONVOLUTIONAL CODES

is characterized by the generator matrices of codes, but in the case of non-
catastrophic codes it can also be characterized by parity check matrices.
Therefore, it is assumed all codes are noncatastrophic from hereon.

Definition 2.3.3 (j-truncation). For c(z) ∈ Rn with deg(c(z)) = γ, writing
out c(z) = c0 + c1z + · · · cγzγ. Define the j-truncation of c(z) as c[0,j](z) =
c0 + c1z + · · · + cjz

j.

Definition 2.3.4 (j-column distance). The j-column distance is defined as

dc
j(C) = min

c(z)∈C
{wt(c[0,j](z) | c0 ̸= 0}

Let G(z) = ∑µ
i=1 and H(z) = ∑ν

i=1 be a generator matrix and parity
check matrix respectively, of a convolutional code C. For j ∈ N the truncated
sliding generator and parity check matrices are defined as

Gc
j =


G0 · · · GL

. . . ...
0 G0

 and Hc
j =


H0 0
... . . .

HL · · · H0

 ,

respectively. They are named generator matrix and parity check matrix
because for any c(z) = ∑

i∈N ciz
i ∈ C

[c0 · · · cj] = [u0 · · · uj]Gc
j

for some u0, . . . , uj ∈ Fk
q . and

H[c1 · · · cj] = 0

Since G(z) is left prime, G0 has full row rank and therefore c0 ̸= 0 if and
only if u0 ̸= 0. Therefore

dc
j(C) = min

u0 ̸=0
{wt([u0 · · · uj]Gc

j)} = min
c0 ̸=0

{wt(c[0,j](z)) | Hc
j [c0 · · · cj]T = 0}

From this follows the following theorem.

Theorem 2.3.2. For d ∈ N the following statements are equivalent

(a) dc
j(C) = d

(b) None of the first n columns of Hc
j are contained in the span of any

other d − 2 columns and one of the first n columns of Hc
j is in the span

of some other d − 1 columns of this matrix.

11



2.3. DISTANCES OF CONVOLUTIONAL CODES

There exists upper bounds for distances of convolutional codes, similar
to how it works for block codes.
Theorem 2.3.3 (Singleton Bound). Let C be an (n, k, δ)q convolutional code.
Then,

dfree ≤ (n − k)
(⌊

δ

k

⌋
+ 1

)
+ δ + 1

To prove the theorem, the following lemma is needed. Denote by G∞ the
matrix consisting of the high order coefficients of the corresponding entries
of G(z).
Lemma 2.3.1. Let C be an (n, k, δ)q convolutional code. Let G(z) be a
generator matrix in with ordered row degrees ν1 ≥ ν2 ≥ · · · ≥ νk such that
rank G∞ = k. If this is the case then δ = ∑k

i=1 νi. Let ℓ be the number of
rows with νi = νk. Then the following upper bound holds.

dfree ≤ n(νk + 1) − ℓ + 1

Proof. By applying column permutations and row addition and scaling, it is
possible to change G(z) so that the last ℓ rows of G∞ form a matrix[

Iℓ M
]

where M is an ℓ × (n − ℓ) matrix over Fq. This change can be represented
by an invertible matrix acting on the last ℓ rows, that also doesn’t change
the row degrees ν1, . . . , νk.

The last row of the new G(z) will have ℓ − 1 polynomials with weight,
strictly less than νk+1, one with weight no less than νk+1, and the remaining
n−ℓ have weight less than or equal to νk +1. Therefore the word (0, 0, . . . , 1)
gives a codeword with weight less than or equal to

(ℓ − 1)νk + (νk + 1) + (n − ℓ)(νk + 1) = n(νk + 1) − ℓ + 1

It is now possible to prove the singleton bound by maximizing the above
bound.

Proof. The upper bound from the previous lemma is the largest if νk is
maximized and ℓ minimized. The largest possible value for νk is ⌊δ/k⌋.
Minimizing ℓ results in

ν1 = ⌊δ/k⌋ + 1, . . . , νk−ℓ = ⌊δ/k⌋ + 1, νk−ℓ+1 = ⌊δ/k⌋, . . . , νk = ⌊δ/k⌋

substituting νk = ⌊δ/k⌋ and ℓ = k − δ + k⌊δ/k⌋ into the bound gives the
desired result.

12



CHAPTER 2. FOUNDATIONS OF CONVOLUTIONAL CODES

Theorem 2.3.4 (Column Distance Bound). Let C be an (n, k, δ)q convolu-
tional code. Then,

dc
j(C) ≤ (n − k)(j + 1) + 1 for all j ∈ N

Proof. The matrix Hc
j has full row rank, so the (n−k)(j+1) rows are linearly

independent. Therefore by Theorem 2.3.2, dc
j(C) must be less than or equal

to (n − k)(j + 1) + 1.

The first these two bounds is called the generalized singleton bound, and
any code that reaches this bound is called Maximum Distance Separable
(MDS)

Definition 2.3.5 (MDS Code). An (n, k, δ)q convolutional code that satisfies

dfree = (n − k)
(⌊

δ

k

⌋
+ 1

)
+ δ + 1

is called a maximum distance separable (MDS) code.

A code that reaches the second bound is called Maximum Distance Profile
(MDP). A lemma is needed to define it more conveniently.

Lemma 2.3.2. Let C be an (n, k, δ)q convolutional code. If dc
j(C) = (n −

k)(j + 1) + 1 for some j ∈ [L], then dc
i(C) = (n − k)(i + 1) + 1 for all i ≤ j.

Note that 0 ≤ dc
0(C) ≤ dc

1(C) ≤ · · · ≤ dfree, so dc
j(C) ≤ (n − k)(⌊ δ

k
⌋ + 1) + δ + 1

for all j ∈ N. Because of this guarantee, it is sufficient to establish the col-
umn distance bound for all j up to L =

⌊
δ
k

⌋
+
⌊

δ
n−k

⌋
, since inserting this

value into the second bound turns the equation into that of the generalized
singleton bound, which dc

j(C) is known to satisfy.

Definition 2.3.6 (MDP). An (n, k, δ)q convolutional code that satisfies

dc
j(C) = (n − k)(j + 1) + 1 for j = 0, . . . , L =

⌊
δ

k

⌋
+
⌊

δ

n − k

⌋

is called a maximum distance profile (MDP) code.

Definition 2.3.7 (sMDS). An (n, k, δ)q convolutional code is called sMDS
if

dc
M(C) = (n − k)

(⌊
δ

k

⌋
+ 1

)
+ δ + 1, where M =

⌊
δ

k

⌋
+
⌈

δ

n − k

⌉

13
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Theorem 2.3.5 (MDP Criteria). Let C be a convolutional code with gen-
erator matrix G(z) = ∑µ

i=1 Giz
i ∈ Fq[z]k×n and with left prime parity check

matrix H(z) = ∑ν
i=1 Hiz

i ∈ Fq[z](n−k)×n. The following are equivalent

1. C is MDP.

2. GL =


G0 · · · GL

. . . ...
0 G0

 where Gi = 0 for i > µ has the property that

every full size minor that is formed by rows with indices 1 ≤ j1 < · · · <
j(L+1)k < (L + 1)n which fulfills jsk < sn for s = 1, . . . , L is nonzero.

3. HL =


H0 0
... . . .

HL · · · H0

 where Hi = 0 for i > ν has the property that

every full size minor that is formed by columns with indices 1 ≤ j1 <
· · · < j(L+1)(n−k) < (L + 1)n which fulfills js(n−k) < sn for s = 1, . . . , L
is nonzero.

Theorem 2.3.6 (The dual of MDP is MDP). An (n, k, δ)q convolutional
code is MDP if and only if its dual, an (n − k, k, δ)q convolutional code, is
MDP.

Definition 2.3.8 (Partial Parity Check Matrix). Let H(z) = ∑ν
i=0 Hiz

i be
a left prime row reduced parity check matrix of an (n, k, δ)q convolutional
code C with Hν ̸= 0.

Let L =
⌊

δ
k

⌋
+
⌊

δ
n−k

⌋
. Then,

H =


Hν · · · H0 0

. . . . . .
0 Hν · · · H0

 ∈ F(L+1)(n−k)×(ν+L+1)n
q

is called a partial parity check matrix of C. In addition, if every full sized
minor of H that is formed by columns j1, . . . , j(L+1)(n−k) with j(n−k)s+1 > sn
and j(n−k)s ≤ sn + νn for s = 1, . . . , L is nonzero, then the code C is called
a complete MDP convolutional code.

14



1.Chapter

3Practical Results of
Convolutional Codes

3.1 Construction of MDS Codes
A number of constructions of MDS codes will now be presented. They each
have advantages and disadvantages in terms of the allowed parameters and
field sizes for the constructions, and therefore they all have their uses.

This section and the next, relies on [8] for for collecting the results in one
place. The theorems in this section comes, in order, from [6], [5] and [12].

The first two constructions are for codes with k = 1.

Theorem 3.1.1. For n ≥ 2 and q ≥ n + 1, set sj = ⌈(j − 1)(q − 1)/n⌉ for

j = 2, . . . , n and δ =


⌊2

9q⌋, n = 2
⌊1

3q⌋, 3 ≤ n ≤ 5
⌊1

2q⌋, n ≥ 6
In addition, let α be a primitive element of Fq. Set g1(x) = ∏δ

k=1(x −
αk), gj(x) = g1(xα−sj). Then G(z) = [g1(z), g2(z), . . . , gn(z)] is a generator
matrix for an (n, 1, δ)q MDS convolutional code with free distance n(δ + 1).

The second construction, like the first, gives a code with k = 1 and the
same restriction on q. However, it further restricts δ.

Theorem 3.1.2. Let q ≥ n + 1, 0 ≤ δ ≤ n − 1 and α an element of Fq

with order at least n. Then G(z) = ∑δ
i=0 zi[1, α, α2, . . . , α(n−1)i] generates an

(n, 1, δ)q MDS convolutional code.

And the last construction allows for wider selection of values for n, k and
δ, but with a restricted field size.

Theorem 3.1.3. Let a, r be integers such that a ≥ ⌊ δ
k
⌋ + 1 + δ

n−k
and an =

pr − 1 for prime p. Let α be a primitive element of Fpr . Set N = an,
K = N − (n − k)(⌊ δ

k
⌋ + 1) − δ, g(z) = (z − α0)(z − α1) · · · (z − αN−K−1) and

write g(z) as g(z) = g0(zn) + g1(zn)z + · · · + gn−1(zn)zn−1.
Then

G(z) =


g0(z) g1(z) · · · gn−1(z)

gn−1(z)z g0(z) · · · gn−2(z)
... . . . ...

gn−k(z)z · · · · · · gn−k(z)


is the generator matrix of an (n, k, δ)q MDS convolutional code.
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3.2. CONSTRUCTION OF MDP CODES

3.2 Construction of MDP Codes
The constructions for MDP codes depend on finding superregular matrices,
and appropriately taking a subset of the rows and columns to form a parity
check matrix.

This section uses [8] for the collection of results. The theorems in order
of apearance comes from [13], [4] and [2]

Since superregular matrices are used to construct MDP codes it is neces-
sary to define what a superregular matrix is.

Definition 3.2.1 (Superregular matrix). Superregular matrices are defined
as follows:

1. Let l ∈ N and A = [aij] be a matrix in Fl×l
q . Define a = [aij] where

aij = 0 if aij = 0 and aij equals the variable xij otherwise. Consider the
determinant of A in terms of the ring of polynomials in the variables
xij and coefficients in Fq. The determinant of A is considered trivially
zero if the determinant of A equals the zero polynomial. A is called
superregular if all its not trivially zero minors are nonzero.

2. A Toeplitz matrix of the form


a1 0
... . . .
al · · · al

 with ai ∈ Fq for i = 1, . . . , l

that is superregular is called a lower triangular superregular matrix.

Using any lower triangular superregular matrix it is then possible to con-
struct a convolutional MDP code with (n − k)|δ and k > δ.

Theorem 3.2.1. Let (n − k)|δ, k > δ and T be an r × r lower triangular
superregular matrix with r = (L + 1)(2n − k − 1). For j = 0, . . . L let Ij and
Jj be the following sets

Ij = {(j + 1)n + j(n − k − 1), . . . , (j + 1)(2n − k − 1)}
Jj = {jn + j(n − k − 1) + 1, . . . , (j + 1)n + j(n − k − 1)}

and let I = ∪L
j=0Ij and J = ∪L

j=0Jj. Form HL = [] taking the rows and
columns of T with indices in I and J respectively. Then H(z) = ∑L

i=0 Hiz
i

is the parity check matrix of an MDP convolutional code.

To construct a lower triangular superregular matrix T for the above the-
orem, one can use the following theorem.

16



CHAPTER 3. PRACTICAL RESULTS OF CONVOLUTIONAL CODES

Theorem 3.2.2. For every b ∈ N the not trivially zero minors of the Toeplitz
matrix 

1 0 · · · · · · 0(
b
1

) . . . . . . ...
... . . . . . . . . . ...(
b

b−1

) . . . . . . 0
1

(
b

b−1

)
· · ·

(
b
1

)
1


are all positive. Therefore, for each b ∈ N there exists a smallest prime pb

such that this matrix is superregular over the field Fpb
.

Another construction works with a superregular matrix that isn’t specifi-
cally lower triangular. The matrix is constructed using the following theorem.

Theorem 3.2.3. Let n, k, δ be given, and m = max{n − k, k}. Let α be a
primitive element of FpN where p is prime and N an integer. Define

Ti =


α2im

α2im+1 · · · α2(i+1)m−1

α2im+1
α2im+2

α2(i+1)m

... . . . ...
α2(i+1)m−1

α2(i+1)m · · · α2(i+2)m−2


for i = 1, . . . , L =

⌊
δ
k

⌋
+
⌊

δ
n−k

⌋
. Define

T (T0, . . . , TL) =


T0 0
... . . .

TL · · · T0


If N ≥ 2m(L+2)−1 then the matrix T (T0, . . . , TL) is superregular over FpN .

Using the constructed matrix T (T0, . . . , TL), it is possible to create an
MDP convolutional code according to the following theorem.

Theorem 3.2.4. Let n, k, δ be integers such that (n − k)|δ and let Tl = [tl
ij]

for i, j = 1, 2, . . . , m and l = 0, . . . , L where Tl is a matrix like in the previous
theorem. Define the matrix H l = [tl

ij] for i = 1, . . . , n − k, j = 1, . . . , k and
l = 0, 1, . . . , L.

If q = pN for N ∈ N+ and q ≥ p2m(L+1)+n−1, then the convolutional code
C = kerR[A(z)B(z)] where A(z) = ∑ν

i=0 Aiz
i ∈ R(n−k)×(n−k) and B(z) =

17
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∑ν
i=0 Biz

i ∈ R(n−k)×k, with ν = δ
n−k

, A0 = In−k. Where A(z) and B(z) are
the matrices obtained by solving the equations

[
Aν · · · A1

] 
H l−ν · · · H1

... ...
HL−1 · · · Hν

 = −
[
HL · · · Hν+1

]
,

and
Bi = A0H i + A1H i−1 + · · · + AiH0, i = 0, . . . , ν,

is an (n, k, δ)q MDP convolutional code.

3.3 Decoding Convolutional Codes
This section will be about erasure decoding of convolutional codes. It is pos-
sible to do conventional error correction on convolutional codes, but erasure
decoding without dependence on the time index is where they are partic-
ualarly useful.

This section references the sources [8] and [13].
Convolutional codes can be seen as a generalization to linear block codes,

where δ = 0, i.e. the polynomials are all of degree 0. The theory for decoding
convolutional codes can therefore also be seen as a generalization of the
decoding theory for linear block codes.

It is well known that when decoding erasures on linear block codes it is
possible to decode up to d − 1 erasures, where d is the minimum hamming
distance. In particular, d can be decided by the fact that it equals the
minimum possible number of columns in a parity check matrix of the code
that are linearly dependent.

If c(e) is the components of c that are erased, and c(r) is the components
that are recieved. Then, letting H

(e)
0 be the columns of the parity check

matrix corresponding to the indices erased from c and H
(r)
0 similarly for

the received indices, membership of the code decided by H0c
T = 0 can be

rewritten as H
(e)
0 c(e) = −H

(r)
0 c(r). Erasure decoding is then solving this set

of linear equations.
When erasure correcting an (n, k, δ)q noncatastrophic convolutional code

C, the performance is better than for an equivalent linear block code due
to being able to limit decoding to particular windows of the sequence being
decoded.

Writing a left prime parity check matrix as H(z) = ∑ν
i=0 Hiz

i and a
codeword as c(z) = ∑

i∈N ciz
i, assume that the coefficients c0, . . . , ct−1 are

known and there is at least one erasure in ct. Then for each j ∈ N, the

18
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matrix

Hj =


Hν · · · H0 0

. . . . . .
0 Hν · · · H0

 ∈ F(j+1)(n−k)×(ν+j+1)n
q

satisfies Hj[ct−ν · · · ct+j]T = 0, where ci = 0 for all i /∈ {0, . . . , deg c}. Let
H

(1)
j denote the matrix consisting of the first νn columns of Hj. Then it is

the case that Hj = [H(1)
j Hc

j ], and so to correct erasures one has to work in
the window [ct−ν · · · ct+j] and solve the system of equations

H
(e)
j [c(e)

t · · · c
(e)
t+j]T = −H

(r)
j [c(r)

t · · · c
(r)
t+j]T − Hj[ct−ν · · · ct−1]

where c
(e)
i and c

(r)
i denote the erased and received components of ci respec-

tively, and H
(e)
j and H

(r)
j are Hc

j with the corresponding columns erased.
Unambiguous erasure correction is possible if and only if the system of equa-
tions has a unique solution, that is if H

(e)
j has full column rank.

Therefore you have the following theorem:

Theorem 3.3.1 (Erasure Capacity of Convolutional Code). Let C be an
(n, k, δ)q convolutional code. If there is a sliding window of length (j+1)n and
no more than dc

j(C) − 1 erasures occur, then full left to right error correction
is possible.

Proof.

The best capacity is obviously achieved when dc
j(C) reaches the column

bound, i.e. when the code is MDP.
If a sequence of symbols with erasures that can’t be corrected is encoun-

tered, then it is necessary to find a block of νn correct symbols to restart
decoding, a so called guard space, that precedes symbols decodable according
to Theorem 3.3.1.

Theorem 3.3.2 (Guard Space Theorem). Let C be an (n, k, δ)q complete
MDP convolutional code and L = ⌊ δ

n
⌋ + ⌊ δ

n−k
⌋. If in a window size of (L +

ν+1)n there are no more than (L+1)(n−k) erasures, and they are distributed
such that between position 1 and sn and between (L + ν + 1)n and (L + ν +
1)n − sn + 1 there are no more than s(n − k) erasures, then full correction
of these symbols are possible In particular a guard space can be computed.

3.4 Input-state-output Representation
This section is based on [8].
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There is a connection between convolutional codes and discrete-time lin-
ear systems. Take linear systems of equations of the form

xt+1 = xtA + utB

yt = xtC + utD

ct = [ytut] (3.1)

with (A, B, C, D) ∈ Fs×s
q × Fk×s

q × Fs×n−k
q × Fk×n−k

q , t ∈ N, s, k, n ∈ N+ with
n > k and the information vector ut ∈ Fk

q , the state vector xt ∈ Fs
q, and

the parity vector yt ∈ Fn−k
q . The system of equations can be represented by

the tuple Σ = (A, B, C, D), given that the remaining structure is implicit
in the setup. The state of the system over time is then represented by
the parameter sequences called the trajectory {ut}t∈N, {xt}t∈N, {yt}. These
parameters represent the input (ut), the state (xt), and the output (yt) of
the system. If the initial state is set to x0 = 0, the trajectory of the system
can be represented by power series

u(z) =
∑
t∈N

utz
t

x(z) =
∑
t∈N

xtz
t

y(z) =
∑
t∈N

ytz
t

These satisfy the equations (3.1) if and only if[
x(z) u(z) y(z)

]
E(z) = 0

where

E(z) =

Is − Az −C
−Bz −D

0 In−k


In order to get a convolutional code from a linear system like (3.1), one

only needs the polynomial trajectories c(z) = [u(z)y(z)]. The x(z) trajec-
tories with infinite support are discarded since they correspond to an in-
finite transmission, and therefore the power series are the special case of
polynomials. The set of finite support trajectories of the equations form a
submodule of Fn

q with rank k and is therefore an (n, k)q convolutional code
denoted by C(A, B, C, D). The tuple (A, B, C, D) is then called the input-
state-output (ISO) representation of the code. That the trajectories form
a convolutional code implies the existence of a generator matrix. Further-
more, [X(z)G(z)]E = 0 and [X(z)G(z)] left prime, for X(z) ∈ Fk×s

q and
G(z) ∈ Fk×n

q if and only if G(z) is a generator matrix for the code.
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In contrast, for an (n, k)q convolutional code C, there exists a tuple
(A, B, C, D) such that C = C(A, B, C, D) up to permutation by the coor-
dinates.

3.5 Viterbi Decoding
Important to convolutional codes is a way to decode them, after all there
is no point to encoding information if there is no way to read it back. The
Viterbi algorithm is a minimum distance encoder using the convolutional
code generalization of hamming distance as the metric. A useful trait of the
Viterbi algorithm is that it allows for the decoding of words in small sections
at a time, which can be particularly useful in low bandwidth applications.

This section is based on material from [7].
A helpful way to illustrate the Viterbi algorithm is with the aid of trellis

diagrams.
The trellis diagram is a graph with each node encoding a state xt and a

time index. The nodes are arranged in columns from left to right correspond-
ing to the time index and rows according to state. So the vertical position
of a node denotes the value of the state variable, and the horizontal position
corresponds to the time index. Directed edges going from left to right repre-
sent possible state transitions, with each edge labeled with the input/output
values at the time index of the tail.

Example 3.5.1. To illustrate the trellis diagrams an example is needed.
Take the following system, a good sample code found in [7]. Let C be an
(2, 1)2 code, with codewords y(i) = (y1(i), y2(i)) for all time indices i, where

y1(i) = u(i) + u(i − 2)
y2(i) = u(i) + u(i − 1) + u(i − 2)

The previous inputs u(i − 1) and u(i − 2) are encoded in the state, and thus
it can be put in input-state-output representation with the matrices

A =
[
0 1
0 0

]
B =

[
1 0

]
C =

[
0 1
1 1

]
D =

[
1 1

]
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The trellis diagram of this code can then be written.

11

10

01

00

1/01
0/10
0/01
1/10
0/01
1/10
0/01
1/10

11

10

01

00

1/01
0/10
0/01
1/10
0/01
1/10
0/01
1/10

11

10

01

00

1/01
0/10
0/01
1/10
0/01
1/10
0/01
1/10

11

10

01

00

1/01
0/10
0/01
1/10
0/01
1/10
0/01
1/10

The trellis diagram of a convolutional code is thus used to describe the
Viterbi algorithm

Codewords are paths through the trellis diagram of the convolutional code
that starts and ends at zero. When a codeword is encoded the transmitted
data takes the form c(z) = u(z)G(z). The goal of the decoding process is
to find u(z) given a received word r(z) which is x(z) with errors added, i.e.
find the path through the trellis diagram corresponding to the most likely
codeword. To that end, costs are assigned to all edges of the trellis diagram
equal to the distance between the output at that edge and the actual value
in the recieved word. The minimum distance decoding is then the minimum
cost path through the trellis diagram. Dijkstra’s algorithm would be suitable
for the case of a general graph, but due to the additional structure given by
the trellis, it is possible to simplify the algorithm.

To that end, the following lemma is used.

Lemma 3.5.1 (Viterbi Lemma). Assuming, for some i ≥ 0, all the minimal
cost paths Px from (0, 0) to the vertices (x, i) for all x ∈ Fs

q, are known and
have weight w(x). Let e1, . . . , er be all the edges that end at a given vertex
(x, i + 1). Let (xj, i) be the starting vertex of the edge ej and let wj be the
weight of the edge ej. Then the minimal cost of a path from (0, 0) to (x, i+1)
is the minimum w of the sums w(xj) + wj and Pxj

ej is also a minimum cost
path if j is chosen such that w = w(xj) + wj.

Proof. The construction gives a path of the required cost, so it needs showing
that no lower cost can be achieved Assume P is a path from (0, 0) to (x, i +
1) satisfying w(P) ≤ w. A path ending in (x, i + 1) must end in one of
the edges ej, so let ej0 be that edge for P . Then the path can be written
P = P ′ej0 where P ′ is the path containing all the edges before ej0 . By
assumption w(P ′) ≥ w(xj0), and therefore w(P) = w(P ′) + wj0 > w which
is a contradiction.

The Viterbi algorithm can be summed up in the following steps.
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1. Initialize the variables

i = 0
w(0, 0) = 0
w(x, i) = ∞, for all (x, i) ∈ Fs

q × N, (x, i) ̸= (0, 0)
P(0, 0) = ∅

2. For all states x ∈ Fs
q with w(x, i) < ∞, iterate over all edges e leaving

(x, i) with x′ as the end state of e, and do the following: If w(x, i) +
w(e) < w(x′, i + 1), assign the values

P(x′, i + 1) = P(x, i)e
w(x′, i + 1) = w(x, i) + w(e)

3. i = i + 1

4. If i < N , go to step 2

5. Output the path P(0, N)

As with Dijkstra’s algorithm all nodes are assigned a minimal path cost, the
initial node (0, 0) being assigned cost 0, the others having infinite cost since
a path to them is not yet known. From the set of unvisited nodes a current
node is chosen, where all edges connecting from it are traced, and if the sum
of the minimal path cost of the current node and the cost of the edge is
less than the current minimal path cost of the connecting node that node
is updated with the lower value. Unlike Dijkstra’s algorithm, where there
is no prefered order to the nodes and it therefore becomes necessary to sort
the unvisited nodes, in a trellis diagram there is a partial order on the time
index. It therefore makes sense to visit the nodes in the order of their time
index, low to high.
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