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Abstract 
Electricity price forecasting has become increasingly critical in dynamic and volatile markets. Market 

like Denmark’s DK1 zone is one of them which is mostly driven by the rising integration of renewable 

energy sources and external geopolitical influences. This thesis investigates the comparative 

performance of two forecasting models- ARIMAX (AutoRegressive Integrated Moving Average with 

Exogenous Variables) and XGBoost (Extreme Gradient Boosting) on electricity elspot prices. The analysis 

integrates both statistical and machine learning approaches, leveraging a dataset containing hourly 

electricity spot prices DK1 and energy production variables. The analysis begins with pre-model testing 

for stationarity, autocorrelation and normality of time series data for ARIMAX modeling. Afterwards, 

the ARIMAX and XGBoost models are optimized through AIC, BIC, grid search, cross-validation, optimal 

parameter selection and so on. Later, this thesis examines the performance of both models for 

forecasting electricity spot prices. Focusing on short-term and long-term spot price predictions, this 

paper highlights the necessity of robust forecasting models to capture the volatile characteristics of 

electricity prices. The empirical findings reveal that ARIMAX performs highly accurate for in-sample 

predictions but struggles with out-of-sample generalization where XGBoost outperforms ARIMAX in 

forecasting accuracy for unseen data. 

 

 

Keywords: DK1, ARIMAX, XGBoost, Elspot forecasting. 
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Abbreviations 
 
 
ACER : Agency for the Cooperation of Energy Regulators (European regulatory authority ensuring 

energy market transparency and cooperation). 

ACF : Autocorrelation Function (Measures correlation between time series and its lagged 

values). 

ADF : Augmented Dickey-Fuller Test (Statistical test for checking stationarity in time series). 

AIC : Akaike Information Criterion (Model selection metric penalizing complexity). 

ANN : Artificial Neural Network (Machine learning model using brain neural structures for pattern 

recognition). 

AR : Autoregressive (Uses past values to predict future values in time series). 

ARIMA : Autoregressive Integrated Moving Average (Forecasting model using AR, integration, and 

MA components). 

ARIMAX : Autoregressive Integrated Moving Average with Exogenous Variables (ARIMA model 

incorporating external explanatory variables). 

BIC : Bayesian Information Criterion (Model selection metric balancing fit and simplicity). 

DA:  Day-Ahead (Electricity market where prices are determined a day in advance). 

DK1 : Denmark-West (Electricity market region for western Denmark). 

DK2 : Denmark-East (Electricity market region for eastern Denmark). 

DM : Diebold-Mariano Test (Statistical test comparing forecasting accuracy of two models). 

EDA : Exploratory Data Analysis (Initial step to summarize and understand data characteristics). 

EIA : Energy Information Administration (US organization providing energy statistics and 

analysis). 

EPAD : Electricity Price Area Differentials (Financial instruments for hedging price differences 

across zones). 

EPEX : European Power Exchange (Market platform for trading electricity across Europe). 

GARCH : Generalized Autoregressive Conditional Heteroskedasticity (Model for volatility prediction 

in time series). 

GRU : Gated Recurrent Unit (Neural network architecture for handling sequence data efficiently). 

IEA : International Energy Agency (Global authority offering policy advice on energy security and 

sustainability). 

LB : Ljung-Box Test (Statistical test for detecting autocorrelation in residuals). 

JB : Jarque-Bera Test (Test for normality in statistical distributions). 
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LNG : Liquefied Natural Gas (Natural gas cooled into liquid for easier storage and transportation). 

LSTM : Long Short-Term Memory (Recurrent neural network model for sequence prediction). 

MA : Moving Average (Model component smoothing time series data by averaging over time). 

MAE : Mean Absolute Error (Evaluation metric calculating average absolute differences between 

predicted and actual values). 

MSE : Mean Squared Error (Metric measuring the average squared difference between predicted 

and actual values). 

MWh : Megawatt-hour (Unit of energy representing one megawatt of electricity used for one 

hour). 

PACF : Partial Autocorrelation Function (Measures correlation between time series and lagged 

values excluding intermediate correlations). 

PPA : Power Purchase Agreement (Contract between electricity buyer and seller defining pricing 

and volume terms). 

RMSE : Root Mean Squared Error (Square root of MSE; measures the average prediction error 

magnitude). 

R² : R-Squared or Coefficient of Determination (Statistical metric showing the proportion of 

variance explained by the model). 

REMIT : Regulation of wholesale Energy Market Integrity and Transparency (EU regulation ensuring 

transparency and integrity in energy markets). 

RW : Random Walk (A stochastic process where the current value is determined or predicted 

with the previous value plus a random step,) 

SVM : Support Vector Machine (Machine learning model used for classification and regression 

tasks). 

TSO : Transmission System Operator (Entity managing the high-voltage electricity grid). 

WN : White Noise (Random data with constant mean and variance over time). 

XGBoost : Extreme Gradient Boosting (Highly efficient machine learning algorithm for structured data 

regression and classification). 
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1. Introduction 

1.1. Background 

The global energy landscape is experiencing a profound transforma^on driven by climate change, 

technological advancements and regulatory frameworks. As countries move toward decarboniza^on, 

energy markets have become more complex in balancing supply and demand efficiently. As energy 

markets become more complex and compe^^ve, accurate forecas^ng is also indispensable for hedging 

future posi^ons in forward markets. Long-term contracts and deriva^ve instruments such as op^ons 

and futures are based on the an^cipated future prices of electricity. Incorrect forecas^ng can lead to 

poor hedging strategies and financial losses. By incorpora^ng machine learning and sta^s^cal models 

like XGBoost or ARIMAX, companies can predict price paaerns, improving market performance and 

decision-making in real-^me. Energy price forecas^ng also help to minimize price vola^lity and protect 

consumers from extreme price hikes and thus can make energy affordable to everyone. While many 

researchers focus on primary drivers like coal, wind, or temperature to forecast electricity prices, 

however, this paper emphasizes on post-produc^on variables such as- central power produc^on,  local 

power produc^on, onshore-offshore wind genera^on, solar power genera^on, etc. These features offer 

a refined view of how electricity is used and managed within the market acer genera^on. Tradi^onal 

variables may predict supply poten^al but produc^on variables reveal actual supply and grid behavior 

which ul^mately determines pricing. 

 

 

 

1.2. Research Objectives 

The primary objec^ve of this research is to evaluate and compare between ARIMAX and XGBoost model 

and finalize which model forecast beaer on out-of-sample data of electricity prices in Denmark’s DK1 

region. 

 

 

1.3. Problem Statement 

Forecas^ng electricity prices presents unique challenges, par^cularly in regions like Denmark (DK1) 

where renewable energy sources form a significant share of the energy mix. Unlike fossil fuel-based 
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markets, where price trends are more stable and driven by primary factors like oil, coal, and gas, 

however, renewable energy introduces high levels of price vola^lity due to weather-dependent 

produc^on. This inherent variability makes it difficult to predict future electricity prices accurately. The 

vola^le and unpredictable nature of DK1 electricity prices necessitates the use of advanced forecas^ng 

models capable of handling complex paaerns. Therefore, selec^ng the most suitable forecas^ng model 

is cri^cal for ensuring precise predic^ons and effec^ve energy trading strategies. 

 

This paper follows the following ques^ons- 

 

Primary research ques^on- 

1. How do ARIMAX and XGBoost models perform in forecas^ng electricity prices in the DK1 zone, 

and which model offers superior accuracy under vola^le market condi^ons? 

 

Secondary research ques^ons- 

a. How effec^ve is the ARIMAX model in incorpora^ng exogenous variables to predict electricity 

prices and what are its limita^ons? 

b. How does XGBoost’s ability to handle nonlinear rela^onships and high-dimensional data 

contribute to its forecas^ng performance? 

c. How do forecas^ng errors vary across different ^me horizons? 

 

 

 

 

 

1.4. Research Method 

Research method includes a step-by-step approach to ensure that the research process is structured, 

transparent, and capable of addressing the research ques^ons effec^vely (Creswell & Creswell, 2017). 

For this thesis, the research method is designed to explore and compare the performance of ARIMAX 

and XGBoost models encompassing all the steps from data collec^on to repor^ng findings following a 

structured process. 
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Figure 1: The research method used in the context of this thesis; adopta^on from (Creswell & 

Creswell, 2017) 

 

The research iden^fies the challenges of forecas^ng electricity prices in the DK1 zone par^cularly due 

to the high vola^lity caused by the reliance on renewable energy sources. The problem statement and 

research objec^ves are based on through literature review, research mo^va^on toward energy sector 

and to meet the prac^cal challenges of forecas^ng DK1 electricity prices to support trading and 

opera^ons. Hourly electricity price data and relevant exogenous variables are collected from Energinet1, 

the transmission system operator (TSO) in Danish energy market. The data are hourly because the 

electricity market operates and balances supply and demand on an hourly basis. This is a standard 

prac^ce in energy markets worldwide as electricity cannot be easily stored and must be generated, 

distributed, and consumed in real-^me. 

 

Data preprocessing involves handling missing values, scaling features, and performing Exploratory Data 

Analysis (EDA) to understand paaerns and trends. Sta^s^cal tests, including the Augmented Dickey-

Fuller (ADF) test for sta^onarity and the Ljung-Box (LB) test for autocorrela^on are conducted to validate 

the suitability of the data for ^me-series modeling. 

 
1 Energy Data Service, Build Report, Energinet, Link- https://www.energidataservice.dk/buildreport 
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and Analysis
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Reporting Findings

https://www.energidataservice.dk/buildreport
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Acer preprocessign of data both models are developed. The ARIMAX model is developed by using Auto-

ARIMA and acerwards op^mal parameters and exogenous variables are incorporated to improve the 

model's forecas^ng accuracy. The XGBoost model is developed using GridSearchCV to op^mize 

hyperparameters such as tree depth, learning rate, and the number of es^mators. The model’s 

regulariza^on features are u^lized to address overfikng and improve generaliza^on. The quan^ta^ve 

metrics, including Mean Absolute Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error 

(RMSE), and R-squared (R²) are evaluated and lastly assessed the model with the Diebold-Mariano test 

to compare the performance of the two models on training and tes^ng datasets. Finally compare the 

models visually and empirically in short-term (1-day and 2-day) and long-term (7-day) forecas^ng 

horizons. The results are visualized through ^me-series plots, residual distribu^ons and error metrics. 

The findings then emphasize on discussing their implica^ons for electricity price forecas^ng in vola^le 

energy markets and providing recommenda^ons for future research.  

 

ChatGPT, as a genera^ve AI tool, is u^lized for genera^ng some relevant coding and understanding of 

technical outputs but does not influence the core research findings, analysis, or interpreta^on. 
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2. Energy Market in Denmark 

Denmark is one of the leading countries in renewable energy integra^on, par^cularly for wind power 

genera^on. In 2020, wind power accounted for over 50% of Denmark’s electricity consump^on, making 

it one of the highest shares of wind energy in the world (Danish Energy Agency. 2022). Denmark’s 

commitment to sustainability and green energy is further demonstrated by its ambi^ous Energy Island 

project (an offshore hub for wind power genera^on) which aims to create ar^ficial islands in the North 

Sea to harness offshore wind energy. This project would significantly expand country’s renewable energy 

capacity and expec^ng to make it a major exporter of green electricity.  

 
Figure 2: Electricity biding zone in Denmark (Source: Energinet) 

 

Denmark has extensive grid interconnec^ons with its neighboring countries including Norway, Sweden, 

Germany, Netherlands and UK. DK1’s and DK2’s connec^on with neighboring countries allow for 

efficient balancing of electricity across the regions. These interconnec^ons allow for the export and 

import of electricity, helping to balance the grid during periods of excess or shortage in renewable 

energy genera^on. For instance, during ^mes of high wind genera^on, Denmark can export excess 

electricity to its neighbors, conversely, while during periods of low wind, it can import hydropower from 

Norway or nuclear power from Sweden (Energinet, 2022). 

 

The Transmission System Operator (TSO), Energinet, plays a central role in this balancing act, managing 

the grid and facilita^ng the trading of balancing services. Balancing markets including the mFRR (manual 

Frequency Restora^on Reserves) and aFRR (automa^c Frequency Restora^on Reserves) are crucial in 

maintaining grid stability, par^cularly during periods of renewable genera^on fluctua^on. As renewable 

energy becomes more prevalent, new market mechanisms like Power Purchase Agreements (PPAs) have 

emerged as vital tools for hedging against price vola^lity. In Denmark, PPAs allow energy producers and 

consumers to agree on long-term contracts, securing stable electricity prices and suppor^ng the 

financing of new renewable energy projects. These agreements are crucial for integra^ng more 

renewable energy into the grid while ensuring that energy producers have a stable revenue stream. In 
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addi^on to PPAs, Danish energy companies engage in hedging strategies to manage the risks associated 

with price fluctua^ons. Hedging can take the form of futures and op^ons contracts. It  allows market 

par^cipants to lock in prices for future electricity deliveries. This is par^cularly important in a market 

(e.g Denmark), where renewable energy genera^on can cause significant price swings due to its 

variability. Electricity prices are influenced by the Electricity Price Area Differences (EPADs) which are 

used to hedge against regional price differences between Denmark’s two bidding zones, DK1 and DK2 

(Spodniak et al., 2021).  These two zones- Western Denmark (DK1) and Eastern Denmark (DK2) are 

physically separated but connected to the broader Nordic Energy Market via the Nord Pool electricity 

exchange. The Danish electricity market is also part of the wider European energy system through the 

European Power Exchange (EPEX) where cross-border trading opportuni^es are maximized by the ACER 

(Agency for the Coopera^on of Energy Regulators). However, REMIT (Regula^on on Wholesale Energy 

Market Integrity and Transparency) is an European Union regula^on aimed at promo^ng transparency 

and integrity in the wholesale energy markets, including electricity and gas by preven^ng market 

manipula^on. Na^onal Regulatory Authori^es (NRAs) e.g. Danish U^lity Regulator (Forsynings5lsynet 

in Danish) in each country enforce REMIT locally and these na^onal regulatory bodies collaborate with 

ACER for cross-border enforcement. These collbora^on and par^cipa^on enhance market liquidity and 

ensures price convergence across Europe. Regulatory efforts by the Danish government and the 

European Union aim to ensure market transparency, efficiency and security of supply. 

 

Nord Pool power exchange allows par^cipants from the Nordic region, such as- Denmark, Norway, 

Sweden, and Finland, and extends to the Bal^c countries. This market provides a plaporm for buying 

and selling electricity across the region. It operates both day-ahead and intraday markets allowing for 

cross-border electricity trading. This power exchange are also responsible for sekng up spot price 

(system price) of different bidding zones e.g. DK1 based on electricity supply and demand. The system 

price of DK1 zone, at which electricity is delivered to the market par^cipants in a Day-ahead (DA) market 

is also known as area prices or Elspot price. So, elspot price indicates market price of electricity 

determined for each hour of the following day.  Par^cipants submit their bids a day in advance and the 

elspot price is determined by matching supply and demand curves to establish a market-clearing price. 

This price can vary by bidding zone (e.g., DK1 and DK2 for Denmark) depending on transmission 

constraints and market dynamics. The transmission constraints here refer to the physical limita^ons 

(capacity limits) of the electricity grid in transpor^ng power from one region to another due to 

conges^on in the transmission network, grid maintenance, or infrastructure. When demand for 

electricity in a certain region exceeds the capacity of the transmission lines, it can create price 

differences between bidding zones. Transmission constraints can lead to localized price spikes or 
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surpluses depending on the supply-demand balance in each zone. This scenario can be clarified with an 

example for determinig biding price for DK2 zone- 

 

We can consider the interconnec^on transmission conges^on with an example. Assuming that DK2 can 

generate 200 MW locally at €70/MWh but has a demand of 500 MW, requiring it to import electricity. 

DK1 generates 600 MW from wind power at €40/MWh and has sufficient power to meet its own 

demand. Germany has excess supply at €50/MWh and is connected to DK2. 

- Transmission from DK1 to DK2 is limited to 200 MW. 

- Transmission from Germany to DK2 is limited to 100 MW. 

 

Scenario 1: Without Conges^on - If DK2 only needed 100 MW, the wind power from DK1 would fully 

meet the demand at €40/MWh. The prices in both zones would equalize at €40/MWh, as there is no 

conges^on. 

Scenario 2: With Conges^on- Now, imagine DK2 needs 300 MW. DK1 can only send 200 MW due to 

transmission constraints, so the remaining 100 MW must be supplied from Germany at €50/MWh. This 

causes DK2’s price to rise since part of the demand is met by Germany’s more expensive electricity. 

Here, conges^on causes a price difference between DK1 and DK2 due to the transmission limita^ons, 

resul^ng in higher costs for DK2. In this case, conges^on causes price divergence between zones 

because transmission lines are limited in capacity. 

 
Figure 3: System price forecasting approach by Nord Pool 

 

Market par^cipants, including producers (such as wind farms, thermal plants) and consumers (large 

industries, distribu^on system operators) submit hourly bids for electricity delivery the next day (in the 

day-ahead market) or in real ̂ me (intraday). For instance, a wind farm might bid 100 MWh at €30/MWh 

for a par^cular hour based on its expected genera^on. Once all bids are collected, Nord Pool matches 

the supply and demand curves, which results in the market-clearing price (system price). This is the 

https://www.nordpoolgroup.com/en/trading/Day-ahead-trading/Price-calculation/
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price at which electricity will be bought and sold for each hour of the next day. The system price reflects 

the equilibrium price for the en^re Nordic market while area prices reflect conges^on or transmission 

limita^ons between bidding zones. We can imagine the bidding process with an another hypothe^cal 

scenario. 

Let’s imagine electricity needs to be supplied in the next day at 1:00 PM. 

Producers' Offers: (electricity) Consumers' Bids: (willing to pay) 

Producer A: Offers to supply 100 MW at €50/MWh 

Producer B: Offers to supply 200 MW at €60/MWh 

Producer C: Offers to supply 150 MW at €70/MWh 

Consumer X: Bids to buy 100 MW at €65/MWh 

Consumer Y: Bids to buy 200 MW at €55/MWh 

Consumer Z: Bids to buy 150 MW at €75/MWh 

 

Market-Clearing Process: 

Step 1: Nord Pool collects all offers from producers and bids from consumers. 

Step 2: It matches the lowest offers from producers with the highest bids from consumers un^l supply 

meets demand. 

Based on above scinario, consumer Z is willing to pay the most (€75/MWh), so they will definitely get 

their electricity and producer A is offering at the lowest price (€50/MWh), so they will definitely supply 

electricity. Nord Pool thus con^nues matching un^l supply meets demand. 

 

Let's consider the market-clearing price is set at €60/MWh. So, Producers A and B will supply electricity 

because their offers are at or below €60/MWh. Consumers X and Z will buy electricity because they are 

willing to pay at or above €60/MWh. Contrary, producer C and consumer Y are excluded because their 

offers and bids don't match the market-clearing price. 

 

However, the intraday market allows trading closer to real-^me, enabling market par^cipants to adjust 

their posi^ons based on updated supply and demand informa^on. This is especially important for 

renewable sources like wind, where genera^on forecasts can change frequently. Energy trading 

companies take advantage of market vola^lity by engaging in algorithmic trading to op^mize their 

posi^ons and profit from short-term price fluctua^ons. 
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3.  Production-Consumption Dynamics in DK1 

This chapter analyzes power genera^on trends over the past three years (2022 to 2024) in the DK1 

zone focusing on various energy sources: solar, onshore wind, offshore wind, local produc^on, and 

central produc^on.  

 
Figure 4: Power generaDon in DK1 zone in 2022 (source: Energinet) 

 
Figure 5: Power generaDon in DK1 zone in 2023 (source: Energinet) 

 
Figure 6: Power generaDon in DK1 zone in 2024 (source: Energinet) 
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Winter months typically has higher energy demand due to colder temperatures, longer nights and 

increased use of hea^ng. The above three plots, figure 4 to 6, show a seasonal trend of electricity 

produc^on where it reaches to the peak in the winter months and dips during the summer, par^cularly 

in June and July. In all years, wind energy, both onshore and offshore, dominates the energy mix while 

solar energy makes a no^ceable increase in summer. The general trend highlights how renewable 

sources (wind and solar) shape the produc^on paaerns with local and central produc^on ac^ng as a 

stabilizing force across all months. In this context, local produc^on refers to decentralized energy 

genera^on sources, ocen smaller in scale and typically situated closer to the point of consump^on. 

These could be solar power systems, small-scale wind turbines, and smaller combined heat and power 

(CHP) plants, which ocen serve local communi^es (Wang, J. et al., 2017). On the other hand, central 

power produc^on refers to larger, centralized power plants that generate electricity on a much larger 

scale. These include fossil fuels, biomass, or similar large power plants. These plants feed into the 

na^onal or regional grids and provides a stable and large-scale electricity supply (Danish Energy Agency, 

2021). 

 

 
Figure 7: Solar cells power generaDon in DK1 zone in 2024 (source: Energinet) 

 

The solar cell produc^on share in DK1  (figure 7) shows notable seasonal paaerns across 2022, 2023 

and 2024. As depicted in the graph, solar energy produc^on peaks during the summer months (May to 

August). If we pay special focus on the spike, we find the highest share of total produc^on in june 

especially in 2023 where it surpassed 35% of total produc^on. In contrast, solar contribu^ons fall 

sharply in winter, nearing zero by December. However, 2022 experiences a smaller surge with a 

maximum produc^on share reaching approximately 20% in June. This variability is directly ̂ ed to annual 

differences in weather paaerns and perhaps varia^ons in installed solar capacity. 
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Figure 8: Onshore power generaDon in DK1 zone in 2024 (source: Energinet) 

 

Onshore wind consistently contributes a significant por^on of total electricity produc^on in DK1, as 

shown in the above graph. Unlike solar, wind power exhibits a more even distribu^on throughout the 

year with a less pronounced seasonal dip. All years show rela^vely stable wind produc^on with onshore 

wind accoun^ng for 40-50% of the total produc^on. 

 

 
Figure 9: Total power generaDon and consumpDon in DK1 zone in 2022 (source: Energinet) 

 

 
Figure 10: Total power generaDon and consumpDon in DK1 zone in 2023 (source: Energinet) 
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Figure 11: Total power generaDon and consumpDon in DK1 zone in 2024 (source: Energinet) 

 

In each year, electricity consump^on tends to follow a fairly predictable seasonal paaern with 

consump^on. The gap between produc^on and consump^on narrows in summer months (e.g., June 

and July), where renewable sources are more abundant and the overall energy demand is lower. In 

2022, the produc^on appears slightly more variable, especially with a significant increase in January. In 

contrast, 2023 and 2024 show smoother produc^on trends which indicates improved stability and 

perhaps more efficient grid integra^on of renewable energy. However, it is clearly depicted that 

produc^on exceeds consump^on over the past years. It suggests that DK1 may have surplus electricity 

at ^mes, poten^ally allowing for energy exports or storage strategies, par^cularly when renewable 

power genera^on is high. 
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4.  Literature Review 

Forecas^ng electricity prices has been an ongoing challenge due to the inherent complexi^es of energy 

markets, especially with the increasing integra^on of renewable energy sources. The literature on this 

topic reveals a growing interest in both tradi^onal sta^s^cal methods and advanced machine learning 

models. volume of research in electricity price forecas^ng is compara^vely smaller than in sectors like 

finance, there has been a notable increase in studies as energy markets have gradually matured and 

evolved over recent decades. 

 

Historically, tradi^onal ^me-series models like ARIMA (Autoregressive Integrated Moving Average) have 

been applied to forecast energy prices. ARIMA’s strength lies in its capacity to handle linear paaerns in 

^me series data, and it has been successfully used in electricity price forecas^ng in stable, fossil-fuel-

based markets. For instance, (Contreras et al., 2003) used ARIMA models to forecast prices in the 

Spanish electricity market, demonstra^ng that the model could capture basic market dynamics. 

However, ARIMA and similar methods (ARMA, ARIMAX etc.) ocen fall short when handling the 

increasing vola^lity in markets influenced by renewable energy. Renewable energy, especially wind and 

solar power, introduces addi^onal variability due to its dependence on weather condi^ons. This is 

par^cularly true for countries like Denmark, where renewables form a large por^on of the energy mix. 

For example, wind power in Denmark’s DK1 bidding zone has been shown to cause price fluctua^ons 

that tradi^onal models struggle to predict accurately (Munoz et al., 2020). These models are primarily 

designed for stable markets driven by fossil fuels like coal and gas, where supply is more predictable. 

ARIMA models are par^cularly effec^ve when dealing with ^me series data that are linear and 

sta^onary, where the rela^onships between past and future values are clear and stable over ^me 

(Hyndman, R. J., 2018). This is a major drawback in many real-world applica^ons, such as energy and 

electricity price forecas^ng, where the rela^onships between variables may involve complex dynamics, 

including seasonality, vola^lity, and interac^ons between mul^ple factors (Tsay, 2005). Furthermore, 

ARIMAX is designed for mul^variate ^me series, maximizing its use in cases where mul^variate data 

(i.e., mul^ple predictors) are available, which could otherwise improve the accuracy of forecasts.  

 

(Lucic & Xydis, 2023) focused on applying the ARIMAX (Autoregressive Integrated Moving Average with 

Exogenous Variables) model to forecast electricity prices in the Denmark-West (DK1) bidding zone. The 

study analyzed hourly price data for the DK1 intraday market over a two-year period from January 1, 

2019, to December 31, 2020. The model was designed to use day-ahead prices as an exogenous input 

to improve forecas^ng accuracy for the intraday market. They found that the ARIMAX model 

significantly outperformed other forecas^ng techniques. The model could accurately predict volume-
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weighted average electricity prices up to 24 hours in advance. This performance suggests that ARIMAX, 

when combined with day-ahead prices as an external variable, can be a highly effec^ve tool for short-

term price forecas^ng.  However, the study also highlighted certain limita^ons. While the ARIMAX 

model worked well with smaller datasets and specific external variables, its performance declines when 

applied to larger, more complex datasets. This suggests that ARIMAX may struggle to adapt to highly 

vola^le or large-scale data, especially in comparison to more advanced machine learning models. 

 

Recent studies have highlighted the limita^ons of tradi^onal sta^s^cal models like ARIMAX in handling 

complex, nonlinear, and dynamic systems such as electricity price forecas^ng. (Fu et al., 2015) 

conducted a compara^ve study that evaluated ARIMAX against several machine learning approaches, 

including Support Vector Machine (SVM), Ar^ficial Neural Networks (ANN), and Decision Tree models, 

for electricity load forecas^ng. Their results demonstrated that machine learning models, par^cularly A 

and ANN, consistently outperformed ARIMAX in terms of accuracy and robustness. 

 

However another supervised ML approach, XGBoost, a gradient-boos^ng decision tree algorithm, has 

gained aaen^on for its performance in this domain. It is par^cularly suitable for forecas^ng electricity 

prices in vola^le markets because of its ability to process complex, mul^-variable datasets efficiently.  

 

The study, "Balancing the Norwegian regulated power market anno 2016 to 2022" provides an in-depth 

analysis of Norway's power market dynamics over recent years. The study offers a detailed sta^s^cal 

assessment of the Norwegian regulated power market, examining trends across various market metrics 

over six years. This analysis provides insights into changes in balancing market behaviors as renewable 

energy sources, especially wind power, have grown in significance. The study uses several models, 

including XGBoost, to assess predictability but notes that the effec^veness of these models is limited by 

the increasing complexity of market dynamics (Austnes et al., 2024). 

 

(Xu et al., 2024) conducted a compara^ve study aimed at enhancing long-term solar energy hourly 

forecas^ng through the fusion of GRU (Gated Recurrent Units) and XGBoost models. Their work 

introduced an innova^ve hybrid approach where XGBoost played a crucial role in capturing nonlinear 

rela^onships among features, complemented by GRU’s temporal sequence processing capabili^es. (Xu 

et al., 2024) men^oned that XGBoost’s ability to handle high-dimensional data and integrate exogenous 

variables contributed significantly to the hybrid model's success. This finding aligns with the broader 

recogni^on of XGBoost as a robust and scalable machine learning model, especially in scenarios 

requiring high adaptability and precision. By demonstra^ng consistent performance across varying 
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forecas^ng lengths, this work underscores the flexibility and robustness of XGBoost in handling complex 

energy forecas^ng problems. 

 

In addi^on to machine learning approaches, recent studies have also focused on feature selec^on as a 

cri^cal component of electricity price forecas^ng models. For instance, (Lago et al., 2021) demonstrated 

that incorpora^ng explanatory variables such as weather data, historical prices, and system load 

significantly improves the accuracy of machine learning models. This is par^cularly relevant for 

Denmark, where wind genera^on and demand paaerns can change rapidly based on weather 

condi^ons. 

 

From reviewing the exis^ng literature, it's clear that while many studies have focused on using sta^s^cal 

models like ARIMAX or machine learning models like XGBoost for forecas^ng, direct comparisons 

between the two in the context of electricity price predic^on are quite limited. Most research either 

works on improving one model or compares machine learning approaches without including tradi^onal 

^me series models like ARIMAX. This creates a gap in understanding how these two models perform 

against each other in real-world energy forecas^ng scenarios, especially in vola^le markets like DK1. 

This research aims to fill that gap and provide valuable insights into their compara^ve strengths and 

weaknesses. 
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5. Research Philosophy 

This chapter outlines the research philosophy and methodological structure underpinning this study. It 

follows a framework that guides the scientific approach to understanding research paradigms, data 

gathering techniques, and analysis methods essential for conducting and presenting research 

effectively. The methodology framework is presented and described step-by-step aligned with the 

structured approach recommended by (D O'Gorman & MacIntosh, 2015).  

 
   

 
Ontology 

Objec&ve: Quantitative insights 

Subjec&ve: Qualitative insights 

Research 

Paradigm 

  

 
Epistemology 

Positivist: Relies on objective data and statistical methods 

Interpretivist: Understanding the contextual influences on data 

   

 

 
Methodology 

Quan&ta&ve: Primarily uses numerical data for model-building. 

Case Study: Focuses specifically on certain region or case. 

Data 

Gathering 

  

 

Technique 

Big Data: Uses extensive historical data 

Surveys/Observa&on: Gather direct feedback 

Archives: U&lizes archival data for long-term trend analysis  

   

 

 

DeducDve Analysis 

Exploring Rela&onships: Correla&on analysis; Par&al correla&on analysis; 

Mul&ple regression analysis; factor analysis  

Comparing groups: Model performance (e.g., Diebold-Mariano test), t-test, 

ANOVA 

Data Analysis  

& Reasoning 
 

 

 

InducDve Analysis 

Thema&c Analysis: Iden&fies themes or paVerns in data 

Discourse Analysis: Adds context to quan&ta&ve findings, such as interpre&ng 

residuals or errors, for enhanced understanding. 

   

Figure 12: Research Methods Map 

Source: Own crea9on with inspira9on from (D O'Gorman & MacIntosh, 2015) 
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5.1. Research Paradigm 

A research paradigm establishes the founda9onal beliefs about reality and knowledge that guide the 

research design (D O'Gorman & MacIntosh, 2015). This study considers both Ontology and 

Epistemology to clarify the perspec9ves applied to model development and electricity price 

forecas9ng. 

 

5.1.1. Ontology  

Ontology concerns the nature of reality. It illustrates whether the world is seen as objec9ve or 

subjec9ve. An objec9ve perspec9ve views reality as consis9ng of solid objects that can be measured 

and tested which exists independently on our percep9on or experience. In contrast, a subjec9ve 

perspec9ve sees reality as shaped by the percep9ons and interac9ons of living subjects (D O'Gorman & 

MacIntosh, 2015). In this study, the ontology is largely objec9ve, grounded in the assump9on that 

electricity prices and energy market behaviors can be analyzed and forecasted through empirical, 

quan9fiable data. However, there may also be subjec9ve elements if qualita9ve insights or expert 

perspec9ves on energy trends are incorporated. 

 

5.1.Epistemology  

Epistemology addresses how valid knowledge is obtained.(D O'Gorman & MacIntosh, 2015). This 

research is posi9vist in its epistemology, assuming that knowledge about the electricity market can be 

derived from objec9ve data and sta9s9cal methods. A posi9vist approach aligns well with quan9ta9ve 

models, like ARIMAX and XGBoost, used for forecas9ng. However, there may be a slight interpre9vist 

element if qualita9ve data, like geopoli9cal impacts, demand-supply mismatch, vola9lity and nega9ve 

pricing impact are considered to contextualize results. 

 

5.2. Data Gathering 

The methodology for data gathering is structured into Quan9ta9ve, Qualita9ve, and Case Study 

methods, though this study primarily uses quan9ta9ve methods with poten9al elements of case study 

analysis to contextualize findings. 

 

Methodology 

The primary methodology is quan9ta9ve, focusing on numerical data from electricity prices and energy 

produc9on variables of Denmark’s DK1 bidding zone. 
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Techniques 

The techniques used for data collec9on are rooted in big data, survey or observa9on.  

 

This study leverages a large dataset comprising 40,926 observa9ons of hourly electricity prices and 

produc9on capaci9es influencing the energy market. The target variable is 'dk1' (represen9ng spot 

electricity prices in the DK1 bidding zone), and there are 15 exogenous features. These relevant 

exogenous variables include produc9on data, such as central produc9on, local produc9on, and 

produc9on from different energy sources—specifically onshore and offshore wind, hydropower, and 

solar power genera9on, all are in megawads (MW). This comprehensive dataset allows for a detailed 

analysis of electricity price dynamics and influencing factors across Denmark's energy landscape. 

 

Though no surveys or observa9onal techniques directly applied here but it could support understanding 

how market par9cipants react to price changes. So, this could be suggested for future research to 

understand market par9cipant behavior. 

 

The data used in developing the model are- 

 

Features (DK1 Zone) Full Form Descrip8on  

dk1 DK1 Electricity Spot 

Price 

The hourly elspot price of electricity in the DK1 

zone, measured in Euro/MWh. 

LocalPowerMWhDK1 Local Power 

Produc8on 

Total electricity generated by local power plants 

(MWh). 

LocalPowerSelfConMWhDK1 Local Power Self-

Consump8on 

Electricity produced and consumed locally 

without entering the grid (MWh). 

CentralPowerMWhDK1 Central Power 

Produc8on 

Electricity generated by large-scale, centralized 

power plants in DK1 (MWh). 

CommercialPowerMWhDK1 Commercial Power 

Produc8on 

Power produced for commercial purposes, oLen 

from large private operators (MWh). 

HydroPowerMWhDK1 Hydropower 

Produc8on 

Electricity generated from hydroelectric plants 

in the DK1 zone (MWh). 

OffshoreWindGe100MW_MWhDK1 Offshore Wind (≥100 

MW) 

Electricity generated by offshore wind farms 

with a capacity of 100 MW or more (MWh). 

OffshoreWindLt100MW_MWhDK1 Offshore Wind (<100 

MW) 

Electricity generated by offshore wind farms 

with a capacity below 100 MW (MWh). 

OnshoreWindGe50kW_MWhDK1 Onshore Wind (≥50 

kW) 

Electricity generated by onshore wind farms 

with a capacity of 50 kW or more (MWh). 
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OnshoreWindLt50kW_MWhDK1 Onshore Wind (<50 

kW) 

Electricity generated by small-scale onshore 

wind farms with less than 50 kW (MWh). 

SolarPowerGe10Lt40kW_MWhDK1 Solar Power (10–40 

kW) 

Solar electricity generated from systems with a 

capacity between 10 kW and 40 kW (MWh). 

SolarPowerGe40kW_MWhDK1 Solar Power (>40 

kW) 

Solar electricity generated from systems with a 

capacity greater than 40 kW (MWh). 

SolarPowerLt10kW_MWhDK1 Solar Power (<10 

kW) 

Electricity from small-scale residen8al or small 

business solar systems (<10 kW) (MWh). 

SolarPowerSelfConMWhDK1 Solar Power Self-

Consump8on 

Solar power generated and consumed on-site 

without expor8ng to the grid (MWh). 

PowerToHeatMWhDK1 Power-to-Heat 

Conversion 

Electricity converted to heat, oLen for district 

hea8ng systems in DK1 (MWh). 

GrossConsump8onMWhDK1 Gross Electricity 

Consump8on 

Total electricity consumed, including losses and 

self-consump8on (MWh). 

 

Table 1: Features used for the modeling  

(Descrip9on from Energinet) 

 

5.3. Data Analysis 

Python programming language is used as the primary tool for data analysis in this thesis . Key libraries 

such as Pandas and NumPy were u9lized for data manipula9on and preprocessing, while Matplotlib and 

Seaborn enabled effec9ve data visualiza9on. Model development and evalua9on were conducted using 

Statsmodels for sta9s9cal modeling (ARIMAX) and XGBoost for gradient boos9ng models. 

 

5.4. Research Reasoning 

The analysis strategy of this report includes both deduc9ve and induc9ve approaches which enables a 

comprehensive examina9on of the forecas9ng models' effec9veness and interpreta9on of the results. 

 

Deduc9ve Approch 

A deduc9ve approach is employed to validate exis9ng theories and methods. This approach begins with 

a general theory or hypothesis with specific predic9ons. This reasoning starts with established theories 

and hypotheses which are then tested against real-world data. It focuses on tes9ng predefined 

hypotheses whether there is significant differences between two models and uses quan9ta9ve analysis 

methods to verify or reject them. 
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In this study, several deduc9ve analy9cal methods were applied: 

 

Feature Analysis: To examine the rela9onships between electricity prices (target variable, dk1) and 

exogenous variables. 

Regression Analysis: To integrate within the XGBoost algorithm, this approach is used to assess the 

influence of mul9ple variables on electricity price predic9ons.  

Residuals Analysis: To compare the performance of both forecas9ng models ARIMAX and XGBoost 

across different forecas9ng horizons, such as short-term (1-day and 2-day) versus long-term (7-day).  

Time-Based Error Analysis: To analyze hourly and daily MAE and RMSE trends to iden9fy model 

strengths and weaknesses over specific 9mes 

Diebold-Mariano Test: Tested if XGBoost’s performance is significantly beder than ARIMAX’s 

 

 

Induc9ve Approach 

Induc9ve reasoning involves observing data and deriving generalized insights. Under this approach, data 

is used to generate a theory or conceptual framework. Researchers collect data and observa9ons and 

then build a general principle or theory based on those observa9ons. Induc9ve reasoning is par9cularly 

useful when lidle exis9ng literature or theore9cal frameworks exist on a topic (Saunders, 2009). This 

study mostly concentrated on deduc9ve approach rather than induc9ve approach. 
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6. Model Specification 

This sec9on focuses on pre-es9ma9on tes9ng for sta9onarity, autocorrela9on, normality and finally the 

implementa9on of 9me series forecas9ng models ARIMAX and XGBoost to predict electricity prices in 

the DK1 zone.  This sec9on explores the setup, tuning, and applica9on of these models as well as their 

evalua9on metrics. 

 

6.1. Pre-Estimation Testing for Model Suitability 

Before implemen9ng the forecas9ng models, it is essen9al to evaluate the characteris9cs of the dataset 

to ensure the validity of the chosen methods. This chapter outlines three key sta9s9cal tests: the 

Augmented Dickey-Fuller (ADF) test for sta9onarity, the Ljung-Box (LB) test for autocorrela9on, and the 

Jarque-Bera (JB) test for normality. These tests are vital for assessing the assump9ons underpinning 

9me series models. 

 

6.1.1. Augmented Dickey-Fuller (ADF) Test for Stationarity 

The Augmented Dickey-Fuller (ADF) test determines whether a 9me series is sta9onary. It is a crucial 

requirement for many 9me series models like ARIMA. The test evaluates the null hypothesis (𝐻!) that 

the series contains a unit root, implying non-sta9onarity. The mathema9cal form of the ADF test in its 

most general form can be wriden as: 

𝛥𝑌" 	= 	𝛼	 +	𝛽" 	+ 	𝛾𝑌"#$ 	+ 	𝛴𝛿%𝛥𝑌"#$ 	+ 	𝜀"	 (1) 

 

Where, Y& is the 9me series, ΔY& is the first difference of the 9me series, α is the intercept,	𝑡 is the 9me 

trend, 𝛼, 𝛽, 𝛾 and	𝛿 are parameters to be es9mated, and 𝜖" is the error term. If 𝛾 is significantly less 

than zero, the series is deemed sta9onary. 

 

The null hypothesis of the test is that 𝛾	 = 	0, indica9ng the presence of a unit root, i.e. the series is 

non-sta9onary. The alterna9ve hypothesis is that 𝛾	 < 	0, indica9ng the series is sta9onary. If the 𝑝-

value of the test sta9cs is close to 0 (typically p < 0.05), it indicates that the 9me series sta9onary. 

 

Non-sta9onarity in the data can lead to misleading and untrustworthy model results, and in such cases, 

difference or other transforma9ons may be employed to achieve sta9onarity (Dickey & Fuller, 1979). 
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6.1.2. Ljung-Box (LB) Test for Autocorrelation 

The Ljung-Box test checks for the presence of autocorrela9on within a 9me series, which can indicate 

dependencies across observa9ons. It tests the null hypothesis that refers the time series lags are 

independent and uncorrelated (close to zero).  

 

The Ljung–Box test is built on the following hypotheses: 

 

𝐻!: 	𝑇ℎ𝑒	𝑑𝑎𝑡𝑎	𝑎𝑟𝑒	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑	(𝑁𝑜	𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑒𝑥𝑖𝑠𝑡).	

𝐻":		𝑇ℎ𝑒	𝑑𝑎𝑡𝑎	𝑎𝑟𝑒	𝑛𝑜𝑡	𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡𝑙𝑦	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑑	(𝑠𝑒𝑟𝑖𝑎𝑙	𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛	𝑜𝑟	𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦	𝑖𝑛	𝑡ℎ𝑒	𝑙𝑎𝑔𝑠). 

 

The test statistic of Ljung-Box test is: 

 

𝑄 = 𝑛(𝑛 + 2)<
𝜌'>

(

𝑛 − 𝑘

)

'*$

	 (2) 

 

Where, 𝑄 is the Ljung-Box test statistic, 𝑛 is the number of observations, 𝜌'> is the sample 

autocorrelation at lag 𝑘 and 𝑚 is the number of lags being tested.  

 

If the 𝑝-value of the Ljung-Box test is low (typically p < 0.05), it indicates that there is significant 

autocorrelation in the lags, implying that the there in some pattern in the time series that can be 

capture by the ARIMA model and vice versa (Ljung & Box, 1978). Same way, we can check the residuals 

of the model to diagnosis the model. If p-value of the test statics for residuals is lower than 0.05 (p < 

0.05), it refers there is autocorrelation in the residuals, implying that there is still some pattern which 

is not capture by the model. Hence, the ARIMA model needs to be refined. 

 

6.1.3. Jarque-Bera (JB) Test for Normality 

Although XGBoost models are flexible to handle non-normal distribuUons, a normality test would sUll 

be conducted as it helps in determining the distribuUon of the data and inform any necessary 

adjustments to the model. The JB test is built on the following hypotheses: 

 

𝐻!:	𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠	𝑎𝑛𝑑	𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠	𝑚𝑎𝑡𝑐ℎ	𝑎	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.	

𝐻":	𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠	𝑎𝑛𝑑	𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑚𝑎𝑡𝑐ℎ	𝑎	𝑛𝑜𝑟𝑚𝑎𝑙	𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛.	
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The JB test staUsUc is: 

𝐽𝐵	 = 	𝑛 D	
𝑆(

6 	+
(𝐾 − 3)(

24 J	 (3) 

 

Where n is the number of observaUons in the data set, S is the sample skewness, and K is the sample 

kurtosis.  

 

If the JB staUsUc is significantly different from 0, then the null hypothesis is rejected, indicaUng that the 

data do not have a normal distribuUon. Other way, if p-value of the test staUcs is lower than 0.05 (p < 

0.05), then it rejects null hypothesis and refers the data does not normally distributed. We can also 

diagnosis model based on JB test. Normality in residuals is essenUal for ensuring unbiased predicUons 

in Ume series models (Jarque & Bera, 1987). 

 

 

 

 

6.2. ARIMAX Model 

ARIMA (AutoRegressive Integrated Moving Average) is a univariate model which forecast future values 

based solely on past values of the target variable whereas ARIMAX (AutoRegressive Integrated Moving 

Average with Exogenous Variables) extends ARIMA by incorporating external (exogenous) variables into 

the forecasting process. This inclusion of additional explanatory variables on the target variable makes 

ARIMAX suitable for multivariate time series analysis (Pankratz, 2012). 

 

The ARIMAX model is estimated based on three key components AutoRegressive(AR), Integrated (I) 

Moving Average (MA) and Exogenous(X) . Generically the model is denoted as model (p, d, q) where (p) 

is the number of autoregressive term in the model, q is the number of moving average terms and d is 

the number of differences required to make the time series stationary (this is the "Integrated" part). So 

an autoregressive (AR) model of order p, abbreviated as AR(p) refers to using past values to predict the 

current value of the time series. In an AR model of order p, the current value x& is expressed as a linear 

combination of the past p values of the series. So, it an be explained as a function of p past values such 

as x&#$, x&#(…x&#+, where p determines the number of steps into the past needed to forecast the 

current value. 

 

An autoregressive model can be written as (Shumway et al., 2000) 



 24 

x& = ϕ$	x&#$ + ϕ(	x&#( +⋯+	ϕ+	x&#+ + ε&			; 			ε& ∼ 	WN	(0, σ()			 (4) 

 

where x&	is the current value of which is assumed stationary, ε& is the error term or residual, which is 

the white noise process (assumed to be normally distributedthe) and ϕ$, ϕ(	, . . . , ϕ+ are the 

parameters (or model coefficients) for each lag (ϕ+ ≠ 0). The mean of x& in (4) is zero. If the mean, µ, 

of x& is non-zero, we can replace x&	by x& − µ in (4). So, with a non-zero mean, we can rewrite the 

equation as: 

x& = ϕ$	(x&#$ − µ) + ϕ(	(x&#( − µ) +⋯+	ϕ+	(x&#+ − µ) + ε& (5) 

Or,  

x& = α! + ϕ$	x&#$ + ϕ(	x&#( +⋯+	ϕ+	x&#+ + ε& (6) 

 

Where, α	 = 	µ(1 − ϕ$ 	− 	ϕ(−	. . . −ϕ+	) 

 

So, autoregresive first-order model, AR(1), could be written as 

x& = α! + ϕ$	x&#$ + ε& (7) 

And second order-order mode, AR(2)- 

x& = α! + ϕ$	x&#$ + ϕ(	x&#( +⋯+	ϕ+	x&#+ + ε& (8) 

 

So, The AR order (p) represents how many previous time points (lags) we can use to predict the current 

value. p can be initially determined by looking at the Partial Autocorrelation Function (PACF) plot. The 

PACF plot helps to find the point (lag) after which the correlation sharply decreases (crossing the 

confidence interval). 

 

The "Integrated (I)" part of the model refers to making the time series stationary by differencing. A 

series is stationary if its statistical properties (like mean and variance) do not change over time 

(Shumway et al., 2000). If the data has trends (upward or downward), differencing can remove the 

trend and stabilize the series. The number of differences needed to make the data stationary is 

generally represented by d. If d=1, the first-order differenced series would be: 

 

y& = x& − x&#$ (9) 

Where y& is the differenced series and x& is the original series. 

 

The moving average (MA) model is considered as an alternative to the autoregressive representation 

(Shumway et al., 2000). The MA part of ARIMA involves modeling the current value based on past errors 

or "shocks" in the system. It means that instead of using past values (e.g. x&#$) of the series directly, 
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the current value (x&) is then considered as a linear combination of past forecasted errors(e.g. ε&#$). 

Moving average model of order q, abbreviated as MA(q). A moving average model can be written as- 

       

x& = ε& + θ$	ε&#$ + θ(	ε&#(⋯+ θ&	ε&#+						; 		ε& ∼ 	WN	(0, σ()			 (10) 

 

Where, x& is the current value, ϵ&	is the current error term (residual), ε&#$, ε&#(, … , ε&#+  are the past 

error terms, θ$, θ(, … , θ, (θ+ ≠ 0) are the MA parameters. 

 

So, The MA order (𝑞) represents how many past errors are considered in the model. Here, q is 

determined by looking at the Autocorrelation Function (ACF) plot. The ACF plot shows how current 

values of the series are correlated with past values. The value of q is the point (lag) after which the 

autocorrelation drops off (crosses the confidence interval). 

 

The exogenous component incorporates external 𝑚'," variables that are assumed to have a causal 

relationship with the target variable (𝑥"). The exogenous eqution is- 

 

𝑥" = 𝛽$𝑚$," + 𝛽(𝑚(," +⋯+ 𝛽'𝑚',"		 (11) 

 

 

Where,  𝑚'," is the exogenous variables at time 𝑡 and 𝛽' is the coefficients for the exogenous variables. 

 

Ater combining all the components (p,d,q and x), the ARIMAX model can be written as- 

 

x& = α! + ϕ$	x&#$ +⋯+ϕ&	x&#+ +	𝛽$𝑚$," + 𝛽(𝑚(," +⋯+ 𝛽'𝑚'," + θ$	ε&#$ +⋯+ θ&	ε&#+ + ε&			(12) 

 

where ϕ, θ and 𝛽 are the AR, MA and exogenous parameters, x&#+  donotes past values, 𝑚'," is the 

exogenous variables and ε&#+ denotes past forecasting errors, ε& is the current error which is white 

noise process, ε& ∼ 	WN	(0, σ(). Residuals are considered white noise if it is completely random with 

zero mean, constant variance (homoskedasticity, 𝜎() and no autocorrelation to each others 

(independence over time). White noise is the weaker assumption of Random Walk model which refers 

there is some pattern in the time series that could be captured by the time series model like ARIMA. 

The integrated part d is handled by differencing the data before applying the AR and MA components. 

 

While the X (exogenous) part is linear, the overall ARIMAX model can capture non-linear relationships 

in the data due to the interaction of all components (AR, MA, and I) (Pankratz, 2012). 
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To select the best ARIMAX model, we often use statistical metrics such as the Akaike Information 

Criterion (AIC) and Bayesian Information Criterion (BIC). These criteria are used to balance the 

complexity of the model with the goodness of fit. The AIC is calculated as (Akaike, 1974)- 

 

AIC = −2ln(L) + 2k			 (13) 

 

Where, L is the likelihood of the model and k is the number of parameters in the model. The model 

with the lowest AIC is typically considered the best. 

Similarly, the BIC penalize the complexity of the model more severely (Schwarz, 1978) such as – 

 

BIC = −2ln(L) + kln(n)	 (14) 

 

Where 𝑛 is the number of observations. Lower BIC values indicate a better model fit while avoiding 

overfitting. 

 

Auto ARIMA is an automated approach (for statistics software) to identify the optimal parameters for 

the ARIMA (AutoRegressive Integrated Moving Average) model. Instead of manually selecting the 

parameters (p,d,q), Auto ARIMA uses statistical techniques and search algorithms to determine the 

most suitable combination that minimizes forecast error. Statistical software like R or Python are 

commonly used to get most appropriate parameter for ARIMA model. In Python, the “pmdarima” 

library is commonly used to calculate Auto ARIMA models. This library implements the Auto ARIMA 

algorithm which automatically determines the parameters by minimizing (penalize) metrics like Akaike 

Information Criterion (AIC) or Bayesian Information Criterion (BIC) (Hyndman, Rob J. & Khandakar, 

2008). 

 

Once the initial values for 𝑝, 𝑑, 𝑞 and	𝑥 are selected, the ARIMAX model is fit to the data. After 

estimating ARIMAX model, we should conduct diagonostic test for the model with the residuals (Box, 

George EP et al., 2015). The popular residual diagnostics approaches are checking ACF of residuals, 

Ljung-Box test and normality tests. These are conducted to ensure that the residuals resemble white 

noise which indicates that the estimated ARIMAX is a well-fitted model. 
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6.3. XGBoost Model 

XGBoost (Extreme Gradient Boosting) is an efficient and powerful implementation of gradient-boosted 

decision trees designed for speed and performance. It was first proposed by Tianqi Chen and Carlos 

Guestrin in 2011 and has been continuously optimized and improved in the follow-up study of many 

scientists (Chen, Tianqi & Guestrin, 2016). It combines an ensemble with decision trees to build a strong 

predictive model by iteratively correcting the errors of the previous models (Friedman, 2001). The 

model uses techniques like regularization, parallelization, and tree pruning to enhance accuracy and 

prevent overfitting, making it highly effective for both classification and regression tasks (Chen, T., 

2015). Due to its scalability and robustness, XGBoost has been widely adopted in machine learning 

competitions and real-world applications (Chen, Tianqi & Guestrin, 2016). 

 

Traditional Boosting Tree models rely solely on first-order derivative information when constructing 

trees. When training the 𝑛-th tree, the model adjusts based on the residuals (errors) from the previous 

𝑛 − 1 trees. However, this sequential dependency on residuals can make distributed training difficult 

because each tree’s training depends on the outcomes of its predecessors (Chen, Tianqi & Guestrin, 

2016). XGBoost addresses this issue by performing a second-order expansion on the loss function. This 

means that XGBoost takes into account both the first-order (gradient) and second-order (Hessian) 

information. The incorporation of second-order derivatives allows the model to make more precise 

updates, leading to better optimization. Additionally, it enables parallel computing, leveraging 

multithreading to significantly improve training speed. XGBoost automatically distributes tasks across 

multiple cores in the CPU, which makes the training process faster and more scalable. The XGBoost 

algorithm is briefly introduced as follows (Chen, Tianqi & Guestrin, 2016; Friedman, 2001) – 

 

6.3.1. Objective Function 

The objective function in XGBoost balances model complexity and performance. It consists of two 

components: the loss function 𝐿	and the regularization term 𝛺. 

 

𝑂𝑏𝑗	 = 	<𝐿(𝑦% , 	𝑦t%) +<𝛺(𝑓')
.

'*$

/

%*$

(15) 

 

 

Where, 𝐿(𝑦% , 	𝑦t%) is the loss function (expressing as MSE) measuring how well the model predicts the 

target 𝑦%. 𝛺(𝑓') is the regularization term to prevent overfitting (Chen, Tianqi & Guestrin, 2016). 
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6.3.2. Loss Function 

For regression problems, the loss function (L) is typically mean squared error (MSE): 

𝐿(𝑦, 𝑦v) = 	
1
𝑛
<(𝑦% − 	𝑦t %)(
/

%*$

(16) 

This measures the squared difference between predicted and actual values (Friedman, 2001). 

 

6.3.3. Regularization Term 

The regularization term 𝛺(𝑓') penalizes model complexity. For decision trees, it includes both the 

number of leaves and the magnitude of the leaf weights: 

𝛺(𝑓') = 	γT +
1
2
λ	<𝑤0(

1

0*$

(17) 

 

Where, 𝑇 is the number of leaves, 𝑤0  represents the leaf weights, 𝛾 and 𝜆 are hyperparameters 

controlling the regularization strength (Chen, Tianqi & Guestrin, 2016). 

 

6.3.4. Gradient and Hessian Approximation 

In XGBoost, second-order Taylor expansion is used to approximate the objective function. Gradients 

and Hessians are computed to optimize the loss function. 

 

𝑔% =	
𝜕𝐿(𝑦% , 	𝑦t%)
𝜕	𝑦t%

	 , ℎ% =
𝜕(𝐿(𝑦% , 	𝑦t%)
𝜕	𝑦t %

( (18) 

Where, 𝑔%  is the gradient of the loss function and ℎ%  is the second-order derivative (Hessian) 

 

6.3.5. Tree Structure Scoring 

The optimal structure of a decision tree is determined by calculating the following score for each split: 

 

𝐺𝑎𝑖𝑛 =
1
2D

∑ 𝑔%%∈3!
∑ ℎ% + 𝜆%∈3!

+
∑ 𝑔%%∈3"

∑ ℎ% + 𝜆%∈3"
−

∑ 𝑔%%∈3
∑ ℎ% + 𝜆%∈3

J − γ (19) 

 

Where, 𝐼4 and 𝐼5  represent the left and right partitions of the split; 𝑔%  and ℎ%  are the gradient and 

Hessian, as previously defined; 𝛾 and 𝜆 are regularization parameters. 
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Once the tree is built, the prediction for a new instance is made by summing the contributions of each 

tree- 

	𝑦t% =	<𝑓'(𝑥%)
.

'*$

(20) 

 

Where, 𝑓'(𝑥%) is the prediction from the 𝑘-th tree for instance 𝑥%; 𝐾 is the number of trees in the 

model (Chen, Tianqi & Guestrin, 2016). 

 

A fundamental structure of XGBoost involves feeding the residuals (errors) from one tree into the 

subsequent tree.  

 

 

Figure 12: Simplified structure of XGBoost (Wang, W. et al., 2020). 

 

For example, the residuals from tree-1 are passed into tree-2, and the process continues iteratively 

with each tree working to minimize the residual errors from the previous one. This approach gradually 

improves the model's performance by reducing prediction errors across successive iterations. 

 

While XGBoost is a machine learning model and it does not have any formal diagnostic tests like ARIMA 

models. So, Residial analysis and normality test can help to evaluate and interpret XGBoost models. 
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6.4. Models Validation and Evaluation Approach 

This section explains different comparative matrics to evaluate the models. 

6.4.1. Diebold-Mariano Test 

The Diebold-Mariano test is used to compare the predictive accuracy of two competing models. It 

assesses whether the difference in forecasting errors between two models is statistically significant 

(Diebold & Mariano, 2002). 

 

The test statistic is given by: 

𝐷𝑀	 = 	
𝑑̅

���1𝑇� 𝛾0 + �
2
𝑇�∑ 𝛾𝑘

ℎ−1
𝑘=1 �

(21) 

 

Where: 

𝑑̅: Mean of the loss differential, 𝑑" 	= 	𝑔(𝑒$,") 	− 		𝑔(𝑒(,")	, where 𝑔(𝑒) is the loss function 

(e.g., squared error). 

𝑇: Number of observations (forecast horizons). 

𝛾': Variance of the loss differential	𝑑" 

𝛾(: Covariance of 𝑑" and 𝑑"#', accounting for autocorrelation in errors. 

ℎ: Forecast horizon. 

 

The difference between the forecast errors of two models is expressed as:  

Loss differential, 𝑑" 	= 	𝑔(𝑒$,") 	− 		𝑔(𝑒(,")	 

Where, 𝑒$,"	forecast error from model 1 �𝑦"	–	ŷ$,"�and 𝑒(,"	forecast error from model 2 �𝑦"	–	ŷ(,"� 

 

Given hypothesis for the test is- 

 

𝐻!:		𝐵𝑜𝑡ℎ	𝑚𝑜𝑑𝑒𝑙𝑠	ℎ𝑎𝑣𝑒	𝑒𝑞𝑢𝑎𝑙	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑤ℎ𝑒𝑛	𝑡𝑒𝑠𝑡	𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑠	𝑖𝑠	0.  

 𝐻$:	𝑇ℎ𝑒	𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒	𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦	𝑜𝑓	𝑡ℎ𝑒	𝑡𝑤𝑜	𝑚𝑜𝑑𝑒𝑙𝑠	𝑑𝑖𝑓𝑓𝑒𝑟𝑠. 

 

If the DM statistic falls outside the critical values of the normal distribution for a chosen significance 

level (e.g., α = 0.05), the null hypothesis is rejected, indicating a significant difference in predictive 

accuracy. Under the null hypothesis, the DM statistic follows a standard normal distribution 

𝐷𝑀	~	𝑁(0, 1) (Diebold & Mariano, 2002). 
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6.4.2. Mean Absolute Error (MAE) 

Mean Absolute Error (MAE) is a measure of the average magnitude of errors between predicted values 

and actual observed values. It calculates the average of the absolute differences between the predicted 

and actual values, ignoring the direction of the error (whether positive or negative). MAE is used to 

measure the average magnitude of forecast errors. It is easy to interpret because it gives the average 

amount by which the predictions are off in absolute terms. MAE is particularly useful when the 

magnitude of the error is more important than the direction of the error. A lower MAE values indicate 

better model accuracy since the prediction error is smaller on average (Willmott & Matsuura, 2005). 

 

𝑀𝐴𝐸 =
1
𝑛
<|	𝑥" − 𝑥"t

(|
/

"*$

(22) 

 

Where, n is the number of observations, 𝑥" is the actual value at time t, 𝑥"t  is the predicted value at 

time t and | this operator gives the absolute value of a number. 

 

6.4.3. Root Mean Squared Error (RMSE) 

Root Mean Squared Error (RMSE) is another common measure of forecast error that penalizes larger 

errors more than smaller ones. It is commonly used when it is important to heavily penalize large errors. 

It tends to amplify the influence of outliers (large deviations between the predicted and actual values). 

As such, it is a useful metric when errors of large magnitude are undesirable. So, RMSE is more sensitive 

to outliers than MAE because it squares the errors before averaging. For example, if large deviations 

(outliers) are present, RMSE will increase more than MAE. Likely to MAE, a lower RMSE values suggest 

better predictive performance(Chai & Draxler, 2014). 

 

𝑅𝑀𝑆𝐸 =	 
1
𝑛<

(	𝑥" − 𝑥"t )(
/

"*$

(23) 

 

Where, 𝑛 is the number of observations, 𝑥" is the actual value at time t, 𝑥"t  is the predicted value at 

time 𝑡. 
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6.4.4. R-squared 

R-squared (𝑅(), also known as the coefficient of determination, measures the proportion of the 

variance in the dependent variable (the actual values) that is predictable from the independent variable 

(the model's predictions). It is a relative measure of goodness of fit which indicates how well the model 

explains the variability of the observed data. A higher 𝑅² value indicates that the model explains a larger 

portion of the variance, thus providing a better fit (Wooldridge, 2012). 

 

𝑅( = 1 −
∑ (	𝑥" − 𝑥"t )(/
"*$

∑ (	𝑥" − 𝑥"¢ )(/
"*$

(24) 

 

Where, 𝑥" is the actual value, 𝑥"t  is the predicted value, 𝑥"¢  is the mean of the actual values, and 𝑛 is the 

number of observations. 
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7. Exploratory Data Analysis: DK1 

The Exploratory Data Analysis (EDA) focuses on examining the parerns and behaviors of spot electricity 

prices in dk1 considering hourly, weekly, monthly, and yearly trends. AddiUonally, the insights into 

temporal dependencies and seasonal parerns in the data are explained through AutocorrelaUon 

FuncUon (ACF) and ParUal AutocorrelaUon FuncUon (PACF) plots to support model selecUon. 

 

7.1. Historical Trends in Elspot (DK1) Price 

The hourly and weekly (day-of-the-week) spot price plots reveal significant insights into the short-term 

fluctuaUons in electricity prices. 

 

 

Figure 13: Mean spot prices of DK1 by hourly (13a) and  weekly (13b) 

 

The peak hours are generally observed in the early to late asernoon and evening hours (around 7-20) 

when electricity demand is likely higher due to increased commercial and residenUal usage. Conversely, 

prices tend to be lower during the early morning hours (0-6)due to reduced demand. The weekly plot 

shows mean spot prices across the days of the week where 0 denotes Monday and 6 is for Sunday. We 

can also find that, weekdays, from Monday to Friday it reveals a relaUvely consistent price level and 

weekends has comparaUvely lower prices. Together, these plots highlight a predictable, cyclical parern 

in spot prices driven by variaUons in daily and weekly electricity demand. 

 

Moreover, the monthly and yearly plots reveal longer-term parerns in spot prices. These plots capture 

seasonal fluctuaUons and broader economic influences. 
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Figure 14: Mean spot prices of DK1 by monthly (14a) and yearly (14b) 

 

The monthly plot shows that spot prices are generally higher in winter months (November-December) 

and late summer (July-August). Winter peaks likely reflect increased heaUng needs and summer peaks 

may be due to higher cooling demands. However, the yearly plot indicates broader market shiss with a 

significant peak in 2022. This spike can be arributed to external factors such as supply chain disrupUons, 

high fuel prices, and geopoliUcal events like the Russia-Ukraine war which created a dramaUc impact on 

European energy markets and drove prices to unprecedented levels (EIA, 2022; IEA, 2022). COVID-19-

related disrupUons could also have impacted supply chains and fuel availability in earlier years which 

contribute to price volaUlity. 

 

 

Figure 15: KDE plot for DK1 price distribuUon 

The distribuUon plot of electricity prices shows the frequency of different price ranges. During periods 

of unexpectedly high demand or supply shortages, prices can spike sharply, observing long tail. Events 

like the Russia-Ukraine war, COVID-19, regulatory intervenUons or pricing caps have led to supply 

constraints and increased costs, pushing prices to extreme levels (either posiUve or negaUve). Such 

volaUlity presents challenges for consumers and producer. It necessitates implemenUng strategies to 

miUgate risk during price surges such as with long-term contracts, invesUng in storage soluUons or 

diversifying energy sources. 
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7.2. Time-based Dependencies Indentification 

Another segment of this secUon is explaining AutocorrelaUon FuncUon (ACF) ParUal AutocorrelaUon 

FuncUon (PACF). Both of the plot are assessed to capure Ume-based dependencies in the data. These 

plots help to idenUfy criUcal aspect in appropriate Ume series models for forecasUng. The ACF and PACF 

plots are presented at lag intervals of 24, 48, and 72. 

 

 

 

 
Figure 16: ACF and PACF Plot in different lags- 72, 48 and 24 

 

At the iniUal stage of Ume series modeling, parUcularly when selecUng parameters for ARIMA, the 

autoregressive (AR) and moving average (MA) terms are typically chosen based on insights from the ACF 

and PACF plots. For all lag levels (24, 48, and 72) in the plots, the ACF exhibits a gradual, systemaUc 

decline (geometric decay), indicaUng a strong autocorrelaUon in the series that diminishes progressively 

over Ume.  
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Conversely, the PACF shows notable spikes in the first few lags, specifically cut off seen at lag 2, aser 

which it sharply declines. This parern suggests that only a small number of PACF lags, primarily the first 

two, capture most of the relaUonship in the series. Such a rapid decline in PACF aser a few significant 

lags, combined with the geometric decay in ACF, is indicaUve of an autoregressive (AR) structure, 

specifically suggesUng an AR(2) process for this Ume series (Saqib Ali, 2019). 

 

While an AR(2) procss appears based on the preliminary findings, ARIMA modeling osen requires 

addiUonal analysis, such as using Auto-ARIMA, to idenUfy opUmal parameters that best fit the data and 

forecast accuracy needs. Auto-ARIMA and other model selecUon techniques further refine parameter 

choices by evaluaUng mulUple combinaUons and selecUng those that minimize forecast error (Box, G. 

E. et al., 2008). 

 

7.3. Volatility and Negative Pricing Impacts 

Once, I came across a blog where the author used an analogy to illustrate the potential risks of 

prolonged negative electricity pricing. The writer compared the situation to a supermarket offering free 

products indefinitely. From a buyer's perspective, getting free goods might seem ideal, but from the 

supplier's perspective, continuous giveaways would quickly lead to financial losses, and eventually, one 

day, there would be no supermarket in the area. 

 

In recent years, electricity pricing in Denmark and across the broader European market has experienced 

significant volatility along with frequent occurrences of zero or even negative prices.  

 
 

Figure 17: Time series plot with dk1 spot price 
 

As Denmark (especially the DK1 region) and other European countries increase their reliance on these 

renewable sources, the electricity supply becomes more volatile. Since wind generation is 
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unpredictable and varies with weather conditions, any rapid shift in wind speed can result in sudden 

price fluctuations. This weather dependency results in abrupt supply changes, which affect market 

prices if demand cannot adapt quickly (Paraschiv et al., 2014). 

 

The high volatility in electricity spot prices, especially around 2022 and early 2023, can be attributed 

to a combination of market disruptions, geopolitical events, supply chain issues, and shifts in energy 

demand and supply patterns. 

 

In 2022, electricity prices surged across Europe primarily due to the Russian invasion of Ukraine, which 

disrupted natural gas supplies. Russia reduced or cut off gas exports to many European countries 

leading to a shortage. The reduction of gas supply forced power producers to rely on more costly 

alternatives causing prices to spike. The heavy dependence on natural gas made European markets, 

including Denmark’s DK1, vulnerable to these price swings (Liu et al., 2023). 

 

Negative pricing has also become increasingly common the recent years.  Negative electricity prices 

happen when suppliers need to pay consumers to use electricity, usually because there is an 

oversupply. This often occurs in markets with high renewable generation, like Denmark’s DK1, where 

wind power can continue producing even during low demand times (e.g., at night). The extreme 

negative price volatility seen in mid-2023, with prices dropping below -€400, is a significant and 

alarming event in Denmark's energy history. This unprecedented drop is a stark indicator of ongoing 

challenges in managing supply and demand balance, especially in a grid with high renewable 

penetration and limited storage capacity. Limited storage capacity and restricted grid connections with 

neighboring countries prevent effective balancing of supply and demand, leading to negative prices. 

This situation is further complicated by grid bottlenecks with boarder countries which restrict cross-

border electricity flows and contribute to price imbalances (Biber et al., 2022; Valitov, 2019). 

 

This persistent volatility phenomenon can discourage investment in renewable and traditional energy 

sources due to unpredictable returns, potentially slowing down the energy transition (Schöniger & 

Morawetz, 2022). High and volatile prices can also impact industrial competitiveness, create potential 

financial and operational stresses and lead to increased costs for consumers (Prokhorov & Dreisbach, 

2022). If the volatility remains unchecked, it could hinder both energy security and the reliability of the 

electricity market. 

 

 

 



 38 

8. Empirical Alanysis 

This section presents the empirical analysis conducted to evaluate the model ARIMAX and XGBoost.  

 

8.1. Pre-Model Estimation Outcomes 

Before building the models, it is essential to check the data's properties and ensure it meets the 

requirements for modeling. This section outlines the preparatory analysis before setting up the final 

model. 

 

8.1.1. Missing Data Examination 

The dataset used in this study is thoroughly examined for missing values to ensure data completeness 

and reliability for modeling. The Python method df.isnull().sum() is employed to compute the count of 

missing values for each variable in the dataset. Upon execution, the result indicated that there were no 

missing values in any column.  

 

8.1.2. ADF and LB Test on Time Series 

The following table presents the statistical outcomes of the Augmented Dickey-Fuller (ADF) test and 

the Ljung-Box test applied to the DK1 electricity spot price series. These tests were conducted to  

determine its suitability for time series modeling. 

 

Test Statistic P-Value Conclusion 

ADF Test -8.1332 1.076 × 10⁻¹² 
The series is stationary  

(reject null hypothesis). 

LB Test 714461.87 0.0 
The series exhibits significant autocorrelation  

(reject null hypothesis). 

 

Table 2: Test Outcomes ADF and LB Test 

 

The Augmented Dickey-Fuller (ADF) test results indicate a strong rejection of the null hypothesis of non-

stationarity, with an ADF statistic of -8.1332 and a p-value close to zero. Stationarity is essential for 

reliable time series modeling, as it ensures that the series has consistent statistical properties over time. 

The Ljung-Box test further highlights significant autocorrelation within the series, with a test statistic of 
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714461.87 and a p-value of 0.0. This result implies that the DK1 series exhibits a pattern of 

autocorrelation. Together, these results underline the need for advanced modeling approaches to 

effectively capture the underlying pattern in the time series. 

 

8.1.3. Training and Testing Split 

The table 3 summarizes the range and dimensions of the in-sample and out-of-sample datasets used in 

the analysis. The dataset contains total 40926 observation for each features (15), among them 90% is 

used for training and remaining 10% is used as testing sample. 

 

Data Set Date Range Shape 

Training Data 2020-01-01 00:00:00 to 2024-03-03 14:00:00 (36639, 16) 

Testing Data 2024-03-03 15:00:00 to 2024-08-20 06:00:00 (4071, 16) 

 

Table 3: Training-testing split 

 

The training data allows the model to learn the underlying patterns and relationships between the 

target variable and the other features whereas valuate the model’s predictive performance on unseen 

data. 

 

8.2. ARIMAX Model 

The ARIMAX model is configured using the optimal parameters suggested by the lowest Akaike 

Information Criterion (AIC) value. After determining the best parameters, the model is set up to 

estimate the effects of various exogenous variables on the target variable. The outcomes include the 

estimated coefficients, statistical significance of variables, and diagnostic tests assessing the 

stationarity and normality of residuals. Each aspect of the empirical outcomes is discussed in the 

following subsections. 

 

8.2.1. Auto-ARIMA for Parameter Selection 

To select the optimal parameters for an ARIMA model, Auto ARIMA relies on the Akaike Information 

Criterion (AIC) to evaluate and compare models. A lower AIC indicates a better-fitting model. Different 

ARIMA configurations were tested where each associated with a unique AIC value.  

 



 40 

 

 

ARIMA Parameters AIC Value 

(0,1,0)(0,0,0)[0] 358502.073 

(1,1,0)(0,0,0)[0] 350812.154 

(0,1,1)(0,0,0)[0] 351673.877 

(0,1,0)(0,0,0)[0] 358500.073 

(1,1,2)(0,0,0)[0] 349879.694 

(2,1,1)(0,0,0)[0] 346785.680 

(3,1,2)(0,0,0)[0] 346207.208 

(1,1,3)(0,0,0)[0] 350385.853 

(3,1,1)(0,0,0)[0] 346281.378 

(3,1,4)(0,0,0)[0] 346204.411 

(4,1,3)(0,0,0)[0] 346197.794 

(3,1,3)(0,0,0)[0] 346198.648 

(4,1,2)(0,0,0)[0] 346258.270 

(5,1,3)(0,0,0)[0] 346197.787 

(5,1,2)(0,0,0)[0] 346227.160 

 

Table 4: AIC estimation by auto.arima model 

 

The model with parameters (p,d,q) = (5,1,3) has the lowest AIC score (346197.794). However, models 

with slightly higher AIC values (like (3,1,3) and (4,1,3) can also fit the data resonably well but could be 

marginally less optimal than (5,1,3). 

 

Based on the optimal parameters (5,1,3), we will set up the ARIMAX model where 5,1,3 denotes as 

autoregressive order of 5, integration (differencing) order of 1, and moving average order of 3. Here, 5 

indicates the number of lagged values used to predict the current value (AR terms), 1 represents the 

degree of differencing applied to make the series stationary, and 3 specifies the number of past error 

terms included in the model (MA terms). Exogenous features (production data) will also be now 

considered to set up the ARIMAX model. 

 

8.2.2. Interpretation of ARIMAX Estimation Results 

The model's performance and reliability were evaluated using several statistical indicators, including 

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and Log-Likelihood, alongside 
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diagnostic tests like the Ljung-Box (LB) test and Jarque-Bera (JB) test. We can explain the model 

outcomes highlighting the statistical significance, normality, and stability of the model step by step.  

 

As we know that lowest AIC and BIC value provides optimal fit for the model, we find 305475 and 

305580 as the lowest value for this ARIMAX model. AIC penalizes overly complex models whereas BIC 

incorporates model complexity but applies a stronger penalty for additional parameters. These 

parameter has more implication when comparing more than one model.  

 

 

Figure 18: ARIMAX Outcome 

 

The log-likelihood measures how well the model's parameters explain the observed data. The log-

likelihood is often negative for most time series and regression models, especially when dealing with a 

large number of data points. We find a negative log-likelihood value (-152713) which refer the relative 

magnitude of this value with other models. 
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The coefficient of each exogenous variable (LocalPowerMWhDK1, CentralPowerMWhDK1, etc.) 

indicates its estimated impact on the target variable (dk1) when holding other factors. The p-values 

associated with these coefficients reveal if the effect is statistically significant. In contrast, variables 

with higher p-values (like ar.L2) is statistically insignificant at for lag 2.  

 

The magnitude of each coefficient shows the estimated change in dk1 prices associated with a one-unit 

change in the respective variable. Notably, HydroPowerMWhDK1 has a large positive coefficient, 

suggesting it may have a significant upward influence on prices, while SolarPowerLt10kW_MWhDK1 

has a strong negative effect, indicating a downward pressure on prices when solar production is high. 

The value of sigma2 (sigma squared, 𝜎() represents the estimated variance of the residuals (errors) in 

the model. 

 

The Ljung-Box test with a p-value of 0.93 suggests that residuals are not significantly autocorrelated, 

implying that the model effectively captures most of the temporal dependencies. LB test also implies 

that errors of the model meet the partial assumption of white noise (WN) process. 

 

Jarque-Bera (JB) test assesses the normality of residuals. The very low p-value indicates that the 

residuals deviate significantly from a normal distribution. This is further supported by the high skewness 

(0.44) and kurtosis (27.74) values which also suggest that residuals have a non-symmetric distribution 

with extreme outliers. Heteroskedasticity refers non-constant variance whereas homoskedasticity 

indicates constant variance of dataset or residuals. Here, low p-value (two-sided = 0.00) suggests that 

residual variance may not be constant over time which implies heteroskedasticity and disregard white 

noise process. This could affect the model’s ability to accurately capture fluctuations, especially during 

volatile periods. 

 

 

8.3. XGBoost Model 

As a powerful supervised machine learning algorithm, XGBoost model is designed for both regression 

and classification tasks. The model's parameters are optimized through cross-validation to identify the 

optimal set for the final model. Cross-validation has almost similar perspective to the parameter 

selection process in Auto ARIMA (selecting optimal p,d,q) where the algorithm iteratively analyzes data 

patterns to suggest the best configuration. After determining the parameter, we replaced the final 

model with Python. 
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8.3.1. Cross-Validation for Optimal Parameters 

The grid search approach is used to evaluate multiple combinations of parameters. Each combination 

is evaluated using a validation set and the configuration with the best performance metric RMSE.  

 

Parameter Description Values Selected Optimal 
Parameter 

max_depth Maximum depth of trees [3, 6, 9] 6 
eta Learning rate [0.01, 0.1, 0.3] 0.1 

min_child_weight Minimum child weight to allow a split [1, 3, 5] 5 
subsample Fraction of samples used per tree [0.8, 1] 1 

colsample_bytree Fraction of features used per tree [0.6, 0.8, 1] 0.6 
gamma Minimum loss reduction for a split [0, 1, 5] 5 

n_estimators Number of boosting rounds [50, 100, 200] 200 
reg_alpha L1 regularization (promotes sparsity) [0, 0.1, 1] 0.0 

reg_lambda L2 regularization (penalizes large leaf 
weights) 

[1, 5, 10] 1 

 

Table 5: Cross-Validation parameter grid and selected optimal parameters 

 

This set of optimal parameters is used in the final XGBoost model to predict electricity prices. These 

parameters reflect a balance between complexity (e.g., tree depth, regularization) and generalization 

(e.g., subsampling and column sampling), ensuring the model can perform well on both training and 

unseen test data. This tuning process mirrors the approach used in statistical models like Auto ARIMA, 

which iteratively tests configurations to identify the best fit for the data. 

 

8.3.2. Optimal Parameter Selection 

The table 6 below illustrates how the parameters of the XGBoost model identified through cross-

validation align with the mathematical equations and their corresponding Python code 

implementation.  

 

Equation 
Term Code for Parameter Description 

𝑳(𝒚𝒊, 𝒚C𝒊) objective='reg:squarederror' The loss function, 𝐿 quantifies the error between actual 
values and predictions. For regression, squared error is 
used: (𝑦$ , 𝑦E$)% 

Learning rate 
(eta, 𝜼) 

eta=0.1 Controls the contribution of each tree to the final 
prediction. Smaller eta slows learning, thus requiring 
more trees to converge but it reduces overfitting. 

Gamma, 𝛄 gamma=5 Minimum loss reduction required to split a node. 
Controls (regularize) tree complexity 
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Number of 
leaves (𝑻) 

max_depth=6 Controls the maximum depth of the tree, i.e., the 
number of splits. 

Regularization 
(L2, lambda, 	

𝝀) 

Lambda =1 L2 regularization parameter penalizes large leaf 
weights, reducing overfitting. Lambda regularization 
term applies a penalty to the model. 

Regularization 
(L1, alpha, 𝜶) 

Alpha = 0 L1 regularization parameter promotes sparsity in leaf 
weights, encouraging simpler models. Default is alpha = 
0. 

Number of 
tree leaves (T) 

n_estimators=200 Total number of boosting iterations (trees leaves) used. 
Each tree corrects the residual error of previous trees. 

Minimum 
Weight 

𝑾𝒆𝒊𝒈𝒉𝒕𝒎𝒊𝒏 

min_child_weight=5 Specifies the minimum sum of instance weights needed 
in a leaf node. Prevents overfitting by avoiding overly 
specific leaf splits. 

 

Table 6: Aligning equation terms with XGBoost code parameters 

Source: Own illustration, inspiration from (Wang, Y. & Ni, 2019) 

 

8.3.3. Model Boosting Rounds 

XGBoost works by sequentially adding decision trees to the model, with each tree attempting to correct 

the errors made by the previous ones. This process is known as boosting which helps to minimize the 

error step by step and improve the accuracy for precise prediction. The plot provides a clear 

representation of how the model's performance improves as the number of boosting iterations 

increases. Along with improving the accuracy of the model, each round aims at reducing the residual 

errors from previous rounds. The y-axis represents the RMSE value while the x-axis represents the 

boosting iterations or the number of trees added to the model. 

 

 
Figure 19: RMSE over Boosting Round 
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At the beginning of the training process, the RMSE starts at a relatively high value (above 40). This 

reflects that, initially, the model performs less accurate because it has very few trees or weak learners. 

However, as more trees are added (as indicated by increasing boosting rounds on the x-axis), the RMSE 

decreases sharply. This steep decline indicates that the model is quickly learning patterns in the data 

and substantially improving its predictive accuracy over the first few iterations. After around 40 

boosting rounds, the RMSE curve begins to flatten out. This indicates that the model's performance is 

no longer improving at the same rate. By this point, most of the easily learnable patterns in the data 

have been captured by the model. Beyond this stage, adding more trees results could only consider as 

marginal improvements in the RMSE. The model begins to approach its minimum RMSE value slightly 

above 30 in this case. We it could be interpreted that the model has reached a point where adding 

further trees does not substantially reduce error. So, according to the RMSE plot, any further addition 

of trees may not provide significant benefits and could lead to overfitting if unchecked.  

 

8.4. Model Comparison: ARIMAX and XGBoost 

This section provides a comparative analysis of the models based on evaluation metrics and  highlights 

their respective strengths and weaknesses in forecasting accuracy and adaptability. 

8.4.1. KDE and Residual Distribution 

The histograms and Kernel Density Estimates (KDE) for both the ARIMAX and XGBoost residuals reveal 

key differences in the distribution of errors.  

 

Figure 20: Distribution and Shape of KDE 
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The residual distribution comparison between two models reveals distinct differences in their 

predictive accuracy. ARIMAX residuals display a wider spread, indicating that the model often makes 

larger errors. On the other hand, XGBoost residuals are more compact, suggesting more accurate and 

consistent predictions. The ARIMAX distribution has dual peaks which could signal systematic errors or 

patterns that the model fails to address whereas XGBoost exhibits a single sharp peak around zero, 

showing that its predictions are closer to the actual values more frequently. 

The tails of the ARIMAX residuals are heavier which reflects higher occurrences of extreme errors in 

both overestimation and underestimation. In contrast, XGBoost has lighter tails which suggests that it 

can handle unusual values better and makes fewer extreme errors. The bell-shaped, smooth curve of 

XGBoost residuals further supports its ability to capture the underlying patterns in the data with greater 

reliability. Overall, XGBoost demonstrates superior performance, producing residuals that are less 

biased and more tightly centered around zero. 

8.4.2. Model Performance 

This comparison between ARIMAX and XGBoost models is evaluated based on their in-sample (training) 

and out-of-sample (testing) performance metrics: 

Metrics ARIMAX (Training) ARIMAX (Testing) XGBoost (Training) XGBoost (Testing) 

MAE 8.81 39.66 21.43 27.07 

MSE 244.45 2380.49 1188.73 1276.70 

RMSE 15.63 48.79 34.97 35.73 

R-squared 0.979 0.897 

Table 7: Model evaluation matrics (MAE, MSE, RMSE, R-squared) 

ARIMAX demonstrates exceptional performance on the training data as reflected by its significantly 

lower error metrics (MAE: 8.81, MSE: 244.45, RMSE: 15.63) and an R-squared value of 0.979. These 

evaluation matrics indicate that nearly all the variance in the target variable is explained. In contrast, 

XGBoost's training performance, this model still perform exceptional (MAE: 21.43, MSE: 1188.73, 

RMSE: 34.48, 𝑅( ∶ 0.897), however, is less precise than ARIMAX. It concludes that ARIMAX has strong 

ability to fit the training data patterns. However, when evaluating testing performance, we can see a 

significant contrast. ARIMAX performs poorly on unseen data, as evidenced by much higher error 

metrics (MAE: 39.66, MSE: 2380.49, RMSE: 48.79). In contrast, XGBoost exhibits much better 
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capabilities on test dataset, with lower error metrics (MAE: 27.07, MSE: 1276.70, RMSE: 35.73) 

indicating that it retains a good predictive power on unseen data. 

When we visualize the residual plots on the testing data, they reveal critical. While the R-squared value 

for ARIMAX is higher, this alone cannot be used as a definitive indicator of superior model performance. 

The R-squared value is primarily a measure of how much variance in the dependent variable is explained 

by the model. However, in the context of forecasting, especially in volatile and complex datasets such 

as electricity prices, relying solely on R-squared can be misleading.  

The residuals for the ARIMAX model (Figure 21) demonstrate high volatility and significant deviations 

from zero. 

 

Figure 21: Residuals concentration on test data (ARIMAX Model) 

This indicates that the ARIMAX model struggles to capture the underlying patterns in the testing data 

effectively. The broader spread and higher variability in the residuals imply that ARIMAX's predictions 

are frequently far from the actual values, which results in larger forecast errors. Although ARIMAX 

achieves excellent performance on the training dataset, its effectiveness diminishes significantly on the 

testing dataset which indicates a tendency to overfit. 

In contrast, the residuals for XGBoost (Figure 22) are much more concentrated around zero. This refers 

that the model's predictions are closer to the actual values. 
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Figure 22: Residuals concentration on test data (XGBoost Model) 

The lower variability and reduced volatility in the XGBoost residuals suggest the effective ability to 

capture the complex, nonlinear relationships in the data and performs well in predicting unseen data. 

 

Figure 23: Residuals overlaping each other on both models- ARIMAX & XGBoost 

However, the residual overlap (Figure 23) plot provides a clear visualization of the comparative 

performance. The residuals for XGBoost are tightly clustered around zero, whereas ARIMAX residuals 

exhibit greater fluctuations and a broader spread. This difference highlights XGBoost's superior ability 

to align its predictions with actual data points in the testing set.  
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The root cause of this difference could lie in the nature of the two models. ARIMAX is highly dependent 

on the autoregressive and moving average components to capture temporal patterns, which often 

results in overfitting, especially when the dataset includes volatility or noise. Conversely, XGBoost, as a 

gradient-boosting framework, is inherently designed with regularization mechanisms (e.g., controlling 

tree depth, learning rate, and subsampling) that prevent overfitting and promote better generalization. 

 

8.4.3. Time-Based Errors comparison 

The time-based error analysis conducts to illustrate different time-dependent patterns in electricity 

prices. This section vizualizes the behavior of errors hourly and daily basis.  

Hourly Mean Absolute Error Analysis 

The hourly MAE plots indicate that both models display a distinctive pattern across different times of 

the day with varying levels of accuracy. 

 

Figure 24: Hourly Mean Absolute Error of AIMAX and XGBoost 

The ARIMAX model shows consistently higher errors during peak hours, particularly around 7 p.m. 

(19.00) where the MAE reaches above 60. This suggests that ARIMAX struggles to accurately predict 

prices during peak demand times possibly due to the increased volatility and complex price behavior 

during these hours. XGBoost, on the other hand, exhibits a relatively smoother performance curve with 

lower MAE values, particularly during peak and off-peak hours especially from the morning to 

afternoon. However, XGBoost also spikes at peak hours (around 7 p.m.), though it manages to maintain 

a lower error than ARIMAX. 
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Daily Mean Absolute Error Analysis 

The daily MAE analysis highlights a clear discrepancy between ARIMAX and XGBoost performance 

across different days of the week. 

 

Figure 25: Daily Mean Absolute Error of AIMAX and XGBoost 

ARIMAX consistently shows higher MAE values across all days where the highest errors occurring on 

Mondays. This suggests a possible lag in the model's ability to adjust after the weekend when the 

market might experience different dynamics. XGBoost displays comparatively lower MAE values and a 

more stable error distribution across the week. This indicates that it can adapt better to weekly price 

trends and manages to capture the fluctuations more consistently. 

Hourly and Daily RMSE Analysis 

The RMSE values are more accepted due to the squaring of errors. Compared to the MAE plot, we can 

see the trend is similar. The RMSE plot similarly highlights peak hours and the larger errors on Monday 

as the most challenging period for both models.  

  

Figure 26: Hourly (26a) and Daily (26b) Root Mean Squared Error of AIMAX and XGBoost 
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The RMSE analysis, along with the MAE, suggests that XGBoost is more resilient in capturing hourly and 

daily patterns with lower error magnitude across both metrics. While both models face difficulties 

during peak demand hours and start-of-week days. XGBoost’s lower RMSE during these periods 

indicates that it captures the underlying price variations with greater precision and stability than 

ARIMAX. This advantage of XGBoost makes it a preferable model for applications requiring accuracy 

during high-volatility periods. 

8.4.4. t-test and Diebold-Mariano Test on Error 

The Diebold-Mariano (DM) evaluate whether the forecast accuracy of two models is significantly 

different.  

Diebold-Mariano Test 
Between  

ARIMAX and XGBoost 
Result Comparison 

Test Statistic 18.28 Statistically significant difference (p < 0.05) 

P-Value (DM Test) 3.393e-73 Very low p-value; significant difference in 
model accuracy 

 
Table 8: Diebold-Mariano Test on two groups (ARIMAX and XGBoost Error) 

The test compares the forecasting accuracy of two models- ARIMAX and XGBoost with test statistic 

18.28 and a p-value of 3.393e-73 which is significantly below the typical threshold of 0.05. This indicates 

that there is a statistically significant difference in the forecasting performance of the two models. 

Since we find consistently lower error metrics for XGBoost, mentioned in the previous sections, the DM 

test statistic validates that XGBoost outperforms ARIMAX in forecasting accuracy 

 

To sum up, this statistical comparison highlights the robustness of XGBoost for Dk1 price forecasting 

applications. 

8.4.5. Forecasting Performance Over Different Horizons 

In this section, we draw an empirical evaluation of the forecasting performance of ARIMAX and XGBoost 

models over different horizons: 1-day, 2-day, and 7-day forecasts. The comparative analysis is 

conducted using key metrics such as Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root 

Mean Squared Error (RMSE).  
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Forecast 
Horizon Model 

Mean Absolute Error 
(MAE) 

Mean Squared Error 
(MSE) 

Root Mean Squared Error 
(RMSE) 

1-Day 
ARIMAX 40.35 2181.23 46.70 

XGBoost 22.69 1045.90 32.34 

2-Day 
ARIMAX 29.60 1317.28 36.29 

XGBoost 20.47 803.43 28.34 

7-Day 
ARIMAX 33.14 1677.47 40.96 

XGBoost 17.95 610.72 24.71 
 

Table 9: MAE, MSE, RMSE on out-of-sample for 1-day 1, 2-day and 7-day 

 

Figure 27: Short-term Forecasting comparizon on unseen sample (1-day and 2-day) 

(Forecasting range: August 20, 5 am to August 22, 6am 2024) 

For 1-day ahead forecasting, XGBoost outperforms ARIMAX in terms of accuracy and error metrics. 

XGBoost achieves a much lower MAE of 22.69 compared to ARIMAX's 40.35. Similarly, XGBoost has 

lower MSE (1045.90) and RMSE (32.34) compared to ARIMAX's MSE (2181.23) and RMSE (46.70). These 

results indicate that XGBoost has a better short-term predictive ability, providing more accurate and 

stable forecasts for the immediate next day. 

In the 2-day forecast, XGBoost again demonstrates superior performance over ARIMAX. The MAE for 

XGBoost decreases to 20.47 compared to ARIMAX's 29.60 and the RMSE for XGBoost is (28.34) is 

significantly lower than ARIMAX (36.29). ARIMAX, while improving slightly from the 1-day performance, 

however, it still struggles with higher error levels. 



 53 

 
 

Figure 28: Long-term Forecasting comparizon on unseen sample (7-day) 

(Forecasting range: August 20 to August 27, 2024) 

To assess the long term model performance, 7-day forecast clearly exhibits XGBoost’s dominance in 

long-term forecasting. XGBoost achieves the lowest MAE (17.95), MSE (610.72), and RMSE (24.71) 

across all horizons. In contrast, ARIMAX’s error metrics (MAE: 33.14, MSE: 1677.47, RMSE: 40.96) show 

that the model increasingly struggles as the forecast horizon extends. This reflects ARIMAX’s inherent 

limitation in handling long-term dependencies, probably, due to its reliance on autoregressive and 

moving average components. Conversely, better performance of XGBoost can be attributed to its ability 

to model complex nonlinear relationships and incorporate regularization mechanisms and thus making 

it more robust over extended periods. 

The visualizations clearly show that XGBoost aligns more closely with the actual values for all forecast 

horizons. However, ARIMAX forecasts tend to deviate significantly, especially in long-term predictions. 

XGBoost provides smoother and more consistent predictions, reducing the likelihood of extreme 

deviations. So, the accompanying visualizations and the tabulated metrics provide an in-depth 

understanding of how each model performs as the forecasting horizon lengthens. 

Overall, XGBoost emerges as the superior model across all forecast horizons. While ARIMAX 

demonstrates strong in-sample performance, its poor generalization on out-of-sample data results in 

higher forecast errors, particularly over extended periods. XGBoost’s consistent ability to maintain 

lower error metrics and better alignment with actual data across short-term and long-term forecasts 

underscores its robustness and adaptability. Therefore, XGBoost is recommended for both immediate 

and longer-term electricity price forecasting in this study. 
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9. Discussion 

This secUon provides the broader implicaUons of the key findings, exploring the energy market 

challenges and  suggesUons for future research to enhance forecasUng methodologies in complex 

energy systems. 

9.1. Volatile Trends in DK1 Spot Prices and Impact on Modeling 

The electricity spot price for Denmark’s DK1 region is highly suscepUble to fluctuaUons driven by supply-

demand imbalances, renewable energy penetraUon, and external geopoliUcal factors. As illustrated in 

Ume serie EDA analysis, DK1 spot prices exhibit periods of extreme volaUlity, with significant spikes and 

frequent dips into negaUve prices. This variability poses unique challenges for predicUve modeling, as 

the data does not adhere to a consistent trend or seasonality parern. Spot price volaUlity, especially 

with sudden shiss, osen requires models that can dynamically adjust to changing parerns. This 

volaUlity has a direct impact on forecasUng model performance. TradiUonal Ume series models, such as 

ARIMAX, struggle to handle this high level of fluctuaUon due to their reliance on historical trends and 

inherent assumpUons of data staUonarity and linearity. Machine learning models, parUcularly XGBoost, 

have shown superior performance with volaUle datasets like DK1 spot prices.  

9.2. Negative Prices: Challenges for Market Participants 

The occurrence of negaUve electricity prices, as observed in the DK1 market, poses significant 

challenges for market parUcipants. While negaUve prices may appear advantageous to consumers in the 

short term, they present a “curse” to market parUcipants, especially tradiUonal generators who struggle 

to maintain profitability. Over Ume, persistent negaUve prices can undermine investment in both 

renewable and convenUonal energy sources, deterring the expansion of a robust energy infrastructure 

that balances reliability with environmental goals. For market parUcipants, negaUve pricing disrupts 

tradiUonal revenue models, compelling them to seek alternaUve approaches to manage risks, such as 

forward market parUcipaUon or hedging strategies.  

9.3. Recent Hardships in the Energy Market 

The European energy market has faced unprecedented challenges in recent years, largely stemming 

from a series of global and regional disrupUons. One primary factor has been the geopoliUcal tension 

surrounding Russia’s invasion of Ukraine, which led to a reducUon in Russian natural gas exports to 

Europe. AddiUonally, Germany’s decision to phase out (gradually closing) nuclear power plants has 

increased reliance on fossil fuels like natural gas and coal to meet its energy needs. This dependence on 

fossil fuels makes the energy supply more vulnerable to price spikes and fluctuaUons in internaUonal 
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energy markets. Moreover, China has shised partly to LNG based power producUon to reduce reliance 

on coal, which is more polluUng. So, a significant porUon of the world’s LNG supply now goes to China, 

leaving less for other regions like Europe. This increased demand from Asia intensifies the compeUUon 

for LNG supplies in Europe and making the European market more volaUle. However, high inflaUon rates 

and rising interest rates also add to the financial burdens on energy companies, making it more 

expensive to invest in renewable energy projects or maintain exisUng infrastructure.  

 

9.4. Key Findings 

The comparative analysis in this study reveals that while the ARIMAX model excelled in in-sample 

accuracy with significantly lower training error metrics, it struggled with out-of-sample forecasting. This 

performance indicates overfitting where the model captures the training data patterns but fails to 

adapt to unseen scenarios, such as volatility or noise. Conversely, the XGBoost model demonstrated 

consistent and robust performance across training and testing datasets. XGBoost showcased its ability 

to generalize better to new data regardless of short-term and long-term forecating proving its 

adaptability to varying temporal patterns.  The findings conclude that XGBoost, with optimal parameter 

tuning are comparatively better suited for dynamic and volatile markets like energy forecasting of DK1 

zone. 

 

9.5. Limitations 

This study acknowledges certain limitations that provide opportunities for future improvement and 

exploration. 

 

Both ARIMAX and XGBoost models rely on historical data to make predictions. However, electricity 

prices are influenced by sudden external factors such as geopolitical events, extreme weather 

conditions, or unexpected policy changes, which are not always reflected in historical datasets. These 

unpredictable factors may lead to deviations in model predictions. 

 

The study focuses on the DK1 region in the Danish energy market. While the findings offer valuable 

insights into price forecasting for renewable energy-dominated markets, they may not be directly 

applicable to other regions with different energy mixes, regulatory frameworks, or market dynamics. 
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While XGBoost outperformed ARIMAX across both short-term and long-term horizons, the models' 

performance was only evaluated up to a 7-day horizon. Extending the analysis to longer forecasting 

periods could offer further insights into their robustness and applicability. 

 

The study primarily relied on standard evaluation metrics such as MAE, MSE, RMSE, and R-squared for 

assessing model performance. While these metrics are widely accepted, they may not capture all 

aspects of model utility, particularly under extreme price scenarios. 

 

9.6. Future Research Directions 

For hourly energy price prediction, the latest research explores several modern financial, economic, 

and machine learning approaches. Some Deep Learning appaches e.g. LSTM is widely using for better 

modelling with hourly energy prices. Due to its ability to capture time dependencies, LSTM has been 

widely used in energy price prediction. A recent study by (Li & Becker, 2021; Zhou et al., 2019) 

demonstrated that LSTM effectively models non-linear temporal relationships in electricity prices. 

Another variation of LSTM, Gated Recurrent Unit (GRU) has been shown to perform similarly but with 

a simpler architecture. (Gao et al., 2019) tested GRU for energy prices, finding it effective in managing 

longer time-series dependencies while reducing computational costs. Moreover, a time series model, 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) models, have also been adapted 

for energy prices because of its ability to capture volatility clustering in financial time series. 

Furthermore, incorporating additional external features, such as real-time weather data or policy shifts, 

could further enhance model accuracy. 
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10. Conclusion 

Price forecasUng accuracy has direct and far-reaching implicaUons for both strategic market 

parUcipaUon and risk management in the energy sector. With reliable spot price predicUons, market 

parUcipants are berer equipped to make informed bidding decisions, opUmize trading strategies and 

manage risks in both the spot and forward markets. Accurate forecasUng thus not only provides financial 

and operaUonal benefits for individual parUcipants but also fosters a more stable and efficient market 

environment supporUng the broader objecUves of sustainable energy investment and market reliability. 

In the dynamic nature of the energy sector, with increasing integraUon of renewable sources, conUnued 

advancements in forecasUng techniques are crucial for enabling a resilient and adaptable electricity 

market.   

 

This research explored the comparaUve performance of ARIMAX and XGBoost models in forecasUng 

electricity prices with a parUcular focus on the unique characterisUcs of the DK1 market. By 

incorporaUng exogenous variables, ARIMAX arempts to enhance predicUon accuracy leveraging its 

strength in capturing autoregressive and moving average parerns. However, the results indicate that 

ARIMAX struggles to perform on unseen data, parUcularly in volaUle market condiUons. While ARIMAX 

is effecUve in capturing historical trends and seasonality, its limitaUons are found with the complex and 

nonlinear dynamics of modern energy markets. 

Conversely, XGBoost, a machine learning model, consistently outperformed ARIMAX in both short-term 

and long-term forecasUng horizons. Its ability to handle nonlinear relaUonships, integrate exogenous 

features and prevent overfi|ng through regularizaUon techniques proved it as a well-performed model 

in the volaUle market. The model demonstrated superior capability, lower forecasUng errors and berer 

alignment with real-world electricity price fluctuaUons. The empirical findings highlight the growing 

importance of machine learning approaches in energy price forecasUng, especially in markets 

characterized by high volaUlity and dynamic trends like DK1. 

 

This thesis also examined the forecasUng performance across different Ume horizons. While ARIMAX 

maintained compeUUve accuracy for very short-term horizons, its predicUve power diminished 

significantly for longer-term forecasts. XGBoost, on the other hand, exhibited robust performance across 

all forecasUng horizons, making it a more reliable opUon for market parUcipants aiming to make 

informed decisions in both day-ahead and long-term trading strategies. From a methodological 

perspecUve, this research underscores the necessity of rigorous model evaluaUon including staUsUcal 

tests such as the Diebold-Mariano test and comprehensive error analysis to ensure robust conclusions.  
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UlUmately, this study provides a valuable contribuUon to the field of energy forecasUng by 

demonstraUng the comparaUve strengths and limitaUons of ARIMAX and XGBoost. While ARIMAX serves 

as a solid foundaUon for understanding Ume-series dynamics, machine learning models like XGBoost 

offer a promising capability for capturing the complexiUes of modern energy systems. These findings 

pave the way for further research into hybrid models and the integraUon of alternaUve machine learning 

approaches to improve forecasUng accuracy. 
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12. Python Codes as Appendix 

 

!pip install pandas statsmodels scikit-learn matplotlib openpyxl pmdarima xgboost scipy 

 
import numpy as np 
import pandas as pd 
import seaborn as sns 
import matplotlib.pyplot as plt 
import datetime as dt 
from sklearn.preprocessing import MinMaxScaler, StandardScaler 
from statsmodels.tsa.stattools import adfuller 
from statsmodels.stats.diagnostic import acorr_ljungbox 
from datetime import datetime, date, timedelta 
from statsmodels.tsa.statespace.sarimax import SARIMAX 
from sklearn.metrics import mean_absolute_error, mean_squared_error, 
r2_score 
import xgboost as xgb 
 

Data Processing 
# Load the dataset from the Excel file 
file_path = 'dk1_20_24.xlsx' 
df = pd.read_excel(file_path) 
 

missing_values = df.isnull().sum() 
print(missing_values) 
df.info() 
#   Column                       Non-Null Count  Dtype          
---  ------                       --------------  -----          
 0   date                         40926 non-null  datetime64[ns] 
 1   dk1                          40926 non-null  float64        
 2   LocalPowerMWhDK1             40926 non-null  float64        
 3   LocalPowerSelfConMWhDK1      40926 non-null  float64        
 4   CentralPowerMWhDK1           40926 non-null  float64        
 5   CommercialPowerMWhDK1        40926 non-null  float64        
 6   HydroPowerMWhDK1             40926 non-null  float64        
 7   OffshoreWindGe100MW_MWhDK1   40926 non-null  float64        
 8   OffshoreWindLt100MW_MWhDK1   40926 non-null  float64        
 9   OnshoreWindGe50kW_MWhDK1     40926 non-null  float64        
 10  OnshoreWindLt50kW_MWhDK1     40926 non-null  float64        
 11  SolarPowerGe10Lt40kW_MWhDK1  40926 non-null  float64        
 12  SolarPowerGe40kW_MWhDK1      40926 non-null  float64        
 13  SolarPowerLt10kW_MWhDK1      40926 non-null  float64        
 14  SolarPowerSelfConMWhDK1      40926 non-null  float64        
 15  PowerToHeatMWhDK1            40926 non-null  float64        
 16  GrossConsumptionMWhDK1       40926 non-null  float64 

 

# Convert the 'date' column to datetime format 
df['date'] = pd.to_datetime(df['date'], format='%d/%m/%Y %H.%M.%S') 
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# Define the training and testing split point (80% for training, 20% 
for testing) 
split_ratio = 0.90 
split_point = int(len(in_sample) * split_ratio) 
Training Data Range: 2020-01-01 00:00:00 to 2024-03-03 14:00:00 
Training Data Shape: (36639, 17) 
Testing Data Range: 2024-03-03 15:00:00 to 2024-08-20 06:00:00 
Testing Data Shape: (4071, 17) 

 

# Define the target variable (y) and the exogenous variables (X) for 
training and testing sets 
y_train = train_data['dk1'] 
X_train = train_data[ 
    ['LocalPowerMWhDK1', 'LocalPowerSelfConMWhDK1', 
'CentralPowerMWhDK1', 
     'CommercialPowerMWhDK1', 'HydroPowerMWhDK1', 
'OffshoreWindGe100MW_MWhDK1', 
     'OffshoreWindLt100MW_MWhDK1', 'OnshoreWindGe50kW_MWhDK1', 
'OnshoreWindLt50kW_MWhDK1', 
     'SolarPowerGe10Lt40kW_MWhDK1', 'SolarPowerGe40kW_MWhDK1', 
'SolarPowerLt10kW_MWhDK1', 
     'SolarPowerSelfConMWhDK1', 'PowerToHeatMWhDK1', 
     'GrossConsumptionMWhDK1'] 
] 
 
y_test = test_data['dk1'] 
X_test = test_data[ 
    ['LocalPowerMWhDK1', 'LocalPowerSelfConMWhDK1', 
'CentralPowerMWhDK1', 
     'CommercialPowerMWhDK1', 'HydroPowerMWhDK1', 
'OffshoreWindGe100MW_MWhDK1', 
     'OffshoreWindLt100MW_MWhDK1', 'OnshoreWindGe50kW_MWhDK1', 
'OnshoreWindLt50kW_MWhDK1', 
     'SolarPowerGe10Lt40kW_MWhDK1', 'SolarPowerGe40kW_MWhDK1', 
'SolarPowerLt10kW_MWhDK1', 
     'SolarPowerSelfConMWhDK1', 'PowerToHeatMWhDK1', 
     'GrossConsumptionMWhDK1'] 
] 
 
 

 

 

 
# Example time series data (replace 'time_series_data' with your data) 
result = adfuller(df['dk1']) 
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# Print ADF test results 
print("ADF Statistic:", result[0]) 
print("p-value:", result[1]) 
print("Critical Values:", result[4]) 
 
# Interpretation 
if result[1] <= 0.05: 
    print("The series is stationary (reject null hypothesis).") 
else: 
    print("The series is non-stationary (fail to reject null 
hypothesis).") 
 
 

dk1_series = df['dk1'] 
 
# Perform the Ljung-Box test on the dk1 series 
# Specify the lags you want to test (e.g., 10 lags) 
lb_test = acorr_ljungbox(dk1_series, lags=[24], return_df=True) 
 
# Print the Ljung-Box test results 
print("Ljung-Box Test Results:") 
print(lb_test) 
 
# Interpretation 
if all(lb_test['lb_pvalue'] > 0.05): 
    print("The dk1 series are independently distributed (fail to reject 
null hypothesis).") 
else: 
    print("The dk1 series exhibit autocorrelation (reject null 
hypothesis).") 
 
 

 

ARIMAX 
from pmdarima import auto_arima 
 
auto_arima_model = auto_arima(df['dk1'], exogenous=features, 
                              seasonal=True, h=24, trace=True) 
 
print(auto_arima_model.summary()) 
Performing stepwise search to minimize aic 
 ARIMA(2,1,2)(0,0,0)[0] intercept   : AIC=346207.171, Time=45.46 sec 
 ARIMA(0,1,0)(0,0,0)[0] intercept   : AIC=358502.073, Time=1.49 sec 
 ARIMA(1,1,0)(0,0,0)[0] intercept   : AIC=350812.154, Time=2.24 sec 
 ARIMA(0,1,1)(0,0,0)[0] intercept   : AIC=351673.877, Time=5.85 sec 
 ARIMA(0,1,0)(0,0,0)[0]             : AIC=358500.073, Time=0.55 sec 
 ARIMA(1,1,2)(0,0,0)[0] intercept   : AIC=349879.694, Time=34.03 sec 
 ARIMA(2,1,1)(0,0,0)[0] intercept   : AIC=346785.680, Time=36.21 sec 
 ARIMA(3,1,2)(0,0,0)[0] intercept   : AIC=346207.208, Time=110.02 sec 
 ARIMA(2,1,3)(0,0,0)[0] intercept   : AIC=inf, Time=106.66 sec 
 ARIMA(1,1,1)(0,0,0)[0] intercept   : AIC=350714.757, Time=7.61 sec 
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 ARIMA(1,1,3)(0,0,0)[0] intercept   : AIC=350385.853, Time=45.46 sec 
 ARIMA(3,1,1)(0,0,0)[0] intercept   : AIC=346281.378, Time=36.94 sec 
 ARIMA(3,1,3)(0,0,0)[0] intercept   : AIC=346200.646, Time=77.30 sec 
 ARIMA(4,1,3)(0,0,0)[0] intercept   : AIC=346199.791, Time=105.93 sec 
 ARIMA(4,1,2)(0,0,0)[0] intercept   : AIC=346260.268, Time=72.59 sec 
 ARIMA(5,1,3)(0,0,0)[0] intercept   : AIC=346203.994, Time=132.78 sec 
 ARIMA(4,1,4)(0,0,0)[0] intercept   : AIC=inf, Time=145.12 sec 
 ARIMA(3,1,4)(0,0,0)[0] intercept   : AIC=346204.411, Time=84.84 sec 
 ARIMA(5,1,2)(0,0,0)[0] intercept   : AIC=346229.158, Time=75.07 sec 
 ARIMA(5,1,4)(0,0,0)[0] intercept   : AIC=inf, Time=161.44 sec 
 ARIMA(4,1,3)(0,0,0)[0]             : AIC=346197.794, Time=50.97 sec 
 ARIMA(3,1,3)(0,0,0)[0]             : AIC=346198.648, Time=34.39 sec 
 ARIMA(4,1,2)(0,0,0)[0]             : AIC=346258.270, Time=32.08 sec 
 ARIMA(5,1,3)(0,0,0)[0]             : AIC=346197.787, Time=57.14 sec 
 ARIMA(5,1,2)(0,0,0)[0]             : AIC=346227.160, Time=28.01 sec 
 ARIMA(5,1,4)(0,0,0)[0]             : AIC=inf, Time=69.94 sec 
 ARIMA(4,1,4)(0,0,0)[0]             : AIC=inf, Time=61.55 sec 
 
Best model:  ARIMA(5,1,3)(0,0,0)[0]           
Total fit time: 1621.738 seconds 
                               SARIMAX Results                                 
============================================================================== 
Dep. Variable:                      y   No. Observations:                40926 
Model:               SARIMAX(5, 1, 3)   Log Likelihood             -173089.894 
Date:                Fri, 15 Nov 2024   AIC                         346197.787 
Time:                        16:01:43   BIC                         346275.363 
Sample:                             0   HQIC                        346222.316 
                              - 40926                                          
Covariance Type:                  opg                                          
============================================================================== 
                 coef    std err          z      P>|z|      [0.025      0.975] 
------------------------------------------------------------------------------ 
ar.L1          0.9620      0.125      7.679      0.000       0.716       1.207 
ar.L2          0.0666      0.216      0.309      0.757      -0.356       0.489 
ar.L3         -0.3301      0.136     -2.428      0.015      -0.597      -0.064 
ar.L4          0.0129      0.024      0.534      0.593      -0.034       0.060 
ar.L5         -0.0279      0.009     -3.247      0.001      -0.045      -0.011 
ma.L1         -0.6238      0.125     -4.978      0.000      -0.869      -0.378 
ma.L2         -0.3292      0.176     -1.875      0.061      -0.673       0.015 
ma.L3          0.1273      0.075      1.690      0.091      -0.020       0.275 
sigma2       277.3572      0.606    457.841      0.000     276.170     278.545 
=================================================================================== 
Ljung-Box (L1) (Q):                   0.73   Jarque-Bera (JB):            825003.49 
Prob(Q):                              0.39   Prob(JB):                         0.00 
Heteroskedasticity (H):               5.61   Skew:                             0.29 
Prob(H) (two-sided):                  0.00   Kurtosis:                        24.99 
=================================================================================== 
 
Warnings: 
[1] Covariance matrix calculated using the outer product of gradients 

(complex-step). 

 

# Define the SARIMAX model for ARIMAX 
model_arimax = SARIMAX(y_train, 
                exog=X_train, 
                order=(5, 1, 3),  # Start with a basic order, but this 
can be fine-tuned 
                seasonal_order=(0, 0, 0, 0),  # No seasonality 
specified here 
                enforce_stationarity=False, 
                enforce_invertibility=False) 
 
# Fit the model 
arimax_model = model_arimax.fit(disp=False) 
print(arimax_model.summary()) 
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                               SARIMAX Results                                 
============================================================================== 
Dep. Variable:                    dk1   No. Observations:                36639 
Model:               SARIMAX(5, 1, 3)   Log Likelihood             -152713.724 
Date:                Sun, 17 Nov 2024   AIC                         305475.447 
Time:                        11:07:15   BIC                         305679.656 
Sample:                             0   HQIC                        305540.353 
                              - 36639                                          
Covariance Type:                  opg                                          
=============================================================================================== 
                                  coef    std err          z      P>|z|      [0.025      0.975] 
----------------------------------------------------------------------------------------------- 
LocalPowerMWhDK1                0.0536      0.002     21.799      0.000       0.049       0.058 
LocalPowerSelfConMWhDK1        -0.0726      0.026     -2.818      0.005      -0.123      -0.022 
CentralPowerMWhDK1              0.0084      0.001      9.160      0.000       0.007       0.010 
CommercialPowerMWhDK1          -0.1506      0.019     -8.022      0.000      -0.187      -0.114 
HydroPowerMWhDK1                2.2526      1.057      2.131      0.033       0.181       4.324 
OffshoreWindGe100MW_MWhDK1     -0.0075      0.001     -6.338      0.000      -0.010      -0.005 
OffshoreWindLt100MW_MWhDK1     -0.0126      0.005     -2.638      0.008      -0.022      -0.003 
OnshoreWindGe50kW_MWhDK1       -0.0118      0.001    -15.564      0.000      -0.013      -0.010 
OnshoreWindLt50kW_MWhDK1       -0.1502      0.053     -2.825      0.005      -0.254      -0.046 
SolarPowerGe10Lt40kW_MWhDK1     1.3187      0.242      5.459      0.000       0.845       1.792 
SolarPowerGe40kW_MWhDK1        -0.0207      0.003     -8.087      0.000      -0.026      -0.016 
SolarPowerLt10kW_MWhDK1        -0.3856      0.019    -20.102      0.000      -0.423      -0.348 
SolarPowerSelfConMWhDK1        -0.0615      0.009     -6.811      0.000      -0.079      -0.044 
PowerToHeatMWhDK1              -0.0662      0.002    -36.760      0.000      -0.070      -0.063 
GrossConsumptionMWhDK1          0.0465      0.001     53.927      0.000       0.045       0.048 
ar.L1                           0.3225      0.092      3.497      0.000       0.142       0.503 
ar.L2                           0.0931      0.105      0.888      0.375      -0.112       0.299 
ar.L3                           0.3443      0.085      4.070      0.000       0.179       0.510 
ar.L4                          -0.2013      0.024     -8.543      0.000      -0.248      -0.155 
ar.L5                          -0.0726      0.007    -10.000      0.000      -0.087      -0.058 
ma.L1                          -0.2997      0.093     -3.220      0.001      -0.482      -0.117 
ma.L2                          -0.3121      0.104     -3.012      0.003      -0.515      -0.109 
ma.L3                          -0.5941      0.088     -6.746      0.000      -0.767      -0.421 
sigma2                        214.5655      1.144    187.563      0.000     212.323     216.808 
=================================================================================== 
Ljung-Box (L1) (Q):                   0.01   Jarque-Bera (JB):            935258.55 
Prob(Q):                              0.93   Prob(JB):                         0.00 
Heteroskedasticity (H):               4.18   Skew:                             0.44 
Prob(H) (two-sided):                  0.00   Kurtosis:                        27.74 
=================================================================================== 
 
Warnings: 
[1] Covariance matrix calculated using the outer product of gradients (complex-step). 

 

# Define a function to calculate performance metrics 
def evaluate_performance(y_true, y_pred): 
    mae = mean_absolute_error(y_true, y_pred) 
    mse = mean_squared_error(y_true, y_pred) 
    rmse = np.sqrt(mse) 
    r2 = r2_score(y_true, y_pred) 
    return mae, mse, rmse, r2 
# Training performance 
mae_train, mse_train, rmse_train, r2_train = 
evaluate_performance(y_train, y_train_pred) 
print("Training - MAE:", mae_train, "MSE:", mse_train, "RMSE:", 
rmse_train, "R2:", r2_train) 
 
# Testing performance 
mae_test, mse_test, rmse_test, r2_test = evaluate_performance(y_test, 
y_test_pred) 
print("Testing - MAE:", mae_test, "MSE:", mse_test, "RMSE:", rmse_test, 
"R2:", r2_test) 
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XGBoost 
import xgboost as xgb 
from sklearn.model_selection import GridSearchCV 
from sklearn.metrics import mean_squared_error 
 
# Create DMatrix for cross-validation 
#X_dmatrix = xgb.DMatrix(X_train, label=y_train) 
 
# Parameter grid for tuning 
#param_grid = { 
    'max_depth': [3, 6, 9],          # Tree depth 
    'eta': [0.01, 0.1, 0.3],         # Learning rate 
    'min_child_weight': [1, 3, 5],   # Minimum child weight 
    'subsample': [0.8, 1],           # Subsampling ratio 
    'colsample_bytree': [0.6, 0.8, 1], # Fraction of features to use 
    'gamma': [0, 1, 5],              # Minimum loss reduction 
    'n_estimators': [50, 100, 200]   # Number of boosting rounds 
} 
 
# Perform Grid Search with 5-fold CV 
#grid_cv = GridSearchCV( 
    estimator=xgb.XGBRegressor(objective='reg:squarederror'), 
    param_grid=param_grid, 
    scoring='neg_mean_squared_error', 
    cv=5, 
    verbose=1, 
    n_jobs=-1 
) 
 
# Fit Grid Search to find best parameters 
#grid_cv.fit(X_train, y_train) 
 
# Output the best parameters 
#best_params = grid_cv.best_params_ 
#print("Optimal Parameters:", best_params) 
 
 

# Import necessary modules 
import xgboost as xgb 
from sklearn.metrics import mean_absolute_error, mean_squared_error, 
r2_score 
 
# Create the final XGBoost model using optimal parameters 
model_xgb = xgb.XGBRegressor( 
    objective='reg:squarederror', 
    colsample_bytree=0.6, 
    eta=0.1, 
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    gamma=5, 
    max_depth=6, 
    min_child_weight=5, 
    n_estimators=200, 
    subsample=1 
) 
 
 

# Train the model 
model_xgb.fit(X_train, y_train) 
# Predict on training data 
y_train_pred_xgb = model_xgb.predict(X_train) 
 
# Predict on testing data 
y_test_pred_xgb = model_xgb.predict(X_test) 
 

# Training performance 
train_mae = mean_absolute_error(y_train, y_train_pred_xgb) 
train_mse = mean_squared_error(y_train, y_train_pred_xgb) 
train_rmse = train_mse ** 0.5 
train_r2 = r2_score(y_train, y_train_pred_xgb) 
 
print("Training Performance:") 
print(f"MAE: {train_mae}, MSE: {train_mse}, RMSE: {train_rmse}, R²: 
{train_r2}") 
 
# Testing performance 
test_mae = mean_absolute_error(y_test, y_test_pred_xgb) 
test_mse = mean_squared_error(y_test, y_test_pred_xgb) 
test_rmse = test_mse ** 0.5 
test_r2 = r2_score(y_test, y_test_pred_xgb) 
 
print("Testing Performance:") 
print(f"MAE: {test_mae}, MSE: {test_mse}, RMSE: {test_rmse}, R²: 
{test_r2}") 
 

 

Defining and plo_ng Residuals 
# For ARIMAX model 
residuals_arimax = y_test - y_test_pred 
 
# For XGBoost model 
residuals_xgb = y_test - y_test_pred_xgb 
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- END - 


