Aalborg University

10th semester
Mathematics-Economics

Master’s thesis

The Impact of Sentiment on Stock
Price Movements:
A WallStreetBets Case Study

1st of November 2024

«

AALBORG
UNIVERSITY

STUDENT REPORT






AALBORG UNIVERSITY
STUDENT REPORT

Title

Department of Mathematical Sciences
Skjernvej 4A

DK-9220 Aalborg @

http://math.aau.dk

Abstract:

The Impact of Sentiment on Stock Price This study investigates the impact of senti-
Movements: A WallStreetBets Case Study ment on stock price movements using data

Project

Master’s thesis

Project period
1st September 2024 - 1st November 2024

Project group
Group 4.111c_ 2

Participants

Oliver Christensen

Supervisors

Sauri Arregui Orimar

Number of pages

66
Date of Completion

November 1, 2024

from the WallStreetBets (WSB) subreddit.
Utilizing natural language processing tech-
niques, we extracted and analyzed sentiment
in WSB posts and examined its correlation
with historical stock prices. Various machine
learning models were employed to explore
their effectiveness in predicting stock move-
ments. The results suggest that sentiment
analysis can provide valuable insights into fi-
nancial market behavior, demonstrating its
potential utility in stock price prediction.

The content of this report is freely available, but publication (with reference) may only happen in agreement

with the authors.


http://math.aau.dk




Aalborg Universitet

Preface

The project period is from the 1st of September 2024 to the 1st of November 2024, and is
written by a 10th semester student studying Mathematics-Economics at Aalborg Univer-
sity. It is assumed that the reader is at least a 10th semester student on a mathematical
orientated education and therefore has knowledge about, among other things, probability
theory and basic measure theory.

References is written in the beginning of each section and refers to the bibliography. Ref-
erences are written according to the Vancouver method, and are therefore written as:
[Number, page].

Signatures

Olver (hris<nsen

Oliver Christensen

ochril9@student.aau.dk


mailto:ochri19@student.aau.dk

Aalborg Universitet

Nomenclature

vi

Cardinality (sets and
vectors: number of ele-
ments; matrices: num-
ber of rows)

Encoded feature vec-
tor of a document

Corpus - a vector of
documents

Tokenization function

Document-Term Ma-
trix

Document
Entropy

Gini Impurity
Token
Vocabulary

Information Gain



CONTENTS

Aalborg Universitet

Contents

1 Introduction

1.1 Problem Statement

2 Natural Language Processing
2.1 Preprocessing
2.1.1 Text Cleaning
2.1.2 Stemming and Lemmatization
2.1.3 Tokenization

2.1.4 Feature Extraction

2.1.5 Metadata Enrichment

2.2 Dimensionality Reduction
2.2.1 Principal Component Analysis (PCA)
2.2.2  Singular Value Decomposition (SVD)

2.3 Part-of-speech tagging
2.4  Word Embeddings

4 Application

4.1 Data Analysis
4.2 Building The Sentiment Pipeline

Machine Learning
3.1 Supervised Learning
3.2 Unsupervised learning
3.3 Feature Engineering
3.4 Tree-based Models
3.4.1 Decision Trees
3.4.2 Random Forest
3.5 Linear Models
3.5.1 Naive Bayes
3.5.2  Logistic Regression
3.6 Ensemble Methods
3.6.1 Gradient Boosting
3.7 Neural Networks
3.7.1 Structure
3.7.2 Learning Process
3.7.3 Convolutional Neural Networks

—

—_ =

vii



Aalborg Universitet

CONTENTS
4.2.1 Statistics . . ... ...
4.2.2 mn-grams . . . . .. ...
4.3 Model selection . . . ... ... ... .. ..
4.3.1 Encoding Data . . . ... ... ...
432 Results . ... ... ... ... ...
4.4 Constructing trading strategy
4.4.1 Data labeling . . . . ... ... ...
4.5 Testing predictability . . . . . . . ... ...
4.5.1 Granger Causality . ... ... ...
4.5.2 Cross-Correlation . . . . . .. .. ..
453 Results . ... ... ... ... ..

5 Evaluation

5.1 Backtesting . . .. ... ...

6 Discussion
7 Conclusion

Appendix A Illustrations

Al Graphs. . . . ... ... ... ...
A2 Tables . . . .. .. ... oL

Appendix B Code listings

Bibliography

viii

51

53

55

................. 95
................. 95

61

65



Introduction Aalborg Universitet

1 Introduction

Sentiment analysis has emerged as a powerful tool in the domain of financial markets,
providing insights into public opinion and emotional trends that can significantly influence
stock prices. This project aims to leverage sentiment analysis on posts from WallStreet-
Bets (WSB) to explore the potential of using online sentiment to predict future stock
price movements. WallStreetBets is a popular subreddit on the social news and discus-
sion website, Reddit. It is known for its high-risk, high-reward trading strategies and its
often irreverent, meme-filled commentary on stock market investments. The community
primarily consists of retail investors who share their experiences, strategies, and opinions
on various stocks and financial markets.

The rationale behind this project lies in the premise that collective sentiment, particularly
within highly active and influential online communities like WSB, can drive substantial
market movements. For instance, the dramatic rise of GameStop (GME) stock in early
2021 serves as a prime example. This event was heavily influenced by the user "Deep-
FuckingValue” as his posts garnered widespread attention and support, contributing to an
explosive surge in the stock price. This case illustrates how sentiment and social media
buzz can lead to significant market events, including so-called "pump and dump” schemes,
where coordinated buying and selling can manipulate stock prices.

By utilizing natural language processing, we can quantify the emotional tone and overall
sentiment of the community towards specific stocks. This information can then be inte-
grated into a machine learning algorithm to analyze and predict stock price movements.
The algorithm will, among other things, use historical sentiment data and corresponding
stock prices to learn patterns and correlations that may indicate future price changes.

The ultimate goal of this project is to determine the viability of sentiment analysis as
a predictive tool for financial markets. By understanding how sentiment drives stock
movements, investors and analysts can gain a valuable edge in making informed trading
decisions and identifying potential market manipulations before they occur.

1.1 Problem Statement

Can sentiment signals within the WallStreetBets community be used to predict future stock
price movements, and how effectively can this information be incorporated into a machine
learning algorithm to predict future stock market movements?
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2 Natural Language Processing

Natural Language Processing (NLP) is a multidisciplinary field that combines linguistics,
computer science, and artificial intelligence to enable machines to understand and inter-
pret human language. In the context of sentiment analysis, NLP techniques are used to
assess and categorize emotions expressed in text, allowing for the extraction of insights
from opinions, reviews, and social media interactions. To leverage these techniques, it is
important to establish a clear understanding of several key concepts foundational to NLP
and sentiment analysis.[1]

Definition 2.1.
1. Vocabulary: The complete and ordered set of unique tokens in the corpus.

2. Token: A unit of text that has been extracted from a larger body of text. In
particular, we define a token to be the smallest unit of analysis. Examples include
words, characters, and expressions that consist of multiple words or characters.
A tokenization function 7 is a function that can split a document of any length
into vector of any dimension depending on the type of token chosen.

3. n-gram: A contiguous sequence of n tokens from a given text. Examples include
unigrams (n = 1) and bigrams (n = 2).

4. Document: A sentence or passage of text.
5. Corpus: A collection of documents. We denote this by the vector, D.

6. Feature Vector: A numerical representation of some observation. Each value
corresponds to a different feature of the data point being represented. For textual
features, we define d € R™, m < |v| as the feature vector representation of a
document d, where v is the vocabulary. Each component indicates a measure of
importance, frequency, or weight for the corresponding item in v.

7. Document-Term Matrix: A matrix representation of a corpus. A Document-
Term Matrix, D € R™™ consists of feature vectors, where n is the number of
feature vectors and the size of each feature vector (m) is constant.

Having established these foundational definitions, we can delve deeper into the essential
processes that prepare textual data for analysis.
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2.1 Preprocessing

Preprocessing is a crucial step in preparing textual data for sentiment analysis. It ensures
that raw data is cleaned, structured, and enriched to facilitate the application of compu-
tational methods. Below are the key preprocessing steps involved in transforming textual
data into a usable format. [1]

2.1.1 Text Cleaning

Raw textual data often comes in unstructured formats, containing unnecessary elements
such as HTML tags, special characters, or irrelevant symbols. The process of parsing
extracts the actual text from files, removing unwanted elements. Depending on the source,
this process can be simple or tedious. After parsing, extraneous elements, including stop
words such as "the” or "and”, are removed. Stop words contribute little to the sentiment
analysis and add noise, so removing them helps reduce dimensionality which is inherently
very high in textual data. In fact there are ¢" unique representations of a text with w words
drawn from a vocabulary consisting of ¢ words.[2] The number of unique grammatically
correct sentences, however, is significantly less.

Example 2.2. d, = "The quick brown fox jumped over the lazy dogl”

2.1.2 Stemming and Lemmatization

In natural language, many words are either synonymous or simply different inflections of
the same root word. This presents an opportunity to reduce the dimensionality of our
vocabulary. The goal is to simplify and normalize all words within each group of similar
or synonymous words to their respective base forms. What constitutes the base form of a
word is not exactly trivial. Examples of text normalization techniques include stemming
as well as lemmatization.

Stemming

Stemming is a process that reduces words down to their root form by removing common
suffixes and prefixes. For example, words like “running,” “runner,” and “ran” would all
be reduced to the stem “run”. Stemming is strictly rule-based and is context independent.
While computationally efficient, this has the disadvantage of not capturing the semantic
relationship with words such as "better” and ”"good”. Further, stemming does not always
produce valid words, leading to loss of meaning.

)
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Lemmatization

Lemmatization is a more sophisticated process than stemming. It reduces words to their
base or dictionary form, known as the lemma, by considering the context and part of
speech of a word. Unlike stemming, lemmatization produces valid words and is capable of
capturing the semantic relationship between words. For example, the words “better” and
“good” share a lemmatized form of “good.”

While lemmatization is more accurate in preserving meaning, it is computationally more
expensive than stemming, as it relies on a deeper understanding of the grammatical context
and requires a pre-built lexical database such as WordNet.

Example 2.3. Continuing Example 2.2, both stemming and lemmatization produces
the same output.
d; = "quick brown fox jumped lazy dog”

2.1.3 Tokenization

Once each document has been cleaned, they are still single objects. It is very unlikely that
a document of text exists more than once and therefore, it would be impossible for the
machine to learn anything based on entire documents. The same way humans consider the
meaning of each word seperately, it is necessary to seperate the sentence or text passage
into tokens in order to establish meaning behind each word through machine learning. Text
can also be split sub-words, characters or even n-grams. Sub-word tokenization enables the
computer to recognize words within words, which may uncover more relationships between
documents than would have otherwise been achieved. Likewise, using e.g. bigrams makes
it possible for the machine to recognize which words often go together. For example, the
word "learning” is more likely to be contiguous to "machine” than many other words.

Example 2.4. Continuing Example 2.2, we tokenize on a word-level.

T(dl) — |:77quick77 ”bI‘OWl’l” 7’fOX77 77jump77 771azy7’ ’7dog’7i|

2.1.4 Feature Extraction

Any method intended for machine learning or statistical processing must eventually convert
text into numerical data. This is typically achieved using a document-term matriz (DTM),
where each row represents a document, each column represents a term, and the values in
the cells represent the (weighted) frequency of occurence of each term in a document|[1].
A simple way to encode a document is by simply marking each word from the vocabulary
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by 1 if it exists in the document and 0 otherwise. To illustrate, consider the following
example.

Example 2.5. We now add some extra documents to show the structure of the DTM.

dy = "quick brown fox jump lazy dog” ds = "fox jump”

dy = "brown fox quick” dy = "dog lazy”

The corpus can then be represented by the following DTM.

Vocabulary
Feature Vectors | "quick” "brown” 7"fox” 7jump” “lazy” "dog”
d, 1 1 1 1 1 1 1
d 1 1 1 0 0 0 0
d; 0 0 1 1 0 0 0
d, 0 0 0 0 0 1 1

Table 2.1: Document-term matrix

The type of encoding is also known as one-hot encoding[3]. More formally, the one-hot
encoding function is the indicator function,

lifted
1,4(t) =
a(t) {0 otherwise.

Thus, the feature vectors are given by d; = [14,(f)]ter for ¢ € {1,...,|D|}. This ensures,
that each token has a unique representation so there is no overlap between tokens. The
dimensionality of the one-hot encoded vector equals the size of the vocabulary, which can
become very large for extensive vocabularies, leading to sparsity. For large vocabularies,
the DTM is typically converted to some compressed sparse matrix format.

Another technique for feature extraction is what is known as term frequency-inverse docu-
ment frequency(TF-IDF), which assigns weights to terms based on their frequency across
documents, thus emphasizing terms that are more specific to individual documents. TF-
IDF is the product of two statistics: Term Frequency (TF) and Inverse Document Fre-
quency (IDF). Term Frequency measures how frequently a term (or token) appears in a
document, normalized to prevent bias towards longer documents [4]:
f(t,d)

TF(t,d) T() (2.1)
where f(t,d) := Xyepa) lv= is the frequency of term ¢ in document d and |7 (d)| is the
number of elements in the tokenized document.

6
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Inverse Document Frequency (IDF) measures how important a term is within the entire
corpus:

_ D)
IDF(¢, D) _1n<|{deD:te T(d)}|> (2.2)

where |D] is the total number of documents in the corpus D, and |[{d € D : t € T(d)}| is
the number of documents containing the term ¢.

The TF-IDF score for a term ¢ in a document d is calculated as:
TF-IDF(t, d, D) = TF(t,d) x IDF(t, D). (2.3)
In this case, feature vectors are calculated as d; = [TF-IDF (¢, d;, D)];e, fori € {1,...,|D|}.

Example 2.6. Further extending Example 2.5, we can calculate the TF and IDF
scores for each document.

T(d)| =6 |T(da)| =3  [T(ds)| =|T(da)| =2 |c|=4

Since each word appears exactly once, the term frequencies happen to be equal
document-wise. Note that this is not the general case.

TR(t, d;) — IT(ldm Vit i) € {(ti) | t € T(dy), i € {L,....4})

The inverse document frequencies are independent of the individual document content.

4
IDF('fox',D) =1n (3) ~ 0.2877

IDF(t,D) =1In2 ~ 0.6931 Vt € {"quick”, "brown”, "jump”, "lazy”, "dog”}

By multiplying the each TF and IDF, we arrive at the following DTM.

Vocabulary
Feature Vectors | "quick” ”“brown” "fox” 7jump” ’“lazy” "dog”
d, 0.116 0.116  0.0480 0.116  0.116 0.116
d, 0.2310  0.2310  0.0959 0 0 0
ds 0 0 0.1438  0.3465 0 0
d, 0 0 0 0 0.3465 0.3465

Table 2.2: Document-term matrix for TF-IDF encoding
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2.1.5 Metadata Enrichment

Beyond text cleaning and feature extraction, adding metadata to the text provides valuable
context for sentiment analysis. Metadata such as the publication date, author, source, or
even geographic location can be important for refining the analysis.[1]

For example, using Named Entity Recognition (NER) techniques can help extract key
entities (such as companies, locations, or individuals) mentioned in the text. Enriching
the dataset with this additional information allows for a more sophisticated analysis of
sentiment trends associated with particular entities or time periods.

2.2 Dimensionality Reduction

Textual data are inherently high-dimensional. Structuring a text of length w words, each
drawn from a vocabulary of ¢ possible words, yields unique representations with a dimen-
sionality of ¢* [2]. As the document-term matrix is often large and sparse, dimensionality
reduction techniques are applied to reduce the number of features while retaining the most
informative aspects of the text. Techniques such as Principal Component Analysis (PCA)
or Singular Value Decomposition (SVD) help reduce computational complexity and im-
prove the performance of sentiment analysis models.

2.2.1 Principal Component Analysis (PCA)

In this section, we describe how Principal Component Analysis (PCA) can be utilized to
reduce dimensionality[5]. The first step in PCA is center the DTM, D € R™™. We define,

_ 12
d:=— dl
n:3

and the centered DTM is given by

Next, the covariance matrix is computed as:

1
Cov=—D'D,. e R™™,
oV N e -

From the covariance matrix Cov, we compute the eigenvalues A\, Ao, ..., \,,, and the corre-
sponding eigenvectors v, vg, ..., V. The eigenvalues are sorted in descending order, and
we select the top m’ eigenvalues, denoted as Aax1, Amax2, - - - » Amaxm/, Where m’ < m. This
essentially selects the m' features that contribute the most to the variance. The explained

variance is calculated using the formula Zﬁ% - By plotting the cumulative explained vari-
i J

ance against the number of principal components, one can look for an ”elbow” point. This
point indicates where adding more principal components results in diminishing returns.

8
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The matrix W is constructed using the selected eigenvectors as its rows:

VUmax1

VUmax 2

W = . e R™ ™,

VUmax d’

The final step involves projecting the original feature vectors d; into the reduced dimen-
sional space. This is achieved by computing the projected vector z; for each document:

Z; = W(dz — J)T

-
The set of projected examples is defined as D, := [zl Zo ... 2| , which represents
the reduced dimensional representations of the original documents.

PCA serves as a powerful technique for dimensionality reduction, particularly useful in
applications involving high-dimensional feature vectors derived from text data. However,
it is important to note that the computation of the covariance matrix and the subsequent
eigenvalue decomposition can be computationally intensive, particularly as the number of
training examples n grows, resulting in quadratic complexity O(N?). For this reason, PCA
may not always be the most efficient choice for text mining tasks where the dimensionality
of the data can be extremely large.

2.2.2 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) is the process of decomposing a given matrix
into three matrices: one matrix whose column vectors are the eigenvectors, a diagonal
matrix whose diagonal elements are the eigenvalues, and another matrix whose row vectors
are also eigenvectors.[6] The SVD is utilized for reducing the dimensionality of numerical
vectors that represent data items. Consider n training examples, each represented as an
m-~dimensional vector. To perform SVD on a particular the DTM:

1. Compute the n eigenvectors from the n x n matrix DDT and construct the n x n
matrix U by arranging the eigenvectors as its column vectors. The corresponding
eigenvalues must be ordered in descending magnitude.

2. Compute the n eigenvalues from the eigenvectors of the matrix DD" and construct
the n x n diagonal matrix ¥ by arranging the singular values (the square roots of
the eigenvalues) in descending order along its diagonal.

3. Compute the m eigenvectors from the m x m matrix D' D and construct the m x m
matrix V' by arranging the eigenvectors as its row vectors. The arrangement of the
columns of V' must correspond to the order of the singular values in ..
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The data matrix representing the training examples, D, is decomposed into the three
matrices as follows:

D=Uxv" (2.4)
This decomposition is referred to as Singular Value Decomposition (SVD).

Training examples with reduced dimensions are generated by selecting the top m' eigenval-
ues from the matrix 3, where m’ < m and only the maximum m’ eigenvalues are retained
from X, while the remaining entries are filled with zeros. The matrix D', representing the
training examples with reduced size, is constructed as follows:

D =Uux'vt (2.5)

In the matrix D’, the m’ non-zero column vectors are retained, and the m —m’ zero column
vectors are omitted.

In summary, the following remarks can be made about SVD: Understanding the eigenvec-
tors and eigenvalues of a matrix forms the basis for SVD. The SVD decomposes a matrix
into three matrices consisting of its eigenvectors and eigenvalues, as shown in Equation
(2.68). In Equation (2.68), U and V contain the eigenvectors arranged as column and
row vectors, respectively, while ¥ is the diagonal matrix with eigenvalues as its diago-
nal elements. Dimensionality reduction using SVD is achieved by removing the smallest
eigenvalues from the matrix 3.

2.3 Part-of-speech tagging

Part-of-speech (POS) tagging involves assigning grammatical categories to individual words
in a sentence. These categories typically include nouns, verbs, adjectives, adverbs, pro-
nouns, prepositions, conjunctions, and interjections. POS tagging is essential for under-
standing the syntactic structure of sentences and can significantly enhance various NLP
applications, such as machine translation, information retrieval, and sentiment analysis.|7]

Importance of POS Tagging Syntactic Analysis: POS tagging provides crucial informa-
tion about the syntactic role of words within a sentence, enabling more accurate parsing
and understanding of sentence structure. Word Sense Disambiguation: Many words can
have multiple meanings depending on their context. POS tagging helps disambiguate these
meanings by considering the grammatical role of the word in the sentence. Feature Extrac-
tion: In many NLP tasks, features derived from POS tags can improve the performance
of machine learning models. For example, distinguishing between nouns and verbs can
help classify text more effectively. Semantic Analysis: Understanding the role of words
in context can aid in extracting semantic relationships and meaning from text, leading to
better insights and analysis. Several techniques are used for POS tagging, each with its
strengths and weaknesses|7]:

o Rule-Based Tagging: Early POS taggers relied on a set of handcrafted rules to
assign tags based on the context of words. While effective for specific tasks, this

10
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approach is often limited by the complexity of language and the extensive number
of exceptions.

» Statistical Tagging: These methods, such as Hidden Markov Models (HMMs),
utilize probabilities derived from large annotated corpora to predict the most likely
tag sequence for a given sentence. Statistical methods typically outperform rule-
based approaches but require significant training data.

e Machine Learning Approaches: Modern POS tagging often employs machine
learning algorithms, such as Conditional Random Fields (CRFs) and neural networks.
These methods can learn complex patterns in the data and generalize better to unseen
examples, making them highly effective for various languages and domains.

e Deep Learning Models: With the rise of deep learning, recurrent neural networks
(RNNs) and transformers (like BERT) have become popular for POS tagging tasks.
These models can capture long-range dependencies and contextual information, re-
sulting in state-of-the-art performance on POS tagging benchmarks.

2.4 Word Embeddings

Word embeddings are a type of word representation that allows words to be represented
as dense vectors in a continuous vector space. Unlike traditional one-hot encoding, which
represents words as sparse vectors with a length equal to the size of the vocabulary, word
embeddings capture semantic meanings and relationships between words by positioning
them in a high-dimensional space. This approach enables models to understand context,
similarity, and relationships among words more effectively, making embeddings a funda-
mental concept in natural language processing (NLP) and machine learning. [§]

Word embeddings capture the meaning of words based on their context in a large corpus
of text. Words that appear in similar contexts are positioned closer together in the vector
space, allowing for a quantitative measure of semantic similarity. By representing words
in a lower-dimensional space, word embeddings reduce the computational complexity asso-
ciated with processing high-dimensional categorical data. This compact representation is
particularly beneficial for large vocabularies. Many NLP tasks, such as text classification,
sentiment analysis, and machine translation, benefit from the rich representations provided
by word embeddings. They have been shown to improve the performance of machine learn-
ing models compared to traditional methods. Pre-trained word embeddings can be used
across various tasks and domains, allowing models to leverage knowledge gained from large
datasets. This transferability reduces the need for extensive labeled data in new tasks.

Common Techniques for Generating Word Embeddings

Several techniques are widely used to generate word embeddings, each with its approach
and underlying methodology|9]:

11
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12

Word2Vec: Developed by Google, Word2Vec uses neural networks to learn word
representations from large text corpora. It offers two architectures:

Continuous Bag of Words (CBOW): Predicts a target word based on its surrounding
context words.

Skip-Gram: Predicts surrounding context words given a target word. This method
has been effective in capturing fine-grained semantic relationships.

GloVe (Global Vectors for Word Representation): Developed by Stanford, GloVe
is based on matrix factorization techniques. It constructs a global word-word co-
occurrence matrix from a corpus and derives embeddings by factorizing this matrix.
GloVe captures both local and global statistical information, resulting in meaningful
vector representations.

FastText: Created by Facebook, FastText improves upon Word2Vec by representing
words as bags of character n-grams. This approach allows it to generate embeddings
for out-of-vocabulary words by combining the embeddings of their constituent n-
grams. FastText is particularly useful for handling morphologically rich languages.

BERT and Contextualized Embeddings: Unlike traditional static embeddings, mod-
els like BERT (Bidirectional Encoder Representations from Transformers) generate
contextualized word embeddings. Each word’s representation depends on the entire
sentence context, allowing for more nuanced understanding and improved perfor-
mance on various NLP tasks.
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3 Machine Learning

Machine learning (ML) has emerged as a powerful tool for natural language processing
(NLP), revolutionizing the way we analyze and understand human language. NLP encom-
passes a broad set of tasks, from simple text classification to complex language generation,
and machine learning techniques allow computers to automatically learn patterns in data,
making it possible to automate and enhance many of these tasks.

In NLP, machine learning algorithms can process large volumes of text, recognize patterns
in language, and generate insights that would be difficult or time-consuming for humans to
produce manually. By leveraging models that learn from data, machine learning enables
applications such as sentiment analysis, text classification, machine translation, speech
recognition, and even chatbots.

Unlike rule-based approaches, where predefined instructions are needed to process lan-
guage, ML models, particularly deep learning models like neural networks, can learn to
interpret language from data alone. This adaptability makes machine learning a critical
tool for analyzing unstructured data like text, where the nuances of human communication,
such as slang, tone, and context, can be challenging to define with static rules.

From detecting trends in social media discussions to powering personal assistants like Siri
or Alexa, machine learning has opened up new possibilities in NLP, enabling machines to
better understand and respond to human language in a meaningful way.

3.1 Swupervised Learning

Supervised learning is a foundational approach in machine learning, particularly useful for
natural language processing tasks. In supervised learning, models are trained on labeled
datasets, where each input (such as a sentence or a document) is paired with its correspond-
ing output or label (such as a sentiment classification or topic label). The model learns to
map the input to the correct output by minimizing the error between its predictions and
the actual labels, eventually becoming capable of generalizing to unseen data.[10]

In NLP, supervised learning algorithms are frequently applied to tasks such as Sentiment
Analysis, Text Classification, Named Entity Recognition and Part-of-Speech Tagging.

The success of supervised learning in NLP largely depends on the quality and quantity
of labeled training data. Models like support vector machines (SVMs), logistic regression,
and more recently, neural networks, are commonly used in these tasks. With the advent of
deep learning, complex models like recurrent neural networks (RNNs), convolutional neural

13
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networks (CNNs), and transformers (such as BERT, GPT) have achieved state-of-the-art
results across various supervised NLP tasks.

Despite its power, supervised learning comes with the challenge of requiring large, high-
quality datasets. For many languages and domains, labeled data may be scarce or expensive
to obtain. Additionally, models trained using supervised learning are often domain-specific,
meaning they might not perform well when applied to different types of text than those
they were trained on.

3.2 Unsupervised learning

Unlike supervised learning, unsupervised learning trains algorithms on data without the
use of labeled responses. There are several methods of achieving this, such as clustering
and association rule learning. [10]

Unsupervised learning is a branch of machine learning that deals with training algorithms
on data without labeled responses. Unlike supervised learning, where the model learns from
a dataset that contains input-output pairs, unsupervised learning seeks to find patterns
and structures within data without explicit guidance. This approach is particularly useful
in situations where labeled data is scarce or unavailable.

A technique the also falls under the umbrella of unsupervised learning is what is known
as PCA (Principal Component Analysis). This is useful for reducing the dimensionality
of the feature space and can thus also be used in conjunction with supervised learning.
So while this project largely pertains the use of supervised learning algorithms, we also
employ some unsupervised learning techniques.

3.3 Feature Engineering

Feature engineering is a crucial step in the machine learning pipeline that involves selecting,
modifying, or creating features to improve model performance. Traditionally, this process
required domain expertise to handcraft features based on prior knowledge and intuition
about the data. Commonly used techniques included transforming raw data into a format
suitable for modeling, extracting relevant metrics, and identifying key variables that could
influence predictions.

Recent advancements in machine learning, particularly with the rise of neural networks,
have shifted the focus toward automatic learning. In this paradigm, models can automat-
ically learn complex features directly from raw data, minimizing the need for extensive
manual feature engineering. For instance, deep learning architectures, such as convo-
lutional neural networks (CNNs) and recurrent neural networks (RNNs), automatically
extract hierarchical features from images and sequential data, respectively. This capability

14
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not only reduces the time and effort spent on feature design but also enables the discovery
of intricate patterns that may be overlooked in traditional approaches [11, 12, 13].

Automatic learning can be applied in both supervised and unsupervised contexts. In su-
pervised learning, models learn to associate input features with labeled outputs, optimizing
their performance through backpropagation. Conversely, in unsupervised learning, mod-
els analyze unlabeled data to uncover hidden structures, employing techniques such as
clustering and dimensionality reduction [14, 15]

The ability of neural networks to perform automatic feature learning has led to significant
advancements across various domains, including natural language processing (NLP), image
recognition, and speech analysis, ultimately contributing to more robust and accurate
models [16, 17]

3.4 Tree-based Models

Tree-based models use a tree-like structure to make decisions based on feature values,
making them effective for both classification and regression tasks. Their intuitive design
allows for easy interpretation and visualization.

A pre-cursor to Random Forests, Decision Trees play a crucial rule in many text classifi-
cation schemes.

3.4.1 Decision Trees

A Decision Tree classifier builds a tree structure where each node represents a decision
based on the value of a specific feature, leading to branches that represent the possible
outcomes of that decision. The following figure depicts an example of such a tree:

Root

7O\

Decision 1 Decision 2
- ~_ ecision

Leaf 1A Leaf 1]/ \

Leaf 2A Decision 3

PN

Leaf 3A Leaf 3B

Figure 3.1: Example decision tree

« Root Node: The topmost node that represents the entire dataset.

e Decision Nodes: Intermediate nodes that represent decisions based on specific
feature values.
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o Leaf Nodes: Terminal nodes that represent the final classification or output. Each
leaf node corresponds to a specific class label.

Feature Selection and Splits

Feature selection at each node involves selecting the feature that best splits the data
according to a chosen splitting criterion, S. Common criteria include:

o Gini Impurity: An impurity measure focusing on the probability of misclassification
when selecting two instances at random. It is represented as a value between 0 and
0.5, where 0 indicates that all samples fall into the same class, and 0.5 signifies that
the samples are evenly distributed among all classes. Let C denote the set of unique
classes. The measure is calculated as follows:[15]

Sa(D)=1->_ P(k)

keC

where P(k) := ul)l()l | is the proportion of class k in the Document-Term Matrix D.

o Entropy: This measure quantifies the amount of uncertainty or disorder in a dataset
based on the distribution of classes. It is calculated as follows:[15]

— > p(k)logy p(k
keC

To decide the best split, we need to maximize Information Gain, which is the (hypo-
thetical) reduction in impurity (whether based on entropy or Gini impurity) after a split.
Information gain, IG, is calculated as the difference between the impurity of the parent
node and the weighted impurity of the child nodes resulting from the split.

For a corpus D split by a decision rule §, the information gain IG(D, ) is defined as:
IG(D,d) = S(D) — S(D|s),

where the conditional impurity S(D|J) = > ;cc ‘D|§3||6)| S(DU9Y) and D9 denotes the subset
of documents in D that fall into the i-th category after the split based on decision rule
§, and S(D®) represents the impurity measure (either Gini or entropy) of the child node
D® . For one-hot encoded data, the decision rules can be seen as presence or absence of
a word 0 = {D;; = t}, whereas for frequency based encodings such as TF-IDF, decision
rules are on the form 6 = {D;; < t} or § = {D,; >= t}, where t € R is some threshold
and D;; is some entry in the DTM, D.

Decision Process and Thresholds

At each decision node, the classifier evaluates all available features and their corresponding
thresholds to determine the best split. The process follows these steps[15]:
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1. Determine Unique Values: For the selected feature, identify its unique values.

2. Generate Possible Thresholds: If a feature has multiple unique values, thresholds
can be set at:

o Each unique value. (Categorical features)
« Midpoints between unique values. (Continuous features)

For example, if the feature is the TF-IDF score for a word, and the unique scores are
[0.0,0.2,0.4,0.5,0.8], possible thresholds would include 0.1, 0.3, 0.45, and 0.65.

3. Evaluate Each Threshold: For each threshold, the data is split into groups based
on the decision rules (e.g., greater/less than or equal/not equal to the thresholds),
and the Gini impurity or Information Gain is calculated for each group.

4. Choose the Best Split: The decision rule that maximizes Information Gain is
chosen.

3.4.2 Random Forest

Random Forest is an ensemble learning method that combines multiple decision trees to
improve classification accuracy and robustness. FEach tree in the forest independently
classifies data, and the Random Forest aggregates these predictions to provide a more
accurate and generalized outcome than any single tree.

Random Forest Architecture

A Random Forest model consists of an ensemble of decision trees, each built on a different
subset of data and a random subset of features. This process, known as Bagging (Boot-
strap Aggregating), helps mitigate the variance of individual trees, leading to a more stable
and accurate classifier. The architecture of Random Forest involves: [10]

« Bootstrapped Sampling: Each decision tree in the forest is trained on a random
subset of the training data, typically chosen with replacement, meaning that some
instances may appear multiple times, while others may not appear at all.

e Feature Randomization: To further reduce correlation between trees, a random
subset of features is selected at each split in a tree, ensuring that no single feature
overly dominates the classification outcome.

e Voting Mechanism: In classification, each tree in the forest casts a “vote” on the
class label, and the final prediction is made based on the majority vote among all
trees. For binary classification, the final class label is typically the one that receives
more than 50% of the votes.
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Training and Prediction in Random Forest

The Random Forest classifier trains each tree independently, allowing for highly parallelized
training and prediction processes. Training and prediction follow these steps: [10]

1. Generate Bootstrapped Samples: For each decision tree, a random sample of
data is drawn from the original training set, creating a unique dataset for each tree.

2. Construct Individual Trees: Using the bootstrapped sample, each tree is con-
structed based on random feature subsets, applying standard decision tree principles
(as discussed in the previous section) to maximize information gain at each split.

3. Aggregate Predictions: For a given test document, each tree makes an inde-
pendent prediction. The Random Forest classifier then aggregates these predictions
through majority voting to determine the final class label.

3.5 Linear Models

3.5.1 Naive Bayes

The Naive Bayes (NB) classifier is a probabilistic (supervised) learning method based on
Bayes’ theorem, which assumes strong (naive) independence between the features. Let C
denote the set of classes. For binary text classification in particular, C'= {0,1}. The goal
is to classify a document, d, into a class £ € C' that maximizes the posterior probability
P(c = k|d) = P(c = k|T(d)) = P(c = k|d). The probability of a document d being in
class k is computed as [18]:

P(c=kld) o P(c=k) [[ P(tle=k)
teT(d)

where P(t|c = k) is the conditional probability of term (or encoded feature) ¢ occurring
in a document of class k, and P(c = k) is the prior probability of class k. The DTM
is organized in an ordered manner. Let D) C D (by row) be the (encoded) documents
that belong to class k. Thus, when all terms are fully encoded, probabilities of the form
P(t|c = k) can be estimated using the columns of D®). In particular,

(k)
ZdDd + «
P(tlc = k) = (k)vt
Zi,j Di,j + alV|

where the smoothing term o = 1 handles zero probabilities. The prior probability is simply

estimated as P(c = k) = |?g‘)|

of documents.

- the number of documents in class k out of the total number

To classify a new document d, the algorithm computes the score for each class:
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Slk] =log P(c=k)+ Y logP(t|c = k)
teT (d)
This formulation represents the logarithm of the posterior probability. Because the log-
arithm is a strictly monotonic increasing function, it preserves the order of probabilities
while also preventing underflow issues in computational implementations. Next, the doc-
ument is assigned to the class that has the highest score, determined by the maximum a
posteriori (MAP) criterion, given by

Faiap = arg max S[k].

Naive Bayes classifiers are known for their simplicity and efficiency. They can be trained
and applied to classify new data with a single pass over the data. Despite the strong
independence assumptions, NB classifiers often perform surprisingly well in practice, par-
ticularly in text classification tasks where the independence assumptions are not strictly
true. The pseudocodes below illustrates the processes involved in training and applying a
Naive Bayes classifier. [18]

Algorithm 1 Train Naive Bayes Classifier

1: procedure TRAINMULTINOMIALNB(D, C, V, o = 1)
2 n, m := Size(D)

3 for each k£ € C' do

4: Dy, := DocsInClass(D, k)

5: ng := NumRows(Dy,)

6 prior[k] := ng/n

7 Totaly, ===, ; Dii][j] + |V

8 for each t € V do

9 i = Index(t, V)

10: condprop(t][k] := 2q Drldlli] +e

Totaly,

11: return prior, condprob

Once trained, we can apply the classifier on new or unseen documents in the following
manner.
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Algorithm 2 Apply Naive Bayes Classifier

1: procedure AppLYMULTINOMIALNB(d, C, V, prior, condprob)
2 Ty :=T(d)

3: for each k € C do

4 score[k| := log prior[k] + 3,7, log condprob/[t][£]

5

return arg maxgec score[k]

3.5.2 Logistic Regression

Logistic Regression is a widely used statistical method for binary classification problems.
It models the probability that a given input belongs to a particular class by fitting data to
a logistic curve. For the purposes of this project, we assume classification is strictly binary.

The probability that a given instance belongs to the positive class (class 1) is given by
Ple=1lz) = o(z),

1] . ) oL . .
where, o(z) = H% ,and z = @7 l d] is a linear combination of input features with

intercept. Here, the function, o, is known as a logistic function which is also a sigmoid
function. Further, 8 € R""! contain the coefficients of the model [19], where 3, is the
intercept.

Conversely, the probability of belonging to the negative class (class 0) is 1 — o(z) [20].

Logistic regression estimates the parameters 8 using maximum likelihood estimation (MLE).
The likelihood function for a single instance is:

L(B) = P(y|z; B) = 0(2)*(1 — o(2)) 7

For a dataset with n instances, the overall likelihood is the product of the individual
likelihoods:

n

L(B) = H o(2)Y (1 — o))

i=1

The goal is to find the parameter values B that maximize this likelihood function. In
practice, it is more convenient to work with the log-likelihood function,

n

I L(B) = 3 [y In(0()) + (1 — i) In(L — o(2,))]

=1
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Optimization algorithms such as gradient descent are used to find the parameters that
maximize the log-likelihood [21].

Logistic Regression offers several advantages. It is easy to implement, interpret, and very
efficient to train. It provides probabilities for class membership, which can be useful for
decision-making. It also works well with linearly separable data and can be extended to
multiclass classification problems using techniques like one-vs-rest and softmax regression.

However, logistic regression has some disadvantages. It assumes a linear relationship be-
tween the input features and the log-odds of the outcome, which may not always be true.
It can struggle with complex relationships and interactions between features unless prop-
erly engineered. It is also sensitive to outliers and may require feature scaling for optimal
performance [22].

3.6 Ensemble Methods

3.6.1 Gradient Boosting

Gradient boosting is an ensemble machine learning technique that builds models sequen-
tially by combining weak learners, typically decision trees, to create a strong predictive
model. The core idea is to optimize a loss function by iteratively adding models that
correct the errors made by previous models.

The general process of gradient boosting can be summarized in the following steps: [10]

1. Initialize the model with a constant value, usually the mean of the target variable
for regression tasks.

2. For a specified number of iterations, do the following:

(a) Compute the pseudo-residuals, which are the gradients of the loss function with
respect to the current model predictions.

(b) Fit a new weak learner (e.g., a decision tree) to these pseudo-residuals.
(¢) Update the model by adding the new weak learner, scaled by a learning rate.
3. The final model is a weighted sum of all the weak learners.

Gradient boosting can effectively minimize various types of loss functions, making it versa-
tile for both regression and classification tasks. The method is particularly effective when
dealing with complex datasets where linear models may fail to capture underlying patterns.

Several implementations of gradient boosting exist, with some of the most popular being:

« XGBoost (Extreme Gradient Boosting): An optimized and efficient implementation
of gradient boosting that includes regularization techniques to prevent overfitting.
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o LightGBM: A gradient boosting framework that uses tree-based learning algo-
rithms, designed for distributed and efficient training of large datasets.

o CatBoost: A gradient boosting library that handles categorical features automati-
cally, making it user-friendly and effective for datasets with categorical variables.

Gradient boosting has gained popularity due to its high predictive performance, flexibility,
and ability to handle different types of data. However, careful tuning of hyperparameters
such as learning rate, number of trees, and tree depth is essential to avoid overfitting and
to achieve optimal results.

3.7 Neural Networks

Neural networks are a foundational component of modern machine learning, particularly
in the realm of deep learning. Inspired by the structure and function of the human brain, a
neural network consists of interconnected nodes, or neurons, organized in layers. These net-
works are designed to recognize patterns within data by transforming inputs into outputs
through a series of mathematical operations.

3.7.1 Structure

Input Hidden Layers Output Layer
Figure 3.2: Neural Network for binary text classification

A typical neural network comprises three main types of layers:

o Input Layer: This layer receives the raw input data. Each neuron in the input layer
corresponds to a feature in the dataset. For instance, in natural language processing,
the features could be word embeddings or numerical representations of text.
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o Hidden Layers: These layers lie between the input and output layers and consist
of neurons that apply various transformations to the input data. The number of
hidden layers and the number of neurons within each layer can vary, and these
parameters greatly influence the model’s ability to learn complex patterns. A neural
network is considered deep if it contains 2 or more hidden layers. Each neuron
in a hidden layer receives inputs from the previous layer, applies a weighted sum
followed by an activation function, and passes the output to the next layer. Common
activation functions include the ReLLU (Rectified Linear Unit), sigmoid, and tanh,
each contributing differently to the network’s learning capacity.

e Output Layer: The output layer generates the final predictions based on the trans-
formed data from the hidden layers. The structure of this layer often depends on
the specific task; for binary classification, we use a single neuron with a sigmoid
activation function. However, it is also possible to have multiple output in case
of multi-class classification. Here, a softmaz activation function is preferred when
outputs are considered mutually exclusive.

3.7.2 Learning Process

Neural networks learn through a process called backpropagation, which involves two key
phases: forward propagation and backward propagation. During forward propagation, the
input data is passed through the network, resulting in an output. This output is then
compared to the actual target label to compute a loss value using a loss function (such as
mean squared error for regression tasks or cross-entropy loss for classification).

In the backward propagation phase, the network updates its weights based on the calculated
loss using optimization algorithms such as stochastic gradient descent (SGD) or Adam.
This iterative process adjusts the weights to minimize the loss, allowing the network to
improve its predictions over time.

A critical aspect of the learning process involves the use of activation functions, which
introduce non-linearity into the network. This non-linearity enables the network to learn
complex patterns and interactions within the data. Without activation functions, a neural
network with multiple layers would behave like a linear model, severely limiting its capacity
to model intricate relationships.

Several activation functions are commonly used, each with its own advantages and appli-
cations:[15]

o Sigmoid Function: A function, o : R — R, that is bounded, differentiable, mono-
tonically increasing, and has exactly one inflection point. The most commonly used
sigmoid function is the logistic function, which is particularly useful for binary clas-
sification tasks. Its output is often limited to the interval (0,1). Another variant,
the hyperbolic tangent (tanh), has a codomain of (—1, 1), making it zero-centered
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and often leading to faster convergence. The formula for tanh is:

et —e "t

tanh(ﬂf) = m

However, sigmoid activations can suffer from the vanishing gradient problem, where
gradients become very small for large or small input values, slowing down learning
in deeper networks.

ReLU (Rectified Linear Unit): ReLU is one of the most widely used activation
functions in deep neural networks, defined as:

ReLU(z) = max(0, x)

This function is computationally efficient and helps alleviate the vanishing gradient
problem by not saturating in the positive domain. However, it can cause some
neurons to become inactive (when z < 0), a phenomenon known as the dying ReLU
problem. Variants such as Leaky ReLU and Parametric ReLU (PReLU) introduce
small slopes for negative inputs to counter this issue.

Softmax Function: Commonly used in the output layer for multi-class classifica-
tion, the softmax function converts a vector of raw scores into probabilities. For an
output vector z, the softmax function for the i-th element is:

2

(&

> €%

softmax(z;) =

This ensures that the output values sum to 1, making them interpretable as proba-
bilities.

Incorporating these activation functions is essential for enabling the neural network to
capture and represent complex relationships in the data.

Another important technique that enhances the learning process is batch normalization
(BN). BN stabilizes and accelerates the training process by normalizing the inputs to each
layer. During training, batch normalization adjusts and scales the output of each layer so
that it has a mean of zero and a variance of one across a mini-batch of data. The process
can be described mathematically as follows:

Given an input x; in a mini-batch, we compute:
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3. Normalization of each input:

A Ti — Hbatch
Ty = ——
\V O-}:2)atch +€
4. Scaling and shifting:
Yi =i+

where v and ( are learnable parameters that allow the network to scale and shift the nor-
malized output, retaining its representational capacity. The constant € is a small positive
value to prevent division by zero. Batch normalization can reduce the internal covari-
ate shift (the change in the distribution of layer inputs during training), leading to faster
convergence and improved generalization.

To further enhance model robustness, dropout is employed as a regularization technique
used to prevent overfitting in neural networks. During each training iteration, a certain
percentage of neurons are randomly "dropped” (set to zero), which forces the network to
rely on different subsets of neurons each time. This encourages the network to develop
more robust representations.

Mathematically, for a layer with output h and dropout rate p, the dropout operation can
be represented as: )
h=hor

where r is a binary mask vector, with each element r; sampled from a Bernoulli distribution:
r; ~ Bernoulli(1 — p)

During inference, dropout is disabled, but the weights are scaled down by (1 — p) to
account for the lack of deactivated neurons. This technique helps prevent the network
from becoming overly reliant on any single neuron, promoting generalization and reducing
the risk of overfitting.

By incorporating activation functions, batch normalization, and dropout, neural networks
can effectively learn complex patterns, converge faster, and generalize better, making them
powerful tools for a wide range of tasks.

3.7.3 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) are traditionally associated with image processing,
but they have also gained traction in Natural Language Processing (NLP). To utilize CNNs
for textual data, the input data needs to be in a grid-like format. Fortunately, this is
already the case for Document-Term Matrices, which can essentially be seen as greyscale
images. CNNs leverages a series of convolutional layers to automatically and adaptively
learn spatial hierarchies in data. CNNs are particularly effective at capturing local patterns
through convolution operations.[23]
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Structure of a Convolutional Neural Network

A CNN typically comprises several types of layers arranged in a sequence to form a deep
network architecture. The primary types of layers in a CNN are:

« Convolutional Layer: This layer performs the convolution operation, which applies
a filter (or kernel) to the input data to produce a feature map. Each filter is a small
matrix that slides over the input and computes dot products to capture local patterns,
such as edges, textures, or shapes, in an image. Mathematically, for an input matrix
X and a filter matrix K, the convolution operation at position (i, j) is:

X*K ZZXerm]Jrn' m,n

where m and n index the filter’s height and width, respectively. A key advantage
of this approach is that filters can detect features regardless of their location in the
image, making CNNs translation-invariant.

o Pooling Layer: After each convolutional layer, a pooling layer is often applied to
reduce the spatial dimensions of the feature map, retaining the most essential in-
formation. The most common pooling technique is max pooling, which takes the
maximum value within each region, emphasizing the most prominent features. Pool-
ing reduces computation, controls overfitting, and ensures that small translations in
the image have minimal effect on the output.

o Fully Connected Layer: Towards the end of the network, fully connected layers are
often used to map the extracted high-level features to the final output classes. Each
neuron in a fully connected layer is connected to every neuron in the previous layer,
aggregating information across all spatial locations to make predictions. Essentially,
the now processed and flattened image is used as input neurons into a conventional
neural network.

e Activation Function: Similar to standard neural networks, CNNs use activation
functions such as ReLU to introduce non-linearity after convolution and pooling
operations, allowing the network to capture complex patterns.

The output layer of a CNN is typically a softmax layer for multi-class classification tasks,
producing a probability distribution across different classes.

Learning Process in CNNs

CNNs use the same learning process as traditional neural networks, involving forward and
backward propagation. In the forward pass, input data moves through the convolutional,
pooling, and fully connected layers, eventually producing an output. During backward
propagation, CNNs adjust the weights of the filters in each layer based on the error gradi-
ents, optimizing the network to minimize loss.[23]
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One key difference in CNN training is the handling of weights in the convolutional layers.
Filters in these layers are learned automatically during training, where each filter is updated
to recognize specific patterns relevant to the task, such as edges in the first layers and more
complex textures in deeper layers. As the network deepens, it captures increasingly abstract
representations, ultimately learning intricate features that distinguish different classes.

CNNs have several advantages that make them well-suited for computer vision tasks:

Parameter Efficiency: By sharing weights in convolutional layers, CNNs use fewer pa-
rameters, making them less prone to overfitting and more efficient to train than fully con-
nected networks. Translation Invariance: The sliding window approach allows CNNs to
detect patterns regardless of their position in the image. Hierarchical Feature Learning;:
The layered architecture enables CNNs to learn low-level to high-level features, capturing
complex structures that aid in object recognition and classification.

Applications of CNNs

CNNs are widely used in image classification, where they classify objects within an image;
object detection, where they identify the location of objects; and segmentation, where
they label each pixel in an image. Beyond computer vision, CNNs are also adapted for
other structured data types, including audio signal processing and certain natural language
processing tasks, illustrating their versatility and power in various domains.

Convolutional Neural Networks (CNNs), originally designed for image classification, are
increasingly being applied to natural language processing (NLP) tasks. This is because
the textual data, effectively represented as grayscale images, reveals patterns that are yet
to be understood, but can be effectively leveraged for predictive modeling.
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4 Application

The goal of this project is to develop some financial strategy that takes in a reddit post that
contain a ticker symbol along with corresponding price data from the stock and outputs
whether or not to invest.

Computing the market sentiment is a seperate NLP task alltogether. In order to analyze
market sentiment on r/WallStreetBets, it is necessary to collect all the data of the subred-
dit. This can be done through means of web-scraping; however, since this is a paid service,
we will be making use of already existing data dumps[24]. By downloading 643GB worth
of Reddit posts from 2012 (since inception) up to and including the year 2022, we can filter
out all the data that belongs to WSB by iterating through the zst compressed ndjson files.
Next, we convert the data to CSV, yielding a total of 2,349,125 rows of Reddit posts. As
can be seen in the following example, we have chosen 8 different fields out of the available
112 for each post.

Field Value

author u/DeepFuckingValue

created 2021-01-28 22:06

id 178uct

link _flair_text | YOLO

num_comments 23,650

score 282,358

selftext

title GME YOLO update
— Jan 28 2021

Despite being one of the most influential and popular posts on the subreddit, this specific
post would not significantly benefit a machine learning algorithm. Although its category,
score, and number of comments might suggest a significant stock movement, the direction
is unclear due to the lack of sentiment information in the title. And the description is
empty since the original post was just an image of losses and gains to the tune of several
million dollars. In the following section we will analyse the data to provide further insight
in the subreddit.
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4.1 Data Analysis

Only the data that contains ticker symbols are conducive to making stock predictions.
While there are many ticker symbols on the New York Stock Exchange, most are not
active nor easily borrowable. Using the alpaca api, we can retrieve lists of ticker symbols
and check for matches in the reddit posts. The table below provides an overview.

Category Available | Necessary | Posts | Mentions
Tickers 31,590 8,370 650,104 | 1,130,569
— Active 11,803 5,815 615,583 | 1,032,093
— Easily Borrowable 4,556 3,551 530,194 | 851,373

Table 4.2: Ticker counts in the corpus

The first column shows the number of tickers that are available in the NYSE and the second
shows the number of tickers that are actually present in the data. The third column is the
number of reddit posts that contain ticker symbols, whereas the last column is the total
number of ticker mentions. In the rows, we also consider the active tickers as well as those
that are, in addition, easily borrowable.

We continue our investigation using the 3,551 active and easily borrowable tickers present
in the text. The following bar chart shows the 10 most frequently mentioned tickers.

Histogram of Ticker Symbol Frequency
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Figure 4.1: Number of ticker mentions in corpus

As can be seen on the above chart, certain words such as ”A”, "DD”, and "FOR” are quite
frequent. Here, "DD” as "Due Diligence” is much more commonly used than references to
the DuPont company and it is intuitive how common English words such as "FOR” and
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”A” are more likely to occur than references to the respective companies despite the use of
capitalization. Therefore, we have compiled a comprehensive list of 112 tickers to exclude
(Table A.2). In doing so, we may update the chart as follows;

Histogram of Ticker Symbol Frequency
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Figure 4.2: Number of ticker mentions after removal

Now, out of the remaining 3449 tickers, we can take a look at the distribution of ticker
mentions by frequency rank.

(a) Raw data (b) log-log plot with regression line
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Figure 4.3: Ticker mentions by rank

Since Figure 4.3a appears to exhibit an inverse relationship, we log-transform the data,
enabling us to fit a regression line in Figure 4.3b. This transformation suggests that
Inp(x) = —slnx + ¢ for some constants s and ¢. From the regression, we obtain s ~ 1.29
and C =~ 140,000, where p(z) = Cz~* with C' = €° and R? =~ 0.986. This relationship is
known as Zipf’s Law.[25]

If, in addition, we limit ourselves to tickers that have been mentioned at least 50 times
and exclude the top 10 most mentioned outliers, we get s ~ 1.11 and R? ~ 0.993 (plot
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available in Appendix A.3).

The reason that we have this type of relationship instead of, say, a linear relationship
(without log-transforming) is due to a rich-get-richer phenomenon where the highly popular
or influential stocks are discussed more frequently due to being popular in a self reinforcing
cycle. Similar to compound interest, the growth of attention on a stock such as GME
accumulates over time, resulting in a graph that shows increasing mentions as the stock’s
popularity builds.

4.2 Building The Sentiment Pipeline

Since this subreddit contains quite unique terminologies, existing tools like TextBlob are
not very efficient in determining sentiment. For example, phrases such as “GME to the
moon!” are not uncommon on Reddit, but since TextBlob was trained on more generic
datasets, it does not recognize the positive sentiment. However, there also exists other tools
such as Valence Aware Dictionary and sEntiment Reasoner (VADER), which is specifically
tuned for social media and short text environments. While this specific phrase is classified
as neutral, other texts of reddit are often classified correctly and can thus serve as a
benchmark.

We seek to improve performance by creating our own pipeline specific to this subreddit.
In this project, we will be making use of supervised learning. This involves labeled data,
which on first inspection, is not directly available. However, since the data is categorized,
it is not unreasonable to assume that the categories, "Gain”, and "Loss” are highly related
to positive and negative sentiment, respectively. This provides a supervised framework
to train our model on. Therefore, for the purposes of this project we consider sentiment
as binary - either positive or negative. Unfortunately, this reduces our available data to
257,901 posts (11%). This dataset is significantly larger than what could be done by
manual labeling. For the remainder of this section, we will be making use of this dataset.

Category Total Per post
characters 5,226,616 78.79
words 1,002,780 15.09
unique words | 29,090(2.9%) 0.44

Table 4.3: Summary of post and word statistics (out of 257,901 posts)

In order to build an NLP pipeline on this data, further preprocessing is necessary. This
can significantly reduce noise so that the machine can extract relevant information. First,
specific emojis were replaced with their text representations to preserve sentiment, while
the remaining emojis, symbols, and pictograms were removed to reduce noise. HTML
tags, URLs, email addresses, and text within brackets (such as [removed] and [edited])
were stripped to retain only relevant content. Ticker symbols, which do not offer semantic
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value, were also removed. The text was then converted to lowercase for uniformity, and
contractions were expanded to their full forms for better recognition. Non-alphabetic
characters, including numbers and punctuation, were filtered out, leaving only alphabetic
text. Extra whitespace was collapsed into single spaces, ensuring clean tokenization. Lastly,
stop words were removed to focus on more meaningful words, with analysis being conducted
both with and without stop words. !

4.2.1 Statistics

(a) Number of characters in corpus (b) Classes

Distribution of Document Lengths by Character Count (%)
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Figure 4.4: Comparison of different figures side by side.

As can be seen 4.4a, the average reddit post is fairly short. The effect of this is not yet
known, since shorter signals may mean less noise, yet we also have less data. This is not
necessarily a bad thing, as it could also be that the corpus is simply a collection of short
clear sentiment signals. In addition, subreddit has a tendency to show gains more often
than losses as can be seen on 4.4b. A general rule of thumb in machine learning is that
if the minority class has less than 10% of the number of datapoints of the majority class,
it is considered unbalanced since this is often when algorithms start to struggle with bias
towards the majority class. Therefore, it should be safe to proceed.

LAll code is available on github[26]
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4.2.2 n-grams

Since text classification can be done on a word basis, however character level classification
as well as the use of bigrams, trigrams is also possible. The following bar chart provides
the most common unigrams with- and without stop words.

(a) Number of characters in corpus (b) Classes

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

23fes23fgassis3dct

aaaaaaaaaaaaaaaaa

Figure 4.5: Comparison of different figures side by side.

As can be seen on the bar charts, the most common words are significantly more informative
once stopwords have been removed. Followers of the subreddit may recognize that several
of these words are likely part of a phrase such as "we like the stock”, "apes together strong”,
and "diamond /paper hands”.

Followers of the subreddit can recognize several common phrases, such as "we like the
stock”, "apes together strong”, "diamond /paper hands”, and the extensive use of the word
moon is mainly due to the frequent use of rocket emojis. In section A.1, the most common

bigrams and trigrams are available.

4.3 Model selection

There exists a wide variety of models to choose from. In this project, we will consider 6
models with 3 different encodings. Through 5-fold cross-validation, we will be comparing
Naive Bayes, Logistic regression, random forest, gradient boosting, deep neural networks
and Convolutional Neural Networks.

4.3.1 Encoding Data

We start by splitting the data into a train and test set. Here, the test set consists of 20% of
the data and we have used a stratified split. We will be encoding the data in 3 ways. Using
word-level tokens without stop-words, we are left with a 206,320 x 46,494 training DTM
with 1,127,292 elements. This is a very sparse matrix, since for each non-zero element
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there are roughly 8508 zero’s. In order for the more complex models to be feasible, our
common feature set needs to be small enough for the computer to handle. Therefore, it is
necessary to removing the most rare words before applying SVD to reduce the sparsity of
this matrix. We seek to find a vocabulary that retains at least 70% of elements. In the
case of word-level tokens, this amounts to a vocabulary of just 773 elements and we will
be utilizing both one-hot- as well as TF-IDF encoding.

The following figure shows the explained variance as a function of the number of latent
features included after applying SVD.

(b) Explained variance for word-level TF-IDF en-
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Figure 4.6: Explained Variance with word-level encodings

Since both encodings are using word-level tokens, the respective vocabularies are the same.
However, the number of components required to achieve the same explained variance is
much greater. Therefore, by also choosing a common threshold (0.8) of explained variance,
we establish a level playing field for comparison. For word-level one-hot encoding, this
results in 109 features, whereas word-level TF-IDF requires 369 features for the same

threshold.

Character-level TF-IDF has the smallest vocabulary of 13,144 (yet is still 72% of all possible
character combinations) different character bigrams and trigrams. Of this, the 553 most
frequently used words account for 70% of the non-zero elements. As illustrated in the
following figure, this encoding requires less features than word-level TF-IDF, yet still more
than one-hot encoded words.
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Figure 4.7: Explained variance for character level n-gram TF-IDF encoding

The following table summarizes the final feature sets for each encoding type after SVD.

Token Size | Encoding | Number of Features
Word One-Hot 109
Word TF-IDF 369
2-3 Characters | TF-IDF 187

Table 4.4: Encoding Summary

4.3.2 Results

The Naive Bayes Estimator cannot use any negative inputs which are often generated
from Singular Vector Decompositions. Therefore, we use the original 773 words and the
553 character combinations, respectively as features. The following table summarizes our

findings
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Mean Std.
Encoding Model acc bal. acc acc bal. acc
C. TF-IDF (no SVD) NB 0.712 0.624 | 0.001 0.001
C. TEF-IDF LR 0.720 0.645 | 0.002 0.002
OneHot LR 0.721 0.627 | 0.001 0.001
OneHot CNN | 0.720 0.635 | 0.001 0.001
C. TF-IDF CNN ] 0.725 0.645 | 0.001 0.002
C. TF-IDF RF 0.735 0.644 | 0.001 0.002
TF-IDF CNN | 0.736 0.655 | 0.001 0.001
OneHot (no SVD) NB 0.742 0.692 | 0.002 0.002
OneHot RF 0.744 0.677 | 0.001 0.002
TF-IDF LR 0.747 0.678 | 0.002 0.002
TF-IDF RF 0.750 0.677 | 0.002 0.003
OneHot DNN | 0.750 0.687 | 0.002 0.003
TF-IDF (no SVD) NB 0.751 0.674 | 0.003 0.003
C. TF-IDF DNN | 0.754 0.686 | 0.002 0.002
TF-IDF DNN | 0.763 0.701 | 0.002 0.002

Table 4.5: Model Accuracy (least to highest)

In Table 4.5, we notice that modelling on TF-IDF encoded data yields the best results (by
accuracy) for each model. When considering balanced accuracy, there is only one exception
which is One-Hot-encoded Naive Bayes. We proceed with the TF-IDF encoded DNN and
we get the following classification report.

precision recall fl-score support .
1 0.82 0.88 0.85 33,707
0 0.74 0.63 0.68 17,874
accuracy 0.80 51,581
macro avg 0.78 0.63 0.71 51,581
weighted avg 0.79 0.80 0.79 51,581

Table 4.6: Classification report for the sen-

timent analysis model.

Table 4.7: Confusion Matrix

The following figures illustrates the performance over time.
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Figure 4.9: ROC for DNN Figure 4.10: Precision curve for DNN

4.4 Constructing trading strategy

In this section we will construct a trading strategy that utilizes the text of a reddit post
to generate trading signals. We define;

Short position

. Long position
signal = .
Cover short position

w N = O

Sell long position.

This setup will double the size of our dataframe and is beneficial for backtesting purposes
since we explicitly know exactly when to cover short positions and sell off long positions.
However, it is not ideal for prediction purposes since there are 4 signals to predict. To
get around this problem we simply use a fixed timeframe to predict the short- and long
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positions using the original dataframe. This way, we uncover the remaining trading signals
by just adding 2 to the signal while keeping track on the sell/cover time in a seperate
column. Repeating this process, we can build 3 models - a 1 hour model, a 30 minute
model and a 10 minute model.

The strategy: If we receive a signal of 0 we enter a short position and then wait until
the stock has decreased by 1% or the fixed time frame has passed. Similarly, if we receive
a signal of 1 we enter a long position and wait until the stock has increased by 1% or the
fixed time frame has passed.

So, to label our dataset, we gather trade data of the ticker mentioned in the reddit post up
to the fixed timeframe and mark it as 0 if it has decreased by 1% and 1 if it has increased
by 1%. If neither happen, then the end price determines the label (decrease marked as 0,
while increase is marked as 1).

4.4.1 Data labeling

To label our data we make use of the alpaca api. In general, making a lot of api calls
is a slow process. So to speed things up we made use of several optimizations. Unlike
r/wallstreetbets, the NYSE is not open at all times of the day. Therefore, we can exclude
the posts that fall on weekends as well as those outside the open hours (see Figure A.4
for distribution). Further, we found that sometimes tickers are mentioned before their
ipo date which we can also exclude. Lastly, we incorporated a cache system to limit the
number of api calls when there are a lot of posts about the same ticker in a short amount
of time. This often happens during major financial events with respect to the ticker. This
also means that we sort the data by ticker (from most popular to least). The optimal cache
time period chosen proportional to the number of overlapping datapoints within the time
frame of the respective model.

The following pseudocode illustrates this process further.
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Algorithm 3 Collect and Process Daily Data

1: procedure COLLECTANDPROCESSDATA(data, fromDate, toDate, timeFrames,

e T S T = T o e T

RN RN RO I
A S

RN RN R

maxHours, batchSize, tickerStart)

data := Sort(WsbPosts(data, fromDate, toDate), by="created’)
if DatabaseExists('TrainingData.db’) then
existingData := LoadFromDatabase(’DataTable’)
data := RemoveDuplicates(data, existingData)
if data is empty then
return
timeFrames := Sort(timeFrames, reverse=True)
tickers := UniqueSort(data.tickers, by = 'Count’)
for each ticker in tickers do
submissions := Filter(data, 'ticker’ == ticker)
Sort(submissions, by="created’)
Date = submission.created
cacheTime := GetCacheTime(submissions, maxHours, max(timeFrames))
Initialize(TradeCache, cacheTime)
recordsTolnsert := ||
ipoDate := GetIpoDate(ticker)
for each submission in submissions do
if Date < ipoDate or MarketClosed(Date) then Continue

p := InitializeNewPost(submission, ticker)
for each timeFrame in timeFrames do
trades := GetLatestTrades(ticker, p.created, timeFrame)
if trades is empty then
break

p = SetWinnerAttributes(p, trades, timeFrame, plnc=1, pDec=1)
Append(recordsTolnsert, p)
if ReachedBatchSize(recordsTolnsert, batchSize) then
InsertIntoDatabase(recordsTolnsert)
recordsTolnsert := ||

By running this code, we retrieve all the relevant data to generate trading signals. The
following picture shows the structure of our SQL table.
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id ticker  title selftext 10minWinner L0minPrice 10minTime 30minWinner 30minPrice 30minTime 60minWinner 60minPrice 60minTime author created link_flair_text num_comments score trade_time open high low dose volume num_trades vwap log_return_close
[Fiter [Fiter[Fiter [Fiter [Filter Filter Filter Filter Filter Filter [Fitter Fiter Filter [Fiter_[Fiter [Filter Filter [Fitter [Fiter [Filter [Fiter [Fiker [Filter [Fiter _[Fiter [Filter Fitter
1 48y... GME Ne... pls.. 1 31.8535 2016-03-.. 1 31.8535 2016-03-.. 1 31.8535 2016-03-... /.. 2016... nan 18 12 2016-03-.. 31.23 31.23 31.21 31.21 72920 64.0 31... -0.000640615..
2 4b.. GME  To.. These. 0 3014 2016-03-. 0 3006 2016-03-.. 1 3007 2016-03-.. .. 20%6.. nan 6 42016:03-. 3016 30..30.16 30... 9160 160 30. o..
3 4bn... GME FU... [remo. o 30.54 2016-03-. 0 30.46 2016-03-.. 0 30.46 2016-03-... u/.. 2016.. YOLO 0 1 2016-03-.. 30.77 30.78 30.76 30.78 3052.0 26.0 30.. o...
4 4br... GME To... These.. 1 30.1 2016-03-. 1 30.1 2016-03-... 1 30.1 2016-03-... uf.. 2016.. nan 4 6 2016-03-...  20.8 29.98 20.77 29.98 7723. 167.0 29.. o...
5 4br... GME Any... nan 0 30.0115 2016-03-... 1 30.13 2016-03-... 1 30.17 2016-03-... U/  2016.. nan 13 0 2016-03-.. 30.11 30.11 30.11 30.11 904.0 12,0 30.11 0.0
6 4bs... GME DD:... What ... 0 30.01 2016-03-... 1 30.12 2016-03-... 1 30.25 2016-03-..  Ufe  2016.. nan 45 20 2016-03-..  30... 30.1 30.05 30.05 1337... 88.0 30... -0.001333553...
7 4ca.. GME Ga... There.. 1 30.68 2016-03-... 1 30.84 2016-03-... 1 30.91 2016-03-.. /e  2016.. nan 7 1 2016-03-.. 30.6 30... 30.58 30... 2433.0 23.0 30... Do
8 4cf... GME $G... Mo wa.. 0 31.35 2016-03-.. 0 31.18 2016-03-... 0 31.18 2016-03-... u/.. 2016... nan 1 1 2016-03-.. 31.5 315 31.44 31.44 6837.0 58.0 31... -0.001589067..
9 4l5... GME ga.. what .. 0 29.99 2016-05-.. 0 30.0 2016-05-... 0 30.01 2016-05-... /.. 2016... nan 37 6 2016-05-.. 30.18 30... 30.17 30.18 9168.0 55.0 30... 0.0
10 4l6l... GME $D... Ithink. 1 31.18 2016-05-.. 1 31.18 2016-05-... 1 31.18 2016-05-... u/.. 2016... nan 2 4 2016-05-.. 29.98 30.02 29.96 29.99 9311. 521.0 29. 0...
11 4oy... GME $G... nan 1 26.54 2016-06-.. 1 26.5501 2016-06-... 0 26.52 2016-06-... u/.. 2016... nan 6 0 2016-06-.. 26.53 26.56 26.53 26.54 2305.0 29.0 26... 0...
12 4y0... GME Pre... Check.. 0 31.26 2016-08-.. 0 31.2735 2016-08-... 1 31.345 2016-08-... u/.. 2016... nan 37 5 2016-08-.. 31.26 31... 31.26 31.29 6273.0 40.0 31.. 0...
13 426... GME $G... Lookin.. 1 32.34 2016-08-.. 1 32.3799 2016-08-... 1 32.29 2016-08-... u/. 2016... nan 24 8 2016-08-.. 32.28 32.28 32.22 32.24 1297. 80.0 32... -0.001208946..

Figure 4.11: Reddit Post- and Trade Data

Note that in Figure 4.11, we also capture the time and price when the stock increases
(or decreases) by 1%. The columns on the form, "xminWinner”, shows whether the
stock increases (1) or decreases (0) the same way as described in section 4.4 and the
remaining columns depict the minute-bar trading data closest to the creation of the reddit
post submission. Since the "created” column is only measured to the nearest minute, the
"trade_time” column from the minute bar data happens to correspond to the exact times
in the "created” column. From this operation, as the tickers became rarer, we experienced
diminishing returns in terms of data points retrieved per ticker as well as computational
efficiency. Therefore, we settled on a dataset consisting of 319 tickers and 283243 data
points.

Calculating sentiment

Now that we have collected all the relevant data, we will use our Neural Network to measure
the sentiment of each post so we can use that as a feature instead of text in our final model.
Since our model essentially predicts how likely that a given post belongs to the category,
‘Gain’ as opposed to 'Loss’, we only need to compute the sentiment for the posts that do
not belong to 'Gain’ or 'Loss’ categories. The sentiment column is essentially conditional
probabilities. The conditional probability of belonging to the category 'Gain’ given that
we belong to the category 'Gain’ is 1, while the remaining rows are conditioned on no
information and just calculated from the model. Note that we do not condition on other
categories, such as 'News’, "'YOLO’, etc. The following figure illustrates the sentiment over
time for select tickers.
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Figure 4.12: Sentiment over Time for Select Tickers (neutral = 0.5)

4.5 Testing predictability

In this section, we assess whether sentiment scores can predict stock returns. For this, we
check granger causality. It is important to conducting Granger causality tests on sentiment
scores and stock prices for each ticker individually, rather than aggregating the entire
dataset. This is due to the sensitivity of Granger causality to the underlying time series
structure, which can vary significantly across different tickers. However, instead of checking
granger causality for all the tickers, we use the same tickers as shown in Figure 4.12 as a
test sample to assess whether or not it makes sense to use sentiment as a feature in our final
Neural Network. The granger test assumes stationarity, so it is important to ensure that
the data is stationary before conducting the test. To evaluate the stationarity of our time
series data, we utilize the Augmented Dickey-Fuller (ADF) test. In doing so, we establish
that all sentiment scores as well as Log-Returns are stationary for GME, AMC, and SPY.
For more details, see Table A.3. Note that the prices of the stocks generally do not pass
the ADF test for stationarity, as indicated by their higher p-values, which reinforces the
necessity of using log-returns or sentiment scores for subsequent Granger causality tests.
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4.5.1 Granger Causality

We apply the Granger causality test to examine whether sentiment can predict log_return_close
for various stock tickers. The maximum lag used is 50. From the grangercausalitytests
function in the statsmodels package, we are provided with p-values at each lag using f-test,
x2-test, Ir-test and parameter f-test, respectively. Out of 30 of the most common tickers,

6 had p values below 0.05 (TSLA, NFLX,...) , suggesting the possibility that log-returns

can predict sentiment, and 7 tickers (BB, MSFT...) suggesting that the sentiment scores

can predict log-returns. It is important to note that while Granger causality indicates a
potential predictive relationship, it does not imply causation in the strictest sense. Other
factors could be at play, and sentiment might be one of several variables influencing stock
returns.

4.5.2 Cross-Correlation

To further explore the relationship between sentiment scores and log-returns, we check for
cross-correlation. Cross-correlation helps us understand the lagged relationship between
two time series, in this case, sentiment and log-returns (see Figure A.5). By examining
the cross-correlation plots, we can identify any significant lags where sentiment scores
might be correlated with subsequent log-returns or vice versa. These plots can be found in
Figure A.6. Note that for many of the stocks, the correlation at positive lags is negative,
suggesting that higher sentiment scores may be followed by lower log-returns. This inverse
relationship could indicate that when sentiment is high, it may already be priced into the
stock, and subsequent returns could be lower as a result. Conversely, negative sentiment
scores might precede positive log-returns, possibly due to an overreaction in sentiment that
the market corrects over time.

Machine learning models can handle complex interactions and incorporate multiple fea-
tures, potentially revealing hidden patterns. In the following section, we integrate our
sentiment model along with several other features into an aggregated numerical pipeline.
Instead of predicting log-returns, we shift our focus to using sentiment, log-returns, and
additional features to predict whether the stock will increase in the given timeframes.

4.5.3 Results

Now that we have established there exists some predictability, we can perform the same
cross-validation, except now we do not have any word encoding since all our features are
numerical except for ticker.

Now that we have established there exists some predictability, we can perform the same
cross-validation on each model. The difference here, is, that we no longer have any word
encoding since all our features are numerical, with the exception of ticker. This column
is expanded to a set of dummy variables, essentially one-hot encoding the tickers. Note
that no longer consider Naive Bayes since it cannot handle negative inputs.
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Once again, we check if the data is balanced. On the whole dataset, we have the following.

Class | 10minWinner 30minWinner 60minWinner

1 168677 187250 197893
0 114566 95993 85350

Table 4.8: Trading Signal Count

As expected, longer durations mean a larger proportion of the positive class. Obviously, the
likelihood that a long position is profitable increases with the timeframe of the investment.

Next we split the data into a training set and a validation set (20%) and the remaining
‘training set’ will later be further split randomly into K-fold train and test sets for cross-
validation.

Timeframe A Class , Class Weight A Ratio A Balanced

60min 0 1.7198 0.431 ves
1 0.705 0.431

30min 0 1.5373 0.513 ves
1 0.741 0.513

10min 0 1.2815 0.679 ves
1 0.8199 0.679

Table 4.9: Class Weights and Ratios Across Different Timeframes

For each of these 3 timeframes, we will make use of 2 distinct sets of features totaling in 6
models per model type. In addition to Naive Bayes, we will also not consider CNNs since
they perform better on either image- or textual data. In total, we will thus be comparing 24
models (120 when considering 5-fold cross-validation). Feature set 1 consists of the ticker
dummy-variables, log-returns (close) as well as some sentiment-related features, including
the (log) number of comments, (log) number of upvotes, and the sentiment of the full
text (title and description). Feature set 2 consists of the same ticker dummy variables as
well as log-returns. Here, each measure has been normalized to ensure consistent features.
Essentially, we seek to show whether simple log-return based models can be enhanced
using sentiment and related features. The following table provides an overview on the
cross-validation results.
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Mean Std.
model sentiment timeframe acc. bal. acc. acc. bal. acc
LR v 60 0.696660 0.682075 0.128986 0.056008
LR \/ 30 0.667193 0.654269 0.113291 0.056820
LR v 10 0.594901 0.591055 0.075488 0.050164
LR 60 0.697830 0.683043 0.126264 0.054658
LR 30 0.669365 0.656033 0.110480 0.056414
LR 10 0.595744 0.591601 0.074382 0.050200
RF \/ 60 0.681448 0.630417 0.101460 0.035761
RF V4 30 0.652171 0.612136 0.085013 0.033856
RF v 10 0.603458 0.586763 0.064113 0.040979
RF 60 0.657670 0.618863 0.085478 0.040967
RF 30 0.624571 0.597659 0.070246 0.037885
RF 10 0.583458 0.572266 0.048325 0.033694
GB V4 60 0.724878 0.618882 0.095325 0.076331
GB v 30 0.697852 0.605067 0.085882 0.068711
GB v 10 0.651156 0.583735 0.067303 0.070548
GB 60 0.727041 0.622905 0.095993 0.085249
GB 30 0.701007 0.607844 0.084472 0.076842
GB 10 0.651606 0.583890 0.066266 0.070031
DNN 60 0.723682 0.708350 0.003375 0.003190
DNN 30 0.692521 0.678016 0.006523 0.003208
DNN 10 0.616892 0.610207 0.004663 0.003927
DNN 60 0.714710 0.706459 0.005467 0.003206
DNN 30 0.689215 0.676087 0.003298 0.001302
DNN 10 0.617338 0.613325 0.011307 0.006298

As can be seen in the table, the accuracies are generally lower, which is to be expected
given the increased complexity of the task at hand. While models such as Gradient Boost-
ing which cannot take class imbalance into account, the balanced accuracies are overall
above expectations. We take note of the higher timeframes always fare better across all
models. Further, we note the DNN with the particularly exceptional performance of 70.8%
cross-validated mean balanced accuracy. From these values, the DNN models generally
fare better. Whether or not to include the sentiment features appears statistically insignif-
icant given the standard deviations. Proceeding with the hour-based DNN model, we will
backtest our strategy in the next chapter.
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5 Evaluation

The final step is to backtest the DNN to evaluate its performance on historical stock
price data. This involves applying the trained DNN to our out-of-sample validation set to
simulate its real-world trading performance.

5.1 Backtesting

Backtesting is a critical process in evaluating the performance of a trading strategy. It
involves simulating trades on historical data to assess how a trading model would have
performed in real market conditions. In this project, we focused on backtesting a trading
strategy developed using a Convolutional Neural Network (DNN), which was selected for
its ability to capture complex patterns in time-series data.

The DNN model, trained on a combination of sentiment scores and stock market data, was
used to generate trading signals. For a given model time frame, e.g. 60 minutes, should
then have data of the following format.

id created close 60minTime 60minPrice ticker signal
0 3zf0ir  15:40 103.145  16:39:59 103.470 AAPL 1
1 3zf2ed 15:55 199.235 15:56:38 204.061 SPY 1
2 3zford 18:27 107.900 18:46:18 108.790 NFLX 1
3 3zfov6 18:28 199.980 18:28:12 204.061 SPY 1
4 3zfzud 19:36 105.000 20:12:41 104.061 AAPL 0

Table 5.1: General format (dates removed for brevity)

For backtesting purposes, we can then retrieve the converse signals, namely covering a call
position (2), and closing a long position (3). In essence, we have a secondary table with
the same post id’s and tickers, except the times and prices are different and we add 2 to
signal in this table. Once we combine the two tables so that 60minTime merges with the
created column, and 60minPrice merges with the close column, we can then re-sort by
time (and id since there may be overlapping times). The following table illustrates the
converted table.
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id created close ticker  signal
0 3zfOoir  15:40 103.145 AAPL 1
1 3zf2ed 15:55 199.235 SPY 1
6 3zf2ed 15:56:38 204.061 SPY 3
5 3zf0ir  16:39:59 103.470 AAPL 3
2 3zford 18:27 107.900 NFLX 1
3 3zfov6 18:28 199.980 SPY 1
8 3zfov6 18:28:12 204.061 SPY 3
7 3zford 18:46:18 108.790 NFLX 3
4 3zfzud 19:36 105.000 AAPL 0
9 3zfzud 20:12:41 104.061 AAPL 2

Table 5.2: Dataframe for Backtesting (dates removed for brevity)

Now, we have a dataframe with clear trading signals that we can use for backtesting. While
all code is available on github[26], the code for the backtesting logic can also be found in
Appendix B.1. An important note to make, is that we will be selling and covering at the
‘optimal’ times. This, however, is a double-edged sword, since in case our prediction is
wrong we will be selling or covering at the worst possible times. This approach simplifies
are backtesting and due to this behavior, the subsequent results serve as a lower bound.

We initialize the portfolio at $1, but since our trading strategy allocates a certain per-
centage of the available cash for each trading signal, results are proportional to the initial
investment. The following figure depicts the cumulative P&L curve using the predicted
signals generated by the DNN model.
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Figure 5.1: Cumulative P&L
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In addition, the backtesting engine calculated several key performance metrics to evaluate
the strategy, as summarized in the following table:

Metric (%) Value
Total Returns 7862.60
Annualized Returns 4360.44
Volatility 1619.89
Sharpe Ratio 2.69
Average Trade Return 0.91
Win Ratio 60.52

Table 5.3: Performance Metrics using predicted signals

As seen in the table above, the win ratio is a bit lower than expected, since the 5-fold cross-
validated balanced accuracy was 70.8%. This may be due to the random sampling in cross-
validation as opposed to the contiguous validation data necessary to conduct a backtest.
Nevertheless, our predictions yielded an accuracy of ”only” 60.93% on the validationset.
Here, the win ratio aligns nicely since some returns happen to be zero. If we were to consider
a profit of 0 as a "win”, the win ratio increases to 61.3%. The total returns (7862.60%) for
the predicted signals are exceptionally high, which suggests that, in this case, our strategy
is highly effective in capitalizing on market movements, leveraging compounding effects
over time. It is however, important to note that this is likely due to a combination of luck
and general strategy, as there is a take-profit and stop-loss of 1% and because we trade
very frequently. The volatility metric indicates large fluctuations in the portfolio value,
underscoring the inherent risk associated with the strategy. Managing this high volatility
is crucial for improving the strategy’s robustness and ensuring sustainable performance,
though the sharpe ratio suggests that the trade-off is worth it. Additionally, it is likely
that the high volatility may be caused by GME which fluctuated significantly throughout
2021 in particular.

The average trade return is higher than expected, since the theoretical maximum would
be 1% with this strategy and because we only have an accuracy of 60.93%.

In summary, while the DNN-based trading strategy demonstrates the potential for high
returns, the metrics reveal significant risks associated with the high volatility environment
at the time and it is unlikely that results this exceptional can be reproduced in live trading
scenarios, but this model and strategy still shows great promise for future profitability.
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6 Discussion

The DNN model applied in this study demonstrates that stock price patterns can be
predicted to some extent. While the granger tests showed potential for sentiment as a
predictor of stock price movements, little evidence was found in practice for the models
discussed in this paper. There are several avenues for enhancing the model and extending
the research.

In order to analyze sentiment and perform cross-correlation analysis and granger tests, we
need to measure the sentiment. This is why we needed to build our final DNN model in
two stages. However, one could argue, that had we simply used the text as features, we
could skip this intermediate step and the model would likely improve as a consequence.

As we saw in Table 4.8, the rate of positive class instances increased as a function of the time
frame, and models with higher time frames always had better accuracies as compared to
lower time frames, which begs the question at what point increases in accuracy diminishes
or even falls as time frame increases. Though, assuming accuracy only increases, one should
also consider the effects on PnL since longer timeframes mean less compounding effects and
thus profits, so there is some balance to be found. Cross-correlation analysis indicates that
significant relationships exist over longer periods. Future models could incorporate data
from extended time frames, such as daily or weekly intervals, to capture these longer-term
trends more effectively.

Additionally, expanding the feature set to include more financial indicators and sentiment-
related metrics could improve model performance. Features such as social media engage-
ment metrics, sentiment momentum, and volatility indices could provide additional insights
into market dynamics and enhance prediction accuracy. It is important to strike a balance
between feature engineering and avoiding overfitting.

Conducting a comparative analysis with other sentiment analysis tools and trading strate-
gies could provide a benchmark for evaluating the effectiveness of the proposed model. This
analysis could include traditional technical analysis methods and other machine learning-
based approaches, helping to contextualize the performance of the DNN-based strategy
within a broader spectrum of financial analysis techniques.

Developing real-time trading models by integrating real-time data streams from social
media and stock markets can provide more dynamic and responsive trading strategies.
This approach requires robust infrastructure to handle high-frequency data processing and
the implementation of real-time machine learning models capable of making quick and
accurate trading decisions.
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Using sentiment analysis for stock trading raises several ethical concerns. One primary issue
is the potential for market manipulation. Online communities, such as WallStreetBets, can
significantly influence stock prices through coordinated efforts, leading to artificial inflation
or deflation of stock values. This phenomenon can harm individual investors who may not
fully understand the underlying market dynamics and are influenced by the hype.

Another ethical consideration is the transparency and fairness of trading strategies. Ad-
vanced sentiment analysis tools may provide certain investors with an unfair advantage
over others who do not have access to similar technologies. This disparity can exacer-
bate inequalities in the financial markets, where those with better tools and resources can
disproportionately benefit.

Future research could expand this study by integrating sentiment analysis from multiple
social media platforms. Platforms like Twitter, Facebook, and financial news sites offer
additional data that could enhance the accuracy and robustness of sentiment-based trading
models. By comparing sentiment across different platforms, researchers can develop more
comprehensive models that better capture the overall market sentiment.

To summarize, exploring more sophisticated methods to improve model accuracy and sta-
bility is essential. Techniques such as ensemble learning, transformer models, and advanced
neural networks could be investigated to enhance prediction performance. These methods
could provide deeper insights into the complex relationships between sentiment and stock
price movements.
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7 Conclusion

This project explored the potential of using sentiment analysis on WallStreetBets posts to
predict stock price movements. By leveraging a combination of natural language processing
techniques and various machine learning models, we aimed to capture the influence of online
sentiment on stock market behavior.

The analysis revealed evidence for as well as against the use of sentiment scores as a
predictor of stock price trends, demonstrating some correlations with market movements.
The integration of sentiment analysis with historical stock data allowed us to generate
trading signals that offered several profitable opportunities. The performance metrics
from our backtesting results indicated that models incorporating sentiment and related
measures were generally within a standard deviation of simpler counterparts.

However, the study had several limitations. The unique language and slang used in Wall-
StreetBets posts posed challenges in sentiment analysis, necessitating the development of
a custom sentiment pipeline. Future research could enhance preprocessing techniques and
incorporate more sophisticated natural language processing models directly applied to text
data. The current model uses an hourly time horizon for predicting stock movements, but
cross-correlation analysis suggests that significant relationships exist over longer periods.
Future studies could explore longer time frames, such as daily or weekly intervals, to cap-
ture these trends more effectively.

While the study utilized a comprehensive set of features, expanding the feature set to
include more financial indicators and sentiment-related metrics could improve model per-
formance. Future research should also focus on feature selection to avoid overfitting. This
study primarily used historical data. Integrating real-time data streams from multiple so-
cial media platforms could enhance the model’s responsiveness and accuracy. Developing
infrastructure for real-time data processing and implementing real-time machine learning
models would be a valuable extension of this work.

In conclusion, this project demonstrates the viability of sentiment analysis as a predictive
tool for financial markets, particularly in the context of influential online communities like
WallStreetBets. While the results show promise, further research is essential to harness the
full potential of sentiment-based trading strategies. By continuing to refine these models
and addressing the identified limitations, sentiment analysis can become a powerful asset
in the toolkit of investors and financial analysts.
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A.1 Graphs
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A.2 Tables

Excluded ticker symbols
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FOR
GO
Z
H
PUMP
FUN
OPEN
SHIP
CARE
SUN
IS
TOWN

NEXT
WAY
O
L
FOLD
MAX
FAST
BUD
PAY
MAN
SUB

HAS
EDIT
K
W
CASH
WOW
TV
GAME
STEP
TRUE
CAN

U
Al
R
D
FUND
MOD
HE
NICE
APPS
TIP
LEG

SO
SEE
S
T
DEEP
CAR
DTE
TECH
WELL
WOLF
ME

BE
AS
\Y
EW
TWO
BOOM
SMH
GRAB
SNOW
ROOT
POST

REAL
B
J
AN
EVER
HEAR
HIGH
WAVE
TEAM
OF
RUN

E
M
G
HI
LOW
API
WEED
EAT
SPOT
YOLO
SKIN

Table A.2: Excluded tickers for WallStreetBets NLP model. These are common words
or acronyms that overlap with stock ticker symbols but are not relevant in the financial

context.
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Figure A.3: Ticker mentions by rank (truncated)
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Figure A.4: Distribution of Open Market Hours
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Figure A.5: Sentiment vs. Stock Prices for Various Companies (30-day moving average)
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Figure A.6: Cross-Correlation between Sentiment and Stock Prices for Various Compa-
nies (30-day moving average)

Emoji | Meaning Replacement
) To The Moon! moon
A\ ¢ Diamond Hands diamond hands
i Paper Hands paper hands
™ | Bullish trend bull
& Bearish trend bear
i Positive trend bull
W Negative trend bear
Y Apes Together Strong | apes together strong
§ Financial gain profit
% Foolish behavior fool
& Hot stock hot
wW Crying cry
L Confidence confident
(] Funny laugh
i Watching drama watch
8 Ignoring news ignore
oo Paying attention watch
X Significant loss loss
Fal Volatility volatile
Risky investment risk

Table A.1: Emoji Replacements for Sentiment Analysis
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Stock Type Statistic  p-value Lags Obs Crit. Val. Stat Value
Scores -28.488000 0.000000 71 116438 -2.861600 -2.85e+01
GME Prices -2.421800 0.135700 63 116446 -2.861600 -2.42e+-00
Log-Returns -33.204800 0.000000 71 116438 -2.861600 -3.32e+01
Scores -20.960900 0.000000 59 59527 -2.861600 -2.10e+01
AMC Prices -2.114300 0.238800 60 59526 -2.861600 -2.11e+4-00
Log-Returns -30.100500 0.000000 58 59528 -2.861600 -3.01e+01
Scores -10.047600 0.000000 35 7340 -2.861900 -1.00e+01
SPY  Prices -1.139200 0.699200 16 7359 -2.861900 -1.14e4-00
Log-Returns -15.823200 0.000000 29 7346 -2.861900 -1.58e+01

Table A.3: ADF Test Statistics
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B Code listings

Listing B.1: Backtesting Logic

class Backtest():
def __init__(self, data, verbose=False, model=60):
df = data.loc[:, ['id', 'created', 'close', f'{model}minTime', f'{modell}minPrice
", 'ticker', 'signal'l]].copy(Q
df_merged = pd.DataFrame({
'time': pd.concat([df['created'], df[f'{model}minTime']]),
'ticker': pd.concat([df['ticker'], df['ticker']]),
'signal': pd.concat([df['signal'], df['signal']+2]), # Invert signal for '60
minTime'
'price': pd.concat([df['close'], df[f'{model}minPrice']]),
'id': pd.concat([df['id'], df['id']]) # Add 'id' to the concatenated
DataFrame

)

# Sort by 'time' and then by 'td' to break ties in time values
df _merged = df_merged.sort_values(by=['time', 'id']).reset_index(drop=True)

self.data = df_merged

self.trades = []

self.pnl_history = pd.DataFrame({'time': [], 'value': [1})
self.cash =1

self .portfolio = {}

self.risk_per_trade = 0.01

self.trade_api = alpaca_api.Alpaca()

self .returns = pd.DataFrame({'time': [], 'value': [1})
self.entry = {}

self.verbose = verbose

o~

def sell_all positions(self, time):
for ticker, position in self.portfolio.items():

trade = self.trade_api.get_trades_by_time(ticker, time, time + pd.Timedelta(
minutes=1), limit=1)

if trade.empty:
raise Exception('No trades within a minute')

price = trade.p.iloc[0]

self.cash += position * price

self .portfolio[ticker] = 0

def execute_trade(self, ticker, quantity, price, signal, time, old_price=None, id='
00aaaa', i=0):
if signal in [0, 1]: # Long or Short
if (ticker not in self.entry) or ('prices' not in self.entry[ticker].keys()):
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self.entry[ticker] = {'prices': [price],
'quantities': [quantity],
'id': [id]}
else:
self.entry[ticker] ['prices'].append(price)
self.entry[ticker] ['quantities'].append(quantity)
self.entry[ticker] ['id'] .append(id)

else: # Sell or Cover

profit = (-quantity) * (price - old_price)
if profit < O:
raise ValueError()
pnl = pd.DataFrame({'time': [time], 'value': [profitl})
returns = pd.DataFrame({'time': [time], 'value': [profit / abs(quantity *
old_price)]})
if self.pnl_history.empty:
self.pnl_history = pnl
else:
self.pnl_history = pd.concat([self.pnl_history, pnl])
if self.returns.empty:
self.returns = returns
else:
self .returns = pd.concat([self.returns, returns])
self .entry[ticker] ['quantities'].pop(i)
self .entry[ticker] ['prices'].pop(i)
self.entry[ticker] ['id'] .pop(i)

self.cash -= quantity * price

if

ticker in self.portfolio:
new_quantity = self.portfolio[ticker] + quantity

else:

if

new_quantity = quantity

new_quantity:
self .portfolio[ticker] = new_quantity

else:

del self.portfolio[ticker]

def print_portfolio_summary(self):
print('--- Portfolio Summary ---')
print('Cash:', self.cash)
print('Positions: ")
for symbol, quantity in self.portfolio.items():

print(symbol + ':', quantity)

def plot_pnl(self, name="pnl_plot"):
time, value = self.pnl_history.time, self.pnl_history.value
fig, ax = plt.subplots(figsize=(10, 6))

ax
ax
ax
ax

.plot(time, value)

.set_xlabel('Date', fontsize=14)

.set_xticklabels(ax.get_xticks(), fontsize=12) # Adjust the fontsize as needed
.set_yticklabels(ax.get_yticks(), fontsize=12)
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plt.legend ()
plt.savefig(f"{name}.png")
plt.close()

def run_backtest(self):
datasize = len(self.data)
prev_row = self.data.iloc[-1]
for i, row in self.data.iterrows():

percent = (i / datasize) * 100

sys.stdout.write(f'\rProgress: {percent:.2f}}')

sys.stdout.flush()

time, ticker, signal, price, id
row['price'], row['id']

row['time'], row['ticker'], row['signal'],

if time == prev_row['time'] and ticker == prev_row['ticker'] and signal ==
prev_row['signal']:
continue
if self.verbose:
print(f"Iteration {i}:")
print (f"Cash Before: {self.cash}")
print (f"Portfolio Before: {self.portfoliol}")
ticker not in self.portfolio:
self.portfolio[ticker] = 0
old_price = None
if signal ==
quantity = -self.risk_per_trade * self.cash / price
assert quantity <= 0
elif signal ==
quantity = self.risk_per_trade * self.cash / price
assert quantity >= 0 and self.cash - quantity * price >= 0
if signal ==
i = np.where(np.array(self.entry[ticker]['id'])
old_price = self.entry[ticker]['prices'][i]
quantity = -self.entry[ticker]['quantities'] [i]
assert quantity >= O and self.cash - quantity *
elif signal ==
i = np.where(np.array(self.entry[ticker] ['id'])
old_price = self.entryl[ticker] ['prices'] [i]
quantity = -self.entry[ticker]['quantities'] [i]
assert quantity <= 0

if

== id) [0] [0]

price >= 0

== id) [0] [0]

if self.verbose:
print(f"Signal: {signall}, Quantity: {quantityl}")
self.execute_trade(ticker, quantity, price, signal, time, old_price=old_price
, id=id, i=i)
if self.cash < O:
print ("bankrupt.")
break

if i == len(self.data) - 1:

63




Code listings

Aalborg Universitet

self.sell_all_positions(time)
if self.verbose:
print (f"Cash After: {self.cash}")
print (f"Portfolio After: {self.portfolio}\n")

prev_row = row
self.win_ratio = np.mean(self.pnl_history.value >= 0)

b = Backtest(df, verbose=False)

b.cash = 1
b.risk_per_trade = 0.01

b.run_backtest ()
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