
The Role of Generative AI in the
Modern DevOps Pipeline

- Master Thesis -

Project Report

Mads Berthelsen (20173802)

Aalborg University
Electronics and IT

Copyright © Aalborg University 2015

Here you can write something about which tools and software you have used for typesetting
the document, running simulations and creating figures. If you do not know what to write,
either leave this page blank or have a look at the colophon in some of your books.

Electronics and IT
Aalborg University

http://www.aau.dk

Title:
The Role of Generative AI in the Modern
DevOps Pipeline

Theme:
DevOps, Prompt Engineering & Code
generation

Project Period:
Fall semester 2024

Participant(s):
Mads Berthelsen (20173802)

Supervisor(s):
Henning Olesen
Peter Anglov

Copies: 1

Page Numbers: 90

Date of Completion:
September 5, 2024

Abstract:

The advent of Large Language Models
has revolutionized software devel-
opment, significantly enhancing the
efficiency of DevOps processes. Coding
practices, in particular, have greatly ben-
efited from the integration of Generative
AI, which now assists developers di-
rectly within their coding environments,
reducing the complexity and duration
of repetitive tasks.

This thesis explores further optimization
of software development by focusing
on the coding stage. It investigates
how combining generative AI with
prompt engineering can enhance this
process. While initial experiments show
significant potential, certain delimita-
tions prompted a Conceptual Design
approach, leading to necessary changes
for truly optimizing code generation.

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement

with the author.

http://www.aau.dk

Acknowledgements

I would like to express my deepest gratitude to the individuals who have directly or
indirectly contributed to the completion of my master’s thesis. Their support, guid-
ance, and encouragement have been invaluable throughout this journey.

First and foremost, I extend my sincere thanks to my supervisor, Henning Olesen.
Henning has been a pivotal figure in my academic journey over the past two years,
having supervised several of my projects. His ability to elevate my academic work
beyond my own expectations and his constant push for excellence have inspired me
to produce results I can truly be proud of.

A special thanks goes to Jan Cordtz from Microsoft for his incredible knowledge and
insights on the subject of AI and its integration into DevOps. His willingness to par-
ticipate in countless meetings and provide an Azure environment for my experiments
was instrumental in the success of my research.

I am also deeply grateful to Tom Willy Nielsen from UFST. His participation in the
creation and shaping of the experiments conducted within this thesis significantly en-
hanced the depth and quality of the academic work.

Finally, I want to express my deepest appreciation to Peter Anglov, who entered my
life as a course professor during my 3rd semester. Peter’s support has been invaluable
not only in the completion of my thesis but also in shaping my life ambitions. His ex-
pertise and willingness to engage in numerous lengthy meetings and discussions have
been instrumental in the quality of this academic product. I am fortunate to consider
Peter not just a supervisor but a close friend, whose impact on my life extends far
beyond this thesis.

I also wish to extend my heartfelt thanks to my family and girlfriend, who have always
been supportive of my choices and understanding of my absence while I pursued my
goals. My parents will forever be my biggest inspiration.

iii

Contents

1 Introduction 1
1.1 Motivation . 3
1.2 Background . 4

1.2.1 The Central Role of Code Documentation 5
1.2.2 A New Approach: Documentation First, Code Second 5

1.3 Problem Definition & Research Question 6
1.4 Expected Outcome . 7

1.4.1 Drafting a Conceptual Design . 8

2 Methodology 9
2.1 Desktop Research . 12
2.2 Expert Interview . 12
2.3 Experimental Method . 14

3 Theory 15
3.1 Machine Learning . 15
3.2 Natural Language Processing . 17

3.2.1 Generative AI . 17
3.3 Large Language Model . 18

3.3.1 Fine-tuning . 18
3.4 Retrieval Augmented Generation . 19
3.5 Prompt Engineering . 20

3.5.1 Tagged User Prompting . 21
3.5.2 Zero-shot & Few-shot Prompting 22

4 State-of-the-art 23
4.1 OpenAI ChatGPT . 23
4.2 Google Gemini (Bard) . 24
4.3 Ollama . 26
4.4 Microsoft Copilots . 27
4.5 DevOps . 27

iv

CONTENTS

4.5.1 Improving DevOps via LLM Integration 30

5 Analysis 31
5.1 Preliminary interview with Microsoft . 31

5.1.1 Structure & logistics . 32
5.1.2 The Interview with Jan Cordtz . 32

5.2 Interview with Udviklings- og Forenklingsstyrelsen (UFST) 35
5.2.1 Structure & logistics . 35
5.2.2 The Interview with Tom Willy Nielsen 36

5.3 Generating Experiments: Collaborative meeting between UFST and Mi-
crosoft on AI for DevOps usecases . 37

5.4 Outlining Experiments . 39
5.4.1 Experiment One - Code Generation Based on Code Documentation 40
5.4.2 Experiment Two - Simplifying and Translating Lengthy Technical

Documents . 40
5.4.3 Experiment Three - Generating New Code for Existing Codebases 41
5.4.4 Experiment Four - Reconstructing Legacy Codebases 41

5.5 Assessing Experiment Prioritization . 42
5.6 Experiment: Code Generation Using Prompt Engineering in Large Lan-

guage Models . 43
5.6.1 GPT vs. Ollama . 44
5.6.2 Prompt Creation . 45
5.6.3 Analyzing the Performance of GPT and Llama3 in Code Gener-

ation via Prompt Engineering . 46
5.7 Experiment: Simplifying and translating lengthy technical documents

via RAG . 52
5.7.1 Setup of the RAG Solution in Microsoft Azure 52
5.7.2 Selection of Documents . 56
5.7.3 Designing System prompt and User prompts 57
5.7.4 Testing with Tom from UFST . 59
5.7.5 Results of the Experiment & Further Testing 59

6 Conceptual Design 63
6.1 Integration into IDEs . 63

6.1.1 Localized Editing in Comparison to Repository-level Editing . . 64
6.2 Dynamic Vector Database and Modification Capabilities 65
6.3 Use Case 1: Adding New Code to Existing Codebases 66
6.4 Use Case 2: Generating New Services Based on Existing Codebases . . 66
6.5 Process Description . 67

6.5.1 Step 1: Add for Indexing . 68
6.5.2 Step 2: Indexing . 68
6.5.3 Step 3: Query, Vectorize, and Search 68

v

CONTENTS

6.5.4 Step 4: Retrieve . 68
6.5.5 Step 5: Augment . 68
6.5.6 Step 6: LLM Processing . 69
6.5.7 Step 7: Generate Mirrored Repository with Changes 69
6.5.8 Step 8: Generate Code Documentation of Changes 69
6.5.9 Step 9: Merge with the Repository 69

6.6 Efficiency, Optimization, and Reversion 70
6.7 Current Limitations and Future Improvements 70

7 Discussion 72
7.1 Reflections . 72
7.2 The EU AI Act, Explainable AI, and Quality Assurance 74

7.2.1 Model Feedback Loop . 76
7.3 The Social Impact of Integrating LLMs into DevOps 77

8 Conclusion 79

Bibliography 82

A Appendix A name 89
A.1 Pictures generated using DALL·E 3 . 89
A.2 Tagged prompt engineering conversation 89
A.3 Interviews . 90

A.3.1 Mads Brodt - Dwarf . 90
A.3.2 Johan Fenn Bagger Nærby - Connected Cars 90
A.3.3 Andreas Dahl Pedersen - ASIMUT Software 90
A.3.4 Regnar Vedsted - Lego . 90
A.3.5 Mathias Vilbrad - Netcompany . 90

vi

Acronyms

AI Artificial Intelligence. 1

DevOps Development and Operations. 2

EIC European Identity and Cloud Conference. 21

GenAI Generative AI. 1

GPT Generative Pre-Trained Transformers. 17

LLM Large Language Model. 1

ML Machine Learning. 15

NLP Natural Language Processing. 15

QA Quality Assurance. 7

QC Quality Control. 7

RAG Retrieval Augmented Generation. 3

UFST Udviklings- og Forenklingsstyrelsen. 7

VM Virtual Machine. 53

XAI Explainable AI. 2, 3

vii

Chapter 1

Introduction

This chapter introduces the landscape for exploring human-AI collaboration in the future of
software development as well as the problems coming alongside it

The field of software development has undergone a drastic shift driven by the in-
tegration of Artificial Intelligence (AI) booming since the release of GPT-3 back in
November 2022 [7]. Microsoft and OpenAI have strengthened their partnership [3],
highlighted by Microsoft’s significant investment of billions of dollars in the contin-
ued development of Generative AI (GenAI) [2]. Microsoft is not alone in its intense
focus on AI development as Google’s Large Language Model (LLM) Gemini is also
making notable advancements in this domain [58]. This increased focus on advanc-
ing AI technology emphasizes the importance for us as users to keep up with this
transformation. We must not fall behind the technology but instead, adapt and grow
alongside it. The transformation is not only technological but also social changes and
expectations are urging developers to re-conceptualize their role in software develop-
ment. While AI-driven tools currently act as valuable coding assistants, automating
repetitive tasks and boosting development efficiency, their future potential goes far
beyond mere assistance. As their capabilities and expertise rapidly evolve, these mod-
els could transition from assistants to colleagues by translating natural language into
code [83]. This potential shift may not replace traditional human coding knowledge
entirely but rather reshape it and force developers to adapt accordingly. It is important
to remember, that LLMs strength and knowledge are not inherent but harnessed by
humans who understand human-to-machine communication [78].

Imagine a future where mastering human-to-machine communication with facilitated
tools like LLMs becomes vital for guiding and collaborating with AI as your new
colleague [38]. Such a collaborative future built on effective communication through
prompt engineering unlocks the true potential of coding and development in upcom-
ing years.

1

CHAPTER 1. INTRODUCTION

The essence of prompt engineering revolves around the interaction with AI as a "black
box", a term that metaphorically represents the non-transparent internal workings of
these models [39]. Developers provide an input (the prompt), which is then pro-
cessed by the AI in ways not entirely visible or understandable from the outside, but
ultimately producing an output. This output’s quality and relevance are directly cor-
related with the specificity, clarity, and intent of the input, making prompt engineering
a pivotal skill in the modern software developer’s toolbox [85].

Generative AI presents significant challenges that need careful attention. One of the
most pressing issues is AI hallucination, where the system generates information that
appears factual but is often inaccurate [63]. This problem arises because AI models
produce outputs based on patterns in their training data without truly understanding
the content. As a result, AI can deliver responses that seem convincing but are not
grounded in reality, leading to the spread of misleading or false information. Ad-
ditionally, biases in both the input data and the prompts can further undermine the
reliability of AI outputs. To maintain trust and ensure responsible use, it is crucial to
independently verify the accuracy of AI-generated information.

In response to these challenges, recent regulatory changes, particularly those intro-
duced by the EU AI Act, have started to focus on making AI systems more transpar-
ent and understandable [56]. This marks a shift away from the "black box" approach,
where the inner workings of AI are unclear. This shift emphasizes Explainable AI
(XAI), which aims to make AI systems more transparent, addressing ethical and le-
gal concerns while building trust in AI technologies [81]. For developers, this means
designing AI prompts that not only generate accurate and relevant responses but also
enable the AI to explain how it arrived at those answers [15]. With new regulations
increasingly requiring AI systems, especially LLMs, to clearly demonstrate their rea-
soning processes, this focus on transparency is a significant step toward more respon-
sible and accountable AI development [56].

As AI tools become increasingly integrated into software development, the ability to
craft precise and thoughtful prompts is becoming a key factor for success. One area
within the software development process that can benefit significantly from AI’s capa-
bilities is particularly the early stages of the Development and Operations (DevOps)
pipeline [30].

The DevOps pipeline represents a classic approach to software development empha-
sizing continuous development, integration, and operation of software [14]. This pro-
cess streamlines the development, testing, and deployment phases to enhance effi-
ciency and product quality across all of the teams involved. A key phase within this

2

CHAPTER 1. INTRODUCTION

pipeline is the coding and building stage, traditionally where developers write, test,
and integrate code [30]. However, the integration of AI and LLMs is with great cer-
tainty going to revolutionize this phase.

The proposal is to shift the focus towards creating detailed and descriptive code doc-
umentation at the outset, even before any coding begins [37]. This upfront documen-
tation can then serve as the foundation for generating code through AI and LLMs,
transforming the way software is developed by prioritizing planning and design over
manual coding. This approach has the potential to flip the traditional software devel-
opment process on its head. Instead of a workflow where coding is followed by doc-
umentation, comprehensive documentation would be crafted first, laying the ground-
work for code to be generated automatically using AI tools and frameworks, such as
LLMs and prompt engineering.

The emergence of XAI represents another significant advancement in utilizing AI
within software development. Retrieval Augmented Generation (RAG) allows users
to leverage the natural language comprehension abilities of LLMs to operate on exten-
sive repositories of stored user data. By combining the retrieval of relevant information
from a specific dataset with the generative power of LLMs, RAG systems enable devel-
opers to work with precise, contextually relevant data rather than relying solely on the
generalized knowledge base of the model. This approach enhances the effectiveness
of AI-driven development, as it allows for more accurate and context-sensitive code
generation and modification.

This thesis delves into LLMs and the complexities of prompt engineering, examining
their impact on software development and their implications for the industry’s future.
Part of the analysis work will attempt to generate code using prompt engineering
frameworks to test if it’s possible to create code explicitly using natural language and
descriptive code documentation. The potential of inviting AI into the actual coding
itself will open up use cases of integrating new code as well as editing old code to fit
new standards, services, and laws. Having AI deeply involved within your software
mainframe would ideally allow it to edit code based on new requirement specifica-
tions.

1.1 Motivation

For the initial four and a half years of my academic pursuit, I aimed to pursue a ca-
reer in academia. This aspiration was clear and remained unchanged until the last
six months when my perspective shifted significantly due to the mentorship of Pe-
ter Anglov, my professor in security and compliance, who is now also my assisting
supervisor. Through several one-on-one meetings, this mentorship challenged my

3

CHAPTER 1. INTRODUCTION

previous ambitions and encouraged me to consider a broader range of possibilities
for my future. We discussed not just my career, but also where I might live, my so-
cial relationships, and my personal goals. It was this practical and forward-looking
mentorship that led me to reconsider my academic trajectory. A few months before
commencing my master’s thesis I consciously steered away from the path leading to a
PhD and instead selected a thesis topic that could serve as a foundational step towards
a future career in engineering.

While traditional education has long focused on human-to-human communication,
the continued advancement of LLMs such as ChatGPT, introduces a significant shift
towards mastering human-to-machine interaction through prompt engineering. This
technological advancement spikes my fascination with the transformative role of LLMs
in the programming and development sectors. I am convinced that the future devel-
oper will benefit immensely from understanding and leveraging prompt engineering.
This specialization transcends mere interaction enhancement; it is about harnessing
the power of LLMs to revolutionize coding practices, automate complex tasks, and in-
novate solutions. Educating individuals in prompt engineering is crucial as we enter
this new era in AI. It’s an essential skill for influencing the future of human-machine
communication and reshaping the software development landscape. Therefore, I ex-
pect a progressive rise in demand for developers with these attributes.

Exploring the field of LLMs I recognized their impact beyond technological innova-
tion, particularly in creating specialized job opportunities. Research done by LinkedIn
highlighted the lucrative potential of prompt engineering, with an average annual
salary of $120-390,000 [70]. The demand for job positions with prompt engineering
qualities is progressively increasing as well [13]. This discovery fuels my motivation
for my master’s thesis in prompt engineering. I see this work not just as an academic
achievement but as a strategic move towards a career in IT engineering.

1.2 Background

During my undergraduate studies, I was employed at Netcompany, where I worked as
an Operation Engineer for nearly two years before returning to university to complete
my Master’s degree.

In this role, I managed the end of a DevOps pipeline, overseeing batch job execution
and software patching. I was responsible for both proactive measures, such as an-
ticipating and preventing fines from GDPR breaches, as well as reactive responses to
issues. This involved constant communication with data centers, cloud providers, and
development teams to ensure operational readiness for deploying new software and
integrating new code with existing services. I actively participated in meetings with

4

CHAPTER 1. INTRODUCTION

developers to anticipate and mitigate potential disruptions, aligning our operations
with regulatory requirements to prevent fines for software vulnerabilities. Addition-
ally, I monitored service status using tools like SolarWinds and promptly addressed
issues such as database overflow, server downtime, and job failures.

My experience at Netcompany was invaluable in gaining expertise in maintaining crit-
ical software infrastructure and collaborating with cross-functional teams. These expe-
riences have significantly influenced my academic pursuits and professional growth.
After navigating the complexities of DevOps and witnessing the extensive collabora-
tion it requires, combined with exploring the potential of large language models in
code generation, I conceived the idea of transforming the traditional coding process
by reversing the sequence, starting with detailed documentation first.

1.2.1 The Central Role of Code Documentation

Building upon the transformative potential of AI in software development, it’s cru-
cial to acknowledge the traditionally vital role of comprehensive code documentation.
This documentation has served as the backbone of understanding and communication
within development teams, ensuring that developers have a clear grasp of the code-
base and the impact of any modifications. Recognizing this importance sets the stage
for an innovative approach that could fundamentally alter the software development
process. However, for this approach to be successful, developers must excel in require-
ment specifications, crafting clear, detailed, and comprehensive code documentation
for AI to generate code from. Achieving this level of precision in documentation is es-
sentially an exercise in prompt engineering, requiring developers to master the art of
articulating requirements in a manner that AI can interpret and implement accurately.

1.2.2 A New Approach: Documentation First, Code Second

By reversing the sequence and prioritizing the creation of detailed code documenta-
tion before any code is actually written, I want to introduce a method that flips the
conventional process on its head. In this paradigm, developers first draft exhaus-
tive and descriptive documentation that outlines the desired functionalities, system
architecture, and specific requirements of the application. AI then takes on the role
of translating this comprehensive documentation into functioning code, thereby po-
sitioning documentation not as a post-development task but as the initial step that
guides the entire development lifecycle.

However, it is important to recognize that LLMs are inherently designed to produce
varying outputs with each iteration. Running the same prompt multiple times can
lead to the generation of different codebases, each with its own structure, logic, and
implementation details. This variability necessitates a robust evaluation process to de-

5

CHAPTER 1. INTRODUCTION

termine which of the generated codebases is most suitable for meeting the outlined
requirement specifications.

Since AI is responsible for writing the code from the very beginning, based on thor-
ough documentation, it inherently possesses a deep understanding of the codebase’s
structure and logic. Consequently, making modifications, whether to introduce new
features, apply patches, or adjust functionalities to comply with evolving regulations,
becomes inherently more intuitive and efficient. The AI, having ’learned’ and trained
from the original documentation and its own coding decisions, is fully aware of the
implications of any changes. This significantly reduces the need for involvement from
multiple people or developers and dramatically reduces the complexity throughout
the code’s lifecycle, leading to a development process that is far less complex and
smoother. The success of this innovative approach underscores the importance of
adept prompt engineering and precise requirement specifications.

1.3 Problem Definition & Research Question

This thesis examines how AI technologies can help improve the DevOps lifecycle. The
focus is on practical applications, such as how these tools can assist engineers and IT
professionals with coding, building, implementing, operating, and maintaining sys-
tems. By using LLMs and AI, organizations may find it easier to manage complex
tasks, increase productivity, and simplify difficult aspects of development and opera-
tions. The main question guiding this research is:

How can generative AI and prompt engineering improve code development and
maintenance in a DevOps environment?

To effectively address this overarching inquiry, the research will be structured around
several underlying questions that delve into different facets of the topic. These ques-
tions will explore the social and coding impacts of integrating LLMs and prompt engi-
neering into the DevOps workflow, aiming to provide a comprehensive understanding
of the potential implications and benefits for developers and organizations.

1. How is the growing use of LLMs in IT expected to impact the importance of
prompt engineering over traditional coding skills?

2. How can we develop software explicitly using natural language and prompt
engineering in low-code and no-code environments? (Follow-up question: How
can we verify the quality of code generated by machines?)

3. How can a Retrieval-Augmented Generation solution be developed to stream-
line the comprehension and analysis of large technical documents in a DevOps

6

CHAPTER 1. INTRODUCTION

environment?

The subsequent section will outline the anticipated findings and potential impli-
cations of this research on the future of code development, maintenance, and overall
efficiency in DevOps environments.

1.4 Expected Outcome

By conducting interviews and meetings with IT professionals from respected compa-
nies, including Microsoft and Udviklings- og Forenklingsstyrelsen (UFST), the study
aims to explore the state of LLM integration from three key perspectives: current sta-
tus, future direction, and implementation strategies.

Current Integration Status: Insights gathered from numerous meetings with Mi-
crosoft, will shed light on the existing landscape of LLM integration. The study aims to
map out the current capabilities, challenges, and successes in utilizing AI to support
software development and operations, providing a snapshot of where the industry
stands today.

Future Directions and Requirements: By investigating use cases that are currently
not possible or still in progress, the research will identify the necessary advancements
required to further integrate LLMs and AI into DevOps processes. Discussions with
UFST will be fundamental in this exploration, providing specific examples of DevOps
challenges, such as managing and comprehending large, complex documents. These
insights are expected to inform the design and scope of a potential RAG solution.

Implementation Strategies: Building on the identified use cases, the research will
explore the development and testing of a RAG solution specifically tailored to op-
timize the DevOps process provided by UFST. This solution aims to automate the
comprehension and retrieval of information from extensive documents, with the prac-
tical application being developed in collaboration with Microsoft on their Azure cloud
platform. Testing with UFST will ensure the solution meets their standards for Quality
Assurance (QA) and Quality Control (QC), providing a practical demonstration of the
potential for advanced AI technologies to enhance DevOps workflows.

The expected outcome of this research is to provide a detailed roadmap for integrating
LLMs and RAG solutions into DevOps workflows, highlighting the potential benefits,
challenges, and strategies for successful implementation. Additionally, the findings
are anticipated to provoke further questions regarding quality assurance, control, and
other critical considerations, which will be explored in the discussion chapter 7.

7

CHAPTER 1. INTRODUCTION

1.4.1 Drafting a Conceptual Design

Based on the insights gained from interviews, meetings, and the development process,
this research will propose a conceptual design aimed at improving code generation
within the DevOps pipeline. This design is heavily inspired by the use cases provided
by UFST and reflects my own expectations and contributions to the future of AI inte-
gration in DevOps. The focus will be on addressing the limitations identified during
the analysis, particularly those related to the constraints on the number of tokens that
LLMs can process.

The proposed solution will explore the possibility of adding entire codebases to the
vector database of a RAG, rather than just textual information, to enhance the system’s
understanding and generation capabilities. By including entire codebases, the RAG so-
lution can provide more contextual and relevant code suggestions, thereby improving
the accuracy and efficiency of the development process. This approach aims to bypass
current limitations and offer a more comprehensive integration of LLMs throughout
the DevOps lifecycle.

8

Chapter 2

Methodology

This chapter will present the various methodologies employed in this research, providing a de-
tailed explanation of each method and the rationale behind their selection.

In shaping the methodology for this thesis, a critical step involved conducting prelimi-
nary interviews with key professionals from leading IT companies, including Netcom-
pany, Lego, Dwarf, and Microsoft. These interviews were instrumental in formulating
the primary research question: "How can generative AI and prompt engineering im-
prove code development and maintenance in a DevOps environment?" The insights
gained from these discussions guided the choice of research methods.

A notable example comes from an interview with Mathias Vilbrad from Netcompany.
Mathias highlighted a significant inefficiency within his development team: the exces-
sive amount of time spent in meetings, often comprising up to half of their workday.
He proposed an innovative solution involving the use of AI, specifically leveraging
transcription tools and a RAG solution. This approach would involve having only the
essential participants in meetings while transcribing the content for others to access
later. By querying the RAG system, employees could retrieve information pertinent to
their roles without needing to attend the meetings in person.

The methodology for this thesis was ultimately shaped by the variety of unique use
cases presented during these preliminary interviews. Each company offered dis-
tinct challenges and opportunities, making it clear that a one-size-fits-all quantita-
tive approach would not suffice. Unlike scenarios where the majority of variables
remain constant—such as producing various flavors of ice cream, where only the fla-
vor changes—the solutions required here demanded diverse strategies and innovative
thinking tailored to each specific context. This uniqueness across use cases made
a strictly quantitative approach less suitable, as the complexity and individuality of
each situation could not be captured through numerical data alone.

9

CHAPTER 2. METHODOLOGY

As a result, I opted for a qualitative methodology, particularly aimed at optimizing
a DevOps process presented by UFST in partnership with Microsoft. This choice was
motivated by the need to thoroughly investigate the specific case, comprehend the
unique problem, and understand the requirements. The qualitative approach provides
a richer, more contextual exploration of how generative AI and prompt engineering
can be implemented in this specific setting, accommodating the unique use case and
the innovative solutions it demands.

The structure of this research process is illustrated in the figure 2.1 below, presented
in chronological order. This figure provides a visual representation of the sequential
steps undertaken during the study. By following the timeline depicted in the figure,
readers can easily grasp the logical flow of the research and understand how each
phase builds upon the previous one. This visual aid serves not only to clarify the
research process but also to emphasize the systematic approach taken throughout the
study.

10

CHAPTER 2. METHODOLOGY

Figure 2.1: A chronological overview of the research process, illustrating the sequential steps. Diagram
is created using Lucidchart [40]

11

CHAPTER 2. METHODOLOGY

2.1 Desktop Research

Desktop research was pivotal in gathering and analyzing information for this paper.
This process involved a thorough examination of a broad spectrum of existing data
and literature on Machine Learning, Natural Language Processing, Large Language
Models, Prompt Engineering, and Generative AI.

The research included reviewing academic journals, industry reports, and online databases
to gather relevant information. This comprehensive approach provided a deep under-
standing of both historical and current developments in these fields. It encompassed
not only recent publications but also foundational theories that remain relevant, offer-
ing a robust framework to understand the evolution and variations of these technolo-
gies.

The research was further enriched by insights from the Machine Learning course ma-
terial covered during the 2th semester of the ICTE study program. This academic
foundation provided a structured and critical perspective, enabling the integration of
theoretical concepts with practical applications observed in current studies and real-
world implementations, as described in the state-of-the-art section 4.

While AI has recently gained significant attention, it is important to acknowledge
its rich history spanning over fifty years. This body of knowledge includes pioneer-
ing work, foundational algorithms, and continuous advancements leading to today’s
sophisticated systems. Leveraging this extensive repository of existing knowledge al-
lowed for a nuanced and in-depth understanding of the subject.

Integrating desktop research into this thesis served several critical functions. It es-
tablished a comprehensive background and contextual framework essential for under-
standing the current state and future directions of AI technologies. It also identified
gaps and opportunities within the existing literature, guiding the primary research fo-
cus and objectives toward DevOps optimization by integrating AI. Lastly, it provided a
solid evidence base for the analysis and experiments presented in this thesis, ensuring
that the conclusions are well-founded and substantiated by existing knowledge.

2.2 Expert Interview

An expert interview is a qualitative research method used to gather in-depth infor-
mation, insights, and opinions from individuals with specialized knowledge or expe-
rience in a particular field [4]. This method enables researchers to explore complex
topics through a conversational approach, allowing for flexibility in the discussion
to uncover nuanced understandings and perspectives that are not easily accessible

12

CHAPTER 2. METHODOLOGY

through other data collection methods. There is plenty of existing research and in-
formation on machine learning and AI, but the release of generative AI is fairly new.
Therefore, relying on academic studies will not be sufficient enough. I find expert
interviews particularly valuable when investigating new inventions and their direct
impact on the industry as these AI models have the potential to revolutionize how
software is developed [71]. Experts are ’forced’ to be proactive and updated to stay
relevant within the field and avoid being disrupted by the technology but instead
adapt accordingly. The software development field is in perpetual motion, with ex-
perts offering insights into the present moment that surpass what books and academic
studies provide [71]. Unlike the static nature of books and academic studies, the work
environment in software development continuously adapts to changes ad hoc, neces-
sitating real-time expertise.

There are two primary interview structures: structured and unstructured [51]. A struc-
tured interview follows a predetermined plan, with each interviewee receiving iden-
tical questions, akin to a survey, often requiring minimal elaboration. In contrast, an
unstructured interview is less formal and encourages free dialogue that captures nu-
anced points. A third option, semi-structured, blends aspects of both approaches [64].
It involves pre-written questions but allows room for follow-up inquiries, fostering a
more organic conversation during the interview process. A semi-structured interview
was particularly well-suited for this thesis for several reasons. First, it offered the flex-
ibility to explore topics in-depth, going beyond the scope of the pre-written questions.
This approach enabled the discovery of insights that might not have been anticipated
at the planning stage. Additionally, the format allowed follow-up questions directly
related to the expert’s responses. This adaptability was crucial for delving deeper into
subjects as they emerged during the conversation. Such an interview acted out like a
conversation provides a more comprehensive understanding of the expert’s perspec-
tives and experiences.

Interviews are being employed as a key methodology to establish both the current
state and future direction of AI integration in DevOps. During the initial analysis
phase, these interviews provide valuable insights into the present landscape of AI ap-
plications within DevOps processes, helping us understand existing capabilities and
challenges. Moreover, discussions about future possibilities guide our vision for how
AI can enhance specific DevOps activities. By exploring expert opinions on upcom-
ing trends and potential innovations, we identify key areas for improvement. These
insights inform the design of experiments to test AI, LLMs, and cloud technologies.
This approach aims to ensure we remain at the forefront of technological advance-
ments.

13

CHAPTER 2. METHODOLOGY

2.3 Experimental Method

The experimental method is a systematic approach used in scientific research to in-
vestigate cause-and-effect relationships between variables [75]. It involves the manip-
ulation of one or more independent variables to observe the effect on a dependent
variable while controlling for extraneous variables that could influence the results.
The experimental method generally involves several fundamental steps: formulating
a hypothesis, performing experiments, gathering data, analyzing the data, and finally,
reporting the results [5]. This method lends itself well to this context, particularly be-
cause prompts and prompt engineering offer numerous avenues for exploration. The
efficacy of the outcomes hinges on the initial input, emphasizing the experimental na-
ture of prompt engineering. Testing hundreds of different prompts and experimenting
with various prompt engineering frameworks become essential aspects of this process.
When considering the theoretical framework of machine learning in general, the pro-
cess of fine-tuning models through parameter and weight adjustments aligns closely
with experimental practices. This underscores the suitability of employing such a
methodology for the project.

The results of a single experiment often serve as a foundation for subsequent ones.
In some cases, multiple iterations are required to arrive at a satisfactory answer to a
hypothesis [75]. The experiments conducted within this thesis are aimed not at attain-
ing definitive answers, but rather at providing clear insights into the efficacy of various
prompt engineering frameworks and AI tools & services in code generation. These in-
sights identify promising candidates for optimizing the coding phase of a DevOps
pipeline. The details regarding both the structure and execution of the experiment
will be expanded upon in the analysis chapter 5.6.

14

Chapter 3

Theory

This chapter will outline the existing theories and the technologies necessary for state-of-the-art
products to exist.

The structure of this chapter is inspired by the waterfall model, not so much in its
way of developing software, but in a way that the following technology could not exist
without the previous one. The technologies will be briefly introduced and presented
sequentially to get an intuitive and smooth transition from technology to product.
Firstly, Machine Learning (ML) will be introduced by explaining the core fundamen-
tals necessary to understand how Natural Language Processing (NLP) and LLMs oper-
ate all from the importance of data, training, and their pivotal role in the advancement
of AI. Lastly, the three top-end state-of-the-art large language model services OpenAI
ChatGPT, Google Gemini and open source model Llama3 will be explored. In case
you want to skip the introduction to the various technologies involved in the creation
of large language models, continue reading from section 4.1 and forward.

LLMs are tools created in the field of NLP, which helps computers understand and
engage in conversations like humans [44]. This technology builds on the foundation
of machine learning, a concept that dates back to the 1950s [61]. Think of it as a chain
reaction in technology, where each new development stems from the previous one.

3.1 Machine Learning

The vast majority of modern society is engaging with services on an everyday basis
which utilizes machine learning. All from recommendation systems in the entertain-
ment domain to tumour analysis in the healthcare industry, not to mention the simple
model which helps detect and filter the many spam emails trying to infiltrate our in-
boxes [69]. The traditional definition of machine learning was articulated by computer
scientist Arthur Samuel back in 1959 [6]:

15

CHAPTER 3. THEORY

"Machine learning is the field of study that gives computers the ability to learn without being
explicitly programmed." [6]

In other words, models can improve from experience gained through the data it’s
trained upon. It is important to emphasize data when introducing machine learning,
as it’s the foundational building block of any model. There are different types of learn-
ing [69]:

Supervised learning involves training a model on a pre-labeled dataset. This means
that the correct output or label accompanies each example in the training dataset [69].
The "label" refers to the desired outcome or answer the model is supposed to predict
based on the input data. For instance, in a dataset used for a spam detection system,
each email in the training set is labeled as either "spam" or "not spam" ahead of time.
It attempts to discover patterns or relationships between the input features (e.g., words
in an email) and the output labels (e.g., spam status) [67]. The quality and size of the
labeled dataset significantly impact the model’s performance [74].

In contrast to supervised learning, where models are trained on pre-labeled data,
unsupervised learning is training on data without any labels [68]. This means that the
learning algorithm is not given any explicit instructions on what to do with the data.
Hence, it must identify patterns, relationships, or structures within the dataset on its
own [74]. A classic example of unsupervised learning in action is the identification of
clusters of tumours in healthcare to determine if they are benign (healthy) or malignant
(unhealthy) [66]. Unlike supervised learning, where a model would be trained with
images of tumours already labeled as benign or malignant, in unsupervised learning,
the model analyses the features of the tumour images without any prior labels. The
algorithm might look for patterns or similarities in the data, such as shapes, sizes, or
densities, and attempt to group similar tumours. Incorporating machine learning into
tumor analysis can significantly enhance the diagnostic process. By training models
on extensive datasets, these systems can identify tumors with high confidence levels,
flagging those that are likely malignant due to their pronounced deviation from typi-
cal patterns. This capability does not eliminate the need for human evaluation of the
tumour. Instead, it streamlines the preliminary screening process. By automatically
categorizing some tumors as benign or suspect, machine learning algorithms can op-
timize doctors’ workflow, allowing them to allocate more time to complex cases that
require their specialized skills and attention.

16

CHAPTER 3. THEORY

3.2 Natural Language Processing

Natural Language Processing (NLP) is a branch of machine learning dedicated to
enabling computers to comprehend, interpret, and generate human language. NLP
involves a series of technical processes, including Tokenization and Vectorization, that
transform raw text data into structured representations for the model to analyze [80].
Sentences are broken down into smaller frames or units to facilitate understanding.
Rather than interpreting words in isolation, NLP models analyze the semantic re-
lations between these frames to grasp the meaning of the sentence similar to human
comprehension [44]. This approach allows the model to consider the context conveyed
by the arrangement of words, capturing the complexity of language beyond the literal
meaning of the singular frame. For instance, in the sentence "A guy sitting on a bank
looking over the lake watching the glowing sunset," the model recognizes the semantic
relations between "guy," "sitting on a bank," "looking over the lake," and "watching the
glowing sunset." By understanding the contextual connections between these frames,
the model interprets the scene of a person observing a sunset by a lakeside, demon-
strating its ability to comprehend language in a manner that mirrors human cognition.
External lecturer Allan Hammershøj gave this particular example during one of his lec-
tures. To illustrate this example I’ve generated two images using the model DALL·E 3
from the OpenAI Generative Pre-Trained Transformers (GPT) bundle. Please look in
the appendix section for the image comparison illustrating ambiguity A.1. Handling
this might be relatively straightforward for the majority of NLP models. However,
processing larger texts can be slightly more complicated for the model.

The Transformer architecture addresses these issues by employing a "self-attention"
mechanism [76]. Self-attention allows the model to weigh the importance of different
words in a sequence when processing each word. This means that the model can focus
more on relevant words and less on irrelevant ones, enabling it to capture dependen-
cies regardless of their distance in the input sequence. Think of attention as having
multiple pairs of eyes looking at different parts of the sentence at the same time [27].
This helps the model understand various relationships within the text more effectively
regardless of the input size.

3.2.1 Generative AI

Generative AI refers to AI systems that can generate new content, such as text, images,
or music, based on the user prompt and patterns learned from the data they were
trained on. In the context of LLMs like GPT, generative AI allows the model to produce
human-like text based on the input it receives. Combining Generative AI with the
transformer architecture led to the name GPT (Generative Pre-trained Transformer).

17

CHAPTER 3. THEORY

3.3 Large Language Model

Large Language Models are tools created in the field of natural language processing,
which helps computers understand and engage in conversations like humans [44].
These models are built on deep learning architectures, with transformers being a
prominent example [77]. LLMs have the capacity to understand and generate human-
like text based on the vast amounts of data they have been trained on. LLMs are neural
network-based architectures trained on massive datasets containing text from diverse
sources such as books, articles, websites, and social media platforms [29]. The training
process involves exposing the model to sequences of text and training it to predict the
next word or sequence of words in a given context. This process enables the model
to learn the statistical patterns and relationships inherent in natural language, also
known as language modelling [79].

The breakthrough with LLMs lies in their ability to capture and leverage complex
linguistic structures and semantics through the use of attention mechanisms within
the transformer architecture [45]. Attention mechanisms allow the model to focus on
relevant parts of the input text when generating responses, facilitating more accurate
and contextually appropriate outputs.

Some state-of-the-art models are trained on vast amounts of coding, building, and
implementation data, enabling them to understand programming languages and gen-
erate code in response to user prompts [83]. These models are often referred to as
code-generating language models and can assist developers in writing code more ef-
ficiently and accurately. By learning from extensive repositories of code snippets,
documentation, and programming tutorials, these models gain a deep understanding
of the syntax, structure, and semantics of various programming languages [48]. When
provided with a user prompt or description of the desired functionality, the model can
generate corresponding code snippets that fulfil the specified requirements.

3.3.1 Fine-tuning

Fine-tuning involves training the model on specific tasks or datasets to adapt it to per-
form a particular function or generate specific types of content. There are numerous AI
code assistants explicitly designed for processing coding data, making them proficient
in handling coding tasks but not necessarily adept at general language understanding.
These models, while excellent at code processing, need fine-tuning with models such
as GPT or Gemini to better understand user inputs and prompts, as these requests
are often presented in textual information. Fine-tuning such models with additional
language models can refine their capabilities by adjusting parameters to better suit
specific tasks or domains, such as coding and implementation. This process not only
enhances how the model presents code to the user, potentially improving the user

18

CHAPTER 3. THEORY

experience and productivity but also amplifies the model’s ability to understand user
requests, thereby enhancing the efficiency of prompt engineering.

An interesting question arises regarding the order of fine-tuning and its impact on
a model’s proficiency in various tasks. For instance, does a language model initially
trained on text but later fine-tuned with code remain better at language tasks than
coding, or does it maintain a balance between language and coding capabilities? Con-
versely, would a model initially trained on code and subsequently fine-tuned with
language tasks exhibit superior coding abilities while being competent in language
tasks, but not excel in them? This raises the possibility that a model might develop a
primary function and a secondary function based on the sequence of its training and
fine-tuning data. For example, a coding model fine-tuned with language data might
always be better at coding tasks compared to language tasks, and vice versa. This con-
cept could influence how we approach the development and optimization of language
models for specific applications, highlighting the importance of strategic planning in
the training process. This question will be challenged in the analysis phase of one
of the experiments to determine if two different models (one trained on language and
later fine-tuned with code, another trained on coding content and later fine-tuned with
language) will perform differently in coding tasks."

3.4 Retrieval Augmented Generation

Retrieval-augmented generation blends two powerful techniques in natural language
processing: retrieval-based methods and generative models. By intertwining these
approaches, the system enriches the quality and relevance of generated text. In the
retrieval phase, the system searches through a vast database or corpus of existing text
to find relevant information based on the input or context provided. This retrieved
information serves as a foundation for the subsequent generation phase. During the
generation phase, the generative model leverages the retrieved information alongside
the original input to produce text that is more contextually aligned and meaningful.
The fusion of retrieval-based methods and generative models enhances the relevance,
diversity, and domain-specificity of the generated text. This approach finds applica-
tions across various natural language processing tasks, from dialogue generation to
text summarization and beyond, where producing coherent and contextually relevant
text is important. An example of this could be a RAG-powered FAQ solution where
employees of a company can search for answers using a chatbot. The chatbot would
be trained upon NLP and able to retrieve information from all the documents in the
vector database and fetch it based on the semantic relation between the prompt and
the context of documents [53].

19

CHAPTER 3. THEORY

Figure 3.1: RAG diagram from Medium [32]

3.5 Prompt Engineering

Prompt engineering is an essential aspect of interacting with language models, focus-
ing on the process of crafting inputs that guide the model to generate desired out-
puts [82]. At the core of this practice lies the understanding and utilization of various
types of prompts, each serving a unique purpose in the interaction between the user
and the AI system. These prompts include:

1. System Prompt: This is the initial setup or instruction that a language model,
like GPT, uses to understand the context of its operation [62]. It sets the bound-
aries and guidelines for the AI’s responses, often embedded within the model’s
programming or provided by the developer before user interaction. It ensures
that the AI operates within a defined scope and with specific capabilities tailored
to its intended use. A system prompt for a model assisting programmers to gen-
erate code could be e.g. "Assume the role of a developer with the capability to
generate code from code documentation and natural language input".

2. User Prompt: These are inputs or questions provided by the user, intended to
elicit a response from the language model. User prompts can range from sim-
ple questions to complex requests for analysis or creation. The effectiveness of

20

CHAPTER 3. THEORY

the response often depends on the clarity and specificity of the user prompt,
highlighting the importance of prompt engineering to facilitate effective com-
munication between humans and AI.

3. History Prompt: This type of prompt includes the context of previous interac-
tions within a session, allowing the AI to generate responses that are not only
relevant to the current question but also consistent with the flow of the con-
versation. By considering the history prompt, the model can provide more nu-
anced and coherent responses, taking into account the evolving context of the
dialogue. OpenAI has been enhancing GPT across several iterations by expand-
ing the token count for individual messages and thread history, enabling longer
conversations and fostering higher-quality interactions with GPT [49].

4. Format Prompt: This refers to prompts that guide the format or structure of
the AI’s response. For example, a format prompt could instruct the model to
provide an answer in the form of a list, a detailed explanation, or a concise
summary. This is particularly useful in tailoring the output to meet specific user
needs or presentation requirements, ensuring that the information is delivered
in the most useful and accessible manner.

3.5.1 Tagged User Prompting

Patrick Parker was among the pioneering figures to introduce Prompt Engineering
during his presentation at the annual tech conference European Identity and Cloud
Conference (EIC) in May 2023 [55], occurring approximately six months after the
launch of ChatGPT by OpenAI in November 2022 [7]. Parker characterized Prompt
Engineering as the means to become a "Bot Whisperer," by producing structured or
tagged prompts aimed at unlocking the complete capabilities of this new LLM. Here
is an illustration of tagged user prompting:

Write a [TASK] about [TOPIC]. Output as [FORMAT]. Assume the role of
[ROLE] and address [TARGET AUDIENCE]. Focus on [GOAL] with a [TONE]
and [LANGUAGE STYLE]. Follow the [STRUCTURE] and provide appropri-
ate [STATISTICS]. Include [ADDITIONAL DETAILS] [55].

Creating and structuring prompts using a tagged prompt will thoroughly guide
the model to produce the desired output. To create an example:

21

CHAPTER 3. THEORY

Figure 3.2: Illustration of tagged prompt framework - Answer from ChatGPT can be seen in appendix A.2

3.5.2 Zero-shot & Few-shot Prompting

Zero-shot and Few-shot prompting refers to the ability of an LLM to understand and
respond to a task it has never seen before during its training, using only a single
prompt without any prior examples or specific training on that task [34]. This is ac-
complished through the use of general instructions or a natural language description
of the task. Zero-shot prompting is particularly valuable because it demonstrates a
model’s ability to apply its generalized training to specific tasks effectively, showcas-
ing its flexibility and adaptability. This approach is used in various applications, from
generating text to answering questions and more, in scenarios where it’s impractical
to train a model on every possible task it might encounter. The name indicates the
model gets no further information or examples as instruction, on how to complete the
task [84].

Example: A language model generates a summary of an article without ever being
specifically trained on summarizing texts [57].

Few-shot prompting, on the other hand, involves giving the model a very small num-
ber of examples (typically between one and a few dozen) during or right before infer-
ence, to guide its performance on a specific task [34]. These examples help "tune" the
model’s response to the task at hand, providing a context or framework within which
the model can better understand and generate appropriate outputs.

Example: A language model is given three examples of text summaries before be-
ing asked to summarize a new article. These examples act as a direct reference for
how to approach the summarization task [57].

22

Chapter 4

State-of-the-art

This chapter will outline the existing state-of-the-art large language model services & tools, as
well as the DevOps lifecycle

In this section, we explore the synergies between state-of-the-art LLMs and contem-
porary software development methodologies, particularly DevOps. We will encounter
an analysis of prominent LLMs and their potential to enhance various facets of the
DevOps workflow. The intersection of these two domains reveals insights into how
LLMs can optimize and refine software development practices.

4.1 OpenAI ChatGPT

OpenAI’s ChatGPT is an advanced language generation model designed to under-
stand and produce human-like text based on the input it receives. ChatGPT was ini-
tially released in November 2022 followed by a series of iterations and improvements
over subsequent versions, with the latest being GPT-4 updated in March 2023 [7].
GPT-4 is not just a singular model; it’s a suite of large language models, each with dis-
tinct abilities. This includes DALL·E, which can create images from text descriptions,
Whisper, designed to transcribe audio into text, and Codex, adept at understanding
and generating code in various programming languages, among others [50]. With ev-
ery new version, the capabilities of GPT models have expanded, thanks to the growth
in the number of parameters and nodes within their transformer architecture. More
parameters mean a more efficient model. Below is a concise overview of the various
iterations and their specifications:

GPT-3 [50]
Released in June 2020 by OpenAI, GPT-3 marked a monumental step forward in lan-
guage model technology. With an architecture boasting 175 billion parameters, it was
capable of processing texts up to 2048 tokens in length, making it one of the most

23

CHAPTER 4. STATE-OF-THE-ART

advanced AI models of its time. GPT-3’s vast knowledge base and sophisticated un-
derstanding of language allowed for an unprecedented range of applications, from
generating readable text to creating user-friendly chatbot responses. Its release set a
new standard for what was possible in natural language processing and opened up
new opportunities by offering GPT services as an API to developers.

GPT-3.5 [50]
In March 2022, OpenAI released GPT-3.5 as an incremental update to its predecessor.
While it maintained a similar token-handling capacity, this version introduced refine-
ments in the model’s understanding and context retention abilities, which affected the
quality of history prompting. The update didn’t significantly expand the model’s size
but rather focused on optimizing its existing framework for better performance. GPT-
3.5 was a testament to OpenAI’s commitment to continuous improvement, offering
enhancements in text generation quality and coherence.

GPT-4 [50]
March 2023 saw the introduction of GPT-4, a revolutionary update that vastly ex-
tended the model’s capabilities. GPT-4 introduced an ability to process texts up to
8192 tokens in length, coupled with a massive increase in parameters, venturing into
the trillions. This version introduced multimodal capabilities, allowing the model to
interpret and generate responses not just to text but also to images, code and audio
showcasing an impressive leap in versatility. GPT-4’s enhanced reasoning and deeper
understanding of complex queries solidified its position as a pivotal tool across nu-
merous industries, from enhancing creative writing to streamlining customer support
systems. Its introduction marked a significant milestone in the journey towards more
intuitive and capable AI systems.

OpenAI has plenty of things in its pipeline, amongst the most notable is a text-to-
video model [72]. Sora is an AI model that can create realistic and imaginative scenes
from text instructions. It can generate videos up to a minute long while maintaining
visual quality and adherence to the user’s prompt. Sora has not yet been released
but rather in a "testing phase" where safety and quality are being assessed by a lim-
ited number of testers that include red teamers who will try to find ways to misuse
the model through prompt engineering, and visual artists, designers, and filmmakers
who will provide feedback on how to make the model more helpful.

4.2 Google Gemini (Bard)

In March 2023, Google released its own large language model called Bard [58]. De-
signed as a powerful chatbot, Bard offered users the full potential of Google AI. Al-
most a year later, Bard was rebranded as Gemini, transforming from a single-purpose

24

CHAPTER 4. STATE-OF-THE-ART

language model to a versatile multi-modal tool. Gemini can now understand and
respond in various formats, including text-to-speech (Chirp), text-to-image (Imagen)
and text-to-code (Codey), similar to GPT [17]. Google envisioned Gemini not just as
an end-user service but also as a development platform for others to build upon [1].

While Google’s LLM arrived after ChatGPT, they have a longer history of develop-
ing AI models across the many products they offer. This includes natural language
processing and translation tools like Google Lens, healthcare automation advance-
ments with MedLM, and the extensive search optimization algorithms throughout all
of Google’s products [23].

Gemini has multiple high-end versions of its LLM available depending on the task
it has to assist with, each with a high parameter increase. Gemini-base has a total
of 270 billion parameters which is significantly higher than what GPT-3 offered back
in 2020. Gemini-mid and Ultra move into the trillion category with 1.2 and 1.56 tril-
lion parameters. Each iteration of Gemini also increases the number of tokens which
improves contextual information contained within the history prompt. Many Google
products can function offline, handling basic AI tasks on your device. This is achieved
by using a smaller library of data compared to the full online version. For instance,
Google Maps can still provide navigation and some features even without an internet
connection. Similarly, Google Lens can translate text offline. Following this approach,
Google offers Gemini Nano, an offline version of Gemini that brings core functionali-
ties to your device for use without internet access [19].

Gemini 1.0 [59] Google’s Gemini 1.0, a pioneering LLM drawing knowledge from
57 subjects including math, physics, history, law, medicine, and ethics, showcases its
unparalleled versatility. Its strength lies in a multimodal design, effortlessly combining
text, code, audio, image, and video inputs. With the capacity to process up to 32,000
token inputs and generate 2048 tokens in output, it provides a robust foundation for
developers to craft innovative services and software applications [18]. Notably, Gem-
ini 1.0 outshines other leading models, including GPT-4, triumphing in 30 out of 32
tasks, as championed by Google. This achievement solidifies its status as a significant
advancement in AI technology [59].

Gemini 1.5 [60]
Google’s Gemini 1.5 greatly improves its ability to remember information during a
conversation (History prompting). Previously, it could only process 32,000 tokens at a
time (as input), but the new version can handle up to 1 million tokens (and even 10
million tokens in research) [16]. This allows it to analyze much larger amounts of data,
such as summarizing thousands of pages of documents or writing documentation for
entire codebases. This particular feature is exciting concerning the research question,

25

CHAPTER 4. STATE-OF-THE-ART

as code documentation might become the building block of code generation.

4.3 Ollama

Ollama excels in deploying state-of-the-art AI models such as Llama3, Mistral, and
Phi 3 [47]. These models are recognized for their capabilities in both natural language
processing and code generation. What sets Ollama apart is its robust support for mod-
els that are primarily trained on coding data. This means that while most language
models, like those in the GPT family, are trained on diverse text data and rely on a
complex modular architecture to handle various tasks, Ollama models are deeply in-
tegrated and specialized in understanding and producing code. This specialization
makes Ollama particularly powerful for tasks involving programming languages, al-
lowing it to generate precise and contextually relevant code snippets and solutions.

Ollama’s open-source nature is another significant feature. It enables users to freely
access, modify, and deploy the models according to their needs. This openness not
only fosters a collaborative community of developers and researchers but also accel-
erates the innovation process. By being open-source, Ollama invites contributions
and customizations, leading to a continually evolving platform that meets the diverse
needs of its user base.

A key differentiator for Ollama is its capability to function offline without an internet
connection. Users can download and run models entirely on their local machines, en-
suring that sensitive data remains secure and operations can continue uninterrupted
even without internet access. This offline functionality is crucial for environments
where data privacy is a priority or internet connectivity is unreliable. Despite operat-
ing locally, Ollama doesn’t compromise on performance, making it a robust choice for
on-premises AI deployments.

In addition to its offline strengths, Ollama is highly adaptable for online applications.
It can be seamlessly integrated into popular coding environments such as Visual Stu-
dio Code, where it can assist with real-time code generation and debugging. This in-
tegration allows developers to leverage Ollama’s advanced capabilities directly within
their development workflow, enhancing productivity and efficiency. Ollama’s support
for API calls further extends its utility, enabling it to handle a wide range of tasks and
applications.

26

CHAPTER 4. STATE-OF-THE-ART

4.4 Microsoft Copilots

Microsoft Copilots are advanced AI tools embedded across the Office 365 suite, de-
signed to assist users with a variety of tasks using the power of GPT [42]. These
Copilots seamlessly work across the Microsoft product line, including Word, Excel,
PowerPoint, Edge, and Teams [41]. By making API calls on behalf of the user, Copi-
lots streamline workflows and enhance productivity. For example, a user can create a
PowerPoint presentation that integrates data and insights from Excel spreadsheets and
content from Word documents, enabling a more cohesive and efficient work process.
Microsoft Copilots are available as a subscription service.

One of the critical challenges Microsoft and other companies faced with using LLMs
like GPT was the tendency of these models to provide responses even when uncertain,
which could lead to misinformation or inaccurate data. To address this, Microsoft
introduced the Microsoft Semantic Kernel, a QC feature [54]. This mechanism func-
tions similarly to a plugin that executes microservices to fetch "fresh data" rather than
relying solely on potentially outdated or incorrect general answers from the LLM. For
instance, if a user requests a PowerPoint presentation based on specific organizational
data, the Semantic Kernel can execute a function in Excel to retrieve the most up-to-
date data, ensuring accuracy and relevance. This approach, however, requires that
the data reside within Microsoft products, such as Excel, and not third-party services
outside of Microsoft’s ecosystem.

The Microsoft Semantic Kernel and its plugins are crucial in obtaining accurate and
fresh data, significantly enhancing the trustworthiness of the responses provided by
Copilot. Microsoft has also implemented measures to ensure QA, such as providing
references to the sources of information instead of generic answers. When conducting
searches, Copilot utilizes Bing to retrieve and reference the specific sources, align-
ing with the requirements of the AI Act on explainable AI. While Microsoft does not
guarantee complete factual accuracy, they advise users to double-check the responses,
especially when the information is sourced from third-party websites.

4.5 DevOps

The term DevOps originates from the fusion of "Development" and "Operations," sig-
nifying a holistic approach to software development and deployment [30]. It centers
on fostering collaboration, integration, and communication among all teams involved
in the software lifecycle. As software typically undergoes multiple development iter-
ations, the DevOps pipeline recurs through these cycles [14]. The fundamental aim
of DevOps is to optimize the software lifecycle from conception (idea phase) to full
functionality (operation) by bridging the gap between teams and stakeholders [26].

27

CHAPTER 4. STATE-OF-THE-ART

When a customer proposes a new software idea, it is crucial for both software devel-
opers and operations engineers to be well-informed. Extensive planning is essential to
ensure smooth operation, whether the service targets 1.000, 10.000, or 1 million users
and whether it’s a mobile application or a cloud-based service. Deployment planning
involves extensive preparation, influenced by the developers’ implementation choices.
Below is an illustration of the stages in a DevOps pipeline in figure 4.1 followed by
the specified building blocks [26].

Figure 4.1: Figure illustrating the steps involved in a DevOps pipeline [52]

1. Plan
The Plan stage involves defining the scope, objectives, and requirements of the
software project. It includes tasks such as outlining features, prioritizing work
items, and estimating timelines and resources needed for development. Effective
planning sets the foundation for the entire DevOps pipeline, ensuring alignment
with business goals and stakeholder expectations.

2. Code
In the Code stage, developers write, review, and modify the source code of the
software. This stage encompasses activities such as implementing new features,
fixing bugs, and optimizing code for performance and maintainability. GitHub
copilot [22] does a magnificent job assisting the developer ad-hoc while coding.
Version control systems like Git [21] are commonly used to manage changes to
the codebase, enabling collaboration among team members and tracking code
history. This code history includes well-written code documentation for each
iteration and reasons for choosing methods, microservices, etc.

3. Build
The Build stage involves compiling the source code into executable or deployable
artifacts. This process typically includes tasks such as dependency resolution,
compiling code into binaries, and packaging application components. Auto-
mated build tools like Jenkins [31] or Azure Pipelines [36] streamline the build

28

CHAPTER 4. STATE-OF-THE-ART

process, ensuring consistency and reproducibility across development environ-
ments.

4. Test
In the Test stage, automated tests are executed to validate the functionality, per-
formance, and reliability of the software. This includes running unit tests to
verify individual components, integration tests to ensure proper interaction be-
tween modules, and end-to-end tests to simulate user scenarios. Test automation
frameworks like Selenium [65] and JUnit [33] facilitate efficient and thorough
testing, helping to identify and address defects early in the development cycle.

5. Release
The Release stage involves preparing the software for deployment to a produc-
tion environment. This includes finalizing testing activities, updating documen-
tation, and generating release notes to communicate changes to users. Release
management tools such as GitLab CI/CD (Continuous Integration/Continuous
Deployment) [20] or Octopus Deploy [12] involve ongoing cycles of building,
testing, deploying, and monitoring incremental code modifications. This itera-
tive method not only minimizes the risk of building upon flawed or unsuccessful
iterations but also enables GitLab CI/CD to detect bugs early in the development
phase, ensuring that all deployed code aligns with predefined coding standards.
This helps orchestrate the release process, ensuring smooth and controlled de-
ployments with minimal downtime or disruption to users.

6. Deploy
In the Deploy stage, the software is pushed to the production environment and
made available for end-users to access. This involves tasks such as configuring
servers, provisioning infrastructure resources, and deploying application arti-
facts. Continuous deployment pipelines automate the deployment process, en-
abling rapid and reliable delivery of updates to production environments.

7. Operate
The Operate stage focuses on monitoring and managing the software in the
production environment. This includes activities such as monitoring system
performance, handling user requests and incidents, and ensuring the availabil-
ity and reliability of the application. DevOps teams use monitoring tools like
Grafana [24] to collect and analyze metrics, enabling proactive identification and
resolution of issues.

8. Monitor
The Monitor stage involves collecting and analyzing data on system perfor-
mance, user behavior, and application health. This data is used to gain insights
into the overall health and performance of the software, identify areas for im-

29

CHAPTER 4. STATE-OF-THE-ART

provement, and inform future development efforts. Monitoring tools like So-
larWind [46] and other dashboards provide real-time visibility into key metrics,
enabling DevOps teams to make data-driven decisions and continuously opti-
mize the software delivery process.

4.5.1 Improving DevOps via LLM Integration

Room for improvement during the Code stage
I suggest there’s significant potential for enhancement in this phase through the inte-
gration of an LLM. We could potentially streamline development by leveraging AI to
generate code based on comprehensive high-quality code documentation written prior
to implementation. This could involve creating a mock-up of the expected codebase
for the AI model to reference as a few-shot prompting example as discussed in sec-
tion 3.5.2. It might even achieve success through zero-shot prompting, relying solely
on the instruction prompt without providing any examples to the language model.

Room for improvement during the Build stage
The Build stage could be significantly streamlined and consolidated with the Code
stage through the integration of an LLM. The process could be more cohesive, allow-
ing the model to handle both stages within the same prompting thread, provided with
sufficient information. For example, if the objective is to develop cloud-native soft-
ware leveraging Microsoft Azure, the model could ensure the build process optimally
aligns with this integration, facilitating a smoother transition to a cloud environment.

30

Chapter 5

Analysis

This chapter will analyze the insights gained from interviews with IT professionals and conduct
several experiments, aimed at identifying strategies to further optimize DevOps practices.

This chapter begins by examining the current state of AI integration into DevOps, a
crucial step in understanding the broader implications and potential for improvement
within this field. As outlined in the methodology chapter, a series of preliminary
interviews were conducted to gather foundational insights and identify key areas for
enhancement. These interviews not only provided valuable knowledge but also served
as a guiding framework for defining specific experiments. The focus of these experi-
ments was on code generation and the comprehension of large-scale data documents
through AI-driven solutions. The findings from these experiments will be critically
analyzed in this chapter, offering a deeper understanding of the current capabilities
and highlighting avenues for future advancements.

5.1 Preliminary interview with Microsoft

Microsoft is by far one of the leading companies when it comes to system and software
development. Hence, interviewing an expert from Microsoft would provide invalu-
able insights into the practical applications and implications of LLMs in the indus-
try. Microsoft’s pioneering work in leveraging LLMs for enhancing productivity tools
demonstrates the potential of these technologies to transform traditional software de-
velopment practices. An expert with hands-on experience in this area could provide
extensive information about:

• The current state of the software development field, from the perspective of a
leading IT company.

• The challenges and opportunities occurring from integrating LLMs into the soft-
ware development practices.

31

CHAPTER 5. ANALYSIS

• Outlining the different sectors and how the employees of these sectors might be
affected by the integration of AI into software development.

• A better understanding of what the future might look like, if we were to continue
down the path of integrating AI into software development.

5.1.1 Structure & logistics

The interview took place online, facilitated by Microsoft Teams. As previously noted,
Microsoft Office has integrated various AI technologies to improve the user experience,
including a feature being utilized during this interview. Microsoft Teams offers a tran-
scription service that accurately identifies and documents each participant’s words at
specific timestamps. The entire transcription is too extensive to add in the appendix
section; instead, it will be attached as a Word file during the hand-in of the project.

The interview was semi-structured, guided by some pre-written questions, and allow-
ing for follow-up questions to explore points of interest that aligned with the thesis
topic. The interview with Jan Cordtz, which took place on 2nd February 2024, was
initially intended as a preliminary discussion before the research question was fully
defined. This conversation aimed to establish the context of the project and assist in
formulating the research question and objectives of the thesis. This interview was the
first of many interactions I had with Jan Cordtz throughout the duration of my master
thesis, including subsequent conversations, meetings, and email exchanges.

Here is the list of the questions written before the first interview took place:

1. What will the distribution between human-written code and generated code look
like in the near future?

2. What will be the primary building blocks for enabling AI to generate code? Is it
code documentation? What other factors are involved?

3. As we progressively use LLMs in software development, how important do you
think it is for a developer to seek skills in prompt engineering as opposed to
basic coding?

4. Which areas in a DevOps pipeline can be optimized by using various LLM solu-
tions?

5.1.2 The Interview with Jan Cordtz

I was privileged to interview Jan Cordtz, a senior cloud solution architect with a heavy
tech-literate background. Jan has formerly been employed at IBM, Unisys and Oracle
for a combined 26 years before landing his job at Microsoft, where he has remained

32

CHAPTER 5. ANALYSIS

for the last eight years. The agenda for this meeting was to establish a problem objec-
tive in code generation using LLMs. The meeting with Jan provided valuable insights
into the integration of GPT within Microsoft Office products to automate workflows
through human language. This initiative is set to transform how tasks are performed
in Office applications.

The discussion primarily revolved around the proportion of code generated by ma-
chines versus humans and the potential for future shifts in this balance. Cordtz noted
that he estimates currently 60% of code is machine-generated, with the remaining
40% produced by humans. This dynamic underscores the substantial role AI plays
in coding, alongside the critical need for human oversight to ensure the output’s rel-
evance and quality. The conversation highlighted the preference for models specifi-
cally trained on high-quality data sources, such as GitHub, to maximize the efficiency
and accuracy of machine-generated code. Cordtz envisions a possible adjustment in
ratio to an 80% machine-generated versus 20% human-generated code. This expecta-
tion stems from the belief in the enhanced capabilities of models trained on robust,
high-quality coding datasets - "We are not quite there yet, but the models are getting
smarter" - As Jan states it. Furthermore, Jan believes we will soon see a significant
deployment of RAG solutions, which he considers to be among the most useful appli-
cations of LLMs. Microsoft is actively developing several RAG solutions for its cloud
infrastructure, illustrating the company’s commitment to leveraging this technology
to enhance its services and offerings.

The dialogue also touched upon the exciting potential for generating code in various
languages, like Python for Excel, illustrating the AI’s capability to simplify complex
tasks and make sophisticated functionalities accessible to a wider user base. This
opens up possibilities for users to specify in natural language what they want Excel
to do for them, thus eliminating the need to master Excel itself. Instead, mastering
human language and prompt engineering allows users to execute complex commands
they likely could not have managed without the GPT copilot, making sophisticated
software functionalities available to those without extensive technical expertise. Jan
believes this extends to coding as well by stating: "Because of models like GPT my
grandmother would have been able to master Excel as well as code, she just doesn’t
know it yet". This can be illustrated in both GitHub [22] and Visual Studio Code [43]
where the copilot can assist users to generate code based on language and prompting.
This facilitates a no-code & low-code environment where traditional code knowledge
is not necessary but rather a complementary asset. That being said, understanding
code is always beneficial and will allow a developer to be critical and do quality con-
trol of the copilot’s output. The distance between an end-user and development has
just shrunk significantly due to the integration of ChatGPT into Microsoft’s products,
as it enables a bridge between language and code.

33

CHAPTER 5. ANALYSIS

An important part of the discussion addressed the impact of LLMs on different ar-
eas of software development, particularly comparing frontend and backend develop-
ment. When asked whether frontend and backend development would be affected
differently by the integration of LLMs for coding, and if there would be a varying
distribution of machine versus human code between the two, Cordtz shared his per-
spective. He expects the distribution of machine-generated and human-written code
to remain consistent across both frontend and backend development. However, he an-
ticipates a greater need for human supervision over the generated code in the backend,
due to the complexity of microservices and API calls that could potentially introduce
system vulnerabilities or fail to meet expectations. As such, the backend will require
developers to engage more intensively in validating, testing, and verifying the code
compared to frontend tasks.

Cordtz emphasized the shifting landscape of software development skills. The im-
portance of prompt engineering over basic coding skills was highlighted, stating, "We
need people with these skills NOW." This reflects a critical need for professionals
who can effectively interact with AI to generate code. Moreover, Cordtz stated that
the main building blocks for generating code using LLMs would be thorough code
documentation, system design, and service architecture. Investing more time in the
design phase and outsourcing the implementation to a model is seen as ideal. This
approach underscores the evolving roles within software development, where both
innovative engagement with AI and foundational coding expertise are essential for
delivering high-quality software solutions. However, QA of machine-generated code
remains paramount, meaning that while prompt engineering should be used for cod-
ing, building, and implementation, basic coding skills are indispensable for verifying
that the code performs as intended. Thus, in a DevOps pipeline, prompt engineering
is for the coding, building, and initial implementation phases, complemented by basic
coding skills for verification, testing, and integrating new code with existing systems.
This nuanced approach highlights the importance of a balanced skill set in the modern
software development environment, emphasizing both the innovative potential of AI
and the enduring value of foundational coding knowledge.

He noted the resistance from the ’older’ generation of software developers, who often
express skepticism towards integrating LLMs into their workflow with remarks like,
"I know very well how to code a backend, I do not need some machine to do it for
me." Jan argues that the embrace of LLMs in software development is not just a trend
but an inevitable evolution. He strongly advocates for the newer generation of de-
velopers, especially those fresh from university, to embrace LLMs and master prompt
engineering. The key message from Jan is the importance of staying adaptable within
the software development field, urging professionals not to cling to outdated prac-

34

CHAPTER 5. ANALYSIS

tices or the notion that they can outperform an LLM. According to Jan, LLMs have
already surpassed the capabilities and efficiency of the best coders he knows across
most programming languages. He believes that even the most skilled coders can learn
from AI. Jan encourages viewing LLMs as an extension of our capabilities rather than
a replacement or threat to the coding profession, emphasizing the potential for AI to
enhance rather than diminish the role of human developers.

Jan Cordtz extended a remarkable offer, presenting the opportunity to collaborate
directly with him and Microsoft on building a RAG solution. This collaboration will
take place within a comprehensive cloud environment provided by Microsoft Azure,
specifically tailored for this project. This environment will not only facilitate the de-
velopment of the RAG solution but also serve as a personal testing ground for gen-
erating code, utilizing code documentation as the foundational building block. The
commencement of this collaborative coding session is scheduled for Tuesday, 27th
February, marking the beginning of a hands-on phase that will significantly contribute
to the analysis chapter. This partnership underscores the practical application of the
discussed concepts and the tangible steps being taken toward harnessing the power of
LLMs and RAG solutions in real-world scenarios.

5.2 Interview with Udviklings- og Forenklingsstyrelsen (UFST)

In this interview, I had the opportunity to speak with Tom Willy Nielsen, an IT Domain
Architect at UFST. The primary agenda of our discussion was to identify a specific De-
vOps process that could be optimized through the integration of AI. Tom, along with
his team, plays a crucial role in providing consultancy services to various organiza-
tions. Their responsibilities include maintaining, operating, and analyzing both new
and legacy codebases, ensuring these systems run efficiently and effectively.

5.2.1 Structure & logistics

The interview with Tom was conducted online via Microsoft Teams. The primary focus
of the discussion was to explore how DevOps processes at UFST could be optimized
by leveraging the capabilities of AI, LLM, and RAG. The interview was conducted
in a semi-structured format featuring targeted questions about the existing DevOps
workflow processes that Tom and his colleagues were engaged in. This approach al-
lowed for a comprehensive understanding of how advanced AI technologies could
potentially enhance and streamline their operations. While a few pre-prepared ques-
tions were used to guide the interview, much like in our previous discussion with
Microsoft, the aim was to foster an open-ended conversation to explore potential ex-
perimental ideas to test. Here is the list of the questions written before the interview
took place:

35

CHAPTER 5. ANALYSIS

1. Can you describe your job role and the key responsibilities that you and your
team handle?

2. Which DevOps tasks or processes in your workflow currently appear redundant
or tedious and might be candidates for optimization through AI technologies?

3. How do you manage the operations and maintenance of legacy systems within
your team, and what challenges do you encounter in this process?

5.2.2 The Interview with Tom Willy Nielsen

Tom Willy Nielsen and his team are responsible for consulting on and overseeing ap-
proximately 250 systems and services. Many of these systems are built using legacy
code, making them challenging to maintain due to the scarcity of developers proficient
in languages like COBOL and HPS. This has led Tom to explore AI-driven solutions
for modernizing these systems.

During the interview, Tom highlighted the difficulty in maintaining systems coded
in legacy languages due to the significant challenge of finding active coders proficient
in these older languages. He suggested that AI could potentially translate entire code-
bases to more modern languages like Java, Python, Rust, and C++, which have broader
support and a larger pool of skilled developers. The aim is to make these systems eas-
ier to manage and maintain by converting them into more widely-used programming
languages.

Another significant point raised by Tom was the redundancy in functionalities among
various systems they supervise. Some systems have overlapping functionalities, and
combining these systems could be beneficial. However, this consolidation process is
complex and requires careful review to ensure that logic, functionality, security, and
compliance are not compromised.

During the conversation, Tom and I also discussed the 3270 program, a terminal inter-
face created by IBM that banks use to observe the data input and output of ATMs [28].
The data from these ATMs is handled by a large mainframe, with 3270 acting as a
gateway for banks to monitor transactions. Systems like 3270 and the ATMs them-
selves are very difficult to replace with modern versions, such as those written in
languages like Java. One of the primary reasons for this difficulty is the sheer scale of
the existing infrastructure. With over 3.2 million ATMs installed worldwide, most of
which are running on COBOL and connected to mainframes, replacing these systems
would be an incredibly complex and resource-intensive task [73]. Changing millions of
ATMs across the globe would not only be logistically challenging but also risk disrupt-
ing a well-established and functional system. Therefore, it might be more practical to

36

CHAPTER 5. ANALYSIS

maintain and support these legacy systems rather than attempting to reconstruct them
using more modern coding languages, emphasizing the need for careful consideration
in modernization efforts.

Tom believes that addressing these issues with AI can greatly enhance DevOps pro-
cesses. By automating code translation and system consolidation, AI can streamline
operations and improve efficiency. The goal is to create a more manageable and mod-
ern codebase that aligns with current development practices and standards.

A specific use case of AI that could greatly improve workflow at UFST involves the
analysis and review of extensive EMCS documents. An important part of Tom and
his team’s job is to analyze and review these very large documents, which can be up
to 100 PDF pages long and contain numerous cross-references, making them tedious
and challenging to read. To streamline this process, UFST plans to experiment with
building a RAG model in Microsoft Azure. This model will include a vector database
of EMCS documents and be designed to handle specific prompts to assess its viability
in optimizing Tom and his team’s tasks. The AI should be capable of summarizing
the content of the EMCS documents and answering specific questions related to the
documents, while also referencing where the information can be found within the
document. Making this procedure more convenient for Tom and his team would sig-
nificantly improve their workflow and efficiency.

The insights from this interview with Tom Willy Nielsen provided valuable perspec-
tives on the practical challenges of maintaining legacy systems and the potential role
of AI in addressing these issues. By translating legacy codebases and consolidating
system functionalities, AI can significantly optimize DevOps workflows at UFST, en-
suring better maintainability and efficiency.

5.3 Generating Experiments: Collaborative meeting between
UFST and Microsoft on AI for DevOps usecases

On May 16th and May 28th, representatives from UFST (Tom and Toraj) and Microsoft
(Jan Cordtz and Rasmus) convened for a two-part meeting series aimed at establishing
a collaboration to explore and develop AI-driven solutions within an Azure environ-
ment. I was privileged to participate in both meetings, providing valuable context
for my thesis project and helping to generate the ideas and use cases that emerged
from these discussions. This partnership is envisioned to enhance UFST’s DevOps
processes, offering innovative tools to streamline their workflow.

Initially, I believed my role in these meetings would be that of a spectator, observing

37

CHAPTER 5. ANALYSIS

the discussions to gather insights for my project. However, Peter Anglov introduced
me as a prodigy in the field of AI integration, which encouraged me to take on a more
active role. Instead of merely observing, I was invited to participate as a respected con-
sultant, sharing my perspective and knowledge on the subjects being discussed. My
extensive understanding of NLP, LLMs, fine-tuning techniques, and RAG systems,
having built one prior to this project, proved useful throughout the conversations.

The first meeting on May 16th focused on presenting the overarching ideas and pos-
sibilities that AI could bring to UFST. Tom from UFST shared his vision of how AI
could revolutionize their operations, outlining a future where AI functions not merely
as a tool but as a collaborative colleague. He elaborated on AI’s potential to pro-
vide a "helicopter perspective" on various tasks, including analyzing complex systems,
constructing and understanding code, generating documentation, and facilitating the
transformation of legacy COBOL code into more modern languages such as Java. His
approach emphasized the need for AI to integrate seamlessly into the daily activities
of his team, enhancing their capabilities without replacing their essential human in-
sight.

In his pursuit of these ideas, Tom had already embarked on preliminary experiments
using the LLM Ollama (model Llama3). He had installed this model on a mini com-
puter, similar to a Raspberry Pi, to test its capabilities in optimizing some of the use
cases he envisioned. While this setup provided some initial insights, the results were
only moderately satisfactory and did not fully meet the expansive requirements of his
ambitious projects. This experience underscored the need for more robust and scalable
solutions, paving the way for the collaboration with Microsoft.

The follow-up meeting on May 28th delved deeper into the technical aspects of the
proposed AI solutions. Rasmus and Jan from Microsoft brought their expertise to the
table, critically evaluating Tom’s proposals with a focus on their practical implemen-
tation. Rasmus, noted for his extensive knowledge and experience in AI applications
within Microsoft, provided valuable insights into the feasibility of these ideas. His
feedback was instrumental in grounding the discussion in the current capabilities of
Microsoft’s AI technologies, including their various AI copilots.

During the technical meeting, Rasmus and Jan explored the practicalities and poten-
tial challenges of implementing the suggested AI solutions. They acknowledged the
ambitious scope of Tom’s vision while delineating which aspects could be realistically
achieved with existing technology and which might require further advancements.
This candid exchange helped to clarify the possibilities and set realistic expectations
for the collaboration.

38

CHAPTER 5. ANALYSIS

The dialogue highlighted the role of Microsoft’s AI copilots in supporting UFST’s ob-
jectives. These copilots could potentially be utilized to automate routine coding tasks,
provide real-time code analysis, and assist in documentation, all within an Azure envi-
ronment tailored to UFST’s needs. The discussion also touched on future possibilities,
such as more advanced AI capabilities that could emerge as technology evolves, po-
tentially aligning with UFST’s long-term goals.

This series of meetings marked the beginning of a promising partnership between
UFST and Microsoft. It established a framework for ongoing collaboration, where
UFST’s vision for AI-enhanced DevOps processes could be progressively realized with
Microsoft’s support and expertise. Moving forward, the use cases discussed will be
thoroughly documented, and some will be actively pursued as part of my ongoing
project. This effort aims to bridge the gap between Tom’s innovative ideas and the
practical applications of AI in enhancing UFST’s workflow, setting a precedent for
how organizations can leverage cutting-edge technology to achieve operational De-
vOps goals.

5.4 Outlining Experiments

Following an insightful meeting with industry professionals, we engaged in a brain-
storming session to explore the future potential and current capabilities of AI in en-
hancing DevOps workflows. The objective was to delineate which scenarios were
feasible with current technology and which were more aspirational. This collabora-
tive effort aimed to identify specific experiments for my master’s thesis that would
demonstrate how generative AI can address existing challenges in DevOps.

The four experiments outlined in this research originated from ideas I conceived as
I continuously processed new information and opportunities during my thesis. I was
particularly excited by the beauty of how new ideas and experiments naturally evolved
from these opportunities, transforming initial concepts into more refined and ambi-
tious experiments. Initially, the focus was on exploring the possibilities of generating
code from detailed documentation and integrating new code into existing codebases.
However, as the thesis progressed, my engagement with key stakeholders, such as Tom
from UFST, further expanded the scope of my research. Tom’s interest in optimizing
specific processes within UFST, potentially solvable with a RAG solution, sparked a
surge of creativity in me. This led to the inception of additional experiments that I was
eager to include in the study. These experiments were driven by the thrill of exploring
uncharted territory in the intersection of AI and DevOps and were fueled by real-life
issues brought directly to my attention by IT professionals themselves.

Under the guidance of Rasmus from Microsoft, an esteemed expert in AI often re-

39

CHAPTER 5. ANALYSIS

ferred to as an "oracle" or "wizard" in the field, the experiments were listed in order of
difficulty and feasibility. While Rasmus provided valuable insights into the practicality
of each scenario, ensuring they were achievable within the scope of my research, it was
my vision and proactive approach that shaped the direction of these experiments. The
collaborative nature of our discussions, alongside the opportunities presented by the
Microsoft Azure environment provided by Jan Cordtz, solidified the final selection of
experiments. Each experiment represents a distinct aspect of how AI can be integrated
into DevOps practices, driven by the ideas and strategies I developed throughout the
thesis.

5.4.1 Experiment One - Code Generation Based on Code Documentation

Objective: To evaluate the feasibility of generating complete codebases from detailed
documentation using LLMs.

• Process: Instead of the traditional approach of writing code first and document-
ing it afterward, this experiment proposes a reverse methodology. The service
architecture, functionalities, logic, purpose, datatypes, and methods will be thor-
oughly described in natural language documentation.

• Implementation: LLMs, such as GPT-4, will be utilized to generate the entire
codebase from these detailed descriptions. The generated code will then be eval-
uated for accuracy, efficiency, and adherence to the described specifications.

• Expected Outcome: This experiment aims to assess whether LLMs can reliably
interpret comprehensive documentation to produce functional and efficient code,
potentially revolutionizing the initial stages of software development.

5.4.2 Experiment Two - Simplifying and Translating Lengthy Technical Doc-
uments

Objective: To enhance the accessibility and comprehension of lengthy technical docu-
ments through summarization and translation.

• Process: As described by Tom from UFST, reviewing extensive and complex EU
documents is a time-consuming and challenging task, particularly for non-native
English speakers. These documents are often 100 PDF pages long, structured
in a way that includes numerous cross-references, making them exhausting to
read and not very intuitive. Readers frequently encounter a significant amount
of seemingly irrelevant information, detracting from the core purpose of their
review.

• Implementation: AI models will be used to process these lengthy PDF docu-
ments, generating concise summaries and translating the content from English

40

CHAPTER 5. ANALYSIS

to Danish. The AI will be tasked with identifying and extracting the most per-
tinent information while maintaining the context and coherence of the original
document.

• Expected Outcome: This experiment is expected to demonstrate how AI can
streamline the review process for technical documents, saving time and improv-
ing accessibility for a broader audience within organizations like UFST. The AI-
generated summaries and translations should make these documents more di-
gestible and relevant, particularly for non-native English speakers.

5.4.3 Experiment Three - Generating New Code for Existing Codebases

Objective: To test the capability of AI in integrating new features into existing code-
bases, emphasizing the Testing and Deployment phases.

• Process: Developers often need to add new features to existing services, which
involves modifying the codebase and ensuring compatibility with existing code.
This experiment focuses on using AI to generate new code that integrates seam-
lessly with the current codebase.

• Implementation: The AI will generate the required feature code, which will then
be run through the DevOps pipeline. The emphasis will be on the Testing and
Deployment phases to identify and resolve any integration issues.

• Expected Outcome: The experiment seeks to demonstrate AI’s potential in sim-
plifying and accelerating the process of adding new features to existing systems,
reducing the likelihood of integration problems.

5.4.4 Experiment Four - Reconstructing Legacy Codebases

Objective: To investigate the ability of AI to modernize old codebases by convert-
ing them into newer, supported programming languages without compromising the
functionality, logic, security and compliance.

• Process: Many organizations maintain legacy codebases written in outdated lan-
guages such as COBOL or HPS. This experiment explores using AI to reconstruct
these codebases into modern languages like Java, Python, or Rust.

• Implementation: The AI will translate legacy code into the target modern lan-
guage, ensuring that the logic and functionality remain unchanged. Addition-
ally, the new code must meet security and compliance standards verified by a
professional software engineer.

• Expected Outcome: The goal is to validate AI’s ability to facilitate the transi-
tion from legacy systems to modern, maintainable codebases, enhancing system
longevity and compliance with current standards.

41

CHAPTER 5. ANALYSIS

5.5 Assessing Experiment Prioritization

Experiments Two and Four were inspired during an insightful interview with Tom,
where the focus was on innovative applications of language models. Specifically, Ex-
periment Two explores the feasibility of creating a RAG solution. This solution is
designed to manage Excise Movement and Control System (EMCS) documents by
leveraging a LLM to search through a vector database containing vectorized infor-
mation. This approach aims to enhance the retrieval and comprehension of complex
document sets through advanced language processing techniques.

On the other hand, Experiments One and Three were derived from the research ques-
tion of how software can be developed using purely linguistic approaches. This in-
quiry seeks to investigate the capabilities and limitations of using natural language as
the primary tool for software development, pushing the boundaries of how we interact
with and create software systems.

While both Experiments One and Two are feasible within the current technological
landscape, Experiments Three and Four present significant challenges. Rasmus from
Microsoft pointed out several key obstacles related to the limitations of current LLM
capabilities and the complexities of coding standards. LLMs, such as GPT and Gemini,
are trained primarily on text and natural language, which makes it difficult for them to
handle heavy coding tasks, especially when adhering to rigorous standards like ISO,
NIS2 or a set of requirement specifications. Developing software that complies with
these standards and meets detailed requirement specifications is particularly challeng-
ing.

A critical complication with Experiments Three and Four is the limitation imposed by
the number of tokens that an LLM can process. For a model to completely understand
an entire codebase and accurately create new code for existing services, it needs to
process extensive contextual information. The current token limits of LLMs constrain
their ability to encompass large codebases in their entirety, which can lead to errors
and incomplete understanding when generating new code. However, as discussed in
the state-of-the-art chapter 4, the number of tokens that language models can han-
dle is incrementally increasing with each newer version. This trend suggests that, in
the near future, LLMs will be able to process more contextual information, potentially
enabling them to grasp and manage the vast amounts of data that a codebase contains.

Integrating new code into existing codebases could be highly beneficial if the model is
familiar with the entire codebase. However, this would necessitate downloading the
general model and further training it on specific organizational data. While this ap-
proach might be relatively straightforward for languages like Java and Python thanks

42

CHAPTER 5. ANALYSIS

to the abundance of examples on platforms like GitHub, it is less feasible for COBOL.
COBOL’s scarcity of open-source code pose significant hurdles in obtaining a suffi-
ciently large and diverse dataset for training.

Additionally, using actual company codebases for training could lead to complica-
tions with contracts and confidentiality agreements, as seen in the relationship be-
tween UFST and their clients. This restricts the ability to freely use proprietary code,
making it even more challenging to implement effective solutions within the existing
frameworks.

Experiments One and Two will be conducted within the scope of this thesis due to
their feasibility with current LLM technologies, while Experiments Three and Four
will be explored in a conceptual framework. The idea is to extend the capabilities of
RAG solutions beyond textual information to entire codebases. This would involve us-
ing a LLM specifically trained on diverse coding languages and later fine-tuned with
natural language processing capabilities. Such an approach could eventually enable
LLMs to handle complex coding tasks, integrate new code into existing systems, and
meet standards like ISO and NIS2. This vision suggests a future where RAG solu-
tions are not just powerful tools for information retrieval but also pivotal in software
development and maintenance, overcoming the challenges posed by today’s token
limitations and the complexity of coding standards.

5.6 Experiment: Code Generation Using Prompt Engineering
in Large Language Models

Jan’s estimations underscore the importance of experimentation to attain 80% machine-
generated code in future code-generation scenarios. It’s crucial to assess whether ex-
isting state-of-the-art models can generate code meeting our quality standards. Con-
sequently, I aim to merge theoretical insights from the theory section with practical
techniques from prompt engineering to conduct this experiment.

The original plan was to conduct the experiment using a single LLM. However, when
I began working on one of my projects with Llama3, I noticed distinct differences in
quality compared to GitHub Copilot, which is built on GPT. The variations between
Llama’s open-source models and GPT-based models required reconsideration. The
fine-tuning process, as well as the sequence in which it’s applied, significantly affects
a model’s proficiency in specific tasks, such as understanding language or generating
code, far more than initially anticipated. As a result, the experiment was adjusted.
Instead of generating code from documentation using only one model, I will now use
both GPT and Llama. By comparing their outputs, I aim to assess how fine-tuning

43

CHAPTER 5. ANALYSIS

impacts a model’s proficiency in coding versus language comprehension.

5.6.1 GPT vs. Ollama

One of the unique aspects of models supported by Ollama is their specialized train-
ing and fine-tuning process, which significantly impacts their performance in specific
tasks. Generally, LLMs can be trained initially on a broad dataset of textual informa-
tion, encompassing a wide range of language usage, including literature, conversa-
tions, and technical documents. This foundational training provides the model with
a deep understanding of language structures, semantics, and context, making it profi-
cient in generating and comprehending text. This would be the case for GPT.

After this initial training phase, the model can be fine-tuned with additional datasets
focused on coding. This fine-tuning process involves adjusting the model’s parame-
ters based on code repositories, programming language documentation, and coding
practices. As a result, the model, which was primarily efficient in natural language
tasks due to its initial training, becomes adept at handling coding tasks. It learns to
recognize code syntax, understand programming concepts, and generate code snip-
pets effectively. However, its core remains deeply rooted in language comprehension,
allowing it to excel in tasks that require both coding and textual responses.

Conversely, a model can be trained initially on coding data. This approach focuses
on the model’s ability to understand and generate code from the outset. The model
absorbs vast amounts of information related to programming languages, coding stan-
dards, and software development techniques. After establishing this strong coding
foundation, the model can then be fine-tuned with a general language model, such as
GPT, which is highly proficient in natural language processing. This subsequent fine-
tuning enhances the model’s ability to interpret user prompts and provide coherent
and contextually appropriate responses in natural language, even though its primary
strength lies in coding. Thus, while it excels in coding tasks, it also maintains the
capability to understand and interact with users in a natural language effectively. This
would be the case for Ollama.

This dual training approach whether starting with language and adding coding or
with coding and adding language; tailors the model’s capabilities to specific needs.
In the case of Ollama, models are typically fine-tuned in a way that emphasizes their
utility in coding environments, making them particularly useful for developers who
need sophisticated AI support in writing, debugging, and understanding code.

44

CHAPTER 5. ANALYSIS

5.6.2 Prompt Creation

In my endeavor to enhance the capabilities of LLMs in generating code, I have ex-
tended the existing tag-prompt framework included in the theory section 3.5.1 of
tagged prompts to cater specifically to coding requirements. The original framework,
exemplified by tags such as [TASK], [TOPIC], [FORMAT], and others, has been instru-
mental in guiding language models to produce coherent and contextually appropriate
textual content. Recognizing the need for similar guidance in the domain of code gen-
eration, I have introduced a new set of tags tailored for this purpose.

These new tags are designed to encapsulate the specific requirements and constraints
often encountered in coding tasks. They include:

• [PROGRAMMING LANGUAGE]: Specifies the programming language to be
used, ensuring compatibility and adherence to project standards.

• [LIBRARY/FRAMEWORK]: Identifies any specific libraries or frameworks, aid-
ing in the utilization of existing tools and resources.

• [FUNCTIONALITY]: Describes the specific functionality to be implemented,
providing clear direction for the task.

• [ERROR HANDLING]: Details the error handling mechanisms, ensuring robust
and fault-tolerant code.

• [TEST CASES]: Outlines test cases to verify the code’s correctness, promoting
reliability and accuracy.

• [CODE STRUCTURE]: Defines the overall structure or architecture of the code,
promoting organization and maintainability.

• [API CALL]: Specifies the API calls to be made, facilitating integration with
external services and data sources.

• [REQUIREMENT SPECIFICATION]: Provides a detailed description of the re-
quirements, ensuring that all aspects of the task are covered comprehensively.

By incorporating these tags into prompts, we can significantly improve the preci-
sion and relevance of the code generated by LLMs. This approach not only enhances
the quality and functionality of the output but also allows us as developers to still be
in full control of the output.

The following example demonstrates a coding prompt, utilizing the new tags, for a
LLM to generate code that retrieves the top 10 cryptocurrencies and their exchange

45

CHAPTER 5. ANALYSIS

rates in dollars from an external website using an API key. This example will be used
to test the prompt’s effectiveness in both GPT and Llama3 for my experiment.

Assume the role of a software developer. Write a script to display the top 10
cryptocurrencies by market capitalization with output as Python code. Use
the requests library for API calls and json for data handling. Find and use
the necessary API endpoints from the existing Coinmarketcap service. Include
"INSERT YOUR API KEY" at the specific part of the code where I should insert
my personal API key. Focus on fetching and displaying the exchange rates in
dollars with a concise and clear code structure. Include code documentation
and error handling for network issues and invalid API responses.

• [PROGRAMMING LANGUAGE]: Python

• [LIBRARY/FRAMEWORK]: Use the requests library for API calls and json for
data handling.

• [FUNCTIONALITY]: Fetch the top 10 cryptocurrencies by market capitalization
and display their exchange rates in dollars.

• [ERROR HANDLING]: Include error handling for network issues and invalid
API responses.

• [TEST CASES]: Write test cases to verify that the script correctly fetches and
displays the data.

• [CODE STRUCTURE]: Organize the code into functions for fetching data, pro-
cessing data, and displaying results.

• [API CALL]: Use the provided API key to access the cryptocurrency data from
an external website.

• [REQUIREMENT SPECIFICATION]: Ensure that the script is able to connect
to the external website using an API key, fetch the top 10 cryptocurrencies by
market capitalization, and display their names and exchange rates in dollars.

5.6.3 Analyzing the Performance of GPT and Llama3 in Code Generation
via Prompt Engineering

In this experiment, we investigated the efficacy of prompt engineering to generate
functional codebases using LLMs. The study was conducted in three phases. The first
phase involved constructing a prompt designed to create a functional codebase, using
Patrick Parker’s "Tagged Prompts" framework as a foundation outlined in the theory
section 3.5.1.

46

CHAPTER 5. ANALYSIS

Phase one: Prompt Construction

The initial phase focused on the development of a specialized coding prompt using
the "Tagged Prompts" framework. The modifications included creating new tags in-
spired by programming constructs, such as function definitions & requirements, API
calls, error handling, and a task to obtain "fresh data" in the form of an API endpoint
and key. This approach was tested and yielded successful results, demonstrating the
potential of the modified framework in code generation.

Phase two: Output Analysis

The second phase involved analyzing the outputs generated by two different models:
GPT and Llama3. The hypothesis was that Llama3, being primarily trained on code,
would outperform GPT, which was initially trained on text and later fine-tuned for
code with the implementation of Codex.

Both models generated functional codebases with clear instructions on where to in-
sert a personal API key and where to find it. This result was particularly impressive
for GPT, considering its historical difficulty in handling information post-2021 due to
its initial training cutoff. However, recent parameter updates and the ability to execute
external processes using plugins have enhanced GPT’s capability to obtain and handle
fresh data. For instance, when planning a trip, GPT can call plugins to retrieve real-
time data from flight search engines like Momondo, Skyscanner, and Google Flights,
contrasting its earlier generic and outdated responses.

47

CHAPTER 5. ANALYSIS

Figure 5.1: Figure illustrating how GPT constructs the codebase differently by splitting up the API
endpoint and key object into separate codeblocks

48

CHAPTER 5. ANALYSIS

Figure 5.2: Figure illustrating how GPT constructs the codebase differently by splitting up the API
endpoint and key object into separate codeblocks

Figure 5.3: Figure illustrating how Llama3 managed to construct the API endpoint & API key in a
manageable and more intuitive way for developers to understand

Both models successfully identified the API endpoint at Coinmarketcap and pro-

49

CHAPTER 5. ANALYSIS

vided the correct web destination for generating a personal API key. This was expected
for Llama3 but was an unexpected and pleasing outcome for GPT, which has often
struggled with "fresh data" and sometimes provided plausible but incorrect informa-
tion. The performance of both models in understanding the prompt and producing
accurate output was commendable.

Figure 5.4: The terminal output from running code provided by GPT

Figure 5.5: The terminal output from running code provided by Llama3

An interesting discovery was made when Llama3 forgot a simple but crucial line
of code: import JSON. As the code progressed, it called an object expecting a JSON
return without having imported the necessary library at the beginning of the code-
base. This is a typical amateur mistake, highlighting a significant aspect of working
with LLMs. Upon recognizing the error, I prompted the model with "You forgot to
import json," to which it apologized and corrected the mistake in the codebase. This
incident underscores the importance of QC when using LLMs, as they can occasion-
ally overlook basic yet essential lines of code despite their advanced capabilities. It
serves as a reminder that while these models can perform complex tasks, they are not
infallible and require careful review and validation of their outputs. QA and QC of
outputs will be further discussed in the discussion section 7.

50

CHAPTER 5. ANALYSIS

Figure 5.6: Figure illustrating Llamas failure to import JSON and its responds when instructed to correct
the error

Phase Three: Codebase Comparison

The final phase compared the two generated codebases to determine which model
would be a more suitable candidate for assisting programmers in improving their
coding, building, and integration workflows. The primary distinction observed was in
GPT’s handling of the API key object. GPT chose to split the API endpoint and key into
two different code blocks, one at the beginning and one at the end of the code. While
this was not confusing for this small experiment, it could pose challenges in larger
and more complex projects where contiguous code blocks are preferred for readability
and maintenance. Especially when multiple developers manage larger codebases as a
team.

Experiment Conclusion and Future Work

The experiment demonstrated that both GPT and Llama3 are capable of generating
functional codebases with clear instructions, despite their different training focuses.
Llama3’s training on code provided a slight edge in predictability and organization,
while GPT’s recent updates have significantly improved its ability to handle real-time
data and generate accurate outputs. The findings suggest that both models can be
valuable tools for programmers, with considerations for their respective strengths and
potential limitations in larger projects.

However, it is important to note that the evidence gathered from this experiment was
not sufficient to definitively conclude that Llama3 would consistently outperform GPT
in handling larger codebases. Based on my estimations, Llama3 would probably per-
form slightly better in such scenarios due to its more code-oriented training. This
hypothesis could form the basis for upcoming experiments, where a more extensive
analysis of larger and more complex codebases could provide clearer insights into the
comparative performance of these models.

51

CHAPTER 5. ANALYSIS

5.7 Experiment: Simplifying and translating lengthy technical
documents via RAG

The primary aim of the meeting with Tom was to explore the potential for optimizing
DevOps workflows and processes at UFST through the application of AI. Tom had ini-
tially reached out seeking AI solutions to improve the efficiency of handling extensive
and complex EMCS documents. These documents, often lengthy and intricate, pose
significant challenges in terms of reading, analyzing, and understanding, especially
for his colleagues who are less experienced with them. Tom expressed a high interest
in making this process more streamlined and manageable.

As Tom elaborated on the difficulties faced in dealing with these documents, it be-
came evident to me that a RAG solution could effectively address his concerns. By
creating a vector database populated with EMCS documents and employing an ef-
fective system prompt, I realized that we could develop a tool to assist Tom and his
colleagues in comprehending and navigating these documents more efficiently.

My initial interview with Jan Cordtz and Peter Anglov led us to acquire a subscription
to Microsoft Azure, equipped with the necessary components for developing a RAG
solution. Subsequently, Jan, Peter, and I conducted several development sessions to
set up the testing environment for this solution.

5.7.1 Setup of the RAG Solution in Microsoft Azure

Microsoft Azure provides an intuitive GUI interface for managing its cloud services.
However, the vast number of sections, labels, and icons can be overwhelming without
proper guidance. Fortunately, we had the expertise of Jan Cordtz to help us navigate
and set up the environment effectively.

The RAG solution I aim to construct can be illustrated by figure 5.7. The EMCS docu-
ments gets chunked and vectorized so that a semantic search can be conducted based
on the query of the user.

52

CHAPTER 5. ANALYSIS

Figure 5.7: Figure illustrating the RAG solution in Azure. Base diagram source [32]

Creating the Virtual Machine and Resource Group

The first step involved booting up a Virtual Machine (VM) tailored for our experiment.
This required creating a resource group, which represents the "hardware" components
of our virtual machine, such as the network card, RAM (memory), graphics card, and
processor. In Azure, these hardware components are emulated as software, allowing
for easy scalability. As Jan Cordtz aptly put it, "There is no hardware in Azure; it is
all software to the end user. Microsoft delegates the necessary hardware to run the
virtual machines." This setup allows for seamless upgrades and scalability by simply
configuring a more powerful resource group.

One of the significant advantages of using Azure for this experiment was the abil-
ity to hibernate the virtual machine between sessions. This flexibility, in contrast to
maintaining a physical system with dedicated hardware, offered substantial cost sav-
ings. Running everything in Microsoft Azure cost approximately 0.70 DKK per hour,
making it a highly economical solution compared to the expense of a physical system
worth thousands of dollars.

53

CHAPTER 5. ANALYSIS

Establishing Secure Access

To ensure secure access, we set up a just-in-time connection between Peter Anglov and
the virtual machine using SSH. This method of authentication prevented unauthorized
access, even if others used the same dedicated hardware. Microsoft employs this as
one of its authentication methods to ensure that only authorized users can access their
virtual machines.

Choosing the Operating System

We opted to boot up a Linux machine for its open-source nature and high customiz-
ability, which facilitated the installation and operation of the necessary OpenAI com-
ponents with fewer errors. Our initial attempts to set up the system on Windows had
failed due to conflicts between OpenAI components and the Windows operating sys-
tem. Linux, with its "sudo" (super-user do) command, provided greater control and
privileges, which were essential for our setup.

For our Linux distribution, we chose UBUNTU. While Red Hat and SUSE offer full
support and management tools, they come at a cost. UBUNTU, on the other hand, is
free and provides equivalent support, funded through donations. This choice aligned
with the philosophy of its creator, a South African businessman, who believed in mak-
ing Linux accessible to all, including third-world countries, without financial barriers.

Additionally, several installations were necessary to configure our environment cor-
rectly. We installed essential Microsoft libraries, Python, git, nodejs, and various
Ubuntu packages to ensure compatibility and smooth operation of the OpenAI mod-
els. These installations were critical for setting up the infrastructure needed to run our
experiments efficiently. The terminal input is displayed in figure 5.8.

54

CHAPTER 5. ANALYSIS

Figure 5.8: Terminal input used to set up the Linux machine

Launching the Virtual Machine

The next phase involved launching our virtual machine in one of Microsoft Azure’s
data centers in France. This decision was driven by multiple factors, including the
availability and cost of OpenAI services in different locations. At the time of the ex-
periment, France offered OpenAI GPT-3.5 for free, whereas Sweden provided access
to GPT-4 at a cost.

Beyond cost considerations, legal and regulatory obligations also played a crucial role
in our decision. The regulations governing LLMs can vary significantly depending on
the region and country. For instance, launching OpenAI GPT in a data center located
in the United States but accessing it from Denmark could pose challenges related to
GDPR and other local regulations. To ensure compliance with these regulations and
standards, we had a legal obligation to launch our system in France. This choice al-
lowed us to adhere to GDPR requirements and other relevant legal frameworks, even
though it meant settling for GPT-3.5 instead of GPT-4. We were instructed to make
this decision by Microsoft, which was one of the significant advantages of being su-

55

CHAPTER 5. ANALYSIS

pervised by Jan Cordtz. His guidance ensured that our system was set up in the most
compliant and efficient manner possible.

This decision had implications for our experiment, particularly regarding the token
limits of GPT-3.5 compared to GPT-4. These differences and their impact on the ex-
periment will be discussed further in the evaluation of the results.

5.7.2 Selection of Documents

Many of the optimization possibilities at UFST that Tom and I discussed involved
accessing codebases, libraries, and other organization-confidential data. Some of his
ideas included managing codebases of legacy mainframe code like COBOL and HPS.
However, due to confidentiality and compliance requirements, Tom was unable to pro-
vide me with any actual data from these systems.

The case of improving interaction with EMCS documents was more convenient and
intuitive because these documents are publicly available through the European Com-
mission. All necessary documents could be easily downloaded as PDF files in various
languages from the EU Commission’s website, simplifying the data preparation pro-
cess.

Preparation of EMCS Documents

Three different EMCS documents were selected for the experiment, summing up to
128 PDF pages [11]. These documents were:

1. Directive Regulation [10]

2. Delegated Regulation [8]

3. Implementing Regulation [9]

These documents supposedly cover all aspects related to EMCS, providing a com-
prehensive dataset for our RAG solution. By uploading these three documents into
the vector database, we aimed to test the solution’s capability to handle extensive
cross-references not only within sections of a single document but also across multiple
documents.

Vectorization and vector database Integration

The selected documents were uploaded and vectorized into our vector database as
part of the RAG solution. The idea was to enable the RAG to retrieve information
with a high success rate in response to any prompt related to the content of EMCS.

56

CHAPTER 5. ANALYSIS

This process involved converting the documents into a machine-readable format and
indexing their content to facilitate efficient retrieval. By choosing these publicly avail-
able EMCS documents, we ensured that our experiment adhered to all confidentiality
and compliance standards while providing a robust test case for the capabilities of our
RAG solution.

5.7.3 Designing System prompt and User prompts

Designing the system prompt is arguably the most crucial component of a RAG so-
lution, as it provides overall guidance to the model, shaping how it processes fu-
ture prompts and queries from users. This concept is briefly covered in the Theory
section 3.5 but is elaborated upon here as experimentation led to the discovery of a
prompt hierarchy. Imagine a hierarchy of prompts where each level dictates the pro-
cessing of the next, in the following order: System Prompt -> User Prompt -> History
Prompt.

For instance, three RAG solutions with identical data registries but different System
Prompts would produce distinct answers to the same User Prompt, based on the in-
structions given by their respective System Prompts. The models’ responses to subse-
quent prompts would still be affected by the initial System Prompt and would further
distinguish based on the History Prompt in each of the separate model solutions.

A secondary prompt and every prompt thereafter take the history of the previous
prompt plus the model output into consideration, further guiding the following input
and outputs, similar to an evolving conversation. This structure ensures that the con-
text from previous interactions influences future responses, enhancing the relevance
and accuracy of the information provided.

System Prompt Construction

I constructed the System Prompt based on three key objectives provided by Tom dur-
ing our meeting in May. The RAG should be able to accomplish the following:

• Capture and understand cross-references within individual documents.

• Bridge information across different documents, offering a more holistic under-
standing of EMCS-related queries.

• Provide accurate and contextually relevant information efficiently, thereby en-
hancing the usability and accessibility of these complex documents.

Additionally, the RAG should ideally translate these documents into Danish, as
the originals are written in English. Although the European Commission offers trans-
lations, Tom finds them poorly executed. For this experiment, I chose to exclude

57

CHAPTER 5. ANALYSIS

translation capabilities as models perform inconsistently across different languages.
Constructing the System Prompt in English but the User Prompt in Danish confused
the model and mostly produced incorrect answers. This issue was discovered through
experimentation with different System Prompts and mixing languages, akin to asking
a colleague a question in English and receiving a response in Danish, something will
inevitably get lost in translation. This issue is magnified in AI interactions, as different
nodes and parameters are involved in the cognitive process.

Through thorough experimentation, I realized the importance of keeping the System
Prompt and User Prompts in the same language to avoid confusing the model.

The System Prompt I created was:

You are a highly intelligent assistant with a deep understanding of extensive
and complex EMCS (Excise Movement and Control Systems) documents. Your
primary function is to help the user comprehend and navigate these documents
effectively, offering precise, relevant, and actionable insights.

User Prompts Construction

To achieve our objectives, I created three separate User Prompts. The goal was to
retrieve answers from each of the documents separately, as well as to capture cross-
references where the answer might be found in several places. The prompts would
progressively increase in specificity to test the limits of the model’s ability to under-
stand the semantic relationship between the question and the retrieved content. The
overall aim is for Tom and his colleagues to eventually rely on the model’s answers
rather than having to search through all three documents themselves. In this way, AI
would optimize a general workflow at UFST. The three User Prompts I created were:

1. Provide an overall summary of the EMCS document, focusing on its main objec-
tives and key sections.

2. Explain the concept of ’duty suspension’ as described in the EMCS document.
What are the conditions and requirements for it?

3. Can you summarize the section on the procedures for electronic administrative
documents (e-AD) in the EMCS document?

These prompts were designed to test the efficiency and accuracy of the RAG so-
lution with a progressive increase in difficulty. By using these prompts, we could
evaluate whether the model could provide comprehensive and accurate information,
thereby validating its usefulness in optimizing workflows at UFST related to EMCS
documents.

58

CHAPTER 5. ANALYSIS

5.7.4 Testing with Tom from UFST

I scheduled a meeting with Tom to demonstrate the RAG solution and conduct testing
with the constructed prompts. Tom’s active involvement in the testing process was
crucial, as it provided immediate feedback and a practical assessment of the solution’s
effectiveness.

During the meeting, Tom inquired about the technical aspects of the data selection
and the training process of the RAG solution. I explained that no additional training
of the model was conducted. Instead, the selected data within the vector database was
vectorized and ’exposed’ to the GPT-4 model, allowing it to browse and find semantic
relationships between the User Prompts and the contents of the vector database, no
further testing was necessary.

Tom was curious about the potential for further training or fine-tuning of the model.
I clarified that while it is possible to fine-tune the model by exposing it to massive
amounts of EMCS documents and other work-related documents, it might not be
practical. This is because newer iterations of documents might change some funda-
mental information, leading to conflicts in the model’s training. For example, training
a model to understand that 2 plus 2 equals 4, and then later encountering new data
that suggests it equals 5, would create confusion and lower the model’s confidence
score. Instead, a RAG solution allows for the removal of older versions of documents
and replacement with newer iterations, keeping the solution fully updated. By regu-
larly updating the vector database, we ensure that the RAG solution remains current
and accurate. Similarly, newer versions of GPT with increased parameters and tokens
will improve the accuracy and response time of the RAG solution.

Tom mentioned that at UFST, they work with countless documents, with new ones
constantly becoming relevant. This makes the process difficult and tedious. However,
with a RAG solution, they could execute a script, perhaps at 3 AM, to pull in all new
iterations of documents into the vector database, enabling the solution to assist Tom
and his colleagues the very next morning. Even though the RAG solution should be
able to update regularly with 10-20 new documents each day, the update process can
be done seamlessly and automatically.

5.7.5 Results of the Experiment & Further Testing

Tom was impressed with the responsiveness of the model as I demonstrated the three
pre-constructed User Prompts. I encouraged Tom to ask specific questions about the
EMCS documents that he already knew the answers to, in order to test its accuracy
and efficiency. Since Tom is not the primary person at UFST who works with EMCS
documents, he did not feel qualified to determine whether the model provided proper

59

CHAPTER 5. ANALYSIS

answers. However, he emphasized the importance of QA of the answers provided by
the solution. It is crucial to verify whether the responses are true and accurate. Addi-
tionally, it is important to evaluate whether better answers could be found elsewhere
in the documents, and to check the cross-references within each document as well as
across multiple documents.

To address this, Tom suggested setting up a meeting with his colleague Linnea Nissen,
who works extensively with EMCS documents. Linnea’s expertise would be invalu-
able in determining the accuracy and relevance of the model’s responses. A meeting
with Linnea Nissen was scheduled for the 17th of September. Although this is more
than a week after the submission of my thesis, the results of this testing could be in-
cluded as part of my presentation and defense of my thesis.

During our testing, Tom also posed an interesting question about whether the RAG so-
lution could provide different answers to different people based on their roles within
the organization. For instance, he suggested that an analyst and a software developer
might require different types of answers, with one expecting a more technical response
than the other. Implementing this would be extremely challenging and might neces-
sitate creating different models with explicit System Prompts and different content
within the vector database. However, it could potentially be achieved by having multi-
ple System Prompts accessible through a user interface at an outer layer of the model.
By configuring the output in the System Prompt to instruct the model to act as an
analyst or a software developer, this type of request could be managed. An organi-
zational user interface could be developed where each person has a unique System
Prompt tailored to their specific profession and responsibilities.

One of the significant results of the experiment was the model’s ability to understand
and extract information from cross-references within individual documents and be-
tween multiple documents. This capability was tested using one of the user prompts,
which was designed to check if the model could pull relevant information from both
documents where the answer was distributed. Prior to the testing, I had verified that
the necessary information could indeed be found in both documents. The model suc-
cessfully demonstrated this by providing a response that referenced the appropriate
sections from both documents, showcasing its ability to handle complex queries that
require synthesizing information across multiple sources. The figure below illustrates
one of the responses, displaying the model’s capability to extract and integrate infor-
mation from the vector database effectively.

60

CHAPTER 5. ANALYSIS

Figure 5.9: Snapshot of RAG solution responding to one of the pre-constructed User Prompts

Figure 5.10: Figure illustrating the model’s capability to cross-reference between documents

However, a minor error was encountered when the User Prompts were too broad,
causing the model to attempt to pull too much information from the vector database.
This revealed a limitation of the model due to the token constraints inherent in the
GPT-4 architecture. The RAG solution requires more tokens than a standard LLM
query because the content pulled from the vector database is also tokenized and com-
bined with the user query before being processed by the LLM. When the user query
is very broad, the amount of information extracted from the registry can exceed the
model’s token limit. For instance, GPT-4 has a token limit of 8192 tokens per message.
During testing, I encountered an error when the data extracted from the documents
exceeded 65536 characters, equivalent to the model’s token handling capacity. The
model attempted to work around this issue by truncating the input text or its response
to fit within the token limit, which means cutting off part of the text, this can be seen
in figure 5.11. This truncation can possibly result in incomplete information.

61

CHAPTER 5. ANALYSIS

This token limitation is a significant factor that prevented the execution of the third
and fourth experiments. This token limitation will be further elaborated on in the
following section, which is dedicated to a conceptual design where models have sur-
passed these token constraints.

Figure 5.11: Figure illustrating the retrieval augmentation process exceeding the token limit of GPT-4

Tom frequently highlighted the importance of QA and control of AI responses.
LLMs can sometimes provide inaccurate answers in a very convincing and trustworthy
manner. This brings up important discussions about QA and explainable AI, which
are crucial aspects of the AI Act and will be further discussed as part of the upcoming
discussion chapter 7.

62

Chapter 6

Conceptual Design

This chapter will explore the potential for further optimization of code generation by combining
the technologies from both experiments discussed in the Analysis chapter, leading to the devel-
opment of a refined conceptual design.

During the analysis and experimentation phase, I realized there are certain capabil-
ities that should become possible in the upcoming years of AI development in the
DevOps environment. Current models, including advanced ones like Ollama3, show
great promise in generating code from documentation but have significant limitations
when it comes to directly interacting with and modifying codebases. Existing RAG
architectures can only edit documents by adding or removing them but lack the capa-
bility to dynamically modify the document’s content through prompt engineering.

The conceptual design I envision involves a dynamic RAG solution with a vector
database containing the entire codebases of existing services. New repositories will
be generated and stored either locally or within a cloud, depending on the user’s
IDE support. This design ensures that changes can be made in isolation before being
merged, similar to the current development process of branching.

6.1 Integration into IDEs

To enhance usability, the RAG solution will be integrated into the user’s IDE of choice
as an extension, similar to GitHub Copilot and Codey. This extension will allow users
to:

• Choose from a variety of LLMs via the interface of their IDE extension.

• Branch out repositories for editing and make the changes the user requests
through prompts.

63

CHAPTER 6. CONCEPTUAL DESIGN

• See immediate feedback within their IDE along with a generated response from
the LLM documenting all changes made.

• Highlight changes within the IDE so the user can easily navigate, test, and eval-
uate modifications to the codebase/repository.

6.1.1 Localized Editing in Comparison to Repository-level Editing

In the figure 6.1, you will see an illustration of my IDE showcasing two different code
blocks, Code Block A and Code Block B. The figure also includes the extension inter-
face that allows you to interact with LLMs such as Llama3, GPT, Gemini, or whichever
LLM you prefer. This figure and method of creating software are derived from my first
experiment in the analysis section 5.6.

The key elements in this figure are Code Block A and Code Block B, which are in-
terdependent. Code Block A defines an object that is called by Code Block B, meaning
that any changes made to Code Block A will directly affect the logic of Code Block
B. In traditional localized editing of code, tools like GitHub Copilot and similar IDE
extensions focus on assisting the user with specific code segments in isolation. While
this is useful, it falls short when dealing with repository-level complexities where code
blocks across different parts of the project are interconnected.

The sections marked with C and D in the figure represent the current way of in-
teracting with LLMs through your IDE via extensions. My conceptual design aims
to improve this process without altering the user experience. The interface remains
familiar, but the functionality is vastly enhanced. By integrating repository-level edit-
ing capabilities, the LLM can automatically recognize the interdependencies between
Code Block A and Code Block B. This is made possible by the RAG solution built
on top, which has the capability to search through the entire repository and identify
affected code blocks. As a result, any changes made are propagated throughout the
relevant parts of the codebase, maintaining consistency and preventing logic errors.

64

CHAPTER 6. CONCEPTUAL DESIGN

Figure 6.1: Illustration of the current usage of code assistance tools in IDEs, highlighting the interdepen-
dent code issue. This figure is sourced from the code generation experiment I conducted as part of my
analysis 5.6

With my conceptual design, the end user will not need to adapt to new methods
or tools. Instead, they will benefit from the ability to have the LLM operate on a larger
scale, managing the entire repository rather than just localized code blocks. The RAG
solution’s ability to search and understand the interdependencies within the repository
ensures that all affected parts of the code are taken into consideration when applying
changes. This leads to more robust, error-free code and a more efficient development
process overall.

6.2 Dynamic Vector Database and Modification Capabilities

In this design, the vector database will house the entire codebase of one or more ser-
vices. Using prompt engineering, new features can be added to an existing codebase
by generating a new repository that mirrors the one in the vector database. The model
will need to understand the requirements for the new feature and integrate the feature
without disrupting the existing logic or functionality on all interdependent code. It
will continuously update and modify the mirrored repository to ensure the codebase
evolves in line with project needs, and run tests to evaluate the impact of modifica-
tions on the new repository. Finally, the software developer can review and merge
changes from the mirrored repository into the ´master´ or ´main´ repository similar
to branching in. The newly updated repository can be added for re-indexing for con-
tinuous development.

65

CHAPTER 6. CONCEPTUAL DESIGN

This capability makes the solution even more dynamic by creating an intuitive flow be-
tween building, coding, implementation, testing, deployment, and maintenance/operation.

6.3 Use Case 1: Adding New Code to Existing Codebases

Imagine a scenario where a software engineer needs to patch and add a few lines of
code to a codebase already in production. This addition could potentially create con-
flicts or errors, affecting a microservice called by an API or causing non-syntax-related
issues due to interactions with existing code. These errors can happen in large code-
bases where code is interdependent in different parts of the repository.

In this dynamic RAG solution, the model can be instructed to add a new feature,
comprehend its functionality, and integrate data from other code blocks. The model
will integrate the new feature seamlessly, ensure the overall integrity of the codebase,
and run tests in the mirrored repository to check for conflicts and errors. The solution
will provide documentation detailing the changes made, their impact on other code
blocks, and how conflicts were prevented, allowing the software developer to review
and merge the changes into the primary vector database.

6.4 Use Case 2: Generating New Services Based on Existing
Codebases

Before my research question was generated, I had a preliminary interview with Senior
Developer Regnar Vedsted from Lego, as mentioned at the beginning of the method-
ology chapter 2. His idea or request heavily inspired this conceptual design. Lego has
countless services, websites, games, platforms, and webshops within their fleet of ser-
vices. There is significant overlap in terms of fonts, layout, transitions, user-experience
interactions, images of Lego blocks, and common use of HTML, CSS, and JavaScript
code.

Regnar’s idea was to have all these services available to an LLM, either in a RAG
constellation or by training an LLM, capable of creating brand-new services based on
all their previously created services. The model would learn from all the codebases
and repositories created by Lego and generate new services that adhere to their organi-
zational standards together with code documentation and requirement specifications
of the new service they envisioned. This approach would enable Lego to create new
services built in the exact same way as their existing ones, significantly reducing the
time and effort required to maintain the "Lego Vibe" across all their platforms.

66

CHAPTER 6. CONCEPTUAL DESIGN

For example, if Lego has 18 entire codebases/repositories of their product line within
a RAG, it should be able to generate the draft of number 19 seamlessly. This would
greatly ease the workload for Regnar and his team, saving a substantial amount of
money and hours spent on repetitive building as part of their DevOps environment.

6.5 Process Description

The process outlined here provides a dynamic and intelligent approach for integrat-
ing new features into an existing software repository. Use Case 1 is described and
illustrated in the accompanying figure 6.2. Unlike traditional code-generation tools
like GitHub Copilot, which operate on a more localized level, this solution operates
at the repository level, ensuring all interdependent parts of the code are updated in
a cohesive manner. This ensures that changes are made without compromising the
overall functionality and logic of the software.

The architecture of this solution is structured into two layers, each requiring user
interaction. The first layer focuses on setting up the RAG system and includes the first
two steps of the process - (labeled ’A’ on figure 6.2). The second layer involves inter-
acting with the system during the remaining steps of the process, starting with the
query stage where the user performs prompt engineering - (labeled ’B’ on figure 6.2).

Figure 6.2: Conceptual draft of the dynamic RAG architecture - created using Lucidchart [40]

67

CHAPTER 6. CONCEPTUAL DESIGN

6.5.1 Step 1: Add for Indexing

In the first step, the user begins by adding the target repository, which is an existing
software project in production, to the system for indexing (labeled ’A’ on figure 6.2).
This repository serves as the foundation on which new features will be built. The
purpose of this step is to prepare the repository for subsequent processing by the
RAG system, ensuring that all existing code is available for analysis and modification.

6.5.2 Step 2: Indexing

Once the repository is added, it undergoes an indexing process. This process is di-
vided into three sub-steps:

• Chunking: The repository’s content is divided into smaller, manageable chunks.
This allows the system to process and analyze the code more effectively.

• Vectorizing: Each chunk of code is transformed into vector representations. This
conversion enables efficient semantic searches and comparisons later in the pro-
cess.

• Storing: The vectorized chunks are stored within a vector database, forming the
core data that the RAG system will reference throughout the process.

6.5.3 Step 3: Query, Vectorize, and Search

In this step, the user inputs a descriptive requirement specification for the new fea-
ture they wish to implement (labeled ’B’ on figure 6.2). Alongside this, the user can
provide necessary code documentation related to the new feature. The system takes
this user input and vectorizes it, allowing for a semantic search through the indexed
database. This search identifies code that is relevant to the new feature, ensuring that
all necessary dependencies are considered.

6.5.4 Step 4: Retrieve

The system retrieves the semantically relevant context from the vector database. This
context includes code snippets, functions, classes, or any other components that are
related to the new feature. Simultaneously, the user’s prompt is prepared for the next
stage in the process, setting the stage for augmentation.

6.5.5 Step 5: Augment

In this step, the system assembles a comprehensive prompt for the LLM. This prompt
includes:

68

CHAPTER 6. CONCEPTUAL DESIGN

• System prompt: This ensures that the generated code adheres to specific require-
ment specifications and boundaries.

• Relevant context: Retrieved in the previous step, this ensures that the LLM has
all the necessary information about the existing codebase.

• User query: The original input provided by the user is included to guide the
LLM in generating the desired feature.

The combined prompt is then prepared for processing by the LLM.

6.5.6 Step 6: LLM Processing

The prepared prompt is sent to the LLM for processing. The system allows for flexibil-
ity in choosing the LLM, with integration options similar to the Codey Extension used
in earlier experiments. The LLM processes the prompt, generating code that reflects
the new feature while considering the existing codebase.

6.5.7 Step 7: Generate Mirrored Repository with Changes

In this step, a new mirrored repository is generated. This process is similar to creating
a new branch from the main branch. The generated repository incorporates the new
feature and reflects all the necessary changes across interdependent parts of the code.
Unlike localized code generation, this approach ensures that the entire codebase is
updated to maintain functionality and logic. The user can run tests, debugging, and
other post-processing tasks using standard IDE tools.

6.5.8 Step 8: Generate Code Documentation of Changes

After generating the new code, the system automatically creates comprehensive doc-
umentation detailing all the changes made. This documentation is written in natural
language and sent back to the user for review. It serves as a record of what was
changed and why, aiding in future maintenance and understanding of the code.

6.5.9 Step 9: Merge with the Repository

The final step involves merging the newly generated repository with the original
repository. This process is similar to a "branching in" operation. The user reviews
the changes and, once satisfied, merges them into the main branch. If the user plans
to iterate on the changes further, they can re-index the updated repository, allowing
for multiple iterations of the process. This ensures safe and controlled integration of
new features before the software is released back into production.

This process description provides a detailed overview of each step in the Dynamic

69

CHAPTER 6. CONCEPTUAL DESIGN

RAG solution, highlighting how it enables repository-wide code generation and inte-
gration, thereby supporting complex software development tasks with greater accu-
racy and efficiency.

6.6 Efficiency, Optimization, and Reversion

The RAG solution will also feature a "Modification" element that allows it to edit the
mirrored repository content and revert those changes immediately if the software en-
gineer is not satisfied. This feature ensures flexibility and maintains code integrity
while allowing rapid adjustments. The model should be highly efficient in code man-
agement. It should assist software engineers in:

• Adding new features more effectively than current methods.
(rationale of Use Case 1 6.3 and Experiment Three 5.4.3)

• Entire repository-level editing.
(rationale of Use case 2 6.4 and Experiment Four 5.4.4)

• Revoking changes

By optimizing these practices, the advanced RAG solution can significantly reduce
the time and effort engineers spend on these tasks, enhancing productivity and effi-
ciency across the DevOps pipeline.

6.7 Current Limitations and Future Improvements

Achieving this conceptual design with current technology is challenging due to sev-
eral limitations. One major constraint is the token limit of existing models. With limits
of 8k, 16k, or even 32k tokens, these models are not capable of handling entire code-
bases as context for modifications. For instance, a codebase consisting of 1000 lines of
code, along with necessary standards and organizational requirements, would exceed
the token capacity of current models. This limitation prevents the model from taking
all 1000 lines of code and relevant standards as a reference when making modifica-
tions, significantly hindering its ability to provide comprehensive and context-aware
updates. To manage within these limits, the model might perform error-handling
maneuvers such as truncating the output to fit within the token limit, which means
cutting off part of the text. This truncation results in incomplete information. 5.11.

Additionally, issues like hallucination and generic answers pose significant risks when
generating code. Even minor errors can create vulnerability gaps within the code, po-
tentially leading to malicious attacks on models and AI solutions that have not been
seen before. Models should strive to avoid providing generic information and instead

70

CHAPTER 6. CONCEPTUAL DESIGN

make use of plugins and other methods to obtain "fresh data." An example is Mi-
crosoft Semantic Kernel, which extracts real-time data by executing plugins externally
and retrieves this information to base its answers on. This approach can help avoid
hallucinations and prevent the model from filling in the blanks with generic answers.

Furthermore, I believe we will see fewer very large generic LLMs similar to GPT and
Gemini, which attempt to cover as many use cases as possible. Instead, we will likely
see smaller and more specific LLMs trained for particular tasks or processes. Con-
sulting engineering companies might develop smaller models and solutions tailored
to sensitive organizational data provided by their customers. Currently, models are
trained on freely available data. For example, if we want a model extremely proficient
in COBOL, we could greatly benefit from organizational data that IBM could provide
from their mainframe services. However, IBM has no interest in sharing this data with
an LLM due to rules, regulations, and competitive reasons. This is exactly what Tom
from UFST demands of an LLM: the ability to train it on his own organizational data
without the risk of sharing this data with OpenAI or Google. He envisions being able
to modify the models in a manner similar to ordering a website from an engineer but
then inserting his own data after the basic structure has been created. The risk of
sharing data with large companies and models is too high and violates several GDPR-
related standards.

To realize this conceptual design, future iterations of language models need to sup-
port much larger token limits and ensure accurate, fresh data retrieval. By overcoming
these challenges, future RAG solutions could fully leverage the potential to dynam-
ically interact with and modify codebases, providing a powerful tool for software
development and maintenance.

71

Chapter 7

Discussion

This chapter will discuss and explore the implications and results of the information gathered
throughout the project, providing a comprehensive analysis of the findings and their potential
impact.

7.1 Reflections

As I reflect on the journey of completing this thesis, I feel a deep sense of satisfaction
with the knowledge I’ve gained and the insights I’ve developed. The project has been
a fulfilling intellectual experience, but it also highlighted a recurring challenge that I
face in my work: my tendency to broaden the scope as new information and ideas
emerge. While this often enriches the exploration, it can also lead to a loss of focus.
Initially, my research was concentrated on optimizing the coding stage of the DevOps
pipeline. However, as the project progressed, and through my interactions with ex-
perienced IT professionals from leading organizations, I was inspired to expand my
focus. I began to look at the entire DevOps process with an eye toward optimization,
rather than limiting my research to just the coding stage.

The collaboration with my assisting supervisor, Peter Anglov, and the industry profes-
sionals he introduced me to, including Jan Cordtz & Rasmus from Microsoft, and Tom
Willy Nielsen from UFST, proved to be invaluable. These interactions provided me
with practical insights into the challenges and processes faced by some of the largest
IT organizations. This experience was particularly meaningful to me, as someone who
has worked as an Operations Engineer at Netcompany for nearly two years. The op-
portunity to engage with these professionals gave me a preview of the challenges and
opportunities I will encounter in my future career.

Regarding my inclination to expand the scope of my projects, I’ve come to view this
tendency not as a flaw but as a potential strength. Rather than trying to suppress this

72

CHAPTER 7. DISCUSSION

inclination, I’m learning to embrace it and see it as something that could be valuable
in my professional career. In a field as dynamic as IT, the ability to adapt and explore
new avenues is crucial.

One of the most significant lessons I learned during this process was the importance of
trust and authenticity in content generated by generative AI. This revelation came dur-
ing a conversation with Rasmus from Microsoft, who challenged the common percep-
tion of AI as "intelligent." He explained that AI-driven technologies, including LLMs,
lack true understanding. They don’t "know" things in the human sense; instead, they
process data, recognize patterns, and produce outputs based on their training. For
example, when an AI is asked to calculate that 2 plus 2 equals 4, it doesn’t truly un-
derstand the arithmetic; it simply identifies that 4 is the correct response based on
prior data. In practice, an LLM might initiate a Python script to perform the calcula-
tion or rely on a plugin to obtain the answer, but it cannot calculate in the intuitive
way that a human does.

This conversation profoundly influenced my perspective. It led me to place greater
value on AI architectures that prioritize handling fresh data over those that rely heav-
ily on the general knowledge base of LLMs. I began to see LLMs less as autonomous
sources of knowledge and more as tools—gateways to optimize processes, similar to
plugins or extensions. This shift in perspective significantly impacted my approach to
the research.

Reflecting on my initial experiments, I now realize that while they demonstrated the
potential for LLMs to assist in code generation, they also introduced new challenges.
For instance, instead of having a software engineer spend time understanding require-
ment specifications and building a codebase manually, they now need to craft precise
prompts and verify the accuracy of the generated code. While this approach may
be faster and more convenient, the broader implications and potential consequences
are still unclear. In essence, we’ve replaced one work process with another, placing a
higher value on prompt engineering and validation.

With the knowledge I have now, I would have approached my research question dif-
ferently. I would have placed more emphasis on the issues of trust and authenticity
in AI-generated content, particularly in reducing reliance on the general knowledge
base of LLMs. This realization led me to draft a conceptual design that shifts away
from using LLMs solely for their general knowledge. Instead, I would focus on a RAG
solution, where the LLM generates code based on specific data provided to it by the
user. This approach offers better control over the accuracy and validity of the gener-
ated content.

73

CHAPTER 7. DISCUSSION

In hindsight, this experience has taught me the importance of continuously question-
ing and refining my approach, especially in a field as rapidly evolving as AI. While I
am pleased with the outcomes of my thesis, I now see areas where I could have delved
deeper and perhaps uncovered even more valuable insights. Moving forward, I aim
to carry these lessons into my professional career, where I hope to continue exploring
the intersection of AI and DevOps with a more refined and focused approach.

7.2 The EU AI Act, Explainable AI, and Quality Assurance

The European Union’s Artificial Intelligence Act (EU AI Act), introduced on July 12,
2024, marks the first comprehensive regulatory framework for AI systems across the
EU [56]. This legislation will be fully implemented across all EU Member States start-
ing on August 1, 2024, with most provisions taking effect on August 2, 2026. It follows
a risk-based approach similar to the GDPR. It focuses on different phases of the AI
lifecycle, imposing specific rules and obligations on organizations and stakeholders
responsible for developing, deploying, and providing AI services.

The EU AI Act primarily impacts providers, deployers, and distributors of AI systems,
rather than end users. For instance, considering Microsoft Copilot, the Act directly af-
fects OpenAI as the provider of AI models. Microsoft, which utilizes these services
and models provided by OpenAI to create their Copilot tools, is impacted as the sec-
ond link in the chain. Organizations that subscribe to Microsoft’s services and create
RAG solutions within the Azure Cloud, similar to what I did in experiment two, are
also affected 5.7. However, if OpenAI and Microsoft take appropriate precautions in
relation to the AI Act, the impact on the remaining parts of the supply chain dimin-
ishes progressively.

Given that the Act was released relatively close to the submission of my master’s
thesis, I did not fully consider its implications for the first experiment I conducted on
AI-driven code generation. However, the concept of Explainable AI (XAI) might play
a significant role in this context.

Although the Act does not explicitly mention XAI as a distinct concept, its principles
are embedded within the framework, particularly regarding transparency, account-
ability, and fairness in AI systems. The Act mandates that users should have access
to information about the inner workings of an AI system, including the logic behind
its decisions. XAI is designed to make AI decisions understandable and interpretable
for users. This can be particularly valuable in QA for the content generated by LLMs.
While XAI does not completely eliminate the "black box" phenomenon, it offers users
better explanations of why outputs appear as they do.

74

CHAPTER 7. DISCUSSION

A critical takeaway from the AI Act is its emphasis on enforcement at the earliest
stages of AI model development, including the idea and training phases [25]. The
requirement for explainability allows human operators to gain more insight into the
neural network’s inner workings and intervene in decision-making processes if nec-
essary. This could be instrumental in preventing AI models from making unfair or
discriminatory decisions. For example, there were instances where Google Bard gen-
erated racist content, including deliberately generating images exclusively of people
from Black, Hispanic, and Asian backgrounds while avoiding creating images of white
individuals [35]. This bias was likely the result of an attempt to prevent bias, which
backfired and instead introduced bias in the opposite direction. Such incidents un-
derscore the importance of human intervention during AI model training to prevent
biases but also highlight the risks of inadvertently skewing the model’s judgments of
what is fair and unbiased.

As the first official regulatory framework of its kind, the AI Act is likely to undergo
many changes and iterations in the coming years. From an end-user perspective,
controlling the inner workings of AI models can be best managed through prompt en-
gineering, which helps reduce ambiguity and provides better control over the outputs
produced within the neural network’s "black box."

In terms of QA and QC, it will be crucial to educate the next generation of soft-
ware engineers to approach AI-generated content with caution. They should not rely
solely on the outputs of LLMs without verification. New QA and QC methodologies
and tools specifically addressing the challenges posed by AI-generated content will
be essential, particularly in niche fields like code generation, similar to the conceptual
design I have discussed.

LLMs have the capability to generate responses based on a vast general knowledge
base, but the accuracy and reliability of this information are not always guaranteed.
This makes fact-checking a vital, albeit time-consuming, part of the process. While
LLMs have made information retrieval more convenient, they introduce a trade-off in
trust and authenticity, necessitating extensive verification to ensure outputs are accu-
rate.

RAG solutions, on the other hand, leverage the capabilities of LLMs to work with
"fresh" data that users provide, ensuring a higher degree of accuracy. This approach
significantly reduces the need for extensive fact-checking, as the model generates re-
sponses based on trusted, up-to-date data. However, it does not completely eliminate
the need for verification but does make the process more reliable and efficient.

The reliability and trustworthiness of outputs tend to decrease as queries become more

75

CHAPTER 7. DISCUSSION

specific and delve into deeper, narrower areas of knowledge. As the model moves
away from general information and into specialized domains, the risk of inaccuracies
increases. This reinforces the ongoing need for rigorous fact-checking, accuracy, and
verification to maintain trust in the information provided.

Jan Cordtz introduced me to Microsoft Semantic Kernel, a tool that plays a crucial
role in helping organizations fetch "fresh data" from various Office365 services as part
of the generative process. For example, if a user needs to create a weekly presentation
with updated financial figures, Microsoft Semantic Kernel would handle the process
of fetching this fresh data from an Excel spreadsheet, dramatically reducing the com-
plexity and time required to prepare the presentation. The Semantic Kernel operates
by making API calls across the Office365 platform on behalf of the user, ensuring that
the information retrieved is accurate and up-to-date. According to Jan, one of the key
challenges lies in enabling the AI model to determine when to make an API call for
fresh data and when to rely on general information.

This sophisticated approach to integrating AI with fresh data sources exemplifies the
direction in which QA and control must evolve. Ensuring that AI-generated content
is both accurate and reliable will be an ongoing challenge, particularly as regulations
like the EU AI Act become more entrenched and potentially more stringent.

7.2.1 Model Feedback Loop

One major concern I have related to the training of new AI models is the potential
feedback loop created by feeding AI-generated content back into the training datasets
of newer models. Since the release of GPT-3 in November 2022, there has been a surge
in AI-generated content, raising questions about the long-term impact on future AI
training. When AI-generated content is used to train new models, which then pro-
duce more content, I believe a feedback loop can emerge with potentially detrimental
effects. This is similar to the feedback loop experienced when a microphone is placed
too close to a speaker, resulting in an unpleasant and often disruptive squeal. My
concern is that this could lead to a situation where it becomes increasingly difficult to
distinguish between human-made content and AI-generated content, thus complicat-
ing quality assurance efforts on a macro level.

To mitigate this risk, I believe it is essential to maintain strict, supervised datasets of
human-created content, similar to the foundational training sets used for GPT-3 before
its release. My hypothesis is that the ideal time to create such models was before the
widespread proliferation of AI-generated content. At that point, quality control over
distinguishing computer-generated content from genuinely human-authored material
was more manageable. As the volume of AI-generated content continues to grow, en-

76

CHAPTER 7. DISCUSSION

suring the authenticity and reliability of future AI models will become an even greater
challenge.

In my conceptual design, where entire repositories are stored within a data registry, I
can foresee potential conflicts when generating new services. For example, if a specific
method is commonly used across multiple repositories, the AI might arbitrarily incor-
porate it into new software. This could happen not because it’s the most suitable for
the new requirements, but because its frequent usage influences the model’s outputs.
As a result, new software might rely on methods, libraries, and APIs that aren’t ideal
for their intended tasks. When past outputs heavily influence the AI’s decisions for
new projects, a feedback loop could develop. This would compromise the integrity
and functionality of the resulting codebase. These risks highlight the critical need
for supervision, the application of XAI, and strict QA to ensure that outputs align
accurately with current and specific development objectives.

7.3 The Social Impact of Integrating LLMs into DevOps

The reliance on LLMs and AI technologies is not only transforming the technical
tasks that IT professionals perform but also altering the industry’s view of what skills
are considered valuable. Jan Cordtz supports this assertion by predicting a rise in
machine-generated code. This evolving landscape suggests a future where the em-
phasis on skills may shift towards prompt engineering potentially becoming a more
sought-after competency than traditional coding skills. Researching this shift is cru-
cial for several reasons: it informs curriculum development for educational institutions
preparing the next generation of IT professionals. Incorporating prompt engineering
into engineering university curriculums would not only align educational offerings
with industry needs but also equip future professionals with the skills necessary to
thrive in an AI-integrated workforce. Given the projected importance of prompt engi-
neering, as highlighted by both conducted experiments, embedding this skill set into
the academic journey of engineering students is crucial 5.6 5.7. This approach would
ensure they are well-prepared for the complexities of working with AI technologies.
This proactive approach in education would facilitate a smoother transition for grad-
uates entering the IT industry, where the ability to effectively utilize LLMs and other
AI tools is becoming increasingly important.

To illustrate the shifting skill requirements in software engineering, I reflect on my own
academic experience. During my initial two semesters at university, the assessment in
our object-oriented programming course involved demonstrating coding proficiency
by manually writing code on a blackboard. A particular challenge I encountered was
to develop a method for a nested for loop, a task designed to test our grasp of basic
programming concepts. At the time, this method assessed fundamental skills effec-

77

CHAPTER 7. DISCUSSION

tively. However, in the context of today’s advanced IDEs, such manual coding exercises
can appear somewhat antiquated. IDEs often feature autocomplete functions that sim-
plify coding tasks significantly. Furthermore, during a recent experiment involving
code generation with an LLM like the Llama model, I found that these advanced AI
tools could generate the required code based solely on a description in human lan-
guage. This experience underscores the evolving nature of what constitutes essential
skills in software engineering. It also highlights the growing need for educational
programs to adapt, teaching students how to leverage AI technologies like prompt
engineering effectively, thereby ensuring they remain competitive and proficient in a
rapidly transforming industry.

78

Chapter 8

Conclusion

This chapter will conclude the research by summarizing how the research question was ad-
dressed, outlining the key findings, and reflecting on the information gathered throughout the
study.

This thesis set out to explore the optimization of the DevOps pipeline, specifically
focusing on the coding stage, by leveraging Prompt Engineering and Large Language
Models to generate code from descriptive documentation. The research was driven by
an increasing industry trend of integrating AI into coding processes, as evidenced by
insights gathered from preliminary interviews with leading IT companies, including
Microsoft. These discussions underscored the growing importance of prompt engi-
neering and precise documentation as essential skills for software developers in the
evolving landscape of AI-assisted coding. Based on these industry insights, the fol-
lowing research question was formulated:

How can generative AI and prompt engineering improve code development and
maintenance in a DevOps environment?

To help answer this primary question, three underlying questions were developed
and explored:

1. How is the growing use of LLMs in IT expected to impact the importance of
prompt engineering over traditional coding skills?

The growing integration of LLMs in software development is transforming the
role of developers, with prompt engineering becoming increasingly essential. As
Jan Cordtz estimates, the proportion of machine-generated code is set to increase
from 60% to 80%, highlighting the need for developers to shift focus from man-
ual coding to crafting precise and effective prompts. This shift was evident in
experiments with LLMs like GPT and Llama3, where the quality of generated

79

CHAPTER 8. CONCLUSION

code relied significantly on the clarity and structure of the prompts. While tra-
ditional coding skills remain valuable, they may increasingly be applied in new
ways, such as performing quality control on the outputs of machine-generated
code.

2. How can we develop software explicitly using natural language and prompt
engineering in low-code and no-code environments? (Follow-up: How can we
verify the quality of code generated by machines?)

This question was investigated through the first experiment, where LLMs were
tasked with generating software code from natural language prompts. Both GPT
and Llama3 were able to produce functional code, but their effectiveness was
limited to specific, localized sections of the codebase. This revealed a key limita-
tion: while natural language prompts are powerful, current models struggle to
manage interdependencies across larger repositories. One possible factor is the
output capacity of the models.

As for the follow-up question regarding code verification, the quality of machine-
generated code will rely primarily on human supervision and code review. De-
velopers will play a critical role in examining the generated code to ensure it
follows best practices, is maintainable, and meets the necessary quality stan-
dards. In the future, we can expect a rise in advanced code review tools that
will assist developers by automating parts of the review process, such as code
analysis and testing. In addition to human oversight, machine-generated code
should undergo rigorous automated testing, including unit and integration tests,
to ensure it meets functional and performance requirements.

3. How can a Retrieval-Augmented Generation (RAG) solution be developed to
streamline the comprehension and analysis of large technical documents in a
DevOps environment?

This question was directly addressed by the second experiment, which was con-
ducted in collaboration with Microsoft and Udviklings- og Forenklingsstyrelsen.
By developing a RAG solution in Azure, the project efficiently indexed large,
complex documents, significantly improving search and retrieval processes. This
experiment demonstrated how AI can enhance the comprehension and analysis
of interconnected information, drastically reducing the time required for manual
searches and improving overall workflow efficiency within the DevOps pipeline.

80

CHAPTER 8. CONCLUSION

Building on the insights gained from these experiments, a conceptual design was
developed to further optimize the coding stage in DevOps. The design combines the
strengths of RAG with the code-generation capabilities of LLMs to create a repository-
level editing tool, addressing the need for LLMs to understand and edit entire code-
bases rather than just isolated segments. However, a critical challenge remains: current
models are limited by their token capacity, typically ranging between 8,000 and 16,000
tokens. A full repository often exceeds this token limit, making it difficult for the
model to process all necessary context at once, thereby limiting its ability to handle
large, complex codebases in a single iteration.

By leveraging the RAG component, the conceptual design aims to provide better con-
text for the model to understand which code blocks will be affected by a given change
due to the semantic relation between the change and the impacted parts. This addi-
tional context would ideally improve the model’s efficiency in applying changes across
all affected areas of the repository, rather than addressing one isolated segment at a
time. While this may not be the perfect solution, it represents a step in the right direc-
tion toward achieving full repository coding assistance

In conclusion, this thesis proposes a promising conceptual design for enhancing the
coding stage in DevOps by integrating generative AI and prompt engineering. While
the research has identified both potential benefits and limitations of current AI tech-
nologies, it also emphasizes the importance of continued innovation to fully realize
this potential. The evolving role of AI in software development will require a careful
balance between automation and human expertise, ultimately positioning AI as not
just an assisting tool, but a future colleague of software developers. This research
has taken important steps toward answering both the primary research question and
the three underlying questions, demonstrating how AI can contribute to code de-
velopment and maintenance in DevOps, while also highlighting areas where further
progress is necessary.

81

Bibliography

[1] About Google DeepMind. Google DeepMind, 2015. url: https : / / deepmind .
google/about/ (visited on 04/05/2024).

[2] Reed Albergotti. OpenAI has received just a fraction of Microsoft’s $10 billion in-
vestment | Semafor. Semafor.com, Nov. 2023. url: https://www.semafor.com/
article/11/18/2023/openai-has-received-just-a-fraction-of-microsofts-
10-billion-investment (visited on 02/06/2024).

[3] Microsoft Corporate Blogs. Microsoft and OpenAI extend partnership - The Offi-
cial Microsoft Blog. The Official Microsoft Blog, Jan. 2023. url: https://blogs.
microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/
(visited on 02/06/2024).

[4] Alexander Bogner, Beate Littig, and Wolfgang Menz. “Introduction: Expert In-
terviews — An Introduction to a New Methodological Debate”. In: Palgrave
Macmillan UK eBooks (Jan. 2009), pp. 1–13. doi: 10.1057/9780230244276_1. url:
https://link.springer.com/chapter/10.1057/9780230244276_1 (visited on
03/14/2024).

[5] Rodrigo Campos. “Experimental methodology”. In: Fat crystal networks. CRC
Press, 2004, pp. 284–365.

[6] Giuseppe Carleo et al. “Machine learning and the physical sciences”. In: Reviews
of Modern Physics 91 (Dec. 2019). doi: 10.1103/revmodphys.91.045002. url:
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002
(visited on 02/20/2024).

[7] ChatGPT — Release Notes | OpenAI Help Center. Openai.com, 2024. url: https:
//help.openai.com/en/articles/6825453-chatgpt-release-notes (visited
on 02/06/2024).

[8] European Commission. Commission Implementing Regulation (EU) 2022/1636. 2022.
url: https://eur- lex.europa.eu/legal- content/EN/TXT/?uri=CELEX%
3A32022R1636&qid=1675868137077.

82

https://deepmind.google/about/
https://deepmind.google/about/
https://www.semafor.com/article/11/18/2023/openai-has-received-just-a-fraction-of-microsofts-10-billion-investment
https://www.semafor.com/article/11/18/2023/openai-has-received-just-a-fraction-of-microsofts-10-billion-investment
https://www.semafor.com/article/11/18/2023/openai-has-received-just-a-fraction-of-microsofts-10-billion-investment
https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/
https://blogs.microsoft.com/blog/2023/01/23/microsoftandopenaiextendpartnership/
https://doi.org/10.1057/9780230244276_1
https://link.springer.com/chapter/10.1057/9780230244276_1
https://doi.org/10.1103/revmodphys.91.045002
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.91.045002
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://help.openai.com/en/articles/6825453-chatgpt-release-notes
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R1636&qid=1675868137077
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R1636&qid=1675868137077

BIBLIOGRAPHY

[9] European Commission. Commission Implementing Regulation (EU) 2022/1637. 2022.
url: https://eur- lex.europa.eu/legal- content/EN/TXT/?uri=CELEX%
3A32022R1637&qid=1675868165905.

[10] European Commission. Council Directive (EU) 2020/262. 2022. url: https://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32020L0262.

[11] European Commission. Excise Movement and Control System. 2022. url: https:
/ / taxation - customs . ec . europa . eu / taxation / excise - duties / excise -
movement-control-system_en.

[12] Octopus Deploy. Continuous delivery & deployment automation tool for DevOps
teams | Octopus Deploy. Octopus Deploy, 2019. url: https://octopus.com/
(visited on 04/16/2024).

[13] Presley DevAnnand. LinkedIn. Linkedin.com, Mar. 2023. url: https : / / www .
linkedin . com / pulse / why - prompt - engineering - jobs - next - big - thing -
presley-devannand/ (visited on 02/12/2024).

[14] Christof Ebert et al. “DevOps”. In: IEEE Software 33 (May 2016), pp. 94–100.
doi: 10.1109/ms.2016.68. url: https://ieeexplore.ieee.org/abstract/
document/7458761?casa_token=UmMP8-Vw3rwAAAAA:cGwMIjx5r6RIa_ZJlsmowWYyh57iDrA_
1qsOin0axoibBAWpQuVR7QCl8lRW_ja3mHPVKAM (visited on 02/19/2024).

[15] Explainable AI | Google Cloud. Google Cloud, 2024. url: https://cloud.google.
com/explainable-ai (visited on 02/15/2024).

[16] Chaim Gartenberg. What is a long context window? Google, Feb. 2024. url: https:
//blog.google/technology/ai/long-context-window-ai-models/ (visited on
04/05/2024).

[17] Gemini - Google DeepMind. @googledeepmind, 2024. url: https://deepmind.
google/technologies/gemini/#introduction (visited on 04/05/2024).

[18] Gemini models. Google AI for Developers, 2024. url: https://ai.google.dev/
models/gemini (visited on 04/16/2024).

[19] Get started with Gemini Nano on Android (on-device). Google AI for Developers,
2024. url: https://ai.google.dev/tutorials/android_aicore (visited on
04/05/2024).

[20] Get started with GitLab CI/CD | GitLab. Gitlab.com, 2024. url: https://docs.
gitlab.com/ee/ci/#the-gitlab-ciyml-file (visited on 04/16/2024).

[21] Git. Git-scm.com, 2024. url: https://git-scm.com/ (visited on 04/12/2024).

[22] GitHub Copilot · Your AI pair programmer. GitHub, 2024. url: https://github.
com/features/copilot (visited on 03/05/2024).

[23] Google AI Foundation models – Google AI. Google AI, 2024. url: https://ai.
google/discover/foundation-models/ (visited on 04/05/2024).

83

https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R1637&qid=1675868165905
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32022R1637&qid=1675868165905
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32020L0262
https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32020L0262
https://taxation-customs.ec.europa.eu/taxation/excise-duties/excise-movement-control-system_en
https://taxation-customs.ec.europa.eu/taxation/excise-duties/excise-movement-control-system_en
https://taxation-customs.ec.europa.eu/taxation/excise-duties/excise-movement-control-system_en
https://octopus.com/
https://www.linkedin.com/pulse/why-prompt-engineering-jobs-next-big-thing-presley-devannand/
https://www.linkedin.com/pulse/why-prompt-engineering-jobs-next-big-thing-presley-devannand/
https://www.linkedin.com/pulse/why-prompt-engineering-jobs-next-big-thing-presley-devannand/
https://doi.org/10.1109/ms.2016.68
https://ieeexplore.ieee.org/abstract/document/7458761?casa_token=UmMP8-Vw3rwAAAAA:cGwMIjx5r6RIa_ZJlsmowWYyh57iDrA_1qsOin0axoibBAWpQuVR7QCl8lRW_ja3mHPVKAM
https://ieeexplore.ieee.org/abstract/document/7458761?casa_token=UmMP8-Vw3rwAAAAA:cGwMIjx5r6RIa_ZJlsmowWYyh57iDrA_1qsOin0axoibBAWpQuVR7QCl8lRW_ja3mHPVKAM
https://ieeexplore.ieee.org/abstract/document/7458761?casa_token=UmMP8-Vw3rwAAAAA:cGwMIjx5r6RIa_ZJlsmowWYyh57iDrA_1qsOin0axoibBAWpQuVR7QCl8lRW_ja3mHPVKAM
https://cloud.google.com/explainable-ai
https://cloud.google.com/explainable-ai
https://blog.google/technology/ai/long-context-window-ai-models/
https://blog.google/technology/ai/long-context-window-ai-models/
https://deepmind.google/technologies/gemini/#introduction
https://deepmind.google/technologies/gemini/#introduction
https://ai.google.dev/models/gemini
https://ai.google.dev/models/gemini
https://ai.google.dev/tutorials/android_aicore
https://docs.gitlab.com/ee/ci/#the-gitlab-ciyml-file
https://docs.gitlab.com/ee/ci/#the-gitlab-ciyml-file
https://git-scm.com/
https://github.com/features/copilot
https://github.com/features/copilot
https://ai.google/discover/foundation-models/
https://ai.google/discover/foundation-models/

BIBLIOGRAPHY

[24] Grafana: The open observability platform | Grafana Labs. Grafana Labs, 2024. url:
https://grafana.com/ (visited on 04/16/2024).

[25] High-level summary of the AI Act | EU Artificial Intelligence Act. Artificialintelli-
genceact.eu, 2024. url: https://artificialintelligenceact.eu/high-level-
summary/ (visited on 08/19/2024).

[26] Michael Hüttermann. DevOps for Developers. Google Books, 2012. url: https:
//books.google.dk/books?hl=da&lr=&id=JfUAkB8AA7EC&oi=fnd&pg=PR3&dq=
DevOps&ots=wpola5znjN&sig=P0i67_L8xi9L59N6j0DNH3HVC60&redir_esc=y#v=
onepage&q=DevOps&f=false (visited on 04/12/2024).

[27] Introducing GPTs. Openai.com, 2023. url: https://openai.com/blog/introducing-
gpts (visited on 03/25/2024).

[28] Introduction to the 3270 terminal. Ibm.com, June 2023. url: https://www.ibm.com/
docs/en/zos-basic-skills?topic=enhanced-introduction-3270-terminal
(visited on 08/17/2024).

[29] Kazuki Irie et al. “Language modeling with deep transformers”. In: arXiv preprint
arXiv:1905.04226 (2019).

[30] Ramtin Jabbari et al. “What is DevOps?” In: Proceedings of the Scientific Workshop
Proceedings of XP2016 on - XP ’16 Workshops (2016). doi: 10 . 1145 / 2962695 .
2962707.

[31] Jenkins. Jenkins, 2024. url: https://www.jenkins.io/ (visited on 04/12/2024).

[32] Florian June. A Brief Introduction to Retrieval Augmented Generation(RAG). Medium,
Jan. 2024. url: https://ai.plainenglish.io/a- brief- introduction- to-
retrieval-augmented-generation-rag-b7eb70982891 (visited on 07/15/2024).

[33] JUnit 5. Junit.org, 2019. url: https://junit.org/junit5/ (visited on 04/12/2024).

[34] Joe El khoury. Explained Methodologies and frameworks in Prompt Engineering. Medium,
Oct. 2023. url: https://medium.com/@jelkhoury880/some-methodologies-in-
prompt-engineering-fa1a0e1a9edb (visited on 04/16/2024).

[35] Zoe Kleinman. Why Google’s ’woke’ AI problem won’t be an easy fix. Bbc.com, Feb.
2024. url: https : / / www . bbc . com / news / technology - 68412620 (visited on
08/19/2024).

[36] Julia Km. What is Azure Pipelines? - Azure Pipelines. Microsoft.com, Feb. 2024.
url: https : / / learn . microsoft . com / en - us / azure / devops / pipelines /
get - started / what - is - azure - pipelines ? view = azure - devops (visited on
04/12/2024).

[37] Chuangji Li, Shizhuo Li, and Alan Wang. Retrieval-Augmented Multi-hop Code
Generation with CodeLlama and Unlimiformer. url: https://www.shizhuo-profile.
com/docs/Retrieval-Augmented%20Multi-hop%20Code%20Generation%20with%
20CodeLlama%20and%20Unlimiformer.pdf (visited on 08/21/2024).

84

https://grafana.com/
https://artificialintelligenceact.eu/high-level-summary/
https://artificialintelligenceact.eu/high-level-summary/
https://books.google.dk/books?hl=da&lr=&id=JfUAkB8AA7EC&oi=fnd&pg=PR3&dq=DevOps&ots=wpola5znjN&sig=P0i67_L8xi9L59N6j0DNH3HVC60&redir_esc=y#v=onepage&q=DevOps&f=false
https://books.google.dk/books?hl=da&lr=&id=JfUAkB8AA7EC&oi=fnd&pg=PR3&dq=DevOps&ots=wpola5znjN&sig=P0i67_L8xi9L59N6j0DNH3HVC60&redir_esc=y#v=onepage&q=DevOps&f=false
https://books.google.dk/books?hl=da&lr=&id=JfUAkB8AA7EC&oi=fnd&pg=PR3&dq=DevOps&ots=wpola5znjN&sig=P0i67_L8xi9L59N6j0DNH3HVC60&redir_esc=y#v=onepage&q=DevOps&f=false
https://books.google.dk/books?hl=da&lr=&id=JfUAkB8AA7EC&oi=fnd&pg=PR3&dq=DevOps&ots=wpola5znjN&sig=P0i67_L8xi9L59N6j0DNH3HVC60&redir_esc=y#v=onepage&q=DevOps&f=false
https://openai.com/blog/introducing-gpts
https://openai.com/blog/introducing-gpts
https://www.ibm.com/docs/en/zos-basic-skills?topic=enhanced-introduction-3270-terminal
https://www.ibm.com/docs/en/zos-basic-skills?topic=enhanced-introduction-3270-terminal
https://doi.org/10.1145/2962695.2962707
https://doi.org/10.1145/2962695.2962707
https://www.jenkins.io/
https://ai.plainenglish.io/a-brief-introduction-to-retrieval-augmented-generation-rag-b7eb70982891
https://ai.plainenglish.io/a-brief-introduction-to-retrieval-augmented-generation-rag-b7eb70982891
https://junit.org/junit5/
https://medium.com/@jelkhoury880/some-methodologies-in-prompt-engineering-fa1a0e1a9edb
https://medium.com/@jelkhoury880/some-methodologies-in-prompt-engineering-fa1a0e1a9edb
https://www.bbc.com/news/technology-68412620
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://learn.microsoft.com/en-us/azure/devops/pipelines/get-started/what-is-azure-pipelines?view=azure-devops
https://www.shizhuo-profile.com/docs/Retrieval-Augmented%20Multi-hop%20Code%20Generation%20with%20CodeLlama%20and%20Unlimiformer.pdf
https://www.shizhuo-profile.com/docs/Retrieval-Augmented%20Multi-hop%20Code%20Generation%20with%20CodeLlama%20and%20Unlimiformer.pdf
https://www.shizhuo-profile.com/docs/Retrieval-Augmented%20Multi-hop%20Code%20Generation%20with%20CodeLlama%20and%20Unlimiformer.pdf

BIBLIOGRAPHY

[38] Wei Li et al. “Improving Natural Language Capability of Code Large Language
Model”. In: arXiv preprint arXiv:2401.14242 (2024).

[39] Yu Liang et al. “Explaining the black-box model: A survey of local interpretation
methods for deep neural networks”. In: Neurocomputing 419 (2021), pp. 168–182.

[40] Lucidchart tool. Lucidchart.com, 2015. url: https : / / www . lucidchart . com /
pages/ (visited on 08/19/2024).

[41] Microsoft. Din daglige AI-ledsager | Microsoft Copilot. Microsoft.com, 2024. url:
https://www.microsoft.com/da-dk/microsoft-copilot/learn?form=MG0AUO&
OCID=MG0AUO#faq (visited on 07/30/2024).

[42] Microsoft. Microsoft Copilot: Din daglige ledsager med kunstig intelligens. Microsoft
Copilot: Din daglige ledsager med kunstig intelligens, 2024. url: https : / /
copilot.microsoft.com/ (visited on 07/30/2024).

[43] Microsoft. Visual Studio Code. Visualstudio.com, Nov. 2021. url: https://code.
visualstudio.com/docs/copilot/overview (visited on 03/05/2024).

[44] Prakash M Nadkarni, Lucila Ohno-Machado, and Wendy W Chapman. “Nat-
ural language processing: an introduction”. In: Journal of the American Medical
Informatics Association 18.5 (2011), pp. 544–551.

[45] Zhaoyang Niu, Guoqiang Zhong, and Hui Yu. “A review on the attention mech-
anism of deep learning”. In: Neurocomputing 452 (2021), pp. 48–62.

[46] Observability and IT Management Platform | SolarWinds. Solarwinds.com, 2023.
url: https://www.solarwinds.com/ (visited on 04/16/2024).

[47] Ollama. ollama, 2024. url: https : / / www . ollama . com / library (visited on
09/04/2024).

[48] OpenAI Platform. Openai.com, 2024. url: https://platform.openai.com/docs/
assistants/overview?context=with-streaming (visited on 03/15/2024).

[49] OpenAI Platform. Openai.com, 2024. url: https : / / platform . openai . com /
tokenizer (visited on 03/27/2024).

[50] OpenAI Platform. Openai.com, 2024. url: https://platform.openai.com/docs/
models (visited on 04/02/2024).

[51] Helen Orvaschel. “Structured and semistructured interviews”. In: Clinician’s hand-
book of child behavioral assessment. Elsevier, 2006, pp. 159–179.

[52] Athena Ozanich. The DevOps Pipeline: How It Works and How to Build One. Hub-
spot.com, Oct. 2023. url: https : / / blog . hubspot . com / website / devops -
pipeline (visited on 06/13/2024).

[53] Samson Oˇslakov. “Generative language models, AI chatbots, Retrieval aug-
mented generation”. In: (Dec. 2023).

85

https://www.lucidchart.com/pages/
https://www.lucidchart.com/pages/
https://www.microsoft.com/da-dk/microsoft-copilot/learn?form=MG0AUO&OCID=MG0AUO#faq
https://www.microsoft.com/da-dk/microsoft-copilot/learn?form=MG0AUO&OCID=MG0AUO#faq
https://copilot.microsoft.com/
https://copilot.microsoft.com/
https://code.visualstudio.com/docs/copilot/overview
https://code.visualstudio.com/docs/copilot/overview
https://www.solarwinds.com/
https://www.ollama.com/library
https://platform.openai.com/docs/assistants/overview?context=with-streaming
https://platform.openai.com/docs/assistants/overview?context=with-streaming
https://platform.openai.com/tokenizer
https://platform.openai.com/tokenizer
https://platform.openai.com/docs/models
https://platform.openai.com/docs/models
https://blog.hubspot.com/website/devops-pipeline
https://blog.hubspot.com/website/devops-pipeline

BIBLIOGRAPHY

[54] Sophia Lagerkrans Pandey. Introduction to Semantic Kernel. Microsoft.com, June
2024. url: https://learn.microsoft.com/en-us/semantic-kernel/overview/
(visited on 08/17/2024).

[55] Patrick Parker. “Prompt Engineering for identity security professionals”. In:
(May 2023).

[56] European Parliament. EU AI Act: first regulation on artificial intelligence. Europa.eu,
June 2023. url: https : / / www . europarl . europa . eu / topics / en / article /
20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
(visited on 02/15/2024).

[57] Mohammed Karimkhan Pathan. LinkedIn. Linkedin.com, 2024. url: https://
www.linkedin.com/pulse/zero-shot-one-few-learning-prompt-engineering-
pathan/ (visited on 04/16/2024).

[58] Sundar Pichai. An important next step on our AI journey. Google, Feb. 2023. url:
https://blog.google/technology/ai/bard- google- ai- search- updates/
(visited on 04/05/2024).

[59] Sundar Pichai. Introducing Gemini: our largest and most capable AI model. Google,
Dec. 2023. url: https://blog.google/technology/ai/google- gemini- ai/
(visited on 04/16/2024).

[60] Sundar Pichai. Our next-generation model: Gemini 1.5. Google, Feb. 2024. url:
https://blog.google/technology/ai/google- gemini- next- generation-
model-february-2024/#sundar-note (visited on 04/16/2024).

[61] Christopher CR Powers David MW Turk. Machine learning of natural language.
Springer Science & Business Media, 2012.

[62] Sunil Ramlochan. System Prompts in Large Language Models. Prompt Engineering,
Mar. 2024. url: https://promptengineering.org/system-prompts-in-large-
language-models/ (visited on 04/16/2024).

[63] Michele Salvagno, Fabio Silvio Taccone, and Alberto Giovanni Gerli. “Artificial
intelligence hallucinations”. In: Critical Care 27.1 (2023), p. 180.

[64] Christiane Schmidt. “The analysis of semi-structured interviews”. In: A compan-
ion to qualitative research 253.41 (2004), p. 258.

[65] Selenium. Selenium. Selenium, 2024. url: https://www.selenium.dev/ (visited
on 04/12/2024).

[66] M. Shen. Anomaly Detection Tumours Lecture in ICTE MSc Program. Presentation
in ICTE MSc Program, Aalborg University. Lecture conducted at Aalborg Uni-
versity, Denmark, March 31. 2023.

[67] M. Shen. Linear Regression and Gradient Descent Lecture in ICTE MSc Program.
Presentation in ICTE MSc Program, Aalborg University. Lecture conducted at
Aalborg University, Denmark, February 10. 2023.

86

https://learn.microsoft.com/en-us/semantic-kernel/overview/
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.europarl.europa.eu/topics/en/article/20230601STO93804/eu-ai-act-first-regulation-on-artificial-intelligence
https://www.linkedin.com/pulse/zero-shot-one-few-learning-prompt-engineering-pathan/
https://www.linkedin.com/pulse/zero-shot-one-few-learning-prompt-engineering-pathan/
https://www.linkedin.com/pulse/zero-shot-one-few-learning-prompt-engineering-pathan/
https://blog.google/technology/ai/bard-google-ai-search-updates/
https://blog.google/technology/ai/google-gemini-ai/
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://blog.google/technology/ai/google-gemini-next-generation-model-february-2024/#sundar-note
https://promptengineering.org/system-prompts-in-large-language-models/
https://promptengineering.org/system-prompts-in-large-language-models/
https://www.selenium.dev/

BIBLIOGRAPHY

[68] M. Shen. Unsupervised learning and machine learning implementation Lecture in ICTE
MSc Program. Presentation in ICTE MSc Program, Aalborg University. Lecture
conducted at Aalborg University, Denmark, April 21. 2023.

[69] M. Shen. What is Machine Learning? Lecture in ICTE MSc Program. Presentation in
ICTE MSc Program, Aalborg University. Lecture conducted at Aalborg Univer-
sity, Denmark, February 3. 2023.

[70] Tarry Singh. LinkedIn. Linkedin.com, Mar. 2023. url: https://www.linkedin.
com/pulse/impact- large- language- models- future- jobs- tarry- singh/
(visited on 02/06/2024).

[71] Christian von Soest. “Why Do We Speak to Experts? Reviving the Strength of
the Expert Interview Method”. In: Perspectives on Politics 21 (June 2022), pp. 277–
287. doi: 10.1017/s1537592722001116. url: https://www.cambridge.org/
core/journals/perspectives- on- politics/article/why- do- we- speak-
to-experts-reviving-the-strength-of-the-expert-interview-method/
45E710F27CEC6E739B015E10A161E140 (visited on 03/14/2024).

[72] Sora: Creating video from text. Openai.com, 2015. url: https://openai.com/sora
(visited on 04/05/2024).

[73] The ATM | IBM. Ibm.com, 2024. url: https://www.ibm.com/history/atm
(visited on 08/17/2024).

[74] The Size and Quality of a Data Sets in Machine Learning. Google for Developers,
2022. url: https://developers.google.com/machine-learning/data-prep/
construct/collect/data-size-quality (visited on 03/14/2024).

[75] Gary A Troia. “Phonological awareness intervention research: A critical review
of the experimental methodology”. In: Reading Research Quarterly 34.1 (1999),
pp. 28–52.

[76] Ashish Vaswani et al. Attention Is All You Need. arXiv.org, 2017. url: https:
//arxiv.org/abs/1706.03762 (visited on 03/25/2024).

[77] Chenguang Wang, Mu Li, and Alexander J Smola. “Language models with trans-
formers”. In: arXiv preprint arXiv:1904.09408 (2019).

[78] Shangwen Wang et al. “Natural Language to Code: How Far Are We?” In: Pro-
ceedings of the 31st ACM Joint European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering. 2023, pp. 375–387.

[79] Tian Wang and Kyunghyun Cho. “Larger-context language modelling”. In: arXiv
preprint arXiv:1511.03729 (2015).

[80] Jonathan J Webster and Chunyu Kit. “Tokenization as the initial phase in NLP”.
In: COLING 1992 volume 4: The 14th international conference on computational lin-
guistics. 1992.

87

https://www.linkedin.com/pulse/impact-large-language-models-future-jobs-tarry-singh/
https://www.linkedin.com/pulse/impact-large-language-models-future-jobs-tarry-singh/
https://doi.org/10.1017/s1537592722001116
https://www.cambridge.org/core/journals/perspectives-on-politics/article/why-do-we-speak-to-experts-reviving-the-strength-of-the-expert-interview-method/45E710F27CEC6E739B015E10A161E140
https://www.cambridge.org/core/journals/perspectives-on-politics/article/why-do-we-speak-to-experts-reviving-the-strength-of-the-expert-interview-method/45E710F27CEC6E739B015E10A161E140
https://www.cambridge.org/core/journals/perspectives-on-politics/article/why-do-we-speak-to-experts-reviving-the-strength-of-the-expert-interview-method/45E710F27CEC6E739B015E10A161E140
https://www.cambridge.org/core/journals/perspectives-on-politics/article/why-do-we-speak-to-experts-reviving-the-strength-of-the-expert-interview-method/45E710F27CEC6E739B015E10A161E140
https://openai.com/sora
https://www.ibm.com/history/atm
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762

BIBLIOGRAPHY

[81] What is explainable AI? | IBM. Ibm.com, 2024. url: https://www.ibm.com/
topics/explainable-ai (visited on 02/15/2024).

[82] Qinyuan Ye et al. Prompt Engineering a Prompt Engineer. arXiv.org, 2023. url:
https://arxiv.org/abs/2311.05661 (visited on 04/16/2024).

[83] Wojciech Zaremba and Greg Brockman. OpenAI Codex. Openai.com, 2021. url:
https://openai.com/blog/openai-codex (visited on 02/06/2024).

[84] Zero-Shot Prompting – Nextra. Promptingguide.ai, 2022. url: https : / / www .
promptingguide.ai/techniques/zeroshot (visited on 04/16/2024).

[85] Yongchao Zhou et al. “Large language models are human-level prompt engi-
neers”. In: arXiv preprint arXiv:2211.01910 (2022).

88

https://www.ibm.com/topics/explainable-ai
https://www.ibm.com/topics/explainable-ai
https://arxiv.org/abs/2311.05661
https://openai.com/blog/openai-codex
https://www.promptingguide.ai/techniques/zeroshot
https://www.promptingguide.ai/techniques/zeroshot

Appendix A

Appendix A name

A.1 Pictures generated using DALL·E 3

Illustrating how the model can be confused and treats ambiguity of words in a seman-
tic relation to the sentence. Click here to get back to the text 3.2.

Figure A.1: Illustrating how models can be confused about the ambiguity of words - A financial institu-
tion (bank) is different from a riverbank. The semantic relation between the words in a sentence guides
the model to distinguish ambiguity.

A.2 Tagged prompt engineering conversation

The link to the conversation I had when creating the example for section 3.5.1: https://chat.openai.com/share/9e46e27d-
a144-4b52-8c59-d6274afe849a

89

APPENDIX A. APPENDIX A NAME

A.3 Interviews

A.3.1 Mads Brodt - Dwarf

Front-End Lead | Helping front-end engineers level up their skills and land jobs |
JavaScript, React, Vue, TailwindCSS

LinkedIn: https://www.linkedin.com/in/madsbrodt/

Front-end lead employed at Dwarf - Works on large consultant projects. Lego as main
customer, working across teams beyond front-end.

Mængde af møder - Møde referat - Hvor mange deltager ift. hvor mange der er
AKTIVE til mødet. Tid og pengebesparelse.

A.3.2 Johan Fenn Bagger Nærby - Connected Cars

Software Engineer by trade, entrepreneur by heart

LinkedIn: https://www.linkedin.com/in/johanfbn/

A.3.3 Andreas Dahl Pedersen - ASIMUT Software

Media developer at ASIMUT software ApS

LinkedIn: https://www.linkedin.com/in/andreas-dahl-pedersen-1049ba28b/

A.3.4 Regnar Vedsted - Lego

Software Developer

LinkedIn: https://www.linkedin.com/in/regnar-vedsted-9180a517a/

A.3.5 Mathias Vilbrad - Netcompany

Tech enthusiast working within Data Analytics | Software Development | Digital
Marketing | Artificial Intelligence
LinkedIn: https://www.linkedin.com/in/mathias-vildbrad-72b654155/

90

	Front page
	English title page
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 The Central Role of Code Documentation
	1.2.2 A New Approach: Documentation First, Code Second

	1.3 Problem Definition & Research Question
	1.4 Expected Outcome
	1.4.1 Drafting a Conceptual Design

	2 Methodology
	2.1 Desktop Research
	2.2 Expert Interview
	2.3 Experimental Method

	3 Theory
	3.1 Machine Learning
	3.2 Natural Language Processing
	3.2.1 Generative AI

	3.3 Large Language Model
	3.3.1 Fine-tuning

	3.4 Retrieval Augmented Generation
	3.5 Prompt Engineering
	3.5.1 Tagged User Prompting
	3.5.2 Zero-shot & Few-shot Prompting

	4 State-of-the-art
	4.1 OpenAI ChatGPT
	4.2 Google Gemini (Bard)
	4.3 Ollama
	4.4 Microsoft Copilots
	4.5 DevOps
	4.5.1 Improving DevOps via LLM Integration

	5 Analysis
	5.1 Preliminary interview with Microsoft
	5.1.1 Structure & logistics
	5.1.2 The Interview with Jan Cordtz

	5.2 Interview with Udviklings- og Forenklingsstyrelsen (UFST)
	5.2.1 Structure & logistics
	5.2.2 The Interview with Tom Willy Nielsen

	5.3 Generating Experiments: Collaborative meeting between UFST and Microsoft on AI for DevOps usecases
	5.4 Outlining Experiments
	5.4.1 Experiment One - Code Generation Based on Code Documentation
	5.4.2 Experiment Two - Simplifying and Translating Lengthy Technical Documents
	5.4.3 Experiment Three - Generating New Code for Existing Codebases
	5.4.4 Experiment Four - Reconstructing Legacy Codebases

	5.5 Assessing Experiment Prioritization
	5.6 Experiment: Code Generation Using Prompt Engineering in Large Language Models
	5.6.1 GPT vs. Ollama
	5.6.2 Prompt Creation
	5.6.3 Analyzing the Performance of GPT and Llama3 in Code Generation via Prompt Engineering

	5.7 Experiment: Simplifying and translating lengthy technical documents via RAG
	5.7.1 Setup of the RAG Solution in Microsoft Azure
	5.7.2 Selection of Documents
	5.7.3 Designing System prompt and User prompts
	5.7.4 Testing with Tom from UFST
	5.7.5 Results of the Experiment & Further Testing

	6 Conceptual Design
	6.1 Integration into IDEs
	6.1.1 Localized Editing in Comparison to Repository-level Editing

	6.2 Dynamic Vector Database and Modification Capabilities
	6.3 Use Case 1: Adding New Code to Existing Codebases
	6.4 Use Case 2: Generating New Services Based on Existing Codebases
	6.5 Process Description
	6.5.1 Step 1: Add for Indexing
	6.5.2 Step 2: Indexing
	6.5.3 Step 3: Query, Vectorize, and Search
	6.5.4 Step 4: Retrieve
	6.5.5 Step 5: Augment
	6.5.6 Step 6: LLM Processing
	6.5.7 Step 7: Generate Mirrored Repository with Changes
	6.5.8 Step 8: Generate Code Documentation of Changes
	6.5.9 Step 9: Merge with the Repository

	6.6 Efficiency, Optimization, and Reversion
	6.7 Current Limitations and Future Improvements

	7 Discussion
	7.1 Reflections
	7.2 The EU AI Act, Explainable AI, and Quality Assurance
	7.2.1 Model Feedback Loop

	7.3 The Social Impact of Integrating LLMs into DevOps

	8 Conclusion
	Bibliography
	A Appendix A name
	A.1 Pictures generated using DALL·E 3
	A.2 Tagged prompt engineering conversation
	A.3 Interviews
	A.3.1 Mads Brodt - Dwarf
	A.3.2 Johan Fenn Bagger Nærby - Connected Cars
	A.3.3 Andreas Dahl Pedersen - ASIMUT Software
	A.3.4 Regnar Vedsted - Lego
	A.3.5 Mathias Vilbrad - Netcompany

