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This research addresses the pressing issue of accurately calculating and predicting the car-
bon emissions of the information and communication technology (ICT) sector, a significant
contributor to global greenhouse gas emissions. Despite increasing attention, the methodolo-
gies and factors influencing ICT’s carbon footprint remain ambiguous. The study employs a
mixed-methods approach, integrating a systematic literature review, time series analysis, and
regression analysis, to identify significant factors and predict future emissions. Key findings
reveal that electricity consumption is the most critical factor driving ICT emissions, along
with device shipments and energy demand. Predictive models suggest a steady increase
in carbon emissions, reaching 945 MtCO2e in 2030 and 991 MtCO2e by 2035, and high-
light discrepancies with previous studies. The study emphasizes the need for standardized
calculating methodologies and constant monitoring to inform policy and industrial actions
successfully. Limitations include reliance on estimated past values and a broad approach
that does not account for the entire life-cycle of ICT devices. Future research should focus
on detailed data collection and ongoing collaboration to address the dynamic nature of tech-
nological advancements. This study provides a foundation for more accurate and informed
strategies to mitigate the environmental impact of the ICT sector.
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1 Introduction

Modernization comes at a significant cost to the environment. Global temperature has been
rising at a pace of 0.18◦C each decade since 1981, up from an average of 0.08◦C during
1880-1980 (Allen & Tildesley, 1987). Global warming is mostly caused by greenhouse gas
emissions from burning fossil fuels, with CO2 being the most significant contributor. About
three-fourths of all emissions come from CO2, which rose by 51% between 1990 and 2015
(US EPA, 2024). Global emissions of greenhouse gases are continually growing (NSW Gov-
ernment, 2024). Between 1990 and 2019, the overall warming impact of greenhouse gases
produced by civilization on the Earth’s atmosphere grew by 45% (US EPA, 2024). Rising
GHG threatens the world’s future by causing severe weather, rising sea levels, droughts, and
health risks (Abdouli & Hammami, 2017). The economy, human health, and the environ-
ment are all significantly impacted by greenhouse gas emissions, underscoring the urgent
need for international action to cut emissions and lessen the effects of climate change.

A small number of countries, particularly China, the United States, India, the European
Union, Russia, and Brazil, are the main contributors to global greenhouse gas (GHG) emis-
sions, collectively responsible for over 61% of global GHG emissions (Crippa et al., 2023).
China, the United States, and India alone account for 42.6% of total emissions, whereas the
bottom 100 countries contribute just 2.9% (Johannes Friedrich & Vigna, 2023). Per capita
emissions are highest in the United States and Russia, and the largest per capita CO2 emitters
are typically major oil-producing nations with smaller populations (Ritchie & Roser, 2020).
Thus, these nations are major targets for international initiatives to cut greenhouse gas emis-
sions and address climate change since they contribute significantly to global emissions.
Nearly three-quarters of global emissions come from the energy sector, with electricity and
heat production being the most significant sources (Ritchie, Rosado & Roser, 2020).

The main contributors to global greenhouse gas (GHG) emissions are the energy sector,
industry, buildings, waste management, agriculture, forestry, other land use, and transporta-
tion. Figure 1 shows the percentages for every sector. The energy sector is the largest
source, responsible for 25–30% of emissions from heat and power generation, transporta-
tion, and industrial operations (Ritchie, Rosado & Roser, 2020; Climate Watch, 2022). Agri-
culture, including land use changes, animal production, deforestation, and crop cultivation,
contributes 18–20% of global emissions. Industrial processes and product consumption ac-
count for around 9-10% of emissions, with buildings contributing 17-18% through the use of
power, heat, and air conditioning. The transportation sector, comprising shipping, aviation,
and road transport, accounts for 16-18% of global emissions, with road transport being the
largest source (Climate Watch, 2022; Ritchie, Rosado & Roser, 2020). Waste management,
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including waste incineration, wastewater treatment, and solid waste disposal, contributes 3-
4% of emissions (Ritchie, Rosado & Roser, 2020). Reducing emissions across these sectors
is essential for addressing climate change.

Figure 1: Main contributors to global greenhouse gas (GHG) emissions

Humanity must reduce its greenhouse gas (GHG) emissions by half every ten years to keep
global warming to 1.5–2 degrees Celsius over pre-industrial levels. By 2050, these emissions
should only make up a small portion of what they do presently (Rockström et al., 2017). The
Intergovernmental Panel on Climate Change (IPCC) of the United Nations estimates that to
keep global average temperature increases below 2◦C, global greenhouse gas emissions must
be lowered by 40–70% by the year 2050 compared to 2010 (Pachauri & Meyer, 2014). En-
vironmental organizations and researchers are exploring elements that might reduce carbon
emissions while simultaneously promoting global economic growth.

The field of information and communication technology (ICT) has not only been expand-
ing quickly at present but also has seen remarkable global advancements already. Figure
2 shows the growth of IT expenditure on enterprise software over the years. ICTs are piv-
otal in mitigating GHG emissions and combating climate change. The ICT sector can sig-
nificantly reduce global GHG emissions, with the Global e-Sustainability Initiative (GeSI)
indicating a potential 20% reduction by 2030 (United Nations Framework Convention on
Climate Change (UNFCCC), 2016). ICT in total, aids in monitoring and mitigating climate
change by tracking emissions and promoting energy-efficient practices, supporting the shift
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to a low-carbon economy. This sector is noteworthy due to its growth and ability to re-
duce greenhouse gas emissions in other industries by offering alternatives to transportation,
travel, tangible commodities, and other related industries (Berkhout & Hertin, 2004; Hilty,
Arnfalk, et al., 2006). Furthermore, this sector provides innovative solutions across various
sectors, addressing the broader 97.5% of global emissions, and aligns with green transition
initiatives like digital transformation for climate neutrality (International Telecommunica-
tion Union (ITU), 2014). The International Telecommunication Union (ITU) has established
standards and methodologies to assess ICT’s environmental impact, helping companies re-
duce emissions and achieve climate goals. In summary, ICT’s role is crucial in emission
reduction, climate monitoring, offering innovative solutions, supporting green transitions,
and adhering to environmental standards.

Figure 2: IT spending on enterprise software worldwide. Gartner, January 17, 2024

A framework for avoided emissions was presented by Mission Innovation, an initiative that
supports global clean energy innovation that connects 23 nations with the EU. It encom-
passes ICT solutions and is meant to assist investors and decision-makers in promoting and
accelerating the development of low-carbon solutions (Stephens & Thieme, 2018). The Paris
Agreement, which “aims to strengthen the global response to the threat of climate change,”
has been approved by 195 member nations as of October 2017 (UNFCCC, 2015). CO2
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emissions are still rising in spite of the Paris Agreement and the Kyoto Protocol. Numerous
research works concentrate on the connection between ICT and CO2 emissions. Although
ICT goods and services contribute to environmental degradation, they also have a great deal
of potential to mitigate it by replacing environmentally unfriendly items with ICT products
and streamlining manufacturing processes (Erdmann & Hilty, 2010; Arushanyan, Ekener-
Petersen & Finnveden, 2014; Malmodin, Moberg, et al., 2010).

Digitalization through information and communication technologies (ICTs) affects several
aspects of society and the economy, including power usage and CO2 emissions. ICT has
a significant influence on power usage and indirect CO2 emissions (Danish, Khan, et al.,
2018). Recent estimates (SG Andrae, 2020) indicate that ICT-related CO2 emissions ac-
count for around 4% of total world emissions in 2020 and are anticipated to rise further.
Based on statistics from 2007, the information and communications technology (ICT) indus-
try accounts for 1.3% of worldwide greenhouse gas emissions (Malmodin, Moberg, et al.,
2010). Furthermore, Mingay, 2007 notes that the ICT sector is responsible for 2% of global
greenhouse gas emissions. According to an estimate, by 2020, the growth of the ICT sector
would result in a 1.1 Gt carbon footprint (Malmodin, Bergmark & Lundén, 2013).

ICT may affect the environment in both beneficial and detrimental ways. ICT can signifi-
cantly reduce global GHG emissions by up to 12,000 Mt-CO2eq by 2030 across sectors like
smart buildings and mobility, contributing over $11 trillion in economic benefits (X. Zhang
et al., 2022). It enhances productivity, improves logistics efficiency, and supports sustain-
able production and consumption patterns (Higón, Gholami & Shirazi, 2017). ICT can offer
some direction towards reducing how much human activity affects the environment. For
example, by decreasing the requirement for transportation, e-commerce can help reduce the
consumption of fuel (Yi & Thomas, 2007). However, the ICT’s rising energy consumption
and emissions are a growing concern. The growth of ICT has led to the proliferation of
consumer electronics like PCs, smartphones, TVs, and home entertainment systems, as well
as networking technologies such as wired networks and 3G/4G LTE, and the expansion of
data centers. While ICT has enabled technologies such as cryptocurrency, AI, e-commerce,
online entertainment, social networking, and cloud storage, it has also had a significant neg-
ative impact on the environment (Gupta et al., 2021). By 2030, ICT could account for up
to 23% of global GHG emissions if not mitigated. Transitioning to renewable energy could
reduce the sector’s carbon footprint by over 80% (Ericsson IndustryLab, 2024).

The main sources of carbon emissions in the ICT sector are network operations, data centers,
and ICT equipment. When dividing emissions into usage and life cycle components, user de-
vices such as mobile phones and computers account for the majority of emissions (Malmodin
& Lundén, 2018). The energy requirements of data centers for operation and cooling, in
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addition to emissions from equipment manufacturing and transportation, make them a sub-
stantial contributor. Emissions are further increased by network operations, such as fixed
and mobile access (Ayers et al., 2023). The industry’s emissions have not changed despite
an increase in data traffic, which emphasizes the need for greater energy efficiency and the
use of renewable energy sources to lessen the impact on the environment (Carbon4Finance,
2023). As of 2020, the ICT sector accounted for 4-6% of global electricity usage, excluding
TVs. This share is projected to increase over the next 5-10 years due to rising demand for
digital services and technologies (Aimee Ross, 2022). Despite improvements in energy effi-
ciency and renewable energy use, emerging technologies like 5G, AI, and cryptocurrencies
are expected to drive a continued increase in electricity consumption (Gelenbe, 2023).

ICT goods raise CO2 emissions at every stage of their life cycle—production, usage, and
disposal—as confirmed by Danish, B. Zhang, et al., 2017. Dedrick, 2010 and Molla, Pit-
tayachawan & Corbitt, 2009 underline the necessity for immediate measures to mitigate the
negative environmental consequences of ICT. The ICT sector is frequently criticized for its
exponential rise in energy use. Digital devices are becoming more and more necessary in
present-day society. As a result, there has been an increase in energy consumption in the
manufacturing sectors in recent years. The need for electricity to power ICT gadgets is the
primary cause of the rise in CO2 emissions. This has a direct impact on both global warming
and greenhouse gas (GHG) emissions (Belkhir & Elmeligi, 2018). A significant amount of
carbon emission of ICT comes from energy consumption through the ICT sector. Currently,
the ICT industry accounts for around 8% of worldwide power consumption. The production
of ICT goods is expected to rise over the next decade, potentially increasing energy con-
sumption and GHG emissions, particularly in industries where electrical networks have a
higher carbon intensity (Andrae & Edler, 2015; Andrae, Hu, et al., 2017).

The complexity and diversity of the ICT industry, which includes a wide range of products
and services such as computer systems, data centers, and communication networks, make
it difficult to calculate the sector’s carbon emissions (Carbon4Finance, 2023; Data Bridge
Market Research, 2023). Intricacy is increased by the lack of established procedures, in-
consistent data quality, and several sources of emissions, including embodied, operational,
and end-of-life emissions. Products’ whole life cycle—from the extraction of raw materials
to their disposal—must be taken into account (Jha et al., 2022). Accurate quantification is
made more difficult by geographical differences and the rapid evolution of technology (Jha
et al., 2022; Data Bridge Market Research, 2023). For instance, IoT testing solutions do not
allow for detailed benchmarking of energy use and carbon emissions, hence removing the
environmental impact from the testing (Beilharz et al., 2021). The difficulty of calculating
correct estimates contributes to testing devices’ failure to report energy and carbon emissions



15

(Trihinas et al., 2022). It might be challenging to estimate the sector’s overall emissions im-
pact when considering rebound effects, which occur when efficiency improvements result in
higher demand (Freitag et al., 2021).

The Global eSustainability Initiative, which advocates for ICT companies, states in their re-
port SMARTer 2030 (Global e-Sustainability Initiative (GeSI), 2015) that ICT could save
9.1 GtCO2e in 2020 and 12.08 GtCO2e in 2030 in other industries, including manufacturing,
transportation, health, education, buildings, and agriculture—mostly as a result of increased
efficiency. Keeping emissions at 2015 levels and severing the link between economic devel-
opment and emissions increase, would enable a 20% decrease in global CO2 emissions by
2030. In light of their projections of ICT’s own emissions of 1.27 GtCO2e in 2020 and 1.25
GtCO2e in 2030, GeSI (Global e-Sustainability Initiative (GeSI), 2015) contends that ICT is
carbon neutral and that public and private sectors need to increase their ICT spending. They
claim that ICT reduced emissions by 1.5 times in just 2015. The GeSI report, sponsored by
many significant ICT businesses, lacks transparency in its analysis, raising questions about
potential conflicts of interest. Currently, there is limited data to support these predictions.

Reducing the adverse impact of ICT on the environment is the goal of the “green ICT” ef-
fort. With little to no negative environmental impact, green ICT epitomizes this industry’s
efficacy and efficiency (Askarzai, 2011). To create better transportation, energy, and indus-
trial processes as well as cities, ICT is a crucial component (Danish, B. Zhang, et al., 2017).

1.1 Motivation

The information and communications technology (ICT) industry is essential to modern civi-
lization as the foundation for international trade, communication, and information collabora-
tion. Still, there are considerable environmental problems resulting from the rapid develop-
ment and broad use of ICT, especially when considering carbon emissions. It is challenging
to calculate the carbon emissions of the ICT industry because it requires knowledge of the
different sources of emissions, the methodologies used to measure these emissions, and the
complexities of the sector’s operations.

The ICT sector’s carbon footprint is a multifaceted issue that encompasses a wide range of
activities, from the manufacturing and transportation of devices to the energy consumption
and maintenance of data centers and networks. The sector’s emissions are also influenced
by factors such as the type and quality of energy used, the efficiency of devices and systems,
and the overall scale of operations.

Despite the necessity of precisely quantifying ICT carbon emissions, the endeavor is riddled
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with difficulty. One of the key challenges is the complexity of the sector’s operations, which
include a wide range of technology, systems, and procedures. This complexity makes it
difficult to precisely monitor emissions since it necessitates a thorough grasp of the sector’s
inner workings and the different elements that contribute to emission levels.

Another challenge in calculating ICT’s carbon emissions is the lack of standardized methods
and protocols. The ICT sector is characterized by a diverse range of activities, each with its
unique set of emissions sources and factors. This diversity makes it difficult to develop a sin-
gle, universally accepted method for calculating emissions, and instead, various approaches
and frameworks have been developed to address specific aspects of the sector’s emissions.

The absence of established procedures and protocols leads to heterogeneity in emissions esti-
mates across research and reports. This variety can cause confusion and ambiguity, making it
difficult to design effective emissions-reduction and sustainability plans in the ICT industry.

The purpose of this research is to assist in the advancement of a more precise and thorough
knowledge of the carbon emissions associated with ICT. This study will use a numerical
approach to calculate the carbon emission of ICT and compare the present-day values with
those of previous studies.

1.2 Problem definition

The ICT sector’s share of global GHG emissions ranges from approximately 1.8% to 3.9%
according to various studies, with some estimates adjusting this figure upwards to account
for the truncation of supply chain emissions (Freitag et al., 2021). The ICT sector’s car-
bon footprint is comparable in size to that of the aviation industry in recent years (Avant
Garde Group, 2021). This 2.1% difference makes a big difference while considering the
global GHG emission. Therefore it is important to analyse with a more accurate and precise
quantification to take further actions.

The GeSI report in 2008 predicted that the carbon emission of ICT would be 1470 MtCO2e
in the year 2020. However, their later report in 2012 estimated the value is less than the
previous prediction. There the mentioned value is estimated to be 1270 MtCO2e. Also,
another study by Andrae & Edler, 2015 showed several attributes and their values as well as
estimates relating to electricity usage of ICT. But later on a study by Andrae, 2019 proposed
new estimates for some of the attributes mentioning the previous study overestimated the
values.

Also, the GeSI report considered the ICT devices in a different way than Malmodin’s study.
The GeSI calculation includes TV and paper media in their ICT sector but malmodin calcu-
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lated separated the TV and media from the main ICT sector. Therefore, it is clear that there
are obvious inconsistencies in the comparison done for the carbon emission of ICT. Thus, the
problem statement for this research is defined by addressing the concern of the inconsistent
definition of the ICT sector and the need for a standardized method.

The problem statement can be stated as follows:

“Despite growing research on the environmental impact of Information and Com-
munication Technologies (ICT), a clear understanding of ICT’s global carbon
dioxide emissions remains elusive. While some previous studies highlight de-
tailed calculation methods for carbon emission of ICT, there is a lack of stan-
dardized methods and identifying factors. The unclear methods for predictions
of the future values of carbon emission need to be addressed.”

1.3 Research objectives and questions

From the previous studies and problem statement mentioned in the report, it is clear that
there is certainly an ambiguity whilst calculating ICT’s carbon emission. Also, the uncleared
forecasting of future values needs to be studied further. Hence, the main question this project
tries to answer is:

“How can the carbon emission of the ICT sector be calculated as well as
forecasted?”

The problem statement can further be broken down into sub-problems and smaller research
questions that are stated below.

Sub-problems/research questions:

1. What significant factors need to be considered while calculating ICT’s carbon emis-
sions?

2. To what extent does electricity consumption impact the carbon footprint of the ICT
sector?

1.4 Focus areas and expected outcomes

This paper addresses the gap mentioned in the problem statement by investigating the fac-
tors that affect the carbon dioxide emissions of ICT in a global context. This work will
explore the previously conducted calculation methods and provide the latest analysis as well
as predictions for the next decade. Firstly, a systematic literature review will be conducted
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to identify the current state and findings of recent studies in the field. After that, the findings
will be sorted, analyzed, and outlined to answer the research goal.

To address the main research question of calculating carbon emissions of ICT, different ma-
chine learning algorithms will be used to calculate and predict future values. For that, the
ICT sector will be defined and what each sector includes will be identified. Under each sec-
tor, there will be separate attributes contributing to the overall emission. Since the attributes
used in this research are expected to be a training set for the outcomes. Thus, the prediction
and other analyses are based on the model’s learning techniques. Therefore, the features that
will be selected will not predict the values based on basic arithmetic operations. Also, the
factors contributing to the emission calculation will be identified through coding analysis.

The result is expected to be in the ranges mentioned in the previous estimations. This would
clarify what considerations are taken into account and what is missing that could change
the prediction. Also, the proof of being in the mentioned range will be able to validate the
previous calculation to some extent. The outcome is significantly important to the ICT for
Sustainability research field as predicting carbon footprint is quite challenging and has varied
a lot previously.

1.5 Structure of the Thesis

In the first introductory chapter, an overview of the world’s GHG emissions and relative stud-
ies are discussed by laying out the motivation of the research. Following that, the problem is
defined by the importance of measuring carbon emissions in the ICT sector. After that, the
appropriate research question along with the sub-questions is mentioned to help identify the
methodology applied to conduct the research.

The background chapter discusses the role of ICT in sustainability research and how it is
related to other fields. The extent of emissions in the ICT industry is extensively discussed
with many sources of emitters. The impact of ICT on sustainability is discussed with some
foundational models in this field that are widely talked about in this section. Following that,
the state-of-the-art chapter discusses current studies that compute carbon emissions using
a technique specific to the ICT industry. It also includes the methods that were followed
by other authors to calculate as well as predict the values of carbon emission of ICT. The
methodology chapter describes the strategy used to seek relevant literature and provide a
concise response to the research topic. Here the methods followed in this research work are
thoroughly mentioned with theoretical analysis.

The next chapter can be classified as calculation and analytical chapters. The first step is to
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calculate the carbon footprint of the ICT industry. This number is based on emissions from
electronic devices, data centers, and network connections. The thorough strategy that was
taken into account is described with references. The following part discusses a projection
of future carbon emissions based on the techniques applied to predict the future. Finally,
an explanation is presented that influenced the target value for specific years that helps the
findings of important features.

The report concludes with a discussion comparing of the analytical results to the findings
in the literature. This section also discusses the relevance of the results and the research
problems that have been answered to some extent and with a new approach. In conclusion,
the project’s purpose, strategy, and findings are briefly described, and future work scopes are
discussed.
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2 Background

This chapter includes the related background concepts of carbon emission in the ICT sector
by introducing sustainability in the context of ICT. It mentions frameworks proposed pre-
viously for understanding the environmental impacts of ICT. Furthermore, the sources of
ICT emissions concerning the definition are discussed briefly with the scope of the emis-
sions by category. Thus, this chapter sets a good foundation for providing the analysis of the
conducted studies in the following chapters of this paper.

2.1 Sustainability and ICT

ICT is critical in promoting sustainability because it enables growth in impoverished ar-
eas, integrates ecological, social, and economic evaluations, and drives sustainable practices.
The United Nations has recognized ICT as a catalyst for sustainable development, stating
that technology helps bridge the digital divide, builds knowledge societies, and acceler-
ates progress toward all 17 Sustainable Development Goals (SDGs) (The United Nations,
2016). ICT promotes sustainability by facilitating access to education, mobile banking, e-
government services, and social media, thereby furthering goals such as education, gender
equity, and infrastructure (Carrera & Kurnia, 2016). Overall, ICT is essential for creating a
more sustainable and inclusive future.

2.1.1 Definition of Sustainability

Sustainability is a commonly used phrase that describes something’s ability to endure over
an extended period of time. Sustainability is the long-term goal of a healthy planet, while
sustainable development is the process of achieving progress while respecting environmen-
tal limits. The two terminologies are connected because sustainable development can only
happen on a foundation of sustainability. According to Penzenstadler & Fleischmann, 2011,

“Sustainability is the capacity to endure and, for humans, the potential for long-
term maintenance.”

The authors also defined sustainable development as developing both a sustainable product
and a product through a sustainable process. According to the Brundtland report from the
United Nations, sustainable development is defined as follows:

“Sustainable development is the development that meets the needs of the present
without compromising the ability of future generations to meet their own needs.”
(WCED: World Commission on Environment and Development, 1987)
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(a) (b)

Figure 3: Different views of the environment, society, and the economy. (a). The general
three-pillar model of sustainable development. (b). The nested three-pillar model of sustain-
able development (Hilty & Aebischer, 2015).

A metaphor that is frequently used to explain sustainable development is the idea of main-
taining a “balance” between the environment, the economy, and society. Another name for
this approach is the “three-pillar model” (Hilty & Aebischer, 2015).

The three-pillar concept of sustainable development includes environmental, economic, and
social sustainability (Garbie, 2014; Purvis, Mao & Robinson, 2019). Environmental sustain-
ability focuses on preserving natural resources and minimizing climate change. Economic
sustainability emphasizes sustainable economic processes, employment enhancement, equi-
table remuneration, and the environmental effect of profit-driven tactics. Social sustainability
seeks to provide a high quality of life, equal opportunity, and inclusion for everyone. To en-
sure long-term sustainability, each pillar must be considered collectively; no one pillar can be
addressed alone (Thatcher, 2013). The approach arose from criticisms of economic practices
and efforts to balance growth with social and environmental concerns.

Environmental and social interactions contribute to a “bearable” condition, in which a good
environment promotes human well-being. Social and economic interactions promote “eq-
uitable” sustainability, which ensures equal resource allocation and economic possibilities.
Economic and environmental connections foster “viable” sustainability by encouraging the
responsible use of natural resources (Garbie, 2014; Purvis, Mao & Robinson, 2019). Inte-
grating all three pillars yields “sustainable” development, which balances each component
to suit current and future demands. Recognizing and managing these links is necessary for
achieving sustainability.

To achieve balance, entities must be both independent and interlinked (Hilty & Aebischer,
2015). Diagrams like Figure 3a illustrate that the environment, economics, and society exist
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on the same level and are linked by overlapping regions. When the three systems are layered,
as seen in Figure 3b, maintaining actions among the layers becomes difficult. The higher
layer is achieved by considering the limitations of the lower ones. There cannot be a balance
between parts and the whole.

2.1.2 Definition and Scope of ICT

Defining ICT entails comprehending its progression through three technical developments:
communication technologies, storage technologies, and computing technologies (Aebischer
& Hilty, 2015). The confluence of these advancements has resulted in a complex landscape
of devices and infrastructures, making exact definitions difficult yet vital to prevent discrep-
ancies in research, particularly those involving energy usage. Furthermore, the increasing
integration of microprocessors into non-ICT devices, as well as the trend toward service-
oriented ICT (such as cloud computing), complicate the boundaries and assessment of ICT’s
influence, emphasizing the importance of defined system boundaries in research (Aebischer
& Hilty, 2015).

Information technology is “the study, design, development, implementation, support, or
management of computer-based information systems, particularly software applications and
computer hardware,” according to the Information Technology Association of America (ITAA)
(Veneri, 1999). On the other side, communication technology comprises the process of cre-
ating, building, and managing communication systems that are utilized to enable virtual
communication between people or groups.

All technologies used to manage information and facilitate its transfer in a digital format-
including production, collection, analysis, preservation, extraction, transmission, trading,
and dissemination—are collectively referred to as information and communication tech-
nologies, or ICTs. ICT comprises both software and hardware. Hardware includes mo-
bile phones, PDAs with pens, printers, wireless and mobile networks for telecommunica-
tion, wearable technology, desktop and laptop computers, and so on. Software includes re-
lated programs and services including videoconferencing, e-commerce, e-learning, decision
support systems (DSS), service-oriented architecture (SOA), enterprise resource planning
(ERP), and e-communities (virtual teams), among others (Bibri, 2009).

A 2008 report by the WWF identified ten ways information and communication technologies
(ICT) can be used across different industries to boost energy savings and cut carbon dioxide
emissions. Each approach has the potential to reduce emissions by over 100 million tons
annually (Griffiths, 2008). Here’s a breakdown of these methods based on You, Li & Waqas,
2024; British Telecommunication, 2016:
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• Smart Grid and Energy: By putting smart grids into place, energy waste and emis-
sions may be decreased by optimizing energy distribution and consumption. Smart
grids are energy distribution and consumption systems that make better use of cutting-
edge technology including automation, sensors, and data analytics.

• Remote Work: Leveraging the internet to work from a distance, reduces business
travel and commutes. The requirement for travel, which contributes significantly to
GHG emissions, may be minimized with the use of telepresence and video conferenc-
ing. Up to 1.5 million tons of CO2 emissions can be avoided each year using this.

• Smart Buildings: Employing sensors and control systems to optimize efficiency in
buildings. Smart homes may save energy by automating lighting, heating, and cooling
systems. This can lower energy use and emissions by as much as 20%.

• Digital Services: Utilizing ICT to replace physical products and interactions (demate-
rialization). E-commerce and online purchasing can help eliminate the need for phys-
ical storefronts and transportation, resulting in lower emissions. This can save up to
1.2 million tonnes of CO2 emissions yearly.

• Industrial Optimization: Using ICT to enhance operations and efficiency in pro-
duction processes. Also, utilizing software to forecast, simulate, and analyze energy
consumption within production processes.

• Energy-Efficient Data Centers: Data centers may be constructed and run more ef-
ficiently. This involves adopting energy-efficient servers, cooling systems, and power
supply, with implementing virtualization and cloud computing to decrease energy use.

• Renewable Energy Integration: Utilizing simulation, analysis, and management
tools to facilitate widespread adoption of renewable energy. Integrating renewable
energy sources, such as solar and wind power, into the grid can help to reduce fossil
fuel emissions. This can reduce up to 1.5 million tons of CO2 emissions per year.

• Intelligent Transport: Implementing advanced sensors, data analysis, and widespread
communication to enable cleaner transportation options. For instance, electric cars can
lower transportation-related emissions by up to 70 percent. This can save up to 1.1
million tonnes of CO2 emissions yearly.

• Smart City Planning: Employing simulation software to improve urban design for
optimal energy efficiency.

• Waste Reduction and Recycling: Implementing waste reduction and recycling ini-
tiatives can minimize the quantity of garbage transported to landfills, hence decreasing
emissions from waste breakdown. This can save up to 1.1 million tonnes of CO2 emis-
sions yearly.
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2.1.3 Research fields relating ICT to sustainability

The ICT sector has significant and increasing greenhouse gas emissions, similar to the avia-
tion industry. The UN has recognized its potential to drive sustainable development. There
are no standard methods for fully calculating its carbon footprint (Carrera & Kurnia, 2016).
The environmental impact of its various activities is complex. The need to balance eco-
nomic, social, and environmental dimensions makes research on this relationship crucial
(Jayaprakash & Radhakrishna Pillai, 2022). Achieving sustainability goals requires recog-
nizing and reducing ICT’s environmental effect, utilizing it in sustainable development, and
creating all-encompassing methods.

Table 1 provides a general summary of the study topics related to ICT and sustainability, as
well as their meaning, range based on primary approaches, and contributions to sustainable
development. They are also mentioned briefly in this section of the background chapter.

Environmental Informatics

Environmental Informatics (EI) integrates computer science and information systems with
environmental science and management to address specific information processing needs in
environmental contexts. Emerging in the early 1990s, EI initially focused on public sector
applications, later expanding to the private sector (Hilty & Rautenstrauch, 1997). Key meth-
ods in EI include modeling, simulation, and data integration. It aims to support sustainable
development through shared data and transdisciplinary problem-solving. The field is doc-
umented through conferences like EnviroInfo and ISESS, and initiatives like the European
ICT-ENSURE project have helped structure EI research (Hilty & Aebischer, 2015).

Computational Sustainability

Computational Sustainability (CompSust) is an interdisciplinary field founded in 2008 with
support from the U.S. National Science Foundation (ICS, 2014). It applies computer and in-
formation science, applied mathematics, and statistics to balance environmental, economic,
and societal needs for sustainable development (Gomes, 2009). CompSust focuses on pro-
viding decision support for managing natural resources, employing techniques like dynamic
modeling, optimization, machine learning, and statistical modeling. While frequently em-
phasizing “balancing needs,” the field lacks clarity on specific needs and approaches to ad-
dressing normative issues related to distributive justice (Hilty & Aebischer, 2015).

Sustainable HCI

Sustainable HCI is a sub-field of Human-Computer Interaction that explores how technol-
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ogy and human interaction can support sustainability. Originating in 2007 with E. Ble-
vis’s Sustainable Interaction Design (SID), it prioritizes sustainability in technology design
alongside usability and robustness. SID emphasizes the entire lifecycle of a system, pro-
moting longevity, transfer of ownership, and responsible disposal (Blevis, 2007). Mankoff
et al., 2007 categorizes sustainability in HCI into “sustainability through design” and “sus-
tainability in design.” DiSalvo, Sengers & Brynjarsdóttir, 2010 identify five genres within
Sustainable HCI research: persuasive technology, ambient awareness, sustainable interac-
tion design, formative user studies, and pervasive and participatory sensing. Huang, 2011
highlights the need for Sustainable HCI to collaborate with other fields and real-world appli-
cations to effectively address sustainability challenges.

Green ICT

Green IT (or Green ICT) focuses on designing, using, and disposing of computing and
telecommunications technology with minimal environmental impact (Murugesan, 2008).
Popularized in 2007, it encompasses areas like energy-efficient computing, data center de-
sign, server virtualization, and responsible recycling (Mingay, 2007). It also involves using
IT to promote environmental sustainability and awareness. The field differentiates between
reducing ICT’s environmental footprint (“Green in ICT”) and using ICT to support broader
sustainability goals (“Green by ICT”). Green Information Systems (Green IS) extend this by
incorporating human activities within organizations, aiming for a holistic strategy to reduce
environmental impacts through information systems (Loeser, Erek & Zarnekow, 2012).

ICT for Sustainability (ICT4S)

ICT for Sustainability (ICT4S) aims to harness the transformative power of information and
communication technologies to foster sustainable production and consumption patterns. As
articulated in the 2013 ICT4S conference in Zurich, this initiative highlights that simply
increasing energy efficiency through technology does not inherently lead to sustainable de-
velopment. Achieving true sustainability requires coordinated efforts from policymakers,
industry, and consumers (Hilty, Aebischer, et al., 2013). ICT4S, which evolved from a con-
ference rather than a research field, encompasses two main areas: making ICT products and
services sustainable throughout their life cycle (Sustainability in ICT) and using ICT to pro-
mote sustainable behaviors and practices (Sustainability by ICT) (Hilty & Aebischer, 2015).
While related to fields like Green ICT and Sustainable HCI, ICT4S uniquely emphasizes the
societal impact of technological solutions, questioning whether they contribute to sustainable
development at a broad societal level (Hilty & Aebischer, 2015). The field employs diverse
methods, including life cycle assessment, technology assessment, social science research,
scenario modeling, and interdisciplinary simulations, to study the interactions between tech-
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Table 1: Overview of the research fields relating ICT to sustainability and their definition
with scope based on main methods and contributions to sustainable development (Hilty &
Aebischer, 2015).

Name of the Field of Study Scope
Environmental Informatics In order to monitor the environment, comprehend com-

plex processes, and promote data sharing and consensus-
building, this area makes use of information systems, mod-
eling and simulation, and geographic data processing.

Computational Sustainability This discipline combines modeling, optimization, con-
straint reasoning, machine learning, and other techniques
to provide decision assistance for natural resource manage-
ment and dispute resolution.

Sustainable HCI This approach supports a sustainable lifestyle, encourages
sustainable behavior, and extends the life of gadgets through
the application of design research, empirical HCI, and other
methodologies.

Green IT/ICT This field focuses on IT management, IT engineering, and
software engineering to reduce the environmental impacts
of ICT hardware and software.

ICT for Sustainability This discipline relies on assessment methods (LCA, TA,
and others), empirical methods (including social sciences),
scenario development, modeling, and simulation to reduce
ICT-induced energy and material flows, enable sustainable
patterns of production and consumption, and comprehend
and apply ICT as a transformational technology.

nology and human behavior and to address complex dynamic systems.

2.2 Impact of ICT on Sustainability

Research conducted by the European Commission several years ago looked into the envi-
ronmental impacts of society’s rising reliance on information technology. The study, which
employed social and economic models as well as simulations, found that while IT’s overall
environmental impact was minimal, it had both good and negative consequences in certain
sectors. For instance, IT improved freight transit efficiency, resulting in increased demand,
but simultaneously allowing for the dematerialization of goods, lowering the need for ma-
terials and transportation. These opposite effects frequently balance one other out. The key
conclusion was that IT should not be simply labeled as beneficial or negative for the envi-
ronment. Instead, particular rules are required to maximize the potential advantages while
minimizing the negatives. A systematic approach, based on a framework such as the LES
model proposed by Hilty & Aebischer, 2015, is critical for comprehending the complicated
interaction between IT and sustainability and, ultimately, developing successful policies.



27

2.2.1 The Three-Levels Model

The Three-Levels Model categorizes the impacts of ICT into three orders: direct environ-
mental effects from production and usage, indirect impacts on production processes and
products, and indirect effects on lifestyles and value systems (Hilty & Aebischer, 2015).
Initially introduced by Berkhout & Hertin, 2001 in an OECD report, this framework distin-
guishes between positive and negative impacts, labeling some as favorable for sustainability
and others as not.

Figure-4 describes a framework for understanding the environmental impacts of Information
and Communication Technology (ICT) (Hilty, 2008). The framework categorizes effects
into three levels (Hilty & Aebischer, 2015):

Figure 4: A matrix of ICT effects, based on (Hilty, 2008)

Level 1- Direct effects (negative): This level focuses on the direct material and energy costs
of ICT, assessed via Life-Cycle Assessment. Since these consequences reflect the expense
of delivering ICT services, they are altogether negative.

Level 2- Enabling effects (mixed): These effects depend on how ICT is used. Some can be
positive, like replacing printed books with e-readers or using smart home technology to save
energy. Others have negative impacts, such as increased paper use due to faster printing with
ICT or devices becoming obsolete due to software incompatibility.

Level 3- Systemic effects (mixed): This level examines systemic effects, including behav-
ioral and economic changes. Negative aspects include rebound effects, where efficiency
gains lead to more consumption and new risks like ICT network vulnerabilities. Positive
aspects involve promoting sustainable production and consumption.

Meanwhile, the model’s use of abstraction levels and impact categories has been questioned.
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While the micro-level effects (substitution, optimization) are obvious, the aggregated macro-
level implications are unknown owing to market interactions (Hilty & Aebischer, 2015).
As a result, analyzing ICT’s sustainability necessitates a macro-level approach that ensures
discrete acts are examined methodically.

2.2.2 The LES Model

the LES model, which is an improvement upon previous approaches. It avoids normative
assumptions and focuses on descriptive analysis, connecting well with production and so-
ciological theories. The model comprises three levels of impact: Life-cycle, Enabling, and
Structural impacts (Hilty & Aebischer, 2015). The LES model (shown in figure-5), an im-
proved framework for assessing ICT impacts, categorizes effects into three levels:

Figure 5: The LES model, based on (Hilty & Aebischer, 2015)

Level 1 (Life-Cycle Impact): Life-Cycle Impact covers the environmental effects through-
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out the ICT hardware lifecycle, including raw material extraction, production, energy use,
recycling, and disposal. Life-cycle assessment (LCA) is used for evaluation, often focusing
on energy consumption during use.

Level 2 (Enabling Impact): Enabling Impact includes actions enabled by ICT, categorized
into process optimization, media substitution, and externalization of control. These impacts
are viewed as types of resource substitution, aiming to reduce material resource use.

Level 3 (Structural Impact): Structural Impact refers to long-term, macro-level changes,
such as economic structures and institutions influenced by ICT. This includes dematerializa-
tion (reducing material use) and the networked economy (individual-based production), as
well as the role of ICT in environmental monitoring and shaping policies.

Overall, the LES model is significant given that it provides a full investigation of the effects
of Information and Communication Technology (ICT) on sustainability. It provides a sys-
tematic framework that takes into account environmental consequences, societal changes,
and economic effects, while also integrating well with current concepts. However, its com-
plexity, data needs, and interpretation difficulties are disadvantages. Despite this, the model
provides useful insights into the complex interaction between ICT and sustainability, never-
theless,its practical application may necessitate careful evaluation of its limits.

2.3 Sources of ICT sector emissions

Different sorts of data are required in the ICT sector to manage energy consumption and
reduce emissions. Data on energy usage is useful to national governments for resource man-
agement and policy creation aimed at reducing the sector’s carbon impact. At the moment,
only a few countries have detailed country-level ICT emissions statistics accessible. Since
the industry operates internationally, regional data is equally vital, and worldwide data is
necessary to comprehend the industry’s broad scope and long-term growth. Targeted actions
are further informed by data on ICT subsectors, such as electronic devices, data centers, and
connection networks. Depending on how each nation fits within the ICT value chain, the
distribution of emissions varies (Ayers et al., 2023). For example, the emissions resulting
from the production of devices are centered in a few nations, and the locations of major data
centers are also restricted. Figure-6 shows the main sources that contribute to ICT’s carbon
emission.

2.3.1 ICT Products and Devices

ICT products and devices can be classed based on their functionality, application, and tech-
nology (Luo & Lei, 2012; Gowri, 2016; Spiezia, 2008). Computers and associated equip-



30

Figure 6: ICT sector boundaries based on ITU-T L.1450 Annex-A (International Telecom-
munications Union, 2018).

ment include desktops, laptops, tablets, and other information processing and storage de-
vices. Smartphones, smartwatches, and fitness trackers serve as data transport and commu-
nication devices. Consumer devices, such as MP3 players, e-readers, and gaming consoles,
provide amusement. Miscellaneous ICT components encompass a wide range of accessories,
including USB flash drives and storage devices (Luo & Lei, 2012).

Business and productivity software, such as word processing and data analysis programs,
help with organizational duties. Business demands are satisfied by information technology
advice and services, which include IT consulting, software development, and data manage-
ment. Telecommunications services include internet, phone, and data access to facilitate
communication. Leasing and rental services provide ICT equipment for temporary com-
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mercial or personal usage (Luo & Lei, 2012; Spiezia, 2008). Finally, other ICT services
like IT support, maintenance, and repair guarantee that these technologies run well within
enterprises.

Due to their promotion of worldwide connection, ICT goods, and gadgets have had a pro-
found impact on global communication and data transmission. They offer unmatched in-
formation access, enabling people to learn and access resources from almost anyplace. The
emergence of Internet services and e-commerce has completely changed how businesses and
consumers purchase. These technologies have also made it easier to collaborate virtually
and work remotely, which has increased productivity and flexibility (Luo & Lei, 2012). ICT
products are revolutionizing the way people engage in recreational activities by providing a
variety of digital alternatives for leisure and relaxation in the entertainment sector.

When considering sources of ICT sector emissions, ICT devices encompass various compo-
nents that contribute to the sector’s environmental impact. These components include (Data
Bridge Market Research, 2023):

• Computing Devices: This category includes desktop and laptop computers, along
with associated CRT and LCD displays, as well as handheld devices like tablets and
smartphones. These devices consume energy during production, usage, and disposal,
contributing to emissions.

• Infrastructural Facilities: Data centers are a critical part of the ICT sector and con-
tain servers, networking gear, power and cooling equipment, and communication net-
works. These components consume energy and contribute to emissions, particularly
in data processing activities and networking operations.

• Operational Activities: The operational activities within ICT devices, such as data
processing, communication, and networking, also contribute to emissions. The en-
ergy consumption of these activities, along with the production and disposal of ICT
equipment, impacts the sector’s carbon footprint.

• User Devices: User devices, including smartphones, tablets, laptops, and desktop PCs,
account for a significant portion of the total carbon footprint of the ICT sector. The
emissions from user devices are related to both usage and other lifecycle stages, high-
lighting the importance of considering the entire life cycle of ICT devices when as-
sessing emissions.

• Electricity Consumption: The electricity consumption of ICT devices, networks, and
data centers is a major source of emissions within the sector. User devices, networks,
and data centers account for a substantial amount of electricity consumption, with user
devices representing the highest electricity consumption among these categories.
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In summary, when considering sources of ICT sector emissions, it is essential to recognize
the components and activities within ICT devices, data centers, and operational processes
that contribute to the sector’s environmental impact. Understanding these sources is cru-
cial for developing strategies to reduce emissions and promote sustainability within the ICT
sector.

2.3.2 Data Center

Data centers, essential for remote data access, are complex, high-security structures dedi-
cated to housing IT hardware. The definition of a data center is mentioned by Hintemann &
Fichter, 2012 and stated as follows:

“A data center is a building or space which houses the central data processing
technology of one or more organizations. It must consist at least of a room of its
own with a secure electricity supply as well as climate control.”

They can operate under various business models, such as co-location centers, where third
parties place their servers, or fully managed centers offering cloud services. Reliability, in-
cluding security and availability, drives their complexity and cost. Security measures protect
against digital and physical threats, while redundant systems ensure continuous operation
during power outages or hardware failures. These redundancies and security features sig-
nificantly increase both the acquisition and operational costs of data centers (Schomaker,
Janacek & Schlitt, 2015). All this equipment and redundancy require a significant amount of
energy, making data centers energy-intensive facilities.

Data centers are categorized based on their server capacity and power input. Small data cen-
ters house 100–500 servers with around 50 kW of power input. Medium-sized data centers
accommodate 500–5,000 servers, consuming about 240 kW. Large data centers, which host
over 5,000 servers, can have a power input of approximately 2.5 MW or more (Schomaker,
Janacek & Schlitt, 2015). Other than these three types of data centers, Hintemann, 2015
mentioned two more categories based on data center size. They are server closets (up to 10
m2), server rooms (11-100 m2), small data centers (101-500 m2), medium-sized data centers
(501-5000 m2), and large data centers (more than 5000 m2).

Data centers consume a significant portion of global electricity. In 2010, they accounted for
1.1-1.5% of global, 1.7-2.2% of US, and 1.8% of Germany’s electricity consumption (Hinte-
mann & Fichter, 2013). Their energy use increased by 56% from 2005 to 2010 (Koomey et
al., 2011). Large data centers, such as those operated by Facebook and Microsoft, can exceed
50 MW (Hintemann, 2015). The evolution and distribution of data centers, driven by trends
like cloud computing and virtualization, significantly impact overall energy consumption
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(Hintemann, 2015). Analyzing this is complicated by varied definitions, rapid technological
advancements, and limited data availability.

When considering the sources of ICT sector emissions, data centers contain various com-
ponents and activities that contribute to the sector’s emissions. These include (Data Bridge
Market Research, 2023; IEA, 2023):

• Servers: Data centers house numerous servers that store and process data, consum-
ing significant amounts of energy and contributing to emissions (Data Bridge Market
Research, 2023; IEA, 2023).

• Networking Gear: This includes routers, switches, and other networking equipment
that enable data transmission within the data center and to external networks, consum-
ing energy and contributing to emissions (Data Bridge Market Research, 2023; IEA,
2023).

• Power and Cooling Equipment: Data centers require power for operation and cool-
ing systems to maintain optimal temperatures for equipment, both of which consume
energy and contribute to emissions (Data Bridge Market Research, 2023).

• Communication Networks: These networks include customer premises access equip-
ment (CPAE) and other infrastructure that facilitate communication and data transfer,
consuming energy and contributing to emissions (IEA, 2023).

• Data Processing Activities: The processing of vast amounts of data within data cen-
ters requires significant computational power, leading to high energy consumption and
emissions (Data Bridge Market Research, 2023; IEA, 2023).

• Waste Disposal: The disposal of electronic waste from outdated or decommissioned
data center equipment contributes to the sector’s emissions and environmental impact
(Data Bridge Market Research, 2023).

• Mining for Earth Metals: The production of ICT equipment involves mining for rare
earth metals, which has environmental consequences and contributes to the carbon
footprint of the ICT sector.

Understanding the components and activities within data centers that contribute to emissions
is essential for developing strategies to reduce the environmental impact of the ICT sector
and promote sustainability in data center operations.

2.3.3 Network Infrastructure

Network infrastructure in the context of ICT sector emissions refers to the interconnection
of devices and systems within the ICT infrastructure that enable data transmission, commu-
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nication, and resource-sharing.

Computer networks can be classified according to variables such as geographical dispersion,
user count, and communication protocols utilized by devices. The four major types of net-
works are Personal Area Network (PAN), Local Area Network (LAN), Metropolitan Area
Network (MAN), and Wide Area Network (WAN) (ALferjani, 2021; Ali, 2014). PANs link
personal devices such as cellphones and headphones, commonly via Bluetooth. LANs cover
specific regions, such as homes or workplaces, and link many devices via Ethernet or Wi-Fi.
MANs encompass cities, connecting several LANs with high-bandwidth technologies such
as fiber optics. WANs cover huge geographic regions, linking networks across continents,
with the internet being the largest WAN (Ali, 2014).

Another approach to categorize networks is by architecture, such as Peer-to-Peer (P2P) and
Client/Server models (Leibnitz et al., 2007; Maly et al., 2003). On one hand, P2P networks,
which are ubiquitous in file-sharing networks, allow devices to interact directly without the
necessity of a central server. On the other hand, Client/Server networks employ a central
server to manage communication and services for client devices, similar to how a central
server handles user accounts and file storage in corporate networks. Understanding various
network types and designs aids in the selection of the best network for a given situation,
taking into account aspects such as user numbers, geographical coverage, and functional
requirements.

Networks have had a significant impact on the world in a variety of ways. They have en-
couraged globalization by allowing for seamless communication and collaboration across
international borders, effectively downsizing the world into a global village (Federal Com-
munications Commission, 2013). The internet, a critical component of network systems,
has enabled unprecedented access to information and knowledge, revolutionizing how indi-
viduals learn and exchange information. This digital connectivity has also resulted in the
development of several online services, such as e-commerce, social networking, and cloud
computing, which have revolutionized sectors and personal lifestyles (Castells, 2014). Fur-
thermore, network technologies have had a big influence on work culture by enabling remote
work, increasing flexibility, and raising productivity because workers may now work from
anywhere. Another notable development is the expansion of the Internet of Things (IoT),
which connects a growing number of objects to networks, resulting in breakthroughs in smart
homes, smart cities, and industrial automation. These developments not only improve ease
and efficiency but also pave the way for increasingly interconnected and intelligent systems
throughout the world.

When considering sources of ICT sector emissions, network connectivity encompasses var-
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ious components and activities that contribute to the sector’s environmental impact. These
components include (Data Bridge Market Research, 2023; Ali, 2014):

• Network Interface Cards (NICs): NICs enable devices to connect to a network and
facilitate data transmission, consuming energy and contributing to emissions (Data
Bridge Market Research, 2023).

• Hubs: Hubs are basic networking devices that allow multiple devices to communicate
with each other. They receive data packets from one device and broadcast them to all
other devices connected to the hub, sharing bandwidth and contributing to emissions
(Data Bridge Market Research, 2023).

• Switches: Switches are more advanced networking devices than hubs, connecting
multiple devices on a network. They contain updated tables that determine where data
is transmitted, delivering messages to the correct destination based on physical ad-
dresses and reducing unnecessary data broadcasts, thus improving network efficiency
and reducing emissions (Ali, 2014).

• Routers: Routers connect multiple networks together, allowing them to communicate
with each other. Routers operate at the network level and play a crucial role in directing
data packets to their intended destinations, optimizing data transmission, and reducing
emissions (Ali, 2014).

• Modems: Modems facilitate the transmission of data over communication networks,
converting digital signals to analog signals for transmission over telephone lines or
digital signals for transmission over cable or fiber optics, contributing to energy con-
sumption and emissions (Ali, 2014).

• Bridges: Bridges connect two or more network segments, allowing devices on differ-
ent segments to communicate with each other. They operate at the Data Link layer of
the OSI model and use MAC addresses to forward data packets between network seg-
ments, improving network performance and security while contributing to emissions
(Data Bridge Market Research, 2023; Ali, 2014).

Network connectivity components play a vital role in the ICT sector’s emissions by enabling
data transmission, communication, and resource-sharing. Understanding the environmental
impact of these components is essential for developing strategies to reduce emissions and
promote sustainability in network operations within the ICT sector.

2.4 GHG Emission Scopes in ICT sector

The Greenhouse Gas Protocol (GHG Protocol) divides the ICT sector’s carbon impact into
three categories. These areas are critical to identifying and reducing the sector’s environ-
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mental effects. Understanding and precisely measuring these emissions is critical for the
ICT sector’s capacity to design successful strategies for minimizing environmental impact
and meeting sustainability goals. The categories based on Sipilä, Partanen & Porras, 2023,
WRI & WBCSD, 2004 and Greenhouse Gas Protocol Team, 2011 are pictured in the figure-
7.

Figure 7: Overview of Scope 1,2, and 3 emission Categories.

2.4.1 Scope-1 emission

Scope 1 emissions within the ICT sector denote direct emissions originating from sources
owned or managed by the entity. These emissions stem from activities like generating en-
ergy for heating, cooling, and powering company vehicles. In the context of the ICT sector,
Scope 1 emissions encompass direct energy consumption from owned or controlled sources
such as data centers, offices, and other facilities, including heating, cooling, lighting, and
equipment power usage (Jha et al., 2022; Avantgarde Group, 2021). Additionally, emis-
sions from company-owned vehicles utilized for business purposes contribute to Scope 1
emissions, particularly if they are not electric or hybrid. The measurement and reporting
of Scope 1 emissions in the ICT sector typically adhere to established frameworks such as
the GHG Protocol Corporate Standard. Calculating the carbon footprint of an ICT company
involves quantifying these direct emissions from owned or controlled sources, which include
energy consumption and emissions from company-owned vehicles. Moreover, companies
are obligated to report Scope 1 emissions as part of their sustainability reporting and carbon
footprint assessments (Lamers & Vrisekoop, 2022; Ayers et al., 2023; Jha et al., 2022).
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To mitigate Scope 1 emissions, various best practices can be adopted within the ICT sector.
Implementing energy-efficient practices and technologies is one such strategy, which can sig-
nificantly reduce energy consumption and, consequently, Scope 1 emissions. Transitioning
to electric or hybrid company-owned vehicles also presents an opportunity to reduce emis-
sions from transportation. Furthermore, utilizing renewable energy sources for powering
data centers and facilities can effectively reduce Scope 1 emissions originating from energy
consumption. Encouraging sustainable transportation options, such as public transport or
carpooling, can further contribute to reducing Scope 1 emissions from company-owned ve-
hicles (Lamers & Vrisekoop, 2022; Ayers et al., 2023). In summary, comprehending and
measuring Scope 1 emissions from owned or controlled sources is vital for ICT companies
to diminish their environmental impact and attain sustainability objectives.

2.4.2 Scope-2 emission

Scope 2 emissions within the ICT sector pertain to indirect emissions arising from the con-
sumption of purchased electricity, steam, heating, and cooling by the organization. These
emissions are not under the direct control of the ICT company but result from the energy us-
age associated with its operations (Jha et al., 2022; Avantgarde Group, 2021). For instance,
electricity consumption is a significant contributor to Scope 2 emissions, encompassing the
energy required to power various facilities like data centers and offices. Similarly, heating
and cooling energy consumption, along with steam usage, also contributes to Scope 2 emis-
sions, reflecting the energy demands of these operational aspects.

To assess and address Scope 2 emissions, established frameworks such as the GHG Proto-
col Corporate Standard are commonly utilized for measurement and reporting. Calculating
the carbon footprint of an ICT company involves quantifying these indirect emissions from
purchased energy sources. Compliance with reporting requirements mandates companies to
disclose Scope 2 emissions as part of sustainability reporting and carbon footprint assess-
ments (Ayers et al., 2023).

Efforts to mitigate Scope 2 emissions in the ICT sector involve implementing best practices
focused on energy efficiency, renewable energy adoption, and effective energy management.
Strategies like utilizing renewable energy sources for powering facilities and implementing
sustainable operations practices contribute to reducing energy consumption and associated
emissions (Ayers et al., 2023). Understanding and managing Scope 2 emissions are integral
steps for companies aiming to minimize their environmental impact and meet sustainability
objectives.
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2.4.3 Scope-3 emission

Scope 3 emissions within the ICT sector encompass the indirect emissions occurring through-
out the organization’s value chain, excluding those captured in Scope 2 emissions. These
emissions stem from sources outside the direct control of the company, such as suppliers,
customers, and other business partners. Recognizing and managing Scope 3 emissions is
paramount for companies striving to thoroughly evaluate their environmental footprint and
advance sustainability objectives (GSMA, GeSI, ITU, 2023; Avantgarde Group, 2021).

In the ICT sector, Scope 3 emissions span a broad spectrum, including various indirect emis-
sions associated with the entire lifecycle of ICT products and services. This encompasses
activities like raw material extraction, manufacturing, transportation, product usage, and end-
of-life disposal. However, reporting these emissions poses challenges due to the intricate na-
ture of the sector’s value chain. The involvement of numerous suppliers, partners, and global
operations complicates the accurate quantification and tracking of all indirect emissions (Jha
et al., 2022; GSMA, GeSI, ITU, 2023).

Moreover, there exists considerable diversity in how Scope 3 emissions are reported among
ICT companies, both in terms of coverage and transparency. This variability impedes the
derivation of trends and general conclusions regarding the distribution of emissions across
Scope 1, 2, and 3 categories in the sector. To address these challenges, standardized meth-
ods and guidance provided by frameworks like the GHG Protocol and ISO standards are
crucial (GSMA, GeSI, ITU, 2023). These standards aid telecommunication operators in as-
sessing and reporting their Scope 3 GHG emissions, enhancing coverage, transparency, and
consistency in reporting practices across the sector.

Furthermore, many ICT companies are committing to reducing not only their Scope 1 and
2 emissions but also their Scope 3 emissions, including those originating from their supply
chain and customers. This commitment is vital for achieving Science-Based Targets and
aligning with broader sustainability initiatives (GSMA, GeSI, ITU, 2023). In summary, un-
derstanding, measuring, and mitigating Scope 3 emissions are integral steps for ICT compa-
nies to comprehensively evaluate their environmental impact and contribute to global efforts
aimed at reducing greenhouse gas emissions.

2.5 Decomposing ICT’s emissions into embodied and use stage contribu-

tions

The embodied emissions and usage phase emissions are important components of the en-
vironmental effect of the ICT sector. Use phase emissions are those originating from the
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energy used and the functioning of these systems, whereas embodied emissions are those
linked to the manufacturing and disposal of ICT products as well as infrastructure.

2.5.1 Embodied emission of ICT

Embodied emissions refer to the total greenhouse gas emissions generated throughout an
ICT product or infrastructure’s entire lifespan, encompassing every stage from raw material
extraction and processing to final product production, transportation, and eventual disposal
(Andersson & Jullien, 2023). This broad scope includes emissions from manufacturing pro-
cesses as well as from the creation of components like metals, semiconductors, and polymers,
which are integral to ICT products.

IT facilities and merchandise have substantial and varying embodied emissions across differ-
ent industries. For example, in the production of personal computers, significant emissions
are generated during the extraction of raw materials such as aluminum, copper, and rare earth
metals used in components like the motherboard, hard drives, and processors. Companies
like Apple, Dell, and HP, which produce millions of laptops and desktops annually, con-
tribute notably to these embodied emissions. Apple, for instance, reported that around 74%
of its carbon footprint for a MacBook comes from manufacturing, highlighting the signifi-
cant role of embodied emissions in the lifecycle of ICT products 1. Similarly, the creation of
mobile devices such as smartphones involves substantial embodied emissions, particularly
due to the energy-intensive processes involved in producing semiconductors and other elec-
tronic components. For instance, the production of an iPhone involves the extraction and
processing of over 60 different metals, including cobalt, lithium, and gold, which contribute
significantly to its overall carbon footprint. Samsung, another major smartphone manufac-
turer, faces similar challenges. According to a study by Fairphone, a sustainable smartphone
company, the production of a single smartphone can generate between 16 to 95 kg of CO2e
(carbon dioxide equivalent), depending on the complexity and materials used 2.

Moreover, the energy required for the production and transportation of these devices further
exacerbates their embodied emissions (Andersson & Jullien, 2023). For instance, the global
logistics involved in shipping millions of electronic devices from manufacturing hubs in Asia
to consumers worldwide adds another layer of environmental impact. According to Dong,
Jiang & Wang, 2021, the transportation of ICT products contributes to approximately 10-
15% of their total embodied emissions, depending on the mode of transportation and the
distance covered.

Given the significant contribution of embodied emissions to the overall carbon footprint of
1Apple sustainability report. https://www.apple.com/environment/
2Fairphone sustainability report. https://www.fairphone.com/en/impact-report/

https://www.apple.com/environment/
https://www.fairphone.com/en/impact-report/
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ICT products, there is a growing need for manufacturers to adopt more sustainable practices.
This includes using recycled materials, improving energy efficiency during manufacturing,
and optimizing supply chains to reduce transportation-related emissions. Companies like
Fairphone and Dell have started to implement such strategies by increasing the use of recy-
cled materials and designing products that are easier to repair and upgrade, thereby extending
their lifespan and reducing the need for frequent replacements.

Furthermore, there is a critical need for industry-wide transparency regarding embodied
emissions. Consumers and regulators are increasingly demanding that manufacturers dis-
close the carbon footprint of their products, including the embodied emissions, to make
informed choices and promote sustainability. Initiatives like the Carbon Trust’s “Product
Carbon Footprint” certification are steps in the right direction, as they provide a standardized
way to measure and communicate the environmental impact of ICT products 3.

In conclusion, addressing the embodied emissions of ICT products is essential for reduc-
ing the overall carbon footprint of the sector. By focusing on sustainable manufacturing
practices, using eco-friendly materials, and optimizing supply chains, the ICT industry can
significantly mitigate its environmental impact and contribute to global carbon reduction
efforts.

2.5.2 Use phase emission of ICT

Use phase emissions refer to the greenhouse gas emissions that result from the energy con-
sumption of ICT devices and infrastructure during their operational life. This includes the
energy required to power laptops, smartphones, data centers, servers, and other infrastructure
involved in processing, storing, and transmitting data. Unlike embodied emissions, which
occur during the production of ICT products, use-phase emissions are generated during the
actual usage of these technologies. These emissions are heavily influenced by the energy
sources used to generate electricity, which often rely on nonrenewable resources such as
coal, natural gas, and, in some cases, oil (Andersson & Jullien, 2023).

The energy usage of laptops and smartphones, while generally lower compared to larger
ICT infrastructure like data centers, is still significant due to the sheer number of devices
in operation globally. For instance, the energy consumption of a typical laptop is estimated
to be around 50-100 kWh per year, depending on usage patterns and efficiency settings.
Smartphones, on the other hand, consume less energy individually, with an estimated an-
nual consumption of around 2-4 kWh. However, given the billions of smartphones in use
worldwide, this adds up to a substantial amount of energy.

3https://www.carbontrust.com/en-eu/what-we-do/product-carbon-footprint-labelling/
product-carbon-footprint-label

https://www.carbontrust.com/en-eu/what-we-do/product-carbon-footprint-labelling/product-carbon-footprint-label
https://www.carbontrust.com/en-eu/what-we-do/product-carbon-footprint-labelling/product-carbon-footprint-label
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To put this into perspective, if a laptop consumes 75 kWh per year and is used in a coun-
try like Germany4, where the electricity mix is about 30% coal and 40% renewable energy
sources, the resulting emissions would be approximately 32 kg of CO2e annually. In con-
trast, in Norway5, where almost all electricity is generated from hydropower, the same laptop
would generate less than 1 kg of CO2e per year due to the nearly carbon-neutral electricity
grid. This stark difference underscores how different countries’ energy production profiles
significantly impact ICT devices’ use phase emissions. Comparing this to the manufacturing
emissions of a laptop, which can range between 200 to 300 kg of CO2e, it becomes evi-
dent that the use phase emissions, though ongoing throughout the device’s lifespan, are still
generally lower annually compared to the one-time embodied emissions. However, over a
typical 3-5 years lifespan of a laptop, the cumulative use phase emissions can rival or even
exceed the embodied emissions, especially in countries with high-carbon electricity grids.

The growing demand for ICT services, especially with the rise of cloud computing, stream-
ing services, and the proliferation of mobile devices, is driving up use phase emissions. Data
centers, in particular, have become significant contributors to global energy consumption.
Given the variability in energy production profiles across different regions, the environmen-
tal impact of ICT use phase emissions can vary widely. In countries with a high reliance on
renewable energy, the use phase emissions of ICT devices are relatively low. Conversely,
in regions where coal and natural gas dominate the energy mix, these emissions are much
higher. This highlights the importance of energy efficiency measures and the adoption of re-
newable energy sources to mitigate the environmental impact of ICT operations. Moreover,
the comparison between the use phase and embodied emissions highlights a critical aspect
of sustainable ICT practices. While reducing embodied emissions through improved manu-
facturing processes and materials is essential, efforts to lower use phase emissions—such as
by improving the energy efficiency of devices, optimizing data center operations, and tran-
sitioning to renewable energy sources—are equally important. For example, tech giants like
Google6 and Microsoft have committed to running their data centers on 100% renewable
energy, significantly reducing the use phase emissions associated with their services.

In conclusion, managing use phase emissions is crucial for the overall sustainability of the
ICT sector. As the demand for digital services continues to grow, so too will the energy con-
sumption associated with these technologies. Therefore, ICT companies and policymakers
must prioritize energy efficiency and the use of clean energy to minimize the environmental
impact of this increasingly essential sector.

4Germany electricity sources. https://www.iea.org/countries/germany/electricity
5Norway electricity sources. https://energifaktanorge.no/
6https://www.google.com/about/datacenters/cleanenergy/

https://www.iea.org/countries/germany/electricity
https://energifaktanorge.no/
https://www.google.com/about/datacenters/cleanenergy/
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3 State-of-the-art

This chapter highlights recent research that calculated or estimated the ICT sector’s carbon
emissions from numerous perspectives. First, the carbon footprint of ICT using the used
method is briefly reviewed, followed by an emission estimate per category. While energy
is one of the primary contributors to ICT carbon emissions, a thorough study is provided.
Finally, several types of GHG emissions in the ICT industry are investigated.

3.1 Measuring ICT’s carbon emission

One of the main reasons for varied emission values is the use of different calculation meth-
ods. In this section, two calculations are described from the Global e-Sustainability Initiative
(GeSI), 2012 and Malmodin, Lövehagen, et al., 2024 studies. They provide a full calculation
for the ICT sector for a specific year. Firstly, the definition of the ICT sector varied in both
studies. The ICT sector is discussed in the first part of this chapter. Then the calculation
method is mentioned.

3.1.1 Define ICT sector

The table 2 derived from Global e-Sustainability Initiative (GeSI), 2012, organizes ICT car-
bon emissions into three primary categories: End Use Devices, Telecommunication Net-
works, and Data Centers. End-user devices encompass items like PCs (desktops and lap-
tops), mobile devices (smartphones and tablets), and various peripherals (monitors, printers,
set-top boxes, and home routers). Telecommunication Networks are divided into fixed lines
and wireless networks, while Data Centers include critical infrastructure components such
as servers, storage systems, and cooling systems. This structured categorization highlights
the key areas within the ICT sector that contribute to carbon emissions.

Category Details
End Use Devices PCs (Desktop, Laptop), Mobile devices (Smartphone,

other mobile devices, tablets), Peripherals (Monitor,
printer, set-top box, home router)

Telecommunication Networks Fixed lines, Wireless
Data Centers Servers, Storage Systems, Cooling Systems

Table 2: ICT sector defined by Global e-Sustainability Initiative (GeSI), 2012

The ICT sector’s boundary used by Malmodin, Lövehagen, et al., 2024 is very similar to
International Telecommunications Union, 2018) with a wide range of categories considered
while calculating the carbon emission of ICT. Their scopes of the ICT sector is shown in
table 3. The table 3 breaks down the ICT sector into four main areas: Devices, Networks,
Data Centers, and Enterprise Networks. Devices include everything from desktop and laptop



43

computers, peripherals like monitors and keyboards, and various types of phones, to tablets,
VR headsets, smart speakers, wearables, and smart home gadgets. Networks cover both fixed
broadband and mobile networks (like 2G-5G), along with core networks, data transmission,
and telecommunication satellites. Data Centers focus on electricity usage and emissions
from industrial data centers, while Enterprise Networks include local area networks (LAN)
and wireless local area networks (WLAN). This summary provides an overview of the key
components in the ICT sector that contribute to energy use and emissions.

Category Details
Devices Computers: Desktop PCs, Laptop PCs; Computer peripher-

als: PC monitors, mouse, keyboard, external webcam; Phones:
Smartphones, Feature phones; Fixed phones incl. DECT;
Tablets, VR headsets, Smart speakers, Headphones/Hearables;
CPE (routers, modems); Displays: Commercial displays, Other
displays; Projectors, Payment terminals, Surveillance cameras;
Smart meters, Wearables (watches, rings); IoT/M2M communi-
cation modules; Smart home devices (monitoring/security, light-
ing, thermostats, plugs, gateways/CPE)

Networks Fixed broadband access networks, PSTN; Wireless Access net-
works: Mobile (2G-5G); Core networks and data transmission;
Telecommunication satellites

Data Centers Data center electricity usage and scope-wise emission data from
industries

Enterprise networks LAN, WLAN

Table 3: ICT sector defined by Malmodin, Lövehagen, et al., 2024

With the sector defined, the next part of this section will focus on how these components are
being used to calculate the emission of ICT.

3.1.2 Emission calculation formula

Based on the ICT sector definition the carbon emission of ICT differs. In this section, two
of the studies are being focused on to describe the whole calculation strategy. They are
described below with some brief details. The figures and the table describe the underlying
broad formula to achieve the target result. Each of the terminology can be further divided for
more clarification. However, in this research work, these in-depth calculations are not used.
Thus, the calculation method can be considered from a higher level

Calculation method applied in Global e-Sustainability Initiative (GeSI), 2012 report:

The formulas used by Global e-Sustainability Initiative (GeSI), 2012 are shown in the figures
8 to 11. Figure 8 outlines a method to calculate the carbon emissions of ICT devices by
considering two main components: usage footprint and embodied carbon emissions.
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Figure 8: ICT devices emission calculation by GeSI.
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For usage footprint, the method multiplies the installed base of devices by the electricity used
per device and the emissions factor (kg CO2e/kWh). This provides the total emissions due to
the energy consumption of the devices during their operational phase. For embodied carbon
emissions, the method multiplies the number of devices shipped by the emissions per device
(kg CO2e/year). This calculation captures the emissions related to the manufacturing and
distribution of the devices. For printers, the method includes an additional step to account for
the carbon emissions from the distribution of printed media. This is calculated by multiplying
the amount of paper shipped by the emissions per tonne of paper. Finally, the total carbon
emissions for ICT devices are obtained by adding the usage footprint and embodied carbon
emissions for all relevant devices.

The data center’s carbon emission calculation may not seem complex with the method men-
tioned in the figure 9. Here the usage footprint is calculated directly from the electricity
consumed by data centers. However, this data is derived from other studies and reports as
mentioned in their work. Also, the embodied emission data is gathered from other collab-
orative data from various data centers. There are no details about the data centers that are
being considered for each of these factors. Therefore, the calculation follows a black-box
approach which makes it more ambiguous and assumption-based.

Figure 9: Data center emission calculation by GeSI.

Similarly, the network emission is shown in two different figures 10, 11. Figure 10 illustrates
a method for calculating carbon emissions from wireless and home access networks. For
each network type, the calculation begins with the usage footprint, which is determined by
multiplying the electricity used per subscriber by the number of subscribers, the emissions
factor, and the operations overhead percentage. Additionally, the embodied carbon emissions
are calculated by multiplying the number of subscribers by the emissions per subscriber. For
wireless networks, diesel usage is also included in the total emissions. The total emissions for
each network type are obtained by summing the usage footprint, embodied carbon emissions,
and for wireless networks, the diesel usage.
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Figure 10: Network emission calculation by GeSI.

As shown and described before, figure 11 outlines a method for calculating carbon emissions
from enterprise networks and data transport. For enterprise networks, the total emissions are
determined by calculating the usage footprint, which involves multiplying the electricity used
per office PC by the number of enterprise PCs, the emissions factor, and the overhead for
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hubs, routers, and switches. The embodied carbon emissions are also calculated separately.
For data transport, the emissions are calculated by multiplying the total electricity used by
the emissions factor. The final emissions for each category are obtained by summing the
usage footprint and the embodied carbon emissions.

Figure 11: Enterprise network emission calculation by GeSI.

After looking into the category-wise calculation by Global e-Sustainability Initiative (GeSI),
2012, it is clear that the data provided in the report follows a black-box approach. The
macro-level analysis is tough with this study approach. Malmodin, Lövehagen, et al., 2024
in a recent study published a very detailed approach to calculating the carbon emission of
ICT. This approach is described in the next part of this chapter.

Calculation method applied by Malmodin, Lövehagen, et al., 2024:

After defining the ICT sector, the carbon emissions of four main categories are calculated by
dividing those into two parts which are use stage and embodied. The broader approach for
calculation is shown in table 4. In this table, the equations mentioned are also from a wide
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view, and each of the factors is dependent on many other attributes. In this section, the value
derivation of these attributes is discussed briefly.

Category Carbon Emission Calculation
User Devices carbon emission cal-
culation
Use stage carbon emission Electricity consumption of a device (TWh) X

Installed base (Millions) X Emission factor (kg
CO2e/kWh)

Embodied carbon emission Emission of a device (From PCF/LCA) X Total
shipments

Data center’s carbon emission cal-
culation
Use stage carbon emission (Scope 1 + Scope 2) emission + Fuel supply

+ Transportation + Renewable electricity supply
chain

Embodied carbon emission Electronics Equipment Emissions + Building
Construction Emissions

Network infrastructure carbon
emission calculation
Use stage carbon emission (Scope 1 + Scope 2) emission + Fuel and energy

supply + Transportation + Renewable electricity
supply chain

Embodied carbon emission Electronics Equipment Emissions (Networks) +
Construction and Deployment Emissions (Net-
works)

Enterprise network carbon emis-
sion calculation
Use stage carbon emission Total Use Stage Electricity (TWh) X Emission

Factor (kg CO2e/kWh)
Embodied carbon emission Total Units Shipped (millions) X Embodied GHG

per Unit (kg CO2e)

Table 4: Carbon Emission Calculations for ICT by Malmodin, Lövehagen, et al., 2024

The methodology for calculating the use-stage carbon emissions of ICT user devices by fo-
cusing on electricity consumption. The process involves gathering data on device power,
average daily usage, and the impact of different modes (active, idle, sleep) to estimate total
electricity consumption per device type. Additional data is collected on the installed base,
annual shipments, and estimated device lifetimes to calculate annual electricity consumption
across different product types. This data is then used to estimate the total annual electricity
consumption of ICT devices, which is further analyzed for sensitivity to different parameters.
For embodied emissions, the estimation is based on the total carbon footprint of the entire
electronics industry, incorporating data from manufacturers across the supply chain, includ-
ing integrated circuits, printed circuit boards, display manufacturers, and other electronics
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manufacturing services. Key user devices also account for material and mechanical compo-
nents, with results cross-checked against life cycle assessments and scaled by the number of
devices sold in a specific year. This comprehensive approach ensures that both use-stage and
embodied emissions are accurately reflected for ICT user devices.

The operational carbon emissions of data centers are calculated by integrating electricity
consumption data with associated greenhouse gas emissions, using a comprehensive method
that draws from academic studies, server shipment analysis, and reports from data center
companies. This approach starts with establishing baseline electricity consumption, which is
adjusted for server deployment growth and activity levels. Data from numerous companies,
including their reported electricity usage and renewable energy adoption, is crucial, with
estimates made to cover any gaps. The methodology also includes applying global emis-
sion factors for unreported data. It considers regional differences in electricity consumption
and emissions across key global regions, providing a detailed estimate of the global carbon
footprint of data centers.

The calculation of network operational electricity and carbon emissions is based on a detailed
methodology that involves estimating electricity usage across different regions and applying
emission factors from reliable sources like ITU-T, 2020 and studies by Lundén et al., 2022.
The approach incorporates adjustments for underreported emissions, off-grid electricity, and
additional supply chain-related emissions. It also factors in the specific energy mixes and
supply chain losses in each region. Data coverage percentages are carefully considered, and
assumptions are made about the extent of data center usage and renewable energy integration.
This comprehensive analysis ensures that the emission estimates are aligned with established
international standards and reflect regional variations in electricity consumption and carbon
intensity.

The calculation of embodied emissions for networks and data centers relies on a combination
of direct measurements, estimations, and scaling methodologies, drawing on various data
sources. For data centers, emissions from electronic equipment are derived by assessing
the carbon footprint of the electronics industry, with allocations based on product-specific
data from companies like Dell and HP. Construction-related emissions are calculated using
corporate reports, such as those from Google, and adjusted for global energy consumption.
For networks, similar methods are applied to estimate emissions from both mobile and fixed
equipment, along with infrastructure like fiber optic cables and towers. These estimates are
validated through comparisons with other studies and industry reports, ensuring accuracy
and a comprehensive understanding of the carbon impact of ICT infrastructure.

The calculation of emissions from enterprise networks is also based on two primary cate-
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gories: operational and embodied emissions. Operational emissions are estimated by calcu-
lating the total electricity consumption of network components such as WLAN access points,
switches/routers, and small cells, and then applying a global emission factor derived from
industry standards. For embodied emissions, the focus is on the production and deployment
of network equipment, with the number of units shipped and their associated greenhouse gas
emissions per unit being used to estimate the total embodied impact. The combined emis-
sions from both categories provide a comprehensive assessment of the network’s overall
environmental impact.

3.1.3 Future value prediction

A very few studies where future prediction of the carbon emission of ICT with a detailed
approach is discussed. Global e-Sustainability Initiative (GeSI), 2015 mentioned their ap-
proach to making future predictions. In their approach to calculating for a future year’s
values remains the same for the year of studies calculation. For instance, the factors for
the years 2011 and 2020 were the same. The future values at that time were considered to
be growing at the same rate as the base year. Many times, the values remained the same
throughout the years. Another example is the printer’s emissions per year remained the same
from 2007 to 2020. In summary, Global e-Sustainability Initiative (GeSI), 2015 report’s pre-
dictions are mostly based on assumptions, constant growth, and using the previous values as
they are.

Andrae & Edler, 2015 projected the future carbon emission values of ICT from a wide range
of 2010 to 2030. In their studies, they also provided a wide range of factors and gave a
detailed prediction for all the factors. However, their prediction method is not described in
detail. It is also seen that the predictions are mainly exponentially growing. These predic-
tions are mentioned to be overestimated by a later study by Andrae, 2019. The new study
also lacks a description of the method used to predict those values.

3.2 Electricity consumption of ICT sector

From the previous sections, it is clear that to measure the carbon emission of ICT, the elec-
tricity consumption of it is the most important factor. In many studies, the use stage emission
of ICT is directly derived from electricity usage. Therefore, a clear understanding of elec-
tricity usage and the factors that play pivotal roles is needed. In this section, previously
calculated values as well as some of the future estimations are discussed.

The electricity consumption trends of the ICT sector from 2010 to 2030, across different sce-
narios, reveal substantial growth, with varying degrees of increase depending on the scenario
as shown in 12. This study was conducted by Andrae & Edler, 2015. In the best-case sce-
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Figure 12: Electricity footprint (TWh) of Communication Technology 2010-2030.

nario, consumption remains relatively stable from 2010 to 2020, with a slight decrease from
1,538 TWh/year in 2010 to 1,507 TWh/year in 2020. However, a marked rise begins there-
after, reaching 1,810 TWh/year by 2025 and surging to 2,698 TWh/year by 2030, indicating
a significant increase of 79% over the 20-year period. The expected scenario shows a more
pronounced increase, starting at 2,037 TWh/year in 2010 and climbing to 2,878 TWh/year
by 2020. This upward trend accelerates further, reaching 4,350 TWh/year in 2025 and nearly
quadrupling to 8,265 TWh/year by 2030. In the worst-case scenario, the growth is exponen-
tial, with consumption escalating from 2,723 TWh/year in 2010 to 5,976 TWh/year by 2020.
By 2025, the figure more than doubles to 12,352 TWh/year, and by 2030, it skyrockets to
30,715 TWh/year, representing an over tenfold increase from 2010. These trends highlight
the dramatic rise in electricity demand within the ICT sector, emphasizing the urgent need for
energy-efficient technologies and sustainable practices to manage the sector’s environmental
impact.

The provided figure 13 reveals a concerning trend in the electricity consumption of the ICT
sector across three categories: ICT device production, data centers, and networks. All three
categories show a potential for significant growth in electricity use over the years, with vary-
ing degrees of severity.

The production of ICT devices is expected to decrease by around 18 TWh. The expected
case scenario of ICT device production suggests a steady increase, with consumption nearly
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Figure 13: Electricity consumption, ICT- best, expected, and worst cases (from top).
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doubling from 2010 to 2030 (387 TWh in 2010 to 903 TWh in 2030). However, the worst-
case scenario paints a more alarming picture, with a potential eightfold increase by 2030
(800 TWh in 2010 to 6,467 TWh in 2030). Similar to ICT device production, data centers
exhibit a potential for substantial growth. In the best case, the electricity consumption in
2030 is supposed to be almost six times of 2010. The expected case anticipates a near-
fifteenfold increase by 2030 (196 TWh in 2010 to 2,967 TWh in 2030). The worst-case
scenario presents an even steeper trajectory, with a potential forty-fold increase by 2030
(from 199 TWh to 7,933 TWh). While networks also show growth potential, the increase
appears less dramatic compared to the other categories. In the best case, the electricity
consumption in 2030 is supposed to be almost three times of 2010. The expected case
suggests a nearly tenfold increase by 2030 (from 408 TWh to 3,725 TWh), with the worst-
case scenario reaching a potential forty-fourfold increase (546 TWh in 2010 to 15,208 TWh
in 2030).

In conclusion, the data suggests a critical need for sustainable practices within the ICT sector
to mitigate the potential surge in electricity consumption across all three categories.

3.3 Global carbon emission of the ICT sector

It is difficult to gather country-wise detailed data regarding all the factors influencing carbon
emissions. Thus, this paper focuses on the global data only and this section peaks into
the global carbon emission values from the previously calculated studies. This part of the
paper looks into the categories of emission first, followed by the scope emissions and usage-
embodied phase emissions. Finally, the calculated total emission values are represented in a
brief discussion.

3.3.1 Emissions by category

The ICT sector is categorized into three parts for most of the studies. Although some of the
papers add a separate category for the enterprise network, most of the studies focus on three
types of categorizations.

The data from figure 14 shows the evolution of emissions from user devices, data centers,
networks, and TVs from 2015 to 2020 across various studies, revealing trends and changes
in different scenarios.

In the study by Malmodin & Lundén, 2018, user device emissions slightly decreased by
0.8%, from 395 to 392 MtCO2e. Data center emissions saw a more significant reduction
of 20.6%, dropping from 160 to 127 MtCO2e. Network emissions decreased by 6.7%, from
180 to 168 MtCO2e. Emissions from TVs also decreased by 4.8%, from 420 to 400 MtCO2e.
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(a)

(b)

Figure 14: GHG footprint (Mt CO2e) of ICT from different categories for years (a) 2015 and
(b) 2020 (Freitag et al., 2021; Jha et al., 2022).
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The Belkhir & Elmeligi, 2018 study provides three scenarios. In the minimum scenario,
user device emissions increased by 18.3%, from 290 to 343 MtCO2e. Data center emissions
rose substantially by 76.2%, from 281 to 495 MtCO2e. Network emissions increased by
31.9%, from 204 to 269 MtCO2e. TV emissions are not available in this scenario. In the
Belkhir & Elmeligi, 2018 maximum scenario, user device emissions saw a similar increase
of 11.8%, from 485 to 542 MtCO2e. Data center emissions showed the same significant rise
of 76.2%, from 281 to 495 MtCO2e. Network emissions also increased by 31.9%, from 204
to 269 MtCO2e. As in the minimum scenario, TV emissions are not reported. Calculating
the Belkhir & Elmeligi, 2018 average scenario, user device emissions increased by 14.2%,
from 388 to 443 MtCO2e. Data center emissions again rose substantially by 76.2%, from
281 to 495 MtCO2e. Network emissions showed a similar increase of 31.9%, from 204 to
269 MtCO2e.

The Andrae & Edler, 2015 study presents three scenarios as well. In the best case, user device
emissions increased by 8.1%, from 186 to 201 MtCO2e. Data center emissions saw a slight
increase of 1.4%, from 213 to 216 MtCO2e. Network emissions increased by 8.4%, from
190 to 206 MtCO2e. TV emissions, however, decreased by 19.8%, from 329 to 264 MtCO2e.
In the expected case, user device emissions increased by 13.9%, from 324 to 369 MtCO2e.
Data center emissions rose slightly by 1.6%, from 441 to 448 MtCO2e. Network emissions
saw a dramatic increase of 119.9%, from 287 to 631 MtCO2e. TV emissions increased by
21.6%, from 463 to 413 MtCO2e. In the worst case, user device emissions saw a dramatic
increase of 53.7%, from 514 to 790 MtCO2e. Data center emissions rose significantly by
72.0%, from 582 to 1,001 MtCO2e. Network emissions also saw a substantial increase of
175.5%, from 454 to 1,251 MtCO2e. TV emissions remained relatively stable, with a slight
increase of 0.7%, from 706 to 711 MtCO2e.

These analyses highlight significant variations in emissions trends across different scenarios
and components, with notable increases in data center and network emissions in most cases,
while TV emissions show mixed trends and user devices exhibit moderate changes.

The trends in carbon emissions from electricity consumption for data centers and commu-
nication networks exhibit a consistent upward trajectory from 2007 to 2020 as pictured in
figure 15. For data centers, emissions have grown substantially from 113.4 MtCO2e in 2007
to 494.9 MtCO2e in 2020, reflecting a more than fourfold increase over the 13-year period.
This steady rise underscores the expanding energy demands and associated emissions of the
data center sector as digital infrastructure and online services proliferate. Similarly, com-
munication networks have experienced a significant rise in emissions, growing from 101.5
MtCO2e in 2007 to 269.1 MtCO2e in 2020, marking an increase of over 160%. While the
rate of increase in network emissions is slightly less steep compared to data centers, it still
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Figure 15: Annual energy consumption of data centers and communication networks in units
of MteCO2-e from 2007 to 2020 (Belkhir & Elmeligi, 2018).

indicates substantial growth driven by the escalating use of mobile devices, data traffic, and
global connectivity. These trends highlight the critical need for both sectors to adopt more
sustainable energy practices to mitigate their growing carbon footprints.

3.3.2 Measuring scope emissions in the ICT sector

The data on carbon emissions, specifically Scope 1 and Scope 2 emissions measured in
millions of tonnes of CO2 equivalent, reveal notable trends over the period from 2020 to
2022 across three different sectors: telecom operators, colocation data centers, and cloud
and content data centers. This is shown in figure 16.

For telecom operators, emissions have remained relatively stable over the three years. In
2020, emissions were recorded at 128 million tonnes CO2e. This figure saw a slight increase
to 129 million tonnes of CO2e in 2021, marking a marginal rise of approximately 0.8%.
By 2022, emissions decreased slightly to 126 million tonnes of CO2e, reflecting a small
reduction of about 2.3% from the previous year.

In the colocation data centers sector, emissions have shown a consistent upward trend. Start-
ing at 35 million tonnes CO2e in 2020, emissions increased to 39 million tonnes CO2e in
2021, which represents an increase of around 11.4%. This upward trajectory continued in
2022, with emissions reaching 42 million tonnes CO2e, indicating an additional rise of about
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Figure 16: Scope 1 and 2 emissions of telecom operators, colocation, and cloud, content data
centers from 2020 to 2022 (Ayers et al., 2023).

7.7% compared to the previous year. The cloud and content data centers sector has also ex-
perienced a steady increase in emissions over the same period. Emissions were at 22 million
tonnes CO2e in 2020, which rose to 27 million tonnes CO2e in 2021, showing a significant
increase of approximately 22.7%. This trend persisted into 2022, with emissions climbing
to 32 million tonnes of CO2e, marking a further substantial rise of about 18.5% from the
previous year.

Overall, while telecom operators saw a slight fluctuation in emissions, both colocation data
centers and cloud and content data centers experienced significant increases in their carbon
emissions over the three-year period, highlighting the growing environmental impact of these
sectors.

3.3.3 Embodied and use phase emission

The provided figure 17 showcases estimations of life-cycle greenhouse gas emissions (MtCO2e)
associated with Information and Communication Technology (ICT) equipment. Here’s a
breakdown of the findings, focusing on embodied emissions (during manufacturing and dis-
posal) and use phase emissions (during operation):

Studies show a wide range of estimates for embodied emissions, even when excluding the
supply chain. Embodied emissions, though significant, contribute less than the use phase.
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Figure 17: Estimates for 2020 adjusted to include all supply chain pathways (Freitag et al.,
2021).

Estimates range from 100 MtCO2e/TWh to 680 MtCO2e/TWh, with the supply chain playing
a less prominent role in these emissions compared to the use phase. Malmodin’s 2020 study
suggests an embodied emission of 300 MtCO2e, while the Belkhir & Elmeligi, 2018 team’s
2020 range spans from 213 MtCO2e to 349 MtCO2e. Interestingly, including the supply
chain seems to have a lesser impact on embodied emissions compared to use phase emissions
(around a 33% to 67% increase).

There’s a significant difference in use phase emissions depending on the methodology used.
The use phase appears to be the dominant contributor to ICT equipment’s lifecycle emissions,
with estimates ranging from 730 MtCO2e to 2610 MtCO2e. Malmodin, Lövehagen, et al.,
2024 study estimates use phase emissions to be 787 MtCO2e/TWh, whereas the Belkhir &
Elmeligi, 2018 mentions the average for 2020 is 926 MtCO2e. The Andrae & Edler, 2015
study’s 2020 estimates show a wider range, with a best-case scenario of 730 MtCO2e and a
worst-case scenario of 2610 MtCO2e. Including the supply chain in the use phase emissions
seems to have a smaller impact compared to embodied emissions (around a 5% to 10%
increase).

It has also been noticed that every study has considered different emission factors. Malmodin
& Lundén, 2018 study has considered 0.5 MtCO2e/TWh as the emission factor, while Belkhir
& Elmeligi, 2018 uses 0.6 MtCO2e/TWh, and the Andrae & Edler, 2015 study’s range is
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from 0.59 to 0.61 MtCO2e/TWh. Thus, the wide range in these estimates highlights the need
for more standardized methodologies for measuring ICT equipment’s lifecycle emissions.

3.3.4 Total carbon emission of ICT calculated

While mentioning the ICT’s carbon footprint, all the studies and estimations are made from
three main categories such as ICT devices, data centers, and network systems. Although
there are differences in defining the categories, the numbers are compared despite minor
differences in considering what the categories include for the analysis of the previous studies.
Especially, some of the studies include the Entertainment and Media (E&M) sectors as part
of the ICT sector, but this chapter tries to consider the numbers without E&M sectors if the
authors mention the estimates and calculation for this sector particularly.

The Global e-Sustainability Initiative (GeSI) estimates are essential for understanding the
carbon emissions connected with the ICT sector because they provide a comprehensive,
industry-wide approach to calculating the carbon footprint of ICT products and services.
This technique provides uniformity, accounts for both direct and indirect emissions, and eval-
uates the enabling impacts of ICT solutions, making it a critical instrument for the sector’s
transition to a low-carbon economy. Table 5 compares the projected and recorded carbon
emissions in megatons of CO2 equivalent (Mt CO2e) across different study years by GeSI.

Study Year Carbon emission (Mt CO2e)

Global e-Sustainability Initiative (GeSI), 2008 2002 530
2007 830
2020 1430

Global e-Sustainability Initiative (GeSI), 2012 2011 910
2020 1270

Global e-Sustainability Initiative (GeSI), 2015 2030 1250

Table 5: Global e-Sustainability Initiative (GeSI) estimated ICT Sector emissions over the
years

In 2008, GeSI reported that carbon emissions were 530 Mt CO2e in 2002 and increased by
approximately 57% to 830 Mt CO2e by 2007. They projected emissions to reach 1430 Mt
CO2e by 2020, which would be a 72% increase from 2007 levels. In 2012, GeSI recorded
emissions of 910 Mt CO2e for 2011, representing a 9.6% increase from 2007. For 2020,
their projection was adjusted downward to 1270 Mt CO2e, indicating a 40% increase from
2011. In 2015, GeSI forecasted emissions for 2030 to be 1250 Mt CO2e, showing a decrease
of 1.6% from the 2020 projection made in 2012. Overall, the data from GeSI reveals a
significant rise in carbon emissions over the years with a slight downward adjustment in
long-term projections between the 2012 and 2015 reports.
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The three papers Andrae & Edler, 2015 (indicated as A&E), Belkhir & Elmeligi, 2018 (in-
dicated as B&E), and Malmodin & Lundén, 2018 (indicated as M&L), which discuss GHG
emissions in 2015 and estimate emissions for 2020, are addressed and contrasted in subse-
quent studies Jha et al., 2022 and Freitag et al., 2021. Figure 14 presents GHG emissions
from the ICT sector, including TVs, for the years 2015 and 2020 of these studies.

While considering the ICT sector includes the entertainment and media sector (E&M), the
highest and lowest estimates vary a lot. The lowest projected GHG emissions in 2015 were
775 MtCO2eq B&E, while the highest estimate was 2,257 MtCO2eq in the worst-case sce-
nario, mentioned by A&E. The average estimated GHG emissions for the year 2015 are
around 1,250 MtCO2eq (Jha et al., 2022). The lowest predicted GHG emissions in 2020
were 887 MtCO2eq in the best-case scenario, as shown in A&E, while the highest estimate
was 3,634 MtCO2eq in the worst-case scenario, mentioned in A&E. The average predicted
GHG emissions for the year 2020 are roughly 1,620 MtCO2eq, representing a 400 MtCO2eq
increase in five years (Jha et al., 2022).

However, the exclusion of the entertainment and media sector (E&M) gives a different per-
spective and result for the two years as shown in figure 18. The M&L Study shows a decrease
in emissions from 733 MtCO2e in 2015 to 690 MtCO2e in 2020, a reduction of 43 MtCO2e
(approximately 5.9%). Conversely, the B&E Study reports increases across all scenarios:
minimum emissions rose by 332 MtCO2e (42.8%), maximum emissions by 335 MtCO2e
(34.5%), and average emissions by 333 MtCO2e (38.2%). The A&E Study presents a mixed
outlook, with the best-case scenario showing a slight increase of 34 MtCO2e (5.8%), the ex-
pected case rising significantly by 396 MtCO2e (37.6%), and the worst-case scenario nearly
doubling with an increase of 1,492 MtCO2e (96.3%). These variations highlight different
methodologies and assumptions about the ICT sector’s future emissions.

In summary, while the M&L study projects a decrease in emissions, both the B&E and A&E
studies suggest significant increases, with the A&E worst-case scenario highlighting the po-
tential for dramatic rises in GHG emissions. These differences underscore the importance of
considering various scenarios and the potential impact of policy measures and technological
advancements on future emissions.

Figure 19 presents projected CO2e emissions across different scenarios from 2010 to 2030,
showing substantial variability in future emission estimates according to the study of Andrae
& Edler, 2015. In 2010, the best-case estimated emissions at 1 Gt, which slightly decreased
to 0.9 Gt by 2015 and remained stable until 2020. However, it is projected to rise to 1 Gt
in 2025 and further increase significantly to 1.5 Gt by 2030. The expected scenario shows a
more consistent upward trend, starting at 1.3 Gt in 2010, increasing to 1.4 Gt in 2015, then
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Figure 18: GHG emission (Mt CO2e) of ICT without TVs.

rising more sharply to 1.7 Gt in 2020. This trend continues with a substantial jump to 2.5
Gt in 2025, reaching 4.8 Gt by 2030. The worst-case scenario depicts a dramatic increase,
beginning at 1.7 Gt in 2010 and escalating to 2.3 Gt by 2015. Emissions then surge to 3.6 Gt
in 2020, nearly double to 7.6 Gt by 2025, and skyrocket to 19.9 Gt by 2030. These forecasts
emphasize the need for strong emission-reduction actions to avert the worst-case scenario.

Figure 19: GHG footprint of ICT 2010-2030 (Andrae & Edler, 2015).



62

4 Methodology

This chapter provides the systematic approach used to determine the carbon footprint of
the information and communication technology (ICT) sector. The study applies various
statistical analyses of the data to answer earlier research on the carbon impact of ICT. A
thorough explanation is also provided, along with an estimate of the carbon emissions and
contributing variables over the next few years.

4.1 Research method

This research employs a mixed-methods approach to provide a comprehensive understanding
of the factors affecting carbon emissions of Information and Communication Technologies
(ICT) as well as estimating future values based on the important features. The study will
be conducted in a total of three phases: systematic literature review, data processing, and
data analysis. Each phase involves distinct methods and techniques to address the research
questions effectively.

A comprehensive research method is employed to answer the main research question, in-
cluding a systematic literature review (SLR), quantitative and qualitative data collection,
data analysis, and validation. The SLR identifies existing research and previously identified
significant factors affecting ICT’s carbon emissions. Quantitative data on emissions and en-
ergy consumption, along with qualitative insights from industry experts, provide a basis for
detailed calculations and scenario analysis. To address the sub-research questions, a method-
ological framework integrating time series analysis and regression analysis is to be utilized
The methodology is designed to systematically investigate the significant factors influencing
ICT’s carbon emissions, estimate the carbon emissions of ICT, and evaluate the impact of
electricity usage on the carbon footprint of the ICT sector.

To enable a thorough time series analysis, data will be gathered from reliable sources during
the previous 10–20 years, such as government databases, industry publications, and interna-
tional organizations. Electricity use, carbon emissions, energy efficiency measurements, and
statistics on ICT hardware manufacture will be important factors. To find trends and patterns
in the data, the time series analysis will include stationarity tests, smoothing methods, and
decomposition.

With an emphasis on electrical consumption specifically, regression analysis will quantify
the association between carbon emissions and the determined important features. Reliability
tests and residual analysis will be used as diagnostics to validate the time series and multi-
ple linear regression models, which will be used. The Greenhouse Gas Protocol and other
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standard emission factors and procedures will be used to estimate carbon emissions. Sce-
nario analysis and adaptability calculations will be used to evaluate the effects of power use.
Statistical analysis, which looks at the impact of important assumptions and factors, will
guarantee the validity of the results.

4.2 Systematic literature review

A literature review is a research method that systematically searches and analyzes existing
studies on a specific topic to provide a comprehensive understanding (Syrjälä, 2021). This
involves gathering and critically evaluating evidence from various scientific sources, com-
paring and contrasting findings to identify broader themes and knowledge gaps, and ensur-
ing depth and quality through precise methodology and effective synthesis (Aveyard, 2023).
Conducting a literature review helps build a broad understanding of the research area and
pinpoint areas where further investigation is needed.

There are several types of literature reviews. The Systematic Literature Review (SLR) is
the most rigorous, using a defined protocol and strict search strategy to find, evaluate, and
synthesize all relevant research on a specific topic (Kitchenham et al., 2009). Within an
SLR, a meta-analysis quantitatively combines data from multiple studies to draw stronger
conclusions (Rosenthal & DiMatteo, 2001). In contrast, a Descriptive Literature Review
offers a general overview of the existing literature on a topic without the strict methodology
of an SLR.

The steps of a Systematic Literature Review (SLR) involve several detailed phases (Syrjälä,
2021):

• Formulate Research Question: Begin by defining a clear, concise, and focused re-
search question that will guide the entire review process. Ensure this question can be
answered through existing literature and is significant within the relevant field.

• Develop Study Plan and Background: Outline a detailed research plan specifying
methods and a timeline for the SLR. Provide a comprehensive background of the re-
search topic, including its historical context and current knowledge base, justifying the
need for the review and stating how it will contribute to existing research.

• Establish Inclusion/Exclusion Criteria: Define transparent and objective criteria for
selecting relevant studies to ensure a systematic and unbiased review process. Exam-
ples of inclusion criteria might include publication date, study type, or specific popula-
tion. Exclusion criteria could involve studies not published in peer-reviewed journals,
non-English language studies, or those with irrelevant methodologies.
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Figure 20: The steps of conducting a SLR (Syrjälä, 2021; Fink, 2019; Bettany-Saltikov,
2016).

• Select Databases and Search Terms: Choose relevant academic databases that cover
the specific research field, combining general and specialized databases. Develop a
comprehensive search strategy using keywords and Boolean operators, including syn-
onyms and related terms to capture a wide range of relevant studies.

• Conduct Literature Search and Screen Studies: Conduct searches in chosen databases
using the developed strategy. Utilize features like title and abstract filters to refine
search results. Screen the retrieved studies based on predefined inclusion/exclusion
criteria, initially through titles and abstracts, followed by a detailed review of full
texts.

• Analyze and Synthesize Results: Critically appraise the quality of selected studies
using established criteria. Extract relevant data using a pre-defined data extraction
form that captures key information such as study design, findings, and limitations.
Analyze and synthesize the findings to identify recurring themes, patterns, and contra-
dictions across the research.
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• Summarize and Report Findings: Present the current state of knowledge on the re-
search topic based on synthesized findings. Highlight key findings, discuss similarities
and differences in the data, identify potential research gaps, summarize the limitations
of the SLR, and suggest areas for future research.

A thorough review of existing literature will be conducted to identify significant factors
influencing ICT’s carbon emissions. This includes reviewing peer-reviewed articles, indus-
try reports, and governmental publications on energy consumption, material use, efficiency
gains, and potential rebound effects within the ICT sector. This process ensures a rigorous
and systematic approach to gathering and analyzing existing research.

4.3 Data processing

Since the goal of the thesis is to use time series analysis to identify factors and estimate
future values, a solid data set is necessary. There have not been any previous studies with
open datasets that provide a full view or calculation of the carbon emission of ICT. However,
some studies focus on electricity use only, some focus on data center emissions, and so on.
Thus, integrating and connecting all the data from the studies is required to create the dataset.
The step begins with the features that contribute to the total carbon emission of ICT, then the
available data are included in the dataset, and finally, the non-provided data is filled in using
the appropriate methods.

4.3.1 Feature selection

There have been a lot of studies conducted and various studies use quite different assump-
tions and calculation methods. The most recent studies published by Malmodin, Lövehagen,
et al., 2024 and the calculation method used by Global e-Sustainability Initiative (GeSI),
2012, are followed mostly to create the dataset. These two studies gave comprehensive de-
tails about the carbon emission calculation of the ICT sector. Based on these studies, some
important and unavoidable features have been identified. But in the dataset, some of the con-
stant values such as emission factor are ignored as those are not going to affect the training
of different machine learning models. A total of 61 columns as features are selected for the
dataset and a range for the year 2000 to 2035 is selected. Therefore, the prediction until 2035
is made through the study.

4.3.2 Data collection

To accurately measure carbon emissions in the ICT sector, the study gathers secondary quan-
titative data from various reliable sources, including environmental impact reports from
major ICT companies such as telecommunication operators and data centers, government
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databases on energy consumption, and renewable energy adoption rates in the sector. Addi-
tionally, qualitative data is obtained through previous insights gained from industry experts,
ICT professionals, and environmental scientists. The first detailed data are found in the year
2002 and the latest data are found in 2020. In between these years, there have been several
studies, but not all of the year’s calculations are found in detail. In some cases, there are sev-
eral values for a specific data cell and the appropriate ones are chosen based on the data trend
and explanation provided. Furthermore, a few columns are filled with a constant growth rate
mentioned by sources. The initial dataset is created with the present data mentioned in the
previous studies and found online.

4.3.3 Data prediction

After creating the primary dataset, there is a lot of missing data from the mentioned 35
years. In this stage, the data prediction is done with various strategies. After looking at the
61 data columns, these can be separated with different characteristics. Some columns have
continuous values, others contain values with intervals, and some also have very few data
points. To predict these wide ranges of data, there are different models need to be used. The
predictions are made in three ways. Firstly, the previous values are filled up, and then if
values are missing in the middle years, those are predicted based on the present year’s value.
Finally, the future values are estimated based on the previous trends analyzed by the models
trained. In most cases, the Linear Regression, Ridge Regression, Lasso Regression, Support
Vector Regression (SVR), and Auto Regression (AR) are used. These are discussed further
in the following subsection.

4.4 Data analysis

This section is not limited to only applying algorithms for creating models and applying
them for testing. Analysis is also done to check if the data is good enough for the algorithm
to be implemented.

4.4.1 Statistical analysis

Statistical analysis is indispensable in time series regression analysis as it ensures the selec-
tion of appropriate models, accurate parameter estimation, significance testing, and model
validation. These processes are vital for making reliable forecasts and informed decisions
based on time series data.

The stationarity of a time series is vital for accurate forecasting. Stationary data allows for
consistent statistical properties, reliable model assumptions, and effective identification of
patterns, all of which contribute to improved prediction accuracy. A stationary time series is
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one whose statistical properties, such as mean, variance, and autocorrelation, do not change
over time. Addressing non-stationarity through appropriate transformations is a critical step
in the time series analysis process.

While stationarity is a desirable property for many time series forecasting methods, there are
instances where retaining non-stationary characteristics is beneficial. This includes focus-
ing on trends, using models designed for non-stationarity, preserving important information,
dealing with small sample sizes, and addressing complex behaviors in the data.

4.4.2 Machine learning regression

The following models are fundamental statistical techniques used for modeling relationships
between variables. All the models are used based on the efficiency in every estimation and
prediction.

A. Linear Regression

Linear regression is a statistical method that models the relationship between a dependent
variable and one or more independent variables by fitting a linear equation to observed data.
The simplest form, simple linear regression, involves one independent variable, while multi-
ple linear regression incorporates multiple independent variables (Yeturu, 2020). The general
form of a linear regression model can be expressed as:

yi = β0 +β1xi1 +β2xi2 + · · ·+βpxip + εi

where, yi is the dependent variable,
xi j are the independent variables,
β j are the coefficients to be estimated,
εi is the error term.

Linear regression is widely used due to its simplicity and interpretability, making it suitable
for various applications in fields such as economics, biology, and engineering.

B. Ridge Regression

Ridge regression, also known as L2 regularization, is a technique used to address multi-
collinearity in linear regression models. It introduces a penalty term to the loss function,
which helps stabilize the coefficients’ estimates when independent variables are highly cor-
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related (Theodoridis & Koutroumbas, 2009). The ridge regression estimator is given by:

β̂ R = (XT X +λ I)−1XT y

where, λ is the regularization parameter, and I is the identity matrix

Adding the λ term helps reduce the variance of the coefficient estimates at the cost of intro-
ducing some bias, which can improve overall model performance.

C. Lasso Regression

Lasso regression, short for Least Absolute Shrinkage and Selection Operator, is another reg-
ularization technique that applies an L1 penalty to the regression coefficients. This method
not only helps to prevent overfitting but also performs variable selection by shrinking some
coefficients exactly to zero (van Erp, Oberski & Mulder, 2019). The lasso regression objec-
tive function is expressed as:

ŵ = argmin
w

(MSE(w)+λ∥w∥1)

where, ∥w∥1 is the L1 norm of the coefficients, and λ controls the amount of regularization.
This property of producing sparse models makes lasso regression particularly useful in high-
dimensional datasets.

D. Support Vector Regression (SVR)

Support Vector Regression (SVR) is an extension of Support Vector Machines (SVM) used
for regression tasks. The primary goal of SVR is to find a function that approximates the
relationship between input variables and a continuous output variable while maintaining a
margin of tolerance (epsilon) around the predicted values (Comito & Pizzuti, 2022). SVR
aims to minimize the prediction error while keeping the model as simple as possible.

The mathematical formulation of SVR involves: Defining a loss function that penalizes er-
rors exceeding a specified threshold (epsilon). Using kernel functions (linear or non-linear)
to transform the input space into a higher-dimensional space, allows for more complex rela-
tionships to be modeled. The SVR model can be expressed as:

min
1
2
∥w∥2 +C

n

∑
i=1

ξi

subject to:
yi − (w ·φ(xi)+b)≤ ε +ξi
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(w ·φ(xi)+b)− yi ≤ ε +ξi

where, w is the weight vector,
φ(xi) is the kernel function,
b is the bias term,
ξi are the slack variables,
C is the regularization parameter.

E. Auto Regression (AR)

An Autoregressive (AR) model is a type of statistical model used to analyze and predict
future values based on past values of the same variable. The AR model is defined by its
order, denoted as AR(p), where p indicates the number of lagged observations included in
the model (Kotu & Deshpande, 2019). The general form of an AR(p) model is:

Xt = φ1Xt−1 +φ2Xt−2 + · · ·+φpXt−p + εt

where: Xt is the current value,
φ1 are the coefficients,
εt is a white noise error term

The AR model assumes that the current value of the series is a linear combination of its
previous values.

F. Decision Tree Regression

The Decision Tree Regression model is a non-parametric, supervised learning method used
for predicting continuous output variables. It operates by recursively partitioning the input
space X into distinct, non-overlapping regions based on the input features, and then fitting a
simple model, such as a constant, within each region (Theodoridis & Koutroumbas, 2009).
Given a training set S= {Xm,Ym}m, where X is the input feature space and Y is the continuous
output space, the decision tree algorithm selects the optimal split at each node of the tree by
minimizing a certain criterion, such as the mean squared error (MSE).

At each node N, the model evaluates all possible splits and chooses the one that minimizes
the impurity function f (Sl), where Sl and Sr are the resulting subsets after the split:

f (Sl,Sr) =
|Sl|
|S|

MSE(Sl)+
|Sr|
|S|

MSE(Sr)

Here, |S| is the number of samples in the parent node, |Sl| and |Sr| are the numbers of samples



70

in the left and right child nodes, respectively, and MSE is the mean squared error:

MSE(S) =
1
|S| ∑i∈S

(yi − ȳ)2

where yi is the actual output and ȳ is the mean of the outputs in subset S. This splitting
process continues recursively until a stopping criterion is met, such as a maximum tree depth
or a minimum number of samples in a node.

Once the tree is built, predictions for new input instances x are made by traversing the tree
according to the input feature values until a leaf node is reached, where the output Ŷ is given
by the mean value of the samples in that leaf node (Hastie et al., 2005).

G. Random Forest Regression

The Random Forest Regressor (RFR) is an ensemble learning method that combines multiple
independent and uncorrelated decision trees to achieve accurate predictions. This approach
relies on bagging, a technique that merges bootstrapping and aggregation. For a given train-
ing set S = {Xm,Ym}m, where X represents the input features and Y the output variables,
bootstrapped subsets St are generated to train individual trees. The predictions of these trees
are then averaged to produce a final aggregated output (El Mrabet et al., 2022).

Mathematically, assuming that output variables follow a multivariate Gaussian distribution
with mean µ and covariance Σ, the posterior distribution for a given tree t is modeled as:

P(y|x,Pt) = Nt(y|µt ,Σt)

where Pt is the partition created by tree t, and Nt represents the multivariate Gaussian dis-
tribution. During training, the trees are optimized to reduce prediction uncertainty, with an
entropy-based splitting function f guiding the partitioning of subsets at each node (El Mrabet
et al., 2022). The final prediction for a new instance is derived by averaging the posteriors
across all trees:

P(y|x) = 1
T

T

∑
t=1

P(y|x,Pt)

where T is the total number of trees in the forest. The model predicts the output Ŷ by
maximizing the posterior probability:

Ŷ = argmax
y∈Y

P(y|x)

H. Polynomial Regression
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Polynomial Regression is a form of regression analysis in which the relationship between the
independent variable x and the dependent variable y is modeled as an nth-degree polynomial
(Coker, 1995).

y = β0 +β1x+β2x2 + · · ·+βnxn + ε

where: y is the dependent variable,
x is the independent variable,
βi are the coefficients,
ε is the error term.

Polynomial Regression is useful when the relationship between the variables is curvilinear,
allowing for a better fit than linear regression in such cases. It can model complex relation-
ships by increasing the degree of the polynomial.

4.4.3 eXplainable Artificial Intelligence (XAI)

eXplainable Artificial Intelligence (XAI) encompasses methods and techniques aimed at
making the outputs of AI systems understandable to humans. As AI technologies advance
and become increasingly complex, the need for clarity and transparency in their decision-
making processes grows. Key aspects of XAI involve providing explanations that users can
comprehend, ensuring these explanations accurately reflect the AI system’s reasoning, oper-
ating within the designed parameters with adequate confidence, and fostering transparency
and interoperability (Dieber & Kirrane, 2020). This is particularly vital in high-stakes fields
like healthcare and finance, where human oversight is necessary to verify and trust AI deci-
sions.

Local Interpretable Model-agnostic Explanations (LIME) is an open-source XAI frame-
work that can provide interpretability to the decision-making steps of black-box ML models
(Ribeiro, Singh & Guestrin, 2016). LIME is a widely used algorithm that explains pre-
dictions made by any machine learning classifier. LIME operates by perturbing the input
data and observing changes in the predictions to identify which input features are most in-
fluential. The process involves generating predictions for perturbed inputs, weighting these
inputs based on their proximity to the original, training a simple interpretable model on these
weighted inputs to approximate the original model, and then using the resulting weights to
determine feature importance (Salih et al., 2024). LIME’s model-agnostic nature allows it
to be applied to various machine learning models, from linear regressions to complex neu-
ral networks. Applications of LIME include debugging models, enhancing performance by
identifying key features and ensuring model reliability in critical domains (Salih et al., 2024).
Overall, XAI and algorithms like LIME are essential for maintaining trust and accountability
in AI systems, especially as they become more prevalent and powerful.
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5 Evaluating the Carbon Emissions of the ICT Industry

This chapter focuses on the work done in this research work. In the methodology chapter, the
techniques used are mentioned. Now this part of the paper explains how the methods are used
to create data, make predictions, and conduct an extensive analysis. In short, this chapter
begins with the feature selection part derived from the background of this study. Then it
mentions the calculation process followed by the data-gathering approach and initial dataset-
creation method mentioned in the calculation process. After that, the important factors are
identified by using explainable AI’s analytical library. Finally, a future prediction is made
using the process mentioned previously, which concludes the technical work of this thesis.

5.1 Feature selection

Feature selection involves identifying and choosing the most relevant variables (features) that
contribute significantly to the target outcome of interest. This process is crucial in building
efficient and effective predictive models, as it helps in reducing the dimensionality of the
data, improving model performance, and making the results more interpretable.

5.1.1 Defining ICT sector

The first step of this section is to identify what the ICT sector contains. In this research, the
ICT sector is defined in four main categories. They are ICT devices, data centers, network
connectivity, and enterprise networks. An overview of what features are selected within
these categories is found in table 6.

Category Details
End Use Devices PCs (Desktop, Laptop), Mobile devices (Smartphone, other

mobile devices), tablets
Data Centers Servers, Data traffic, Computations
Network infrastructure Fixed lines, Wireless, Mobile data
Enterprise networks switches, routers, WLAN access points, and small cells

Table 6: ICT sector defined by this study

A. ICT devices

Only four types of devices are considered within the range of ICT devices as they have
been the major contributor to carbon emissions. The selected types are smartphones, tablets,
desktop PCs, and laptops. Various product reports are used as a yearly product value for
the total devices. Also, company reports are analyzed to gain insights into yearly shipment
values as well as installed base values.
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B. Data center

For the data centers, the previous studies mostly analyzed various industries’ sustainability
reports worldwide and came to some estimates. In this study no such techniques are used,
rather taking the estimations from the previous studies as the contributing feature for the total
carbon footprint of the data center. One of the main factors is the electricity usage of data
centers.

C. Network connectivity

The network’s emissions are calculated with two different network systems. The emission
contributors are electricity use, fixed and mobile networks, subscribers, and data usage.

D. Enterprise networks

The enterprise network includes switches, routers, WLAN access points, and small cells as
the driving factors.

Not only the factors are connected to the main categories, but also they are correlated to the
embodied and use stage emission of the categories. The details of these relations are not
mentioned in details in this paper, rather those are found in the supplementary document.

5.1.2 Selecting calculation process

After categorizing the ICT sector into three parts, each of the parts is calculated separately
in the beginning. From that point, the calculation process follows a bottom-up approach. A
summary of the calculation method used for creating the data set is shown in table 7. This
table shows the step-by-step process that has been followed after the literature review and
locating the initial publicly available data sources.

Firstly, the macro features are identified and chosen for each of the categories. The ICT
devices’ macro features (Device users, shipments, etc.) are filled with available data. Then
the missing data are filled appropriately which is mentioned in the next few sections of this
chapter. After all the independent features are filled, some of the dependent and micro-
level features such as device power use, and device electricity usage are filled. Then a few
features are identified as a deriving factor for embodied emission and use stage emission. In
this way, the two columns are filled with data trained from the available data. Finally, add
the two columns to get the total carbon emission of devices. The enterprise network’s carbon
emission follows the same procedure as the ICT device’s. However, the calculation differs a
bit for data centers and network systems.
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Calculating carbon emission of ICT devices

Step 1: Gather the initially available data (Devices produced, Devices Shipments, etc.).

Step 2: Identify the macro (independent) and micro (Dependent) features.

Step 3: Fill up the independent feature values with previous and future values

Step 4: Fill up the dependent features based on the independent features

Step 5: Embodied and Usage emissions are predicted with the available data.

Step 6: Add these two to get carbon emission of ICT devices

Calculating carbon emission of Data centers

Step 1: Gather the initially available data (Servers shipped, Active servers, etc.).

Step 2: Identify the macro (independent) and micro (Dependent) features.

Step 3: Fill up the independent feature values with previous and future values

Step 4: Fill up the dependent features based on the independent features

Step 5: By following step 4 the carbon emission of the Datacenter is predicted

Step 6: Based on the available data, using the extracted total carbon emission values, the
embodied and use stage carbon emission is calculated

Calculating carbon emission of Enterprise Networks

Step 1: Gather the initially available data (Device shipments, installed base, etc.).

Step 2: Identify the macro (independent) and micro (Dependent) features.

Step 3: Fill up the independent feature values with previous and future values

Step 4: Fill up the dependent features based on the independent features

Step 5: Embodied and Usage emissions are predicted with the available data.

Step 6: Add these two to get carbon emission of Enterprise Networks

Calculating carbon emission of Network Systems

Step 1: Gather the initially available data (Fixed/WiFi data traffic, etc.).

Step 2: Identify the macro (independent) and micro (Dependent) features.

Step 3: Fill up the independent feature values with previous and future values

Step 4: Fill up the dependent features based on the independent features

Step 5: The network’s embodied and use stage carbon emission is calculated with the
other three category values as independent features.

Step 6: Now add the two-column values summed up the total carbon emission of the
Network

Table 7: ICT carbon emission calculation method used in this study.
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5.2 Data collection

There has been a wide range of sources used to fill up the initial data. The data are found
in the paper itself as well as supplementary documents provided with them. In many cases,
there are several values present for a specific data cell and in these cases, the most promising
value is chosen. The review papers have been quite useful in getting all the present values in
the field. Also, a few columns have too little data present throughout the target years. There
the yearly values are estimated from the annual growth rates researched by various forums
and online platforms.

Andrae & Edler, 2015 calculated and predicted the values of various columns from 2015
to 2030. The columns they predicted included Production of ICT hardware Electricity use,
Devices produced in billions, Global Data Centre IP Traffic, Mobile Network Electricity
Usage, Mobile + Voice Traffic, Fixed access wired Electricity Usage, Fixed data traffic wired,
Fixed access Wi-Fi Electricity Usage, Fixed data traffic in Wi-Fi. In that study, they predicted
quite sharp upward trends in almost every feature. However, in a later study conducted by
Andrae, 2019, the trends were changed and the values were re-calculated to a much lower
growth trend than the initial predictions. This study also added the computations and data
center’s electricity usage from the year 2018 to the year 2030. These columns were filled
with data from 2015 to 2030 where the updated values were added from the mentioned year
previously.

The most recent study conducted by Malmodin, Lövehagen, et al., 2024, had a detailed
calculation method for the year 2020. They also mention the values for servers shipped/pro-
duced globally and installed, active servers from the year 2005 to 2020. Other than these
values all the mentioned values for the specific year have been added to the data set. Their
data contains a detailed approach from the industry executive reports with emission and elec-
tricity usage of different categories. In an earlier report by Malmodin, Moberg, et al., 2010,
a detailed calculation in the year 2007 can be found. Moreover, Global e-Sustainability Ini-
tiative (GeSI), 2012 provides a detailed value for the years 2002, and 2011 and estimations
for the years 2020 and 2030. They also gave details about the overestimation of their study
in the Global e-Sustainability Initiative (GeSI), 2015.

Other than these studies mentioned above, a good number of data are gathered from “statis-
tica” publishes and estimates. Some of the devices installed base and shipments worldwide
are from various sources mentioned on their website (IDC, January 15, 2024; Credit Suisse,
March 16, 2011). Furthermore, the energy demand of devices and the emission per device
per year are two of the most important factors contributing to the carbon footprint of ICT
devices. These data are mostly gathered from the product life cycle analysis report. A spe-
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cific product of a category (i.e., smartphone) is considered and the year it was introduced
was chosen as that year’s emission for that type of product. The energy demand of a device
is calculated by setting an average usage time along with the average power consumption.
As mentioned before, the product release year was set to be the value for the energy demand
of that year.

It is not feasible to mention all the data sources in this section of the chapter, as many sources
have been used. All the sources and references are indicated in the supplementary data file
of this study.

5.3 Estimate previous missing data

The requirement for estimation is necessary as the goal is to make future predictions. Since
the years have passed, but no data has been found for those years. There are different patterns
after initial data collection. In some cases, the beginning years need to be predicted, and
many others need estimations for the middle years. Based on the target a proper approach is
taken. These approaches are described in this section.

The first category can be mentioned as the values available until the present date. Also, they
tend to be inconsistent throughout the years. These data are gathered from the company
reports. One such column is the PC shipments in million units. This PC shipment feature
is an independent column. This value does not depend on any other column present in
the dataset. Features and target variables are extracted, with the target variable being log-
transformed for better modeling. Both features and targets are scaled using MinMaxScaler.
To predict the previous values there are a few algorithms that were fitted with the available
data and the best one was chosen based on the mean squared error value. Table 8 shows the
models and their mean squared error.

Algorithm MSE

Linear Regression 0.08511294447789558
Ridge Regression 0.08548342954873117
Lasso Regression 0.08776691235989341
Support Vector Regression (SVR) 0.025133966515239133

Table 8: Mean Squared Error (MSE) for different models

As the table indicates, the best model is SVR in terms of lower mean squared error. The
best-performing model is refitted on the scaled data. Estimations are made for the years
2000 to 2005, inverse-transformed to the original scale, and exponentiated to revert the log
transformation. Finally, figure-21 shows the data estimation for the previous years using the
continuous values until the present year.
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Figure 21: PC shipments worldwide.

The next type of data has a continuous trend as well and these data have been predicted for
a certain time in the future. These future trends are studied and the past values are filled up.
One such column is the device produced. This is also an independent column but the data
from 2018 until 2030 is predicted by previous studies. The task is to estimate the number
of devices produced in billions from 2000 to 2009, using data from 2010 to 2030. The
data is structured into a pandas Data Frame and then reversed to facilitate the backcasting
process. Features (years) and the target variable (log-transformed number of devices) are
extracted. Both features and targets are scaled using MinMaxScaler. Four regression models
(Linear Regression, Ridge Regression, Lasso Regression, and Support Vector Regression)
are defined and evaluated by their mean squared error (MSE) on the scaled data. The model
with the lowest MSE is selected as the best model. Table 9 shows the algorithms and their
error values.

Algorithm MSE

Linear Regression 0.00432069409767252
Ridge Regression 0.012661274746177367
Lasso Regression 0.07567957440853651
Support Vector Regression (SVR) 0.00530454972202762

Table 9: Mean Squared Error (MSE) for different models (devices produced)

This best model is then refitted on the scaled data. Estimations for the years 2000 to 2009
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are made using the best model, inverse-transformed to the original scale, and exponentiated
to revert the log transformation. The predicted values are printed and plotted alongside
the observed data, showing the backcasted predictions visually. Figure-22 shows that data
estimation for the previous years using the continuous values for the future.

Figure 22: Devices produced in billions

Another type of data has a gap between certain years. They have some previous values and
some future values. Filling up the values in the middle is the goal of this data category.
For instance, the data of the desktop PC installed base shows such a trend. This is also an
independent column. The data is structured into a pandas Data Frame, which contains some
missing values for the years 2016 to 2018. The dataset is split into known data (without
missing values) and missing data. Feature matrices (X) and target vectors (y) are prepared
using the known data. Four regression models (Linear Regression, Ridge Regression, Lasso
Regression, and Random Forest Regression) are defined and evaluated based on their mean
squared error (MSE) using a train-test split on the known data. The model with the lowest
MSE is identified as the best model. Table 11 shows the algorithms and their error values.

This best model is then trained on the entire known dataset and used to estimate the missing
values. These predicted values are inserted back into the original Data Frame to fill in the
missing entries. The script then plots the known data and the estimated data with different
colors to visually distinguish between the original and the predicted segments. Finally, the
filled data frame with both original and estimated values is printed, providing a complete
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Algorithm MSE

Linear Regression 30644.50662290924
Ridge Regression 30628.293082279954
Lasso Regression 30600.173216980987
Random Forest Regression 1069.724474446579

Table 10: Mean Squared Error (MSE) for different models (Desktop PC installed base)

series of the worldwide installed base of desktop PCs. Figure-23 shows the data prediction
for the years in the places of the missing values.

Figure 23: Desktop PC installed base in millions

The last type is a dependent column. Here the values are influenced and changed by the
patterns of another data column. Production electricity of ICT hardware is such an example
where the values follow the trends of the number of devices produced. The feature matrix
(X) and target vector (y) are prepared, with the rows containing missing target values being
dropped to form a non-NaN dataset. A Linear Regression model is trained using this non-
NaN dataset. The model then predicts the missing electricity usage values based on the
devices’ produced data. These estimations are used to fill the missing entries in the original
data frame. The model’s performance is evaluated using the mean squared error (MSE) and
R-squared (R²) metrics on the known non-NaN dataset, providing insights into the model’s
accuracy. Figure-24 shows the data estimations for missing years in the middle.
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Figure 24: Production electricity usage of ICT hardware.

5.4 Predict future data

Predicting future data also depends on the data availability, which has been discussed in this
chapter. Based on the characteristics of the data, appropriate models are chosen. However,
in this part of the section, an assumption of not to include the latest models being used to
predict future values.

The first example focuses on the trending models on such data of carbon emissions of ICT.
Various algorithms like ARIMA, AR, and VAR are used to analyze and predict the time
series data. An approach to fit the data using these models is shown in the devices produced
column. To fit these models, the data needs to be stationary. To make the data stationary,
the trends have to be destroyed. Since the data trend is very necessary for the dataset being
used in this research. Even if the data is made stationary and then predicted with any of
the models, the data does not fit. Figure-25 shows the data prediction for the future years.
There can be various reasons for not fitting, but this research would not go into details about
this. However, it is assumed that only a few data points as well as the need for trends and all
historical data points are the main reasons for not fitting these models.

The data is split into a training set and a test set. The training set consists of the first part
of the dataset, excluding the last 10 years, while the test set includes the last 10 years. This
split is done to evaluate the model’s performance on unseen data. An AutoRegressive (AR)
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Figure 25: Devices produced future value prediction using ARIMA model.

model with 8 lags is defined and fitted on the entire dataset. The AR model uses the data
to predict future values. After fitting the model, a summary of the model’s parameters and
statistics is printed for analysis. The model is used to predict the installed base for the test
set period. These predictions are compared against the actual values in the test set. Finally,
the future values are predicted. Figure-26 shows the data prediction for the future years.

The columns in the next category are heavily decreasing in order. They are critical to predict
as the values might be predicted much lower than the possible values. Desktop PC installed
base is an example of this category. This is also an independent column. Here the AR model
predicts negative values, but it is not possible. Thus the other models are used. A possible
reason for the AR model not working is the data is not stationary and the data points are too
small as discussed before. Thus, the next best value for the error is taken and declared as the
best model that fits this data.

Algorithm MSE

Linear Regression 17150.100235008573
Ridge Regression 17149.06487591894
Lasso Regression 17143.504775481757
SVR 20820.460468846897
AR 2105.027126667138

Table 11: Mean Squared Error (MSE) for different models (Desktop PC installed base)
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Figure 26: Laptop installed base in millions.

Figure-27 shows the data prediction for the future years. The prediction is made by following
a similar approach described before, by creating train and test datasets. The best model
predicts the null values based on the model trained.

Figure 27: Desktop PC installed base in millions.

Another type of data prediction requires data from other columns. These values are depen-
dent on other independent columns. One example of such data is calculated in use stage
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carbon emission of ICT, which depends on the devices installed base and energy demand of
a specific device. Figure-28 shows the data prediction. To predict the missing target val-
ues, the code implements and evaluates three machine learning models: Linear Regression,
Random Forest Regressor, and Support Vector Regressor. These models are trained on the
training set, and their performance is assessed using the Root Mean Squared Error (RMSE)
metric on a validation split. The best-performing model is selected based on the lowest
RMSE value. Once the best model is identified, it is used to predict the missing values in
the testing set. The predicted values are then paired with the corresponding years from the
original dataset, allowing for a clear presentation of the predicted carbon emissions for the
missing years. This method ensures a robust and reliable approach to imputing missing data,
leveraging advanced machine learning techniques to maintain the integrity and completeness
of the dataset.

Figure 28: Use stage carbon emission of ICT devices.

5.5 Identify feature significance using explainable artificial intelligence (XAI)

This explanation comes after the total dataset is constructed. Here, the future prediction
section is mentioned after this XAI explanation. In this section, XAI is used to analyze
the whole dataset. As mentioned in the methodology, the LIME explanation is used for
identifying feature importance for a year. It takes one target column and learns which of
the existing columns plays a vital role in achieving the value of the target column. Here,
the explanations for selected years (2011, 2022, 2030) are presented in detail. Also, the
explanation is given for two target columns: electricity consumption and carbon emission.
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5.5.1 Factors influencing electricity consumption

This part of the chapter mentions the factors influencing electricity consumption over the
years. Once the dataset is created, it is divided into train test sets and then fitted into various
models. The results of these models are shown in table 12.

Algorithm MAE MSE R2

Linear Regression 100.24 13952.85 0.99
Ridge Regression 58.74 6181.48 0.9975
Lasso Regression 97.87 13421.38 0.99
Polynomial Regression 97.40 15855.41 0.99
Decision Tree Regression 501.38 440169.48 0.82
Random Forest Regression 341.58 416670.68 0.83

Table 12: Performance metrics for various regression algorithms

The best model is chosen and this model is then used to explain the importance of the feature
for a specific year. The following parts show such analysis in brief.

Explanation of 2011 electricity consumption of ICT:

Figure-29 shows the important factors for the 2011 ICT electricity consumption. The LIME
explanation for the regression model prediction provides a detailed breakdown of the features
contributing to the predicted value of -5592.45. The explanation reveals that the prediction
range extends from -5592.45 to 9507.96, indicating a broad scope of potential outcomes
based on feature variations. The visualization categorizes the contributions into negative and
positive influences, with each feature’s impact represented by bar lengths that indicate the
magnitude of their effect on the predicted value.

Key negative contributors include Feature 2, Feature 7, and Feature 37, which significantly
decrease the predicted value by 456.08, 800.66, and 270.20 units, respectively. These fea-
tures’ high values (589.82 for Feature 2 and 220.00 for Feature 7) are associated with a
substantial reduction in the target variable. Additionally, features like Feature 31, Feature
18, and Feature 15 contribute smaller but notable negative impacts.

On the positive side, Feature 5 and Feature 14 are the most significant contributors, increas-
ing the predicted value by 1144.73 and 373.43 units, respectively. Higher values of these
features (107.87 for Feature 5 and 446.00 for Feature 14) correlate with an increase in the
target variable. Feature 28 also contributes positively, albeit to a lesser extent.

Overall, the LIME explanation offers transparency into the regression model’s prediction
process by clearly delineating the contributions of individual features. This breakdown aids
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in understanding how specific feature values influence the model’s output, thereby enhancing
the interpretability and trustworthiness of the prediction. The significant negative contribu-
tions from certain features highlight areas where the model is particularly sensitive, while
the positive contributions emphasize factors that drive the prediction upwards.

Figure 29: XAi explanation for the electricity consumption of ICT for the year 2011.

Explanation of 2020 electricity consumption of ICT:

Figure-30 shows the important factors for the 2020 ICT electricity consumption. The LIME
explanation for the regression model prediction details the contributions of various features
to a predicted value of -5505.28. The prediction range is wide, from -5505.28 to 9426.93,
indicating significant potential variability based on the input features. This visualization
separates the contributions into negative and positive influences, with each feature’s impact
represented by the length of the bars, indicating the magnitude of their effect on the predicted
value.

Key negative contributors include Feature 2 and Feature 7, which significantly reduce the
predicted value by 416.01 and 924.81 units, respectively. The high values of these features
(847.79 for Feature 2 and 247.00 for Feature 7) are associated with a substantial decrease
in the target variable. Other features such as Feature 18, Feature 37, and Feature 30 also
contribute to the negative impact, albeit to a lesser extent.

On the positive side, Feature 5 has the largest positive contribution, increasing the predicted
value by 1375.75 units. This suggests that a higher value of Feature 5 (142.94) is strongly
associated with an increase in the target variable. Features like Feature 26 and Feature 25
also contribute positively, indicating their values are linked to an increase in the predicted
outcome, though their impact is smaller compared to Feature 5.

Overall, the LIME explanation provides a transparent view of how individual features influ-
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ence the regression model’s prediction. The significant negative impacts from features like
Feature 7 and Feature 2 highlight the model’s sensitivity to these variables, while the positive
contributions from Feature 5 and Feature 26 underscore factors that drive the prediction up-
wards. This detailed breakdown enhances the interpretability of the model, ensuring greater
transparency and trust in its predictions.

Figure 30: XAi explanation for the electricity consumption of ICT for the year 2020.

Explanation of 2030 electricity consumption of ICT:

Figure-31 shows the important factors for the 2030 ICT electricity consumption. The image
represents a LIME explanation for a regression model, specifically focusing on a single pre-
diction. In this context, the regression model predicts a value of 5625.96, with the potential
range of predictions spanning from -6039.20 to 10010.11.

On the left side of the image, there is a visual scale indicating the predicted value in the
context of its minimum and maximum possible values. The horizontal bar, which is partially
orange and extends to the right, indicates the actual prediction of 5625.96 within this range.
The contributions of individual features to the prediction are illustrated in the center of the
image, where they are split into negative (blue) and positive (orange) influences.

The features with negative contributions are listed on the left, indicating how much they
reduce the predicted value. Feature 5, which has a value of 677.07, contributes significantly
to reducing the prediction by 2994.59 units. Other features with negative impacts include
Feature 14, with a value of 51.00, contributing -778.62 units, Feature 21 with a value of
753.70, contributing -385.25 units, Feature 10 with a value of 1300.00, contributing -329.87
units, and Feature 12 with a value of 1291.05, contributing -140.21 units. These negative
contributions collectively lead to a substantial decrease in the predicted value.

Conversely, the positive contributions to the prediction are depicted on the right side of
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the central column. Feature 2, with a value of 3319.47, is the most significant positive
contributor, adding 3239.84 units to the prediction. Other notable positive influences include
Feature 7, with a value of 2716.00, contributing 2082.45 units, Feature 18 with a value
of 1929.00, contributing 689.39 units, and Feature 37 with a value of 889.00, contributing
336.47 units. These features counterbalance the negative contributions, leading to the final
predicted value.

Figure 31: XAi explanation for the electricity consumption of ICT for the year 2030.

5.5.2 Factors influencing carbon emission

Similarly, as mentioned before for the electricity consumption analysis, this part of the chap-
ter mentions the factors influencing carbon emission over the years. Once the dataset is
created, it is divided into train test sets and then fitted into various models. The results of
these models are shown in table 13.

Algorithm MAE MSE R2

Linear Regression 19.17 636.28 0.93
Ridge Regression 15.96 361.09 0.96
Lasso Regression 14.44 252.48 0.97
Polynomial Regression 18.24 682.70 0.93
Decision Tree Regression 38.31 2894.93 0.70
Random Forest Regression 19.72 536.44 0.94

Table 13: Performance metrics for various regression algorithms

The best model is chosen and this model is then used to explain the importance of the feature
for a specific year. The following parts show such analysis in brief.

Explanation of 2011 carbon emission of ICT:
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Figure-32 shows the important factors for the 2011 ICT carbon emission. The image show-
cases a LIME (Local Interpretable Model-agnostic Explanations) explanation for a regres-
sion model, specifically detailing the factors influencing carbon emissions of ICT (Infor-
mation and Communication Technology) for the year 2011. In this context, the regression
model predicts a value of 731.10 for carbon emissions, within a possible range of 272.37
(minimum) to 1249.82 (maximum). The leftmost section of the image presents this pre-
dicted value on a horizontal scale, with the orange bar representing the predicted carbon
emission value within its defined range.

The image’s central part breaks down individual features’ contributions to the predicted car-
bon emission value, categorizing them into negative (blue) and positive (orange) influences.
Features with negative contributions are illustrated on the left side of the vertical axis. No-
tably, Feature 0, with a value of 792.00, reduces the predicted emission by 61.28 units,
reflecting its significant negative impact. Other features contributing negatively include Fea-
ture 53 with a value of 186.00, reducing the prediction by 38.68 units, and Feature 17 with
a value of 79.98, contributing a reduction of 19.09 units. These features collectively act to
lower the predicted carbon emissions.

Conversely, the right side of the central column displays the features with positive contri-
butions to the predicted value. Feature 1, with a value of 208.00, increases the predicted
carbon emissions by 47.59 units, representing a major positive influence. Additional pos-
itive contributors include Feature 48 with a value of 76.00, which increases the prediction
by 43.19 units, Feature 52 with a value of 335.00, adding 34.83 units, and Feature 3 with
a value of 3.50, contributing 12.13 units. These features cumulatively work to increase the
overall predicted emissions.

The rightmost section lists the values of all the features involved in the prediction, offering
a comprehensive view of the input data utilized by the regression model. By evaluating the
contributions of these individual features, one can discern the factors that most significantly
influenced the carbon emissions of ICT in 2011. This granular breakdown is instrumental
in understanding the model’s internal mechanics, enabling stakeholders to identify key areas
where interventions can be made to manage and potentially reduce carbon emissions.

Explanation of 2020 carbon emission of ICT:

Figure-33 shows the important factors for the 2020 ICT carbon emission. The displayed im-
age represents a LIME explanation for a regression model, elucidating the significant factors
contributing to the carbon emissions of ICT (Information and Communication Technology)
for the year 2020. In this instance, the regression model predicts a carbon emission value of
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Figure 32: XAi explanation for carbon emission of ICT for the year 2011.

744.94, within a defined range of 261.71 (minimum) to 1229.82 (maximum). The leftmost
segment of the image illustrates this predicted value on a horizontal bar, with the orange
section indicating the actual prediction of 744.94 within the spectrum of potential values.

The central section of the image details the contributions of individual features to the pre-
dicted carbon emission value, separated into negative (blue) and positive (orange) influences.
Features that contribute negatively to the prediction are depicted on the left side of the central
axis. Feature 0, with a value of 810.00, has the most substantial negative impact, reducing
the predicted emission by 65.75 units. Other features with negative influences include Fea-
ture 48, with a value of 208.00, which reduces the prediction by 36.72 units, and Feature 53,
with a value of 141.00, contributing to a reduction of 36.61 units. These features collectively
lower the predicted carbon emissions.

On the other hand, the right side of the central axis highlights the features with positive
contributions to the predicted value. Feature 1, with a value of 235.00, exerts the most
significant positive influence, increasing the predicted emissions by 86.48 units. Additional
features contributing positively include Feature 52, with a value of 343.00, adding 33.51
units to the prediction, and Feature 44, with a value of 1437.20, which increases the predicted
value by 30.64 units. Other features such as Feature 2, Feature 32, Feature 50, and Feature
20 also positively contribute to the predicted emissions, albeit to a lesser extent.

The rightmost section of the image lists the values of all the features involved in the pre-
diction, providing a comprehensive overview of the input data utilized by the regression
model. By analyzing these individual contributions, one can discern the most influential
factors driving the carbon emissions of ICT in 2020. This granular breakdown is instru-
mental for understanding the internal mechanics of the model, thereby enabling stakeholders
to identify critical areas for intervention and mitigation strategies aimed at reducing carbon
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emissions within the ICT sector.

Figure 33: XAi explanation for carbon emission of ICT for the year 2020.

Explanation of 2030 carbon emission of ICT:

Figure-34 shows the important factors for the 2030 ICT carbon emission. The image presents
a LIME explanation for a regression model, detailing the significant factors contributing
to the carbon emissions of ICT for the year 2030. In this instance, the regression model
predicts a carbon emission value of 949.71, within a potential range from 327.42 (minimum)
to 1249.03 (maximum). The leftmost segment of the image depicts this predicted value on a
horizontal bar, with the orange section indicating the actual prediction of 949.71 within the
defined range.

The central section of the image dissects the contributions of individual features to the pre-
dicted carbon emission value, categorizing them into negative (blue) and positive (orange)
influences. Features contributing negatively to the prediction are illustrated on the left side
of the vertical axis. Notably, Feature 52, with a value of 889.00, reduces the predicted emis-
sion by 76.75 units, indicating a significant negative impact. Other features with negative
contributions include Feature 32, with a value of 1929.00, which reduces the prediction by
75.04 units, Feature 20, with a value of 2716.00, reducing it by 42.58 units, Feature 48, with
a value of 158.97, reducing the prediction by 37.98 units, and Feature 18, with a value of
677.07, contributing a reduction of 31.26 units. These features collectively act to lower the
predicted carbon emissions.

Conversely, the right side of the central column highlights the features with positive contri-
butions to the predicted value. Feature 0, with a value of 5557.22, exerts the most substantial
positive influence, increasing the predicted emissions by 149.99 units. Other notable positive
contributors include Feature 53, with a value of 731.27, adding 95.73 units to the prediction,
Feature 29, with a value of 350.88, increasing the predicted value by 74.82 units, Feature 6,
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with value 739.88, contributing 53.59 units, and Feature 1, with a value of 203.61, adding
41.71 units. These features cumulatively work to elevate the overall predicted emissions.

The rightmost section of the image lists the values of all the features involved in the predic-
tion, providing a comprehensive overview of the input data utilized by the regression model.
By analyzing the contributions of these features, one can discern the factors that most signif-
icantly influence the carbon emissions of ICT in 2030. This breakdown is instrumental for
understanding the internal mechanics of the model, enabling stakeholders to identify critical
areas for intervention and develop strategies to mitigate carbon emissions effectively.

Figure 34: XAi explanation for carbon emission of ICT for the year 2030.

5.6 Future emission of ICT

This section shows the future prediction of electricity usage and carbon emission of the ICT
sector. The study conducted a 36 years long trend visualization with detailed categorization.
This pictorial representations help gain valuable insights to get the idea of the future trends.

5.6.1 Predicting future electricity usage of ICT

The graph (figure 35) illustrates the trends in electricity usage across four categories from
the year 2000 to 2035. The data reveals significant shifts, particularly in the years from
2025 to 2035. During this period, Network Electricity Usage sees a sharp and dramatic
peak, reaching its highest point before abruptly declining. This spike is the most pronounced
feature on the graph. Data Center Electricity Use also experiences a rapid increase, though it
is slightly more gradual than that of Network Electricity Usage, and it maintains a high level
towards the end of the period. ICT Devices show a steady rise in electricity usage, surpassing
both the Network and Data Center categories towards the end, though without the extreme
volatility. On the other hand, Enterprise Network Electricity Usage remains relatively flat and
minimal throughout the entire time span, showing little to no variation. The data from 2025
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onwards indicates a period of significant transformation in electricity demand, particularly
within the Network and Data Center sectors, reflecting perhaps technological advancements
or increased reliance on these infrastructures.

Figure 35: Electricity usage of ICT sector by category.

Figure 36 shows the trends over time and possible future values that have been calculated
through this study. The analysis of the electricity footprint data for the ICT sector reveals
an overall upward trend, with an average annual growth rate of 7.66%. The most dramatic
increases occur in the latter part of the series, peaking at 5557.22 TWh, which is a substantial
leap from the earlier figures. Despite this general increase, there is significant year-to-year
variability, reflected in a standard deviation of 19.45%. The data shows periods of rapid
growth, such as increases of 40.25% and 49.81%, alongside notable declines, including de-
creases of -25.19% and -43.19%. These fluctuations highlight the dynamic nature of the ICT
sector, driven by technological advancements, increased adoption, infrastructure expansion,
and varying economic factors.

In recent years, the data indicates substantial peaks and some declines, suggesting a phase of
instability or adjustment within the sector. The consistent growth, despite the fluctuations,
underscores the growing energy demands of the ICT industry. This trend calls for strategic
measures to manage the increasing electricity consumption and mitigate the impact of these
fluctuations to ensure sustainable and efficient growth in the sector.
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Figure 36: Electricity usage of ICT sector.

5.6.2 Forecasting carbon emission of the ICT sector

The line graph (figure 37) visualizes the trends in carbon emissions from four distinct cat-
egories spanning from 2000 to 2035. While earlier years show more gradual changes, the
period from 2025 to 2035 exhibits significant developments. The Data Center Carbon Foot-
print shows a steep rise, with its trajectory sharply increasing and surpassing other categories
by a substantial margin. ICT Devices Carbon Footprint, which had been fluctuating earlier,
also rises but at a slower pace, showing some variability towards the end. In contrast, Net-
work Emission, after experiencing a peak earlier, stabilizes and shows slight fluctuations in
the final years. Meanwhile, Enterprise Network Emission remains relatively flat throughout,
with minimal changes, indicating a more stable contribution to overall carbon emissions.
This segment of the graph highlights a growing disparity in emissions contributions, particu-
larly the rapid escalation in Data Center emissions, suggesting a significant impact on future
carbon footprints from these technological infrastructures.

The future trends are shown in figure 38. The analysis of the electricity footprint and GHG
emissions data for the ICT sector reveals significant insights into the sector’s energy con-
sumption and environmental impact. The electricity footprint shows an overall upward trend
with an average annual growth rate of 7.66%, characterized by substantial year-to-year fluc-
tuations. Notable increases, such as 40.25% and 49.81%, indicate periods of rapid growth,
while declines, such as -25.19% and -43.19%, reflect instability or adjustments within the
sector. This trend highlights the growing energy demands of the ICT industry and the neces-
sity for strategic measures to manage these fluctuations and ensure sustainable growth.
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Figure 37: Carbon emission of ICT sector by category.

Similarly, the GHG emissions data presents a modest average annual growth rate of 1.72%,
with a standard deviation of 4.88%, indicating a relatively stable but gradually increasing
trend. Significant variability is observed, with increases up to 12.29% and decreases as
large as -7.47%. These changes may result from advancements in energy efficiency, shifts
in infrastructure, and operational changes. The overall rise in emissions underscores the
importance of ongoing efforts in sustainability and emissions reduction to mitigate the ICT
sector’s environmental impact. Together, these analyses emphasize the critical need for the
ICT industry to balance growth with environmental responsibility.

Figure 38: Carbon emission of ICT sector.
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6 Discussion

As global warming has become a major concern around the world, greenhouse gas producers
are getting a lot of focus. ICT as a field has been growing in the last decades, almost becom-
ing one of the leading sectors in the GHG-producing industry. Thus, the need to monitor the
emission levels of ICT has become inevitable. The carbon emission of the ICT sector has
been a debated topic in recent years. The calculated values differ a lot, mostly because of
the clearly defined scope. Also, some studies predicted the future of ICT’s carbon emissions.
Later on, those values were proven to be over-fitting, and a new measurement was intro-
duced. There is a need to identify the significant factors contributing to carbon emissions
and, based on those, predict future trends that are helpful for industries as well as govern-
ment policies. Therefore, this research aims to identify the significant factors that employ
carbon emissions calculation and gather and create detailed datasets from the beginning of
this century to a future value prediction until 2035.

The dataset was created after a thorough literature review and several assumptions and pre-
dictions were made through the extensive data analysis. There has been an increasing ten-
dency for both carbon emission and electricity usage of ICT. This study suggests that the
carbon emission of ICT is expected to be around one thousand MtCO2e during the duration
years of 2030 to 2035. Using the LIME framework, it is seen that electricity usage in the ICT
industry is the most important feature contributing to the changes in the carbon footprint of
ICT. Also, similarly, the importance of various features has been identified for some specific
years, which helps address the aims of this research work.

The main aim of this research is to address the method to calculate the carbon emission of
ICT as well as predicting future trends, machine learning approach is used to answer this.
This approach has not been used up to the date of this research being done. There are quite a
few studies done to calculate the carbon emission of ICT for a specific year or a comparison
among various years, but a lack of studies using a long-term time series analysis is present
in this research area. This paper tries to fit the same features every year to give a meaningful
prediction. The ever-changing technology is very hard to predict. Although it is not feasible
to find all the technological items for every year. These features as well as the values are
changing frequently. For example, in the early 2000s, smartphones, wireless headphones,
and such devices were not mostly introduced. But to get a common ground for 2000 and
2030, a common ground needs to be established. This establishment of the common ground
has been done with the creation of the dataset in this research.

For the second part of the main research question, the way of predicting future trends is
addressed. This part is covered in the dataset creation part. Within the dataset, some of the
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predictions from the previous studies are also included. After the initial data collection, the
data needed to be filled to fit the algorithms to work. The main challenges were to predict
past values and to estimate future ones for the independent features. Based on the columns
category, the data pattern is trained with the best machine-learning model. Several models
(Linear regression, Ridge regression, Lasso regression, random forest regression, Support
Vector regression, polynomial regression, Auto regression, Decision Tree Regression) have
been judged based on their mean squared error. The best model is used to predict past trends
and after the past data are filled in, a similar approach was taken to estimate the future values.
Getting all the values of the non-dependent columns allows predicting the dependent ones.
Finally, through a series of dependencies and predictions in the same way, the electricity
consumption and the carbon footprint of ICT columns are filled. In this way, the prediction
for the future was made. It has been predicted from this research that electricity consumption
will keep growing until 2030 (to be around five thousand TWh) but will see a decrease at
the start of 2031 to approximately 3100 TWh and from there a slight increase to almost
four thousand TWh is predicted to 2035. But the situation is different for carbon emission
calculation. The values are predicted to be increasing mostly, with some minor decreases.
From the last and most recent reported value of 763 MtCO2e in 2020, the values are expected
to reach almost 950 MtCO2e by the year 2030 and just below 1000 MtCO2e by the year 2035.

After the dataset is created with 61 columns and 36 rows from the year 2000 to 2035. The
first sub-problem focuses on the factors that predict the target column which is the carbon
footprint of ICT. Local Interpretable Model-agnostic Explanations (LIME) an open-source
XAI framework, is used to explain the factors that play the most significant role in predicting
the target column. With LIME explanation, each year’s value can be explained to get the
factors that affect the total carbon footprint. It is seen that electricity consumption has been
the most significant factor affecting the emission. The other factors that contribute to the
predicted values are device shipments, energy demand of devices, and so on. Since it has
been established that electricity is the most significant factor contributing to the emissions,
LIME is also used to explain the electricity footprint. After creating the model with the most
efficient algorithm tested, the switch and routers installed base as well as their shipments
have been the most important factors. The details of these factors are widely discussed with
the impact scores in the result analysis section.

The second sub-question emphasizes the importance of electricity consumption on the car-
bon emission of iCT. It is seen throughout the created dataset that electricity usage is the
most looked upon feature. The three categories of ICT that are defined in this research, ICT
devices, data centers, and network connectivity (including enterprise networks) have their
electricity footprint calculated. Also, the use stage emission of the categories is directly
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linked to electricity consumption. Thus, it is impossible to distinguish electricity usage from
calculating the carbon emission of the ICT sector.

The Global e-Sustainability Initiative (GeSI), 2012 reported that by 2020 the emission would
be 1270 MtCO2e. But the study by Malmodin, Lövehagen, et al., 2024 reported that the
number was 763 MtCO2e. Similarly, in the same report of Global e-Sustainability Initiative
(GeSI), 2015, it is mentioned that by the year 2030, the carbon emission of ICT will be
around 1250 MtCO2e. However, this research shows that the values would not grow that
much and keep at 944 MtCO2e.

In another study, Andrae & Edler, 2015 mentions the best, worst, and expected cases of
carbon emission as well as electricity usage. The expectation was a lot higher than the pre-
dicted values in this study. Their (Andrae & Edler, 2015) 2020 value was also shown as way
higher by Malmodin, Lövehagen, et al., 2024 which is 763 MtCO2e compared to the 1700
MtCO2e (In the best case the value is 900 MtCO2e). The 2030 value rocketed in the research
of these authors, which is almost 5000 MtCO2e in the expected case and 1500 MtCO2e in
the best case. The best case is also much higher than the GeSI estimates and certainly of
this study. On the contrary, the trends look different in electricity consumption. Although
the best case for the year 2020 was almost 1500 TWh, which was seen as overvalued by
Malmodin’s calculation of 859 TWh. This study also supports the claims by Malmodin and
using those data the dataset was trained. The 2030 values for electricity consumption of this
study are over 5557 TWh which is lower than the expected case and much higher than the
best case mentioned by the authors. One of the reasons for such higher values could be the
use of prediction by Andrae, 2019. In the dataset, some columns use the predicted values
of that study. Although this author mentions the overestimation of the values of Andrae &
Edler, 2015 study, this research gives the value higher than the best case mentioned above.

It has been discussed before that the value mismatch occurs for many reasons. However,
double counting and overestimation have been proved in some cases. Therefore coming to a
conclusion of selecting important features that contribute to the total emission, is necessary.
This research has used a systematic literature review to primarily select the features that are
used to calculate the emissions. Also, the aim of this study was not to go into the total details
from a device production manufacturer to the assembler to the retail store to the customer
and finally end of life situation. This circular approach was not taken to create the dataset.
Thus a broader view was taken for prediction.

Another limitation of this work is to predict the past values. Since not a lot of data could be
gathered, a huge number of cells had to be estimated and predicted. Often these predictions
are biased based on the machine learning models used. In some cases, the model’s unfitness
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tendency gave unrealistic values, which caused the algorithm to give the least error value to
be ignored. Also, the predictions from other studies are used in several cases. These values
can also be overestimated, but as for this research, these estimations are not questioned.

For the future work, there are a lot of scopes to be discovered. Coming to a standardized cal-
culation method can be implemented. This can give a more accurate and realistic prediction
for the future. Also, the lack of data is a serious drawback for the researchers working in
this field. Meaningful collaboration with industry, government, and academia can be a good
step to begin with. Every country can impose its laws and policies to better maintain detailed
data about ICT and its carbon emissions.
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7 Conclusion

The conclusion of this research emphasizes the development of a comprehensive methodol-
ogy for accurately calculating and predicting the carbon emissions of the Information and
Communication Technology (ICT) sector. This study was motivated by the sector’s sig-
nificant contribution to global greenhouse gas emissions and the existing ambiguities in the
methodologies used to assess its carbon footprint. By employing a mixed-methods approach,
the research integrated a systematic literature review, time series analysis, and regression
analysis, resulting in a robust framework that identifies and quantifies key factors influenc-
ing ICT emissions. Electricity consumption emerged as the most significant contributor,
alongside other factors such as device shipments and energy demand.

The findings indicate a general trend of increasing carbon emissions and electricity con-
sumption in the ICT sector up to 2035. While electricity usage is projected to fluctuate,
carbon emissions are expected to rise steadily, reaching nearly 1000 MtCO2e by 2035. This
trajectory is lower than the estimates provided by previous studies, such as those from the
Global e-Sustainability Initiative (GeSI), 2015 and research by Andrae & Edler, 2015. These
discrepancies highlight the need for more refined and accurate predictive models, which this
study aims to address through the integration of recent and comprehensive data.

The research has significant implications for policy-making and industry practices. By iden-
tifying electricity consumption as the primary driver of ICT carbon emissions, it suggests that
policies aimed at improving energy efficiency and promoting renewable energy sources could
effectively reduce the sector’s carbon footprint. Moreover, the establishment of standardized
methods for calculating ICT emissions would enhance the accuracy of future predictions,
facilitating better-informed decision-making. The study also underscores the necessity for
ongoing collaboration between industry, government, and academia to ensure the availability
of accurate and up-to-date data.

Despite its comprehensive approach, the research acknowledges several limitations. The
reliance on estimated past values due to historical data gaps introduces potential biases. Ad-
ditionally, the study’s broad approach, which did not account for the entire lifecycle of ICT
devices, leaves room for detailed future research. Future studies should focus on more gran-
ular data collection, including detailed lifecycle assessments from production to end-of-life
stages. Furthermore, the dynamic nature of technological advancements poses a challenge
for long-term predictions, necessitating continuous assessment of new technologies’ energy
demands and associated carbon emissions. This research lays the groundwork for more ac-
curate and informed strategies to mitigate the environmental impact of the ICT sector.
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