SUMMARY

In our thesis, we aim to enhance the quantitative analysis of Laser-Induced Breakdown Spectroscopy (LIBS) data for predicting
major oxide compositions in geological samples. Our study integrates machine learning techniques and ensemble regression mod-
els to tackle challenges such as high dimensionality, multicollinearity, and limited data availability. Key innovations include the
use of stacked generalization for improved model performance and an automated optimization framework, which enhances the
accuracy and robustness of predictions.

For decades, the National Aeronautics and Space Administration (NASA) has deployed rovers equipped with advanced in-
struments to analyze the Martian environment. The two most recent rovers, Curiosity and Perseverance, are equipped with the
Chemistry and Camera (ChemCam) and SuperCam LIBS instruments, respectively. LIBS is a powerful technique for analyzing the
chemical composition of Martian soil, offering valuable insights into the planet’s geology and potential for past habitability. This
technique involves firing high-powered lasers at soil samples to create plasma, which emits light that is captured by spectrometers
aboard the rovers. The resulting spectra can be analyzed using machine learning models to determine the presence and concen-
tration of major oxides, providing insights into Mars” geology. However, predicting oxide compositions from LIBS data presents
significant computational challenges due to the data’s high dimensionality, non-linearity, and multicollinearity. Additionally, the
high cost of data collection often results in small datasets, making it difficult to build accurate and robust models.

Previous research has attempted to improve predictions using regression techniques and dimensionality reduction methods,
enhancing both accuracy and interpretability. However, the complex, nonlinear nature of LIBS data remains a significant challenge,
necessitating more adaptive and robust machine learning strategies. Our thesis aims to build upon previous work by developing a
machine learning pipeline tailored to the unique characteristics of LIBS data, aiming for higher prediction accuracy and robustness.

To achieve these objectives, we systematically explore 12 different machine learning models identified through extensive lit-
erature review and the consideration of unconventional approaches. These models fall into three categories: ensemble learning
models, linear and regularization models, and neural network models. Additionally, we investigate various preprocessing tech-
niques, including scaling, dimensionality reduction, and data transformation. We developed a k-fold data partitioning algorithm to
ensure rigorous evaluation and prevent data leakage. This method involved assigning fold numbers sequentially using a modulo
operation for a random-like distribution and handling extreme values by redistributing them evenly across the training folds. Addi-
tionally, we managed extreme concentration values by identifying them at specific percentiles and ensuring they were distributed
evenly across the training folds, preventing any single fold from being disproportionately influenced. We created a web applica-
tion that allows users to determine percentile values for handling extreme values and select the target oxide and cross-validation
method. The application then visualizes the distribution of extreme values across the folds. Our cross-validation framework sys-
tematically evaluated model performance using these partitions, providing robust estimates of accuracy and generalizability. To
identify the most effective combinations of models and preprocessing techniques, we developed an automated optimization frame-
work based on Optuna, systematically searching for the optimal configurations for each regression target.

The result is a comprehensive catalog of models and preprocessing techniques for predicting major oxide compositions in LIBS
data. This catalog features highly effective configurations for each of the eight major oxides examined in our study. To further
enhance performance, we experiment with stacking ensemble methods using the best-performing configurations for each oxide
and three different meta-learners, demonstrating improved performance of approximately 24%-34% over baseline Root Mean
Squared Error of Prediction (RMSEP).

Our study makes two key contributions. Firstly, it provides a comprehensive catalog of machine learning models and prepro-
cessing techniques for predicting major oxide compositions in LIBS data. This catalog presents highly effective configurations,
allowing for a more informed selection of models and preprocessing techniques in future work. Secondly, we contribute directly
to the development of Python Hyperspectral Analysis Tool (PyHAT), a Python-based toolset by the United States Geological Sur-
vey (USGS) for machine learning and data analysis on hyperspectral data. The integration of our findings into PYHAT enhances
its capabilities for the scientific community.

In our experiments, we demonstrate and quantify the effectiveness of various machine learning models in predicting major
oxide compositions from LIBS data. We also show that preprocessing techniques such as scaling, dimensionality reduction, and
data transformation can significantly enhance model performance. Additionally, we present evidence that the optimal combination
of model and preprocessing technique varies significantly depending on the specific oxide being predicted. Systematic evaluation
through cross-validation and hyperparameter tuning is essential to fine-tune the models for optimal performance on specific
oxides. We therefore propose a stacking ensemble methodology, integrating multiple models and preprocessing steps tailored to
the specific characteristics of the data and the oxide being predicted.
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Based on the findings of our study, we propose several avenues for future research. This includes exploring quantitative methods
for determining optimal percentile values for data partitioning, incorporating supplementary extreme value testing, and investi-
gating methods for augmenting datasets with synthetic data. We also highlight the importance of further experimentation with
different base estimators and meta-learners to improve model performance.
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This thesis advances the analysis of Laser-Induced Breakdown
Spectroscopy (LIBS) data for predicting major oxide compositions in
geological samples. By integrating machine learning techniques and
ensemble regression models, the study addresses challenges like high
dimensionality, multicollinearity, and limited data availability. Key
innovations include the use of stacked generalization for improved
model performance and an automated hyperparameter optimization
framework. The research contributes a comprehensive catalog of
models and preprocessing techniques, and integrates findings into
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This work aims to establish a robust foundation for future advance-
ments in geochemical analysis and planetary exploration using LIBS
data.
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1 INTRODUCTION

The National Aeronautics and Space Administration
(NASA) has been studying the Martian environment for
decades through a series of missions, including the Viking
missions [26], the Mars Exploration Rover (MER) mis-
sion [24, 25], and the Mars Science Laboratory (MSL)
mission [23], each building on the knowledge gained from
the previous ones. Today, the rovers exploring Mars are
equipped with sophisticated instruments for analyzing the
chemical composition of Martian soil in search of past life and
habitable environments.

Part of this research is facilitated through interpretation of
spectral data gathered by LIBS instruments, which fire a high-
powered laser at soil samples to create a plasma. The emit-
ted light is captured by spectrometers and analyzed using ma-
chine learning models to assess the presence and concentra-
tion of certain major oxides, informing NASA’s understanding
of Mars’ geology [7].

However, predicting major oxide compositions from LIBS
data still presents significant computational challenges. These
include the high dimensionality and non-linearity of the
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data, compounded by issues of multicollinearity and matrix
effects [3]. Such effects can cause the intensity of emission
lines from an element to vary independently of that element’s
concentration, introducing unknown variables that compli-
cate the analysis. Furthermore, the high cost of data collection
often results in small datasets, exacerbating the difficulty of
building accurate and robust models.

Previous work has aimed to improve the prediction of
major oxide compositions from LIBS data by using regres-
sion techniques and dimensionality reduction with feature
selection. These methods have been used to enhance both
the accuracy and interpretability of the prediction models.
Tailored approaches have also been developed, where dif-
ferent models are selected based on their performance with
specific spectral characteristics [4, 32]. Moreover, models in-
corporating physical principles have demonstrated improved
accuracy by handling residuals that traditional models fail
to explain [37]. However, predicting oxide compositions
remains challenging due to the complex, nonlinear nature of
LIBS data. This underscores the need for continued research
into more accurate and robust machine learning strategies to
tackle these issues effectively.

This thesis aims to improve upon previous work in the field
of LIBS data analysis. Our goal is to develop a machine learn-
ing pipeline that is tailored to the unique characteristics of
LIBS data, with the goal of achieving higher prediction accu-
racy and robustness.

To achieve these objectives, we build upon the baseline es-
tablished in [15] and systematically explore ten different ma-
chine learning models. These models were identified and se-
lected through a combination of extensive literature review
and the consideration of unconventional approaches not typi-
cally covered in the LIBS-based calibration literature. The ten
models fall into three categories: Ensemble learning models,
linear and regularization models, and neural network models.
In addition to model exploration, we also investigate a selec-
tion of preprocessing techniques: scaling (including normal-
ization), dimensionality reduction, and data transformation.
Specifically, we designed and implemented a framework for
experimental analysis using the automated hyperparameter
optimization framework Optuna [2]. We then used this frame-
work to determine the most effective combinations of prepro-
cessing methods and models for each regression target. We
began by identifying the most promising models from the lit-
erature, after which we evaluated various preprocessing tech-
niques to understand their impact on model performance, se-
lecting those that demonstrated the highest impact on improv-
ing the performance of each model. Following this, we opti-
mized the chosen models along with various preprocessors,
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using our hyperparameter optimization framework, to ensure
optimal performance tailored to the specific data characteris-
tics of each oxide.

As a result, we have developed a comprehensive catalog
of models and preprocessing techniques that can be used to
predict major oxide compositions in LIBS data. This catalog
features configurations of various preprocessing methods and
machine learning models for each of the eight major oxides
examined in this study, all of which have demonstrated high
effectiveness. Additionally, to investigate the potential for
further performance enhancement, we used the developed
catalog to experiment with stacking ensemble using the best
performing configurations for each oxide and three differ-
ent meta-learners. Though limited in scope, this approach
demonstrated improved performance of approximately 24%-
34% over baseline Root Mean Squared Error of Prediction
(RMSEP).

Our key contributions are as follows:

e We have developed a comprehensive catalog of ma-
chine learning models and preprocessing techniques
for predicting major oxide compositions in LIBS data.
This catalog presents highly effective configurations of
several preprocessing methods and machine learning
models for each of the eight major oxides examined in
this study, allowing for a more informed selection of
models and preprocessing techniques in future work.

e We have contributed directly to the development of
PyHAT, a Python-based toolset by USGS for machine
learning and data analysis on hyperspectral data. Our
work has been integrated into the toolset, further en-
hancing its capabilities for the scientific community.

In the following sections, we provide a comprehensive ex-
ploration of our research. Section 2 reviews the existing litera-
ture on LIBS data analysis and machine learning models, high-
lighting previous approaches and their limitations. Section 3
formally defines the problem we address, focusing on the chal-
lenges of high dimensionality, multicollinearity, and matrix ef-
fects in LIBS data. Section 4 offers background information on
the data, as well as the preprocessing techniques and machine
learning models that were used. In Section 5, we describe the
baseline model used for Martian geological sample analysis,
our efforts to replicate it, and the modifications made to im-
prove its performance. This was then used as a baseline to
evaluate our proposed stacking ensembles against. Section 6
presents our proposed approach for optimizing pipeline con-
figurations, detailing the selection of models and preprocess-
ing techniques, our approach to data partitioning, validation
and testing procedures, and the implementation of the hyper-
parameter optimization framework. Section 7 presents the de-
sign and results of our experiments, as well as the analysis of
the results. Our experiments include initial model selection,
hyperparameter optimization, and the final evaluation of our
proposed stacking ensemble. Section 8 discusses our contribu-
tion to PYHAT and how our work has been integrated into the
toolset. Finally, Section 9 summarizes our key findings and

Table 1. Table of terminology.

Term Definition

Sample A physical specimen of
rock, soil, or other mate-
rial collected for scientific
analysis.
The specific point on a
sample where a LIBS laser
is targeted. There are typ-
ically multiple locations
per sample.
Refers to the variable that
a machine learning model
is trained to predict.
Extreme Concentration Values The concentration values
of oxides in the targets
that are significantly
higher or lower than the
majority of the data.

Location

Target

contributions, while Section 10 discusses potential future re-
search directions and improvements.

Due to the overlapping nature of terminology used in LIBS
data analysis and machine learning, we provide a list of terms
in Table 1 to clarify their meaning.

2 RELATED WORK

In addressing the challenge of predicting major oxide com-
positions from LIBS data, our investigation intersects with a
broad spectrum of existing research. Key strategies include
the integration of machine learning and deep learning models,
the incorporation of domain knowledge, effective preprocess-
ing techniques, and dimensionality reduction methods. These
approaches collectively aim to manage the complexities inher-
ent in LIBS data and improve predictive performance. We re-
view existing and relevant work through a thematic taxonomy,
highlighting their potential applications in our study.

2.1 Machine Learning Models in LIBS Analysis

Several studies have applied machine learning models to an-
alyze LIBS data, aiming to predict major oxide compositions
with high accuracy.

Anderson et al. [4] utilized machine learning models to
quantify major oxides on Mars using the SuperCam instru-
ment on the Perseverance rover. Their approach involved
extensive preprocessing and normalization of LIBS spectra,
followed by the development of multivariate regression
models for each oxide. They demonstrated that blending dif-
ferent models, such as Gradient Boosting Regression (GBR)
and Partial Least Squares (PLS) for SiOp, could improve
prediction accuracy. Their study serves as a benchmark for
model performance on LIBS spectra and offers insights into
model selection for similar datasets.
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shi [1] compared the performance of Support Vector Regres-
sion (SVR) and PLS regression for quantitative analysis of the
major elements Si, Ca, Mg, Fe, and Al in sedimentary rock
samples using LIBS data. They optimized the SVR model pa-
rameters using a genetic algorithm and cross-validation, se-
lecting 20 characteristic emission lines as input features with-
out dimensionality reduction. Their results were evaluated us-
ing the Root Mean Squared Error (RMSE) and Relative Stan-
dard Deviation (RSD) of predicted versus measured concen-
trations and showed that the non-linear SVR model signifi-
cantly outperformed the linear PLS regression model at pre-
dicting elemental concentrations. The superior performance
of SVR was attributed to its ability to handle non-linearities
and matrix effects in the complex geological samples, demon-
strating the potential of this machine learning technique for
quantitative LIBS analysis in geoscience applications.

El Haddad et al. [11] explored the application of Artificial
Neural Network (ANN) for quantitative analysis of soil sam-
ples using LIBS, employing a three-layer perceptron ANN ar-
chitecture to address matrix effects and non-linearities. They
demonstrated that ANN is efficient for predicting the concen-
trations of Al, Ca, Cu, and Fe. Incorporating additional spec-
tral lines from other chemical elements, thereby increasing the
amount of data input to the model, was also shown to signifi-
cantly improve predictive accuracy.

Li et al. [21] developed a method for multi-component
quantitative analysis of LIBS data using a deep Convolutional
Neural Network (CNN). Using over 1400 spectra from 23
Chinese standard reference materials, the CNN was trained
and validated, demonstrating superior performance in regres-
sion tasks compared to Back-Propagation Neural Network
(BPNN) and PLS regression models. The CNN achieved
lower RMSE values and higher prediction accuracy, even
without removing the continuum background signal from
the data, emphasizing the potential of CNNs for LIBS data
analysis.

2.2 Hybrid and Domain-Knowledge-Driven Models

Incorporating domain knowledge into machine learning mod-
els can significantly enhance their interpretability and perfor-
mance.

Song et al. [37] introduced a hybrid model, Dominant
Factor (DF)-Kernel Extreme Learning Machine (K-ELM),
which integrates domain knowledge-based spectral lines with
kernel extreme learning machines. This method was particu-
larly effective across multiple regression tasks, demonstrating
improved accuracy and generalizability. The integration of
domain-specific insights allowed the model to adhere more
closely to the physical principles underlying LIBS quantifi-
cation, making it highly relevant for applications requiring
model interpretability.

Sun et al. [38] applied transfer learning to LIBS spectral
data analysis, significantly improving model performance in
rock classification on Mars. By leveraging knowledge from
one domain to address related problems in another, their

approach addressed the physical matrix effect, enhancing the
robustness of the models for rock classification.

2.3 Preprocessing and Feature Engineering

Effective preprocessing and feature engineering are critical for
enhancing the robustness of LIBS models.

Jeon et al. [19] investigated the effects of various feature-
engineering techniques on the robustness of LIBS models for
steel classification. They developed a remote LIBS system to
classify six steel types, using various feature-engineering and
machine learning algorithms, including Support Vector Ma-
chine (SVM) and Fully Connected Neural Network (FCNN),
to handle different laser energies in test datasets. They found
that using intensity ratios, which involve comparing specific
spectral line intensities, significantly improved model robust-
ness under varying measurement conditions. This approach
effectively filtered out noise and enhanced the model’s perfor-
mance, demonstrating the importance of appropriate feature-
engineering method.

Huang et al. [16] conducted a systematic analysis of data
preprocessing techniques, emphasizing the need for tailored
strategies to enhance model accuracy. Evaluating methods
such as feature selection, case selection, scaling, and missing
data treatments, they demonstrate that the effectiveness of
these techniques varies markedly across different datasets
and machine learning algorithms. Their findings underscore
the interdependent relationship between preprocessing tech-
niques and model selection, which is crucial for optimizing
predictive performance.

2.4 Dimensionality Reduction Techniques

Dimensionality reduction techniques such as Principal Com-
ponent Analysis (PCA) play a crucial role in managing the
high-dimensional nature of LIBS data.

Potizka et al. [31] conducted a comprehensive review
of PCA applied within the context of LIBS. This review
highlighted numerous studies that successfully utilized
PCA. For instance, Moncayo et al. [28] used PCA to analyze
megapixel elemental maps composed of over one million
LIBS spectra. The PCA approach effectively separated the
contributions of various minerals, including those present in
low concentrations, demonstrating its robustness in handling
highly diverse samples.

In another example, Pofizka et al. [30] employed PCA to fil-
ter outliers and classify samples based on their matrix compo-
sition, including elements such as Al, Ca, Na, and Si. This clas-
sification was followed by a univariate calibration of copper
(Cu) in soil samples, resulting in reduced bias. Additionally,
PCA was used to discriminate individual rocks based on their
overall elemental composition, effectively addressing matrix
effects that can significantly impact the accuracy of analyti-
cal results. These studies, among others highlighted by [31],
underscore the effectiveness of PCA as a preprocessing tech-
nique in LIBS analysis.
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Sirven et al. [35] investigated the influence of matrix effects
on the performance of quantitative analysis of chromium (Cr)
in soil samples using LIBS. PCA was used to classify spec-
tra from two different soils and to detect outliers. It success-
fully separated spectra from agricultural soil and kaolinite in
the plane of the first two components. Furthermore, PCA was
used to identify and remove outliers from the dataset, enhanc-
ing the accuracy of subsequent analyses using ANNs and PLS
regression. This study demonstrated the utility of PCA in man-
aging matrix effects and improving the accuracy of quantita-
tive LIBS analysis.

3 PROBLEM DEFINITION

The objective of this research is to predict major oxide compo-
sitions from LIBS data. We aim to enhance the accuracy and ro-
bustness of these predictions by developing and validating a
computational methodology that addresses the challenges of
such quantification of elements in soil samples from LIBS data.
This objective presents several significant challenges, includ-
ing the high dimensionality of spectral data, multicollinearity,
matrix effects, and limited data availability.

A fundamental premise of this research posits that by
effectively addressing these challenges, the accuracy and
robustness of predicting elemental concentrations from
LIBS data can be significantly enhanced. This assumption
is supported by several key studies in the field. For in-
stance, Anderson et al. [4] demonstrated that preprocessing,
normalization, and the use of advanced machine learning
models significantly improved the prediction accuracy of
major oxides from LIBS data collected by the SuperCam
instrument on the Mars 2020 Perseverance rover. Their work
highlights the importance of selecting appropriate models
and preprocessing techniques to handle high-dimensional
spectral data effectively. Similarly, Song et al. [37] showed
that incorporating domain knowledge into machine learning
models enhances both the interpretability and performance
of LIBS quantification. By addressing challenges such as
high dimensionality and multicollinearity, their approach
improved the accuracy and generalizability of the models
across different tasks. The effectiveness of dimensionality
reduction techniques in improving model performance was
highlighted by Rezaei et al. [32], who demonstrated that
methods like PCA can manage noise and computational
inefficiency in high-dimensional LIBS data. This supports
the notion that reducing data dimensionality can lead to
more stable and accurate predictions. Furthermore, Jeon
et al. [19] emphasized the importance of feature engineering
in enhancing model robustness, particularly under varying
measurement conditions. This is crucial for extraterrestrial
applications where consistent and reliable predictions are
necessary despite the challenges posed by the environment.
Lastly, Sun et al. [38] demonstrated the efficacy of transfer
learning in overcoming matrix effects and improving model
robustness for rock classification on Mars. Their findings
suggest that similar improvements can be achieved in oxide

quantification by leveraging knowledge from related domains.
Studies such as these provide a strong foundation for our
assumption that addressing the identified challenges will lead
to significant improvements in the accuracy and robustness
of predicting elemental concentrations from LIBS data.

3.1 Quantification Based on LIBS Data

LIBS spectral data provides intensity readings across a spec-
trum of wavelengths in the form of Clean, Calibrated Spectra
[3], as described by Wiens et al. [40]. The wavelength intensi-
ties are quantified in units of photon/shot/ mm?2/sr/nm.

The formal definition of the problem is as follows. In a LIBS
dataset, we have:

e Concentration Tensor C[y,o]: This matrix denotes
the chemical concentrations in weight percent for ox-
ides. Each row represents a sample y, and each col-
umn represents an oxide o.

o Intensity Tensor I[y,[ s A]: Holds the spectral inten-
sity data, where each entry represents the intensity
recorded for a sample y atlocation [, for shot s, at wave-
length A. [ indicates the location on the sample where
the measurement is taken, and A is the index for wave-
lengths (specific wavelengths of light measured by the
spectrometers).

o Averaged Intensity Tensor A[y,[, A]: Derived from
matrix I by averaging the intensities across shots to
provide a clearer signal for each location and wave-
length:

1
A LA = DiIlxls Al

seS

The primary input to our computational models is the pro-
cessed LIBS spectral data. Formally, we have:

o Masked Intensity Tensor M[y,l,A]: This tensor
represents the spectral intensity data after applying
wavelength-specific masks to the Averaged Intensity
Tensor A. It serves as the main input to the models.

e Feature Vectors x € RV: These vectors are extracted
from the Masked Intensity Tensor M and represent
the processed LIBS signals. Each feature vector cor-
responds to a sample and contains N dimensions,
where N is the number of relevant spectral features.

The outputs of the computational models are the predicted
concentrations of major oxides in the samples. These outputs
are represented as vectors of estimated oxide concentrations:

e Estimated Concentration Vectors v € R": Each
vector v contains the predicted concentrations for n,
target oxides. These predictions are derived from the
mapping function ¥ applied to the feature vectors x.

The task of LIBS-based quantification involves fitting the pa-
rameters of a mapping function ¥ : RN — R™ to accurately
predict oxide concentrations from processed LIBS signals by
optimizing these parameters to minimize a loss function.
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3.2 Challenges

As mentioned, quantifying chemical compositions from LIBS
spectral data involves several significant challenges that must
be addressed to ensure accurate and robust predictions.

3.2.1 Data Dimensionality. The large number of dimensions, as
seen by having many wavelengths A in the Intensity Tensor
I[x.1 s, A], can lead to challenges such as the inclusion of irrel-
evant or redundant features.

High-dimensional datasets, like LIBS datasets, may include
irrelevant or redundant features that obscure the true signal,
complicating the process of accurately estimating the target
variables. Effective dimensionality reduction techniques can
help ensure the reliability of predictions.

3.2.2  Multicollinearity. The overlapping nature of emission
lines from different elements results in high correlation
between intensity readings at different wavelengths, making
it difficult to extract independent spectral features necessary
for accurate quantitative analysis [3].

3.2.3 Matrix Effects. Matrix effects refer to variations in the
intensity of emission lines of an element independent of
its concentration, arising from the complex interplay of
various physical processes within the plasma generated
by the LIBS technique. These effects can significantly alter
emission intensities, complicating the extraction of accurate
and independent spectral features. This makes it challenging
to precisely map the processed LIBS signal vector x € RN to a
vector v € R™ of estimated oxide concentrations [3, 7]. Matrix
effects, along with other physical processes, can induce
nonlinearity in the mapping function, thereby increasing the
complexity of the task[22].

3.24 Data Availability. Due to the high cost of data collection,
datasets are often small. This limits the number of samples
available for evaluation, affecting the generalizability and ro-
bustness of the models[15].

3.3 Problem Formulation

The objective of this research is to develop a computational
model, denoted as ¥ : RN — R™, to predict major oxide
concentrations in geological samples from processed LIBS
spectral data, that maintains accuracy and exhibits robustness
against the challenges posed by the high dimensionality of
the data, multicollinearity among spectral features, matrix
effects, and the limited availability of data.

4 BACKGROUND

In this section, we provide an overview of the data used in this
work, preprocessing techniques, and machine learning mod-
els used in our proposed pipeline. We outline the various nor-
malization techniques and dimensionality reduction methods,
followed by the ensemble learning, linear models, and regu-
larization models used. Finally, we outline stacked generaliza-
tion.

4.1 Data Overview

Similarly to our previous work (Houmann et al. [15]), we used
the publicly available Clean, Calibrated Spectra (CCS) data
from NASA'’s Planetary Data System (PDS) [17]. CCS refers
to LIBS data that has been through a series of preprocessing
steps such as subtracting the ambient light background, noise
removal and removing the electron continuum to derive data
that is more suitable for quantitative analysis. A comprehen-
sive description of this preprocessing procedure is available in
Wiens et al. [40].

While the CCS data is in a more suitable form for quanti-
tative analysis, it still requires further preprocessing. This in-
cludes handling negative values and noise at the edges of the
spectrometers, as we will describe in Section 7.1. Additional
preprocessing steps will be necessary to further refine the data
for subsequent analysis and model training. Table 2 shows an
example of the CCS data for a single location of a sample. This
corresponds to shots (s) and wavelength (1) of the Intensity
Tensor 2 for this location.

4.2 Preprocessing

In this subsection, we discuss the preprocessing methods
used in our machine learning pipeline. We cover the following
normalization techniques: Z-Score standardization, Max Ab-
solute scaling, Min-Max normalization, robust scaling, Norm
3, power transformation, and quantile transformation. These
techniques are essential for standardizing data, handling
different scales, and improving the performance of machine
learning models. For the purposes of this discussion, let x be
a feature vector with values x1, x2, ..., xp.

4.2.1 Z-Score Standardization. Z-Score Standardization, also
known as zero-mean normalization, transforms data to have a
mean of zero and a standard deviation of one. This technique
is useful when the actual minimum and maximum of a
feature are unknown or when outliers may significantly skew
the distribution. The Z-Score Standardization of a feature
vector x is given by:

where x; is the original value, X is the mean of the feature
vector x, oy is the standard deviation of the feature vector x,
and x] is the normalized feature value. By transforming the
data using the Z-score, each value reflects its distance from
the mean in terms of standard deviations. Z-Score Standard-
ization is particularly advantageous in scenarios where data
features have different units or scales, or when preparing data
for algorithms that assume normally distributed inputs [20].

4.2.2 Max Absolute Scaler. Max Absolute Scaling is a normal-
ization technique that scales each feature individually so that
the maximum absolute value of each feature is 1. This results
in the data being normalized to a range between -1 and 1. The
formula for Max Absolute Scaling is given by:
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Table 2. Example of CCS data for a single location (from Houmann et al. [15]).

wave shotl shot2 shot49 shot50 median mean

240.81100 6.4026649e+15 4.0429349e+15 1.7922483e+15 1.7126615e+15 1.9892956e+15 1.7561699¢+15
240.86501 3.8557462e+12 2.2923680e+12 1.1355429e+12 8.6930379e+11 7.8172542e+11 7.2805052e+11
905.38062 1.8823427e+08 58500403. -8449286.6 8710775.0 4.0513312e+09 5.2188327e+09
905.57349 1.9864713e+10 1.2956832e+10 1.9785415e+10 7.1994239e+09 1.1311150e+10 1.2201224e+10

X = Xi
' max(|x|)’

where x; is the original feature value, max(|x|) is the maxi-
mum absolute value of the feature vector x, and x; is the nor-
malized feature value. This scaling method is particularly use-
ful for data that has been centered at zero or is sparse, as Max
Absolute Scaling does not alter the mean of the data. Addition-
ally, it preserves the sparsity of the data by ensuring that zero
entries remain zero, thereby not introducing any non-zero val-
ues [39].

4.2.3 Min-Max Normalization. Min-Max normalization
rescales the range of features to a specific range [a,b],
where a and b represent the new minimum and maximum
values, respectively. The goal is to normalize the range of
the data to a specific scale, typically 0 to 1. The Min-Max
normalization of a feature vector x is given by:
, x; — min(x)
i = max(x) — min(x) (b-a)+a

where x; is the original value, min(x) and max(x) are the
minimum and maximum values of the feature vector x, respec-
tively, and x| is the normalized feature value.

This type of normalization is beneficial because it ensures
that each feature contributes equally to the analysis, regardless
of its original scale [20].

4.24 Robust Scaler. The robust scaler is a normalization tech-
nique that removes the median and scales the data according
to the quantile range. The robust scaler of a feature vector x is
given by:

o %i-Qlx
' Q3(x)-Ql(x)’

where x; is the original feature value, Q1(x) is the first quar-
tile of the feature vector x, and Q3(x) is the third quartile of the
feature vector x. This technique can be advantageous in cases
where the data contains outliers, as it relies on the median and
quantile range instead of the mean and variance, both of which
are sensitive to outliers [39].

4.25 Norm 3. As previously mentioned, the Chemistry and
Camera (ChemCam) instrument consists of three spectrom-
eters, each producing 2048 channels. For data normalization,
we follow the approach taken by the ChemCam team and nor-
malize across individual spectrometers” wavelength ranges, a
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Fig. 1. Spectral plot of the CCS data for the ultramafic sample. The wave-
lengths represent the spectral channels.

process known as Norm 3 3, 7]. This method ensures that the
wavelength intensities captured by each spectrometer are nor-
malized independently, thus preserving the relative intensi-
ties within each spectrometer.

Figure 1 shows a spectral plot of the CCS data for the
ultramafic sample, illustrating the three distinct spectral
regions, each captured by one of the three spectrometers.
Specifically, one spectrometer captures the Ultraviolet (UV)
region, another captures the Violet (VIO) region, and the
third captures the Visible and Near-Infrared (VNIR) region.

Let y represent the spectrometer index, where y € {1,2,3},
corresponding to the UV, VIO, and VNIR spectrometers, re-
spectively. Then, Norm 3 is formally defined as:

x)
X"(Jy‘) TGN - ¥’ 1)
i X
where

. )Zif}/) is the normalized wavelength intensity for the i-
th sample in the j-th channel on the y-th spectrometer,
. Xl.(’}/) is the original wavelength intensity for the i-th
sample in the j-th channel on the y-th spectrometer,

and
e N = 2048 is the number of channels in each spectrom-

eter.



LASERGAME: Leveraging Advanced Spectroscopy and Ensemble Regression for Geochemical Analysis and Model Evaluation « 9

This normalization method results in a total of 3N = 6144
normalized features for each sample, as each of the three spec-
trometers contributes 2048 channels.

4.2.6 Power Transformation. Power transformations are a class
of mathematical functions used to stabilize variance and make
data more closely approximate a normal distribution. They are
particularly useful in statistical modeling and data analysis to
meet the assumptions of linear models.

One of the first influential power transformation techniques
is the Box-Cox power transform, introduced by Box and Cox
[5] in 1964. This is defined for positive data and is aimed at
normalizing data or making it more symmetric. For a feature
vector x, the Box-Cox transformation is defined as:

x—1
Be, o [EE o)
Ve {1og<x>, (2=0)"

where A is the transformation parameter. A determines the
extent and nature of the transformation, where positive values
of A apply a power transformation and A = 0 applies a logarith-
mic transformation.

To overcome the limitations of the Box-Cox transformation,
Yeo and Johnson [44] introduced a new family of power trans-
formations that can handle both positive and negative values.
The Yeo-Johnson power transformation is defined as:

(x+1)4-1

1 (x=0,1#0)

log(x+1 x>0,1=0
youx) = 18D )
——r— <0122
—log(—x+1) (x<0,A=2)

For non-negative values, the Yeo-Johnson transformation
simplifies to the Box-Cox transformation, making them
equivalent in this context. The key benefit of the Yeo-Johnson
transformation is its ability to handle any real number,
making it a robust choice for transforming data to achieve
approximate normality or symmetry. This property is partic-
ularly beneficial for preparing data for statistical analyses and
machine learning models that require normally distributed
input data.

4.2.7 Quantile Transformer. Quantile transformation is a
method that applies a non-linear transformation to map data
to a uniform or normal distribution. This process involves
mapping the data X to a set of probabilities p using the Cu-
mulative Distribution Function (CDF), which indicates the
probability that a random variable will be less than or equal
to a specific value in X’s original distribution. Subsequently,
the quantile function, which is the inverse of the CDF of
the desired distribution, is applied to these probabilities p
to generate the transformed data. This method forces the
data to conform to the specified distribution regardless of the
original distribution’s form [39].

4.2.8 Principal Component Analysis (PCA). PCA is a dimension-
ality reduction technique used to reduce the number of fea-
tures in a dataset while retaining as much information as pos-
sible. We provide an overview of PCA in this section based on
Jiawei Han [20] and Vasques [39].

PCA works by identifying the directions in which the
n-dimensional data varies the most and projects the data onto
these k dimensions, where k < n. This projection results in
a lower-dimensional representation of the data. PCA can re-
veal the underlying structure of the data, which enables inter-
pretation that would not be possible with the original high-
dimensional data.

PCA works as follows. First, the input data are normalized,
which prevents features with larger scales from dominating
the analysis.

Then, the covariance matrix of the normalized data is com-
puted. The covariance matrix captures how each pair of fea-
tures in the dataset varies together. k orthogonal unit vectors,
called principal components, are then computed from this co-
variance matrix. These vectors are perpendicular to each other
and capture the directions of maximum variance in the data.

The principal components are then sorted such that the first
component captures the most variance, the second component
captures the second most variance, and so on. Variance is as-
sumed by PCA to be a measure of information. In other words,
the principal components are sorted based on the amount of
information they capture.

After computing and sorting the principal components,
the data can be projected onto the most informative principal
components. This projection results in a lower-dimensional
approximation of the original data. The number of principal
components to keep is a hyperparameter that can be tuned
to balance the trade-off between the amount of information
retained and the dimensionality of the data.

4.2.9 Kernel PCA. We provide a brief overview of the Kernel
Principal Component Analysis (Kernel-PCA) algorithm
based on Schélkopf and Smola [33]. Kernel-PCA is an ex-
tension of traditional PCA designed to handle nonlinear
relationships among data points. The core idea behind
Kernel-PCA is to map data into a higher-dimensional space
using a kernel function, a technique known as the kernel
trick. This mapping enables linear separation of data points
in the higher-dimensional space, even if they are not linearly
separable in the original space.

Similar to PCA, as described in Section 4.2.8, the goal of
Kernel-PCA is to extract the principal components of the data.
Unlike PCA, Kernel-PCA does not compute the covariance
matrix of the data directly, as this is often infeasible for high-
dimensional datasets. Instead, Kernel-PCA leverages the
kernel trick to compute the similarities between data points
directly in the original space using a kernel function. This
kernel function implicitly computes the dot product in the
higher-dimensional feature space without explicitly mapping
the data points into that space. That way, Kernel-PCA can



10 « Christian Bager Bach Houmann, Patrick Frostholm @stergaard, and Ivik Lau Dalgas Hostrup

capture nonlinear relationships among data points without
explicitly transforming them into a higher-dimensional space.
By using pairwise similarities to construct a kernel ma-
trix, also referred to as a Gram matrix, Kernel-PCA can
perform eigenvalue decomposition. This process allows for
the extraction of principal components in the feature space,
similar to the approach used in regular PCA. However, in
Kernel-PCA, the eigenvalue decomposition is performed on
the kernel matrix rather than the covariance matrix, resulting
in the principal components. These principal components are
nonlinear combinations of the original data points, enabling
the algorithm to capture complex relationships among data
points that are not linearly separable in the original space.

4.3 Linear and Regularization Models

Linear models are a class of models that assume a linear re-
lationship between the input features and the target variable.
These models are simple and interpretable, making them a
popular choice for regression tasks. Regularization is used to
prevent overfitting through the addition of a penalty term to
the loss function[18].

In this section, we provide an overview of the linear and
regularization models used in this work.

4.3.1 Ordinary Least Squares Regression. We briefly cover the Or-
dinary Least Squares (OLS) regression algorithm based on
James et al. [18] to provide context for the subsequent discus-
sions on linear and regularization models.

OLS regression is a linear regression technique that fits a lin-
ear model, j = ﬁo + ﬁl x, to the data by minimizing the Residual
Sum of Squares (RSS), where 7 is the predicted target value,
/390 is the intercept, ﬁl is the coefficient for the input feature,
and x is the input feature. In OLS regression, the objective is to
estimate the coefficients that minimize the sum of squared dif-
ferences between the observed target values and the predicted
values, known as the RSS:

n
RSS = > (yi = §1)%
i=1

where y; is the observed target value, ; is the predicted tar-
get value, and n is the number of samples in the dataset. To
minimize the RSS, OLS regression finds the coefficients ,l?o and
ﬂl that minimize the RSS.

4.3.2 Ridge Regression. As an alternative to OLS, one can fit
a model with all N features by applying techniques that
constrain or regularize the coefficient estimates, effectively
shrinking them towards zero. Although it may seem coun-
terintuitive, this constraint can significantly reduce variance
in the estimates. One of the most well-known techniques for
this purpose are is ridge regression, which we now provide
an overview of, based on James et al. [18].

Ridge regression introduces a regularization term to the
OLS regression objective function to prevent overfitting
and reduce the model’s variance. This regularization term

is known as the L, norm and is defined as the sum of the
squared regression coefficients:

p
Ly = Zﬂz,
=1

where f; are the regression coefficients, and p is the number
of features. The ridge regression objective function f;;q4. (B) is
defined as:

ﬁidge (B) =RSS + AL,

where RSS is the residual sum of squares defined in Sec-
tion 4.3.1 and 1 is the regularization parameter — a hyper-
parameter that controls the strength of the penalty. Introduc-
ing this regularization term causes ”shrinkage”, which means
that the estimated regression coefficients are shrunk towards
zero, reducing their variance. This shrinkage usually results
in a model with higher bias compared to one fitted with OLS
regression because the regularization can cause a worse fit to
the training data. However, the model has a lower variance,
making it less prone to overfitting and more generalizable to
unseen data.

4.3.3 Least Absolute Shrinkage and Selection Operator (LASSO) Re-
gression. A disadvantage of ridge regression is that it includes
all features in the final model. While it shrinks the coefficients
towards zero, it does not eliminate any by setting them exactly
to zero. This may not impact prediction accuracy but makes
interpretation harder, especially with many variables. For ex-
ample, in datasets with numerous features, one might prefer a
model that includes only the most important ones. However,
ridge regression includes all features, and while increasing
the penalty reduces coefficient sizes, it does not set any coeffi-
cients to zero[18].

We therefore introduce Least Absolute Selection and
Shrinkage Operator (LASSO) regression based on James et al.
[18], a regression technique which addresses this issue by
adding a different regularization term to the OLS regression
objective function. While ridge regression uses the L, norm,
LASSO uses the L norm, which has the distinct effect of
performing feature selection by shrinking some coefficients
to exactly zero:

p
Ly = Z 18,
J=1

where f; are the regression coefficients, and p is the
number of features. The LASSO regression objective function

frasso(p) is defined as:

frasso(B) = RSS + ALy,

where RSS is the residual sum of squares defined in Sec-
tion 4.3.1 and Ais the regularization parameter. By introducing
this L; regularization term, LASSO not only penalizes large co-
efficients but also has the property of setting some coefficients
to zero, effectively selecting a simpler model that only includes
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the most important features. This makes LASSO particularly
useful when dealing with high-dimensional data where fea-
ture selection is crucial.

4.3.4  Elastic Net Regression (ENet). Despite LASSO regression’s
ability to perform feature selection and its effectiveness in set-
tings with multicollinearity, it can struggle when the dataset
contains globally highly correlated features. LASSO tends to
select only one feature from a group of highly correlated fea-
tures and ignores the others[45]. When multiple correlated
features are important for the prediction, this can lead to sub-
optimal performance.

To address this, Zou and Hastie [45] introduced the Elas-
tic Net (ENet) regression, a regression method that combines
the L; and L, regularization terms from ridge and LASSO re-
gression. The ENet regression objective function fgne:(f) is
defined as:

fenNer(B) = RSS+ ALy + Az Ly,

where RSS is the residual sum of squares defined in Sec-
tion 4.3.1, and A; and A, are regularization parameters that
control the strength of the L; and L, penalties, respectively.
By combining the L; and L, regularization terms, ENet per-
forms feature selection like LASSO while also shrinking the
coefficients of correlated features like ridge regression. This
way, ENet can mitigate the limitations of each method when
used individually by balancing the trade-offs between the two
regularization terms.

4.3.5 Principal Component Regression (PCR) & Partial Least
Squares (PLS). In order to understand PLS, it is helpful to first
consider Principal Component Regression (PCR), as PLS is an
extension of PCR that aims to address some of its limitations.
We provide an overview of both regression techniques based
on James et al. [18].

PCR extends PCA in the context of regression analysis. First,
PCA is performed to identify the M principal components that
capture the most variance in the data. These components are
then used in a linear regression model to predict the target
variable by fitting a linear model via least squares regression.
The key intuition behind PCR is that a small number of princi-
pal components are sufficient to capture most of the variance
in the data, which can then be used to predict the target vari-
able. That is, the directions of the principal components are as-
sumed to be associated with the target variable. If this assump-
tion holds, a least squares regression model fitted to the prin-
cipal components provides better predictions than a model fit-
ted to the original features because the principal components
indeed capture the most important information in the data.

One drawback of PCR is that it does not consider the target
variable in the decomposition of the features and therefore as-
sumes that components with larger variance have a stronger
correlation with the target than those with smaller variance.
The components that capture the most variation may not be
the most predictive of the target; some data might be highly
variable but irrelevant to the target.

To address this limitation, PLS extends PCR by considering
the target variable when identifying the components. PLS uses
an iterative method to identify components that maximize the
covariance between the features and the target. Similar to PCR,
PLS identifies M components that capture the most variance in
the data and fits a linear model with least squares regression.
However, unlike PCR, PLS uses the target variable to identify
the components that are most predictive of the target, result-
ing in components that not only approximate the data but also
relate to the target variable. In essence, PLS aims to find com-
ponents that are both informative about the data and predic-
tive of the target.

This is an iterative process where the residuals from the pre-
vious components are used to calculate the next component.
Specifically, the m-th component is derived from the residuals
of the previous m — 1 components. These residuals represent
the part of the data that has not been explained by the previous
components. The iteration can be repeated M times to identify
M components, where M is a tunable hyperparameter. After-
wards, the components are used to predict the target variable
by fitting a linear model via least squares regression, just like
in PCR.

4.3.6  Support Vector Regression (SVR). SVR is a regression tech-
nique that extends the principles of SVM to regression prob-
lems. We therefore provide an overview of SVMs based on
James et al. [18] before discussing SVRs.

SVM is a supervised learning algorithm used primarily for
classification tasks. A core concept in SVM is the hyperplane.
Generally, a hyperplane is a subspace of one dimension less
than its ambient space. This means that in a two-dimensional
space, a hyperplane is a line, while in a three-dimensional
space, it is a plane, and so on.

SVM is built on the idea of finding the hyperplane that
best separates the data points into different classes. This
hyperplane is chosen to maximize the margin, which is the
distance between the hyperplane and the nearest data point
from either class. The instances right on or inside the margin
are called support vectors, which are used to ’support’ the
margin and decision boundary.

SVR extends the principles of SVM to regression problems.
We use our previous discussion of SVM to introduce SVR
based on Drucker et al. [8] and Smola and Schélkopf [36].

SVR aims to fit a function that predicts continuous values
rather than finding the hyperplane that best separates data
points. Instead of using a hyperplane to separate the data, SVR
uses two parallel hyperplanes to define a margin within which
the function should lie, often referred to as the e-tube, where
€ is a hyperparameter that defines the width of the tube. The
goal is to find a function f(x) that lies within this tube and has
the maximum number of data points within the tube. f(x) is
typically defined as a linear function of the form:

f(x)=w-x+D,
where:

o w is the weight vector,
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e x is the input vector, and
e b is the bias term.

The two parallel hyperplanes at a distance e from the hyper-
plane are defined as:

w-x+b=f(x)+e
w-x+b=f(x)-e

Or, more succinctly:

ff®=f®+e
fF®=fx)-e

where f*(x) and f~ (x) are the upper and lower bounds of
the e-insensitive tube, respectively.

The optimization problem in SVR is to find the coefficients
w and b that minimize the norm of w (i.e., keep the regres-
sion function as flat as possible) while ensuring that most data
points lie within the e margin.

4.4  Ensemble Learning Models

In this section we introduce the concept of ensemble learning
and decision trees based on James et al. [18], as they are fun-
damental aspects of the ensemble learning models we discuss.
Following this, we outline Extra Trees Regression (ETR), GBR,
Natural Gradient Boosting (NGBoost), and eXtreme Gradient
Boosting (XGBoost).

4.4.1 Ensemble Learning. Ensemble learning is a machine learn-
ing technique that combines multiple models, referred to as
weak learners, to generate more accurate predictions. Individ-
ually, the predictive ability of weak learners may be limited,
but when combined, they can produce a more precise and ro-
bust model. Ensemble learning encompasses several methods,
including bagging, boosting, and stacking[18, 29]

In this section, we provide an overview of the ensemble
learning methods used in this work. We begin by introducing
decision trees, a commonly used weak learner in ensemble
methods.

4.4.2  Decision Trees. A decision tree is a supervised learning
model that partitions data into subsets based on feature val-
ues, creating a tree structure. The goal is to create a tree that
predicts the target variable by dividing the data into increas-
ingly homogeneous subsets. Each internal node in the tree rep-
resents a decision based on a specific feature, while each leaf
node represents a prediction for the target variable. The tree
can make predictions for new data points by following a path
from the root to a leaf node[18].

4.4.3  Extra Trees Regressor (ETR). We give an overview of Ran-
dom Forest (RF) based on James et al. [18]. Then, we introduce
the ETR model based on Geurts et al. [12].

RF is an ensemble learning method that improves the ac-
curacy and robustness of decision trees by building multiple
trees and combining their predictions. Each tree is trained on
a random subset of the data using bootstrap sampling, where
samples are drawn with replacement, meaning the same

sample can be selected multiple times. Bagging, or bootstrap
aggregating, involves training each tree on a different boot-
strap sample and then aggregating their predictions to form
the final output. This introduces variability in the training
data available to the models and reduces overfitting, as some
data points may appear multiple times while others may be
omitted. In addition to bootstrap sampling, random forests
introduce an additional layer of randomness by selecting
a random subset of features for splitting at each node of
the trees. This further decorrelates the trees, enhancing
the model’s robustness and reducing the risk of overfitting.
By aggregating predictions from multiple trees, the model
achieves better generalization and robustness.

For a feature vector x, the prediction of a RF model can be
represented as an aggregation of the predictions of individual
trees:

1 M
f@) = D ),
m=1

where fi,(x) is the prediction of the m-th tree, and M is the
total number of trees. This form of aggregation reduces the
overall variance of the model, by averaging the predictions of
the individual trees to produce a final prediction.

ETR extends the RF model by introducing additional
randomness in the tree-building process, specifically through
random feature selection and random split points. While
RF uses bootstrap sampling and selects the best split from a
random subset of features to create a set of diverse samples,
ETR instead selects split points randomly within the chosen
features, introducing additional randomness. This process
results in even greater variability among the trees, aiming to
reduce overfitting and improve the model’s robustness. As a
trade-off, ETR is less interpretable than a single decision tree,
as the added randomness can introduce more bias than RF.
However, it often achieves better generalization performance,
especially in high-dimensional or noisy datasets.

4.4.4 Gradient Boosting Regression (GBR). In this section, we in-
troduce GBR based on Hastie et al. [14] and Burkov [6].

Gradient Boosting is a machine learning technique used for
various tasks, including regression and classification. The fun-
damental concept involves sequentially adding models to min-
imize a loss function, where each successive model addresses
the errors of the ensemble of preceding models.

This technique utilizes gradient descent to optimize the loss
function, allowing for the selection of different loss functions
depending on the specific task. The loss function is generally
defined as L(y, §), and measures the discrepancy between the
true values y and the predicted values j. GBR is a specialized
application of gradient boosting for regression tasks, where
it minimizes a regression-appropriate loss function, such as
mean squared error or mean absolute error. Typically, decision
trees are used as the base models in each iteration.
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The process starts with an initial model fy(x) that minimizes
the loss function over the entire dataset:

N
folx) = argmin > Ly
i=1

where L is the chosen loss function, N is the number of sam-
ples, y; are the true values, and y is a constant that represents
the prediction of the initial model.

Then we start the iterative process of adding models to the
ensemble. For each iteration m, from 1 to M:

(1) Compute the residuals of the current model. For re-
gression, this could be the squared error loss, L(y, §) =

(y — §)2. The residuals rl.(m) for each data point i are

calculated as ri(m) = y; — fm-1(x;), where fi,—1(x;) is

the prediction of the previous model.

(2) Fitanew decision tree hy,(x) to the residuals. This tree
aims to correct the errors of the current ensemble by
using the residuals instead of ground truth values. Es-
sentially, hy, (x) tries to predict the residuals ri(m).

(3) Update the ensemble model by adding the predictions
of the new tree hp,(x), multiplied by a learning rate 7.
The learning rate 5 controls the contribution of each
new tree to the ensemble, preventing overfitting by
scaling the updates:

Jm (x) = Jfm-1 (x) + nhm(x)
This iterative process continues until the maximum number

M of trees is combined, resulting in the final model f (x) =

fm(x).

4.4.5 Natural Gradient Boosting (NGBoost). NGBoost[9] is a
variant of the gradient boosting algorithm that leverages
the concept of natural gradients with the goal of improving
convergence speed and model performance. In more com-
plex models, the parameter space can be curved and thus
non-Euclidean, making the standard gradient descent less
effective. Consequently, using the standard gradient descent
can lead to slow convergence and suboptimal performance. In
such scenarios, the application of natural gradients becomes
particularly advantageous.

Natural gradients account for the underlying geometry of
the parameter space by using information about its curvature.
By incorporating this information, natural gradients can navi-
gate the parameter space more efficiently, leading to faster con-
vergence and better performance. In addition, NGBoost pro-
vides its predictions in the form of probability distributions,
allowing it to estimate the uncertainty associated with its pre-
dictions.

The algorithm starts by initializing a model with a guess for
the parameters of the probability distribution, usually starting
with something simple like a Gaussian distribution. This ini-
tial model prediction represents the probability distribution
over the target variable based on the given features.

Then, the algorithm enters an iterative process to refine
its predictions. At the start of each iteration, the model

computes its current predictions using the existing set of
parameters. The algorithm then calculates the negative
gradient of the loss function with respect to the current
predictions. This involves computing the gradient of the
negative log-likelihood, which quantifies the discrepancy
between the current predictions and the actual observed data.
The negative log-likelihood quantifies how well the model’s
predicted probability distribution matches the observed
data, with lower values indicating better alignment between
predictions and observations.

Next, the Fisher information matrix is computed. This matrix
encodes the curvature of the parameter space at the current
parameter values, reflecting how sensitive the likelihood func-
tion is to changes in these parameters. For example, if the likeli-
hood function is highly sensitive to changes in a particular pa-
rameter, the Fisher information matrix will have a high value
for that parameter. Using this information, the model can ad-
just its parameters more effectively, focusing on the most sen-
sitive parameters to improve performance.

The standard gradient, or residuals, which is derived from
the negative log-likelihood, is then transformed using the in-
verse of the Fisher information matrix to obtain what is known
as the natural gradient. Next, a weak learner, typically a deci-
sion tree, is fitted to these natural gradients. This step is sim-
ilar to traditional gradient boosting, where a tree is fitted to
the residuals, but in NGBoost, the tree is fitted to the natural
gradients instead.

The parameters of the model are then updated using the out-
put from the weak learner. This update process incorporates a
learning rate to control the step size, ensuring that the model
makes gradual improvements rather than drastic changes.

Using the newly updated parameters, the model recalcu-
lates its predictions, refining the probability distribution of
the target variable. This iterative process of computing predic-
tions, calculating gradients, fitting weak learners, and updat-
ing parameters continues for a predetermined number of iter-
ations or until the model’s performance converges.

4.4.6 Stacked Generalization. Stacked generalization, intro-
duced by Wolpert [42], is an ensemble method that combines
the predictions of multiple base models, which are trained
on the original dataset, as input to a meta-model. This
meta-model is trained to make the final prediction. The
strategy allows the meta-model to learn the optimal way to
combine the predictions of the base models to minimize the
generalization error.

Formally, let X denote the input data and y the target vari-
able. Initially, N base models Gy, Gy, ..., Gy are trained on the
dataset X. Each base model generates a set of predictions §; =
Gi(X).

The predictions from the base models are then compiled
into a new dataset Z, where each column z; € Z represents
the predictions from the i-th base model:

Z=[91,¥2-.-.IN]
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A meta-model F is subsequently trained on this new dataset
Z to predict the target variable y:

y=F(2)

The final prediction is provided by the meta-model F,
which effectively integrates the outputs of the base models
to enhance overall performance. The effectiveness of stacked
generalization stems from its ability to leverage the unique
strengths of different base models while mitigating their
individual weaknesses, thereby producing a more accurate
and generalizable ensemble model.

5 BASELINE & REPLICA

For analyzing Martian geological samples, the ChemCam
team currently uses the Multivariate Oxide Composition
(MOC) model [7]. This model integrates PLS and Indepen-
dent Component Analysis (ICA) via Joint Approximation
Diagonalization of Eigen-matrices (JADE) to predict the
composition of major oxides.

As shown in figure 2, the input to the MOC model is
the CCS data, mentioned in Section 3. This spectral data
is collected on Earth in a laboratory setting simulating the
Martian environment. The instrument used to collect this data
is a LIBS instrument replicating the ChemCam instrument
on the Curiosity rover. Both the ChemCam and laboratory
instrument consist of three spectrometers, each producing
2048 channels. These spectrometers are used to capture the
UV, VIO, and VNIR regions of the spectrum. For each sample,
five CCS datasets are collected by firing 50 laser shots at
five different locations on the sample and processing the
raw spectral readings [40]. Consequently, the CCS data for
each sample forms a high-dimensional Intensity Tensor I
(Tensor 2) with dimensions 5 x 50 X 6144. An entry in this
matrix represents the intensity of a specific wavelength in
nanometers. Complementing the data is the matrix of the
corresponding major oxide concentrations for each sample
C1, which serves as the target variable for the model. For
more details, refer to Section 5 in Houmann et al. [15].

The PLS and JADE phases of the MOC operate in parallel,
and their predictions are blended to form the final predictions.
Though the MOC model has proven useful, it suffers from lim-
itations in predictive accuracy and robustness. An overview of
the MOC model is shown in Figure 2.

In Houmann et al. [15], we presented our efforts to replicate
the MOC model. Based on the insights gained from that work,
we have made several modifications to the replica in prepara-
tion for this work.

Our replica only utilized a single dataset for the ICA phase,
while the original model used all five datasets. This difference
was due to the original paper not specifying how the five
datasets were used, and so we designed an experiment to
determine how to use them in a way that would most closely
replicate the original model. We initially assumed that the
datasets were aggregated and used as a single dataset. This

Clean, calibrated spectra (CCS)

PLS
‘ full model ’ ‘ ICA ’
\ 4 \ 4
PLS Regression
sub-models Models

Weighted
blending

MOC prediction

Fig. 2. Overview of the MOC model.

approach, however, did not align with the original model’s re-
sults, likely due to the loss of information from the individual
datasets. Following this discovery, we modified the replica
to instead use the datasets in the same way as in the Partial
Least Squares 1 - sub-model (PLS1-SM) phase, which yielded
results aligning more closely with the original model.

Furthermore, our initial replica used a random train/test
split for training, in contrast to the original model’s manual
curation to ensure representation of extreme compositions in
both sets. This difference stemmed from the original authors’
application of domain expertise in their dataset curation —
a process we could not directly replicate. Nevertheless, we
found that automatically identifying extreme compositions
and ensuring that they were present in both the training and
testing sets brought us closer to the original model. We chose
to pull out the n largest and smallest samples by concentration
range, for each oxide, and reserve them for the training set.
Then we would do a random split on the remaining dataset,
such that the final train/test split would be a 80%/20% split.

With these changes, we created a more accurate replica of
the MOC model, which we will use as our baseline for the rest
of this paper. We have presented these changes to one of the
original authors of Clegg et al. [7], who confirmed that they
were reasonable and in line with the original model’s imple-
mentation.

Table 3 shows the RMSEs of the original models and our
replicas after the changes. Figure 3 illustrates the distribution
of these RMSEs as a grouped histogram. The results show that
the RMSEs of our replicas exhibit similar tendencies to the
original models. However, in some cases, our replicas have
a lower RMSE than the original models, and in others, they
have a higher RMSE. These differences are due to a number of
factors.

Firstly, the original models were trained with datasets from
1600mm and 3000mm standoff distances [7], while we only
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Fig. 3. Grouped histogram of the RMSEs of the original and our replicas of the PLS1-SM, ICA, and MOC models.

had access to the 1600mm dataset for our replicas. Addition-
ally, we automated the outlier removal for the PLS1-SM phase,
unlike the original manual process. As mentioned, the original
authors manually curated their training and test sets, ensuring
a broad elemental range, while we implemented an automatic
process for our replicas due to lack of domain expertise. Differ-
ences might also stem from varied implementation specifics,
such as programming languages and libraries used.

Through a series of comparative experiments, we showed
that the model selection was the primary cause of these lim-
itations, and we showed how both ANN and GBR methods
could be used to improve the model’s predictive accuracy and
robustness. This is further underscored by work from the Su-
perCam team. In 2021, the Perseverance rover landed on Mars,
equipped with the SuperCam instrument, which is the suc-
cessor to the ChemCam instrument. As part of the ongoing
work to support the SuperCam instrument, Anderson et al.
[4] experimented with various machine learning models to
predict the composition of major oxides in geological samples
using the SuperCam LIBS calibration dataset. While the team
decided to retain PLS for analyzing certain oxides, ICA was
entirely discontinued. Instead, models based on GBR, RF, and
LASSO were selected for other oxides. This decision reinforces
our finding that ICA regression models fall short in accurately
predicting the composition of major oxides in geological sam-
ples. Consistent with our observations, GBR was also identi-
fied as a high-performing model in their analyses.

6 PROPOSED APPROACH

To address the challenges in predicting major oxide com-
positions from LIBS data, we propose the development of
advanced computational models capable of effectively han-
dling the multifaceted challenges we describe in 3.2. These
issues complicate the accurate and robust prediction of ele-
mental concentrations, necessitating advanced computational
methodologies.

Our approach aims to enhance the prediction accuracy and
robustness for major oxides in LIBS data by leveraging specific
combinations of machine learning models and preprocessors
that are particularly effective at predicting individual oxides.
The models will use feature vectors x € RN derived from the
Masked Intensity Tensor M[y,l, A] as input, where N is the
number of features. The output will be Estimated Concentra-
tion Vectors v € R".

As highlighted in Section 2, the literature suggests that var-
ious models and preprocessing techniques are adept at han-
dling high-dimensional data, multi-collinearity, and matrix ef-
fects. The literature also indicates that different machine learn-
ing models perform better on some oxides than others. These
challenges and model-specific strengths suggests that an opti-
mal approach would involve hybrid methodology, integrating
multiple models and preprocessing steps tailored to the spe-
cific characteristics of the data. This could include leveraging
ensemble learning techniques to combine the predictions of
various models, implementing dimensionality reduction tech-
niques like PCA to mitigate high-dimensionality issues, and
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Table 3. RMSEs of the original and our replicas of the PLS1-SM, ICA, and MOC models.

Element PLS1-SM (original) ~ PLS1-SM (replica)  ICA (original)  ICA (replica)  MOC (original) MOC (replica)
SiO» 4.33 4.52 8.31 8.63 5.30 5.61
TiO, 0.94 0.49 1.44 0.54 1.03 0.61
Al O3 2.85 1.79 477 3.18 3.47 2.47
FeOr 2.01 2.16 5.17 2.87 2.31 1.82
MgO 1.06 091 4.08 3.11 221 1.56
CaO 2.65 1.73 3.07 3.28 272 2.09
NazO 0.62 0.80 2.29 1.39 0.62 1.33
KO 0.72 0.72 0.98 1.38 0.82 1.91

employing robust preprocessing strategies to address multi-
collinearity and matrix effects. Furthermore, a systematic eval-
uation through cross-validation and hyperparameter tuning
would be essential to fine-tune the models for the best perfor-
mance on the specific oxides of interest. The notion of using
multiple models per oxide is supported by the advent of mod-
els such as the MOC [7] model, which combines the predic-
tions of multiple models using a predetermined weighting for
each model’s predictions on a per-oxide basis. While this ap-
proach improved accuracy compared to individual models, it
required manual tuning of the weights for each model. This
manual tuning presents limitations, including the analysis re-
quired to determine appropriate weights and the risk of sub-
optimal weighting. Given these limitations, it is reasonable to
explore techniques that can automate the weighting process
while still leveraging the strengths of multiple models. To ful-
fill these criteria, we chose to adopt a stacking ensemble ap-
proach. Stacking, as described in Section 4.4.6, is a method
that utilizes multiple base estimators trained on the same data,
whose predictions are then used to train a meta-learner. By
combining a diverse set of base models, stacking can correct
for the biases of individual models. Since each model focuses
on different patterns within the data, stacking mitigates the
inherent biases of individual models by estimating and cor-
recting for these biases. Leveraging the strengths of multiple
models that each approach the problem differently can lead to
better generalization on unseen data. This is achieved by us-
ing a meta-learner to discern patterns in the base predictors’
outputs[27, 42], with the added benefit of automating and po-
tentially improving upon the manual tuning employed by the
MOC model. However, it is crucial to consider the training of
the base models to prevent data leakage and overfitting. As
emphasized by Witten and Frank [41], if the base models are
trained on the same dataset, the meta learner might favor cer-
tain base models over others. This can cause the meta learner
to be influenced by the same patterns and biases that the base
models are susceptible to, leading to overfitting. To mitigate
this risk and ensure generalizability, a cross-validation strat-
egy should be employed to ensure that the meta learner’s train-
ing data accurately reflects the true performance of the base
learners.

We adopted an experimental approach to empirically eval-
uate the potential of various models and preprocessing tech-
niques for use in our stacking ensemble. This ensured our se-
lections were informed by the literature review while allowing
for independent assessment and validation.

To systematically address the challenges in predicting ma-
jor oxide compositions from LIBS data, we have devised an
approach that integrates model and preprocessing selection,
an experimental framework, evaluation and comparison, and
the construction of a stacking ensemble.

Firstly, we conducted a literature review and performed
preliminary experiments to select a diverse set of machine
learning models and preprocessing techniques. These include
ensemble learning models, linear and regularization models,
neural network models, scaling methods, dimensionality re-
duction techniques, and data transformations. This selection
process is detailed in Section 6.1.

Next, in Section 6.2, we introduce our validation and
testing procedures, delineate our data partitioning and
cross-validation strategy, and present our evaluation and
comparison metrics, all developed to ensure robust perfor-
mance assessment and generalizability of the models by
addressing challenges such as data leakage and uneven
distribution of extreme values.

We present the metrics we use to evaluate the performance
of our models in Section 6.2.2. These metrics include the RMSE
for accuracy and the sample standard deviation of prediction
errors for robustness. By evaluating both cross-validation and
test set metrics, we ensure a thorough assessment of the mod-
els’” generalizability and performance on unseen data.

Next, we implemented an optimization framework using
Optuna as a foundation [2]. This framework facilitates auto-
mated hyperparameter optimization, allowing us to efficiently
explore a vast search space of model and preprocessing con-
figurations. The specifics of this framework are discussed in
Section 6.3.

Finally, the top-performing configurations are used to
construct a stacking ensemble. This ensemble leverages the
strengths of multiple models, with a meta-learner trained
to optimize the final predictions. The process of construct-
ing and validating this stacking ensemble is described in
Section 7.6.
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By following this structured approach, we aim to enhance
the prediction accuracy and robustness for major oxides in
LIBS data, ultimately leading to more reliable and generaliz-
able models.

6.1 Model and Preprocessing Selection

Choosing the right models and preprocessing techniques for
LIBS data analysis is a challenging task.

We had several considerations to guide our selection of
preprocessing techniques. Firstly, our review of the liter-
ature revealed that there seems to be no consensus on a
single, most effective normalization method for LIBS data.
Therefore, we included traditional normalization methods in
our experiments, such as Z-Score Normalization, Min-Max
normalization, and Max Absolute Scaling. This approach
allowed us to determine which normalization method was
most effective for our dataset. Additionally, dimensionality
reduction techniques are considered by the literature to be
effective techniques for LIBS data due to its high dimen-
sionality. Specifically, PCA has been widely adopted by the
spectroscopic community as an established dimensionality
reduction technique [31]. However, Pofizka et al. [31] argue
that the assumptions of PCA regarding the linearity of the
data are only valid up to a certain point, beyond which they
break down. They argue that this non-linearity inherent
in the data makes Kernel-PCA a valid candidate for LIBS
data. Based on their review of the field, and our own review
of the literature, not many have studied the effectiveness
of Kernel-PCA in the context of LIBS data. Therefore, we
decided to include this in our experiments to further assess
its potential. In addition to the non-linearity, Pofizka et al.
[31] also argue that the assumptions of normality in the data
are not always met in LIBS data. For this reason, we decided
to include power transformation and quantile transformation
in our experiments, as models such as PCA benefit from
a normal distribution of the data. We assume that models
such as PLS may also benefit from a more Gaussian-like data
distribution, given that the model is partly based on PCA.

While these preprocessing techniques are not an exhaustive
list, they represent a diverse set of methods. Techniques such
as feature selection were not considered in this study to limit
its scope and due to time constraints.

We also had several requirements for the model selection.
The selected models for experimentation had to be diverse to
ensure sufficient breadth in our results, enabling informed de-
cisions about which models to include in the final stacking en-
semble pipeline. Additionally, the models had to be suitable
for regression tasks. In the absence of research specific to LIBS
data, we selected models that have shown promise in other do-
mains. Our literature review found that a variety of models fit
these criteria. For example, Anderson et al. [4] demonstrated
that models such as GBR, PLS, LASSO, and RF were each effec-
tive at predicting different major oxides from LIBS data. Addi-
tionally, Shi et al. [34] showed that SVR outperforms PLS re-
gression in predicting Si, Ca, Mg, Fe, and Al using LIBS data.

As a result, we included GBR, PLS, LASSO, RF, and SVR in
our experiments.

In the neural network domain, El Haddad et al. [10]
demonstrated that their 3-layer ANN achieved a relative
prediction error below 20% for Ca, Fe, and Al using LIBS data.
Similarly, Yang et al. [43] showed that CNN outperformed
methods such as Logistic Regression (LR), SVM, and linear
discriminant analysis in correctly classifying twelve different
types of rocks based on LIBS data. While this example for
CNN involves a classification task, CNN can be adapted for
regression by changing the loss function and output layer.
Based on these factors, we decided to include ANN and CNN
in our experiments to further increase the diversity of our
model selection.

To further bolster our selection pool, we included models
from the same family as those that showed promise in the lit-
erature.

XGBoost and NGBoost both belong to the gradient boosting
family, but they approach gradient boosting in distinct ways.
XGBoost uses advanced algorithmic optimizations, such
as regularization, tree pruning, and parallel processing, to
improve performance and prevent overfitting. On the other
hand, NGBoost focuses on sophisticated probabilistic loss
functions, optimizing the natural gradient to model the entire
probability distribution of the target variable, making it
well-suited for tasks requiring uncertainty estimation and
probabilistic forecasting. Given these differences and the
limited studies on their application to LIBS data, we decided
to include both in our experiments.

Finally, ridge regression, ENet, ETR, and LASSO were in-
cluded in various studies and showed promising results, even
if they were not the top performers in their respective studies.
Therefore, we chose to include these in our experiments to fur-
ther diversify our model selection.

Table 4 summarizes the preprocessing techniques and mod-
els selected for our experimentation.

To tackle the challenge of selecting the optimal pre-
processing techniques and models, we have developed a
hyperparameter optimization framework, which we describe
in Section 6.3.

6.2 Validation and Testing Procedures for Model
Evaluation

This section describes the validation and testing procedures
our experiments follow. Selecting appropriate testing proce-
dures is crucial for ensuring the validity and reliability of
the results. For that reason, we delineate a methodological
approach that ensures our models are accurate and gen-
eralizable. We begin by outlining our general strategy for
model evaluation. Next, we describe the procedure used to
partition our dataset into training, validation, and testing sets.
Finally, we present the evaluation metrics used to assess the
performance of our models.

We have chosen to test and evaluate all our experiments
using both cross-validation and a separate test set. Evaluating
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Table 4. Overview of preprocessing techniques and models.

Normalization / Scaling:

Z-Score Standardization
Min-Max Normalization
Max Absolute Scaling
Robust Scaling

Norm 3

Transformation Methods:

Power Transformation
Quantile Transformation

Dimensionality Reduction Methods:

Principal Components Analysis
Kernel Principal Components Analysis

Model Types:

Linear and Regularized Models:
Partial Least Squares
Support Vector Regression
Elastic Nets
Least Absolute Shrinkage and Selection Operator
Ridge Regression
Ensemble Models:
Random Forest
Gradient Boost Regression
Extra Trees Regression
XGBoost
Natural Gradient Boosting
Neural Networks:
Artificial Neural Networks
Convolutional Neural Networks

results solely on the test set could lead to models that are
overly specialized to the test set. This occurs when searching
for the optimal configuration of hyperparameters specifically
tailored to the test set. For this reason, it is common to use a
validation set to tune hyperparameters and evaluate model
performance during experimentation. However, further
splitting the training set into a validation set exacerbates
the challenges of limited data availability, as described in
Section 3.2. Our objective is to develop models that demon-
strate high accuracy and robustness, even on entirely unseen
data. To achieve this, we employ k-fold cross-validation. This
allows us to train our models on k — 1 folds and evaluate them
on the remaining fold, which provides a more robust estimate
of model performance, and allows us to use all the data for
training. Since our approach includes large-scale optimiza-
tion, we prefer k-fold cross-validation over Leave-One-Out
Cross-Validation (LOOCV). LOOCV uses each individual
sample as a single test case, resulting in n iterations, where
n is the number of samples. In each iteration, models and
preprocessors would need to be refit, making this approach

too computationally expensive and time-consuming for the
scope of our study.

While we employ conventional techniques like holdout sets
and k-fold cross validation, the dataset we use imposes addi-
tional challenges to the process.

One of the primary challenges is preventing data leakage.
As per concentration matrix C in Section 3, each target only
has one ground truth concentration value per oxide. However,
each target is shot at multiple locations, resulting in multiple
instances of the same target in the dataset, as shown in Table 6.
Although the intensity values vary for each location, they fun-
damentally represent measurements of the same target. If we
were to randomly split the dataset, some locations from a tar-
get could end up in the testing set while others remain in the
training set. This would cause data leakage, as the testing set
would no longer consist solely of unseen targets. To prevent
this, we ensure that each target is represented only once in the
dataset by grouping data from all locations on a given target.

Furthermore, the limited availability of data poses another
significant challenge. The dataset we use consists of 408 sam-
ples, which is relatively large by LIBS standards. However,
there are only a few samples with concentration values for
the oxides in the targets that are either very high or very low
compared to the rest of the data, which we refer to as extreme
values. These infrequent high and low concentration values
can be problematic. If such values end up in the test set, the
model may be evaluated on data points outside the range
it was trained on. This situation can lead to an inaccurate
assessment of the model’s performance, as it might not handle
these uncommon concentration ranges effectively.

When performing a random split of the dataset into
multiple folds for cross-validation, as well as for training
and testing sets, this small number of extreme values can
result in an uneven distribution. The presence or absence of
these extreme values in any given fold can heavily influence
the model’s performance metrics. If extreme values are
disproportionately allocated to the testing set, the resulting
model may struggle to generalize accurately. This uneven
distribution can lead to models that perform well on the
majority of the data but fail to predict accurately for these
extreme concentration values. Conversely, if the scarce ex-
treme values are disproportionately assigned to the training
set, the model may become overly specialized in handling
these extreme values, potentially leading to overfitting. This
means the model might perform well on the training set,
including the extreme values, but fail to generalize effectively
to new, unseen data, especially if the test set does not contain
similar extreme values. This could result in an inaccurate
assessment of the model’s performance, as the test set would
not adequately challenge the model’s ability to predict across
the full range of data variability.

Figure 4 illustrates the distributions of various oxide con-
centrations in our dataset. Across all oxides, there is a general
pattern of skewed distributions, with concentrations heavily
weighted towards lower values. This is particularly notable
in TiOy, FeOt, MgO, CaO, and NayO. SiO; and Al,O3 show
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Fig. 4. Distributions of various oxide concentrations in the dataset. The histograms show the frequency of concentration values for SiO3, TiO, Al,O3, FeOr,
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more variability, with SiO; exhibiting a bimodal distribution.
These distributions confirm the presence of extreme values
across all oxides, which are significantly overrepresented or
underrepresented, further complicating the model training
process.

This necessitates careful dataset partitioning to ensure that
the model training process accounts for these challenges, im-
proving the generalizability and robustness of the models.

In Section 5, we described how we ensured representation
of extreme compositions in both the training and testing
sets by automatically identifying the n largest and smallest
samples by concentration range for each oxide and reserving
them for the training set. We then performed a random split
on the remaining dataset, resulting in a final train/test split
of 80%/20%. In this process, we also employ a rudimentary
procedure to prevent data leakage, ensuring that each target
was only present once in the training set. The baseline did not
employ cross-validation, as our goal was to replicate the MOC
model that was presented in Clegg et al. [7]. We note that this
procedure is insufficient to support the testing and validation
strategy we have laid out above, as it does not support k-fold
cross-validation. A random k-fold split of the training data
would not account for the uneven distribution of extreme
values across the folds, and would furthermore cause data
leakage between the folds. Moreover, the procedure failed
to consider the concentration of each oxide individually,
instead aggregating concentrations across all oxides. This
represents a signiﬁcant limitation, as it attempts to generate a
uniform test set for each oxide, thereby neglecting the unique
distribution characteristics of individual oxides. Therefore, a
more sophisticated procedure is needed to ensure that the
data partitioning accounts for these challenges.

6.2.1 Dataset Partitioning. To ensure rigorous evaluation of our
models and to address the challenges of data leakage and un-
even distribution of extreme values, we have implemented a
customized k-fold data partitioning procedure. This approach
divides the dataset into k folds, which are used to define cross-
validation datasets, as well as a training set and a test set. The
procedure ensures that all data points from a given target are
only present in one of the k folds, effectively preventing the
aforementioned data leakage. Additionally, it ensures that ex-
treme values are handled by redistributing them evenly across
the training folds, preventing any single fold from being dis-
proportionately influenced by these values.

The procedure outlined in Algorithm 1 begins by setting a
random seed for reproducibility if one is provided (Line 1).
This ensures that the results are consistent across different
runs of the algorithm. Next, the dataset is processed to
remove any duplicate entries based on the group column g
and then sorted by the target column ¢ (Line 2). This step
ensures that each group is uniquely identified and ordered
appropriately. The dataset we illustrate in Table 6 would
require a group column g of “Target” to group the data by
target. The target column t refers to the column with the
target variable, which would be the oxide for which we are

Algorithm 1 Data Partitioning With Extreme Value Handling

Require: Dataset D, group column g, target column ¢, number
of splits k, percentile p, random seed seed
Ensure: Training and validation sets for cross-validation Ty,
training set Dyyqin, and test set Dyest
1: Set random seed for reproducibility if seed is not None
Remove duplicate entries based on g and sort by ¢
. Assign fold numbers sequentially from 0 to k—1 to unique
targets
. if extreme values handling is enabled then
Identify extreme values at percentiles p and 1 - p
Reassign extreme values to folds 0 to k — 2
. end if
Merge fold assignments information into the original
dataset
9: Split dataset into test set Dyegt (fold k — 1) and remaining
data Dirain
10: Create k — 1 training and validation sets
11: for each fold i from 0 to k — 2 do
12: Tirain[i] < Dirain \ fold;
13: Tyalil < fold;
14: Append (Tipain [i], Tyar[i]) to Tey
15: end for
16: Remove fold column from all datasets
17: return Tey, Dirains Dtest

@ »

® N > aw

predicting the concentration, for example, SiO;. By sorting
the dataset by the target column ¢, we ensure that the data
is ordered by the target concentration values in ascending
order.

Fold numbers are then assigned sequentially using a
modulo operation to ensure a random-like distribution of
the unique targets across the folds (Line 3). This means
that, while the assignment process follows a sequence, the
resulting distribution of targets is effectively randomized.
Fold numbers start in 0 and go up to k — 1, as implied by the
modulo operation. If a percentile p is provided, extreme value
handling is enabled, and the algorithm identifies the top
and bottom percentiles of the target values (Line 5). These
extreme values are then reassigned to the training folds (0
to k — 2), ensuring they are as evenly distributed as possible
across these folds (Line 6).

The fold assignments are then merged into the original
dataset, as described in Line 8. Essentially, this step enables
the partitioning steps that follow, by ensuring each data item
has an associated fold number. Following this, the dataset is
divided into a train and test set, as outlined in Line 9. The test
set consists of the data points assigned to fold k — 1, and the
remaining folds forms the training set. The training data is
further divided into k — 1 sets for cross-validation. For each
fold i where i € {0,1,...,k — 2}, we create a cross-validation
training set Tiain [i] by excluding the i-th fold from the set of
k — 1 folds, and use the i-th fold as the validation set T, [i].
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These pairs of training and validation sets are then appended
to the list of cross-validation sets Ty (Line 10).

Finally, the fold indicator column is removed from all
datasets before returning the final partitions (Line 16). The
fold indicator column was added to keep track of which data
points belong to which folds, which is crucial for ensuring
that data points are correctly partitioned into their respective
training and test sets during cross-validation. This cleanup
step ensures that the fold information does not interfere with
subsequent data processing or model training.

The final output of this procedure consists of:

o A set of tuples Ty, where each tuple contains a train-
ing set and a validation set.

o The overall training set Dy,i, consisting of all the data
points not in the test set.

o The test set Dyegt, distinct from the training set.

The data partitioning procedure does not modify the origi-
nal dataset; it merely partitions it. For that reason, each of the
datasets that are returned has the same structure as shown in
Table 6.

Given that the data partitioning procedure aims to distrib-
ute extreme concentration values evenly among the training
folds while minimizing their presence in the test set, it is cru-
cial to determine an optimal value of p that minimizes the
number of extreme values in the test set while still maintain-
ing its general representativeness. By general representative-
ness, we mean ensuring that the test set reflects the general
distribution of the dataset without being skewed by extreme
values. This balance is essential for accurately assessing the
model’s performance on typical data points.

Our method is inspired by the approach described by An-
dersonetal. [3]. They employed a similar strategy to assess the
performance of their PLS model, using k-fold cross-validation
and a separate test set. Their process involved dividing the
full set of laboratory data into five folds, using four for cross-
validation and combining them as the final training set, while
the fifth fold served as a test set. For consistency, we also use
k = 5 for our data partitioning. Given that the k-th fold is
used as the test set, having k = 5 results in 4 folds for cross-
validation.

Additionally, by using k = 5 folds, we have effectively
chosen an 80%/20% split between the training and testing
datasets. In our experience, this ratio maximizes the training
set’s capacity for effective model learning while ensuring
that the testing set is sufficiently representative to provide an
accurate assessment of the model’s performance on new data.
Allocating too much data to the testing set could compromise
the comprehensiveness of the training set, undermining the
model’s ability to generalize effectively due to the limited
availability of data.

6.2.2  Evaluation Metrics. To evaluate the performance of these
models, we will use the RMSE to measure accuracy and
the sample standard deviation of prediction errors to assess
robustness. We define accuracy as the ability of a model to
predict the composition of major oxides in geological samples,

while robustness refers to the stability of these predictions
across samples.
The metric used to evaluate the accuracy of the models is

the RMSE:
l n
RMSE = 4| = > (vi = ¥;)?2
n
i=1

where v; is the vector of actual oxide concentrations for the
i-th sample, ¥; is the corresponding vector of predicted oxide
concentrations, and n is the total number of samples. This mea-
sure quantifies the average magnitude of the prediction error
across all predicted values.

Robustness is evaluated using the sample standard devia-
tion of prediction errors:

n
1
— 5)2
oF = e —e
error n_1 ;_1( i )

where e; = v; — ¥; and € is the mean error. A lower standard
deviation indicates a more robust model across different sam-
ples.

These metrics are calculated for each fold and averaged
across all folds to provide comprehensive indicators of model
accuracy and variability. In addition, we also compute the
metrics for the test set to provide a measure of the model’s per-
formance on unseen data. Therefore, we have the following
metrics for each experiment:

(1) Fold-specific RMSE and Standard Deviation: For
each of the k folds, we calculate both the RMSE
and standard deviation, denoted as rmse_cv_n and
std_dev_cv_n, where n ranges from 1 to k.

(2) Average RMSE and Standard Deviation: The over-
all cross-validation RMSE (rmse_cv) and standard
deviation (std_dev_cv) are computed as the mean
of the fold-specific values. Formally, if rmse_cv_n
and std_dev_cv_n represent the RMSE and standard
deviation for the n-th fold respectively, then:

k
rmse_cv_n

bl I

rmse_cv =
n=1
and
1 k
std_dev_cv = T ,,Z_l std_dev_cv_n

where k is the total number of folds.

(3) Test Set RMSE and Standard Deviation: The RMSE
and standard deviation are also computed for the test
set, denoted as rmsep and std_dev, to provide a mea-
sure of the model’s performance on unseen data.

6.2.3 Discussion of Testing and Validation Strategy. Our pro-
posed approach to data partitioning addresses several critical
challenges and represents a deliberate trade-off to improve
the reliability of our model evaluation. The first challenge
concerned data leakage. We believe our method effectively
handles this issue without significant trade-offs. The second
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challenge we presented is the trade-off between having a rep-
resentative training set that includes extreme values, thereby
avoiding overfitting, and ensuring the test set is sufficiently
challenging to accurately assess the model’s generalization
across the full range of data variability. We will further
examine this trade-off below.

Our method for partitioning mitigates the risk of uneven
distribution of extreme values, which can disproportionately
affect model performance metrics. If extreme values are
unevenly distributed between the training and test sets, the
evaluation of the model can be heavily skewed, leading to
unreliable and misleading performance metrics. By redis-
tributing extreme values evenly across the training folds, we
ensure a more balanced and fair assessment of the model’s
capabilities during cross-validation. However, excluding
extreme values from the test set may limit the test set’s
ability to challenge the model fully. Our method for handling
extreme values means that the test set does not include
samples outside the range seen in the training set. Although
the test set may be less representative of the full range of
data, particularly concerning the rare extreme values, the
evaluation focuses on the model’s ability to generalize from
the training data to new data within the typical distribution
range. Essentially, this trade-off ensures that the model is
evaluated on data points within the range the model was
trained on, thereby providing a fairer assessment. However,
it is important to recognize the limitation of this approach:
excluding extreme values from the test set means we can only
confidently assess the model’s performance within the test
set’s range. If predictions fall outside this range, we cannot
reliably assert their accuracy, as the model has not been fully
evaluated on such data. This could potentially reduce the
model’s usefulness in scenarios where predictions on extreme
values are critical. Furthermore, since our data partitioning
method allocates the most extreme values to the training
data, the testing data tends to be closer to the mean of the
data distribution, making it easier to predict. In practice,
this results in lower rmsep and std_dev values compared
to the cross-validation metrics. This further emphasizes the
importance of evaluating the model’s performance using both
the cross-validation metrics (rmse_cv and std_dev_cv) and
the test set metrics (rmsep and std_dev).

Therefore, although our approach may render the test set
less representative of the full dataset, it is a deliberate trade-
off aimed at achieving a more accurate and reliable evaluation
of the model’s generalization performance. By evaluating with
both cross-validation and a separate test set, we ensure that the
model both generalizes well and performs well under typical
conditions. Cross-validation allows us to evaluate the model’s
performance across the entire dataset, including extreme val-
ues, while the test set provides a measure of the model’s per-
formance on unseen, typical data. This combination of cross-
validation and a separate test set provides a comprehensive
assessment of the model’s performance, ultimately helping to
ensure that the model is both robust and accurate.

In our initial and optimization experiments, we prioritize
cross-validation metrics to evaluate the models. This strategy
mitigates the risk of overfitting to the test set by avoiding
a bias towards lower RMSEP values. Conversely, for the
stacking ensemble experiment, we emphasize test set metrics
to comprehensively assess the ensemble’s performance,
while still considering cross-validation metrics. Using cross-
validation for initial model selection and tuning experiments
aligns with standard machine learning conventions[13].
In the initial experiment, cross-validation metrics serve as
thresholds for model selection. During the optimization
phase, only cross-validation metrics guide the search for opti-
mal hyperparameters. For the stacking ensemble experiment,
both cross-validation and test set metrics are evaluated, with
a primary focus on the RMSEP metric. This approach aims to
make our final model accurate, robust, and generalizable to
unseen data, providing a balanced evaluation through both
cross-validation and test set metrics.

6.3 Optimization Framework

One of the primary challenges in developing a stacking
ensemble is determining the optimal choice of base estima-
tors. Wolpert [42] highlighted that this can be considered
a ’black art’ and that the choice usually relies on intelligent
guesses. In our case, this problem is further exacerbated by
the fact that the optimal choice of base estimator may vary
depending on the target oxide. The complexity of the problem
is increased because different oxides require different models,
and the optimal preprocessing techniques will depend on
both the model and the specific oxide being predicted. Due
to the challenges highlighted in 3.2, namely high dimen-
sionality, multicollinearity, and matrix effects, it is difficult
to determine which configuration is optimal. Selecting the
appropriate preprocessing steps for each base estimator is
essential, as incorrect preprocessing can significantly de-
grade performance and undermine the model’s effectiveness.
Furthermore, choosing the right hyperparameters for each
base estimator introduces additional complexity, as these
decisions also significantly impact model performance and
must be carefully tuned for each specific oxide. Some esti-
mators might require very little tuning to achieve accurate
and robust predictions, while others might require extensive
tuning, depending on the target oxide. For instance, simpler
approaches like ENet and ridge regression may quickly reach
their optimal performance with minimal hyperparameter ad-
justments. However, due to their simplicity, they often fail to
capture the complex patterns in the data that more advanced
models can, making them less competitive despite their ease
of tuning. In contrast, more complex models like CNN or
GBR involve both a larger number of hyperparameters and
architectural considerations that need fine-tuning to perform
well. The extent of tuning required is also influenced by the
characteristics of the target oxide, such as its data distribution,
noise levels, and feature interactions. These factors can affect
how sensitive an estimator is to its hyperparameters. Finally,
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hyperparameters cannot be considered in isolation, because
depending on the preprocessing steps applied to the data, the
optimal hyperparameters may vary. Given these complexities,
we need a systematic approach to determine the optimal
configuration of hyperparameters and preprocessing steps
tailored to each estimator and oxide.

To guide this process we have developed a working as-
sumption. Specifically, we assume that selecting the top-n
best pipelines for each oxide, considering different prepro-
cessors and models for each pipeline, will result in the best
pipelines for a given oxide in our stacking ensemble. Here,
n is a heuristic based on the results and best is evaluated in
terms of the metrics outlined in Section 6.2.2. Additionally,
each permutation will utilize our proposed data partitioning
and cross-validation strategy outlined in Section 6.2. Uti-
lizing our proposed data partitioning and cross-validation
strategy, along with the aforementioned evaluation metrics,
will ensure that the top-n pipelines align with our goals of
generalization, robustness, and accuracy outlined in Section 3.
This narrows our focus to three key tasks: selecting suitable
preprocessors and models, finding the optimal hyperpa-
rameters, and devising a guided search strategy to evaluate
various permutations and identify the top-n pipelines for
each oxide. First, we curated a diverse set of models and
preprocessing techniques, as detailed in Section 6.1. Next,
we developed an optimization framework to systematically
explore and optimize these pipeline configurations, which
will be described in the following section.

6.3.1 The Framework. To systematically explore and optimize
pipeline configurations, the search process should be guided
by an objective function. Based on the evaluation process
outlined in Section 6.2, whereby we argue that solely evaluat-
ing on the RMSEP may lead to misleading and poor results,
we define the objective function we wish to optimize as a
multi-objective optimization on minimizing the rmse_cv and
std_dev_cv.

Given these goals, traditional methods like grid search
and random search could be used, but they often fall short
due to several inherent limitations. Grid search involves
exhaustively evaluating all possible combinations of hyper-
parameters within specified ranges. While thorough, this
method quickly becomes computationally prohibitive as
the number of hyperparameters increases. The expansion
of the search space, driven by the increasing number and
finer granularity of hyperparameters, renders the approach
impractical.

Random search, on the other hand, selects hyperparameter
values at random within predefined ranges. It is generally
more efficient than grid search and can cover a broader area of
the hyperparameter space. However, random search can miss
optimal regions, especially in high-dimensional spaces where
the probability of sampling near-optimal configurations by
chance is low.

These limitations make the traditional methods unsuit-
able for our problem and highlight the need for a more

sophisticated optimization method. Both grid search and
random search could be enhanced using adaptive techniques,
such as Bayesian optimization, to greatly improve on these
approaches. However, while very feasible, implementing
such enhancements and integrating it with our existing
tooling would be too time-consuming. The ambition was
therefore to find tools that would provide similar or better
hyperparameter optimization capabilities, while being easy
to integrate with our existing framework. For this reason
we chose to use Optuna as the basis for our optimization
framework|[2].

Optuna provides well-defined abstraction which allowed
us to more quickly construct a framework that helped us
efficiently explore and optimize pipeline configurations.
Optuna provides Bayesian optimization search algorithms,
but with additional configurable parameters that allowed us
to customize the search process to our specific needs.

Using Optuna as the foundation for our optimization frame-
work, we designed a comprehensive system for LIBS data
that handles the entire process, from CCS data to partitioning,
cross-validation, and hyperparameter optimization. Using
this framework, it is possible to find the best configurations
by optimizing the objective function: minimizing the rmse_cv
and std_dev_cv.

The framework we developed can be divided into two main
components. A function responsible for running and man-
aging the optimization process, as seen in Algorithm 2(Op-
timizer), and a function responsible for measuring the
objective, as seen in Algorithm 3(Objective).

The purpose of the Optimizer is to perform and facilitate
the optimization process, doing so for each oxide and model
combination. By managing the optimization process in this
way, we obtain the flexibility to evaluate each model sep-
arately with different preprocessors and hyperparameters.
This means that each model is evaluated fairly against each
oxide and that the resulting configurations are optimized
specifically for the model and oxide in question. Our assump-
tion is that this approach will best identify the top-n pipelines
for use in our stacking ensemble.

To manage the optimization process, the function receives
the number of trials to run, a list of models, and a list of oxides,
as seen in line 0, and initializes the sampler, as seen in line 1.

The sampler is responsible for managing the search space of
the hyperparameters for the optimization process. This means
that any hyperparameters being evaluated, for any preproces-
sor or model, will be managed by this sampler, which allows
us to optimize for all hyperparameters at the same time. Op-
tuna provides several options for samplers that have differ-
ent characteristics and each have their strengths and weak-
nesses. However, because we require multi-objective optimiza-
tion, this naturally limits the choice of sampler to those that
support this. For our framework, we chose to use the Tree-
structured Parzen Estimator (TPE) sampler due to its stated
optimization efficiency and its ability to handle all use cases.
Additionally, the TPE sampler allows us to control how many
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of the trials to be reserved for exploration, which is beneficial
when the search space is large[2].

Guiding the optimization process is the Objective function,
which evaluates the performance of each trial. In our case we
are seeking to minimize the rmse_cv and std_dev_cv, as men-
tioned previously.

The role of the Objective function is to provide the metric
data to an optimize function, seen in Line 4. As we step through
each oxide and model in Lines 2 to 3, we call the optimize
function with the number of trials to run and the Objective
function. The number of trials is an important parameter, as it
specifies the number of iterations the optimization framework
will execute to refine and optimize a given model. In an ideal
scenario, this number would be very high to ensure that the
optimization process has identified the best possible configu-
ration. However, depending on the number of models in con-
sideration, a high number of trials can quickly become compu-
tationally prohibitive with our approach. The optimize func-
tion uses the number of trials and the objective of minimiz-
ing the rmse_cv and std_dev_cv to manage the optimization
process and mediating the metrics returned by the Objective
function to the sampler.

This leads us to the Objective function which, as previously
mentioned, returns the evaluation metrics for the given trial.

To this function we supply the current model m, the target
oxide o, and the sampler.

In Lines 1 to 8, we instantiate the model and the preproces-
sors with the hyperparameters sampled by the sampler. The
sampling process is being guided by the objective function via
the returned metrics from the previous trial. In our setup, we
always require that a scaler is instantiated to ensure that the
data is correctly scaled. However, to measure the impact of
data transformation and dimensionality reduction, we allow
for these to be initialized as an identity function, which does
not modify the data. Whether to instantiate a specific prepro-
cessor or an identity function is determined by the sampler.

Once the preprocessors are instantiated, we construct a
pipeline of these to ensure that the data is processed in
the order they are defined, seen in Line 9. The order of
preprocessing steps is crucial due to their interdependence:
scaling standardizes the feature ranges, ensuring that sub-
sequent transformations are applied uniformly. Similarly,
dimensionality reduction techniques typically also produce
better results if the data has been scaled. However, it may
not always be advantageous or yield better results if the data
has already been transformed. As such, we allow for the
optimization framework to optionally use these if they are
deemed to be beneficial.

In Lines 10 to 12, we fetch the data, apply our data partition-
ing strategy to generate four cross-validation sets, a training
set and a test set, and apply the preprocessing to the datasets.
This partitioning is applied with respect to the current oxide.
The purpose of fetching the data for each trial is to ensure no
modifications leak through trials, corrupting the dataset over
time. This prevents any form of double preprocessing from oc-
curring, which would lead to potential issues.

As mentioned in Section 6.2, we use both cross-validation
and a test set to evaluate the model. This can be seen in Line 13
and Lines 16 to 17, where cross-validation, training, and eval-
uation are also performed with respect to the current oxide. It
is important to note that in practice, the model m is being rein-
stantiated in each iteration of the cross-validation, and again
before the model is trained, so no learned parameters are car-
ried over between them.

Once a trial is complete, the metrics are returned in Line 19
to the optimize function in the Optimizer, which then deter-
mines the next steps in the optimization process.

In summary, using this framework we are able to systemat-
ically explore and optimize preprocessing, model and hyper-
parameter configurations for each model on a per-oxide basis.
This allows us to identify the top-n pipelines for each oxide,
which we can then use in our stacking ensemble.

Algorithm 2 Optimizer

Require: Number of Trials N, List of Models M, List of Target
Oxides O
Ensure: The optimization process is run for each model and
oxide.
1: Initialize: sampler « Sampler(sampler_params)
2: for each oxide o in O do
3: for each model m in M do

4 optimize(N, lambda()
5 return objective(
6 m,

7: o,

8 sampler

9 )

10: end for

11: end for

7 EXPERIMENTS & RESULTS

This section outlines the experimental design used to iden-
tify the top-n models to be used for our stacking ensemble.
We begin with a description of the prerequisite data prepara-
tion necessary for all experiments, followed by an overview
of the hardware and software used. Then we provide a visual
and statistical analysis to confirm that our data partitioning
method works as intended, and effectively separates the ex-
treme and non-extreme values. Next, we outline the design
of our initial experiment in Section 7.4, which provides a pre-
liminary assessment of the models selected in Section 6.1. The
results of this initial experiment are then presented and dis-
cussed in Section 7.4.1. We then describe the design of our
optimization experiment in Section 7.5, which leverages our
optimization framework to identify the top-n models. The re-
sults are then presented and discussed in Section 7.5.1. Finally,
we use the identified models to construct a stacking ensemble,
which is then evaluated and compared to the individual mod-
els and our baseline in Section 7.6.
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Algorithm 3 Objective

Require: Model m, Target Oxide o, Sampler sampler
Ensure: Returns rmse., and std_deuv., for each trial
1: hp < sample_hyperparameters(sampler)
2: m < instantiate_model(m, hp)

: s_params < sample_scaler_params(sampler)
s « instantiate_scaler(s_params)
t_params < sample_transformer_params(sampler)
: t « instantiate_transformer(t_params)
or Identity
. dim_params < sample_dim_reduction_params(sampler)
8: dim < instantiate_dim_reduction(dim_params)
or Identity

N

9: pipeline « [s,t,dim]

10: Dataset: D « get_data()
11: Teo, Dtrain, Dtest < apply data partitioning to D

12: Tew, Dtrain, Dtest < apply pipeline to Tev, Dtrain, Dtest
13: CVimetrics < cross_validate(m, T¢y, 0)
14: rmsecy <— mean(CVierrics-.rmse_values)

15: std_devcy «— std(CVipetrics-.rmse_values)

16: m’ « train(m, D¢rqin, 0)
17: rmsep, std_devsesy < evaluate(m’, Diest, 0)

18: store_metrics(t, m, pipeline, rmsecy,
std_devcy, rmsep, std_devest)

19: return rmsec,, std_deuvc,

7.1 Data Preparation

The first step in our methodology is to prepare the datasets for
model training and evaluation. As mentioned in Section 4.1,
the data used in this study was obtained from NASA’s PDS
and consists of CCS data and major oxide compositions for
various samples.

The initial five shots from each sample are excluded because
they are usually contaminated by dust covering the sample,
which is cleared away by the shock waves produced by the
laser [7]. The remaining 45 shots from each location are then
averaged, yielding a single spectrum s per location [ in the
Averaged Intensity Tensor (Tensor 3), resulting in a total of
five spectra for each sample.

At this stage, the data still contains noise at the edges of the
spectrometers. These edges correspond to the boundaries of
the three spectrometers, which collectively cover the UV, VIO,
and VNIR light spectra. The noisy edge ranges are as follows:
240.811-246.635 nm, 338.457-340.797 nm, 382.138-387.859 nm,
473.184-492.427 nm, and 849-905.574 nm. In addition to being

noisy regions, these regions do not contain any useful informa-
tion related to each of the major oxides. Consequently, these
regions are masked by zeroing out the values, rather than re-
moving them, as they represent meaningful variation in the
data [7].

Additionally, as a result of the aforementioned preprocess-
ing applied to the raw LIBS data, negative values are present in
the CCS data. These negative values are not physically mean-
ingful, since you cannot have negative light intensity [15]. Sim-
ilar to the noisy edges, these negative values are also masked
by zeroing out the values.

We transpose the data so that each row represents a location
and each column represents a wavelength feature. Each loca-
tion is now represented as a vector of wavelengths, with the
corresponding average intensity values for each wavelength.
These vectors are then concatenated to form a tensor, giving
us the full Averaged Intensity Tensor.

For each sample, we have a corresponding set of major
oxide compositions in weight percentage (wt%). These
compositions are used as the target labels for the machine
learning models. An excerpt of this data is shown in Table 5.
While the Target, Spectrum Name, and Sample Names are part
of the dataset, our analysis focuses primarily on the Sample
Names. The concentrations of the eight oxides SiOp, TiOp,
Al>O3, FeO1, MnO, MgO, CaO, NaxO, and K>O represent the
expected values for these oxides in the sample, serving as our
ground truth. The MOC total is not utilized in this study.

The major oxide weight percentages are appended to the
matrix of spectral data, forming the final dataset. This dataset
is shown in Table 6. The Target column corresponds to the sam-
ple name, while the ID column contains the unique identifier
for each location.

7.2 Experimental Setup

Experiments were conducted on a machine equipped with an
Intel Xeon Gold 6242 CPU, featuring 16 cores and 32 threads.
The CPU has a base clock speed of 2.80 GHz and a maximum
turbo frequency of 3.90 GHz. The system has 64 GB of RAM
and runs on Ubuntu 22.04.2 LTS. Models were implemented
using Python 3.10.11. The primary libraries used were Scikit-
learn 1.4.2, XGBoost 2.0.3, Torch 2.2.2, NumPy 1.26.4, Pandas
2.2.1, Keras 3.2.1 and Optuna 3.6.1. Additionally, all experi-
ments were run using the hyperparameter optimization tool
described in Section 6.3.

7.3 Visual and Statistical Analysis of SiO, Distribution in
Partitioned Data

This section provides a detailed visualization and statistical
analysis of the SiO; concentration distribution across data par-
titions, following the customized k-fold data partitioning pro-
cedure described in Section 6.2. This analysis is conducted to
validate the consistency of our data partitioning method and
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Table 5. Excerpt from the composition dataset (from Houmann et al. [15]).

Target Spectrum Name Sample Name SiO; TiOp AlLOs FeOrt MnO MgO CaO NapO K;O MOC total

AGV2 AGV2 AGV2 593 1.05 1691 6.02 0.09 179 52 4.19 2.88 97.44

BCR-2 BCR2 BCR2 541 226 135 12.42 0.2 3.59 7.12 3.16 1.79 98.14

TB — — 60.23 093 20.64 11.6387 0.052 193 0.000031 1.32 3.87 100.610731

TB2 — — 604 093 205 11.6536 0.047 186 0.2 1.29 3.86 100.7406
Table 6. Excerpt from the final dataset (values have been rounded to two decimal places for brevity).

240.81 425.82 425.87 90557 SiO, TiO, ALO3 FeOr MgO CaO NaO KO Target ID

0 1.53e+10 1.62e+10 0 56.13  0.69 17.69 5.86 3.85 707 332 144 jsc1421  jsc1421_2013_09_12_211002_ccs

0 1.28e+10  1.30e+10 0 56.13  0.69 17.69 5.86 3.85 707 332 144  jsc1421  jsc1421_2013_09_12_211143_ccs

0 1.87e+10  1.83e+10 0 56.13  0.69 17.69 5.86 3.85 707 332 144  jsc1421  jsc1421_2013_09_12_210628_ccs

0 1.77e+10  1.78e+10 0 56.13  0.69 17.69 5.86 3.85 707 332 144  jsc1421  jsc1421_2013_09_12_210415_ccs

0 1.75e+10  1.79e+10 0 56.13  0.69 17.69 5.86 3.85 7.07 332 144 jsc1421  jsc1421_2013_09_12_210811_ccs

0 5.52e+10 3.74e+10 0 57.60 0.78 26.60 273 0.70 0.01 0.38 710  pg7 pg7_-2013_11_07_161903_ccs

0 5.09e+10 3.41le+10 0 57.60 0.78 26.60 273 0.70 0.01 0.38 710  pg7 pg7_2013_11_07_162038_ccs

0 5.99+10 3.97e+10 0 57.60 0.78 26.60 2.73 0.70 0.01 038 710  pg7 pg7_2013_11_07_161422_ccs

0 5.22e+10 3.47e+10 0 57.60 0.78 26.60 2.73 0.70 0.01 038 710 pg7 pg7_2013_11_07_161735_ccs

0 529e+10  3.62e+10 0 57.60 0.78 26.60

2.73 0.70 0.01  0.38 710 pg7 pg7_2013_11_07_161552_ccs

to provide a visual understanding of the resulting data dis-
tribution. The analysis focuses on SiO; as a representative ex-
ample. Similar analyses have been conducted for other oxides,
and the resulting plots are shown in Appendix A.2.

As discussed in Section 6.2, it is crucial to determine an
optimal value of p for the data partitioning algorithm. This
value should minimize the number of extreme values in the
test set while ensuring the test set remains representative.
Our approach is to select the lowest p that excludes extreme
values from the test set while maximizing its general repre-
sentativeness. This approach helps avoid overestimating the
model’s performance due to extreme values while keeping
the test set reflective of the majority of the data distribution.
We developed a web-based platform to evaluate the perfor-
mance of the data partitioning algorithm for different values
of p, as shown in Figure A.1 in Appendix A.1. Using the
platform, we conducted analyses for various values of p and
determined that the optimal value is p = 5%. Furthermore,
the 5% threshold has proven effective across all oxides within
our dataset, and consequently, it has been uniformly applied
throughout this study. This methodology is adaptable and
can be employed to determine an optimal value for p tailored
to various targets, depending on the specific dataset in use. Fi-
nally, we use a k = 5 for our data partitioning algorithm. This
results in five folds, with four folds used for cross-validation
training and one fold designated as the test set. Consequently,
the full training set comprises the first four folds.

Figures 5 and 6 illustrate the histograms and Kernel Density
Estimation (KDE) curves for SiO2 concentrations in each train-
ing fold, the test set, and their combined distributions. The

consistent histograms and KDE curves across different train-
ing folds indicate that the data distribution within each fold
closely matches the overall distribution, confirming their con-
sistency and representativeness.

Figure 7 contrasts the SiO, concentration distribution before
and after data partitioning. The left plot shows the original dis-
tribution, while the right plot displays the fold-assigned distri-
bution, color-coded by fold. This visualization highlights that
the partitioning strategy maintains the overall data distribu-
tion while ensuring balanced representation across folds.

To further validate our visual analysis, we can examine
quantitative measures such as the means and standard devi-
ations of SiOy concentrations across the folds and the overall
dataset.

Figure 8 shows that the means and standard deviations of
SiOy concentrations for each fold, as well as the combined
training set, are consistent with those of the full dataset.
This quantitative consistency supports the visual evidence
that each training fold is representative of the entire dataset.
Furthermore, we observe that the standard deviation in the
training sets is higher than in the test set, which is expected
given the reassignment of extreme values to the training sets.

In conclusion, the visual and statistical analyses presented
in this section confirm that our customized k-fold data par-
titioning procedure effectively maintains balanced and repre-
sentative distributions across all folds. This consistency is cru-
cial for the robustness and generalizability of our models, as
discussed in Section 6.2. The alignment between the visual ev-
idence and the quantitative measures reinforces the reliability
of our approach, ensuring that our models are well-equipped
to perform accurately on unseen data.
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Fig. 5. Histogram and KDE of SiO; distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents SiO, concentration.

The notation in the legend indicates the amount of instances in the training/validation sets.

7.4 Initial Experiment

As described in Section 6, we conducted an initial experiment
to evaluate the performance of various machine learning mod-
els on the prediction of major oxide compositions from our
LIBS dataset. These experiments aimed to provide a prelim-
inary assessment of the models” performance, allowing us to
identify the most promising models for further evaluation and
inclusion in our stacking ensemble. All models were trained
on the same preprocessed data using the Norm 3 preprocess-
ing method described in Section 4.2.5. This ensured that the
models’ performance could be evaluated under consistent and
comparable conditions.

Furthermore, all experiments used our data partitioning
and were evaluated using our testing and validation strategy,
as described in Section 6.2. To ensure as fair of a comparison
between models as possible, all models were trained using
as many default hyperparameters as possible, and those
hyperparameters that did not have default options were
selected based on values found in the literature. However,
due to the nature of the neural network models’ architecture,

some extra time was spent on tuning the models to ensure a
fair comparison. This included using batch normalization for
the CNN model, as early assessments showed that this was
necessary to produce reasonable results. Finally, we evaluated
each model once per oxide given the selected configuration of
hyperparameters. As stated, the goal of this experiment was
merely to get an initial indication of the performance of the
models.

The hyperparameters used for the models in the initial ex-
periment can be found in the Appendix A.3.

7.4.1  Results for Initial Experiment. Table 8 presents the results
of the initial experiment, including the RMSEP, Average
Root Mean Squared Error of Cross-Validation Folds (RM-
SECV), standard deviation, and standard deviation of
cross-validation prediction errors for each model across all
oxides. The means of each metric are also provided to give an
overall indication of the models’ performance. Furthermore,
we present an overview of these mean values in Figure 9
to facilitate a visual comparison of the models’ general
performance.
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Histogram and KDE of SiO2 Distribution in Each Fold
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Fig. 6. Combined Histogram and KDE of SiO; distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents SiO;
concentration. The notation in the legend indicates the amount of instances in the training/validation sets.

Original Data: Distribution of Si02 Data with Folds Assigned: Histogram of SiO2 by Fold
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Fig. 7. Distribution of SiO; concentrations before and after fold assignment. The left plot shows the original distribution of SiO,, while the right plot shows
the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of SiO2 in data partitions
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Fig. 8. Distribution of SiO, concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation

statistics for each partition are indicated figure.

The results indicate that the gradient boosting models, XG-
Boost, GBR, and NGBoost, consistently perform well across
all oxides, with XGBoost generally outperforming the other
two gradient boosting models. Interestingly, GBR has the
lowest RMSEP, while XGBoost achieves the lowest RMSECYV,
suggesting that the regularization in XGBoost may improve
the model’s generalizability. These models exhibit both low
mean RMSEP and RMSECYV values, indicating high accuracy,
as well as low standard deviation values, underscoring their
robustness. SVR is also among the top-performing models,
with mean RMSEP and RMSECV values close to those of
XGBoost and low standard deviation values.

While usually outperformed by gradient boosting models
and SVR, the other ensemble models, RF and ETR, also
exhibit good performance. The PLS, ridge, LASSO, and
ENet models typically seem to perform worse than the other
models, with higher mean RMSEP and RMSECV values
and higher standard deviation values. We observe that ENet

performs between ridge and LASSO in terms of both error
and standard deviation, which aligns with expectations since
ENet combines the regularization techniques of both models.

The CNN and ANN models perform the worst across all
oxides, exhibiting the highest mean RMSEP and RMSECYV val-
ues, as well as the highest standard deviation values. This poor
performance is further highlighted in Table 7, which shows
the relative performance of each model compared to the best-
performing model, XGBoost. The table also includes the dif-
ference in performance relative to the next best model, with
XGBoost serving as the baseline for comparison, assigned a
relative performance of 100%. From this table, it is evident
that the CNN and ANN models experience notable drops in
performance compared to the top-performing models. While
deep learning models such as these have the theoretical poten-
tial to perform well with LIBS data, given their ability to learn
complex patterns and relationships, the relatively small size
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of our dataset may limit their efficacy. Furthermore, achiev-
ing optimal performance with these models necessitates ex-
tensive tuning of both their architectures and hyperparame-
ters, which involves exploring a vast space of potential config-
urations and design choices. Although methods for system-
atic hyperparameter optimization, as detailed in Section 6.3,
could be employed, the associated computational cost would
be prohibitively high. Additionally, there are numerous archi-
tectural design decisions and advanced techniques that could
potentially enhance model performance, but their inclusion
would expand the scope of this study beyond feasible limits.
For these reasons, we decided to exclude the CNN and ANN
models from further experimentation.

Tables 9 and 10 list the best-performing model for each ox-
ide and the frequency with which each model achieves top
performance according to various metrics, respectively. These
tables are intended to provide an overview of model perfor-
mance rather than to determine an overall ‘winner by major-
ity’. Their purpose is to illustrate the general trends and be-
havior of different models across various metrics and oxides.
Although XGBoost and SVR appear the most frequently in Ta-
ble 10, this does not imply that they are the best models for
every oxide. For example, if one were to only consider the
mean of the performance metrics, PLS would be considered
among the worst performing models, as shown in Figure 9.
However, inspecting Table 9 reveals that PLS exhibits the low-
est RMSECV and standard deviation of prediction errors for
both MgO and NajO. This indicates that PLS is the most accu-
rate and robust model for these oxides, underscoring the im-
portance of evaluating model performance on a per-oxide ba-
sis, as discussed in Section 6. Moreover, for some oxides, multi-
ple models perform similarly well, such as XGBoost, GBR, and
ridge for CaO. This observation suggests the potential benefit
of leveraging the strengths of multiple models, provided they
do not make similar types of errors, which warrants further
investigation.

To summarize, the initial results indicate that gradient
boosting models, particularly XGBoost, demonstrated the
most consistent and accurate performance across all oxides.
SVR also performed well, with similar accuracy and ro-
bustness to the gradient boosting models. In contrast, deep
learning models such as CNN and ANN underperformed,
likely due to the small dataset size and insufficient tuning
of their architectures and hyperparameters. Inspecting the
model performances per oxide revealed that the best model
varied depending on the oxide, and several models performed
well for each oxide. This emphasizes the need for further
evaluation of model performances on a per-oxide basis to
identify suitable configurations for our stacking ensemble
approach, which aims to leverage the strengths of multiple
models.

7.5 Optimization Experiment

Using the remaining ten models, we conducted an extended
experiment to further refine their performance for each oxide.

Table 7. Relative performance of each model compared to the best perform-
ing model, measured by normalized RMSECV and multiplied by 100 for
percentage. A higher percentage indicates worse performance. The ’Diff. vs
Prev. column shows the difference in performance compared to the next
best model, measured in percentage points.

Model Relative Performance (%) Diff. vs Prev.
XGB 100.00 -
SVR 100.85 0.85
GBR 103.07 2.22
NGB 103.94 0.87
RandomForest 104.45 0.51
ExtraTrees 104.84 0.39
Ridge 105.04 0.20
PLS 111.66 6.61
ElasticNet 114.12 2.46
LASSO 114.30 0.19
ANN 127.82 13.52
CNN 143.18 15.36

The goal was to identify which preprocessing techniques and
hyperparameters would yield the best performance for each
model by doing a thorough search for each configuration.
To achieve this, we evaluated multiple permutations of each
model with various preprocessors and hyperparameter con-
figurations. Each configuration included a mandatory scaler,
while data transformation and dimensionality reduction
techniques were optional. The optimization process was
conducted using our optimization framework, outlined in
Section 6.3

To ensure a fair assessment of each configuration, we
needed to balance conducting enough iterations for the opti-
mization to converge with the practical limitations imposed
by our time constraints. Therefore, we decided to perform
200 iterations per model for each oxide, resulting in a total
of 16,000 iterations across ten models and eight oxides. We
deemed this to be a reasonable number of iterations to obtain
a reliable indication of the performance of each configuration.
As mentioned in Section 6.3, we used the TPE algorithm
for the optimization process. For this sampler, we set the
number of startup trials to 25%. The number of startup trials
determines the number of random samples drawn before
the TPE sampler engages. By choosing 25%, we reserve the
first quarter of the iterations for exploration. We believed
this approach would allow sufficient time for the sampler
to explore the search space while still providing enough
iterations for refinement.

For the experiment, we defined a range or set of discrete val-
ues for each hyperparameter of the models and preprocessors.
To determine these ranges, we used a combination of values
reported in the literature, our own analysis, and the default
values for each hyperparameter as a starting point. Our
methodology involved expanding the hyperparameters with
value ranges to include reasonable lower and upper extremes.
For hyperparameters with a discrete set of possible values, we
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Table 8. Initial results for the different models and metrics.
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Model Ridge LASSO ENet
Metric | RMSEP RMSECV  Std. dev. Std.dev.CV.  RMSEP RMSECV Std. dev. Std.dev.CV RMSEP RMSECV Std.dev. Std. dev. CV
SiO2 4.104 5.004 4.108 5.005 4.412 5.431 4.417 5.437 4.412 5.431 4.417 5.437
TiO; 0.424 0.470 0.413 0.469 0.398 0.556 0.389 0.555 0.398 0.556 0.389 0.555
Al,03 2.322 2913 2.324 2.888 2.349 3.063 2.352 3.044 2.349 3.063 2.352 3.044
FeOT 2.068 3.173 2.070 3.122 2.236 3.490 2.238 3.440 2.236 3.490 2.238 3.440
MgO 1.150 1.509 1.152 1.492 1.267 1.682 1.249 1.661 1.267 1.682 1.249 1.661
CaO 1.844 1.485 1.833 1.478 1.963 1.554 1.962 1.549 1.963 1.554 1.962 1.549
Na;O 0.632 1.089 0.633 1.084 0.625 1.114 0.616 1.111 0.588 1.085 0.587 1.082
K0 0.651 0.668 0.645 0.668 0.638 0.859 0.629 0.856 0.638 0.859 0.629 0.856
Mean 1.649 2.039 1.647 2.026 1.736 2.219 1.732 2.207 1.731 2.215 1.728 2.203
Model PLS SVR RF
Metric | RMSEP RMSECV  Std. dev. Std.dev. CV  RMSEP RMSECV Std.dev. Std.dev.CV RMSEP RMSECV Std.dev. Std.dev.CV
SiO; 4.141 5.701 4.145 5.693 3.552 4.908 3.555 4.908 3.715 5.304 3.699 5.292
TiOy 0.452 0.531 0.441 0.530 0.461 0.463 0.455 0.462 0.331 0.427 0.321 0.425
AlyO3 2.073 3.322 2.061 3.302 1.931 2.700 1.934 2.693 2.076 2.443 2.079 2.433
FeOT 3.222 3.117 3.221 3.114 1.823 2.847 1.814 2.809 2.091 3.091 2.073 3.053
MgO 1.106 1.296 1.103 1.296 0.789 1.426 0.785 1.419 0.911 1.742 0.904 1.731
Ca0O 1.937 1.813 1.923 1.792 1.626 1.532 1.594 1.508 1.765 1.503 1.754 1.499
NayO0 0.545 0.908 0.536 0.906 0.742 1.096 0.725 1.086 0.420 1.028 0.421 1.023
K20 0.774 0.650 0.772 0.646 0.567 0.690 0.555 0.689 0.524 0.681 0.476 0.676
Mean 1.781 2.167 1.775 2.160 1.436 1.958 1.427 1.947 1.479 2.027 1.466 2.017
Model NGBoost GBR XGBoost
Metric | RMSEP RMSECV  Std. dev. Std.dev.CV  RMSEP RMSECV Std.dev. Std.dev.CV RMSEP RMSECV Std.dev. Std. dev.CV
SiO; 4.112 5.071 4.081 5.010 3.576 4.995 3.479 4.922 3.953 4.898 3.926 4.876
TiO2 0.340 0.433 0.333 0.430 0.474 0.449 0.473 0.446 0.334 0.437 0.328 0.436
Al,03 1.931 2.291 1.933 2.282 1.894 2.518 1.891 2.511 1912 2.198 1.913 2.193
FeOT 1.588 3.561 1.590 3.530 1.594 3.069 1.596 3.068 1.848 3.020 1.838 3.002
MgO 0.849 1.578 0.845 1.574 0.964 1.766 0.960 1.763 0.905 1.781 0.901 1.771
CaO 1.740 1.610 1.723 1.602 1.768 1.468 1.769 1.468 1.765 1.467 1.749 1.457
NayO 0.416 0.921 0.415 0.916 0.481 1.130 0.481 1.123 0.387 1.071 0.387 1.062
K,0 0.582 0.675 0.545 0.673 0.727 0.609 0.719 0.610 0.547 0.658 0.511 0.657
Mean 1.445 2.017 1.433 2.002 1.435 2.001 1.421 1.989 1.456 1.941 1.444 1.932
Model ETR ANN CNN
Metric | RMSEP RMSECV  Std. dev. Std. dev.CV RMSEP RMSECV Std. dev. Std.dev.CV RMSEP RMSECV Std.dev. Std. dev. CV
SiOy 3.995 5.230 3.970 5.225 4.664 7.025 4.670 6.981 4.662 6.061 4.626 6.046
TiO; 0.330 0.439 0.321 0.438 0.436 0.543 0.431 0.540 0.571 0.634 0.565 0.628
Al,03 1.845 2.368 1.847 2.359 2.624 3.049 2.628 3.026 2.482 2.871 2.457 2.854
FeOT 2.144 3.299 2.126 3.257 2.534 3.836 2.497 3.748 2.588 4.584 2.521 4.488
MgO 0.906 1.755 0.895 1.738 1.315 1.818 1.300 1.768 1.292 2.892 1.280 2.857
CaO 1.837 1515 1.831 1.510 1.799 1.633 1.772 1.634 2.009 2.142 2.008 2.099
Na;0 0.411 1.031 0.409 1.028 0.539 1.095 0.532 1.091 0.656 1.364 0.657 1.357
K0 0.591 0.642 0.540 0.636 0.659 0.850 0.640 0.845 0.783 1.684 0.742 1.657
Mean 1.507 2.035 1.492 2.024 1.821 2.481 1.809 2.454 1.880 2.779 1.857 2.748
Table 9. Lowest metric and corresponding model for each oxide. Table 10. Occurrences of the best
model for each oxide.

Oxide | RMSEP RMSECV Std. dev. Std. dev. CV

Si0, | 3.552 (SVR) 4.898 (XGBoost) 3.479 (GBR) 4.876 (XGBoost) Model Occurrences

TiO2 0.330 (ETR) 0.427 (RF) 0.321 (ETR) 0.425 (RF) XGBoost 8

Al;03 | 1.845 (ETR) 2.198 (XGBoost) 1.847 (ETR) 2.193 (XGBoost) SVR 7

FeOT | 1.588 (NGBoost) 2.847 (SVR) 1.590 (NGBoost) 2.809 (SVR) ETR 4

MgO | 0.789 (SVR) 1.296 (PLS) 0.785 (SVR) 1.296 (PLS) RF 4

CaO 1.626 (SVR) 1.467 (XGBoost) 1.594 (SVR) 1.457 (XGBoost) PLS 4

Nap;O | 0.387 (XGBoost) 0.908 (PLS) 0.387 (XGBoost) 0.906 (PLS) GBR 3

K20 0.524 (RF) 0.609 (GBR) 0.476 (RF) 0.610 (GBR) NGBoost 2
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Fig. 9. Mean RMSEP, RMSECV, standard deviation of prediction errors, and standard deviation of cross-validation prediction errors for each model across

all oxides.

included all options. As an example, for the PLS model, we
used the elbow method to approximate the optimal number
of components. Based on this, we defined the lower extreme
as 1 and the upper extreme as 30, as we believed that the
optimal number of components would be somewhere within
this range. A similar approach was used for the preprocessor
Kernel-PCA, where we defined the number of components to
be between 1 and 100.

A different example is GBR, for which we based the hyper-
parameters on their default values. The default value for the
number of estimators is 100, so we defined this as the lower
bound and set 1000 as the upper bound. Given the complexity
of the patterns in LIBS data, we believed that the ideal number
of weak learners would likely be above 100. Therefore, we con-
sidered 100 to be a reasonable lower bound. Determining the
upper bound was more challenging, but we considered 1000
to be a reasonable upper bound, as it would allow the model
to sufficiently capture the patterns in the data. Given that we
allow for a relatively large number of estimators, we wanted to
balance this with a relatively low bound for the learning rate.

We did this to ensure that the search space included a learning
rate capable of scaling with the number of estimators, thereby
reducing the likelihood of overfitting. The default value for the
learning rate is 0.1, so we defined the lower bound as 1073 and
the upper bound as 1. The max depth of each weak learner was
set between 3 and 10, allowing for varying levels of complex-
ity. The subsample parameter was set between 0.5 and 1.0, to
accommodate random sampling of the data when fitting each
weak learner. Finally, the max features parameter was set to
either sqrt or log2. Since this parameter has a discrete set of
possible values, we included all options.

Using this approach of considering reasonable lower and
upper bounds for each hyperparameter or using all options
for discrete hyperparameters, we defined the ranges for each
model and preprocessor.

The selected hyperparameter ranges for each model and pre-
processor can be found in Table 12 and Table 11, respectively.

7.5.1 Results for Optimization Experiment. In this section, we
present and analyze the results of running the optimization
experiment that we described in Section 7.5. As mentioned,
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Table 11. Optuna preprocessing configuration ranges.
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Model Parameter Range
PCA n_components 1-50
whiten {True, False}
n_components 1-100
KernelPCA kernel {linear, poly, rbf, sigmoid, cosine}
gamma 1073 - 10! (log scale)
degree 1-5
RobustScaler quantile_range {25-75, 10-90, 5-95, 35-65, 30-70, 40-60}
with_centering {True, False}
StandardScaler with_mean {True, False}
with_std {True, False}
MinMaxScaler feature_range {0,1}, {-1,1}
PowerTransformer method yeo-johnson
standardize {True, False}
n_quantiles 100 - 1000
QuantileTransformer output_distribution {uniform, normal}
subsample 10000 - 100000
MaxAbsScaler - -
Norm3Scaler - -

our primary objective was to identify the optimal configu-
rations for predicting the concentration of various oxides in
our dataset. We systematically evaluated a range of machine
learning models, preprocessing techniques, and hyperparam-
eter settings to determine the most effective combinations for
each oxide.

The results of the experiment were 16.000 trials worth of data
on the configurations used, hyperparameters, as well as met-
rics.

Our data cleaning for this dataset primarily included filter-
ing out failed runs, which was caused by configurations that
did not work well together, as well as filtering out extreme er-
ror values. We filter out any runs that had an RMSECV above
50. Approaches like SVR could occasionally yield this kind of
outlier result in specific configurations. We chose a threshold
of 50 to include as many trials that were not clearly outliers.

Our experiment proceeded mostly without encountering
any issues. Given the scale of the experiment, some issues
were expected. A server issue required re-running some
oxides and models. We successfully recovered and re-ran
most of these. However, NGBoost for MgO was only partially
finished. Given that each of the ten models would undergo
200 trials for each oxide, this resulted in 2000 runs per oxide.
The exception is MgO, for which NGBoost ran 143 trials,

making the total trials for MgO 1943. After the filtering
process, we are left with a total of 15245 trials to analyze.

Since we stored the configurations as well as each hyper-
parameter value for the trials, we had 100 variables to con-
sider during our analysis. Among these, the primary variables
of interest are the metrics and overall configuration variables,
namely Model Type, Scaler Type, PCA Type, and Transformer
Type.

We used this data to identify the best configurations for
each oxide, as measured by RMSECV. We began our analysis
broadly by examining the usage of preprocessors across
trials. Subsequently, we narrowed our focus and reviewed
the top 100 trials for each oxide to identify the optimal model,
scaler, and transformer for each oxide. Finally, we examined
the single best-performing configurations across oxides,
showing each of the 10 models with their corresponding best
configuration for each oxide.

As described in Section 6.3, our optimization system
searches for the best configurations through multi-objective
optimization. The optimization process involves adjusting
the configuration and hyperparameters of the machine
learning model and preprocessing pipeline to minimize the
objective. As the sampler conducts initial exploration and
subsequently seeks to identify the optimal configuration
through exploitation, we expect that the values of variables
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Table 12. Optuna model configuration ranges.

Model Parameter Range
n_estimators 100 - 1000
GER learning_rate 1073 - 10° (log scale)
max_depth 3-10
subsample 0.5-1.0
max_features {sqrt, log2}
C 1073 - 10° (log scale)
epsilon 1073 - 10! (log scale)
SVR kernel {linear, poly, rbf, sigmoid}
degree 1-5
gamma {scale, auto}
coef®@ 0-10
n_estimators 100 - 1000
learning_rate 1073 - 10° (log scale)
XGBoost max_depth 2-15
subsample 0.3-1.0
colsample_bytree 0.5-1.0
gamma 1073 - 10! (log scale)
reg_alpha 1073 - 10® (log scale)
reg_lambda 1073 - 10® (log scale)
n_estimators 100 - 1000
ETR max_depth 2-15
min_samples_split 2-20
min_samples_leaf 1-25
max_features {sqrt, log2}
PLS n_components 1-30
max_depth 2-10
natural_gradient {True, False}
NGBoost n_estimators 50 - 1000
learning_rate 0.01 - 0.5 (log scale)
minibatch_frac 05-1.0
col_sample 0.5-1.0
tol 1075 - 1073 (log scale)
validation_fraction 0.1-0.5
early_stopping_rounds 10 -100
Lasso alpha 1073 - 10® (log scale)
Ridge alpha 1073 - 10® (log scale)
ENet alpha 1073 - 10® (log scale)
11_ratio 0-1
n_estimators 100 - 300
RE max_depth 2-15
min_samples_split 2-10
min_samples_leaf 1-10

max_features

{sqrt, log2}
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frequently appearing in the results are most likely to be
optimal. Table 13, 14, and 15 display these values for the
various preprocessors. The optimization results indicate that
configurations with the highest total values across oxides
are often the most frequently exploited, suggesting they are
most likely to optimize performance. Norm3Scaler was used
in 5090 trials, and therefore appears to be the most effective
scaler. This outcome was expected, as the method was specif-
ically designed for this type of LIBS dataset, as discussed
in Section 4.2.5. For dimensionality reduction, we see that
None, indicating no PCA, was used in 9419 trials, constituting
approximately 59% of all trials. This suggests that either
no dimensionality reduction is optimal, or a more suitable
method should be identified. Neither PCA nor Kernel-PCA
appear to be effective for this dataset. QuantileTransformer
was used in 5710 trials, indicating that it may be the most
optimal transformer. We observe that PowerTransformer was
employed in 5277 trials, while no transformer was used in
4956 trials. Unlike other preprocessing method types, there
does not appear to be a clear winner for the transformers.

We chose to examine the top 100 trials for each configuration
to provide a clearer understanding of the performance vari-
ance among the best configurations. Given the wide range of
configurations and their varying sensitivity to tuning, data dis-
tributions, and other factors, examining all trials would result
in misleading descriptive statistics. By focusing on the top 100
trials, we can more accurately identify which configurations
perform well. While a quantitative analysis of the top 10% of
trials based on metrics like RMSECV, RMSEP, and other fac-
tors was feasible, selecting the top 100 trials for each oxide
made it easier to see how many trials were present for each
oxide. This approach helps us avoid the ‘best of the worst” sce-
nario and ensures that we are analyzing a representative set
of good configurations. We present the results in Figure 10,
11,12, and 13. These figures and their corresponding subplots
illustrate the performance of various configuration elements
(models, scalers, transformers, PCA techniques) for each ox-
ide, based on their RMSECV. Any elements that do not appear
in a subplot were not used in the top 100 trials for the given ox-
ide. It is important to note that the variance in performance is
influenced by multiple factors, not solely by the variable de-
picted in each plot. Factors such as the interaction between
different preprocessing techniques, specific hyperparameter
settings, and the inherent variability in the data all contribute
to the observed performance. Therefore, while the plots offer
valuable insights into the effectiveness of individual config-
uration elements, the overall performance is a result of com-
plex interactions within the entire machine learning pipeline.
Therefore, we prioritize the analysis of the top-performing tri-
als and examine a larger sample of these to draw generalizable
conclusions about the optimal configurations for each oxide.

From Figure 10, it is evident that SVR, gradient boosting
methods, and PLS demonstrate the best performance. Fig-
ure 13 confirms our earlier hypothesis that not using any PCA
or Kernel-PCA yields the lowest RMSECV values. However,
we do observe that either PCA or Kernel-PCA appear in four

of the plots, with Kernel-PCA being the most frequently used
among them. This indicates that they are indeed used in some
top-performing configurations. However, based on the results
in Table 14, we did not expect them to be as prevalent as they
are, suggesting that while they are not the most frequently
used, they can still be highly effective in specific scenarios.
Interestingly, Figure 11 shows that, although Norm3Scaler is
the most frequently used and best-performing scaler, this is
not always the case. Min-Max normalization appears to yield
better results for SiO> and CaO, while robust scaling seems
more effective for MgO. For Al,O3, Norm 3 scaling exhibits
the lowest RMSECV values but a higher mean RMSECV
value compared to the other scalers. Finally, Figure 12 reveals
another nuanced finding. Power transformations appear to
most frequently yield the best results across oxides, while
quantile transformation or no transformation show the lowest
RMSECYV values for the remaining oxides.

These results further reinforce our hypothesis that a tailored
configuration is necessary for each oxide, and there is no single
configuration that performs well across all oxides.

We conclude our analysis by presenting the best configu-
rations for each oxide in Section A.4. The section shows the
single top-performing configurations for each model for each
oxide, presented in Tables A.5 through A.12. Similar to the
previous plots, we use the RMSECV values to determine the
best configurations. Notably, these tables illustrate how cer-
tain configurations may exhibit low RMSECV values but rel-
atively high RMSEP values. This observation could suggest
that they generalize well to the dataset containing extreme
values but struggle with values closer to the mean. For exam-
ple, the top-performing configuration for SiO> consists of PLS
with Kernel-PCA and MinMaxScaler. This configuration has
the lowest RMSECYV value of 4.55, but a relatively high RM-
SEP value of 4.08. The next-best performing configuration for
SiO; is SVR with MinMaxScaler. This configuration has a RM-
SECV value of 4.59, but a RMSEP value of 3.53. Although the
difference in RMSECV is negligible, the RMSEP value for the
SVR configuration is much lower than that of the PLS config-
uration. This indicates that the SVR configuration is likely a
better overall predictor for SiO; than the PLS configuration.

The analysis of the best configurations for each oxide re-
veals that certain models and preprocessing techniques consis-
tently outperform others. SVR and PLS models, in particular,
frequently appear among the top configurations. The use of
transformers such as the Power Transformer and scalers like
Norm 3 and Min-Max Scaler are also common among the best
configurations.

Finally, we use a combination of these top-performing con-
figurations by selecting the top-n performing configurations
per oxide for our stacking ensemble. This approach is further
elaborated on in Section 7.6.

7.6 Stacking Ensemble

Given the results of the optimization process, we imple-
mented a stacking ensemble to combine the predictions of the
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Table 13. Comparison of different scalers across the eight major oxides.

Oxide MaxAbsScaler MinMaxScaler Norm3Scaler RobustScaler StandardScaler
AlL,O3 336 476 495 453 240
CaO 310 362 681 338 309
FeOr 498 287 561 339 315
KO 258 320 622 430 370
MgO 239 340 646 413 305
Na2O 316 327 748 320 289
SiOp 221 421 830 309 219
TiO; 280 322 507 565 326
Total across oxides 2458 2855 5090 3167 2373
Table 14. Comparison of different PCA types across the eight major oxides.
Oxide None KernelPCA PCA
Al,O3 1243 389 368
CaO 1246 374 380
FeOr 1217 382 401
KoO 1250 373 377
MgO 1037 543 363
Na2O 1167 382 451
SiOy 1096 457 447
TiO2 1163 468 369
Total across oxides 9419 3368 3156
Table 15. Comparison of different transformers across the eight major oxides.
Oxide None PowerTransformer QuantileTransformer
Al O3 442 649 909
CaO 673 595 732
FeOr 633 644 723
K>O 504 822 674
MgO 725 701 517
Na,O 441 583 976
SiOy 760 566 674
TiO; 778 717 505
Total across oxides 4956 5277 5710
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Fig. 10. Top 100 model performance across oxides. The subplots show the distribution of RMSECV values for the top 100 trials for each model type across
the eight different oxides. This helps identify the most effective models for each oxide within the top-performing trials.
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top-performing configurations. As with all our experiments,
we follow the procedure outlined in Section 6.2 to evaluate
the performance of the stacking ensemble.

For each oxide, we first identified the top-performing con-
figurations to use in the stacking ensemble. To identify the
top-performing configurations for use in the stacking ensem-
ble, we developed a category-based method that groups mod-
els into distinct categories for systematic comparison. This ap-
proach helps in selecting models that perform optimally for
specific tasks while ensuring diversity within the ensemble.
Additionally, we developed and employed a grid search to
identify the optimal ensemble configurations, but time con-
straints prevented us from fully completing this process. Fi-
nally, we employed the stacking model and evaluated its per-
formance. We present the results as well as the 1:1 plots in Sec-
tion 7.6.3.

7.6.1 Category Method & Pipeline Selection. The category-based
method organizes models into the following groups:

Gradient Boosting: GBR, XGBoost, NGBoost
Tree-Based: ETR, RF

Linear and Regularized Models: LASSO, Ridge, ENet
SVM: SVR

PLS: PLS

We used the top-performing configurations identified
in Section 7.5.1 to select configurations for the stacking
ensemble.

For each oxide, we filtered the trial data from the optimiza-
tion experiment to create a dataset containing configuration
information and performance metrics. These datasets were
sorted by RMSECV. We then selected unique model types for
further analysis, based on the categories above. Our process
involved selecting a set number of configurations for each
category until a maximum number of configurations for the
oxide’s ensemble was reached.

To ensure diversity and limit scope, we set a maximum
of one model per category and three models per stacking
ensemble, with one ensemble for each oxide. For each oxide,
we developed pipelines to preprocess the data according
to the given configuration and to utilize the models with
their optimal hyperparameters. These pipelines represent the
optimal configurations for each oxide, and are used as base
estimators in the stacking ensemble.

7.6.2  Grid Search. The grid search process begins by generat-
ing all possible combinations of the selected models. Specifi-
cally, we generate combinations with at least two models, up
to a configurable maximum number of models.

For each oxide, we constructed a pipeline for each of the top
model configurations identified in Section 7.5.1. The evalua-
tion function iterates over each combination of base estima-
tors, constructs a stacking ensemble pipeline, and assesses its
performance using cross-validation.

The evaluation function prepares the pipeline with the cur-
rent combination of base estimators and splits the data into
training and testing sets using our data partitioning method.

The stacking ensemble is then fitted on the training set, and the
meta-features generated from the base estimators are used to
train the final estimator.

We compute the evaluation metrics to assess the ensemble’s
effectiveness. The best combination is identified based on the
lowest RMSECYV value.

Itis possible to vary the meta-learner in this process, adding
another variable to tune as part of the search process.

While our grid search implementation was limited to the
TiO> oxide, the methodology demonstrates the potential for
identifying optimal stacking ensembles by systematically
evaluating model combinations and their configurations. We
chose not to pursue this method further due to the time con-
straints of this project, but believe it is a promising approach
for future work.

7.6.3  Results for Stacking Ensemble. For each major oxide, we
ran the stacking ensemble and evaluated its performance. The
evaluations were conducted using the same configurations,
varying only the meta-learner between runs. We present the
results for the ENet meta-learner with alpha = 1.0, as well as
for the ENet meta-learner with alpha = 0.1. Additionally, we
present the results for the SVR meta-learner, using the default
hyperparameters provided by scikit-learn.

The evaluation metrics are shown in Table 16, Table 17, and
Table 18. Additionally, we provide 1:1 plots for each ensemble
in Figures 14, 15, and 16, showing the actual versus predicted
values for each oxide.

For the ENet meta-learner with ¢ = 1, the RMSEP values
range from 0.470 for NaO to 3.588 for SiO;. The RMSECV val-
ues are generally higher, which could initially suggest over-
fitting. However, considering our testing and validation strat-
egy, this discrepancy is expected. Our method for partitioning
ensures that extreme values are included in the training folds
but not in the test set, making the test set easier to predict. This
results in lower RMSEP values compared to RMSECV values,
which is a deliberate trade-off to provide a fairer assessment of
the model’s generalization performance. The standard devia-
tions of the RMSECYV are relatively low, suggesting consistent
performance across folds.

When the ENet meta-learner’s « is reduced to 0.1, there is
a noticeable improvement in the RMSEP for TiO», dropping
from 0.571 to 0.319. This suggests that reducing the regular-
ization parameter helps in better capturing the variance in the
data. The RMSECYV values also show a slight improvement,
indicating better generalization. However, the standard devi-
ations remain similar, suggesting that the model’s consistency
across folds is maintained.

The SVR meta-learner shows the best performance for sev-
eral oxides, particularly SiO> and NayO, with RMSEP values
of 3.473 and 0.369, respectively.

We generally observe that the standard deviation metrics
are close to the corresponding RMSE values, indicating low
variability in the prediction errors. This suggests robustness
of the predictions.



42+ Christian Bager Bach Houmann, Patrick Frostholm @stergaard, and Ivik Lau Dalgas Hostrup

Table 16. Stacking ensemble results using the ENet model as the meta-

learner with a = 1.

Oxide RMSEP Std. Dev. RMSECV Std. Dev. CV
SiO2 3.588 3.582 4.680 = 0.500 4.670 + 0.516
TiO2 0.571 0.565 0.818 £0.111 0.814 + 0.117
AlbO3  1.656 1.657 2211 +£0.023 2.199 + 0.226
FeOr 1.794 1.789 2792 £ 0.649 2.745 + 0.646
MgO 0.711 0.711 1.660 + 0.525 1.635 + 0.516
CaO 1.636 1.619 1.307 £ 0.205 1.290 + 0.202
NaxO 0.470 0.462 1.075 +0.706 1.067 + 0.710
K20 0.476 0.462 0.653 £0.195 0.652 + 0.193

Table 17. Stacking ensemble results using the ENet model as the meta-

learner with & = 0.1.

Oxide RMSEP Std. Dev. RMSECV  Std. Dev. CV
SiO2 3.598 3.591 4.686 +0.489 4.677 + 0.505
TiOy 0.319 0.310 0.450 + 0.083 0.448 + 0.083
AlbO3  1.658 1.660 2192 £0.235 2.180 + 0.238
FeOr 1.841 1.840 2781 +£0.664 2.731 +0.659
MgO 0.768 0.768 1.632 £ 0.531 1.608 + 0.518
CaO 1.647 1.627 1.310 £ 0.213  1.291 +0.211
NaxO 0.442 0.433 1.093 + 0.690 1.079 + 0.692
K20 0.494 0.477 0.556 +0.155 0.553 + 0.153

Table 18. Stacking ensemble results using the SVR model as the meta-

learner with default hyperparameters.

Oxide RMSEP Std. Dev. RMSECV Std. Dev. CV
SiOp 3.473 3.478 5.064 + 0.932 5.061 + 0.926
TiO2 0.340 0.333 0.442 + 0.087 0.442 + 0.087
Al,O3 1.729 1.732 2.285 + 0.226 2.274 + 0.233
FeOr 1.693 1.681 4.821 +1.490 4.768 + 1.495
MgO 0.819 0.820 2.569 +1.274 2559 +1.271
CaO 1.594 1.574 1.475 +0.294 1.456 + 0.304
NaO 0.369 0.368 0.978 + 0.885 0.971 + 0.887
K>O 0.511 0.497 0.669 + 0.199 0.666 + 0.196

Table 19. Comparison of RMSEP values for the MOC (replica) model and
various stacking ensemble models.

Oxide MOC (replica) ENet (¢ =1) ENet(a=0.1) SVR
SiO2 5.61 3.59 3.60 3.47
TiOz 0.61 0.57 0.32 0.34
AlO3 247 1.66 1.66 1.73
FeOr 1.82 1.79 1.84 1.69
MgO 1.56 0.71 0.77 0.82
CaO 2.09 1.64 1.65 1.59
NaxO 1.33 0.47 0.44 0.37
K20 191 0.48 0.49 0.51

A notable observation from our results is that different
meta-learners exhibited varying performance levels across
oxides. We observed that the final predictions were strongly
affected by the meta-learner, going as far as rendering some
predictions nonsensical if the wrong meta-learner was chosen.
Specifically, for TiO, we observed that predictions remained
near-constant values despite varying the combination of
model configurations in the TiO; ensemble. In fact, this
was the reason for our implementation of the grid search
process. The consistency of our observations supported our
hypothesis: changing only the meta-learner significantly
impacts the RMSECV and prediction outcomes. We decided
to investigate further and identified potential issues with
small value predictions when using an ENet meta-learner.
For example, most values for TiO; fell between 0 and 2.5, as
shown in Figure 4. The regularization term likely dominated
the fitting process, leading to underfitting and resulting in
nearly constant predictions. This hypothesis was confirmed
by adjusting the regularization parameter, alpha, in the ENet.
Lowering alpha produced better outcomes, indicating that
regularization adversely affected the predicted values. The
1:1 plot in Figure 14 shows the near-constant predictions for
TiO2 when using a ENet meta-learner, and Figure 15 shows
the improved predictions with alpha = 0.1. This leads us to
conclude that the meta-learner’s choice significantly impacts
the RMSECV and prediction outcomes.

The stacking approach demonstrated strong improvements
in prediction accuracy compared to the baseline described
in Section 5, validating the efficacy of our methodology. We
measured this improvement using RMSEP, which provides
the fairest comparison between the baseline and the stacking
approach. As mentioned, RMSEP evaluates the model’s
performance on the test set. In Section 5, we described how
the baseline test set was constructed by sorting extreme con-
centration values into the training set, and then performing
a random split. As noted in Section 6.2, a more sophisticated
procedure is required to support the testing and validation
strategy in this work. Despite the differences in test set
construction, the test sets remained similar in compositionl,
which allowed us to use RMSEP as a fair comparison metric.
Table 19 compares the RMSEP values of different oxides
for the MOC (replica) model with three stacking ensemble
models: ENet with a = 1, ENet with a = 0.1, and SVR. Overall,
the stacking ensemble models tend to produce lower RMSEP
values compared to the MOC (replica) model. Notably, SiO>,
TiO2, NapO, and KO show large improvements across all
stacking ensemble models. For instance, the RMSEP for SiO»
is reduced from 5.61 (MOC (replica)) to around 3.59 (ENet
with a = 1) and further to 3.47 (SVR). Similarly, TiO, shows
a reduction from 0.61 (MOC (replica)) to 0.32 (ENet with
a=0.1). The improvements are consistent across most oxides,
with ENet and SVR models both outperforming the MOC
(replica) model. This shows that the ensemble approach,

IThe analysis of this can be found on our GitHub repository: https://github.
com/chhoumann/thesis-chemcam
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Fig. 15. One-to-one plots for the stacking ensemble model with the ENet as the meta-learner with a = 0.1.
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particularly with these meta-learners, enhances prediction
accuracy for the oxides we tested.

The results presented indicate a strong performance from
the stacking ensemble approach. However, it is important to
note that some evaluation metrics are worse in the stacking ap-
proach than in certain individual configurations. We believe
that further tuning, particularly of the meta-learner’s hyper-
parameters, could substantially improve these results.

8 PYHAT CONTRIBUTION

As part of our work, we have made several contributions to
PyHAT. We describe these contributions here.

PyHAT offers a user-friendly interface designed for per-
forming machine learning and data analysis tasks specifically
for hyperspectral data. Our collaboration was initiated
through a series of discussions with two members from USGS
that are responsible for PyYHAT, wherein we identified mutual
challenges and opportunities for integrating our solutions
into the tool.

We implemented an outlier detection method in PyHAT
that uses the Mahalanobis distance and the chi-squared test.
This statistical approach identifies outliers without relying
on qualitative assessments. The process involves computing
leverage, which measures a sample’s influence, and spectral
residuals, which are the differences between observed and
predicted values, for each sample using a PLS model. The
process involves calculating leverage and spectral residuals
for each sample using a PLS model. Leverage measures
a sample’s influence, and spectral residuals represent the
differences between observed and predicted values.

These metrics are combined into a two-dimensional dataset,
and the Mahalanobis distance for each sample is calculated.
Samples are classified as outliers if their Mahalanobis distance
exceeds a chi-squared critical value at a confidence level based
on the threshold. Outliers are then excluded, and the model
is retrained iteratively until no further performance improve-
ment is observed. We developed this method as a part of our
work on the MOC model replica presented in Houmann et al.
[15], where it served as an automated version of the approach
presented by Anderson et al. [3].

This method was integrated into PyHAT’s library and
Graphical User Interface (GUI), allowing users to configure
the chi-squared threshold, number of PLS components,
and maximum iterations. Users can select their dataset and
regression target, configure the method, and run it through
the GUL

This contribution also included the development of a GUI
component for the existing PYHAT GUI to configure and vi-
sualize the outlier removal process. This included utilities to
select a threshold, select a given oxide for which to perform
outlier removal, and a logging mechanism to display the num-
ber of outliers removed at each iteration in the GUI

We also contributed by resolving a critical issue in the JADE
implementation within PyHAT. The fix provided the ability
to properly identify which of the original data points has

the highest correlation with each independent component
produced by the JADE algorithm. The correlation scores
produced by this functionality can be used in a regression
context, where a linear model learns the coefficients that best
fit the relationship between the independent components and
the original data points.

Finally, we made some contributions to improve the perfor-
mance of various processes in PyHAT. At the time of writing,
all contributions have been demonstrated to work as intended
to the two USGS members responsible for managing PyHAT
and are undergoing final review.

In recognition of our efforts, we received a formal letter of
acknowledgment from the USGS. This letter acknowledges
our contributions to PyHAT and highlights the positive im-
pact our work has had on enhancing the tool’s functionality
and the field of chemometrics. The acknowledgment letter is
presented in Appendix A.5.

9 CONCLUSION

This thesis set out to advance the analysis of LIBS data for pre-
dicting major oxide compositions in geological samples. By in-
tegrating sophisticated machine learning techniques and en-
semble regression models, we aimed to tackle the substantial
challenges posed by the high-dimensional, nonlinear nature
of LIBS data.

Our research confronted and addressed critical chal-
lenges, including the complexities of high dimensionality,
non-linearity, multicollinearity, and the limited availabil-
ity of data. These issues traditionally hinder the accurate
prediction of major oxides from spectral data, necessitating
the development of robust and adaptive computational
methodologies.

Throughout our study, we systematically explored a diverse
range of machine learning models, categorized into ensemble
learning models, linear and regularization models, and neural
network models. Using the developed evaluation framework,
we identified the strengths and limitations of each model in
relation to predicting major oxides within the context of LIBS
data analysis.

Normalization and transformation techniques played a
crucial role in our approach. We investigated and employed
various methods such as Z-Score standardization, Max Abso-
lute scaling, Min-Max normalization, robust scaling, Norm
3, power transformation, and quantile transformation. These
techniques proved vital for standardizing the data, managing
different scales, and ultimately enhancing the performance of
our models.

Dimensionality reduction techniques such as PCA and
Kernel-PCA showed potential in managing the high dimen-
sionality of the spectral data; however, their efficacy was not
conclusively demonstrated.

One of the key innovations in our approach was the use of
stacked generalization. Such an approach has seen limited use
in the field LIBS data analysis and our work demonstrated its
potential in this context. This ensemble method combined the
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predictions of multiple base models, each trained on the same
data, to form a meta-learner. By leveraging the strengths of
various models and mitigating their individual weaknesses,
this technique significantly improved generalization on
unseen data.

We also designed and implemented a framework, using the
automated hyperparameter optimization tool Optuna as its
foundation. This framework allowed us to identify the most
effective combinations of preprocessing methods and models
tailored to the specific characteristics of each oxide, ensuring
highly effective performance.

Finally, we designed and implemented a data partitioning
method that addresses the challenges of data leakage and un-
even distribution of extreme values, ensuring robust and reli-
able model evaluation.

The outcome of our work is a comprehensive catalog of ma-
chine learning models and preprocessing techniques for pre-
dicting major oxide compositions in LIBS data. This catalog,
featuring highly effective configurations, provides a resource
for future research and model and preprocessor selection.

Moreover, our contributions extend beyond this thesis. We
integrated our findings into the PyHAT library developed by
the USGS, thereby enhancing its capabilities for the scientific
community.

In conclusion, by addressing the inherent challenges and
developing a robust computational framework, this thesis
has laid groundwork for future advancements in geochemical
analysis and planetary exploration using LIBS data.

10 FUTURE WORK

The findings of this study present several opportunities for fu-
ture research.

Firstly, regarding our data partitioning algorithm detailed in
Section 6.2.1, we observed the significance of identifying the
optimal percentile value p. This value is crucial for minimiz-
ing extreme values in the test set while preserving its overall
representativeness. Future work should explore quantitative
methods for determining this optimal value.

Another potential improvement to the validation and test-
ing approach we delineate is incorporating supplementary ex-
treme value testing after the primary evaluation. This type of
testing could be conducted using a small, separate subset of
extreme values to assess the model’s performance in these crit-
ical scenarios. For example, this might involve slightly reduc-
ing the percentile value p and using the extreme values that
fall within this reduced range to evaluate the model’s effec-
tiveness.

Tackling the challenges of limited data availability has
proven important, as we mention throughout our report.
The small dataset size inherently restricts the number of
extreme values present. These extreme values are crucial for
enhancing the model’s generalizability, as they represent
the most challenging cases to predict. Future research could
investigate methods for augmenting the dataset with syn-
thetic data, including extreme values, to provide the model

with more exposure to these cases during training. This is a
particularly challenging task, as it requires the production of
synthetic data for a physics-based process. We contemplate
that some approximation may be sufficient and could be used,
for instance, as part of a transfer-learning project as initial
training material.

Future work should also consider further experimentation
with the choices of base estimators and meta-learners. Our
study demonstrated that various model and preprocessor con-
figurations perform well. However, identifying the optimal
configurations and meta-learner for a specific oxide remains
a challenging task. In this study, we used a simple grouping
method to ensure diversity in our base estimator selection,
choosing from the top-performing configurations. We also
experimented briefly with a grid search approach, which
could be examined further. However, using a variation of the
optimization framework we presented is likely to provide
better trade-offs, as we have discussed.
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A APPENDIX
A.1  Web-Based Platform for Data Partitioning Evaluation

Custom K-Fold Cross Validation

Select target oxide:

Si02 v

Select cross-validation method:

Sorted Group K-Fold v
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Fig. A.1. Web-based platform used to determine the optimal value of p for the data partitioning algorithm.



A.2  Cross-Validation Fold Plots for Major Oxides
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Fig. A.2. Histogram and KDE of SiO2 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents SiO2 concentration.
The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of SiO2 Distribution in Each Fold
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Fig. A.3. Combined Histogram and KDE of SiO2 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents SiO2
concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.4. Distribution of SiO2 concentrations before and after fold assignment. The left plot shows the original distribution of SiO2, while the right plot shows
the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of SiO2 in data partitions

std: 16.28 std: 12.46 std: 18.01 std: 15.77 std: 15.91 std: 9.06 std: 14.94
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Fig. A.5. Distribution of SiO2 concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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Fig. A.6. Histogram and KDE of TiO2 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents TiO2 concentration.
The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of TiO2 Distribution in Each Fold
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Fig. A.7. Combined Histogram and KDE of TiO2 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents TiO2
concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.8. Distribution of TiO2 concentrations before and after fold assignment. The left plot shows the original distribution of TiO2, while the right plot shows
the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of TiO2 in data partitions

std: 0.78 std: 0.81 std: 0.77 std: 1.02 std: 0.85 std: 0.57 std: 0.81
mean: 0.92 mean: 0.97 mean: 0.84 mean: 1.03 mean: 0.94 mean: 0.83 mean: 0.92
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Fig. A.9. Distribution of TiO2 concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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Fig. A.10. Histogram and KDE of Al203 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents Al203

concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of Al203 Distribution in Each Fold
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Fig. A.11. Combined Histogram and KDE of Al203 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents
Al203 concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.12. Distribution of AI203 concentrations before and after fold assignment. The left plot shows the original distribution of Al203, while the right plot
shows the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of Al203 in data partitions
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Fig. A.13. Distribution of AI203 concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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Fig. A.14. Histogram and KDE of FeOT distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents FeOT concen-
tration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of FeOT Distribution in Each Fold
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Fig. A.15. Combined Histogram and KDE of FeOT distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents
FeOT concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.16. Distribution of FeOT concentrations before and after fold assignment. The left plot shows the original distribution of FeOT, while the right plot

shows the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of FeOT in data partitions
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Fig. A.17. Distribution of FeOT concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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63
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Fig. A.18. Histogram and KDE of MgO distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents MgO concen-
tration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of MgQ Distribution in Each Fold
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Fig. A.19. Combined Histogram and KDE of MgO distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents
MgO concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.20. Distribution of MgO concentrations before and after fold assignment. The left plot shows the original distribution of MgO, while the right plot
shows the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of MgO in data partitions
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Fig. A.21. Distribution of MgO concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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Fig. A.22. Histogram and KDE of CaO distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents CaO concen-
tration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of CaO Distribution in Each Fold
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Fig. A.23. Combined Histogram and KDE of CaO distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents CaO
concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.24. Distribution of CaO concentrations before and after fold assignment. The left plot shows the original distribution of CaO, while the right plot

shows the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of CaO in data partitions

40 4 std: 8.71 std: 8.24 std: 6.03 std: 8.15 std: 7.89 std: 4.94 std: 7.46
mean: 6.35 mean: 6.47 mean: 4.36 mean: 6.03 mean: 5.80 mean: 4.56 mean: 5.58
< < [+]
35 8
o [e]
[} [+] < [+]
30 8 o 8 8
]
o 8 8
[} < [+
25 o =] ] =] [+
8 o * ° o 8 o 8
o
=
o 204
@
8]
154
10 4
| .
04
T T T T T T T
Fold 1 Fold 2 Fold 3 Fold 4 Train Test Full

(1-4 combined)
Partition

Fig. A.25. Distribution of CaO concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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Fig. A.26. Histogram and KDE of Na20 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents Na20

concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Histogram and KDE of Na20 Distribution in Each Fold
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Fig. A.27. Combined Histogram and KDE of Na20O distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents
Na20 concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.28. Distribution of Na20 concentrations before and after fold assignment. The left plot shows the original distribution of Na20, while the right plot
shows the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of Na20 in data partitions
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Fig. A.29. Distribution of Na20 concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation

statistics for each partition are indicated figure.
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Fig. A.30. Histogram and KDE of K20 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents K20 concentration.
The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.31. Combined Histogram and KDE of K20 distribution in each fold. The y-axis represents the count of samples per bin, and the x-axis represents K20
concentration. The notation in the legend indicates the amount of instances in the training/validation sets.
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Fig. A.32. Distribution of K20 concentrations before and after fold assignment. The left plot shows the original distribution of K20, while the right plot

shows the distribution with folds assigned, color-coded to indicate the different folds.
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Distribution of K20 in data partitions
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Fig. A.33. Distribution of K20 concentrations across cross-validation folds, training set, test set, and the entire dataset. The mean and standard deviation
statistics for each partition are indicated figure.
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A.3 Initial Experiment: Model Hyperparameters

Table A.1. Explicitly set hyperparameters for the PLS, SVR, ridge, LASSO, ENet, RF, and ETR models. When not explicitly set, the default hyperparameters
provided by the libraries listed in Section 7.2 are used.

Model Hyperparameter Value

n_components 34
PLS scale True

max_iter 500

kernel poly

C 100
SVR epsilon 0.1

gamma scale

degree 2

coef@ 1.0

alphas {107%,1073, 1072, 1071, 1, 10, 102, 103}
Ridge Regression max_iter 1000

tol 107*

alphas {1074,1073, 1072, 1071, 1, 10, 102, 103}
LASSO max_iter 1000

tol 1074

alphas {107%,1073, 1072, 1071, 1, 10, 102, 10%}

11_ratio {0.1,0.5,0.7,0.9, 1.0}
ENet max_iter 1000

tol 1074

n_estimators 100

max_depth 10
RE min_samples_split 2

min_samples_leaf 1

max_features sqrt

random_state 42

n_estimators 100

max_depth 10
ETR min_samples_split 2

min_samples_leaf 1

random_state 42
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Table A.2. Explicitly set hyperparameters for the GBR and XGBoost models. When not explicitly set, the default hyperparameters provided by the libraries
listed in Section 7.2 are used. The NGBoost model does not have any explicitly set hyperparameters.

Model Hyperparameter Value
n_estimators 100
max_depth 3
min_samples_split 2
min_samples_leaf 1
max_features None
loss squared_error
learning_rate 0.1

GBR subsample 1.0
criterion friedman_mse
random_state 42
verbose 0
validation_fraction 0.1
n_iter_no_change None
tol 1074
ccp_alpha 0.0

NGBoost - -
max_depth 4
min_child_weight 5
gamma 0.1
subsample 0.7
colsample_bytree 0.5
colsample_bylevel 0.5
colsample_bynode 0.5

XGBoost lambda 1
alpha 0.5
learning_rate 0.05
n_estimators 100
objective reg:squarederror
eval_metric rmse

Layer Output Shape Hyperparameter

Input (input_dim,) -

Dense (1024,) activation = ReLU
Dropout (1024,) rate = 0.3

Dense (512,) activation = ReLU
Dropout (512,) rate = 0.3

Dense (256,) activation = ReLU
Dense (128,) activation = ReLU
Output (output_dim,) -

Optimizer: Adam

Learning Rate: 0.001

Table A.3. Summary of the ANN architecture.
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Table A.4. Summary of the CNN architecture.

Layer Output Shape Hyperparameter

Input (input_dim,) -

Reshape (48,128,1) -

Conv2D (48,128, 32) filters = 32, kernel_size = (3, 3), activation = ReLU, padding = 'same’
BatchNormalization (48, 128, 32) -

MaxPooling2D (24, 64, 32) pool_size = (2, 2)

Conv2D (24, 64, 32) filters = 32, kernel_size = (3, 3), activation = ReLU, padding = ‘same’
BatchNormalization (24, 64, 32) -

MaxPooling2D (12, 32,32) pool_size = (2, 2)

Conv2D (12,32, 64) filters = 64, kernel_size = (3, 3), activation = ReLU, padding = "same’
BatchNormalization (12, 32, 64) -

MaxPooling2D (6,16, 64) pool_size = (2,2)

Conv2D (6,16,128) filters = 128, kernel_size = (3, 3), activation = ReLU, padding = 'same’
BatchNormalization (6, 16, 128) -

MaxPooling2D (3,8,128) pool_size = (2,2)

Flatten (3072,) -

Dense (256,) activation = ReLU

Dropout (256,) rate = 0.5

Dense (output_dim,) -

Dense (output_dim,)  kernel_regularizer = L(0.01)

Optimizer: Adam
Learning Rate: 0.001

77



78 .

A4 Overview of Best Performing Model Configurations
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Table A.5. Overview of model types for SiO; oxide.

SiO2 Model Type Transformer Type PCA Type  Scaler Type RMSECV  Std. dev. CV  RMSEP
pls none kernel_pca min_max_scaler 4.552 4.551 4.084
svr none none min_max_scaler 4.592 4.588 3.533
gbr none none norm3_scaler 4.652 4.646 3.720
lasso power_transformer pca norm3_scaler 4.737 4738 4.248
xgboost quantile_transformer none norm3_scaler 4.791 4.781 3.968
elasticnet quantile_transformer none norm3_scaler 4.841 4.844 3.947
ngboost power_transformer none norm3_scaler 4.860 4.851 4.148
ridge power_transformer none norm3_scaler 4.940 4.938 3.816
extra_trees power_transformer none norm3_scaler 5.141 5.118 3.821
random_forest none none norm3_scaler 5.204 5.192 3.788

Table A.6. Overview of model types for TiO, oxide.

TiO2 Model Type Transformer Type PCA Type  Scaler Type RMSECV Std. dev. CV  RMSEP
svr power_transformer none norm3_scaler 0.409 0.406 0.397
gbr power_transformer none norm3_scaler 0.410 0.409 0.332
xgboost none none robust_scaler 0.411 0.410 0.317
random_forest quantile_transformer none norm3_scaler 0.422 0.421 0.334
elasticnet none none robust_scaler 0.423 0.423 0.351
extra_trees power_transformer none standard_scaler 0.426 0.426 0.338
ridge none none min_max_scaler  0.428 0.427 0.359
lasso power_transformer none standard_scaler 0.431 0.430 0.372
ngboost none none robust_scaler 0.431 0.431 0.355
pls power_transformer kernel_pca robust_scaler 0.441 0.441 0.411

Table A.7. Overview of model types for Al,O3 oxide.

AlO3 Model Type Transformer Type PCA Type Scaler Type RMSECV Std. dev. CV  RMSEP
xgboost power_transformer none norm3_scaler 2.075 2.067 1.740
gbr power_transformer none robust_scaler  2.092 2.089 1.987
ngboost power_transformer none robust_scaler 2121 2.113 2.052
svr quantile_transformer none min_max_scaler 2.179 2.176 1.873
ridge quantile_transformer none norm3_scaler 2.218 2.211 1.843
elasticnet quantile_transformer none norm3_scaler 2.225 2.219 1.804
pls quantile_transformer none robust_scaler  2.247 2.244 2.111
lasso quantile_transformer none norm3_scaler 2.249 2.242 1.903
extra_trees power_transformer none min_max_scaler 2.288 2.261 2.092
random_forest power_transformer none max_abs_scaler 2.302 2.295 2.111
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Table A.8. Overview of model types for FeOt oxide.

FeOr Model Type Transformer Type PCA Type Scaler Type RMSECV  Std. dev. CV. RMSEP
svr quantile_transformer none norm3_scaler 2.242 2.243 1.803
pls power_transformer none standard_scaler 2.701 2.669 2.063
ridge quantile_transformer none norm3_scaler 2.707 2.687 1.878
gbhr power_transformer none max_abs_scaler  2.749 2.750 1.793
xgboost none none max_abs_scaler  2.749 2.743 1.622
elasticnet power_transformer none max_abs_scaler  2.862 2.831 1.773
lasso quantile_transformer none norm3_scaler 2.875 2.862 1.842
extra_trees none none max_abs_scaler  2.900 2.903 1.870
ngboost none none robust_scaler 2.980 2.953 1.773
random_forest quantile_transformer none norm3_scaler 3.079 3.044 2.018

Table A.9. Overview of model types for MgO oxide.

MgO Model Type Transformer Type PCA Type  Scaler Type RMSECV  Std. dev.CV  RMSEP
svr power_transformer none robust_scaler  1.322 1.321 0.791
pls none kernel_pca norm3_scaler 1.327 1.321 0.993
ridge power_transformer none robust_scaler  1.448 1.443 1.321
elasticnet power_transformer none robust_scaler  1.466 1.462 1.630
gbr quantile_transformer none norm3_scaler 1.468 1.464 0.880
extra_trees power_transformer none norm3_scaler 1.533 1.522 0.765
lasso none kernel_pca min_max_scaler 1.604 1.596 1.092
xgboost none none norm3_scaler 1.618 1.610 1.129
nghoost quantile_transformer none norm3_scaler 1.624 1.603 0.980
random_forest quantile_transformer none norm3_scaler 1.640 1.630 0.973

Table A.10. Overview of model types for CaO oxide.

CaO Model Type Transformer Type PCA Type Scaler Type RMSECV  Std. dev. CV. RMSEP
svr quantile_transformer none min_max_scaler 1.193 1.192 1.600
pls quantile_transformer none max_abs_scaler 1.270 1.263 1.768
gbr quantile_transformer none norm3_scaler 1.281 1.280 1.793
extra_trees none none norm3_scaler 1.308 1.309 1.829
xgboost power_transformer none norm3_scaler 1.363 1.361 1.913
elasticnet quantile_transformer none norm3_scaler 1.384 1.377 1.634
ridge quantile_transformer none norm3_scaler 1.406 1.400 1.623
random_forest none none norm3_scaler 1.439 1.435 1.737
ngboost none none robust_scaler  1.488 1.481 1.920
lasso power_transformer none min_max_scaler 1.529 1.514 1.684
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Table A.11. Overview of model types for Na,O oxide.

NaO Model Type Transformer Type PCA Type Scaler Type RMSECV  Std. dev. CV RMSEP
svr power_transformer none norm3_scaler 0.777 0.775 0.393
pls power_transformer none norm3_scaler 0.845 0.842 0.561
gbr quantile_transformer none norm3_scaler 0.904 0.895 0.374
xgboost quantile_transformer none max_abs_scaler  (0.952 0.943 0.431
extra_trees quantile_transformer none norm3_scaler 0.965 0.953 0.479
elasticnet quantile_transformer none standard_scaler 0.994 0.990 0.504
lasso quantile_transformer none max_abs_scaler  0.995 0.991 0.507
ngboost quantile_transformer none norm3_scaler 1.000 0.993 0.443
random_forest quantile_transformer none norm3_scaler 1.002 0.995 0.470
ridge quantile_transformer none norm3_scaler 1.011 1.001 0.467

Table A.12. Overview of model types for K;O oxide.

KO Model Type Transformer Type PCA Type Scaler Type RMSECV Std. dev. CV  RMSEP
pls none none norm3_scaler 0.587 0.586 0.724
gbr quantile_transformer none min_max_scaler  0.590 0.587 0.423
svr quantile_transformer none norm3_scaler 0.593 0.593 0.594
xgboost power_transformer none standard_scaler 0.600 0.599 0.455
elasticnet power_transformer none robust_scaler 0.602 0.602 0.650
ngboost quantile_transformer none max_abs_scaler  0.602 0.600 0.420
lasso power_transformer none norm3_scaler 0.607 0.606 0.624
ridge power_transformer none norm3_scaler 0.611 0.611 0.629
random_forest power_transformer none norm3_scaler 0.675 0.669 0.515
extra_trees power_transformer none robust_scaler 0.714 0.709 0.464




LASERGAME: Leveraging Advanced Spectroscopy and Ensemble Regression for Geochemical Analysis and Model Evaluation « 81

A.5 PyHAT Contribution Certificate
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U.S. GEOLOGICAL SURVEY
ASTROGEOLOGY SCIENCE CENTER
2255 N. GEMINI DR.
FLAGSTAFF, AZ 86001

To Whom it May Concern,

We are writing to certify that Christian Houmann, Ivik Hostrup, and Patrick @Ostergaard have
made several meaningful contributions to the Python Hyperspectral Analysis Tool (PyHAT).

Their team met with us virtually, along with their advisor Dr. Jens Frydenvang, to discuss their
results in duplicating state-of-the-art machine learning models that we have personally
developed. Even without all of the workflows and scripts available to them, their team was able
to achieve remarkable success. During this meeting, the students discussed many improvements
on published methods that they personally developed or explored during their project. These
contributions stand to make a sizeable impact on the field of chemometrics as applied to the
ChemCam and SuperCam emission spectroscopy instruments on two active missions as part of
NASA’s Mars Exploration Program.

First, the team suggested the use of a Stacking Regressor to combine the results of several
models into a final “meta model”. This is an alternative to the relatively crude and labor-
intensive “submodel blending” approach that was used for the current ChemCam calibration.
The team also suggested the use of a power transform as a preprocessing step. Both suggestions
have been implemented and are showing promising results.

They also directly contributed to the PyHAT repository in the form of commits and merge
requests found at the link below. These important contributions include parallelizing and
improving the ChemCam data reading functionality, developing an automated approach to a
previously tedious manual outlier identification method, and adding a function that helps to
interpret loadings from Independent Component Analysis.

See Merge Requests 8,9, 10, and 11:
https://code.usgs.gov/astrogeology/pyhat/-/merge requests

We thank Christian, Ivik, and Patrick for their valuable contributions. Please do not hesitate to
contact us with any questions.

Sincerely,
Dr. Ryan B. Anderson Dr. Travis S.J. Gabriel
Research Physical Scientist Research Physical Scientist

rbanderson@usgs.gov tgabriel@usgs.gov
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