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1 | Introduction

This project has been written in collaboration with CERN, as the author was working in an intern
position at CERN at the period of writing. The objective of this project is to develop an interface.
An interface is a shared boundary which multiple, but separate, components communicate across.
An input/output (I/O) device is a hardware interface, while every program shown on a computer
screen is a computer-human interface, i.e., a graphical user interface (GUI).

1.1 CERN

The Conseil Européen pour la Recherche Nucléaire (CERN) is an international organisation, whose
missions is to uncover what the universe is made of and how it functions [10]. CERN was founded
in 1954 and has since been responsible for many scientific achievements, such as the discovery of
the Higgs boson, creation of the first antimatter atom (antihydrogen) and the invention of the
worldwide web [9, 7, 8]. To make these discoveries, engineers and physicists from around the world
collaborate at CERN to create some of the worlds largest and most complex scientific instruments.
Among these instruments are the particle accelerators, which aim to collide particles together at
incredible speeds. These collisions are then directed to occur inside detector systems, which use
varying methods to detect the particles resulting from the collision. The largest accelerator at
CERN is the Large Hadron Collider (LHC), which can be seen in Figure 1.1.

Figure 1.1: The accelerator complex at CERN, [image: 21].
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CHAPTER 1. INTRODUCTION

The LHC features four detector systems, all of which it provides with a constant stream of particles,
commonly referred to as beams. Of these four detectors, this report is conCERNed with the ATLAS
detector system, as the contribution to CERN outlined in this report was done within the ATLAS
experiment.

1.2 The ATLAS Detector System

This section is primarily based on [4, ch. 4] and [5]. For a detailed overview of the Atlas detector
see [1]
The Atlas experiment is one of the two largest ongoing experiments at CERN and its associated
collaboration consists of around 6000 members and 182 institutions situated in 42 different countries
[13]. Together with the CMS experiment, Atlas discovered the Higgs Boson back in 2012.
The Atlas particle detector consists of 6 detector subsystems which are arranged as concentric
cylinders around the collision point, [14]. These subsystems are commonly categorized as

• The inner detector system, which measures cross direction, speed and charge of electrically-
charged particles produced in the collisions.

• The calorimeters, which absorbs and measures the energy of particles passing through them.

• The Muon spectrometer, which is specialised in detecting Muons.

A slice of the Atlas detector is shown in Figure 1.2, which specifies the 6 subsystems and the two
types of magnets used in Atlas.

Figure 1.2: Computer illustration of the Atlas detector, [image: 22].

The superconducting magnets play a key role in the detector as they create a magnetic field of up
to 4 Tesla, that bends the paths of the particles resulting from the collisions outwards. This strong
bending makes it so that the particles fly through the cylindrical detector, rather than continuing
in the direction of the beam pipe, at a slight obtuse angle.

1.2.1 The Inner Detector
The inner detector, also often called the tracking detector, consists of three subsystems. These
subsystem all have barrel and end-cap detector parts, which are placed along the cylinder body
or at the end points of the cylinder, respectively. Figure 1.3 shows the layering of these three
subsystems.
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CHAPTER 1. INTRODUCTION

Figure 1.3: Slice of the Atlas inner detector subsystems, [image: 23].

The first subsystem is the pixel detector, which consists of 92 M semiconductor elements called
silicon pixels, each of which becomes briefly charged when an electrically charged particle passes
through it. In the barrel these pixels are packed in four layers around the collision point in ’sheets’
of approximately 1.9m2, hence the size of each pixel is extremely small with sizes ranging from
50 × 250 to 50 × 400 [µm2]. This fine granularity of the sheets allows the pixel detector to detect a
particles position within a precision of 10 µm, and the layering makes it possible to estimate the
particles speed and trajectory.
The second subsystem is the semiconductor tracker, which consists of more than 4000 modules
of micro-strip detectors made of silicon sensors. Together these modules features over 6M silicon
sensors, which are spaced 80 µm apart on each module. Similar to the pixel detector, modules of
the semiconductor tracker for the barrel are packed into sheets which are then formed into cylinders
and layered, but this time the innermost sheet also surrounds the pixel detector.
The third subsystem is the transition radiation tracker, which consists of 300.000 thin tubes that
each contain gas and a thin 30 µm tungsten wire in the center. When a charged particle passes
through a tube it ionises the gas, creating an electrical charge that the wire can pick up. This
allows for reconstruction of the particles track. The transition radiation tracker is the outermost
subsystem of the inner detector, and thus wraps around both the pixel detector and semiconductor
tracker.
The inner detector handles the tracking of particle paths, but the particles still need to be identified.
This task is handled by the remaining 2 subsystems of the Atlas detector.

1.2.2 Calorimeters and the Muon Spectrometer
After particles have passed through the inner detector they reach the calorimeters, which are
designed to absorb most of the particles resulting from the collisions. The calorimeters converts the
particle into showers of lower energy particles, which are inevitably absorbed. This can be seen in
Figure 1.4, which also shows which of the two calorimeters absorbs what particles.
Particles from the collision first reach the liquid Argon (electromagnetic) calorimeter, which fully
absorbs photons and electrons while also absorbing some of the energy of hadronic particles, such
as protons or neutrons. The layers of this calorimeter are made of metals.
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CHAPTER 1. INTRODUCTION

Figure 1.4: Illustration of where each fundamental particles stops inside Atlas, [image: 24].

Particles that can pass through the electromagnetic calorimeter, then reach the tile hadronic
calorimeter, which absorbs hadronic particles. This calorimeter is made of steel and stops all but
muons and neutrinos.
After the two calorimeters, any remaining particles pass through the muon spectrometer, which
consists of many resistive plates located at the outermost part of the detector barrel, combined
with the large ’wheels’ at either end of the Atlas detector. The spectrometer does not absorb the
muons, but it can detect their position to an accuracy of 10−4 m.
The last remaining particle from Figure 1.4 is the Neutrino, which cannot be detected directly by
any of the subsystems in Atlas. Instead its presence has to be inferred from predictive models
and the data of the collision gathered by Atlas [4, ch. 4, p. 5]. The reason that none of the other
existing particles are mentioned, is that they decay too fast to be detected. The muon decays in
about 2.2 µs, which allows it to travel around 600m before disappearing. In contrast the tau lepton,
only travels around 1/10th a millimeter before decaying [4, ch. 4, p. 6], which is less than 0.3 % of
the distances needed to reach the innermost layer of the pixel detector, located a 3.3 cm from the
collision point.
With its many subsystems the Atlas detector can record up to 100M data points 40M times pr.
second [4, ch. 4, p. 1]. This amount of data is required to reconstruct the collisions, which the LHC
can produce 1.7 billion (109) of each second [12]. Such a complex machine requires a lot of control
and monitoring, a task handled by the Atlas detector control system (DCS)

1.3 Atlas Detector Control System
The Atlas DCS enables supervision of all equipment in all Atlas sub-detectors. Its task is to "permit
coherent and safe operation of ATLAS and to serve as a homogeneous interface to all sub-detectors
and the technical infrastructure of the experiment" [5, p. 1]. The DCS must be able to bring the
detector into any desired operation state, manage all of Atlas 106 operational parameters, and
monitor the operation of the detector including identifying any abnormal behavior. The DCS
departments at CERN also develop the tools that the people in the Atlas control room use to
monitor and configure the systems of the detector. This includes the electronics that continuously
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CHAPTER 1. INTRODUCTION

carries diagnostic data from all the front-end (FE) sensors, to the back-end (BE) systems used by
the control room.
In the pipeline that moves the data upstream, from the FEs to the BE, the data is usually also
funneled into into electronic devices that are specialised in moving the data. One such electronic
device is the Embedded Local Monitoring Board (ELMB), which is a low-cost, I/O concentrator
device that is tolerant to both the strong magnetic fields and ionizing radiation present in many of
the experiments at CERN. More than 5.000 ELMBs are used in Atlas and over 10.000 are in use
between all the LHC experiments [5, p. 2].
The experiments at CERN are always improving. One big upcoming improvement of the LHC is
the high-luminosity (HL) upgrade, which is expected to be implemented between 2026 and 2028
during the Long Shutdown 3 [11]. Luminosity is a measure of a particle accelerators performance,
as it indicates the expected number of collisions pr. cross sectional area pr. second, giving it the
unit cm−2s−1. The HL upgrade is expected to increase the luminosity of the LHC by a factor of
5x-7.5x. The luminosity is also projected to increase further in after the HL upgrade [5, p. 4].
The electronic devices in the data pipeline from the FEs to the BE has to continually keep up with
the increased demand for radiation tolerance, imposed by the luminosity upgrades. Thus a new I/O
concentrator system is being developed for Atlas, which is radiation tolerant enough to be used
after the HL upgrade. It is called the EMP-EMCI system, as it comprises two devices, and is being
developed to complement the current generation of ELMBs.
As this project is focused on a small part of a much bigger system, the problem statement is deferred
to the end of the next chapter, where the EMP-EMCI system is discussed.
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2 | The EMP-EMCI System

This section is based on [15] and [19], as well as the current specifications of the EMCI [2] and the
EMP [3], with the latter being an internel document at the time of writing.
The EMP-EMCI system compose an interface between the front-end sensors (FE) of a detector and
the related backend control system. For use in the Atlas experiment, the front-ends will be the
subsystems of the Atlas detector described in Section 1.2, and the backend will be the detector
control system (DCS). The EMP-EMCI system consists of the Embedded Monitoring Processor
(EMP) and the Embedded Monitoring and Control Interface (EMCI). It is being developed to meet
the increasing requirements in radiation tolerance, imposed by the HL upgrade for the LHC.
The EMCI is capable of communicating with several FEs, and will be placed in a radiation
environment as it is developed to have a high radiation tolerance. The EMP will interface with up
to 12 EMCIs and be placed in a non-radiation environment, performing the data packaging and
processing that prepares the data to be transmitted to the backend. A diagram of the EMP-EMCI
system and related components can be seen in Figure 2.1.

Figure 2.1: Box diagram of the EMP-EMCI system, [image: 2, p. 5].

2.1 The Embedded Monitoring and Control Interface
The EMCI is a slow control module, in the sense that its function is not time-critical, developed
at CERN for the HL-LHC experiments [2, p. 1]. It is supposed to be a bidirectional interface
that compliment the current generation of the ELMB, in radiation areas that exceed the ELMBs
tolerance.
The heart of the EMCI is the low power Gigabit transceiver (lpGbt), which combines all the data,
incoming from the connected FEs, and forwards it to the EMP through an optical link cable.
The EMCI-side of the link is handled by the versatile transceiver+ (VTRx+), which is an optical
transceiver developed at CERN. A detailed block diagram of the EMCI can be seen in Figure 2.2.
The figure highlights the functionalities of the lpGbt, some of which will later be discussed. It
also shows the components that surrounds the lpGbt on the EMCI, some of which deserve a short
description.
The EMCI communicates with the FEs through eLinks, which carry low-power differential signals
[2, p. 15]. The EMCI can either receive data from up to 28 devices or transmit data to up to 16
devices, at any one time. The maximum bandwidth at which the EMCI can communicate with the
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CHAPTER 2. THE EMP-EMCI SYSTEM

Figure 2.2: Diagram of the EMCI that shows the lpGbt and its surrounding components [image: 2,
p. 15].

FE devices depends on the amount of devices connected, as well as the type of error correction
used. The highest downlink (EMCI to FE) bandwidth is 1.280 Gb/s, and the highest uplink (FE
to EMCI) is 8.960 Gb/s. The bandwidth is a resource which has to be split equally between all
Elink connections. This fact makes the EMCI quite versatile, as the user can use fewer eLinks
connections if a high data rate is needed. Data is moved from the EMCI towards the backend by
the VTRx+, which connects the lpGbt to the EMP. The VTRx+ can transmit data at a rate of
10.24 Gb/s, and receive data at 2.56 Gb/s. Both the VTRx+ and the Elinks have higher data rates
in the upstream direction, because the main function of the system is to forward the data from the
FEs to the backend. The downstream direction is only used for moving configuration data.
The EMCI also features two DCDC devices, called FEASTMPs, which convert the input voltage
level to 1.2V and 2.5V, respectively. These modules are radiation tolerant and have been developed
at CERN. It should be noted that the FEASTMPs takes up a small amount of the lpGbt resources,
as 2 of the GPIO pins have been dedicated controlling these devices.

2.2 The Embedded Monitoring Processor
The EMP is a board that houses a Xilinx Zynq Ultrascale+ multiprocessor system on chip (MPSoC),
together with other components like transceivers, a FPGA mezzanine card (FMC) connector and an
ethernet network interface [3, p. 5]. The Zynq is able to use both programmable logic and software,
as it features a ARM multi-core processing system. Control of the EMP can be done through the
ethernet interface, which will be for communication with the backend. A picture of the EMP can
be seen in Figure 2.3. The large black box is the Zynq and to the right of the Zynq are a pair of
FireFly transceivers partly covered by a fan.
Besides the Zynq, the Fireflys are one of the most important components on the EMP, because
they handle the communication with the EMCIs. The Fireflys are a custom design, developed to
be used at CERN, but are inspired by the Samtec UEC5 and UCC8 models. The pair functions as

7



CHAPTER 2. THE EMP-EMCI SYSTEM

Figure 2.3: A picture of the physical EMP.

a transceiver, by having one be a transmitter and the other a receiver. Since the EMP can connect
with up to 12 EMCIs and each VTRx+ can transmit up to 12.24 Gb/s, the Fireflys have to be able
to receive almost 147 Gb of data pr. second among their 12 channels. This is, surprisingly, not a
problem as the Fireflys can handle a data rate of up to 20 Gb/s pr. channel [17].
The EMP is used be used to communicate with the lpGbt and will house the software that can
change the settings on the lpGbt. Thus all software mentioned in this report will run on the EMP
but be used to configure the lpGbt on the EMCI. Hence this software library being developed is
called lpGbtSw.

Problem Statement

How can software be developed for the EMP-EMCI system, that makes it easy for the user to
configure the lpGbt, while keeping the reduction in flexibility of the lpGbts settings to a minimum.
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3 | Low Power Gigabit Transceiver

The heart of the EMCI is the low power Gigabit transceiver (lpGbt), which is a radiation tolerant
and application-specific integrated circuit (ASIC) developed at CERN [6]. It’s purpose is to provide
a high speed data link between the front end sensors in the detectors and the back end control
system. Some of the internal circuits and intended connections of the lpGbt are illustrated in
Figure 3.1.

Figure 3.1: Architecture of the lpGbt, [image: 6, p. 5].

The lpGbt features a lot of possible settings related to the electrical circuits that it contains, such
as ADC/DAC, GPIO and I2C. These settings can be controlled through a set of byte-sized registers
[6, p. 18], of which there are 493 in total. The EMP can read from or write to these registers by
using the commands

writeReg(Address, byte), readReg(Address)

in the software that runs on the EMP. As this report is conCERNed with designing an interface which
can configure the various circuits on lpGbt, some basic theory on circuits and digital electronics is
introduced.

3.1 Basics of Digital Electronics
In analog electronics continuous signals such as current or voltage are utilized directly. Contrary
to this, digital electronics are conCERNed with binary states represented by 1s and 0s, hence the
countinuous signals has to be quantized into either of these binary states. This is usually done on
the voltage, with +5V representing a High state and 0V a Low state, i.e., 1 and 0 respectively.
However, the exact voltage values can depend on the application. Sometimes individual bits are
used to control binary settings in a circuit, that is, settings which only have 2 states. The states are
most commonly On and Off, but could be anything that is binary in nature. When a bit controlling
such a setting is High, it is said to be ’set’.
The advantage of using digital electronics is that it allows for easier storage of information and
use of logic, i.e., circuits build on logic gates [18, p. 717-718]. Digital electronics are also highly
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CHAPTER 3. LOW POWER GIGABIT TRANSCEIVER

flexible, as the ease of data storage entails an easy way to reprogram the circuits, and they are also
inherently noise robust, due to the use of quantization and the ability to use error-correcting codes.

3.1.1 Voltage Levels and the Power Supply
Circuits are powered by a power supply, which acts as a voltage source for the circuit. Since the
circuit is a load that is connected to the voltage source, it draws an amount of current determined
by its resistance due to Ohms law,

I = V

R
.

Different electrical components can vary their resistance, which in turn changes the amount of
current drawn when the voltage has to be kept constant. One of the simplest examples is a switch,
which has a very high resistance when open, but drops to a lower level when the switch is closed.
The voltage level that different component receive can also be varied by using resistor in series, or
kept the same locally by instead using resistors in parallel.
To transmit data in a digital circuit, current has to be sent through a conductor, which is simply
called the line unless labeled otherwise. Digital devices connected to the line then measure the
voltage on the line, by comparing it to a local reference which is usually a ground (GND). If a
device is connected to voltage source separate from the communication line, it can connect it to the
line which is called driving the line High. Similarly if a device can connect the line to a GND, it is
called driving the line Low.
Another used method is to have the line being driven by a voltage source, and then allowing
connected devices to pull the line Low on demand. A circuit using this output strategy is called
open drain, as it allows the connected devices to ’drain’ the voltage from the line. This type of
communication circuit will be discussed in Chapter 5, as it is commonly used in I2C communication.
Sometimes lines in digital circuits are not driven, in which case pull resistors are commonly used to
enforce a known logic state on the line.

3.1.2 Pull Resistors
When a communication line is undriven it is said to be floating. A floating line could results
from the line being connected to unused pins on a printed circuit board (PCB). As digital circuits
are designed to function at low current, it is possible for electromagnetic noise to induce enough
currents in an undriven line to drive it High temporarily, which is ofcause undesired. To counter
this behavior an open line can be driven either High or Low by connecting it to a voltage source or
ground, respectively. However, this also makes the line unusable as trying to drive the line to the
opposite state would result in a path from a voltage source to a ground, i.e., a short circuit. If a
resistor is added between the line and the source or ground, the line can still be actively driven,
while also remaining at a known state when undriven. This type of connection is called a pull
resistor, as the resistor allows the line to be ’pulled’ High or Low safely. If the resistor is combined
with a voltage source it is called a pull-up resistor, and if it is combined with a ground it is called a
pull-down resistor [18, p. 779]. Pull resistors are also commonly used in combination with switches,
as this allows them to be enabled or disabled. Switches also allow a line to feature both types of
resistors, as they will not counteract each other.
Equipped with these basic concepts from digital electronics, some of the circuits on the lpGbt can
now be discussed.

10



4 | General Purpose Input/Output

A general purpose input/output (GPIO) is a peripheral component that can connect a controller
unit, like an IC, to several other devices through a set of two-way channels. The lpGbt features a
16 pin GPIO with some simple functionality that can be controlled by the lpGbts registers.

4.1 The lpGbt GPIO
All the settings of the GPIO are binary, which means that each pin only requires a single register
bit per setting. Since the GPIO features 16 pins and each lpGbt register contains 8 bits, it possible
to represent a setting across all pins with 2 registers. This grouping is called a Port in the lpGbt
manual, and the register which control pins 0-7 is called the Low Port while the other, controlling
pins 8-15, is called the High Port [6, p. 89]. There are a total of 6 Ports responsible for controlling
the 6 functionalities that the GPIO features. A diagram of the type of circuit that controls each
pin on the GPIO can be seen in Figure 4.1.

Figure 4.1: Circuit diagram of the GPIO, [6, p. 89].

The figure shows the 6 ports on the left, each of which determines the setting of a functionality for
pin n. Thus it should be understood that the circuit in Figure 4.1 only controls a single pin, and
thus is duplicated 16 times, once for each of the respective GPIO pins.
The GPIO functionality can be split into categories of basic and advanced as

Basic functionality = {input, output, direction},

Advanced functionality = {drive strength, pull resistors},

with each of these categories having 3 ports dedicated to them. A short description of the
functionalities follows, starting with the basic functionalities.

4.1.1 Basic Functionalities of the GPIO
The basic functionalities are those that are core to the function of the GPIO. Together they control
the communication on each pin.

11



CHAPTER 4. GENERAL PURPOSE INPUT/OUTPUT

The input functionality (PIOin) is used to read the current state of a pin. This allows the lpGbt
to receive data from the peripheral components connected to the pins, by checking the state of the
bits in the Port. It should be noted that the input functionality can always read the state of a pin,
irrespective of whether the pin is being driving by an external device or by the pin itself.
The output functionality (PIOout) is used to transmit data on any pin. By setting the bit High in
the lpGbt Port, the related pin will be driven High by the GPIO. Conversely setting the bit Low
will drive the pin Low.
The direction functionality (PIODir) allows the lpGbt to control the data direction of the line
between a pin and its GPIO controller, effectively determining if the pin should act as an input or
an output. This is done by enabling or disabling the output driver. Table 4.1 shows the possible
combinations of PIOout and PIODir, and what pin state results from these.

PIODir PIOout Pin state
0 0 X
0 1 X
1 0 0
1 1 1

Table 4.1: Truth table showing the state of a pin, given the binary states of its direction and
output bits. X implies that the pin state is determined externally.

From the table, the purpose of the direction functionality is clear, as a GPIO pin cannot act as an
input while PIOout is actively driving it.

4.1.2 Advanced functionalities of the GPIO
The drive strength functionality (PIODriveStrength) allows the lpGbt to control the rise time of
the signals on the GPIO pins, also known as the slew rate. When a bit the this Port is set, the drive
strength is set to High, which allows for faster communication on the GPIO pins at the trade-off
of increased electromagnetic radiation [6, p. 90]. The ability to increase the drive strength is also
relevant if the device connected to the pin imposes high load capacitance, as this can increase the
voltage rise time resulting in slower communication.
The pull resistor functionality (PIOPullEna & PIOUpDown) allows the lpGbt to pull floating
pins to a known, and constant, state. The GPIO circuit features both a pull-up and pull-down
resistor, as can be seen in Figure 4.1. Similarly to the output and direction functionality, this gives
more than 2 possible configuration for the pull resistor functionality, hence 2 Ports are dedicated to
the control of this functionality. The state of these Ports, for a given pin, are then directed to a
small logic circuit, that disconnects at least 1 of the resistors. Table 4.2 shows which resistor(s) is
disconnected for all possible combinations.

PIOPullEna PIOUpDown Pull down resistor Pull up resistor
0 0 OFF OFF
0 1 OFF OFF
1 0 ON OFF
1 1 OFF ON

Logic a b NOR(NOT(a), b) NOT(NAND(a, b))

Table 4.2: Truth table for the pull resistor switches in the GPIO.

The table also features the logic imposed by the circuit in the last row.
With the features of the lpGbts GPIO explained, the design of the software on the EMP, that is
able to set the register values in the lpGbt that control the GPIO, can be discussed.
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4.2 Software Architecture of the lpGbt GPIO
A core design ideal of the LpGBtSw is to keep it as simple as possible. The software should, as best
as possible, only feature basic interfacing functionality, that future users can then use to build their
own software, which the users can then decide to shape more to their requirements. The GPIO
circuit is quite simple and hence it was possible to implement the software in this manner.
The GPIO software is split into a back-end, consisting of functions which are private to the Gpio
class in cpp, and a front-end, consisting of public user functions, that then call functions from the
back-end. As all functionality of the GPIOs is controlled by bit settings, most front-end functions
use get/set functions to retrieve or transmit register values. The register values are changed between
these two operations, by a bit changer function that picks out the bit corresponding to the target
pin, and sets its state to reflect the desired functionality.
The public user functions that were developed are listed in Table 4.3, together with their allowed
inputs and the GPIO Ports that they interface with.

User function GPIO Port Function inputs
readPin PIOin pinNumber

driveOutputPin PIOout pinNumber, voltageLevel
setPinDirection PIODir pinNumber, direction

setPinPullOption PIOPullEna pinNumber, pullState
setPinPullDirection PIOUpDown pinNumber, pullDirection

setOutputPinSlewRate PIODriveStrength pinNumber, driverStrength

Table 4.3: User functions developed to interface with the GPIO Ports.

In the table it can be seen that every user function takes the pinNumber variable as an input, which
is the number of the target GPIO pin. This variable is assigned to the class PinNumber, which
upon creation of the pinNumber variable creates the following member variables

pin, port, pinAdj. (4.1)

The PinNumber class also includes a check, that will throw an exception if the given pinNumber
does not corresponds to a physical pin, i.e., if it is not in the range (0, 15). The member variables in
(4.1) ensures that the correct register in the Port is picked and that the correct bit in this register is
changed, by saving the pinNumber to pin, the Port type (Low/High) to port and the bit position in
the correct register to pinAdj. A code snippet of the setPinDirection user function, which contains
all the discussed software architecture, can be seen in Figure 4.2.

Figure 4.2: Code snippet featuring the body of a front-end user function.

In the code snippet, it can be seen that a local port variable is first assigned with the value of a
"class getter" function that accesses the port variable of the PinNumber class. After that the value
of the register that controls the direction functionality of the target pin is fetched with a get()
function. Then the target bit is changed to match the direction that the user declared, and the
updated register value is written to the lpGbt with a set() function. The direction variable can be
interpreted as a bit by the changeBit() function, because it belongs to an enum class and thus is
related to an underlying number.

13
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The software also features a demonstrator functionality, which allows the user to test the lpGbt
functionality through the console.

4.2.1 GPIO Demonstrator
The demonstrator program allows a user to interface with the GPIO front-end functions. The user
is expected to develop further software on top of the provided GPIO functionality, hence a short
demonstration of how the front-end functions can be called was deemed useful. The demonstrator
can be run in a console by putting flags after the command to execute the program, as

./lpGbtGpio -a lpgbt-uio://emp_lpgbt_3 -p2 -d output -w high.

The flag parsing is handled by the program_options component of the <boost> library, which
looks for predefined flags in the input, and then saves both the flag and the following argument to
a variable map. The possible flags and arguments can be seen in Table 4.4.

Flag Shorthand Input(s) Functionality
--help -h none see Figure 4.3

--address -a 1-12 sets target lpGbt
--pin -p int sets target pin
--read -r none PIOin
--write -w low/high PIOout

--direction -d input/output PIODir
--slew -s low/high PIODriveStrength

--pullEnable none off/on PIOPullEna
--pullDirection none down/up PIOPullDir

Table 4.4: Possible flags and arguments for the GPIO demonstrator.

Using the demonstrator a user can set any GPIO functionality for any pin on any connected lpGbt.
The demonstrator has been made robust against invalid arguments and will print an error message
if a user inputs a wrong argument for the given functionality. The <boost> library comes with
build in error handling for the flags. The -h option also describes the allowed flags and arguments,
as can be seen in Figure 4.3.

Figure 4.3: Console output for the demonstrator --help option.

With the software presented, the test that were used to validate the softwares functionality can be
presented.

14



CHAPTER 4. GENERAL PURPOSE INPUT/OUTPUT

4.3 GPIO Testing
All functionality of the lpGbt is programmed by software, which the EMP interprets and translates
to commands for the lpGbt. Thus it must be ensured that the software works, meaning that the
commands affect the correct registers on the lpGbt, and also that the hardware works, meaning
that the setting of a register value does what it is supposed to do. Thus both software and hardware
tests are described. Not every functionality could be tested in both software and hardware, but
between the two methods all functionality was tested, aside from the pull-down resistor which could
not be tested due to lack of tools.

4.3.1 Software Tests
The objective of the software tests is both to see if the register mapping provided in the lpGbt manual
is correct and to gauge whether the setting of the registers activates the expected functionality. In
the software tests, a setting that affects the GPIO line for some pin is changed and the state of the
line is then read using PIOin.

Output Test

In this test the functionality of PIOout and PIODir was tested. First PIODir was set to output, and
it was observed that PIOout was able to correctly drive the line Low or High when the appropriate
bit was set in the register. Afterwards PIODir was set to input and PIOout was set to drive the
line High. The line was observed to be Low, which confirms that the output driver is correctly
disabled when a pin is configured as input.

Pull Resistor Test

In this test the functionality of the pull resistors were tested. First the pull resistors were enabled
and PIOUpDown was tested. It was discovered that the line was Low when the pull-up bit was set
and vice versa for the pull-down bit. After correspondence with the lpGbt support team, this was
concluded to be caused by an error in the manual, which at that time stated that

1’b0 ⇒ pull up, 1’b1 ⇒ pull down,

i.e. the bit map was inverted. The bit combinations stated in Table 4.2 are the corrected ones,
which both the manual and the lpGbtSw was updated to reflect.
Afterwards the pull resistors were disabled and it was observed that the line was Low when the
pull-up bit was set. This indicates that the functionality to disable the pull resistors works correctly.

Output Driver Priority Test

As the main functionality of the pull resistors is to counteract electromagnetic noise in floating
pins, it should be possible to drive the pins to the opposite state of an enabled pull resistor. This
was tested by enabling the pull resistors and then pulling the line Low while driving it High and
vice versa. In both cases it was found that the output driver could control the line despite the pull
resistor being enabled and trying to pull against the output driver, which is the intended behavior.

4.3.2 Hardware Tests
The objective of the hardware tests, is to observe that all the software implemented GPIO
functionality does what it promises to do, in the physical world. These tests require the use of
different tools that can probe the physical GPIO lines on the lpGbt. As the lpGbt itself is quite
small, all tests utilized a previously developed splitting board. This board was developed because
the layout of the EMCIs FMC is custom, and hence a mapping between this layout and a standard
FMC layout was required. The splitting board allows the the EMCI to be connected to an "AMD
Virtex 7 FPGA VC707 Evaluation Kit" board, which was also used in one of the tests. Furthermore,
the splitting board features external pins, which are large enough to connect cables to and probe
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with a multimeter, both features that proved useful for the GPIO testing. The full setup with the
EMCI connected to the VC707 through the splitting board, can be seen in Figure 4.4.

Figure 4.4: Full setup used for testing GPIOs of the lpGbt.

All functionality of the lpGbt GPIO module was tested, except the pull down resistor, as no tools
were available to test this functionality.

Output Test

To test the output functionality, the signals from the GPIO pins were mapped to the VC707 and
read back using Vivado. Vivado is a program that can translate VHDL code into a bitstream,
which can then be loaded into a processing unit that understands programmable logic. The
Field-Programmable Gate Array (FPGA) housed on the VC707 is such a processing unit. Vivado
also has a tool called the internal logic analyzer (ILA), which allows for including probes in the
bitstream, that tell the FPGA to monitor certain lines on the board and take a snapshot of these
lines when a preset condition, called a trigger, occurs.
For this test all the GPIO pins were monitored, and the trigger was set to be a bit transition on
pin 0. It was found that the correct output signal from any GPIO pin could be observed by the
VC707 (receiver), when the setting to drive a pin High was configured in the software.
A picture of the Vivado ILA can be seen in Figure 4.5. In the picture pins 5 and 11 have pre-
emptively been driven High and pin 0, the trigger pin, is being driven High, which is illustrated
with the appearance of the horizontal green line right after the vertical red ’trigger’ line.

Input Test

To test that inputs to the GPIO pins can be read by the lpGbt, the splitting board, which is the
board seen in the middle in Figure 4.4, was used in combination with a set of jumpers. A jumper is
a small piece of plastic with a metal plate inside, which can be placed between two adjacent pins to
provide a connection between them. Since the GPIO pins are mirrored to a set of bigger pins on
the splitting board, the jumpers can be used to carry signals between GPIO pins.
For this test half of the pins are configured as input pins and the other half as output pins, in such
a fashion that a jumper can connect each output to an input. Then the output pins are driven
High individually, and the input pins are being read through a console running on the EMP, to
confirm that the signals are received correctly and mapped to the correct registers. From the test it
was concluded that the read functionality works correctly. An example of this loopback test can be
seen in Figure 4.6, where headers are used to connect pins as

pin 0 ⇒ pin 1, pin 10 ⇒ pin 11.
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Figure 4.5: Screenshot of the output test in the Vivado ILA.

Figure 4.6: Example of loopback test.

In the upper screenshot of the Figure 4.6, it can be seen that pin 0 is first driven High by setting
the first bit of the "output pin voltage register" to 1. Then the values of all GPIO pins are checked
by reading a pin from each register in the Port, in this case pins 0 and 8, and it is seen that pin 1
has also become High. The same thing is done in the second picture, but for pins 10 and 11. Note
that pins 14 and 15 are always High, as they are being used internally on the EMCI to control the
FEASTMPs, as was mentioned in Section 2.1.

Pull-up Resistor Test

To test the pull-up resistor, the external pins of the splitting board were used again, this time to be
probed with a multimeter. This method was chosen instead of Vivado probing, because the lines
on the splitting board, that connects to the lpGbt GPIO pins, features pull-down resistors. These
somewhat counteracts the lpGbts pull-up resistors, resulting in an on-line voltage level smaller than
the 1.2V required for a signal to be considered High. However, the voltage level could be measured
with the multimeter and was large enough to be distinguishable from electrostatic noise.
When measuring the pins with the multimeter, a pin with an activated pull up resistor had a
voltage of about 0.272V, in contrast to a floating pin which fluctuated close to 0 with a maximum
observed deviation of +0.002V. The voltmeter was used to measure the effect of the pull-up resistor
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on all pins, and it was observed to function correctly. The usage of the multimeter can be seen in
Figure 4.7, where the readout of 0.272V is shown.

Figure 4.7: Using a multimeter to measure a pin with an active pull-up resistor.

Drive Strength Test

To test the drive strength of a pin, an oscilloscope was used. This tool is able to measure electrical
signals and sample them of a rate of 40G samples/second, which corresponds to one sample each
250ps. For this test the trigger condition on the oscilloscope was set to be a rising edge above
360mV, and the persistence setting, which allows for plotting several signals on top of each other,
was used.
The test was done by connecting the oscilloscope to a pin and then driving this pin High with both
normal and increased driving strength enabled. It was found that the driving strength functionality
worked correctly for all pins. An example of the output from the oscilloscope can be seen in
Figure 4.8. It can be seen that when using High driving strength the signal reaches the 1.2V target
faster, concretely around 2.5ns faster, than with normal driving strength. The signal with High
driving strength also overshoots the target voltage by around 500mV before dropping back down
towards the 1.2V target.
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Figure 4.8: Signals going HIGH with both Low and High driving strength, recorded by an
oscilloscope.
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5 | Inter-integrated Circuit

Inter-integrated Circuit (IIC or I2C) is a communication protocol, developed by NXP (previously
Philips) Semiconductors, that is used in many different electronics today, due to its flexibility
and simplicity. An I2C bus features a single half-duplex communication line that connects several
devices. Any device that follows the protocol can then ’clipped’ onto the I2C line, allowing it
to immediately communicate with other devices on the bus. This flexibility makes designing,
modifying and upgrading systems much easier. Furthermore, the standardized protocol alleviates
the designer from having to craft a custom communication protocol each time a board is made,
and the manufacturing of the PCB also becomes cheaper as the I2C bus, which consists of only 2
lines, minimizes the amount of interconnections on the PCBs [16, p. 3-5].
The LpGbt features an I2C-bus following the NXP standard. Thus this section will primarily be
based on the NXP I2C-bus specification manual [16].

The I2C-bus features two bi-directional lines, one for communication and the other for a synchronised
clock signal. These lines are called the serial data (SDA) and serial clock (SCL) lines, respectively.
The protocol requires all devices connected to the bus to act both as both senders and receivers, but
categorizes them into controllers and targets, historically called masters and slaves. The controller
devices initiates all data transfers and control the clock line. The target devices are only allowed to
answer when addressed. This addressing method is core to the I2C protocol, as it is exactly what
allows so many devices to be connected together. However, to understand the addressing, and any
data transfer on the bus, it first needs to be explained how the binary states are created in the
circuit.

5.1 Physical Layer

The lines on the I2C bus are serial and the SDA line is half-duplex, meaning that all messages has
to be split into bits that are sent on each clock cycle, and that only one message can be transmitted
at any time. Both lines are connected to a positive voltage source VDD through a pull-up resistor,
making the passive state of the lines High. The connection scheme for the devices on the bus
depends on the type of transistor used, so we will only discuss the scheme for NMOS transistors
here. In this scheme each device connects the lines to a GND through an NMOS transistor acting
as a switch. The switching is controlled inside the devices, allowing each device control to the lines
by pulling them low and releasing them high, independently. This method of creating outputs is
called open-drain [20, p. 5].
An illustration of the open drain connection can be seen in Figure 5.1. In the figure, some I2C
compatible device is shown in the inner square box. The SCL and SDA lines are connected to this
device through the simple circuit in the dashed square, consisting of an amplifier and a transistor
switch. Both lines are connected to such a circuit, respectively, which allows the device to pull
either line low by closing the switch, in turn creating a route from the the line to ground.
The main advantage of open-drain is that the line follows AND logic, since the line will always be
Low when any device pulls it Low. The I2C protocol utilizes this, by dictating that each controller
must release the SDA line if the state of the SDA does not match what the controller is currently
sending. The combination of this arbitration protocol, the wired AND connection and the soon to
be discussed Start/Stop conditions, allows for non-destructive bus interference. Thus the line is
able to run at full informational capacity when two devices tries to transmit simultaneously, as one
message is guaranteed to be sent unobstructed.
The wired AND connection is also used for the SCL line, but here the I2C protocol specifies that
the controllers must try to synchronize with the clock cycles on the SCL. This is done by having the
controllers that releases the clock first enter a wait state until the SCL goes High, at which point
all controllers in contention have synchronized their High clock period timers. The controller with
the shortest High period then determines when the SCL goes Low again. Thus when controllers
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Figure 5.1: Illustration of a device with an open-drain output connected to the I2C bus. Inspired
by [20, p. 5].

with different clock periods are in contention, the SCLs Low period is determined by the controller
with the longest clock low period and the SCLs High period by the controller with the shortest
High period. The SCL contention ends when a controller loses arbitration on the SDA, after which
it must release the SCL at the end of the current frame.
Another advantage of an open-drain connection is that it makes the connection from the line to a
device simple, which means that the load on the electronics is known and stable. [20, p 6] gives
an example of an undriven line with two devices that can both push and pull, and mentions that
a contention could potentially damage the devices. Such a push-pull output is sometimes used
by a serial peripheral interface (SPI), where an additional non-data line has to be dedicated to
arbitration.
With some understanding of the how the I2C bus works electrically, we can move onto the
communication protocol.

5.2 The I2C Protocol
The I2C specifies a simple protocol for communication on the bus, which is comprised of Start/Stop
conditions, device addresses, data frames and acknowledgements. The standard also suggests more
functionality, which individual implementations can decide to implement in addition to the base
functionality.

5.2.1 Start and Stop Conditions
Whenever a controller wants to communicate on the I2C bus, it has to take ownership of the bus
for a period of time. To do this the controller has to send a Start condition while the lines are
High, by pulling the SDA line Low and then subsequently the SCL line. When both lines are Low
the controller has ownership of the bus and can start transmitting the clock signal and the data
bits. After the controller has finished its communication, it sends a Stop condition by releasing the
SCL line High followed by the SDA line, i.e., in the opposite order of the Start condition. Both
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conditions are illustrated in Figure 5.2.

SDA

SCL

START STOP

Figure 5.2: Illustration of the Start and Stop conditions on the I2C lines.

In the special case when a controller needs to communicate with multiple targets, it has to do so
sequentially. To not lose ownership of the bus the controller can send another start condition, after
finishing its initial communication, by pulling the SDA low during a clock cycle instead of sending a
Stop condition. This operation is called a Repeated Start and allows the controller to immediately
communicate with another target. Otherwise all communication happens between the Start and
Stop conditions.

5.2.2 Address Frames
After a controller has ownership of the bus it can starts its communication. All communication on the
bus happens in 9-bit frames, which consists of 1 byte of communication data and 1 acknowledgement
(ACK) bit. The communication data is sent by the transmitter and the ACK is sent by the receiver.
Each bit of a frame has to be sent while the clock on the SCL is High, and the SDA must be stable
whenever the SCL is High. This is required as changes on the SDA while the SCL is High are
interpreted as Start or Stop conditions.
On the first clock cycle after a Start condition, the controller has to start transmissions of an
Address frame. Every device on the bus is associated with an address, which is usually set internally
in the registers of the device, that the device responds to. The addresses are 7 bits long, and the
address frame appends an 8th R/W bit which tells the target whether it should transmit or receive
data. It should be noted that the R/W bit vocabulary is designed w.r.t. the controller, meaning
that the target should receive data when receiving a write bit and vice versa for a read bit. This
discrepancy is illustrated in Table 5.1.

Frame vocabulary Target meaning bit
write (w) Receive 0
read (r) Transmit 1

Table 5.1: Meaning of read/write frame bits for the target.

The 9th bit is the acknowledgement. When a device registers it’s address being sent on the SDA
after a Start condition, it transmits an ACK. This communication happens in the opposite direction
of the addressing, thus the controller has to release the SDA line for 1 clock cycle, in which the target
can pull it Low. If the target fails to pull the SDA Low, it is seen as an not acknowledged (NACK)
bit and the controller concludes the communication with a Stop or Repeated Start condition.
All extra functionality that requires the I2C bus is also communicated using the address frame,
by reserving certain addresses to indicate that the functionality is to be used. The I2C standard
specifies a total of 16 addresses that can be reserved for additional functionality, all of which can
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be be found in [16, p. 16]. However, this functionality only works if the target devices are designed
with it in mind, allowing custom implementations to use the reserved addresses for other purposes.
One of the extra functionalities related to addressing is the ability to use extended addresses for
devices. This functionality works by reserving the address string (11110XX), as a bus code that
tells all devices that 10-bit addressing is being used. The full format of the 10-bit addressing mode
can be seen in Table 5.2.

Frame 1
Ext. Addr. call 2 MSB Write bit ACK

11110 XX 0 0

Frame 2
8 LSB ACK

XXXXXXXX 0

Table 5.2: Frame format for 10-bit addressing on the I2C bus.

From the table it can be seen that the 10-bit address of the target is split over 2 bytes, with most
of the first byte being used for protocol data. Note that the 8th bit is always a write bit (0). This
is because the R/W bit does not hold any information when using 10-bit addressing, but is instead
used as a redundant part of the frame. If the controller wants to write, it can start the transmission
of data right after the 2nd address frame. If it wants to read, it has to perform a Repeated Start
followed by a third frame, that is identical to Frame 1 in Table 5.2 with the exception that the
R/W bit is now a read bit (1). After this 3rd frame the targets starts its transmission.

5.2.3 Data Frames
After a controller has addressed a target, the transmitter can start transmission of data frames.
Each frame contains a byte of data and an ACK from the receiver. The I2C standard defines no
limit on the amount of frames transmitted, thus this should instead be determined by devices
participating in the communication. From the controllers side any communication is concluded by
a Stop or Repeated Start condition. However, in the case of the read operation, a NACK is first
transmitted to immidiately stop the target from continuing its transmission. From the targets side
communication can only be concluded by transmitting a NACK.
The conditions for concluding communication are important, because most I2C devices will try to
transmit all their available data bytes when receiving a read bit. In cases when the controller does
not need all the bytes, it can use the NACK after the last needed bit to stop the communication.
The I2C standard does not specify a way to R/W to a single register on a target device, but some
implementations do include this functionality, [see examples in 20, p. 11-13]. This is usually done
by letting the first data frame be a register pointer, and then continue with the standard writing
operation. In case the controller wants to read the register, the register pointer frame can be
followed by a Stop+Start or Repeated Start condition, after which the target will remember the set
register and transmits the registers data upon receiving another address frame with a read bit.
Functionality for using register pointers is also inlucded in the LpGbt [6, p. 109].

5.2.4 Bus Speed
The I2C-bus was initially limited to a rate of 100 kb/s, but this limit on rate has since been
increased. The new speeds has been quantized into the different modes shown in Table 5.3, which
are specified by the manual [16].

Mode Standard Fast Fast Plus High-speed Ultra Fast
Speed [kb/s] 100 400 1000 3400 5000

Table 5.3: Different speed modes of the I2C-bus.

All the speed modes are backwards compatible except the Ultra Fast mode, which is a unidirectional
write-only mode and hence does not use ACKs. The bus speed is usually set in the controllers internal
registers, which allows for a controller to communicate at different speeds with different devices. It
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should, however, be noted that the modes are not forward compatible, thus communicating above
the minimum speed limit of devices on the bus could result in undefined behavior. The issue of
some target devices not supporting the higher speed modes, can be solved by using multiple busses
or adding a bridge section to the bus, that can disconnect the slow devices when a high bus speed
is needed [16, p. 39].
The higher bus speed modes impose greater requirements on the bus lines and the controllers
electronics, due to the requirement of shorter rise time. They may also change the communication
protocol, as happens in High-speed mode which changes the bus Low state voltage to half the High
state voltage, as opposed to GND, and also removes arbitration and clock synchronization when
running at 3.4 Mb/s. Instead any High-speed transaction must be initiated by a the frame shown
in Table 5.4, which is sent in either Normal or Fast mode.

High-speed startup frame
Start condition Controller call Controller ID NACK

S 00001 XXX 1

Table 5.4: Frame that indicates the initialization of High-speed mode.

The controller code, consisting of the controller call and ID, uniquely determines which controller
wins an arbitration in case of bus contention, after which High-speed mode is enabled until the
controller transmits a Stop condition. Ultra fast mode also changes the protocol due to the
unidirectionality previously mentioned.
With the core concepts of the I2C bus explained, the software interface for the I2C circuit on LpGbt
can be presented.

5.3 LpGbt I2C Interface

The lpGbt features 3 I2C controllers, M0, M1 and M2, of which M2 is reserved for controlling
the VTRx+ connection on the EMCI. These controllers are related to a set of registers, some of
which are available to the lpGbt, and other which are internal to each controller. The I2C registers
available to the lpGbt are thus called external to distinguish them from the registers internal to
each controller.
The controllers can be controlled through their respective external command registers, in which
4 bits are used to give the controller one of 16 possible commands. The commands can tell the
controller to read or write to a target, or to read/write to its own internal registers. All writing
operations depends on the controllers external data registers, of which each controller has four
called Data0 - Data3.
When doing a single write, the controller will take the pull the data from the external Data0 register.
When doing a multibyte write, however, the controller will instead use the data in its internal
Databyte registers for transmission. This is done because each controller is capable of either reading
or writing up to 16 bytes before it has to drop control of the I2C-bus, which is more bytes than
there are external data registers. Hence data must be loaded sequentially into the the data registers,
and the controller told to pull this data into its internal Databyte registers inbetween each loading
iteration. When all the data has been pulled into the controllers internal registers, a multibyte
write command can be issued to make the controller begin the transmission.
For the read operation there are 17 external registers which the controller will store the data in.
Thus both the single- and multibyte operations only require a single command to the controller,
after which the data can be read from external registers.
Each controller also features an external address register, in which the target for an upcoming I2C
transaction is set. Hence the address of the desired target device must be loaded into this register,
for the master to correctly transmit data to the target.
C++ code has been written to handle most of these read/write operations. However, at the time
of writing it has not been possible to find or create a target device, that follows the I2C protocol.
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Hence it has not yet been possible to test and debug the code, so the implementation of the code
will not be discussed.
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6 | Conclusion

In this project CERN, its Atlas detector system and the idea of electronic interfaces for data com-
munication was discussed, as well as the EMP-EMCI system, an interface currently in development
at CERN. The GPIO and I2C systems on the lpGbt of the EMCI were explained, and software
was developed to configure these systems through the EMP. All functionality of the lpGbt GPIO
was implemented and tested. The core communication functionality of the I2C was implemented
but remains to be tested. In addition, some non-communication functionality of the I2C, such as
setting the rate of a controllers clock signal, also remain to be implemented.
For future work the full functionality of the I2C system should be implemented. Furthermore, the
lpGbt features settings related to systems smaller than GPIO and I2C which were not discussed in
this report. These settings should still be configurable by software on the EMP. As the internship
at CERN does not conclude with the turn-in of this report, most of this future work is expected to
be completed.
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A | Copyright of CERB Document
Server

All images from CERN used in this report, are used in an educational context and are provided
"as-is". Furthermore, CERN is credited as the source and a link is provided to a location where the
image can be found in the "Image references" bibliography. This use is in accordance with CERNs
terms, as stated on https://copyright.web.cern.ch/.
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