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Abstract

This thesis is a study of the progression models for
repeated measures (PMRMs) introduced in [Raket,
2022]. Data for the thesis is provided by Novo
Nordisk A/S and obtained from the Critical Path for
Alzheimer’s Disease database. The initial part of the
thesis is preliminary theory regarding mixed models
as well as a presentation of the PMRMs and the con-
ventionally used constrained longitudinal data anal-
ysis (cLDA) model. Furthermore, we present modi-
fications of the PMRMs, including the removal of a
correlation structure in the errors, as well as the ad-
dition of a random effect. Moreover, a way of imple-
menting the PMRMs in an analysis of heterogeneity
of treatment effect between subgroups is explored.
We conduct a simulation study, where the perfor-
mance of the PMRMs is examined in different scenar-
ios, and compared to each other as well as the cLDA
model. Here, we find that there are both pros and
cons of using the PMRMs, and extensions thereof,
compared to the cLDA model. Overall, while the
cLDA model offers robust performance and a con-
trolled type I error rate, PMRMs provide better in-
terpretability and higher statistical power in specific
scenarios, highlighting their potential applicability in
clinical trials.
Lastly, we present a way of implementing the PMRMs
in health economic modelling, utilising a Markov
Model and the assumption of a constant treatment
effect over time. Here, a brief overview of how they
can be used in a cost-effectiveness analysis is pre-
sented. The concluding elements of the thesis dis-
cuss the interpretability of the models’ estimates and
their applicability in health economic modelling and
decision-making.
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Nomenclature

The nomenclature describes several symbols that will be used within the thesis.

Abbreviations

AD Alzheimer’s Disease

ADAS-Cog Alzheimer’s Disease Assessment Scale – Cognitive Subscale

ADCS-ADL Alzheimer’s Disease Cooperative Study - Activities of Daily Living Inventory

ADCS-iADL Alzheimer’s Disease Cooperative Study - Instrumental Activities of Daily Living

CDR-SB Clinical Dementia Rating Sum of Boxes

CEA Cost-Effectiveness Analysis

cLDA Constrained Longitudinal Data Analysis

CPAD Critical Path for Alzheimer’s Disease

FDA U.S. Food and Drug Administration

HTA Health Technology Assessment

iADRS integrated Alzheimer’s Disease Ratin

ICER Incremental Cost-Effectiveness Ratio

LME Linear Mixed Effects

MCI Mild Cognitive Impairment

MMSE Mini-Mental State Examination

NC No Correlation

PDPMRM Proportional Reduction in Decline PMRM

PMRM Progression Model for Repeated Measures

PNLS Penalised Non-linear Least Squares

PSTPMRM Proportional Slowing of Disease Progression PMRM

QALY Quality-Adjusted Life Years

RI Random Intercept

RS Random Scaling Factor

TPMRM Time Based Changes in Disease Progression PMRM

Mathematics

det
(·) Determinant

∼̇ Approximately distributed as
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λ,δ,σ,τ Variance Parameters

β Fixed effects

ε Errors

Ψ= τ2
(
∆(δ)⊤∆(δ)

)−1
Covariance matrix of random effects

Σ=σ2Λ(λ) Covariance matrix of errors

M⊤ Matrix transpose

M−1 Matrix inverse

U Random effects

X Fixed effects design matrix

Z Random effects design matrix
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1 Introduction

Alzheimer’s disease, as the leading cause of dementia [Rasmussen and Langerman, 2019],
accounting for 60-80% of all cases, has become a topic of great interest in the last couple of
years. The National Institute on Aging was, in 2023, supporting 508 active clinical trials on
Alzheimer’s disease and other dementias, all aiming to significantly improve the treatment
for people with Alzheimer’s disease [National Institute on Aging, 2023b]. Of these 508 clinical
trials, 73 were pharmacological, whereas the remaining consists of non-pharmacological and
caregiving trials. It was previously thought that Alzheimer’s disease was a part of aging, but
this is not the conviction anymore. As of 2019, there were approximately 57 million people
living with Alzheimer’s disease or other dementias worldwide. The Institute for Health Metrics
and Evaluation estimates this number to grow to 153 million people by 2050 [Alzheimer’s
Disease International, 2022].

Alzheimer’s disease and other dementias are very present when looking at annual deaths,
as it is the seventh leading cause of death worldwide, where a third of all seniors die with it.
Furthermore, in high-income countries, it was the second leading cause of death in 2019,
causing 814 thousand deaths worldwide [World Health Organization, 2020]. Naturally, as
the number of people with Alzheimer’s disease or other dementias is expected to grow, the
number of deaths due to Alzheimer’s disease will also grow, unless the treatment which they
receive also progressively gets better.

Alzheimer’s disease is a neurodegenerative disease, which damages and possibly destroys
parts of the person’s nervous system. It does so progressively, beginning with the prodromal
stage, also being known as mild cognitive impairment, which is the stage wherein subjects
begin to experience symptoms. At this stage, someone might not be convinced that it is
Alzheimer’s disease, as the symptoms related hereto often are close to those associated with
aging. However, as the disease progresses and possibly leads to dementia, the symptoms get
more obvious. A person in the prodromal stage is still able to carry out their daily activities
without needing assistance. Whereas when the disease progresses, this individual might, for
example, have their driver’s license revoked due to the road safety being impacted, not only
for the individual but also those around them [National Institute on Aging, 2023a]. This also
means that as the disease progresses, the individual will slowly become less able to carry out
the same aforementioned daily activities, transferring increasing responsibility onto relatives
or the public system. Therefore, the cost of care often increases as the severity of the disease
progresses. Two videos which aid to help the public understand this pressure have been
created by the Alzheimer’s Society and are available on YouTube: https://www.youtube.com/
watch?v=TvKNTlY6uQ8 and https://www.youtube.com/watch?v=cKSGV-Zuu5M.

The severity of progressive diseases, such as Alzheimer’s disease, can be difficult to measure
as many factors might affect them. It has also become a big topic to find biological markers
for Alzheimer’s disease and other types of dementia, and determine how they can be used
to diagnose Alzheimer’s disease in the early stages. Examples of hallmarks of Alzheimer’s
disease are neurofibrillary tangles and amyloid plaques [National Institute on Aging, 2022],
however, many more are being investigated to determine their connection to the disease.
For example, p-tau217 has not yet been approved by the authorities but has shown to have
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performance metrics that rival the gold standard of amyloid plagues [Janelidze et al., 2022].
The neurofibrillary tangles form inside the brain cells due to the hyperphosphorylation of tau
protein. Usually, tau protein helps facilitate the neuron’s transport system. However, in the
case of neurofibrillary tangles, the tau proteins stick together. Once the neurofibrillary tangles
become large enough, they block the neuron’s transport system, which harms the synaptic
communication between neurons. Amyloid plaques are, as the name suggests, plaques of
protein fragments in the brain. Normally, these protein fragments are broken down, but in
the case of amyloid plaques, the amyloid (beta) protein accumulates to form hard plagues.
Two forms of this, beta-amyloid 40 and beta-amyloid 42, have been the main focus of many
Alzheimer’s disease trials as beta-amyloid 42 is thought to be toxic [National Institute on
Aging, 2017]. However, there is no biomarker that can single-handedly conclude at which
stage of the disease course the patient is. Therefore, many different cognitive assessment
scales based on tests and questionnaires are used to identify which stage of the disease the
patient is in. These scales are based upon different content areas such as memory, orientation,
judgement and problem solving, community affairs, home and hobbies, and personal care
[Mendez, 2021; Basun et al., 2006]. The scale then indicates at which of the following stages
the patients are; healthy, questionable dementia, mild dementia, moderate dementia, or
severe dementia.

These scales are also used when modelling the progression of the disease in clinical trials
and how a treatment affects this progression. The effect of a treatment depends, among
other things, on the type of treatment. Since a cure for Alzheimer’s disease does not exist, the
current practice is to treat the disease as effectively as possible given an individual’s severity.
The current treatments are either symptomatic- or disease-modifying treatments [Cummings
and Fox, 2017]. Symptomatic treatments do not affect the underlying disease but rather
the symptoms associated with the disease. As the treatment does not affect the underlying
disease, it does not affect the severity of the disease long-term, as seen in Figure 1.1. On
the contrary, disease-modifying treatments focus on the underlying disease and affect the
severity of the disease long-term, see Figure 1.1. Obviously, Figure 1.1 indicates that early
intervention with a disease-modifying treatment (or a combination of symptomatic- and
disease-modifying treatment) is the best possible strategy when dealing with Alzheimer’s
disease, as the individual’s cognitive function might be preserved for a longer time period
[Rasmussen and Langerman, 2019].

2
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FIGURE 1.1: Illustration demonstrating how symptomatic treatments, disease-modifying
treatments, or a combination of the two affect the progression of Alzheimer’s disease.

So far, multiple treatments for Alzheimer’s disease have been developed, and several more are
in development. In 2021, the first disease-modifying treatment, aducanemab, was approved
by U.S Food and Drug Administration (FDA). However, reimbursement was not granted,
leading to a poor uptake, and aducanemab was abandoned in 2024 [Joszt, 2024]. In 2023,
lecanemab was approved by FDA and was launched in the US in 2024 [United States Food
and Drug Administration, 2023]. Donanemab disclosed promising results from clinical trials
in 2023 and anticipates FDA approval after an advisory committee in June 2024. These three
treatments are all regarded as disease-modifying treatments that should slow the progression
of Alzheimer’s disease. Novo Nordisk is conducting two large randomised clinical trials
examining if semaglutide can be regarded a disease-modifying treatment [Atri et al., 2022].
The main readout will be in 2025.

As depicted in Figure 1.1, irrespective of the treatment administered, the disease tends to
progress over time, leading to a worsening of symptoms. As mentioned, this results in an
increased demand for assistance and higher associated costs. In 2019, the global cost of
dementia patients was $1.3 trillion, which is expected to more than double by 2030; $2.8
trillion [Pillidge and Hanschuh, 2024]. This prediction is based on both the cost of care and
that the amount of people living with Alzheimer’s disease or other dementias is increasing.
Thus, it would not only be beneficial to the people living with Alzheimer’s disease but also
the different global healthcare sectors and caregivers if an effective treatment was developed.
If a new treatment was developed it should be compared to the standard of care to determine
if it is more cost-effective.

Health economic modelling provides a framework for structured discussions around the
added value of a new treatment and is required in many healthcare systems around the world
when initiating discussions on reimbursability of new treatments [Myeloma Patients Europe,
2024]. It seeks to incorporate available evidence about the benefits and costs associated with a
new treatment versus comparators of interest. In the setting of clinical drug development, this
evidence will often come from clinical trials investigating a new treatment versus comparators.
The benefits are often found by modelling the treatment effect of the new treatment, which is

3
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the difference that the new treatment makes compared to placebo. This treatment effect can
then be compared to that of the comparators.

The treatment effect can be modelled with models such as linear mixed models, which have
especially gained popularity in the medicinal area as they allow subjects to exhibit slight
differences [Donohue et al., 2023]. The mixed models can both model the mean trajec-
tory of a group and the subject-specific trajectories, by including random effects such as
subject-specific intercepts. This allows more flexibility and is often better at describing the
variability in the data of a clinical trial than a standard linear model [Demidenko, 2013, Ch.
1]. However, linear mixed models restrict the behavior of the treatment effect of a treatment
to be a linear combination of effects on the outcome scale. Although, this might not be
sufficient in all cases. Hence, a new class of models [Raket, 2022] have recently been explored,
called progression models. These enable various treatment effect behaviors, and furthermore
extends the conventionally used categorical-time parametrisation into a continuous-time
framework. These progression models also introduces a relatively new aspect considered in
the Alzheimer’s disease area by using time saved as a treatment effect instead of determin-
ing the change outcome scale. This can contribute to a better understanding and clinical
meaningfulness of the treatment effect [Raket, 2022; Landhuis, 2024].

However, for the progression models to be used in a clinical trial instead of the standard
modelling practice, they should at least experience the same accuracy, both with respect
to the estimation- and prediction capabilities. Furthermore, to enable a fair and complete
comparison of two treatments, health economic models typically must apply a much longer
time horizon than seen in clinical trials. Currently, when conducting a trial for Alzheimer’s
disease, the trial’s duration if often not more than 18 months. However, since Alzheimer’s
disease is a relatively slow-progressing disease, this has the implication that many of the
trial’s subjects are not examined long enough to progress to severe Alzheimer’s disease. This
introduces an extrapolation problem, where statistical modelling assumptions, such as a
constant treatment effect over time, should be fulfilled. If this assumption is not met, it is
hard to justify which treatment effect should be expected long-term. Hence, the models
utilised should not only have great estimation accuracy, but should also be able to be used
for extrapolation in some way.

This thesis seeks to examine a new class of models, progression models for repeated measures,
across various scenarios, contrasting them with conventional models commonly employed
in clinical trials for assessing treatment effects. This should bring insight into the models’
shortcomings and strengths, to help assess their applicability in clinical trials and health
economic modelling.

4



2 Mixed Models

This chapter is based upon [Demidenko, 2013], [Jiang and Nguyen, 2021], and [Madsen and
Thyregod, 2010], unless stated otherwise.

The progression models will, as mentioned, be compared with one of the models which is
commonly used for modelling treatment effect. This model is a linear mixed model, and in
this chapter, the theory of mixed models will be presented. Alongside the theory, relevant
medical examples are provided to give a greater insight into why these methods are used,
and in which cases they are especially useful. This emphasis is due to the central focus of this
thesis, which examines clinical trial data for Alzheimer’s disease (AD). The chapter begins
by describing linear mixed models, and continues by expanding this to non-linear mixed
models.

2.1 Linear Mixed Models

Linear regression is one of many statistical methods used to model the relationship between

response- and explanatory variables. Let y = (
y1, . . . , yn

)⊤
be an n × 1 vector of response

variables. Linear regression then imposes a linear relationship between y and the explanatory
variables, gathered in an n×p design matrixX . The standard linear regression model is given
as

Y =Xβ+ε,

where β ∈Rp is a p ×1 vector of coefficients, also referred to as fixed effects. Furthermore, ε ∈
Rn is an n ×1 vector of independent normally distributed errors with mean 0 and covariance
σ2I .

One problem with the standard linear regression model is its inability to handle correlation in
the response variables. For example, when conducting a clinical trial, it is common to collect
measurements from a subject multiple times to track changes in their health status over
time. Naturally, this can create correlation in the response variables. Furthermore, this gives
a possible need for a model which can take subject-specific variations into account, since
subjects can respond differently to a treatment or other interventions. An extension of the
standard linear regression model is thus needed when dealing with such correlated data. This
can be done by introducing correlation in the errors and/or random effects. Mixed models,
also known as mixed effects models, incorporate random effects, which take correlation
between observations into account. Take the example of multiple measurements from
different subjects, in which random effects can account for the variability between subjects.
This can be done by, for example, including a subject-specific random intercept. Thus, as the
name of the mixed model suggests, it uses both the fixed effects as well as the random effects
to describe the relationship between the explanatory and response variables.

Similar to the standard linear regression model, the linear mixed model imposes a linear

relationship between the response- and explanatory variables. Let Y = (
Y1,Y2, . . . ,Yn

)⊤
be

5
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an n ×1 stochastic vector, with a realisation of the vector denoted as y = (
y1, y2, . . . , yn

)⊤
. A

general linear mixed model is given as

Y =Xβ+ZU +ε, (2.1)

whereX andZ are n ×p and n ×q design matrices, respectively. Furthermore, β ∈Rp is a
p ×1 vector of fixed effects, andU ∈ Rq is a q ×1 vector of random effects independent of
the n ×1 vector of errors ε ∈Rn . In the linear mixed model, the random effects have mean
0 and covariance Ψ

(
τ2

)
noted Ψ, whereas the errors have mean 0 and covariance Σ

(
σ2

)
noted Σ. These covariance matrices can be rewritten to simplify notation and can be used
to rewrite (2.1) such that the errors are uncorrelated. This could further ease the estimation
process. Assuming that Ψ is positive definite, there exists a precision factor ∆ (δ) noted ∆,

such thatΨ= τ2
(
∆⊤∆

)−1
, where∆ is parameterised by δ. Furthermore, the error’s covariance

matrix can be expressed asΣ=σ2Λ (λ), whereΛ (λ) notedΛ is assumed positive definite and
parameterised by λ. The parameter space of the vectorψ = (

σ2,τ2,δ,λ
)
, is given as

Θ= {
ψ :σ2 > 0,τ2 > 0,δ : z⊤Σz > 0,λ :x⊤Ψx> 0 | 0 ̸= z ∈Cq ,0 ̸=x ∈Cn}

.

In the following, this notation will only be used to ease some of the notation, as the estimation
process will be presented for the general case with correlated errors.

One type of a linear mixed model is the Gaussian linear mixed model, which gets its name
from the assumption of normality for both the random effects and errors. The assumption
of normality for the random effects and errors might not hold in practice; hence, such an
assumption should be verified before fitting a Gaussian linear mixed model. However, in
the remainder of this chapter it will be assumed that the random effects and errors follow a
normal distribution, that is

U ∼N(0,Ψ) and ε∼N(0,Σ) .

2.1.1 Linear Mixed Model for Repeated Measures

When describing how observations might be correlated, it was briefly touched upon that
subjects could be measured multiple times throughout a clinical trial. Take, for example, a
neurodegenerative disorder, such as AD, which, among other things, deteriorates the subject’s
nervous system over time. To accurately describe the progression of this type of disease, each
subject must be measured multiple times throughout the clinical trial. The following theory
is a special case of the aforementioned general linear mixed model. This special case allows
us to examine the model structure for each subject.

Let Yi =
(
Yi ,1, . . . ,Yi ,ni

)⊤
be an ni ×1 stochastic vector for a subject i , where i = 1, . . . , N for

N ∈N. If ni = n for all i , it is called a balanced design, as every subject has an equal number of
observations. Furthermore, letXi andZi be ni ×p and ni ×q design matrices, respectively,
for a subject i . A general linear mixed model for repeated measures for a subject i is then given
as

Yi =Xiβ+ZiUi +εi , (2.2)

whereβ ∈Rp is a p×1 vector of fixed effects. Furthermore,Ui ∈Rq is a q×1 vector of random
effects independent of the ni ×1 error vector εi ∈Rni . The random effectsUi ∼N

(
0,Ψ

(
τ2

))
6
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and errors εi ∼N
(
0,Σi

(
σ2

))
are further assumed to be independent for different i . Notice

that the covariance matrix for the errors now depend on the subject i , as indicated by the
index.

Example 2.1 demonstrates some of these concepts using orthodontic measurements over
time for several subjects.

Example 2.1: Orthodont I.
Consider a linear mixed model for repeated measures and the Orthodont data set from
the nlme package. Figure 2.2 illustrates the subject-specific evolution of the distance from
the pituitary gland to the pterygomaxillary fissure for the male subjects in the Orthodont
data set. Here, we have N = 16 subjects, each with ni = 4 observations.

20

24

28

32

8 10 12 14
Age

D
is

ta
nc

e

FIGURE 2.2: Orthodontic measurements for 16 male subjects at the ages 8, 10, 12, and 14.

The goal is to model the distance from the pituitary gland to the pterygomaxillary fissure.
This model will include fixed effects for the mean intercept and common slope, and
a subject-specific random intercept. In R this model would be expressed as distance
~ age + (1 | Subject), where (1 | Subject) is the syntax for a subject-specific

random intercept.

The linear mixed model for repeated measures, for subject i , is then given as in (2.2),
where Yi is a 4×1 vector,Xi a 4×2 matrix, β a 2×1 vector,Zi a 4×1 vector,Ui a 1×1
vector, and εi a 4×1 vector. Specifically, the design matrices, for subject i , are given as

X⊤
i =

[
1 1 1 1
8 10 12 14

]
and Z⊤

i = [
1 1 1 1

]
.

Additionally,Ψ= τ2 and Σi =σ2I .

We will return to this example in the following, once we have introduced how the fixed effects,
random effects, and the covariance parameters can be determined. The following section
will introduce the theory for this.

7
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2.2 Estimation of Linear Mixed Models

This section presents the estimation of the multiple parameters of the linear mixed model.
The estimation process differs from that of the linear regression model, as the random effects
in the linear mixed model affects the estimates. Additionally, it introduces yet another term
which should be estimated. Subsequent sections will cover the estimation of fixed effects
β, the covariance parametersψ, and the prediction of the random effectsU . The focus will
remain on the Gaussian linear mixed model. For information regarding the estimation of
non-Gaussian linear mixed models, see [Jiang and Nguyen, 2021, p. 17-34].

2.2.1 Estimation of Fixed Effects

Under the assumptions of normally distributed random effects and errors, it follows that Y
is marginally normally distributed with mean E

[
Y

]=Xβ and covariance Var
[
Y

]=V (
ψ

)=
ZΨZ⊤+Σ. Given that Y is marginally normally distributed, its likelihood function is given
as

L
(
β,ψ;y

)= 1

(2π)n/2
√

det
(
V

(
ψ

)) exp

(
−1

2

(
y−Xβ)⊤

V −1 (
ψ

)(
y−Xβ))

, (2.3)

and hence the log-likelihood function is given as

ℓ
(
β,ψ;y

)=−n

2
log

(
2π

)− 1

2

(
log

(
det

(
V

(
ψ

)))+ (
y−Xβ)⊤

V −1 (
ψ

)(
y−Xβ))

. (2.4)

Differentiating this expression with respect to the fixed effectsβ and equating it to zero yields
the maximum likelihood estimate (MLE) of the fixed effect, which is given as

β̂
(
ψ

)= (
X⊤V −1 (

ψ
)
X

)−1 (
X⊤V −1 (

ψ
)
y

)
, (2.5)

conditioned on the existence of the inverse of X⊤V −1
(
ψ

)
X . For the inverse to exist X

must be of full rank (rank
(
X

)= p). If this is not the case, [Jiang and Nguyen, 2021, p. 49-50]
proposes using the generalised inverse instead, but this will not be considered here.

If ψ is known, the estimate of the fixed effect in (2.5) is equivalent to the generalised least
squares (GLS) estimate. On the contrary, ifψ is not known, it has to be estimated, which is
the focus of the following section.

2.2.2 Estimation of Covariance Parameters

Ifψ is not known its MLE can be achieved by maximising the profile log-likelihood function

ℓ
(
ψ;y

)≈−1

2
log

(
det

(
V

(
ψ

)))− 1

2

(
y−Xβ̂ (

ψ
))⊤
V −1 (

ψ
)(
y−Xβ̂ (

ψ
))

(2.6)

using the estimate β̂ from (2.5). It is also possible to determine an explicit expression for the
estimates of σ2, τ2, δ, and λ by factorising one of them out of V . For σ2 this gives

V
(
ψ

)=σ2 (
Σ+φZ∆∆⊤Z⊤)=σ2V

(
φ,δ,λ

)
, (2.7)

8
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where φ= τ2/σ2. Reparameterising (2.6) with (2.7), differentiating (2.6) with respect to σ2,
and equating it to zero yields the MLE for σ2, which is given as

σ̂2
MLE

(
φ,δ,λ

)= 1

n

(
y−Xβ̂ (

φ,δ,λ
))⊤V−1 (

ϕ,δ,λ
)(
y−Xβ̂ (

φ,δ,λ
))

. (2.8)

This leaves the task of determining the parameters φ, δ, and λ, which is done by maximising
the profile log-likelihood function using the estimates of β and σ2 from (2.5) and (2.8),
respectively. The profile log-likelihood function for φ, δ, and λ is given as

ℓ
(
φ,δ,λ;y

)≈−1

2
log

(
det

(
σ̂2(φ,δ,λ)V

(
ϕ,δ,λ

)))− 1

2
σ̂−2(φ,δ,λ)nσ̂2(φ,δ,λ)

≡ n

2
log

(
σ̂2(φ,δ,λ)

)− 1

2
log

(
det

(
Λ+φ∆∆⊤Z⊤Z

))
.

A drawback of the ML method is that MLEs of variance parameters tend to be biased when n
is small. Take standard linear regression as an example where Y ∼N

(
Xβ,σ2I

)
. Then the

MLE of σ2, denoted σ̂2
MLE, is given as 1

n

(
y−Xβ)⊤ (

y−Xβ)
where

E
[
σ̂2

MLE

]= E[
1

n

(
y−Xβ)⊤ (

y−Xβ)]=σ2
(
1− n −p

n

)
,

and hence σ2 is in general underestimated. However, it also shows that when n is sufficiently
large, the bias becomes negligible.

Restricted Maximum Likelihood Estimation

One method of solving this drawback of the MLE is using what is called the restricted maxi-
mum likelihood (REML)-method, as it might be less biased for the estimates of the covariance
parametersψ. As n becomes sufficiently large, the REML estimate and MLE become almost
identical. Nevertheless, REML can be preferable for both small and large n in some cases
when it, for example, eliminates the bias completely. Returning to the example of the standard
linear regression, the REML estimate of σ2 is here not only less biased but unbiased, as

E
[
σ̂2

REML

]= E[
1

n −p

(
y−Xβ)⊤ (

y−Xβ)]=σ2.

Hence, using the REML estimate for the linear regression is preferable to the MLE for both
small and large n.

The way REML mitigates the bias that appears in the MLE is by making a linear transformation
of the data which eliminates the mean. LetA be an n×(n−p) matrix for n > p with its columns
spanning the orthogonal complement of span

(
X

)
such that A⊤X = 0. The distribution of

A⊤Y is therefore given as

A⊤Y ∼N
(
0,A⊤V

(
ψ

)
A

)
,

with a likelihood function given as

L
(
ψ;A⊤y

)= 1

(2π)(n−p)/2
√

det
(
A⊤V

(
ψ

)
A

) exp

(
−1

2

(
A⊤y

)⊤ (
A⊤V

(
ψ

)
A

)−1 (
A⊤y

))
.

9
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Then, using the same computations as before, the log-likelihood function is given as

ℓ
(
ψ;A⊤y

)=−n −p

2
log

(
2π

)− n −p

2
log

(
σ2)− 1

2

(
log

(
det

(
A⊤V

(
φ,δ,λ

)
A

))
+ σ−2 (

A⊤y
)⊤ (

A⊤V
(
φ,δ,λ

)
A

)−1 (
A⊤y

))
.

Differentiating this log-likelihood function with respect to σ2 and equating to zero yields the
REML estimate of σ2 is given as

σ̂2
REML

(
φ,δ,λ

)= 1

n −p

(
A⊤y

)⊤ (
A⊤V

(
φ,δ,λ

)
A

)−1 (
A⊤y

)
= 1

n −p

(
y−Xβ̂ (

φ,δ,λ
))⊤V−1 (

φ,δ,λ
)(
y−Xβ̂ (

φ,δ,λ
))

.
(2.9)

This can be used in a profile log-likelihood function together with (2.5) to estimate φ, δ, and
λ in a similar manner as for the MLEs. These are then inserted into (2.5) to find the REML
estimate of β.

When comparing the MLE and REML estimate for σ2, in (2.8) and (2.9), respectively, the only
difference is the denominator. The REML estimate has a denominator of n −p whilst the
MLE has a denominator of n, which is what makes the REML estimate less biased compared
to the MLE.

Both the ML and REML method will, in general, involve some numerical maximisation of
the profile log-likelihood function after eliminating some of the parameters, for example, β
and σ2. The maximisation of the profile likelihood function of the respective parameters will
in practice be performed iteratively, using an algorithm such as Newton-Raphson. A short
outline of this algorithm can be found in Section A.1.

2.2.3 Prediction of Random Effects

Given that β and ψ are known, or at the very least estimated, the random effects U can
be predicted. Naturally, the optimal predictor is desired. The optimal predictor ofU is the
predictor that minimises the mean square prediction error. Specifically, for a predictor ofU
given Y , f (Y ),

E
[(
U −E[

U |Y ])(
E
[
U |Y ]− f (Y )

)]= 0.

This implies that

E
[(
U − f (Y )

)2
]
= E

[(
U −E[

U |Y ])2
]
+E

[(
E
[
U |Y ]− f (Y )

)2
]
≥ E

[(
U −E[

U |Y ])2
]

.

It is thus sufficient to look at the conditional expectation E
[
U |Y ]

to determine the best
prediction of the random effects, where

E
[
U |Y ]= (

Cov
[
Y ,U

])⊤ (
Cov

[
Y ,Y

])−1 (
Y −E[

Y
])

= (
Cov

[
Xβ,U

]+ZCov
[
U ,U

]+Cov
[
ε,U

])⊤ (
Var

[
Y

])−1 (
Y −E[

Y
])

= (ZΨ)⊤V −1 (
ψ

)(
Y −Xβ)

.

Thus, the prediction of the random effects is given as

Û
(
ψ,β

)= (ZΨ)⊤V −1 (
ψ

)(
Y −Xβ)

. (2.10)

10
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Besides being the best predictor, it can also be seen that it is linear and that E
[
Û

]= E[
U

]=
0, and hence this predictor is the best linear unbiased predictor. When β and ψ are not
known, their estimates from the previous sections may be used. It should also be noted that
depending on whether the MLE or REML estimate forψ is used, the predictions may vary
between the two methods. An example of this can be seen in Example 2.3.

Example 2.3: Orthodont II.
Continuing on Example 2.1 and using the estimation methods described above, the
estimates for the fixed effects and covariance parameters are

β1 ≈ 16.34, β2 ≈ 0.78,

τ̂2
MLE ≈ 2.43, τ̂2

REML ≈ 2.66,

σ̂2
MLE ≈ 2.76, σ̂2

REML ≈ 2.82.

This example also shows that the MLE and REML estimates for the variances do not
coincide. The different estimates also provide different predictions of the random effects,
as

ÛMLE =
[−1.61 −1.61 −1.30 −1.10 −0.99 −0.89 −0.59 −0.59
−0.59 −0.08 0.13 0.74 1.15 1.35 2.27 3.69

]
ÛREML =

[−1.63 −1.63 −1.32 −1.11 −1.01 −0.91 −0.60 −0.60
−0.60 −0.08 0.13 0.75 1.16 1.37 2.30 3.75

]
,

where both are 1×16 vectors representing
(
U1,U2, . . . ,U16

)
, despite their appearance.

The difference, however, is below or equal to 0.06 for all of the predictions, presumably
due to the small difference in the estimates of τ2 and σ2.

2.3 Non-Linear Mixed Models

This section is, besides the stated references in the beginning of the chapter, based upon
[Pinheiro and Bates, 2000] and [Lindstrom and Bates, 1990].

The linear mixed model described in Section 2.1 is a special case of the broader set of mixed
models, called non-linear mixed models. Unlike the linear mixed models, the relationship
between the explanatory- and response variables is not required to be linear, as the name
suggests. This extends the applicability of mixed models to data such as growth data, which
often follows a logistic growth curve instead of a linear relation.

Let Y = (
Y1, . . . ,Yn

)⊤
be an n ×1 stochastic vector. Furthermore, let ε ∈Rn be an n ×1 vector

of errors with mean 0 and n ×n covariance matrix Σ(σ2) noted Σ. A non-linear mixed model
is often presented as a two-stage model, where the first stage is given by

Y = g (
η

)+ε, (2.11)

where g is an n×1 non-linear differentiable vector function. g
(
η

)
will henceforth be denoted

as g to simplify the following expressions. The second stage, η, is given as

η =Xβ+ZU . (2.12)

11
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Here,X andZ are design matrices with dimensions n ×p and n ×q , respectively. Moreover,
β ∈Rp is a p×1 vector of fixed effects andU ∈Rq is a q×1 vector of random effects. Addition-
ally, it is assumed thatU and ε are independent. As in the linear case,U has mean 0 and q×q
covariance matrix Ψ(τ2) noted Ψ. Furthermore, Ψ is assumed positive definite, such that
there exists a precision factor∆ (δ) =∆, meaningΨ= τ2

(
∆⊤∆

)−1
, where∆ is parameterised

by δ. Moreover, the error’s covariance matrix can be expressed as Σ=σ2Λ (λ), where Λ (λ)
noted Λ is assumed positive definite and parameterised by λ. The parameter space of the
vectorψ = (

σ2,τ2,δ,λ
)
, is given as

Θ= {
ψ :σ2 > 0,τ2 > 0,δ : z⊤Σz > 0,λ :x⊤Ψx> 0 | 0 ̸= z ∈Cq ,0 ̸=x ∈Cn}

.

2.4 Estimation of Non-linear Mixed Models

The non-linearity in the model complicates the estimation process. This can be seen by
looking at the likelihood function

L
(
β,ψ;y

)= ∫
Rq

L
(
β,ψ;y,u

)
du

=
∫
Rq

fn(y |u,β,Σ) fq (u |Ψ)du,

for the conditional density function, fn , of Y given u, and the marginal distribution, fq , of
U . Because of the non-linear relationship between the response variable and the random
effects, the random effects cannot be factored out. This is also evident in the specific instance
wherein the random effects and errors are assumed Gaussian.

For the non-linear mixed model under the Gaussian assumption, it follows that

Y |U ∼N
(
g,Σ

)
.

Thus, the likelihood function is given as

L(β,ψ;y) =
∫
Rq

1

(2π)n/2
√

det
(
Σ

) exp

(
−1

2

(
y−g)⊤

Σ−1 (
y−g))

1

(2π)q/2
√

det
(
Ψ

) exp

(
−1

2
u⊤Ψ−1u

)
du,

(2.13)

and the log-likelihood function as

ℓ
(
β,ψ,y

)= log

(∫
Rq

(2π)−(n+q)/2 det
(
Σ

)−1/2
det

(
Ψ

)−1/2

exp

(
−1

2

((
y−g)⊤ (Σ)−1 (

y−g)+u⊤(Ψ)−1u
))

du

)
∝−1

2

(
log

(
det

(
Ψ

))+ log
(
det

(
Σ

)))
+ log

(∫
Rq

exp

(
−1

2

((
y−g)⊤ (Σ)−1 (

y−g)+u⊤(Ψ)−1u
))

du

)
.

(2.14)

Hence, even though the non-linear mixed model extends the applicability of mixed models,
the inclusion of random effects in a non-linear framework typically results in the absence of

12
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a closed-form expression for the likelihood function. This is also true under the Gaussian
assumption, which this thesis addresses, as seen above. Because of this more complex struc-
ture, the estimation of the parameters in the non-linear mixed model is more complicated,
and therefore, multiple different approximation methods for approximating the likelihood
function have been developed. Some of these approximation methods will be described in
the following section.

2.5 Approximation Methods

Before delving into a more detailed description of some of these approximation methods,
some assumptions are presented and the model is rewritten.

Similar to before, it is assumed that the random effects and errors are normally distributed.
WithΛ assumed to be positive definite, the square rootΛ1/2 and its inverse exist such that it
is possible to expressΛ as

Λ=Λ⊤/2Λ1/2 and Λ−1 =Λ−1/2Λ−⊤/2.

By making a linear transformation withΛ−⊤/2, the model can be rewritten with

Y ∗ = g∗ (
η

)+ε∗ =Λ−⊤/2g(η)+Λ−⊤/2ε (2.15)

as the first stage and (2.12) as the second stage, where the random effects and errors are
distributed as

U ∼N(0,Ψ) and ε∗ ∼N
(
0,σ2I

)
.

Thereby, there is no heteroscedasticity or correlation in the errors.

Since dy∗ = det
(
Λ

)−1/2
dy the log-likelihood function is given as

ℓ(β,ψ;y) = log
(

fn
(
y;β,ψ

))
= log

(
fn

(
y∗;β,ψ

))− 1

2
log

(
det

(
Λ

))
= ℓ(β,ψ;y∗)− 1

2
log

(
det

(
Λ

))
.

(2.16)

Thus, it is sufficient to approximate ℓ(β,ψ;y∗). The following approximation methods are
based on (2.13) and (2.14) with y =y∗, g = g∗, and Σ=σ2I .

2.5.1 Lindstrom and Bates Algorithm

One approximation method is called the Lindstrom and Bates algorithm [Lindstrom and
Bates, 1990]. This algorithm estimates the likelihood function by alternating between two
steps. The first step is called the penalised non-linear least squares (PNLS) step. In this step,
the fixed- and the random effects for the non-linear mixed-effects model are estimated and
predicted, respectively. The second step, called the linear mixed effects (LME) step, is used to
estimate the covariance parameters,ψ.

13
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The PNLS Step

In the PNLS step, the fixed- and random effects are estimated for some fixed ψ, thus only
terms in the log-likelihood function dependent on either the fixed- or random effects need
consideration. That is,

r
(
β,u,ψ

)= 1

σ2

(
y∗−g∗ (

β,u
))⊤ (

y∗−g∗ (
β,u

))+ 1

τ2
u⊤∆⊤∆u. (2.17)

Here, g∗
(
β,u

)
is used instead of g∗

(
η

)
to emphasise g∗’s dependence on the fixed- and

random effects in the model. Since σ2 and τ2 are fixed and positive, it is only necessary to
consider

h
(
β,u

)= (
y∗−g∗ (

β,u
))⊤ (

y∗−g∗ (
β,u

))+u⊤∆⊤∆u.

By minimising h with respect to β and u, the log-likelihood function, ℓ
(
β,ψ;y∗)

, will be
maximised [Wang, 2015, p. 5358]. Thus, the fixed- and random effects are estimated by
minimising the penalised non-linear least squares with respect to β and u. That is,

min
β,u

{∥∥y∗−g∗ (
β,u

)∥∥2 +∥∥∆u∥∥2
}

. (2.18)

For this minimisation problem, the Gauss-Newton algorithm is often employed, which
extends the Newton-Raphson algorithm. This involves first rewritingh such that the objective
function to be minimised becomes

O (Γ) = ∥∥ỹ∗− g̃∗ (Γ)
∥∥2

(2.19)

where

ỹ∗ =
(
y∗

0

)
, g̃∗ (Γ) =

(
g∗ (Γ)
∆u

)
, and Γ= (

β,u
)

The difference between the Newton-Raphson and Gauss-Newton algorithm is that the latter
uses an approximation of the Hessian employed in Newton-Raphson algorithm. In the
Newton-Raphson algorithm the first and second derivative with respect to Γ, given as

O′ (Γ) =−2g̃∗′ (Γ)⊤
(
ỹ∗− g̃∗ (Γ)

)
O′′ (Γ) =H (Γ) =−2g̃∗′′ (Γ)⊤

(
ỹ∗− g̃∗ (Γ)

)+2g̃∗′ (Γ)⊤ g̃∗′ (Γ) ,
(2.20)

would be used to update the parameters as presented in Section A.1. The Gauss-Newton
algorithm instead utilises the expected value of the first term in the second derivative being
zero. Hence, making the approximation

O′′ (Γ) ≈ 2g̃∗′ (Γ)⊤ g̃∗′ (Γ) ,

such that for some current estimate of the random- and fixed effects, Γ̂old, the new estimate
is given as

Γ̂new = Γ̂old −
(
g̃∗′ (Γ)⊤ g̃∗′ (Γ)

)−1 (−g̃∗′ (Γ)⊤
(
ỹ∗− g̃∗ (Γ)

))
.

Hence, it avoids the computation of the second derivative in order to update its estimates.

Once the fixed- and random effects are estimated,ψ is then estimated in the LME step.
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The LME Step

The goal of the LME step is to approximate the log-likelihood function for y∗ by approximat-
ing the conditional distribution of Y ∗ given u. This involves approximating the residuals of
the model around the current estimates of β andU , denoted as β̂ and û, respectively. The
notation

Ŵ = ∂g∗

∂β

∣∣∣∣
β̂,û

and Ẑ = ∂g∗

∂u

∣∣∣∣
β̂,û

will in the following be used to ease notation.

By employing a first-order Taylor series expansion of g∗, the residuals are approximately
given as

y∗−g∗(β,u) ≈y∗−
(
g∗(β̂,û)+Ŵβ−Ŵ β̂+ Ẑu− Ẑû

)
.

From this approximation it follows that

y∗−g∗ (
β̂,û

)−Ŵβ+Ŵ β̂− Ẑu+ Ẑû |U ∼̇ N
(
0,σ2I

)
,

which implies

y∗ |U ∼̇ N
(
g∗

(
β̂,û

)+Ŵβ−Ŵ β̂+ Ẑu− Ẑû,σ2I
)

.

Hence, the marginal distribution of y∗ can be approximated, using the above and the distri-
bution ofU , as

y∗ ∼̇N
(
g∗(β̂,û)+Ŵβ−Ŵ β̂+ Ẑû,σ2I + ẐΨẐ⊤

)
.

Consequently, the approximation of the log-likelihood function is given as

ℓ
(
β,ψ;y∗)≈−n

2
log

(
2π

)− 1

2

(
log

(
det

(
Q

))+ (
ŵ−Ŵβ

)⊤
Q−1

(
ŵ−Ŵβ

))
,

where

ŵ =y∗−g∗ (
β̂,û

)+Ŵ β̂+ Ẑû
Q=σ2I + ẐΨẐ⊤.

Thereby, the problem has been reduced to a linear mixed model with response vector ŵ and
design matrices Ŵ and Ẑ. Methods outlined in Section 2.2 can therefore be used to estimate
the parameters.

It is worth noting that to maximise ℓ
(
β,ψ;y

)
not only ℓ

(
β,ψ;y∗)

but also −1
2 log

(
det

(
Λ

))
,

seen in (2.16), should be maximised. This will affect the methods outlined in Section 2.2
when estimating δ.

2.5.2 Laplace Approximation

This section is based upon [Wang, 2015].

In Bayesian inference, Laplacian approximations are often utilised to estimate marginal
posterior densities. However, they can also be used to approximate integrals such as those
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presented in the likelihood function for the non-linear mixed models. The Laplace approxi-
mation is based on an approximation of r, defined in (2.17).

Let û be a maximiser of r, that is

û= argmax
U

r
(
β,u,ψ

)
.

Then, the second-order Taylor series expansion around Û is given as

r
(
β,u,ψ

)≈ r (
β,û,ψ

)+ 1

2
(u− û)⊤r′′

(
β,û,ψ

)
(u− û) .

This follows from the assumption that ûmaximises r, implying that r′
(
β,û,ψ

)= 0. Further-
more,

∂r
(
β,u,ψ

)
∂u

= r′ (β,u,ψ
)=−2

(
1

σ2
g∗′

(
β,u

)⊤ (
y∗−g∗ (

β,u
))− 1

τ2
∆⊤∆u

)
,

∂2r
(
β,u,ψ

)
∂u∂u⊤ = r′′ (β,u,ψ

)=−2

(
1

σ2
g∗′′

(
β,u

)⊤ (
y∗−g∗ (

β,u
))

− 1

σ2
g∗′

(
β,u

)⊤
g∗′

(
β,u

)− 1

τ2
∆⊤∆

)
.

It should be noted that the term involving g∗′′ in r′′ in general is negligible in comparison to
the impact of the term involving g∗′ at û [Bates and Watts, 1980]. Therefore,

r′′
(
β,u,ψ

)=̃G(
β,u,ψ

)= 2

(
g∗′

(
β,u

)⊤ (
σ2I

)−1
g∗′

(
β,u

)+ 1

τ2
∆⊤∆

)
.

Using the above approximation of r and the notation 1
σ2I = Σ−1 and 1

τ2∆
⊤∆ = Ψ−1, the

log-likelihood function in (2.14) can be rewritten as

ℓ
(
β,ψ,y

)=−1

2

(
log

(
det

(
Ψ

))+ log
(
det

(
Σ

)))+ log

(∫
Rq

exp

(
−1

2
r

(
β,u,ψ

))
du

)
≈−1

2

(
log

(
det

(
Ψ

))+ log
(
det

(
Σ

)))+ log

(
exp

(
−1

2
r

(
β,û,ψ

)))
+ log

(∫
Rq

exp

(
−1

4

(
(u− û)⊤r′′

(
β,û,ψ

)
(u− û)

))
du

)
∝−1

2

(
log

(
det

(
Ψ

))+ log
(
det

(
Σ

))− log

(
det

(
1

2
G

(
β,û,ψ

)))
+ (
y∗−g∗ (

β,û
))⊤ (Σ)−1 (

y∗−g∗ (
β,û

))+ û⊤(Ψ)−1û
)

Following the same approach as in Section 2.2, we can estimate some of the parameters by
differentiating with respect to this parameter and equating to zero, whilst the remaining pa-
rameters can be estimated using the profile likelihood function of the respective parameters.

The Laplace approximation generally provides more accurate estimates than the Lindstrom
and Bates algorithm. This is due to the LME step using an expansion around both the esti-
mated fixed- and random effects, whereas the Laplace approximation only uses an expansion
around the random effects. However, the Laplace approximation is usually more computa-
tionally expensive than the Lindstrom and Bates algorithm [Pinheiro and Bates, 2000, p. 319]
and [Wang, 2015, p. 5375].
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Another approximation method is the Adaptive Gaussian Quadrature approximation, which
Laplace approximation is a special case of. The Adaptive Gaussian Quadrature approximation
can be made arbitrarily accurate by increasing the number of quadrature points. Quadrature
points, are points wherein the integrand is evaluated. Here, one quadrature point corresponds
to the Laplace approximation, as we only evaluate it in û. Each quadrature point has an
associated weight. The associated weight determines how much the integrand evaluated in
the quadrature point contributes to the overall approximation. Adaptive Gaussian Quadrature
approximation has not yet been implemented in any R-package for non-linear mixed models,
and will hence not be elaborated further upon. For more information regarding Adaptive
Gaussian Quadrature see [Pinheiro and Bates, 2000, p. 319-322]. Both Laplace approximation
and the Lindstrom and Bates algorithm has been implemented in the packages lme4 and
nlme, respectively.

2.6 An Extended Non-linear Regression Model

In both the linear- and nonlinear mixed model the correlation in the response variable can
be captured by the correlation in the errors and/or by the random effects. However, in some
cases the inclusion of one of these is enough to capture the correlation in the response
variable. If only including the random effects, the estimation process in Section 2.2 and
Section 2.4 still applies with Σ=σ2I . Given that we do not include random effects, but only
correlation in the errors, the estimation process changes. This will be the focus of this section.
This type of model can either be seen as a simple version of the non-linear mixed model
or as an extension of a non-linear regression model with uncorrelated errors, and is called
an extended non-linear regression model. Since there are no random effects, a closed-form
expression for the log-likelihood function can be obtained, simplifying the estimation process.
The model is defined by the following two stages

Y = g (
η

)+ε,

η =Xβ,
(2.21)

where g is an n×1 non-linear differentiable vector function and ε ∈Rn is an n×1 error vector
with mean0 and n×n covariance matrixσ2Λ(λ). Here,X is an n×p design matrix andβ ∈Rp

is a p ×1 vector of fixed effects. Lastly,Λ is assumed positive definite and parameterised by a
fixed set of parameters λ. Using the same transformation as in (2.15), it is possible to rewrite
(2.21) as

Y ∗ = g∗ (
η

)+ε∗,

η =Xβ,

where ε∗ is a error vector with mean 0 and covariance matrix σ2I . Assuming normally
distributed errors, it follows that

Y ∗ ∼N
(
g∗

(
η

)
,σ2I

)
and hence it follows from (2.16) that the log-likelihood function is given as

ℓ
(
β,σ2,λ;y

)=−1

2

(
n log

(
2π

)+n log
(
σ2)+ log

(
det

(
Λ

))+ ∥∥y∗−g∗ (
β

)∥∥2

σ2

)
,
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where g∗
(
η

)
is noted g∗

(
β

)
, to allude g∗’s dependency on β. By differentiating with respect

to σ2 and equating to zero, the estimate of σ2 given λ and β is

σ̂2 =
∥∥y∗−g∗(β)

∥∥2

n
.

This gives the following profile log-likelihood function using σ̂2

ℓ
(
β,λ;y

)=−1

2

(
n

(
log

(
2π

n

)
+1

)
+ log

(
det

(
Λ

))+n log
(∥∥y∗−g∗ (

β
)∥∥2

))
, (2.22)

which should be maximised with respect toβ and λ to obtain the MLEs of the two parameters.
This is achieved by first estimating β given an estimate of λ, which from (2.22) can be
determined by

β̂ = argmin
β

∥∥y∗−g∗ (
β

)∥∥2
.

This problem can be solved using the Gauss-Newton algorithm described previously. Sub-
sequently, this estimate can then be used to update the estimate of λ. This process iterates
until some convergence criterion is satisfied.

This also shows that the estimation process is somewhat less computational expensive
compared to that of the non-linear mixed model.

2.7 Variance and Correlation Structures of the Errors

As mentioned, it is possible to include both heteroskedasticity and correlation in the errors
in both the mixed models and extended non-linear regression models. Conveniently, it is
possible to decompose the covariance matrix of the errors such that the correlation and
variance can be modelled separately. The covariance matrix of the errors can be decomposed
as

Σ=σ2V CV ,

where V is an n ×n diagonal matrix andC is an n ×n correlation matrix. Hence,

Var
[
ε j

]=σ2(V j , j )2 and Cor
[
ε j ,εk

]=C j ,k ,

allowing for the variance and correlation to be modeled separately for j ,k = 1, . . . ,n.

2.7.1 Variance

The variance structure of the errors can be modelled by a variance function as

Var
[
ε j

]=σ2z2(v j ,ω), j = 1, . . .n.

Here, the variance function z is dependent on both the variance covariate vector v j and the
variance parametersω. The variance function z is assumed continuous inω. In R multiple
classes of variance functions are defined, each with two main arguments, value and form, for
specifyingω and v j , respectively. Two examples of classes of variance functions are varFixed
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and varIdent. varFixed only depends on value, and can be used when the variance of ε j

is known up to a proportionality constant. For example, the variance could depend on the
covariate "age" as

Var
[
ε j

]=σ2√age j
2.

Thus, the variance function would be the square root of age j . Contrary, varIdent also uses
the argument form. It is generally used for modelling different variances for some set of
stratification variables s ∈ {1,2, . . .S} such that

Var
[
ε j

]=σ2ω2
s j

. (2.23)

Here, ω1 = 1, and ωl , l = 2, . . . ,S, represent the ratio between the standard deviation of sl

and s1. For example, one can choose form = ~ 1 | Sex, indicating that the variance varies
depending on the gender in a data set. A more detailed description of these two classes
of variance functions and examples of others can be found in [Pinheiro and Bates, 2000, p.
208-214].

2.7.2 Correlation

Correlation structures are often used to describe dependencies between observations in
either time-series- or spatial data, indexed by a time variable or spacial location vector. To
describe a general correlation structure, assume that ε j is associated with a position vector
p j . Assuming that the correlation between ε j and εk only depends on the distance between
their corresponding position vectors, d

(
p j ,pk

)
, the correlation between them is given as

Cor
[
ε j ,εk

]= c
(
d

(
p j ,pk

)
,ρ

)
.

Here, ρ represents a correlation parameter vector and c a correlation function. Furthermore,
c is defined to take values in the interval [−1,1], continuous in ρ, and c

(
0,ρ

)= 1.

Correlation structures can be split into two classes; serial and spatial. This thesis will only
include the description of serial correlation structures due to their relevance in this thesis.

Serial correlation structures are used for data observed over time, and in this setup, c is the
autocorrelation function. Furthermore, the autocorrelation function only depends on the
one-dimensional positions p j , pk in this setup through their absolute difference.

As for the variance structures, some of the most commonly used serial- and spatial correlation
structures are implemented in R, which have two main arguments, value and form, for
defining the correlation parameters and position vector. Two of the correlation structures that
can be implemented are corCompSymm and corSymm. The complexity of these two structures
vary significantly. corCompSymm represents a compound symmetry, which means equal
correlation between the errors

Cor
[
ε j ,εk

]= c(i ,ρ) = ρ, i = | j −k|,∀ j ̸= k, j ,k = 1,2, . . . ,n.

Contrarily, corSymm assumes that all correlations are represented by a different parameter

c
(
i ,ρ

)= ρi , i = | j −k| j ,k = 1,2, . . . ,n. (2.24)

Whereas corCompSymm often assumes a too simple correlation structure, corSymm often leads
to overparameterisation. Hence, there are advantages and disadvantages to using both. It
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is also possible to include autoregressive–moving average correlation structures and, as
mentioned, different spatial correlation structures. More information about corCompSymm,
corSymm, and other correlation structures can be found in [Pinheiro and Bates, 2000, p.
227-239].

In summary, this chapter has established a theoretical framework encompassing both linear-
and non-linear mixed models. The subsequent chapter will build upon this foundation by
introducing the specific models designated for our simulation study, which closely aligns
with those presented in this chapter.
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3 Modelling the Treatment Effect

This chapter is based upon [Raket, 2022] and [Donohue et al., 2023], unless stated otherwise.

When companies test a new treatment for a specific disease, they are interested in how well
the treatment affects the patient, either compared to placebo or another already existing
treatment. This effect of a treatment is what is referred to as a treatment effect. There are
different ways of modelling this treatment effect, such as with a constrained longitudinal data
analysis (cLDA) model or MMRM models. Here, MMRM refers to a mixed model for repeated
measures where specific covariates are included. However, in recent years, another method
of measuring the treatment effect has been explored, called progression models for repeated
measures (PMRMs). This chapter will present the commonly used cLDA model, the PMRMs,
and how they differently model the treatment effect. Specifically, it will focus on some of the
PMRMs presented in [Raket, 2022]. The structure of the models presented in this chapter
resemble extended non-linear regression models for repeated measures with N subjects, as
the random effects are not explicitly given. However, as will be explored later, random effects
can be added to the models. The models that will be presented are based on the assumption
that the subjects are split into two groups: placebo (i ∈ Iplacebo) and active (i ∈ Iactive), where
Iplacebo ∩Iactive =;. These models will afterward be extended by assuming that the subjects
are split into four groups. Lastly, this thesis focuses on a balanced design, where all subjects
have the same amount of visits, j = 0,1, . . . ,n. However, the models can be extended to an
unbalanced design, see [Donohue et al., 2023]. Here, j = 0 refers to baseline, which in a
clinical trial is the initial measurement or status of the subject’s health or condition just prior
to the intervention.

3.1 Constrained Longitudinal Data Analysis Model

The cLDA model and MMRM are quite similar since they are both linear mixed models for
repeated measures, and both use visit and the visit-by-treatment as covariates. The MMRM
models the change from baseline, and the analysis involves adjusting for baseline values in
each treatment group. Contrarily, the cLDA model considers baseline values as a dependent
variable, which is equivalent across the treatment groups - the groups are assumed to have
same mean baseline. Furthermore, cLDA models are shown to have greater statistical power,
compared to the MMRM, given the same sample size, and are also more robust to missing
data, and will hence be used [Liu et al., 2009; Lu, 2010].

Considering no explicit random effects, the cLDA model, for subject i , is given as

Yi =Xiβ+εi , (3.1)

with design matrix Xi and fixed effects vector β = (
β0,β1, . . . ,βn ,ν1, . . . ,νn

)⊤. Hence, at
post-baseline visit j = 1, . . . ,n, the model is given as

Yi , j =β j ·1i∈Iplacebo
+ν j ·1i∈Iactive +εi , j ,

where 1i∈Iactive equals one if subject i is in the active group and zero otherwise, and similarly
1i∈Iplacebo

equals one if subject i is in the placebo group and zero otherwise. Here, the first
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term describes the mean of the placebo group while the second term describes the mean of
the active group. At baseline j = 0

Yi ,0 =β0 +εi ,0,

implying a common baseline across treatment groups.

After the model has been fitted, the treatment effect can be determined using several different
methods. One method is to determine the difference on the output scale between the mean
trajectories of the placebo- and active group at the last visit. Other methods of determining
the treatment effect, could include calculating the mean difference area under the curve
between the two treatment groups, or use the mean treatment effect over visits.

One of the main differences between the cLDA model and the PMRMs is that the PMRMs use
visits as a continuous variable, instead of a categorical variable as the cLDA model, which
can increase the statistical power of the model compared to the cLDA model. Therefore, the
following section will elaborate on this principle.

3.2 Categorical to Continuous

As mentioned, the cLDA model utilises visits as a categorical variable, and the interim events
between visits are typically represented graphically by connecting the data points. The
connecting lines are considered a reasonable approximation of interim events. However,
visits can also be considered a continuous variable, t , where ti , j represents the time since
baseline for subject i ’s j th visit, where ti ,0 < ti ,1 < ·· · < ti ,n for i = 1, . . . , N . This extends (3.1)
to a general non-linear model which for subject i is given as

Yi , j = f
(
ti , j ;Xiβ

)+εi , j , (3.2)

with design matrixXi , fixed effects vector β, and ti ,0 = 0. Here, the shape of f , which maps
time to outcome, is determined by Xiβ. For the cLDA model, ti , j = t j and the function
f is an interpolation of Xiβ with t0, t1, . . . , tm as anchor points. When using f in (3.2) for
interpolation, the function f describes how subjects behave between visits. Hence, one
should have some idea of the subjects’ behavior between visits when choosing f , such that it
represents this behavior. [Raket, 2022] suggests using a natural cubic spline for interpolation
in, for example, an Alzheimer’s trial, since one would expect it to be continuous and smooth.

As discussed in [Donohue et al., 2023], using visits as a categorical variable has some disad-
vantages. For example, if a subject does not get their measurement taken at a planned time,
it either has to be ignored or in some way carried back. However, using visits as a continuous
variable allows subjects to have measurements taken at unscheduled times.

3.3 Progression Models for Repeated Measures

The PMRMs adopt the structure outlined in (3.2) and use visits as a continuous variable. The
PMRMs model the mean trajectory of the placebo group by a function, denoted h0. This
thesis assumes that this function is a natural cubic spline. It is assumed that the natural cubic
spline has knots at the scheduled visit times, which is denoted t j , where ti , j = t j for all i .
The value of the natural cubic spline in each knot is given as the mean of the observations
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at the scheduled visits, denoted β = (
β0,β1,placebo, . . . ,βn,placebo

)⊤. Here, β0 is the mean of
all the observations at baseline whereas β j ,placebo is the mean of the observations for all the
subjects in the placebo group at visit j . An example of this is illustrated in Figure 3.1 with six
post-baseline visits.
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FIGURE 3.1: Mean trajectory of a placebo group visualised using a natural cubic spline, h0,
with six post-baseline visits used as knot values for the natural cubic spline.

The general PMRM proposed by [Raket, 2022], consists of a function, h, used to describe the
relation between the mean trajectory of the active group and h0. For subject i at visit j , the
model is given as

Yi , j =h
(
ti , j ;h0,β,Wi , jζ

)+εi , j . (3.3)

Here,Wi , j is a 1× (k +1) design matrix, ζ a (k +1)×1 parameter vector, and εi , j the error.

We will focus on three of the PMRMs presented in [Raket, 2022], which will be described in
the following subsections. These models will be based on the assumption that the modelled
outcome measure is decreasing over time. Furthermore, the treatment is assumed to in some
way be disease-modifying as described in Chapter 1.

3.3.1 Proportional Reduction in Decline

Assume that the treatment effect over time is characterised by a proportional decrease in
decline. That is, the treatment results in a decrease in the rate of deterioration over time,
and this decrease is proportional to the change from baseline observed without treatment.
Assuming six post-baseline visits, as in Figure 3.1, the cLDA model can fully model this using
13 parameters.

Assuming that the treatment effect over time is characterised by a proportional decrease in
decline a more parsimonious model could be used as this assumption suggests that there
exists a parameter ζ, such that

β j ,active −β0 = ζ
(
β j ,placebo −β0

)
. (3.4)
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Here, β j ,active is the mean of the observations for all the subjects in the active group at visit
j . The relation between the mean trajectories can then also be modelled using a PMRM by
choosing

h
(
ti , j ;h0,β,Wi , jζ

)=Wi , jζ
(
h0

(
ti , j ;β

)−β0
)+β0, (3.5)

where ζ = (
1,ζ

)⊤
and

Wi , j =
{

(1,0) i ∈ Iplacebo

(0,1) i ∈ Iactive.
(3.6)

Hence, the treatment effect is described by including the parameter ζ for subjects in the active
group. This model will henceforth be referred to as the proportional reduction in decline
PMRM (PDPMRM).

Both the cLDA model and PDPMRM models the treatment effect based on how the treatment
affects the subjects on the outcome scale. However, with a slow-progressing disease such
as Alzheimer’s disease, the treatment effect measured on the outcome scale over a period
of, for example, 24 months can be very small. This can cause the effect of a treatment to be
deemed negligible. Nevertheless, a small difference on the outcome scale can correspond to a
substantial difference on the time scale, serving to demonstrate the efficacy of the treatment
and provide patients and caregivers with an easier interpretation.

The treatment effect in the PMRMs in the following sections is based on how the treatment
affects the subjects on the time scale. Heuristically, the treatment effect then describes the
additional time a subject gains being in the active group as opposed to the placebo group.
Hence, they model the treatment effect as illustrated with the purple dotted lines in Figure 3.2
instead of vertically.

3.3.2 Time-based Changes in Disease Progression

As opposed to the PDPMRM, which assumes that the treatment effect is constant over time,
the PMRM considered here, called the time based changes in disease progression PMRM
(TPMRM), allows the treatment effect to vary over time. Figure 3.2 illustrates the concept
behind this model.

24



3.3. PROGRESSION MODELS FOR REPEATED MEASURES Group 4.111d

β0

β1,placebo

β2,placebo

β3,placebo

β4,placebo

β5,placebo

β6,placebo

85

90

95

100

105

0 3 6 12 15 21 243 ⋅ ζ1 6 ⋅ ζ2 12 ⋅ ζ3 15 ⋅ ζ4 21 ⋅ ζ5 24 ⋅ ζ6

Months since baseline

O
ut

co
m

e 
m

ea
su

re

Placebo h0 Active

FIGURE 3.2: Mean trajectory of a placebo group visualised using a natural cubic spline, h0,
and mean trajectory of an active group visualised alongside dotted lines exemplifying the
meaning of time saved. The slowing at the six post-baseline visits are ζ1,ζ2, . . . ,ζ6.

As illustrated in Figure 3.2, the TPMRM assumes that the mean trajectory for the subjects in
the active group can be described as the mean trajectory for subjects in the placebo group at
another time point. Hence, the model also assumes that the mean trajectory of the active
group cannot exhibit improvement or deterioration beyond the bounds observed in the mean
trajectory of the placebo group.

The TPMRM is given as

h
(
ti , j ;h0,β,Wi , jζ

)=h0
(
Wi , jζti , j ;β

)
, (3.7)

where ζ = (
1,ζ1, . . . ,ζm

)⊤
andWi , j =

(
1,0, . . . ,0

)
if i ∈ Iplacebo. For i ∈ Iactive,Wi , j is a vector

of zeroes expect for entry j +1, which is one.

Hence, ζ describes the slowing of the disease progression at the different visits for the mean
trajectory of the active group compared to that of the placebo group. For example, if ζ6 = 0.75
as is the case in Figure 3.2, then the active treatment demonstrates a 25% slowing of the
disease progression compared to the placebo group. This would indicate a six-month delay
in the disease progression at month 24. This can not only demonstrate the efficacy of the
treatment, but could also be more tangible for patients than 5 points on a outcome scale.

3.3.3 Proportional Slowing of Disease Progression

As mentioned, the TPMRM assumes that the treatment effect can differ between visits.
However, a constant treatment effect between visits can be preferable in some contexts. If a
model assumes a constant treatment effect over time, it can simplify the interpretation and
analysis of the results. Hence, it could be relevant to test whether the TPMRM is significantly
better than a model where the treatment effect is constant over time.

Such a model will be referred to as the proportional slowing of disease progression PMRM

(PSTPMRM) and is given as the TPMRM, (3.7), whereWi , j is given as in (3.6) and ζ = (
1,ζ

)⊤
.

Hence, the PSTPMRM also describes the treatment effect in terms of time saved. However,
this treatment effect is considered constant over time.
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For progressive diseases, such as Alzheimer’s disease, then intuitively 0 ≤ ζ < 1. This is
because 1 < ζ would indicate accelerated disease progression. Additionally, 0 > ζ would
indicate subjects in the active group being cured or in some way brought back to a stage
possibly before being diagnosed with the disease.

3.3.4 Subgroup Extension

In a clinical trial, it is often analysed how a treatment affects different subgroups in a trial.
Here, a subgroup is defined as a subset of the whole population with a specific characteristic.
For example, it could be analysed whether there is a difference in the treatment effect between
the two subgroups; females and males.

In clinical trials addressing a progressive disease, such as Alzheimer’s disease, certain sub-
groups might progress faster than others. If a treatment effectively slows the disease progres-
sion consistently among various subgroups, those characterised by faster progression can
derive more significant benefits throughout the duration of the clinical trial. Thus, even if
the subgroups have the same treatment effect when measured on the outcome scale, this
does not entail that the treatment effect on the time scale is the same due to non-linearity,
and vice versa. Generally, the treatment effect in different subgroups can differ both on the
outcome- and time scale, and hence models which are able to capture the treatment effect in
each subgroup are rather useful.

The three PMRMs presented above can be used to describe the treatment effect between
two groups, a placebo- and an active group. They can also be extended such that they are
able to accommodate multiple placebo- and active group such that they can determine the
treatment effect in each subgroup simultaneously. The simple case of only two subgroups
will be considered, and hence the subjects will be split into four groups: two placebo groups
(i ∈ Iplacebo1 and i ∈ Iplacebo2) and two active groups (i ∈ Iactive1 and i ∈ Iactive2), where
Iplacebo1∩Iplacebo2∩Iactive1∩Iactive2 =;. Here, subjects in Iplacebo1 or Iactive1 are in subgroup
1 and subjects in Iplacebo2 or Iactive2 are in subgroup 2.

An extension of the PSTPMRM in Subsection 3.3.3, such that it can accommodate two sub-
groups, can be given as

Yi , j =



h0
(
ti , j ;β

)+εi , j i ∈ Iplacebo1

h0
(
ρti , j ;β

)+εi , j i ∈ Iplacebo2

h0
(
ζti , j ;β

)+εi , j i ∈ Iactive1

h0
(
ργti , j ;β

)+εi , j i ∈ Iactive2

(3.8)

Here, we assume that the placebo group in subgroup 2 can be derived from the placebo group
in subgroup 1. Specifically, it assumes that the relationship between the two is described as
a proportional slowing in disease progression. For the cLDA model to accommodate two
subgroups, it would require an additional 12 parameters, resulting in a total of 25 parameters,
for six post-baseline visit example. However, compared to the extended PSTPMRM, this
model does assume any specific relation between the two placebo groups.

The extended PSTPMRM in (3.8) can be extended further such that it does not assume
the specific relation between the two placebo groups, at the cost of additional parameters.
However, this thesis will only focus on this simple extension of the PSTPMRM. An extension
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of the two other progression models, PDPMRM and TPMRM, can be done in a similar way as
for the PSTPMRM, but will not be presented in this thesis.
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4 Data Analysis

This chapter will describe and analyse the data used in the remainder of this thesis. As
described in the Preface, the data is provided by Novo Nordisk A/S but originates from the
Critical Path for Alzheimer’s Disease (CPAD). However, as mentioned in the Preface, the CPAD
did not participate in the analysis or the writing of this thesis.

The CPAD database is a collection of data from multiple different clinical trials and consists
of multiple smaller data sets, each including different classes of data for the subjects in the
clinical trials. These data sets include, among others, ae (adverse events), qs (cognitive
assessments), dm (demographics), lb (laboratory data), mh (medical history), and vs (vital
signs). Some of these data sets will be examined in the following section as we will look at
which subjects should be included in the subsequent analysis.

The main focus of this thesis is to compare how well different models describe the treatment
effect of an active treatment compared to placebo. Ideally, this analysis should be based
on data that mirrors the conditions of a true clinical trial for Alzheimer’s disease, which is
why the CPAD database is used. The purpose of this chapter is to sort the data such that
there are subjects on both active treatment and placebo. From this, it should be possible
to model the treatment effect using some of the models previously presented in Chapter 3.
Furthermore, we aim to obtain a set of subjects from the same trial. Having subjects from
the same trial is preferable due to the significant evolution of care and treatments within
the Alzheimer’s area. For example, it is only in recent research that it has been shown that
Alzheimer’s subjects can compensate to some degree for the cognitive decline by receiving
more cognitive support, changing the standard of care for Alzheimer’s subjects, [Basun et al.,
2006]. Therefore, subjects from different trials can evolve differently, not only because of the
specific treatment we wish to model the treatment effect of, but also due to variations in the
standard of care and treatments available at the time. The CPAD database does, however, not
include the identity of individual studies. Thus, it is generally not possible to know if two
subjects have been included in the same trial.

4.1 Data Presentation

In this section, there will be a brief presentation of the overall data to give the reader an
idea of which populations are generally included in clinical trials for Alzheimer’s disease.
Additionally, some of the methods used to diagnose Alzheimer’s disease and measure disease
progression will be presented.

4.1.1 Demographics

This subsection focuses on the dm data set, which describes the demographics of the subjects.
This includes, among other things, the age, sex, and ethnicity of the subjects. The dm data set
consists of 14895 subjects, 8769 (59%) of whom are female and 6126 (41%) of whom are male.
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Age

Alzheimer’s disease predominantly affects the older population, which we expect to be
reflected in the CPAD database. It is evident in Figure 4.1, which shows a histogram of the
subjects’ age, that the majority of the subjects are older than 70 years old. Figure 4.1 further
shows that the youngest subject is 45 years old and the oldest is 89 years old.

0.00

0.01

0.02

0.03

0.04

0.05

50 60 70 80 90
Age

F
re

qu
en

cy

FIGURE 4.1: Histogram of the ages available in the CPAD database, excluding subjects with
ages recorded as 999 or 9999.

Figure 4.1 excludes some subjects whose ages are recorded as 999 or 9999. These subjects
most likely come from countries and/or clinical trials where the age is not recorded or has
not been shared with the CPAD database. Although these subjects are excluded from this
histogram, they are still included in the subsequent data analysis.

Race, Ethnicity, and Country

For the trials to be representative of the whole population, they must include enough subjects
from various racial- and ethnic groups of the population and various countries all around
the world. The proportion of subjects within each racial- and ethnic group can be seen in
Table 4.2 and Table 4.3, respectively.
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Race %

Not Registered 0.73

American Indian or
Alaska Native

0.09

Asian 5.29

Black or African American 1.89

Multiple 0.05

Native Hawaiian or other
Pacific Islander

0.05

Other 1.99

Unknown 0.11

White 89.78

TABLE 4.2: The available racial groups and
the percentage of subjects within each racial
group.

Ethnicity %

Not Registered 74.37

Hispanic or Latino 2.45

Not Hispanic or Latino 23.15

Unknown 0.03

TABLE 4.3: The available ethnic groups and
the percentage of subjects within each ethnic
group.

As seen in Table 4.2, the majority of the subjects are white, whereas Table 4.3 shows that
ethnicity is not registered for the majority of the subjects.

Furthermore, Figure 4.4 illustrates that the majority of subjects are from the USA with 5513
subjects. However, it can be seen that, overall, subjects from most parts of the world are
included, though only few are from the African countries.
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FIGURE 4.4: World map showing the distribution of subjects. This shows that the majority of
countries in North America, Europe, and Oceania are represented, whereas only few countries
in South America, Africa and Asia are represented.
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Additionally, it should be noted that 4541 subjects do not have a country registered, why they
are not presented in Figure 4.4.

Hence, as expected, the population in the different clinical trials consists mostly of older
subjects, equally distributed between men and women, and somewhat represents a broad
set of both racial and ethnic groups. As mentioned earlier, the inclusion of many different
races, ethnic groups, and countries in a trial is crucial for representing a broad part of the
population. This diversity is especially important when seeking approvals for the medicine
in a trial, as it can be difficult for a drug to be approved in regions like Asia if no subjects
from Asia are included in the clinical trial [National Medical Products Administration, 2020].
However, we are not obligated to have a broad amount of population groups since we are not
conduction a formal analysis that requires FDA approval.

4.1.2 Treatments

As mentioned previously, the CPAD database is composed of different clinical trials, meaning
that there are multiple different treatments included in the database. When two subjects are
on different treatments it is referred to as the subjects being on different treatment arms. The
different treatment arms in the CPAD database and the number of subjects within each of
these are as follows

• PLACEBO (8543)

• PLACEBO QD (208)

• PBO (963)

• CONTROL (566)

• ACTIVE ARM 1 (336)

• ACTIVE ARM 2 (592)

• ACTIVE ARM 3 (38)

• ACTIVE ARM 4 (23)

• DRUG 1 (145)

• DRUG 1 DOSE 1 (290)

• DRUG 1 DOSE 2 (597)

• DRUG 1 DOSE 3 (2138)

as well as 455 subjects that have no treatment registered and one subject whose treatment
is categorised as BLIND. The first column consists of the placebo arms from the clinical
trials, while the other two columns consist of the active arms. As present from the above, the
majority of subjects received placebo. Consequently, we have to be attentive not to exclude
all subjects receiving an active treatment, when choosing which data set to conduct the data
analysis on.

However, we need not only a data set including both subjects in an active and a placebo arm,
but we also need to make sure that the subjects have some measure recorded which shows
the disease progression. This is needed to analyse the treatment effect. There are two types
of measures in the data set used jointly to diagnose Alzheimer’s disease: biomarkers and
cognitive assessments, [Basun et al., 2006, p. 92]. In the lb data set, the laboratory test of the
different subjects can be seen. Five tests of interest are included: amyloid beta 1-40 (Aβ1-40),
amyloid beta 1-42 (Aβ1-42), modified amyloid beta 1-40, modified amyloid beta 1-42, and
Phosphorylated Tau Protein. These tests are of interest as amyloid plaques and neurofibrillary
tangles (see Chapter 1) are believed to be connected to dementia and Alzheimer’s disease.
Although these biomarkers are of great interest within the Alzheimer’s area, these are not yet
used to describe disease progression. For this purpose, cognitive assessment scales can be
used.

32



4.2. DATA SET SELECTION Group 4.111d

4.1.3 Cognitive Assessment Scales

This subsection focuses on the qs data set, which includes patients’ scores from different
cognitive assessments. Since the CPAD database is composed of different clinical trials, the
subjects’ disease progression herein are not necessarily evaluated on the same cognitive
assessment scale. Below are some of the most commonly used cognitive assessment scales
found in the CPAD database, along with the number of subjects for whom these cognitive
assessment scales are reported.

• ADAS-Cog (4197)

• ADAS-Cog 11 (2092)

• ADAS-Cog 12 (2092)

• ADAS-Cog 14 (2092)

• CDR-SB (3667)

• MMSE (9247)

• ADCS-ADL (2092)

• iADRS (1068)

An important aspect, which will also become relevant later, is determining a common cog-
nitive assessment scale on which to measure the subjects’ cognitive progression. Hence, a
brief description of these scales will be presented, based upon [Nationalt Videnscenter for
Demens, 2021].

All these scales are based upon tests and questionnaires covering various domains, such
as memory, orientation, language, and understanding. All the scores fall within a discrete
numerical range from zero and a maximal value which varies between scales. It is important
to highlight that the evolution of the measured score in all these cognitive assessment scales
for subjects with Alzheimer’s disease is minimal within a six-month time frame. Therefore, it
is advisable that subjects are measured over an extended period of time, to show significant
changes in the disease progression.

The original Alzheimer’s Disease Assessment Scale – Cognitive Subscale (ADAS-Cog), rep-
resented in the CPAD database as ADAS-Cog or ADAS-Cog 11, has a maximum score of 70.
ADAS-Cog 12 and ADAS-Cog 14 are slightly modified versions of ADAS-Cog with different
maximum scores. The maximum scores for the Clinical Dementia Rating Sum of Boxes
(CDR-SB) scale, Mini-Mental State Examination (MMSE) and Alzheimer’s Disease Coopera-
tive Study - Activities of Daily Living Inventory (ADCS-ADL) are 18, 30, and 78, respectively.
The integrated Alzheimer’s Disease Rating Scale (iADRS), a combination of ADAS-Cog and
Alzheimer’s Disease Cooperative Study - Instrumental Activities of Daily Living (ADCS-iADL),
has a maximum score of 146. Additionally, the interpretation of scores vary, as a higher score
does not consistently signify more severe Alzheimer’s disease. For the different ADAS-Cog
and the CDR-SB scale, a higher score indicates more severe Alzheimer’s disease, whereas the
opposite applies for the remaining scores.

4.2 Data Set Selection

Now that a short introduction of the subjects included in the CPAD database and some of
the cognitive assessment scales herein have been presented, we want to select the data that
should be used in the subsequent analysis. As previously mentioned, we need some way to
measure the disease progression for the subjects to assess the treatment effect. However,
not all of the subjects in the CPAD database are measured on the same cognitive assessment
scales (as presented in Subsection 4.1.3).
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We aim to include both a placebo arm and an active arm in the data analysis to assess the
treatment effect. Hence, we start by examining which treatments are represented when
looking at different cognitive assessment scales.

Looking at the subjects for which an ADAS-Cog score has been recorded, both placebo- and
active arm subjects are included, as shown in Figure 4.5. However, the longest period of time
a subject within an active arm has been recorded is 8 months, with most being recorded for 7
months or less. Hence, due to the short observation period, the disease progression of these
subjects is expected to be minimal. Therefore, the only arm that could potentially show any
progression measured on the ADAS-Cog seems to be the PLACEBO QD arm.
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FIGURE 4.5: Data points for subjects recorded with ADAS-Cog scores, alongside a linear mean
trajectory of each arm.

ADAS-Cog 11, 12 and 14 only include subjects from the PLACEBO arm over a time period
of 40 months (plots for these can be found in Appendix B). The same pattern is observed
for ADCS-ADL and iADRS, as illustrated in Figure 4.6 and Figure 4.7, respectively, where the
PLACEBO arm, again, is the only represented arm.
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FIGURE 4.6: Data points for subjects recorded
with ADCS-ADL scores, alongside a linear
mean trajectory.
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FIGURE 4.7: Data points for subjects with
iADRS scores, alongside a linear mean trajec-
tory.

In Figure 4.8 and Figure 4.9, the subjects with recorded CDR-SB and MMSE scores are pre-
sented, respectively. Again, both placebo- and active arms subjects are observed. However,
as before, the active arms do not seem to be useful, since they are either recorded over a

34



4.2. DATA SET SELECTION Group 4.111d

very short period or do not show any signs of disease progression. Subjects showing no
signs of disease progression cannot be used, since this is an unrealistic evolution of a subject
with Alzheimer’s disease regardless of the treatment, and is hence not representative for the
population which we seek to analyse.
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FIGURE 4.8: Data points for subjects recorded with CDR-SB scores, alongside a linear mean
trajectory of each arm.
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FIGURE 4.9: Data points for subjects recorded with MMSE scores, alongside a linear mean
trajectory of each arm

In both Figure 4.8 and Figure 4.9, it is evident that the PLACEBO arm is, as in the plots for
ADAS-Cog 11, 12, and 14, clearly the most represented.

From the above analysis, no active arm can be utilised for assessing the treatment effect. This
is due to the fact that the active arms are either recorded for a very short period of time or
only include subjects that do not show any signs of disease progression. To compare how well
different models describe the treatment effect of an active treatment compared to placebo,
we need both a placebo- and an active arm. However, as no active arm in the CPAD database
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can be utilised, we choose to simulate the active arm instead. This is of course not optimal
but necessary. This will be further elaborated upon after choosing the placebo subjects from
the CPAD database that we will use.

Now that we do not need to base the selection of data on whether it includes both an active-
and a placebo arm, we can consider other important factors. As mentioned in the beginning
of this chapter, it would be optimal to only include subjects from the same trial due to changes
in standard care, standard treatment, and more for subjects with Alzheimer’s disease over
time. Furthermore, the models that will be used to model the progression of the disease
assumes that the outcome measure follows a normal distribution at each visit. Here, the score
of the outcome measure is the score of the chosen cognitive assessment scale. Hence, if the
outcome score does not fulfill this assumption, it can affect the models’ estimation methods.

Based upon [Honig et al., 2018], we deduce that all subjects with recorded iADRS scores
originate from the same trial. This trial involves the treatment named Solanezumab intended
for subjects with mild dementia due to Alzheimer’s disease. As we derive that this might be
the best possibility of only including subject from one specific trial, we choose to only include
subjects with recorded iADRS scores. Therefore, our data will include 1068 subjects from
the PLACEBO arm, all having recorded scores for the cognitive assessment scales: MMSE,
CDR-SB, ADCS-ADL, iADRS, and ADAS-Cog 11, 12, and 14. For the CDR-SB and MMSE scale
we assess the number of observations per subject to be inadequate for modelling. For all
other scales, there are sufficient observations per subject, with seven to fourteen observations
per subject. Before choosing which scale to use for measuring the disease progression we still
wish to determine whether the assumption of normality is fulfilled for any of the cognitive
assessment scales. Figure 4.10 illustrates the distribution of the iADRS scores at months
3,6, . . . ,21, and 25. These months are chosen as they have the most observations. The
histograms illustrating the distribution of the remaining scores can be found in Appendix B.
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FIGURE 4.10: Distribution of the iADRS scores at months 3,6, . . . ,21, and 25, as these are the
months with the most observations.

Most scores from the different scales exhibit a distribution that somewhat resembles a normal
distribution, but are slightly skewed. However, the ADCS-ADL score is notably left skewed.
We opt to utilise the iADRS as our scale for tracking disease progression due to its number
of observations, it is being the primary outcome measure in the trial the measurements are
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from [Wessels et al., 2021], and it somewhat fulfills the assumption of normality in the first 25
months. Furthermore, iADRS is a combination of two of the other measures, [Honig et al.,
2018], more precisely

iADRS = ((−ADAS-Cog13
)+85

)+ADCS-iADL = ((−ADAS-Cog14
)+90

)+ADCS-iADL,

and unlike the others, it has not been used extensively for screening or diagnosing Alzheimer’s
disease but has been used in recent clinical trials for analysing disease progression.

The subjects within this data are between the age of 55 and 89, with approximately 80% being
white, non-Hispanic, or Latino subjects. Furthermore, we observe that approximately half of
them are from the USA, and 58% are females. More information regarding the specific trial
and the subjects involved is given in Appendix B and [Honig et al., 2018].

The time since baseline and corresponding iADRS score for all the subjects are presented in
Figure 4.7, covering a period of 40 months. We observe that the majority of measurements
were taken approximately every three months. To streamline our dataset, we have aggregated
the measurements to the nearest third month; 0, 3, 6, 9, and so on until month 39. Figure 4.11
presents the iADRS scores when the time points have been aggregated.
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FIGURE 4.11: Measurements of the iADRS score aggregated to the nearest third month (0, 3,
6, 9, and so on until month 39). The data points have been jittered on the time axis to more
accurately visualise how the data points are distributed on the iADRS scale. Additionally, labels
describing the number of available data points at each third month can be seen below.

By aggregating the data to each third month we will simplify the process of simulating data
later on, as well as making the implementation of the PMRMs easier. Every third month can
further correspond to a visit which can be used in the cLDA model. Moreover, as can be seen
in Figure 4.11, over half of the subjects have dropped out after 24 months. Therefore, we
choose to focus the analysis on the data points within the time interval [0,24].

This concludes our analysis and selection of the data, why we will henceforth be working
with the aggregated data presented in Figure 4.11 within the time interval [0,24], including
eight post-baseline visits.
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4.3 Simulation of the Active Arm

As concluded in the former section, there are no usable active arms in the CPAD database, why
we need to simulate one, as it is necessary for assessing the treatment effect. The drawbacks
of simulating an active arm will be discussed in Chapter 7.

This simulation will be highly based on the behavior of the placebo arm presented in Fig-
ure 4.11. More precisely, the mean and the covariance structure between visits in the active
arm will be based on that of the placebo arm. Hence, we will first present the derived mean
and covariance structure of the placebo arm. Both the mean and covariance structure are
based upon the aggregated data, in the time interval [0,24], where each third month is
regarded as a visit.

For the nine (eight post-baseline) visits the mean of the placebo group, denoted as β =(
β0,placebo,β1,placebo, . . . ,β8,placebo

)⊤
, is given as[

105.69 104.03 101.82 100.79 97.06 95.57 93.08 91.99 88.97
]

. (4.1)

The covariance between the visits has been estimated by fitting a linear mixed model to the
aggregated placebo data. This model is on the form y ~ visit + 0 + (visit + 0 | id),
where visit is a categorical variable. This means that it has a fixed effect, visit, and no
intercept, that is, it is forced to pass through the origin. Additionally, the last term, (visit
+ 0 | id), specifies random slopes for visit for each subject, with no random intercept.
Based on this model, the covariance between the nine visits are given as

Visit 1 Visit 2 Visit 3 Visit 4 Visit 5 Visit 6 Visit 7 Visit 8 Visit 9



Visit 1 194.18 192.99 207.27 223.24 234.92 247.69 261.44 273.20 280.98
Visit 2 192.99 251.36 251.44 275.54 289.31 310.48 324.80 341.88 350.69
Visit 3 207.27 251.44 312.81 322.68 340.11 367.39 390.46 411.62 422.56
Visit 4 223.24 275.54 322.68 393.40 392.02 424.64 453.31 484.33 492.94
Visit 5 234.92 289.31 340.11 392.02 449.67 466.87 499.06 532.44 550.16
Visit 6 247.69 310.48 367.39 424.64 466.87 543.81 559.26 599.43 624.49
Visit 7 261.44 324.80 390.46 453.31 499.06 559.26 653.34 682.73 710.12
Visit 8 273.20 341.88 411.62 484.33 532.44 599.43 682.73 780.33 792.48
Visit 9 280.98 350.69 422.56 492.94 550.16 624.49 710.12 792.48 879.54

(4.2)

We will, based on this, simulate the active arm in three different ways, corresponding to
the three different progression models presented in Section 3.3: proportional reduction in
decline PMRM (PDPMRM), time-based changes in disease progression PMRM (TPMRM),
and proportional slowing of disease progression PMRM (PSTPMRM).

The mean of the active arm, based on the PDPMRM, at visit j > 0, is calculated as

β j ,active = ζ
(
β j ,placebo −β0,placebo

)+β0,placebo.

Here, ζ = 0.8 would for example represent a 20% proportional reduction in decline of the
disease progression. The mean of the active arm, based on either the PSTPMRM or the
TPMRM, at visit j > 0, is calculated as

β j ,active =β j ·ζ j ,placebo.
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Here, ζ j = 0.8 for j = 1,2, . . . ,8 would represent 20% proportional slowing of the disease
progression. Furthermore, ζ j = 0.9−0.02857( j −1) for j = 1,2, . . . ,8 would represent a slowing
in disease progression changing over visits from 10% at the first visit to 30% at the eighth post-
baseline visit. To find β j ·ζ j ,placebo, a linear interpolation between β j−1,placebo and β j ,placebo is
performed using the function approx. Furthermore, it is assumed that β0,placebo = β0,active,
which indicates that the placebo- and active arm have the same mean baseline.

In addition to these three methods, we will also simulate an active arm where the mean of
the placebo- and active arm are identical, that is for all j

β j ,active =β j ,placebo.

After constructing the mean of the active arms, we use this along with covariance matrix,
(4.2), to generate subject-level trajectories from a multivariate normal distribution.
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5 Simulation Study

When conducting a clinical trial, one is interested in whether the treatment effect is statis-
tically significant, which relates to the term statistical power. Statistical power refers to the
probability of correctly rejecting a null hypothesis in a statistical test. In our case, the null
hypothesis is that there is no treatment effect. Heuristically, in our case, the statistical power
of a statistical test is the ability to detect a treatment effect between the placebo- and active
arm when one exists. Hence, it is of interest that the statistical power is as high as possible
under a wrong null hypothesis. Different factors can affect the statistical power, such as
the level of significance. The level of significance is the probability of rejecting a true null
hypothesis, and thereby the probability of concluding that there is a treatment effect when
non exists. This is referred to as a type I error, and the level of significance, also referred to
as the type I error rate, is typically set to 5%. Furthermore, under a true null hypothesis the
statistical power should be at the same level as the type I error rate. Furthermore, both the
type I error rate and the statistical power relate to the term type II error. A type II error rate is
the probability of accepting a wrong null hypothesis. Hence, the statistical power is also given
as 1 minus the type II error rate. If the type I error rate increases, the type II error rate will
decrease, causing the statistical power to increase. Even though increasing the type I error
rate could increase the statistical power and hence decrease the probability of a type II error,
it is usually required to have a relatively low type I error rate, as it is of great interest to ensure
that a test does not indicate a significant treatment effect when non exists. Another factor
that affects the statistical power is the true treatment effect in the data. As the true treatment
effect increases, so will the statistical power in general. Moreover, the statistical power is
influenced both by the sample size and the standard deviation of the samples. Generally,
if either the sample size is increased or the standard deviation of the samples is decreased,
statistical power increases [Norton and Strube, 2001].

In practice, statistical power can be determined by simulating multiple data sets; we opt for
1000. A model is then fitted to each data set, and a statistical test, such as an F-test, is then
used to determine if the estimated treatment effect is significant. The statistical power is then
approximated by the ratio of the number of times the null hypothesis is rejected over the
number of simulations. When referring to the statistical power of a model henceforth, it is
the statistical power of the statistical test being used. Besides the models’ statistical power,
their accuracy in estimating the treatment effect is also important. Thus, in this chapter,
the comparison of the models from Chapter 3 will focus on statistical power and estimation
accuracy, henceforth referred to as the performance of the models.

Data

To compare the performance of the models, we will simulate data using different relations
between the placebo- and active arm. The active arm will be simulated using the four
methods presented in Section 4.3, providing insight into the comparative performance of
the different models and their applicability in these different scenarios. The models will
more precisely be analysed in the following scenarios: no effect (NE), 20% proportional
slowing (PS), 20% proportional reduction in decline (PD), and 10 to 30% time based changes
(TB). An important remark is that, as the scenarios are simulated based on a certain model
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specification, we would expect the PDPMRM to estimate the treatment effect well in the 20%
PD scenario, and so forth. Ideally, we would test more scenarios to test the behaviour and
applicability of the models in these scenarios as well. However, due to the time limitations of
this thesis, we opted not to conduct an analysis for additional scenarios.

For each scenario, 1000 data sets will be simulated based on the characteristics of the placebo-
and active arms corresponding to that scenario. During testing, we observed that the sta-
tistical power and mean estimated treatment effects of the models stabilised within these
1000 simulations; hence, we determined 1000 simulations to be adequate. A figure of the
statistical power for all models with respect to the number of simulations, in each scenario,
can be seen in Section D.3. Similarly, a figure of the models’ mean estimated treatment effect
with respect to the number of simulations, in each scenario, can be seen in Section D.4.

We have chosen to simulate the placebo arm based on the placebo arm from the CPAD
data, illustrated in Figure 4.11, allowing the placebo arm to behave slightly different in each
simulation. The simulation of the placebo arm will be done as described in Section 4.3
using (4.1) and (4.2). Simulating both arms ensures an equal number of subjects in each arm
and allows us to determine how the number of subjects in each arm affects the models and
the estimation methods. As will be further discussed in Chapter 7, the distribution of the
outcome measure in the simulated data differs slightly from that of the CPAD data, which is
slightly skewed (see Figure 4.10) compared to the multivariate normal distribution used for
our simulations.

The results for the different scenarios will be presented for 500 subjects in each arm, with
results for 300 and 1000 subjects in each arm available in Appendix D. As the number of
subjects in each arm increases, the mean of the simulated trajectories in each arm should
deviate less between simulations. Consequently, the treatment effect in each simulation
should not vary as much as it might with fewer subjects in each arm.

The simulated data sets will have a dropout rate of 0, meaning that none of the subjects leave
the simulated studies. A dropout rate greater than 0 would require a much more extensive
analysis, as many different types of dropout and dropout rates could be considered. Therefore,
we have chosen a dropout rate of 0, but the subject of dropout will be briefly discussed in
Chapter 7.

The percentages of delaying the disease progression between the placebo- and active arm
in the different scenarios closely align with those seen in clinical trials regarding disease-
modifying treatments for Alzheimer’s disease [Newton, 2023; Lilly, 2023; Wessels et al., 2021].
For example, lecanemab showed a 27% slowing of disease progression after 78 weeks. Similar
results have also been observed for donanemab at 32% slowing of disease progression after 76
weeks. In both of these trials the treatment effect was deemed clinical relevant. Furthermore,
the covariance matrix used to simulate the data is derived from a placebo arm where we know
that all of the subjects are from the same clinical trial. As a result, the simulated data for this
study closely resembles data from clinical trials. Though, one thing that makes the simulated
data deviate from real data from a clinical trial is that the dropout rate is 0.

Initial Values

Before fitting the PMRMs to the simulated data, initial values must be determined. The
initial values required for the PMRMs are the mean values of the placebo arm at each visit.
Additionally, an initial value for the treatment effect(s) should be provided and is set to 0 in
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all three PMRMs. Initial values for the correlation structure of the errors were also found
to be beneficial in ensuring convergence. Hence, determining initial values for the mean
trajectory of the placebo arm and correlation structure of the errors is crucial. It is generally a
complex problem to determine reasonable initial values for non-linear models. This thesis
will utilise a method for determining initial values presented in [Demidenko, 2013, p. xxvi].
This approach involves initiating values based on estimates from a simpler model. We choose
to use the cLDA model as the simpler model. The cLDA model provides estimates for the
mean trajectory of the placebo arm alongside an estimate of the covariance structure between
visits, which we will use as initial values.

This concludes the setup required for us to start our analysis of the models presented in
Chapter 3, as we have established both a placebo arm and multiple active arms to model
treatment effects upon, as well as initial values for the PMRMs.

5.1 Performance Analysis

The models analysed in the following sections are those presented in Section 3.1 and Sec-
tion 3.3. Specifically, these include the cLDA model and the three progression models for
repeated measure (PMRMs); proportional reduction in decline PMRM (PDPMRM), time-
based changes in disease progression PMRM (TPMRM), and proportional slowing of disease
progression PMRM (PSTPMRM). The mean trajectory of the placebo arm, h0 in (3.3), will be
modelled by a natural cubic spline for all of the PMRMs considered in this section. For further
information about natural cubic splines, see Section A.2. In Appendix C, we test different
structures of both the correlation and variance of the errors in one of the PMRMs. Here, we
find that, based on the AIC and BIC, an unstructured symmetric correlation structure and
the possibility of heterogeneity of variance are the best structures. Hence, we opt for these
structures in the correlation and variance of the errors in the PMRMs. The cLDA model that
will be used includes an interaction term between treatment and time from baseline, explain-
ing how the response variable is influenced by a treatment over time. Besides the interaction
term, the cLDA model includes a random effect term, which allows for a subject-specific
variation at each visit.

The performance of the models will be analysed in stages. First, we will compare the per-
formance of the models in different scenarios to see how they are affected by the way the
data is simulated. Second, we will analyse how the performance is affected by removing the
correlation in the errors. Last, we will examine how the addition of a random effect in the
PMRMs affects their performance.

5.1.1 Scenarios

As mentioned, we are interested in how well the models estimate the treatment effect present
in the data. In both the TPMRM and the cLDA model, the treatment effect can vary over
time and can be analysed using different methods. Although the estimated treatment effects
before the last visit contribute to a better understanding of the models, we are only interested
in what happens at the last visit. Furthermore, the treatment effect at the last visit is usually
used as a primary endpoint in clinical trials, and is hence very important. For the cLDA model,
the treatment effect is determined by the difference between the estimated mean trajectories
of the placebo- and active arm at the last visit. In the TPMRM, we analyse the parameter in
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the model that describes the treatment effect at the last visit. In the remaining models, the
treatment effect is given by a single parameter in the model, which can be analysed directly.

To determine if the cLDA model and PMRMs perform well in the different scenarios, we will
look at their mean bias, relative bias, and estimated standard error for the 1000 simulations,
which are presented in Table 5.1. To determine these values, we have to determine the true
effect present in the different data sets. This is done by using an optimisation algorithm to
determine the true treatment effect between the mean trajectory of the placebo- and active
arm in each simulated data set. Additional details regarding the optimisation procedure can
be found in Section D.1.

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

N
o
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cLDA -0.080 0.003 -3.750 2.935

PSTPMRM 0.958 0.046 4.802 0.068

PDPMRM 1.010 -0.004 -0.396 0.144

TPMRM 0.961 0.043 4.475 0.062

20
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cLDA 3.289 0.035 1.064 1.310

PSTPMRM 0.813 -0.051 -6.273 0.140

PDPMRM 0.810 -0.008 -0.988 0.144

TPMRM 0.812 0.018 2.217 0.095

20
%

P
ro

p
o

rt
io

n
al

sl
ow

in
g

cLDA 3.850 -0.056 -1.455 1.282

PSTPMRM 0.796 0.004 0.502 0.113

PDPMRM 0.790 -0.047 -5.949 0.142

TPMRM 0.781 0.021 2.689 0.091

10
to
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%
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ed
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s

cLDA 5.078 -0.024 0.414 1.247

PSTPMRM 0.751 0.020 2.663 0.115

PDPMRM 0.754 -0.084 -11.141 0.137

TPMRM 0.700 0.010 1.428 0.087

TABLE 5.1: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of the progression models for repeated measures and the constrained longitudinal data
analysis model in different scenarios for 500 subjects in each arm. Subset of Table D.9.

The relative bias, calculated as the ratio between the mean bias and mean true treatment
effect, in each of the scenarios indicate that the PMRMs generally have worse estimation
accuracy than the cLDA model, as their relative bias in most scenarios is higher. Furthermore,
Table 5.1 shows what we expected, namely that the PDPMRM performs best (with lowest
mean bias and relative bias, and a small estimation standard error) in the 20% PD scenario,
the PSTPMRM performs best in the 20% PS scenario, and the TPMRM performs best in the
10 to 30% TB scenario (if we exclude the cLDA model). Moreover, when the data is based on a
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model’s specification, its relative bias is between 0.5 to 1.5%. When this is not the case, the
relative bias generally increases to over 2% in absolute value.

As mentioned, the statistical power of the models can be regarded as a type I error rate when
the null hypothesis of no treatment effect is true. Hence, the statistical power in the NE
scenario can be regarded as a type I error rate. Unless mentioned otherwise, we will use a
type I error rate of 5%.

The statistical power of the models will be derived using an F-test. It is well known that the
F-test and the two-tailed t-test are equivalent when testing a single parameter under the
assumption that the parameter is symmetrically distributed. Consider the case of a null-
hypothesis b = 0 for a one-dimensional parameter b. A critical t-test statistic at the 5% level
(rejecting for large |t |) is then equivalent to a critical F-test statistic at the 5% level (rejecting
for large F ), since F = t 2. For a one-sided t-test with alternative hypothesis H1 : b > 0 we only
reject for large t . E.g. if we reject for t > t0.975 we obtain a significance level of 2.5%. This is
equivalent to rejecting if F > F0.95 and b̂ > 0. This means that the models’ statistical power in
the NE scenario should be approximately 2.5% (0.025), as we only examine positive treatment
effects. The distribution of the bias’ can be found in Appendix D. In the other scenarios, we
desire the estimates of the treatment effect to be significantly different from 0 and hence a
statistical power closer to 1. The statistical power of each model in the various scenarios is
presented in Table 5.2.

Scenario cLDA PDPMRM PSTPMRM TPMRM

No effect 0.019 0.033 0.053 0.001

20% Proportional reduction in decline 0.681 0.799 0.922 0.336

20% Proportional slowing 0.787 0.939 1.000 0.449

10 to 30% Time based changes 0.941 0.992 1.000 0.823

TABLE 5.2: Statistical power of the progression model for repeated measures and the con-
strained longitudinal data analysis model in different scenarios for 500 subjects in each arm.
Subset of Table D.13.

Table 5.2 shows that the type I error rate of the PSTPMRM is inflated, whereas the type I
error rate of the TPMRM is deflated. The cLDA model and PDPMRM both have a type I error
rate of approximately 0.025. An inflated type I error rate indicates that the statistical test is
more likely to reject a true null hypothesis. Thus, even though the PSTPMRM achieves great
power in the other scenarios, this is probably inflated due to the inflated type I error rate.
On the other hand, a deflated type I error rate indicates that the statistical test is less likely
to reject a true null hypothesis, which also affects the statistical power of the models in the
other scenarios. The inflated type I error rate of the PSTPMRM could be due to the mean bias
seen in Table 5.1. Here, we see that on average, the estimates of the treatment effect in the
PSTPMRM are too large. Hence, it is reasonable that the null hypothesis will be rejected too
often for the PSTPMRM. The mean bias of both the cLDA model and PDPMRM is relatively
low, which could result in the type I error rate seen in Table 5.2. Because of different type
I error rates, the statistical power of the models in the remaining scenarios are not directly
comparable. To make a fair comparison of their statistical power, we require their type I error
rates to be similar. Therefore, in a later section, we will attempt to calibrate their individual

45



Group 4.111d CHAPTER 5. SIMULATION STUDY

type I error rates. As the following sections will focus on modifications of these models, we
will wait to compare the statistical power of all of them.

The results from the analysis of the models for 500 subjects in each arm are consistent with
those for 300 and 1000 subjects in each arm. When increasing the number of subjects in
each arm the relative bias and estimation standard error decreases, and the statistical power
slightly increases. An increase in the number of subjects does not seem to significantly
increase or decrease the mean bias nor the type I error rate of any of the models.

5.1.2 Correlated Error Terms

A general problem with the PMRMs is that they require the correlation structure in the
errors to be estimated, which leads to problems with convergence when fitting the models.
Therefore, in this section, we will explore the performance of the PMRMs without correlated
errors (NC PMRMs) to determine how they compare to the PMRMs with correlated errors.

Again, we start by examining how well the NC PMRMs estimate the treatment effect in the
different scenarios and then compare this to the PMRMs. We only present the 20% PS scenario
in Table 5.3, as the trends are the same in the other scenarios.

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error
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NC PSTPMRM 0.796 0.004 0.503 0.032

NC PDPMRM 0.790 0.005 0.633 0.034

NC TPMRM 0.781 0.014 1.793 0.035

TABLE 5.3: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of the progression models for repeated measures without correlated errors in the 20%
proportional slowing scenario for 500 subjects in each arm. Subset of Table D.9.

Table 5.3 shows that the NC PMRMs have lower or approximately the same mean bias as
their respective models with correlated errors. Additionally, they achieve this lower mean
bias with a lower estimation standard error. Moreover, the relative bias of the NC PMRMs is
seen to be lower, or on par with, that of the PMRMs. Across the different scenarios, we see
that the NC TPMRM is the model with the highest relative bias of the NC PMRMs, even in the
scenario where the data is based upon this model. Given this relative bias and estimation
standard error, it seems that the NC PMRMs perform very well in estimating the treatment
effect, indicating that correlation in the errors is not necessary. Given this observation, we
are interested in the statistical power of these models, which is presented in Table 5.4.
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Scenario
NC

PDPMRM
NC

PSTPMRM
NC

TPMRM

No effect 0.225 0.174 0.007

20% Proportional reduction in decline 0.735 0.699 0.330

20% Proportional slowing 0.787 0.777 0.460

10 to 30% Time based changes 0.862 0.870 0.719

TABLE 5.4: Statistical power of the progression models for repeated measures without correlated
errors in different scenarios for 500 subjects in each arm. Subset of Table D.13.

Table 5.4 shows that the type I error rate of the NC PDPMRM and the NC PSTPMRM is very
inflated, rejecting 22% and 17% of the true null hypotheses, compared to the 2.5% it should
be. This is unfortunate as it means these models are very prone to rejecting a true null
hypothesis, making them inapplicable even though they achieve great power in the other
scenarios. Moreover, despite their type I error rates being more inflated than those of their
respective models with correlated errors, the statistical power in the other scenarios is lower.
This indicates a generally lower statistical power of the NC PMRMs compared to the PMRMs
for these two models. Conversely, the NC TPMRM has a deflated type I error rate, similar to
what we observed with the TPMRM. Additionally, the statistical power of the NC TPMRM
in the other scenarios is either slightly greater or worse than when including correlation
in the errors. This suggests that while the correlation in the errors might not be crucial for
estimating the treatment effect, it ensures greater statistical power for the models.

Similar to the results for 300, 500, and 1000 subjects in each arm for the PMRMs with corre-
lated errors, we observe the same tendencies for the NC PMRMs. Specifically, the relative bias
and estimation standard error decreases and the statistical power increases as the number of
subjects in each arm increases.

We are still interested in determining whether the correlation in the errors in the PMRMs can
be avoided because of the experienced convergence problems. Therefore, in the following
section, we will analyse how the addition of a random effect can influence the performance
of the PMRMs, both with and without correlated errors. The hope is that the random effect,
among other things, can compensate for the missing correlation structure, and improve the
type I error rate for the models.

5.1.3 Random Effects

We will only implement a random effect in the (NC) PSTPMRM. The random effect can be
implemented in the other PMRMs in a similar way. Furthermore, we would expect similar
tendencies as we see for the PSTPMRM when implementing random effect in the other
PMRMs. The random effect we will implement is either a random intercept (RI) or a random
scaling factor (RS). The random intercept and random scaling factor will be implemented as
follows, respectively:

h
(
ti , j ;h0,β,Wi , jζ,Ui

)=h0
(
Wi , jζti , j ;β

)+Ui , (5.1)

h
(
ti , j ;h0,β,Wi , jζ,Ui

)= exp(Ui )h0
(
Wi , jζti , j ;β

)
, (5.2)
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with the notation from Chapter 3 used. Under the assumption that the random effects are
normally distributed with mean zero and standard deviation σU , it follows that

E
[
h0

(
Wi , jζti , j ;β

)+Ui
]=h0

(
Wi , jζti , j ;β

)
and

E
[

exp(Ui )h0
(
Wi , jζti , j ;β

)]= exp

(
σ2

U

2

)
h0

(
Wi , jζti , j ;β

)
,

respectively. Hence, the natural cubic spline, which models the mean trajectory of the placebo
arm, will, on average, be scaled with some scaling factor depending on the standard deviation
of the random effect when including the random effect as in (5.2). As this scaling factor
increases, the value of the knots and the amplitude of the natural cubic spline increase. This
means that the natural cubic spline describing the mean trajectories will be scaled, which
potentially could affect the estimated treatment effect.

Naturally, this change of the mean trajectories is suboptimal, since the mean trajectories
should ideally remain unaffected. We attempted to modify the model to keep the mean tra-
jectories unchanged, but these modified models failed to converge. Therefore, we proceeded
with our analysis using this model, to evaluate its performance. The potential issues with this
implementation of a random effect will be discussed further in Chapter 7.

We again only present the 20% PS scenario in Table 5.5, as the trends are the same in the other
scenarios. In Table 5.5, it can be seen that the true effect is the same across all models. This is
due to the fact that the models in Table 5.5 have the same type of treatment effect. Hence, the
true effect becomes the same when calculating it as described in Section D.1.

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error
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PSTPMRM 0.796 0.004 0.503 0.113

NC PSTPMRM 0.796 0.004 0.503 0.032

RI PSTPMRM 0.796 0.005 0.628 0.113

NC RI PSTPMRM 0.796 0.000 0.000 0.120

RS PSTPMRM 0.796 0.005 0.628 0.113

NC RS PSTPMRM 0.796 -0.010 -1.256 0.122

TABLE 5.5: Mean true treatment effect, mean bias, relative bias, and estimation standard error
of the proportional slowing of disease progression progression models for repeated measures
with and without correlated errors and a random effect in the 20% proportional slowing
scenario for 500 subjects in each arm. Subset of Table D.9.

Table 5.5 reveals that the addition of a random effect in the (NC) PSTPMRM, apart from the
NC RS PSTPMRM, leads to estimation accuracy that is better or on par with the PSTPMRM
in all scenarios. However, the difference in relative bias between the NC RS PSTPMRM and
the other PSTPMRMs is small, indicating that they all perform well. Among the PSTPMRMs
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here, the NC RI PSTPMRM and NC PSTPMRM are generally the ones with the best estimation
accuracy.

When analysing the random effects of the PMRMs with correlated errors further, we observe
that the standard deviation of the random intercept is approximately 7, whereas the standard
deviation of the random scaling factor is approximately 0.05, both with mean 0 in all scenarios.
This means that the random scaling factor on average affects the natural cubic spline with
a scaling factor of approximately 1.001. Thus, similar to the random intercept, the random
scaling factor does not change the mean trajectories in any consequential way in practice.

However, when looking at the NC PMRMs, the standard deviations change to approximately
19.5 and 0.2, respectively, for the random intercept and random scaling factor. This means
that the random scaling factor on average affects the natural cubic spline with a scaling factor
of approximately 1.01. Thus, when the errors are not correlated, the standard deviation of the
random scaling factor is larger, which in return affects the mean trajectories slightly more.
These results are consistent with the results for 300 and 1000 subjects in each arm.

As we previously saw that the NC PSTPMRM has a very inflated type I error rate, we are also
interested in how the addition of a random effect affects the type I error rate of this model.
The statistical power of the models, including a random effect, is presented in Table 5.6.

Subjects
per arm Scenario

RI
PSTPMRM

NC RI
PSTPMRM

RS
PSTPMRM

NC RS
PSTPMRM

50
0

No effect 0.052 0.056 0.057 0.057

20% Proportional reduction in decline 0.937 0.931 0.938 0.930

20% Proportional slowing 1.000 0.999 1.000 0.998

10 to 30% Time based changes 1.000 1.000 1.000 1.000

TABLE 5.6: Statistical power of the progression models for repeated measures with a random
effect in different scenarios for 500 subjects in each arm. Subset of Table D.13.

Table 5.6 shows that the (NC) PSTPMRMs with a random effect have a type I error rate similar
to the PSTPMRM. This is consistent with the results for 300 and 1000 subjects in each arm.
As these models have a type I error rate similar to the PSTPMRM, we are able to compare
their statistical power in the remaining scenarios. Not only are the type I error rate of the
models with a random effect similar to that of the PSTPMRM, but the statistical power in the
other scenarios is also relatively similar. This indicates that the correlation in the errors can
be replaced by a random effect. However, we also wish to determine how all the different
PMRMs’ statistical power compare to each other, as well as to the cLDA model. This will be
the focus in the following section.

5.2 Calibrated Statistical Power

Up until this point we have been unable to compare the statistical power between all of the
(NC) PMRMs and the cLDA model due to variations in their type I error rate. However, by
calibrating this type I error rate to 0.025, we can compare these models’ statistical power to
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determine if the previous results still hold. We will calibrate their individual type I error rate
by determining the 2.5% quantile value of the p-values collected in the simulations.

Specifically, we are interested in comparing the cLDA model and the PMRMs without random
effects and with correlated errors, referred to as the original models. This will allow us see
which of the original models, presented in [Raket, 2022], demonstrates the greatest statistical
power across the different scenarios. Additionally, we are interested in comparing the original
models with the modified models, that is, those without correlated errors and/or a random
effect. Hence, we will be able to determine if the correlated errors in the models contribute
to a greater statistical power. Moreover, we aim to analyse whether including a random
effect contributes to a greater statistical power both with and without correlated errors.
This analysis will also provide insight into whether a random effect contributes to a greater
statistical power than the correlation in the errors.

In Table 5.7, the calibrated statistical power for all models in the different scenarios is pre-
sented for 300, 500, and 1000 subjects in each arm. Table 5.7 shows that when calibrating the
type I error rate, the PMRMs have similar or greater power than the cLDA model, with the
exception of the (NC) TPMRM, NC PSTPMRM, and NC PDPMRM. These results are consistent
for 300, 500, and 1000 subjects in each arm. Herein we also see that across all scenarios,
the PSTPMRM is the original model with the greatest statistical power except in the 20% PD
scenario for 1000 subjects in each arm.

When we exclude the correlation in the errors from the original PMRMs, we observe that the
statistical power decreases significantly for both the PSTPMRM and PDPMRM. This aligns
with our observations in Table 5.4. Here, we saw highly inflated type I error rates alongside
comparatively lower statistical power across the other scenarios, in contrast to the models
with correlated errors. The statistical power of the TPMRM also decreases when removing
the correlation in the errors when working with 500 and 1000 subjects in each arm, contrary
to the results for 300 subjects in each arm.

In Table 5.7, it is evident that including a random effect in the PSTPMRM, when there is
correlation in the errors, only slightly improves the statistical power across all scenarios.
Nevertheless, comparing the NC PSTPMRM and its counterpart models including a random
effect, the statistical power increases significantly when a random effect is included. In the
simulations with 500 and 1000 subjects in each arm the results indicate that the random effect
in the models contribute to a greater statistical power than the correlation in the errors does.
This is evident as the NC RI/RS PSTPMRM demonstrates equal or greater statistical power
compared to the PSTPMRM. However, as the number of subjects in each arm decreases to
300, the PSTPMRM achieves the greatest statistical power among those three models.
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Subjects
per arm Scenario cLDA PDPMRM

NC
PDPMRM PSTPMRM

NC
PSTPMRM

RI
PSTPMRM

NC RI
PSTPMRM

RS
PSTPMRM

NC RS
PSTPMRM TPMRM

NC
TPMRM

30
0

No effect 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

20% Proportional reduction in decline 0.439 0.55 0.235 0.784 0.152 0.802 0.495 0.800 0.451 0.144 0.211

20% Proportional slowing 0.496 0.699 0.219 0.994 0.135 0.994 0.941 0.994 0.928 0.159 0.231

10 to 30% Time based changes 0.798 0.916 0.347 0.997 0.205 0.997 0.963 0.995 0.956 0.331 0.378

50
0

No effect 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

20% Proportional reduction in decline 0.737 0.789 0.293 0.902 0.267 0.922 0.915 0.922 0.909 0.472 0.406

20% Proportional slowing 0.84 0.927 0.355 1.000 0.312 1.000 0.999 1.000 0.998 0.569 0.535

10 to 30% Time based changes 0.96 0.991 0.474 1.000 0.413 1.000 1.000 1.000 0.999 0.861 0.774

10
00

No effect 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025

20% Proportional reduction in decline 0.884 0.959 0.525 0.472 0.541 0.484 0.934 0.488 0.917 0.586 0.328

20% Proportional slowing 0.959 0.977 0.533 0.997 0.656 1.000 0.998 1.000 1.000 0.656 0.438

10 to 30% Time based changes 0.996 0.996 0.717 0.999 0.751 1.000 1.000 1.000 1.000 0.957 0.836

cLDA: Constrained Longitudinal Data Analysis, PDPMRM: Proportional reduction in decline progression model for repeated measures, PSTPMRM: Propor-
tional slowing of disease progression progression model for repeated measures, TPMRM: Time based changes in disease progression model for repeated
measures, RI: Random intercept, RS: Random scaling factor, NC: Not correlated error terms.

TABLE 5.7: Calibrated statistical power of the progression models for repeated measures and the constrained longitudinal data analysis model
in different scenarios, and for a different number of subjects in each arm. The highlighted numbers in each row (expect the scenario: no effect)
highlights the model(s) which has(have) the greatest power.
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Even though the calibrated type I error rate makes it possible to compare the models, it does
not change the fact that the PMRMs, except the (NC) TPMRM, experience inflated type I error
rates, which might deem them unusable for practical applications. This issue is not present
in the cLDA model ?mere?. This will be further touched upon in Chapter 7.

5.3 Time Homogeneity

In the former sections we saw that the PSTPMRM performs relatively well. Hence, we are
interested in determining whether its assumption of constant treatment effect over time
is true. Furthermore, if the treatment can be considered to have a constant effect on the
subjects over the time period of a clinical trial, predicting its effect beyond the trial duration
becomes more feasible, as will be seen in Chapter 6. We will test this assumption using a
likelihood-ratio test between the TPMRM and PSTPMRM. Recall that the TPMRM allows the
treatment effect to vary over time, whereas the PSTPMRM assumes that treatment effect can
be modelled by a constant. That is, the PSTPMRM is a special case of the TPMRM. Thus, this
likelihood-ratio test, tests whether the additional parameters in the TPMRM are necessary. A
p-value below 0.05 means that the TPMRM is better than the PSTPMRM and hence we reject
the null hypothesis. The p-values for each of the scenarios can be seen in Figure 5.8, with the
summarised results being; 95% of the null hypotheses are not rejected for NE, 69% are not
rejected for 10 to 30% TB, 14% are not rejected for 20% PD, and 92% are not rejected for 20%
PS. Thus, it seems that the assumption of PS is viable in the NE-, 10 to 30% TB-, and 20% PS
scenarios, but not in the 20% PD scenario.
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FIGURE 5.8: Time homogeneity p-values testing the assumption of proportional slowing in the
scenarios; no effect, 10 to 30% time based changes, 20% proportional reduction in decline, 20%
proportional slowing, where there are 500 subjects in each arm.

Hence, these results indicate that in the majority of the scenarios, the assumption of the
treatment effect being able to be described by one constant parameter over time holds. In the
simulations with 300 and 1000 subjects in each arm we see the same overall tendencies. Note
that these results are affected by the used test, and the data, and hence could vary depending
on the test and number of subjects in each arm.
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5.4 Subgroup Analysis

In the context of Health Technology Assessment (HTA) and in clinical trials the power to
detect a difference in treatment effect between subgroups is at least as important as detecting
the treatment effect between a placebo- and active arm. This difference in treatment effect
between subgroups will henceforth be referred to as the treatment difference. The reason that
this is important is, among other things, that a considerable fraction of recommendations
from HTA authorities involve restricted recommendations to subgroups [Paget et al., 2011].

Hence, in this section we analyse the power to detect the treatment difference for the cLDA
model compared to the PMRMs; PSTPMRM, NC PSTPMRM, NC RI PSTPMRM, and NC
RS PSTPMRM. These PMRMs have been chosen, as the PSTPMRM in the former sections
seemed to exhibit superior performance compared to the remaining PMRMs. Additionally,
an extensive analysis of all 11 models presented in the former sections is not possible due to
the time constraints of the thesis.

We will examine the simple case where there are two subgroups, subgroup 1 and subgroup
2, which gives two placebo arms and two active arms to examine the treatment difference.
As opposed to using the same PSTPMRM as in the former sections, this section will utilise
the subgroup extension of this model, presented in (3.8). Additionally, we will implement
a random intercept and a random scaling factor in a similar manner as in Subsection 5.1.3.
These extended PMRMs all have one parameter which describes the treatment effect in each
group. Hence, we can compare the two parameters describing the treatment effects in the
two subgroups, and determine if they are significantly different. The subgroup extension
of the cLDA model will include an interaction term between treatment, time from baseline,
and subgroup. Besides the interaction term, the cLDA model includes a random effect term,
which allows for a subject-specific variation at each visit. To determine whether there is
a treatment difference between the two subgroups in the cLDA model, we determine the
treatment effect as described in Section 5.1 in each subgroup and determine if these are
significantly different.

Data simulation

The placebo arm of subgroup 1 will be simulated with respect to the mean trajectory of
the placebo arm from the CPAD database, as the placebo arm in the former sections. The
remainder of treatment arms will be simulated on the basis of this placebo arm. The placebo
arm in subgroup 2 will be simulated as either a 10% proportional reduction in decline (PD)
or 10% proportional slowing of disease progression (PS) of the placebo arm in subgroup 1.
In the case where the placebo arm in subgroup 2 is 10% PS of the placebo arm in subgroup
1, both of the active arms will also be simulated as a PS of their respective placebo arms.
Similarly, if the placebo arm in subgroup 2 is a 10% PD of the placebo arm in subgroup 1,
the active arms will be simulated as a PD of their respective placebo arms. Hence, we will
assume that the relation between the arms are of the same type. We have implemented this
assumption to minimise the possible combinations of various simulations, primarily due to
our uncertainty about which assumptions are accurate. Consequently, we must constrain the
variety of scenarios in some fashion.

However, to examine the performance, estimation accuracy, and statistical power of the
models we simulate various scenarios. We will in the scenarios fix the treatment effect in
subgroup 1 at a 20% PD or PS, and then vary the treatment effect in subgroup 2. We will
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simulate a treatment difference of 0%, 5%, 10%, and 15%. For example, in the case where
there is a treatment difference of 15% PS, the mean trajectories of the arms, for visit j > 0, are
given as

β j ,active =β j ·0.8,placebo, β j ,placebo2
=β j ·0.9,placebo, β j ,active2 =β j ·0.65,placebo2

.

Here, the mean trajectory of the placebo arm in subgroup 1 is given as the vector β =(
β0,placebo,β1,placebo, . . . ,β8,placebo

)⊤. Again, we will assume that all treatment arms have the
same mean baseline, that is,β0,placebo =β0,active =β0,placebo2

=β0,active2 . The scenario wherein
there is no treatment effect in either of the two subgroups the mean trajectories satisfy
β j ,placebo −β j ,active =β j ,placebo2

−β j ,active2 = 0 for all j .

Lastly, we will be conducting the analysis for 1000 simulations as in Section 5.1, as we, again,
see that the statistical power and mean estimated treatment difference stabilised within these
1000 simulations. A figure of the statistical power for all models with respect to the number
of simulations, in each scenario, can be seen in Section E.2. Similarly, a figure of the models’
mean estimated treatment difference with respect to the number of simulations, in each
scenario, can be seen in Section E.1.

5.4.1 Estimated Treatment Difference

Instead of analysing the estimated treatment effect in each subgroup as in Section 5.1, we
analyse the estimated treatment difference. That is, how well the models estimate the 0%, 5%,
10%, and 15% treatment difference. We will compare the estimated treatment difference from
the models with the true treatment difference. Hence, the mean bias presented in Table 5.9 is
the mean of the true treatment difference observed in the data subtracted from the estimated
treatment difference from the models in each simulation. The true treatment difference is
calculated as the difference between the true treatment effects of the two subgroups, where
the true treatment effect is calculated as described in Section 5.1, and elaborated upon in
Section D.1. Furthermore, the relative bias in Table 5.9 is also determined by comparing the
true treatment difference and estimated treatment difference.

As an example, if the true treatment effect in subgroup 1 is a 20% PS and it in subgroup 2 is a
35% PS, the true treatment difference is a 15% PS. Furthermore, if the estimated treatment
effect in subgroup 1 is a 19% PS and it in subgroup 2 is a 35% PS, the estimated treatment
difference is a 16% PS. In this example the bias is then 0.15−0.16 =−0.01.

Table 5.9 displays the mean bias, the relative bias, and the estimated standard error over the
1000 simulations, together with the mean of the true treatment difference. Table 5.9 only
presents the results for the simulations with 500 subjects in each arm in the scenario with a
15% PS or PD treatment difference. The results for 300 and 1000 subjects in each arm and the
remaining scenarios (0%, 5%, and 10% treatment difference) for 500 subjects in each arm can
be found in Appendix E. The scenarios with a 15% treatment difference is the only scenario
presented, since similar tendencies are seen for the remaining scenarios.
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Scenario Model

Mean True
Treatment
Difference

Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error
15

%
d

if
fe

re
n

ce
in

P
S

cLDA 0.761 -0.020 -2.628 1.840

PSTPMRM 0.146 0.036 24.658 0.239

NC PSTPMRM 0.146 0.002 1.370 0.038

NC RI PSTPMRM 0.146 0.009 6.164 0.155

NC RS PSTPMRM 0.146 0.065 44.521 0.236

15
%

d
if

fe
re

n
ce

in
P

D

cLDA 1.920 0.037 1.927 1.800

PSTPMRM 0.141 0.144 102.128 0.308

NC PSTPMRM 0.141 -0.002 -1.418 0.155

NC RI PSTPMRM 0.141 0.085 60.284 0.146

NC RS PSTPMRM 0.141 0.121 85.816 0.390

TABLE 5.9: Mean true treatment difference, mean bias, relative bias, and estimation standard
error of the extended progression models for repeated measures and the subgroup extension of
the constrained longitudinal data analysis model in the 15% difference in PD/PS scenarios for
500 subjects in each arm. Subset of Table E.11.

The relative bias here is generally larger than in Section 5.1, which could be due to the
true treatment difference being closer to zero than the true treatment effects in Section 5.1.
Thus, low biases can result in a large relative bias. This is because the denominator of the
formula for the relative bias being the mean true treatment differences, which is close to zero,
especially in the 0% difference scenarios. However, the relative bias of the extended PMRMs
indicate that the estimation accuracy of the NC PSTPMRM is the best, similar to what we saw
in Table 5.5.

Table 5.9 shows that there is a general tendency for the estimated treatment difference to be
larger than the true treatment difference, since the mean bias is positive. This pattern persists
when considering the simulations with 300 and 1000 subjects in each arm for the PSTPMRM
and the models including a random effect, but not for the NC PSTPMRM and the cLDA model.
Even though there is an indication of a bias in the estimated treatment differences for some of
the extended PMRMs, this is not the case in the estimates of each treatment effect in the two
subgroups. The results for each of the estimated treatment effects can be seen in Appendix E.
This applies to all of the models across all scenarios. The tendencies of the bias, relative bias
and estimated standard error of each of the treatment effects in the individual subgroups are
very similar to those seen in Section 5.1. Hence, we will not comment further on these results.
As expected, the mean bias and estimated standard error of the treatment difference is larger
than when analysing the treatment effects in the two subgroups individually, since it includes
the uncertainty of two independent parameter estimates compared to one.

As in Section 5.1 the mean bias and relative bias of the estimated treatment difference de-
creases as the number of subjects increase. Similarly, the estimated standard error decreases
when the number of subjects increase. Furthermore, the results indicate that the extended
PMRMs estimate the treatment difference more accurately in the PS scenarios as opposed
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to the PD scenarios. It does, however, not seem like the cLDA model favors one of the two
scenarios. In Table E.11 and Table E.15, it can be seen that for 500 and 1000 subjects in each
arm the mean bias and estimated standard error of the extended PMRMs without correlated
errors is smaller or on par with those of the PSTPMRM. This again indicates that the models
without correlated errors provide more accurate parameter estimates than those with cor-
related errors. However, when there are 300 subjects in each arm, the estimated standard
error in the NC PSTPMRM and NC RS/RI PSTPMRM varies significantly across the different
scenarios and is sometimes rather large.

5.4.2 Statistical Power

Besides analysing the estimation accuracy of the models we will analyse their power to detect
a treatment difference. Again, statistical power relates to an F-test, with the null hypothesis
being that the treatment difference is zero. Hence, for a type I error rate of 9%, the statistical
power in the 0% treatment difference scenarios, where the null hypothesis is true, should be
approximately 0.045, using the same reasoning as presented above Table 5.2. The type I error
rate is chosen higher than in Section 5.1 based on the arguments seen in [Paget et al., 2011].
The type I error rate of each model is presented in Table 5.10 for both a 10% PD and a 10% PS
relation between the two placebo arms.

Scenario cLDA PSTPMRM
NC

PSTPMRM
NC RI

PSTPMRM
NC RS

PSTPMRM

0% difference in PS 0.052 0.167 0.068 0.034 0.028

0% difference in PD 0.056 0.171 0.062 0.012 0.014

TABLE 5.10: Type I error rate of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model for 500 subjects in
each arm. Subset of Table E.19.

Table 5.10 shows that the type I error rate of the cLDA model is slightly inflated, while the
type I error rate of the PSTPMRM is highly inflated. The type I error rate of the NC RI/RS
PSTPMRM is, however, quite deflated in both scenarios. The type I error rate of the NC
PSTPMRM is only slightly inflated, meaning that the removal of the correlation structure
in PSTPMRM decreases the type I error rate. Thus, contrary to Section 5.1, it seems that
the correlated errors do not seem to result in greater statistical power. Thus, as opposed to
before, it would seem that perhaps the estimation of the correlation structure in the extended
PMRMs is negatively affecting the results.

To compare the statistical power of the models in the remaining scenarios we will again
calibrate the type I error rate of the models, using the same method as in Section 5.2. However,
the calibration will be done separately for the PD and PS scenarios, as these have two different
0% difference scenarios. The calibrated statistical power is presented in Table 5.11.

56



5.5. SUMMARY OF RESULTS Group 4.111d

Scenario cLDA PSTPMRM
NC

PSTPMRM
NC RI

PSTPMRM
NC RS

PSTPMRM

0% difference in PS 0.045 0.045 0.045 0.045 0.045

0% difference in PD 0.045 0.045 0.045 0.045 0.045

5% difference in PS 0.945 0.118 0.323 0.478 0.525

5% difference in PD 0.965 0.099 0.313 0.687 0.687

10% difference in PS 0.975 0.154 0.372 0.703 0.743

10% difference in PD 0.976 0.130 0.363 0.818 0.796

15% difference in PS 0.994 0.198 0.487 0.851 0.866

15% difference in PD 0.986 0.155 0.458 0.889 0.89

TABLE 5.11: Calibrated statistical power of the extended progression models for repeated
measures and the subgroup extension of the constrained longitudinal data analysis model for
500 subjects in each arm. The highlighted numbers in each row (expect the scenarios with 0%
difference) highlights the model(s) which has(have) the greatest statistical power. Subset of
Table E.20.

Comparing the calibrated statistical power of the extended PMRMs we see that the PSTPMRM
and NC PSTPMRM have significantly lower statistical power that the models including a
random effect. Furthermore, there is an indication that the model with a random intercept
generally achieves greater statistical power than the model with a random scaling factor.
Furthermore, an advantage of the extended PMRMs with a random effect is that their un-
calibrated type I error rates are not inflated (see Table 5.10). Hence, this indicates that the
inclusion of a random effect in the extended PMRMs can replace the correlation in the errors.
Additionally, in this analysis it seems to significantly improve the extended PMRMs’ perfor-
mance. Moreover, we observe that the calibrated statistical power is higher for the cLDA
model compared to the extended PMRMs. Furthermore, we also observe that the statistical
power increases as the true treatment difference and/or the number of subjects increases.
This is consistent with the notion that the power to detect each treatment effect also increases
with the number of subjects.

In Table 5.11, we further see that the (NC) PSTPMRM achieves the greatest power in the PS
scenarios compared to the PD scenarios, whereas the extended PMRMs with a random effect
seem to do the opposite. However, this varies slightly when looking at different number of
subjects.

5.5 Summary of Results

Overall, we see that the estimation accuracy of all the models in Section 5.1 becomes better
when increasing the number of subjects in each arm. Additionally, we observe that most
PMRMs exhibit inflated type I error rates, especially the NC PDPMRM and NC PSTPMRM.
The very inflated type I error rates for the NC PDPMRM and NC PSTPMRM also result in these
models having the poorest calibrated statistical power of all the models. When comparing the
calibrated statistical power for all of the models, most of the PMRMs had greater statistical
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power than the cLDA model. Specifically, the PSTPMRM and its modifications with a random
effect achieved the highest statistical power among all of the models, in most scenarios.
Generally, we see that the addition of a random effect can compensate for the correlation
in the errors, especially when the number of subjects in each arm is sufficiently high. When
decreasing the number of subjects in each arm to 300, we see that the models with a random
effect should advantageously include correlation in the errors.

For the subgroup models, much of the same can be seen. The estimation accuracy improves
when the number of subjects in each arm increases. Furthermore, the estimation accuracy
of the extended PMRMs is better in the proportional slowing of disease progression scenar-
ios compared to the proportional reduction in decline scenario. However, contrary to the
statistical power in Table 5.7, the subgroup model extension of the cLDA model has higher
statistical power than either of the extended PMRMs (see Table E.19). Thus, even though the
PMRMs previously seemed to outperform the cLDA model, this is not the case here. However,
it was seen that including a random effect significantly increases the statistical power of the
extended PMRMs. In the simulation with 1000 subjects in each arm, the statistical power
of these extended models perform almost on par with the cLDA model in most scenarios.
This again suggests that the random effects can replace the complicated correlation structure
in the errors in the extended PMRMs and even improve their performance. However, again
when decreasing the number of subjects in each arm to 300, we see that the random effect
models should advantageously include correlation in the errors.

Hence, from these analyses the NC RI/RS PSTPMRM and their subgroup extensions perform
very similar to the conventionally used cLDA model in both the first analysis between one
placebo- and active arm, as well as in the subgroup analysis. In the analysis between a
placebo- and active arm the type I error rate is somewhat controllable. Moreover, their type
I error rates are deflated in the subgroup analysis, as opposed to the cLDA model which
experiences an inflated type I error rate. Hence, using any of these models in clinical trials,
the inflated type I error rate should be kept in mind. Raket suggests recalibrating the type I
error rate based on resampling techniques. The remaining models experience either very
inflated type I error rates and/or lower statistical power than these models in either the first
analysis between one placebo- and active arm, or in the subgroup analysis. Furthermore, the
choice of models should be chosen based on prior knowledge about how treatment effects
behave, proportional reduction in decline, proportional slowing of disease progression, etc..
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6 Health Technology Assessment Implemen-
tation

This chapter is based upon [Ito et al., 2023], [Whitehead and Ali, 2010], and [MIT Critical Data,
2016, Ch. 24].

Besides being interested in the performance of the PMRMs in terms of estimation accu-
racy and statistical power, we are interested in the further use of these models in a Health
Technology Assessment (HTA) context.

When assessing new treatments, HTA bodies must evaluate the treatment’s efficacy and cost
in comparison to existing alternatives. The evaluation of a new treatment by HTA bodies
is intended to assist decision-makers in evidence-based policy-making to maximise the
benefits that can be achieved with the available resources. Typically, HTA bodies employ
health economic models to effectively capture the impact of a treatment. Clinical studies,
such as those regarding Alzheimer’s disease (AD), typically do not last longer than 18 months,
during which subjects do not necessarily reach the severe stages of the disease. Hence, HTA
bodies use extrapolation to determine the long-term effects of a treatment and meaningfully
capture how it affects the total cost and disease progression over time.

A comparison of treatments can be done by performing a cost-effectiveness analysis (CEA),
which compares the cost and effectiveness of different treatments. It is beneficial to measure
the cost-effectiveness on a common scale across diseases and treatments, as it makes the
comparison of cost-effectiveness easier across diseases and healthcare areas, and is also
recommended by the National Institute for Health and Clinical Excellence (NICE), which is a
HTA authority. An often used scale is the incremental cost-effectiveness ratio (ICER).

The ICER is calculated by taking the difference in the total costs between two treatments
and dividing it by the difference in effects, typically measured in quality-adjusted life years
(QALYs). Specifically, the ICER is given as

ICER = ∆Cost

∆QALY
. (6.1)

Here, the total cost includes both the cost of the treatment, the cost if a subject has to receive
institutional care, the caregivers’ lost income, and much more. QALY is a way of valuing a
life year and is calculated by multiplying the duration of time spent in a health state by the
utility score of this health state. Here, the utility score, typically ranging from 0 to 1, is a way
of valuing health state of a disease to reflect the desirability of being in a particular health
state. Take, for example, AD, which can be split into multiple stages including, among others,
mild cognitive impairment (MCI) due to AD, mild AD dementia, and moderate to severe
AD dementia. The utility score, and hence QALY, will for a subject with AD decrease as the
severity of the disease increases. Conversely, the cost will increase because of the increasing
amount of care required. Thus, the CEA of a treatment in the context of AD, relies heavily on
the time a subject spends in each stage, and hence it is rather important how a treatment
extends or reduces the time in the different stages of the disease.
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In this chapter, we will demonstrate how the PMRMs can be used in the context of a CEA.
Specifically, we will introduce one possible way of using the PMRMs in modelling how a
treatment affects the time spent in each health state long-term. For this purpose, we will be
using Markov models, since they are one of the most commonly used tools in a CEA. This
implementation of the PMRM closely corresponds to that presented in [Jönsson et al., 2024].

6.1 Markov Models

A Markov model consists of a state space, usually consisting of different discrete health states,
and transition probabilities between these states. Furthermore, it is a stochastic process that
undergoes transitions from one state to another. Additionally, Markov models satisfy the
first-order Markov property, meaning that the probability of moving to another state only
depends on the current state and not the former states.

In the following, we will be using a simple Markov model which has constant transition
probabilities over time. The model can be extended in multiple different ways, depending
on the assumptions, such as transition probabilities that vary over time, not satisfying the
first-order Markov property, etc..

In Alzheimer’s disease, the health states could be the three aforementioned stages of the
disease as well as death. Then the subjects transition from one state to another with some
probability over some period of time. This period of time is called a cycle, which can be a day,
month, year, and so on. The possible health states and transitions in the Alzheimer’s disease
example are illustrated using a state transition diagram, seen in Figure 6.1.

MCI Mild Mod-to-sev Death

MCI: Mild cognitive impairment due to Alzheimer’s disease, Mild: Mild Alzheimer’s disease
dementia, Mod-to-sev: Moderate to severe Alzheimer’s disease.

FIGURE 6.1: State transition diagram for cognitive decline in Alzheimer’s Disease.

Here, the nodes represent the different health states and the arrows represent the possible
transitions. In Figure 6.1, some of the assumptions are presented. First, it is possible to
transition to death from all other health states, and death is an absorbing state, meaning a
subject can not leave the health state after transitioning to it. Second, it is not possible to
transition to a less severe health state than the one a subject is already in. Last, it is possible
for a subject to stay in the same health state for multiple cycles.
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Each arrow has a corresponding probability of transitioning in each cycle - their transition
probability. All of these transition probabilities can be presented in a transition matrix, which
for Alzheimer’s disease could resemble the one in Table 6.2.

MCI Mild Mod-to-sev. Death

MCI 0.978 0.015 0.005 0.002

Mild 0.000 0.983 0.010 0.007

Mod-to-sev. 0.000 0.000 0.988 0.012

Death 0.000 0.000 0.000 1.000

MCI: Mild cognitive impairment due to Alzheimer’s disease, Mild: Mild Alzheimer’s disease
dementia, Mod-to-sev: Moderate to severe Alzheimer’s disease.

TABLE 6.2: Transition matrix (should be read from left to right)

These are external transition probabilities based on other clinical trials [Jönsson et al., 2024;
Lin et al., 2023], and they represent the transition probabilities for a group of subjects in a
placebo arm. These transition probabilities are based on monthly cycles, allowing subjects to
transition to another health state each month.

The transition matrix in Table 6.2 should be read from left to right, meaning that the value
in the first row and second column describes the probability of transitioning from the MCI
due to AD state to the mild AD dementia state in one month. The transition probabilities in
each row should further add up to one. As mentioned, the subjects can not transition to a
less severe health state, which is reflected in the transition matrix, as the values below the
diagonal are all 0.

Based on the transition matrix, it is possible to calculate the probability of a subject being in
the different health states after each cycle. However, Table 6.2 only describes the transition
probabilities for subjects in a placebo arm, and hence we need to use the PMRMs’ estimated
treatment effect to analyse how the subjects in the active arm transition over time.

Assuming we are working with the proportional slowing of disease progression PMRM
(PSTPMRM), we can model the relation between the mean trajectory of the placebo- and
active arm. The PSTPMRM contains one parameter describing the percentage in time the
progression of the disease is slowed by, by being on an active treatment. Hence, for example,
assuming the model estimates a 20% slowing of disease progression, the mean trajectory of
the active arm will at month 20 have the value that the mean trajectory of the placebo arm
had at month 16. We will incorporate this in the Markov model by using the same transition
matrix as that of the placebo arm but changing the length of the cycles, as proposed by [Jöns-
son et al., 2024]. Hence, if we continue assuming that the treatment slows the progression of
the disease by 20% and each cycle is one month for the subjects in the placebo arm, the cycle
for the subjects in the active arm will then be 1.25 months.

We will look at a time period of 15 years (180 months), during which the placebo group will
go through 180 cycles of one month each, whereas the active group will go through 144 cycles
of length 1.25 months each. We have chosen 15 years based on [Jönsson et al., 2024] and the
fact that the life expectancy of a subject with Alzheimer’s disease typically does not exceed 10
years [Zanetti et al., 2009]. Assuming that all subjects will start in the MCI due to AD state, the
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probability of being in the different health states, after n cycles, is calculated as the (1,0,0,0)
vector multiplied by the transition matrix to the power of n. The probability of being in each
health state after one cycle is given in Table 6.3.

MCI Mild Mod-to-sev. Death

0.978 0.015 0.005 0.002

MCI: Mild cognitive impairment due to Alzheimer’s disease, Mild: Mild Alzheimer’s disease
dementia, Mod-to-sev: Moderate to severe Alzheimer’s disease.

TABLE 6.3: Probabilities of being in each health state after one cycle.

The probability of being in each health state over time is presented in Figure 6.4.
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MCI due to AD − Placebo
Mild AD dementia − Placebo

Mod to sev. AD dementia − Placebo
Death − Placebo

MCI due to AD − Active
Mild AD dementia − Active

Mod to sev. AD dementia − Active
Death − Active

FIGURE 6.4: Estimated proportion of which health states the subjects are in over time, using
the transition matrix in Table 6.2.

It can be seen that the proportion of subjects in the MCI due to AD state is larger in the active
arm than in the placebo arm. Hence, this implies that the subjects are generally in the mildest
state of Alzheimer’s disease for a longer period of time. Furthermore, Figure 6.4 shows that
the proportion of subjects who are dead is smaller in the active arm than in the placebo arm,
meaning the treatment extends the life expectancy of the subjects.

Assuming 1000 subjects receiving placebo in the MCI due to AD state, it is possible, based
on Figure 6.4, to determine how many subjects there theoretically should be in each health
state over time. For example, after one cycle 978 subjects should be in MCI due to AD, 15 in
mild AD dementia, 5 in moderate to severe AD dementia and 2 dead. Meaning Figure 6.4 can
be used to analyse the allocation of a group of Alzheimer’s disease subjects over time, and
thereby simulate the disease progression in the two arms.

Figure 6.4 is, however, not as intuitive if you are only interested in how the treatment, on
average, extends or reduces the time spent in each of the different states. This is illustrated in
Figure 6.5, where the first two bars are the sum of the three other bars of the same color. From
the two first bars, we can again deduce that the subjects on average live for a longer period of
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time when on an active treatment. More precisely, in this example, they live, on average, for
24 months longer than the subjects in the placebo arm, considering the 15 year time period.
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FIGURE 6.5: Average time spent in the different health states over the course of 15 years (180
months) using the transition matrix in Table 6.2.

Here, it can also be seen that the subjects in the active arm, over 15 years, generally spend
longer time in all health states. Specifically, in Figure 6.5, we observe that the active group
spends 14 months longer in the MCI due to AD state, 7 months longer in the mild AD dementia
state, and 3 months longer in the moderate to severe AD dementia state.

Contrary to the placebo arm, the subjects in the active arm receive a, possibly costly, treat-
ment. This treatment extends their life expectancy and delays their disease progression, but
also comes at an additional cost. Hence, a CEA should be conducted to help determine if the
treatment is cost-effective. In this example, the CEA compares an active treatment to placebo,
however, placebo could be replaced by another treatment. Then, the comparison could
help determine which treatment is more cost-effective, which could help decision-makers
determine which treatment is the better choice as the standard of care.

Furthermore, as described in Section 5.4, some of the extended PMRMs can be used to
determine the treatment effect in two subgroups simultaneously. Additionally, it can then
be tested whether there is heterogeneity in the treatment effect between subgroups. The
treatment effects observed in each subgroup could be regarded as two different treatments,
wherein an ICER would determine how they compare with respect to their cost-effectiveness.
A substantial ICER could lead to the treatment only being offered for one of the subgroups.

6.2 Cost-effectiveness Analysis

The CEA is conducted by associating a cost and utility to each health state and calculating
the expected cost and utility score in each arm over time. From [Ito et al., 2023], the utility
score and cost of the subjects in each health state are
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MCI Mild Mod-to-sev. Death

Utility 0.85 0.84 0.82 0

Cost ($/month) 3011 4536 7577.5 0

MCI: Mild cognitive impairment due to Alzheimer’s disease, Mild: Mild Alzheimer’s disease
dementia, Mod-to-sev: Moderate to severe Alzheimer’s disease.

TABLE 6.6: The utility and cost of the different states associated with Alzheimer’s disease.

As previously mentioned, the utility score decreases and cost increases as the disease becomes
more severe. Apart from the costs presented in Table 6.6, the subjects on the active treatment
will further have a cost of the treatment added in each health state, which [Ito et al., 2023]
estimates to be 1333 $/month. Assuming there are 1000 subjects in each arm starting in the
MCI due to AD state, it is possible to determine the total QALY and total cost for each arm
over time. This is illustrated in Figure 6.7 and Figure 6.8, respectively. However, for simplicity,
note that this example is presented without discounting, that is, the cost and QALY is not
brought into the present.
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FIGURE 6.7: Total QALY for each arm over
time for 1000 subjects in each arm.
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FIGURE 6.8: Total cost for each arm over time
for 1000 subjects in each arm.

Figure 6.7 and Figure 6.8 illustrate how the total QALY and total cost evolve over time, respec-
tively. To determine this, we determine the number of subjects in each health state after each
cycle and multiply with the health state’s respective utility score or cost, and then add them
together. For example, the total cost of the first two months is

1000 · (3011+1333)+978 · (3011+1333)+15 · (4536+1333)+
5 · (7577.5+1333)+2 ·0 = 8725019.5$.

In Figure 6.7 and Figure 6.8, we see that the total QALY for the subjects in the active arm
always exceeds that of the subjects in the placebo arm. Furthermore, the total cost of the
subjects in the placebo arm exceeds that of the subjects in the active arm for approximately
the first six years. However, it decreases below the total cost of the subjects in the active arm
beyond this point. Calculating the ICER as in (6.1) at the last time point, after 15 years, we get

ICER = 600860075$−553712120$

9014.1649−8045.2522
= 48660.69$/QALY

which decision-makers then should decide whether or not is a cost-effective treatment.
Using this method, it is also possible to analyse which treatment effect the PSTPMRM should
estimate to get a specific ICER. In Table 6.9, we see how the ICER changes relative to the
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PSTPMRM’s estimated treatment effect, where it is clear that the higher the treatment effect
is, the less it costs per additional QALY.

Treatment effect (%) 20 40 60 80

ICER ($/QALY) 48660.69 42496.23 33900.98 21171.35

TABLE 6.9: ICER for different treatment effects for the PSTPMRM - estimated proportional
slowing of the disease when on treatment.

This is just one way of implementing the PMRMs in a HTA context. Another way could be
extrapolating the trajectories of the subjects using the PMRMs. Each value on the outcome
score will then be associated with a health state, and thereby a cost and utility score, allowing
us to conduct a CEA based upon this. This will, however, not be elaborated further upon.
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7 Discussion

In this thesis, we examined a new class of models, progression models for repeated mea-
sures (PMRMs), some of which estimated the time saved in a progressive disease, such as
Alzheimer’s disease. We found that this new class of models had relative good estimation
accuracy (small relative bias and estimation standard error), as well as high power to detect
a treatment effect, in various scenarios, compared to the conventionally used constrained
longitudinal data analysis (cLDA) model. Furthermore, we examined some subgroup exten-
sions of the PMRMs, where we found that the cLDA model generally outperformed them.
Additionally, we provided an example of how the estimate of the time saved can be used in a
cost-effectiveness analysis and to examine how a treatment extends the time in the differ-
ent stages of Alzheimer’s disease, which led to the average life expectancy being extended.
Throughout this thesis, we have discovered some of the shortcomings of the progression
models and the assumptions made in Chapter 4. These will be the focus of this chapter.

Data Simulation

In the simulation study, we opted to simulate both the placebo- and active arm, where some
simplifying assumptions were made, which could have caused the data to deviate from real
world data.

First, as we determined that neither of the active arms in the CPAD database were sufficient
for an analysis, we opted to simulate both arms based on the mean trajectory of the chosen
placebo arm. Due to this, we assumed that the covariance structure of the placebo arm and
the active arm were identical. Due to insufficient information about the behavior of an active
arm in the CPAD database, we cannot determine if this assumption is realistic. However, in
[Raket, 2022], the same covariance matrix is used to simulate the placebo- and active arm,
which suggests that the assumption is acceptable.

Second, the simulated data used in Chapter 5 was simulated using a multivariate normal
distribution. All models that have been analysed throughout the simulation study, Chapter 5,
have been implemented using R functions that assume normality. Hence, the data were
simulated according to the model assumptions. However, we saw in Figure 4.10, that the
assumption of normality was not fulfilled for the iADRS data. This could indicate that real-
world data does not necessarily fulfill the assumption of normality as the simulated data we
have used does, which could affect the results. Moreover, we conducted a simulation study
for non-linear mixed models, that showed that the distribution slightly affects the estimation
accuracy. However, this study only analysed models on the form of the NC RI/RS PSTPMRMs,
and it could hence also be advantageous to test how the other models perform when the
distribution of the data deviates from a normal distribution. This simulation study can be
found on https://github.com/loprtq/Master-s-Thesis-Results, and is not included in the
thesis since it did not fit into the scope. In short, it concentrated on comparing the nlme
function’s estimation- and extrapolation accuracy to that of the nlmer function. The nlme
function is the function used to fit the (NC) RI/RS PSTPMRMs. The simulation study thus
compared the Lindstrom and Bates algorithm, utilised by the nlme function, to the Laplace
approximation, utilised by the nlmer function. The simulation study showed that the nlme
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function was more robust to deviations from normality than the nlmer function.

Third, we assumed that data points only occur every three months, aggregating any small
deviations to the nearest third month. This removes small deviations in when subjects were
measured, even though the progression models, in theory, should be able to include these
small deviations. This was done to make the simulation of data and the implementation of
the progression models easier. Furthermore, every third month could then correspond to a
visit, which was used in the cLDA model. This aggregation of the data points could lead to
some bias in the data. However, as Alzheimer’s disease is a rather slow-progressing disease,
aggregating these data points to every third month should not change the general tendencies
of the data, as could be the case for a faster-progressing disease, where one month might
significantly affect the outcome measure. The possibility of including the small deviation
should improve the performance of the progression models compared to the cLDA model
because of the natural cubic spline interpolation.

Last, even though the aggregation of the data might not have changed the mean trajectories
and general results, something that could have affected these is the implementation of
dropout and discontinuation, which were not considered in the thesis. This was chosen
as it could result in a substantial analysis, given their complexity and potential impact.
Furthermore, we would not have anything to base an assumption of a specific dropout
rate on for the active arm, but only for the placebo arm. For the placebo arm, we saw that
in the iADRS data there were approximately a 5% dropout rate every third month. Even
though we did not implement dropout, it is very important to conduct an analysis of how the
performance of the models could be affected by this, since no Alzheimer’s trial is without it.
However, an analysis of the models under the assumption of no dropout and discontinuation
should still provide a good indication of the models’ general performance.

Some of the assumptions made, make the simulated data deviate from real data. Though,
it still align somewhat with real data as the covariance of the arms and the mean trajectory
of the placebo arm are based on real data. Furthermore, the chosen treatment effect closely
align with that seen in real clinical trials.

Models

The cLDA model and the PDPMRM both provide estimates of the treatment effect with respect
to an outcome measure, which can be very difficult to understand as a patient or a caregiver.
The PSTPMRM and TPMRM, on the other hand, provide estimates with respect to time saved.
This estimate is easier to interpret for patients and caregivers, since they, for example, will
know how many additional months they will be able to pick up their grandkids or go grocery
shopping themselves. Thus, even though a treatment effect on the time scale is not deemed
clinically meaningful, it could be meaningful for the subjects living with the disease. Hence,
these model introduce a new possible way of measuring the meaningfulness of a treatment.
Furthermore, in a clinical trial, multiple outcome measures are usually modelled to analyse
the treatment effect instead of just one. These outcome measures are usually on different
scales (minimum and maximum values) and can hence be difficult to compare. Besides the
better interpretability of the estimates from the PSTPMRM and TPMRM, it makes it easier to
compare treatment effects among multiple outcome measures since they are on the same
scale. However, a downside of measuring the treatment effect on the time scale is that this
measure is not yet well used among different clinical Alzheimer’s trials. It can thus be difficult
to compare to the treatment effect observed in other clinical trials.
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As described in Subsection 5.1.3, we included a random intercept and a random scaling factor
in the PSTPMRM model. Naturally, the inclusion of a random effect changes the model’s
estimation method. As already mentioned, the mean trajectories of the PSTPMRM with a
random intercept do not change with respect to the mean trajectories of the PSTPMRM,
as opposed to the PSTPMRM with a random scaling factor. The mean trajectories of the
PSTPMRM with a random scaling factor change with respect to the variance of the random
scaling factor. As we saw in Subsection 5.1.3, the random scaling factor’s variance was
approximately 0.22 in the RS PSTPMRM and 0.42 in the NC RS PSTPMRM. Thus, the amplitude
and knot values of the natural cubic splines were only slightly increased. In practice, changing
the mean trajectories in any way might not be desirable. We therefore tried to implement a
similar model, wherein the mean trajectories were not affected. This model failed to converge
when attempting to fit it to the simulated data. Hence, we deemed that it was not possible
to implement within the analysis’ framework. However, as seen in Subsection 5.1.3, the
inclusion of a random scaling factor achieved good estimation accuracy and great statistical
power. Thus, even though it changed the mean trajectories, it performed well. The inclusion
of a random effect could also increase the interpretability of the model, as random effects
allow us to determine the subject-specific variations.

Subgroups

In the subgroup extension of the PSTPMRM, it was assumed that not only the relation
between the placebo- and active arms, but also the relation between one of the placebo
arms in the two subgroups is a proportional slowing of the other. In Section 5.4, we found
that given a sufficient number of subjects in each arm, the extended PSTPMRMs performed
relatively well, especially when including a random effect. However, in Section 5.4, the data
were simulated to exhibit some relation between the two placebo arms. If the assumption
that the relation between the two placebo arms cannot be described by a single parameter,
these models would be expected to perform worse than seen in Section 5.4 compared to the
cLDA model. Alternatively, it could be assumed that the two subgroups exhibit no relation,
such that each placebo arm is described using its own natural cubic spline. Let these natural
cubic splines be denoted h01 and h02 for subgroup 1 and subgroup 2, respectively, then

Yi , j =



h01
(
ti , j ;β

)+εi , j i ∈ Iplacebo1

h02
(
ti , j ;β

)+εi , j i ∈ Iplacebo2

h01
(
ζti , j ;β

)+εi , j i ∈ Iactive1

h02
(
γti , j ;β

)+εi , j i ∈ Iactive2

(7.1)

Even though this increases the number of parameters in the model, it would still be more
parsimonious than the cLDA model.

Type I error rate

As we saw in Section 5.1, the type I error rate for most PMRMs was inflated, which is a concern
if these were to be used in practice. We calibrated the type I error rate of all models to be
0.025, which helped compare the models’ statistical power. In practice, calibrating the type I
error rate would be possible by simulating data sets without a treatment effect. Nevertheless,
calibrating the type I error rate in practice could be an issue. This is because healthcare
authorities are concerned about an inflated type I error rate of the models [U.S. Food and
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Drug Administration, 2022], as this suggest a higher tendency of falsely deeming a treatment
effective. As most of the PMRMs experience inflated type I error rates, then even though
Raket in [Raket, 2022] suggests that these are reasonably controlled, authorities might not
feel the same way. However, in the subgroup analysis, we saw that the extended PMRMs
with a random effect were the only ones of the analysed models for subgroups which did not
experience an inflated type I error rate. Hence, the PMRMs could be preferred over the cLDA
model in some cases with regard to the type I error rate.

Numerical Approximations

To determine the bias of the estimated treatment effect we had to determine the true treat-
ment effect in the data, as described in Section D.1. Hence, the true treatment effect is
determined numerically instead of being known, which creates the risk that the bias does not
only represent the bias of the treatment effect estimated by the models but is also affected
by the numerical computation error of the true effect. Therefore, the presented bias and
estimation standard error do not necessarily correctly represent the PMRMs’ estimation
accuracy. Upon further testing of the optimisation algorithm, it became evident that there is
typically only error present in the third decimal place. This testing included comparing the
results to another optimisation method, which did not only utilise the mean trajectories but
the PMRMs themselves. Furthermore, we also conducted some tests of the used optimisation
methods where the true treatment effect were know, which showed similar results. This
indicates that the bias should not be significantly influenced by the estimation of the true
effect.

Health Technology Assessment

In Chapter 6, a very simple way of implementing the estimated treatment effect from a
PSTPMRM in a Markov model, was explored. Naturally, some of the assumptions made
in Chapter 6 may have been be too simple, such as constant transition probabilities and
no discounting. Furthermore, it was assumed that the treatment effect was constant over
time and over health states. These assumptions imply that the time taken to reach the state
of death is impacted by a similar degree of slowing as the other health states. All of these
assumptions will need to be investigated and will probably be deemed too simple in practice.
For example, the probability of transitioning to death usually becomes larger as the subject
ages. Nonetheless, this way of implementing the PSTPMRMs in a Markov model still offers
great insight into how PMRMs can be employed within a health technology assessment
context.
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8 Conclusion

Throughout this thesis, theory regarding linear- and non-linear mixed models has been
introduced. Moreover, the constrained longitudinal data analysis (cLDA) model, which is
a linear mixed model, has been introduced, as it is widely used to model the treatment
effect between the placebo- and active arm in a clinical trial. Furthermore, theory regarding
progression models for repeated measures (PMRMs) has been introduced. These models
have in recent years also been introduced to model the treatment effect. There are several
differences between the cLDA model and PMRMs, particularly in their estimated treatment
effects. The cLDA model estimates the treatment effect as the difference between the placebo-
and active arm with respect to some outcome measure. In contrast, the PMRMs provide
percentage estimates of the change from baseline or differences between arms on the time
scale, making these estimates easier to interpret for caregivers and patients. Additionally, the
PMRMs were extended by implementing a random effect, specifically a random intercept
and a random scaling factor. Besides extending the PMRMs to include a random effect, we
also extended these, as well as the cLDA model, to determine if they were able to detect
heterogeneity in the treatment effect between subgroups, which is important in the context
of health technology assessment.

In the analysis of the performance of the models when having to model one placebo- and
active arm, we observed that some of the PMRMs performed on par or better than the
conventionally used cLDA model. Specifically, they achieved the same or higher statistical
power, as well as better estimation accuracy. This was especially true for the PSTPMRMs.
Furthermore, a random effect seemed to improve the performance of the PSTPMRM and
could, in some cases, replace the correlation structure in the errors. This could be useful
when using these models in practice, as the correlation structure caused convergence issues
in some cases. Despite some PMRMs showing higher statistical power than the cLDA model,
they often had inflated type I error rates, which affects their practical utility in a clinical
trial. In the subgroup analysis, we observed that the cLDA model performed better than the
extended PMRMs, however, it too experienced inflated type I error rates. However, provided
enough subjects in each arm, the extended PMRMs with a random effect performed almost
on par with the cLDA model, without having an inflated type I error rate. An advantage
of the PMRMs is that it provides an easily interpretable treatment effect on the time scale.
Measuring the treatment effect on the time scale could be important for subjects living with
Alzheimer’s disease, as it could provide them with how much longer they can expect to live
and how it will affect their health status in this time. Thus, this measure of the treatment
effect could open up for a new interpretation of what a meaningful treatment effect is for
subjects with Alzheimer’s disease.

Additionally, we proposed a method for incorporating the PSTPMRM’s treatment effect esti-
mate into a Markov model for health economic modelling. As we saw in Section 5.3 that the
assumption of a constant treatment effect over time was reasonable in most scenarios, we as-
sumed the treatment effect as constant over time. This approach simplifies the integration of
PSTPMRM into the Markov model, aiding in the projection of long-term treatment outcomes
and cost-effectiveness.
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Hence, there are both pros and cons of using the PMRMs, and extensions thereof, compared
to the conventionally used cLDA model. Overall, while the cLDA model offers robust perfor-
mance and a controlled type I error rate, PMRMs provide better interpretability and higher
statistical power in specific scenarios, highlighting their potential applicability in clinical
trials and health economic modelling. Furthermore, all of these models can be extended
using multiple additional variables which could affect their performance. This could be an
interesting topic and another method to extend both model types.
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A Preliminary Theory

A.1 Newton-Raphson Algorithm

The Newton-Raphson algorithm is a widely used algorithm to determine some optimal pa-
rameters θ that maximise a log-likelihood function ℓ

(
θ;y

)
. It does so iteratively by updating

the parameters to θnew using a second order Taylor series expansion around the current
parameters θold. That is,

θnew = θold −H−1 (θold)∇ℓ(
θold;y

)
, (A.1)

where θnew becomes θold in the next step and so forth until it converges to a local maximum.
Here,H is the negative Hessian matrix and ∇ℓ(

θ;y
)

the gradient of the log-likelihood func-
tion. In practice, one might use the profile log-likelihood function for the different parameters
and update them simultaneously by iterations until convergence is achieved.

One drawback of the Newton-Raphson algorithm is that if its initial parameters are far from
maximum, it might fail. Hence, a justified initial guess could make a significant difference.
For more information on the subject, see [Kornerup and Muller, 2006].

A.2 Natural Cubic Splines

Natural cubic splines, as opposed to linear splines, are more flexible due to the additional
degrees of freedom, which means that they are able to describe more complex data structures.
Specifically, as the name implies, natural cubic splines use cubic polynomials to describe
what happens before, between and after the knots of the spline. Given there are m knots,
then there are also m cubic splines. Thus, a natural cubic spline can also be written as the
piecewise function

P (t ) =


P0(t ) t0 < t < t1

...

Pm−1(t ) tm−1 < t < tm

To ensure that the natural cubic spline is sufficiently smooth it has to fulfill the following four
requirements

P j−1
(
t j

)= P j
(
t j

)
, P ′

j−1

(
t j

)= P ′
j

(
t j

)
,

P ′′
j−1

(
t j

)= P ′′
j

(
t j

)
, P ′′

0 (t0) = P ′′
m+1 (tm) = 0,

for j = 1, . . . ,m −1, where the difference between a cubic spline and a natural cubic spline is
the last requirement. To shorten the notation in the following, we will use the following:

h j =
(
t j − t j−1

)
, v j = 2

(
h j−1 +h j

)
,

b j = 1

h j

(
β j+1,placebo −β j ,placebo

)
, u j = 6

(
b j −b j−1

)
,
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as well as z j = P ′′ (t j
)

and β j ,placebo = P
(
t j

)
for j = 0, . . . ,m. We can, however, make this into

a linear spline problem, as the second derivative of the cubic spline is a linear spline. This
can be utilised to give us the following expressions

P ′′
j (t ) = z j

t j+1 − t

h j
+ z j+1

t j − t

h j
,

P ′
j (t ) = z j+1

2h j

(
t − t j

)2 − z j

2h j

(
t j+1 − t

)2 +b j −
h j

6

(
z j+1 − z j

)
P j (t ) = z j+1

6h j

(
t − t j

)3 + z j

6h j

(
t j+1 − t

)3 +
(
β j+1,placebo

h j
− z j+1

6
h j

)(
t − t j

)
+

(
β j ,placebo

h j
− z j

6
h j

)(
t j+1 − t

)
which can be solved using a tridiagonal system of linear equations, given as:

v1 h1

h1 v2 h2

h2
. . . . . .
. . . vm−2 hm−2

hm−2 vm−1




z1

z2
...

zm−2

zm−1

=


u1

u2
...

um−2

um−1


This tridiagonal system of linear equations can be solved to give an exact solution by using
Gaussian elimination. The simplified version of Gaussian elimination is isolating z1 in the
first equation, which gives z1 = u1

v1
− h1

v1
z2. Substituting this into the second equation, isolating

for z2 and substituting it into the third equation and so forth will give the solution to the
system.
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B Additional Evaluations

This chapter includes additional tables and figures not included in Chapter 4.

ADAS-Cog Scores
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FIGURE B.1: Available data points for subjects with an ADAS-Cog 11 score, alongside a linear
mean trajectory.
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FIGURE B.2: Available data points for subjects with an ADAS-Cog 12 score, alongside a linear
mean trajectory.

77



Group 4.111d APPENDIX B. ADDITIONAL EVALUATIONS

0

25

50

75

0 10 20 30 40
Month

A
D

A
S

−
C

og
 1

4

Arm PLACEBO

FIGURE B.3: Available data points for subjects with an ADAS-Cog 14 score, alongside a linear
mean trajectory.

Distribution of Cognitive Assessment Scales
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FIGURE B.4: Distribution of the ADAS-Cog 11 scores at months 3,6, . . . ,21, and 25, as these are
the months with the most observations.
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FIGURE B.5: Distribution of the ADAS-Cog 12 scores at months 3,6, . . . ,21, and 25, as these are
the months with the most observations.
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FIGURE B.6: Distribution of the ADAS-Cog 14 scores at months 3,6, . . . ,21, and 25, as these are
the months with the most observations.
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FIGURE B.7: Distribution of the ADCS-ADL scores at months 3,6, . . . ,21, and 25, as these are
the months with the most observations.

Data Presentation for Subjects with an iADRS Score

The figures and tables in this section are for subjects with an iADRS score.
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FIGURE B.8: Histogram of the subjects’ ages after sorting for subject with an iADRS score but
excluding subjects with ages 999 and 9999.
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Race %

Not Registered 7.96

Asian 6.65

Black or African American 1.78

Multiple 0.19

White 83.43

TABLE B.9: The available racial groups and
the percentage of subjects within each racial
group for subjects with an iADRS score.

Ethnicity %

Not Registered 8.29

Hispanic or Latino 4.78

Not Hispanic or Latino 86.93

TABLE B.10: The available ethnic groups
and the percentage of subjects within each
ethnic group for subjects with an iADRS
score.
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FIGURE B.11: World map showing the distribution of subjects with an iADRS score. This shows
that the majority of countries in North America, and Oceania are represented, whereas only
few countries in South America, Africa, Europe, and Asia are represented.
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C Residual Analysis

We start by fitting a PSTPMRM with homoscedastic and non-correlated errors. That is

nwcmmrm <− gnls (model = y ~ PSTPMRM(M, v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , b) ,
data = data ,
params = l i s t ( v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 ~ 1 ,

b ~ act + 0) )

Where data is the one of the data sets used in the 20% proportional slowing in disease
progression scenario. The best way of seeing if there are any indications of heteroskedasticity
is by investigating the residuals plotted against either the fitted values or a variance covariate
candidate. In our case a variance covariate could for example be the visits. In Figure C.1 the
standardized residuals are plotted against the fitted values from nwcmmrm.
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FIGURE C.1: Standardized residuals plotted against the fitted values, both from the nwcmmrm.

Figure C.1 shows that there is a slight indication that the variance decreases when the values
of the fitted values increase. This could potentially be modelled by the varPower class of
variance functions.

In Figure C.2, we plot the standardized residuals against the possible variance covariate, visit.
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FIGURE C.2: Standardized residuals plotted from the nwcmmrm plotted against the variance
covariate, visit.

Here, we see that there is an indication of different variances depending on the visit. This
can be modelled using the varIdent class of variance functions. To see which of the two
classes of functions superior for modelling the potential heteroskedasticity in the model we
try both methods, and compare those individually to the nwcmmrm model, and to each other.
This is done by using the anova function. The two models are constructed by adding a weight
argument to the gnls function with varPower() and varIdent(), respectively. Based on
the anova function, there is a highly significant decrease in the AIC and BIC when using the
varIdent variance function. However, this is not seen when using the varPower variance
function. Furthermore, the use of varIdent also shows a significantly decrease in the AIC
and BIC compared to the use of varPower. Hence, indicating heteroskedasticity depending
on the variance covariate "visit".

Model df AIC BIC logLik Test L . Ratio p−value
nwcmmrm 1 11 48542.63 48615.16 −24260.31
varIdent_model 2 19 48026.18 48151.47 −23994.09 1 vs 2 532.4483 <.0001

Model df AIC BIC logLik Test L . Ratio p−value
nwcmmrm 1 11 48542.63 48615.16 −24260.31
varPower_model 2 13 48546.63 48632.35 −24260.31 1 vs 2 1.74623e−10 1

Model df AIC BIC logLik Test L . Ratio p−value
varPower_model 1 19 48026.18 48151.47 −23994.09
varIdent_model 2 13 48546.63 48632.35 −24260.31 1 vs 2 532.4483 <.0001

Of course, there are many different possibilities of variance structures, however, this variance
structure seems to model the heteroskedasticity well. Furthermore, this is also the structure
used by [Raket, 2022], and therefore the model is now given as

ncmmrm <− gnls (model = y ~ TPMRM_br(M, v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , b , b , b ,
b , b , b , b , b) ,

data = data ,
params = l i s t ( v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 ~ 1 ,

b ~ act + 0) ,
weights = varIdent ( form = ~ 1 | v i s i t ) )
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Now that we have checked if there is any heteroskedasticity in the model’s errors we would
want to test if we also need to include correlation in the errors. Here, it could be evident to
look at the within-subject errors, which the autocorrelation function (ACF) can be used for.
The ACF for each subject is presented in Figure C.3 which is made by plotting ACF(ncmmrm,
form = ~ 1 | id, maxLag = 8). The ACF function computes the autocorrelation function
for the residuals of the specified model (ncmmrm). The formula ~ 1 | id indicates that the
autocorrelation should be computed separately for each level of the grouping variable id.
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FIGURE C.3: ACF of the model ncmmrm computed on the subject-level.

Figure C.3 shows a slow decline in the ACF indicating that there is some autocorrelation
present. Hence, we try to fit some correlation structures including the classes corSymm,
corCompSymm, corAR, and corARMA. We test the models including a correlation structure
against the simpler model without correlation included in the model using the anova function.
Doing so, we see that there is a significant decrease in the AIC and BIC when including a
correlation structure. The outputs from the anova are presented in Listing 17.

Model df AIC BIC logLik Test L . Ratio p−value
ncmmrm 1 19 48026.18 48151.47 −23994.09
corSymm_model 2 55 37909.70 38272.38 −18899.85 1 vs 2 10188.48 <.0001

Model df AIC BIC logLik Test L . Ratio p−value
ncmmrm 1 19 48026.18 48151.47 −23994.09
corCompSymm_model 2 20 39847.88 39979.76 −19903.94 1 vs 2 8180.301 <.0001

Model df AIC BIC logLik Test L . Ratio p−value
ncmmrm 1 19 48026.18 48151.47 −23994.09
corAR1_model 2 20 38370.70 38502.58 −19165.35 1 vs 2 9657.483 <.0001

Model df AIC BIC logLik Test L . Ratio p−value
ncmmrm 1 19 48026.18 48151.47 −23994.09
corARMA_model(q=1 ,p=1) 2 21 38079.30 38217.78 −19018.65 1 vs 2 9950.875 <.0001

LISTING C.4: Results from comparing the different models introduced to determine which is
best using AIC.

Furthermore, we also see that the correlation structure corSymm is preferred compared to
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the other correlation structures. This is also the most complex type of correlation structure
we can implement in the models, and it can be seen in the code below, where df is 55 when
including the corSymm correlation structure compared to 20 and 21 in the others. This is
caused by the fact that there in this structure adds 36 parameters compared to one and two
in the other structures.

Model df AIC BIC logLik Test L . Ratio p−value
corCompSymm_model 1 20 39847.88 39979.76 −19903.94
corSymm_model 2 55 37909.70 38272.38 −18899.85 1 vs 2 2008.176 <.0001

Model df AIC BIC logLik Test L . Ratio p−value
corAR1_model 1 20 38370.7 38502.58 −19165.35
corSymm_model 2 55 37909.7 38272.38 −18899.85 1 vs 2 530.9936 <.0001

Model df AIC BIC logLik Test L . Ratio p−value
corARMA_model(q=1 ,p=1) 1 21 38079.3 38217.78 −19018.65
corSymm_model 2 55 37909.7 38272.38 −18899.85 1 vs 2 237.6014 <.0001

Hence, the model that should be used to determine initial values is the following:

PSTPMRM <− gnls (model = y ~ TPMRM_br(M, v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 , b , b , b ,
b , b , b , b , b) ,

data = data ,
params = l i s t ( v0 + v1 + v2 + v3 + v4 + v5 + v6 + v7 + v8 ~ 1 ,

b ~ act + 0) ,
weights = varIdent ( form = ~ 1 | v i s i t ) ,
correlat ion = corSymm( value = cor_vec , form = ~ as . numeric ( v i s i t )

| id ) )
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D Simulation Study Results

This chapter expands the results of the power analyses conducted in Chapter 5. The chapter
will therefore primarily only present the results without any associated text, apart from the
captions of the different tables and figures. The data, tables, and figures can also be found in
https://github.com/loprtq/Master-s-Thesis-Results.

D.1 Optimisation Algorithm for True Effects

As described in Chapter 5, the true effects are derived from the mean trajectories of the
placebo- and active arm. The placebo- and active arm from each simulation in each scenario
is inserted into an optimisation algorithm, which either uses SANN or Nelder-Mead. SANN is
used to determine the proportional slowing and proportional reduction in decline treatment
effects, whereas Nelder-Mead is used to determine the time-based changes. For this we
use optim() in a similar fashion to how the different active arms were derived. Take for
example that we wish to determine the proportional reduction in decline of a data set, then
we determine which ζ that minimises the mean square error (MSE) problem:(

β j ,active −
(
ζ
(
β j ,placebo −β0,placebo

)+β0,placebo
))2 ,

for all j . β j ,active and β j ,active are the mean trajectory at visit j , for the active- and placebo
arm, respectively. Similarly can be done for the PSTPMRM and TPMRM where the MSE

problem is
(
β j ,active −β j ·ζ j ,placebo

)2
where ζ j can either very (TPMRM) or be constant, ζ j = ζ

(PSTPMRM).
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D.2 Convergence of Estimates

300 Subjects in each arm
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FIGURE D.1: Mean of estimates of the progression models for repeated measures and con-
strained longitudinal data analysis model throughout 1000 simulations for 300 subjects in
each arm.

500 Subjects in each arm
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FIGURE D.2: Mean of estimates of the progression models for repeated measures and con-
strained longitudinal data analysis model throughout 1000 simulations for 500 subjects in
each arm.
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1000 Subjects in each arm
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FIGURE D.3: Mean of estimates of the progression models for repeated measures and con-
strained longitudinal data analysis model throughout 1000 simulations for 1000 subjects in
each arm.

D.3 Convergence of Statistical Power

300 Subjects in each arm
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FIGURE D.4: Statistical power of the progressions model for repeated measures and constrained
longitudinal data analysis model throughout 1000 simulations for 300 subjects in each arm.
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500 Subjects in each arm
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FIGURE D.5: Statistical power of the progressions model for repeated measures and constrained
longitudinal data analysis model throughout 1000 simulations for 500 subjects in each arm.

1000 Subjects in each arm
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FIGURE D.6: Statistical power of the progression models for repeated measures and constrained
longitudinal data analysis model throughout 1000 simulations for 1000 subjects in each arm.
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D.4 Parameter Estimates

300 Subjects in each arm

N
o

ef
fe

ct

cLDA 0.046 0.060 130.435 3.934

PSTPMRM 0.941 0.063 6.694 0.092

NC PSTPMRM 0.941 0.078 8.289 0.187

RI PSTPMRM 0.941 0.063 6.694 0.092

NC RI PSTPMRM 0.941 0.067 7.122 0.093

RS PSTPMRM 0.941 0.063 6.694 0.092

NC RS PSTPMRM 0.941 0.068 7.226 0.095

PDPMRM 1.012 -0.011 -1.087 0.183

NC PDPMRM 1.012 0.006 0.593 0.030

TPMRM 0.943 0.044 4.665 0.088

NC TPMRM 0.943 0.045 4.772 0.074

20
%

P
ro

p
o

rt
io

n
al

re
d

u
ct

io
n

in
d

ec
li

n
e

cLDA 3.457 -0.071 -2.053 1.534

PSTPMRM 0.799 0.018 2.253 0.154

NC PSTPMRM 0.799 0.016 2.003 0.057

RI PSTPMRM 0.799 0.014 1.751 0.150

NC RI PSTPMRM 0.799 0.056 7.009 0.091

RS PSTPMRM 0.799 0.014 1.751 0.152

NC RS PSTPMRM 0.799 0.045 5.631 0.102

PDPMRM 0.797 0.004 0.502 0.169

NC PDPMRM 0.797 0.008 1.004 0.041

TPMRM 0.797 0.031 3.889 0.114

NC TPMRM 0.797 0.018 2.259 0.076

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Continued on next page
Table D.7: Mean true treatment effect, mean bias, relative bias, and estimation standard error

of the progression models for repeated measures and constrained longitudinal
data analysis model in different scenarios for 300 subjects in each arm.
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20
%

P
ro

p
o

rt
io

n
al

sl
ow

in
g

cLDA 3.684 -0.027 -0.733 1.621

PSTPMRM 0.802 -0.004 -0.499 0.130

NC PSTPMRM 0.802 0.012 1.497 0.056

RI PSTPMRM 0.802 -0.004 -0.499 0.130

NC RI PSTPMRM 0.802 -0.004 -0.499 0.098

RS PSTPMRM 0.802 -0.004 -0.499 0.130

NC RS PSTPMRM 0.802 -0.013 -1.621 0.097

PDPMRM 0.802 -0.055 -6.860 0.181

NC PDPMRM 0.802 0.006 0.748 0.043

TPMRM 0.788 0.017 2.157 0.108

NC TPMRM 0.788 0.011 1.396 0.058

10
to

30
%

T
im

e
b

as
ed

ch
an

ge
s

cLDA 5.135 0.041 0.798 1.615

PSTPMRM 0.750 0.023 3.067 0.141

NC PSTPMRM 0.750 0.021 2.800 0.061

RI PSTPMRM 0.750 0.024 3.200 0.141

NC RI PSTPMRM 0.750 -0.004 -0.533 0.097

RS PSTPMRM 0.750 0.023 3.067 0.142

NC RS PSTPMRM 0.750 -0.024 -3.200 0.098

PDPMRM 0.759 -0.092 -12.116 0.177

NC PDPMRM 0.759 -0.001 -0.132 0.043

TPMRM 0.696 0.015 2.155 0.114

NC TPMRM 0.696 0.016 2.299 0.069

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Table D.7: Mean true treatment effect, mean bias, relative bias, and estimation standard error
of the progression models for repeated measures and constrained longitudinal
data analysis model in different scenarios for 300 subjects in each arm.
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FIGURE D.8: Bias for each of the 1000 effect estimates from each simulated data set. Estimates are from data sets with 300 subjects in each arm.
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Group 4.111d APPENDIX D. SIMULATION STUDY RESULTS

500 Subjects in each arm
N

o
ef

fe
ct

cLDA -0.080 0.003 -3.750 2.935

PSTPMRM 0.958 0.046 4.802 0.068

NC PSTPMRM 0.958 0.055 5.742 0.091

RI PSTPMRM 0.958 0.045 4.696 0.068

NC RI PSTPMRM 0.958 0.047 4.906 0.082

RS PSTPMRM 0.958 0.045 4.696 0.068

NC RS PSTPMRM 0.958 0.048 5.009 0.084

PDPMRM 1.010 -0.004 -0.396 0.144

NC PDPMRM 1.010 0.004 0.396 0.024

TPMRM 0.961 0.043 4.475 0.062

NC TPMRM 0.961 0.038 3.954 0.049

20
%

P
ro

p
o

rt
io

n
al

re
d

u
ct

io
n

in
d

ec
li

n
e

cLDA 3.289 0.035 1.064 1.310

PSTPMRM 0.813 -0.051 -6.272 0.140

NC PSTPMRM 0.813 0.013 1.599 0.028

RI PSTPMRM 0.813 -0.058 -7.134 0.134

NC RI PSTPMRM 0.813 0.061 7.506 0.152

RS PSTPMRM 0.813 -0.057 -7.011 0.134

NC RS PSTPMRM 0.813 0.058 7.135 0.161

PDPMRM 0.810 -0.008 -0.988 0.144

NC PDPMRM 0.810 0.003 0.370 0.034

TPMRM 0.812 0.018 2.216 0.095

NC TPMRM 0.812 0.017 2.094 0.051

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Continued on next page
Table D.9: Mean true treatment effect, mean bias, relative bias, and estimation standard error

of the progression models for repeated measures and constrained longitudinal
data analysis model in different scenarios for 500 subjects in each arm.
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D.4. PARAMETER ESTIMATES Group 4.111d

20
%

P
ro

p
o

rt
io

n
al

sl
ow

in
g

cLDA 3.850 -0.056 -1.455 1.282

PSTPMRM 0.796 0.004 0.502 0.113

NC PSTPMRM 0.796 0.004 0.502 0.032

RI PSTPMRM 0.796 0.005 0.628 0.113

NC RI PSTPMRM 0.796 0.000 0.000 0.120

RS PSTPMRM 0.796 0.005 0.628 0.113

NC RS PSTPMRM 0.796 -0.010 -1.257 0.122

PDPMRM 0.790 -0.047 -5.949 0.142

NC PDPMRM 0.790 0.005 0.633 0.034

TPMRM 0.781 0.021 2.688 0.091

NC TPMRM 0.781 0.014 1.793 0.035

10
to

30
%

T
im

e
b

as
ed

ch
an

ge
s

cLDA 5.078 -0.024 -0.473 1.247

PSTPMRM 0.751 0.020 2.663 0.115

NC PSTPMRM 0.751 0.012 1.598 0.027

RI PSTPMRM 0.751 0.020 2.663 0.114

NC RI PSTPMRM 0.751 -0.003 -0.399 0.123

RS PSTPMRM 0.751 0.020 2.663 0.114

NC RS PSTPMRM 0.751 -0.019 -2.530 0.131

PDPMRM 0.754 -0.084 -11.141 0.137

NC PDPMRM 0.754 -0.002 -0.265 0.034

TPMRM 0.700 0.010 1.429 0.087

NC TPMRM 0.700 0.012 1.714 0.039

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Table D.9: Mean true treatment effect, mean bias, relative bias, and estimation standard error
of the progression models for repeated measures and constrained longitudinal
data analysis model in different scenarios for 500 subjects in each arm.
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FIGURE D.10: Bias for each of the 1000 effect estimates from each simulated data set. Estimates are from data sets with 500 subjects in each arm.
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D.4. PARAMETER ESTIMATES Group 4.111d

1000 Subjects in each arm
N

o
ef

fe
ct

cLDA -0.047 0.010 -21.276 2.277

PSTPMRM 0.969 0.033 3.404 0.052

NC PSTPMRM 0.969 0.036 3.713 0.080

RI PSTPMRM 0.969 0.033 3.404 0.052

NC RI PSTPMRM 0.969 0.035 3.616 0.051

RS PSTPMRM 0.969 0.033 3.404 0.052

NC RS PSTPMRM 0.969 0.035 3.616 0.051

PDPMRM 1.007 -0.003 -0.298 0.107

NC PDPMRM 1.007 0.002 0.199 0.018

TPMRM 0.970 0.031 3.196 0.044

NC TPMRM 0.970 0.029 2.990 0.047

20
%

P
ro

p
o

rt
io

n
al

re
d

u
ct

io
n

in
d

ec
li

n
e

cLDA 3.281 0.026 0.791 0.893

PSTPMRM 0.814 0.046 5.648 0.103

NC PSTPMRM 0.814 0.011 1.352 0.019

RI PSTPMRM 0.814 0.045 5.526 0.103

NC RI PSTPMRM 0.814 0.008 0.983 0.074

RS PSTPMRM 0.814 0.045 5.526 0.104

NC RS PSTPMRM 0.814 0.008 0.983 0.077

PDPMRM 0.807 -0.004 -0.496 0.100

NC PDPMRM 0.807 0.002 0.248 0.026

TPMRM 0.814 0.026 3.195 0.073

NC TPMRM 0.814 0.025 3.072 0.041

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Continued on next page
Table D.11: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of the progression models for repeated measures and constrained lon-
gitudinal data analysis model in different scenarios for 1000 subjects in each
arm.
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Group 4.111d APPENDIX D. SIMULATION STUDY RESULTS

20
%

P
ro

p
o

rt
io

n
al

sl
ow

in
g

cLDA 3.729 -0.051 -1.369 0.887

PSTPMRM 0.804 -0.009 -1.119 0.084

NC PSTPMRM 0.804 0.001 0.014 0.022

RI PSTPMRM 0.804 -0.010 -1.529 0.082

NC RI PSTPMRM 0.804 -0.008 -2.868 0.063

RS PSTPMRM 0.804 -0.010 -1.529 0.082

NC RS PSTPMRM 0.804 -0.017 -2.207 0.062

PDPMRM 0.797 -0.049 -5.912 0.104

NC PDPMRM 0.797 0.003 -0.910 0.029

TPMRM 0.788 0.018 2.284 0.073

NC TPMRM 0.788 0.018 2.871 0.037

10
to

30
%

T
im

e
b

as
ed

ch
an

ge
s

cLDA 5.045 0.013 0.258 0.895

PSTPMRM 0.753 0.030 3.984 0.087

NC PSTPMRM 0.753 0.012 2.001 0.020

RI PSTPMRM 0.753 0.030 4.347 0.087

NC RI PSTPMRM 0.753 -0.004 0.218 0.057

RS PSTPMRM 0.753 0.030 4.345 0.086

NC RS PSTPMRM 0.753 -0.019 -2.453 0.055

PDPMRM 0.755 -0.084 -12.881 0.099

NC PDPMRM 0.755 -0.003 -0.079 0.031

TPMRM 0.700 0.004 1.753 0.060

NC TPMRM 0.700 0.010 2.194 0.034

Scenario Model

Mean True
Treatment

Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Table D.11: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of the progression models for repeated measures and constrained lon-
gitudinal data analysis model in different scenarios for 1000 subjects in each
arm.
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FIGURE D.12: Bias for each of the 1000 effect estimates from each simulated data set. Estimates are from data sets with 1000 subjects in each arm.
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D.5 Statistical Power

Subjects
per arm Scenario cLDA PDPMRM

NC
PDPMRM PSTPMRM

NC
PSTPMRM

RI
PSTPMRM

NC RI
PSTPMRM

RS
PSTPMRM

NC RS
PSTPMRM TPMRM

NC
TPMRM

30
0

No effect 0.030 0.043 0.231 0.077 0.205 0.077 0.161 0.078 0.144 0.025 0.044

20% Proportional reduction in decline 0.486 0.634 0.659 0.748 0.600 0.765 0.813 0.765 0.778 0.340 0.348

20% proportional slowing 0.538 0.776 0.664 1.000 0.690 1.000 0.979 1.000 0.976 0.417 0.403

10→30% time based changes 0.834 0.938 0.765 1.000 0.735 1.000 0.995 1.000 0.995 0.726 0.624

50
0

No effect 0.019 0.033 0.225 0.053 0.174 0.052 0.056 0.057 0.057 0.001 0.007

20% Proportional reduction in decline 0.681 0.799 0.735 0.922 0.699 0.937 0.931 0.938 0.930 0.336 0.330

20% Proportional slowing 0.787 0.939 0.777 1.000 0.815 1.000 0.999 1.000 0.998 0.449 0.460

10 to 30% Time based changes 0.941 0.992 0.862 1.000 0.870 1.000 1.000 1.000 1.000 0.823 0.719

10
00

No effect 0.032 0.033 0.222 0.057 0.201 0.057 0.150 0.059 0.149 0.022 0.011

20% Proportional reduction in decline 0.924 0.968 0.885 0.651 0.881 0.657 0.992 0.659 0.988 0.554 0.283

20% proportional slowing 0.965 0.973 0.900 0.996 0.928 1.000 0.999 1.000 1.000 0.621 0.428

10→30% time based changes 0.998 0.994 0.955 0.998 0.973 1.000 1.000 1.000 1.000 0.944 0.823

cLDA: Constrained longitudinal data analysis, PDPMRM: Proportional reduction in decline progression model for repeated measures, PSTPMRM: Proportional
slowing of disease progression progression model for repeated measures, TPMRM: Time based changes in disease progression model for repeated measures,
RI: Random intercept, RS: Random scaling factor, NC: Not correlated error terms.

TABLE D.13: Statistical power of progression models for repeated measures and the constrained longitudinal data analysis model in different
scenarios, and for a different number of subjects in each arm.
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D.6. TIME HOMOGENEITY Group 4.111d

D.6 Time Homogeneity

300 Subjects in each arm

In Figure D.14 78% of the null hypotheses are not rejected for NE, 82% for 10 to 30% time
based changes, 40% are not rejected for 20% PD, and 93% are not rejected for 20% PS.

20% Proportional
 Reduction in Decline

20% Proportional
 Slowing

No Effect 10−30% Time
 based changes

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

100

200

300

400

500

0

100

200

300

400

500

Proportional slowing p−value

C
ou

nt

FIGURE D.14: Time homogeneity p-values testing the assumption of proportional slowing in
the scenarios; no effect, 10 to 30% time based changes, 20% proportional reduction in decline,
20% proportional slowing, where there are 300 subjects in each arm.

1000 Subjects in each arm

In Figure D.15 76% of the null hypotheses are not rejected for NE, 34% for 10 to 30% time
based changes, 34% are not rejected for 20% PD, and 90% are not rejected for 20% PS.
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FIGURE D.15: Time homogeneity p-values testing the assumption of proportional slowing in
the scenarios; no effect, 10 to 30% time based changes, 20% proportional reduction in decline,
20% proportional slowing, where there are 1000 subjects in each arm.
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E Results from the Subgroup Analysis

E.1 Convergence of Estimates

300 Subjects in each arm
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FIGURE E.1: Mean of estimates of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model throughout 1000
simulations for 300 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

500 Subjects in each arm
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FIGURE E.2: Mean of estimates of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model throughout 1000
simulations for 500 subjects in each arm.
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E.1. CONVERGENCE OF ESTIMATES Group 4.111d

1000 Subjects in each arm
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FIGURE E.3: Mean of estimates of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model throughout 1000
simulations for 1000 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

E.2 Convergence of Statistical Power

300 Subjects in each arm
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FIGURE E.4: Statistical power of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model throughout 1000
simulations for 300 subjects in each arm.
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E.2. CONVERGENCE OF STATISTICAL POWER Group 4.111d

500 Subjects in each arm
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FIGURE E.5: Statistical power of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model throughout 1000
simulations for 500 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

1000 Subjects in each arm
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FIGURE E.6: Statistical power of the extended progression models for repeated measures and
the subgroup extension of the constrained longitudinal data analysis model throughout 1000
simulations for 1000 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

E.3 Subgroup Parameter Estimates

300 Subjects in each arm

cL
D

A

0% difference in PS -0.003 0.003 -100.000 2.271

0% difference in PD -0.043 -0.025 58.140 2.337

5% difference in PS -0.631 0.050 -7.924 2.243

5% difference in PD 0.316 -0.019 6.013 2.313

10% difference in PS 0.147 -0.182 -123.810 2.293

10% difference in PD 1.020 0.073 7.157 2.317

15% difference in PS 0.782 -0.043 -5.498 2.269

15% difference in PD 2.069 -0.142 -6.863 2.337

P
ST

P
M

R
M

0% difference in PS 0.014 -0.068 -485.714 0.304

0% difference in PD 0.003 -0.062 -2066.667 0.378

5% difference in PS 0.047 0.054 114.893 0.360

5% difference in PD 0.042 0.121 288.095 0.359

10% difference in PS 0.103 0.037 35.922 0.326

10% difference in PD 0.085 0.106 124.706 0.381

15% difference in PS 0.141 0.053 7 37.588 0.318

15% difference in PD 0.146 0.115 78.767 0.339

N
C

P
ST

P
M

R
M

0% difference in PS 0.014 -0.088 -628.571 1.278

0% difference in PD 0.003 -0.100 -3333.333 1.300

5% difference in PS 0.047 -0.033 -70.213 0.478

5% difference in PD 0.042 -0.106 -252.381 1.592

10% difference in PS 0.103 0.004 3.883 0.187

10% difference in PD 0.085 -0.029 -34.118 0.608

15% difference in PS 0.141 -0.135 -95.745 2.415

15% difference in PD 0.146 -0.060 -41.096 1.002

Model Scenario
Mean True

Treatment Difference
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Continued on next page
Table E.7: Mean true treatment difference, mean bias, relative bias, and estimation standard

error of the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 300 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

N
C

R
I

P
ST

P
M

R
M

0% difference in PS 0.014 0.000 0.000 0.130

0% difference in PD 0.003 -0.009 -300.000 0.859

5% difference in PS 0.047 0.021 44.681 0.214

5% difference in PD 0.042 0.049 116.667 0.165

10% difference in PS 0.103 0.025 24.272 0.217

10% difference in PD 0.085 0.008 9.411 1.700

15% difference in PS 0.141 0.036 25.532 0.191

15% difference in PD 0.146 -0.014 -9.589 2.647

N
C

R
S

P
ST

P
M

R
M

0% difference in PS 0.014 -0.006 -42.857 0.996

0% difference in PD 0.003 0.016 533.333 0.960

5% difference in PS 0.047 -0.037 -78.723 2.241

5% difference in PD 0.042 0.055 130.952 0.759

10% difference in PS 0.103 0.011 10.680 0.732

10% difference in PD 0.085 0.002 2.353 1.658

15% difference in PS 0.141 -0.474 -336.170 14.489

15% difference in PD 0.146 -0.286 195.890 6.623

Model Scenario
Mean True

Treatment Difference
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Table E.7: Mean true treatment difference, mean bias, relative bias, and estimation standard
error of the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 300 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

cL
D

A

0% PS -0.011 -0.077 700.000 1.604

0% PD -0.045 0.000 0.000 1.637

20% PS 3.712 -0.006 -0.162 1.651

20% PD 3.372 0.045 1.335 1.643

20% PS 3.740 0.058 1.551 1.621

20% PD 3.367 -0.047 -1.396 1.616

20% PS 3.712 0.029 0.781 1.688

20% PD 3.209 0.122 3.802 1.655

P
ST

P
M

R
M

0% PS 0.940 0.012 1.277 0.283

0% PD 0.939 0.005 0.532 0.365

20% PS 0.798 0.062 7.769 0.324

20% PD 0.802 0.084 10.474 0.327

20% PS 0.798 0.047 5.890 0.283

20% PD 0.805 0.069 8.571 0.338

20% PS 0.798 0.052 6.516 0.283

20% PD 0.814 0.035 4.300 0.277

N
C

P
ST

P
M

R
M

0% PS 0.940 0.008 0.851 1.275

0% PD 0.939 -0.010 -1.065 1.291

20% PS 0.798 -0.020 -2.506 0.474

20% PD 0.802 -0.088 -10.973 1.590

20% PS 0.798 0.011 1.378 0.181

20% PD 0.805 -0.017 -2.112 0.604

20% PS 0.798 -0.129 -16.165 2.415

20% PD 0.814 -0.052 -6.388 1.000

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Continued on next page
Table E.8: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of ζ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 300 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

N
C

R
I

P
ST

P
M

R
M

0% PS 0.940 0.074 7.872 0.097

0% PD 0.939 0.063 6.709 0.851

20% PS 0.798 0.028 3.509 0.186

20% PD 0.802 0.072 8.978 0.127

20% PS 0.798 0.021 2.632 0.191

20% PD 0.805 0.010 1.242 1.703

20% PS 0.798 0.030 3.759 0.163

20% PD 0.814 -0.017 -2.088 2.652

N
C

R
S

P
ST

P
M

R
M

0% PS 0.940 0.072 7.660 0.989

0% PD 0.939 0.089 9.478 0.957

20% PS 0.798 -0.055 -6.892 2.243

20% PD 0.802 0.047 5.860 0.747

20% PS 0.798 -0.022 -2.757 0.734

20% PD 0.805 -0.041 -5.093 1.652

20% PS 0.798 -0.520 -65.163 14.492

20% PD 0.814 -0.820 -100.737 16.381

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Table E.8: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of ζ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 300 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

cL
D

A

0% PS -0.014 -0.074 528.571 1.638

0% PD -0.088 -0.025 28.409 1.677

25% PS 3.082 0.043 1.395 1.584

25% PD 3.688 0.026 0.705 1.620

30% PS 3.887 -0.124 -3.190 1.616

30% PD 4.387 0.026 0.593 1.659

35% PS 4.494 -0.013 -0.289 1.587

35% PD 5.278 -0.020 -0.379 1.673

P
ST

P
M

R
M

0% PS 0.926 0.080 8.639 0.114

0% PD 0.936 0.067 7.158 0.103

25% PS 0.751 0.008 1.065 0.152

25% PD 0.761 -0.037 -4.862 0.180

30% PS 0.695 0.010 1.439 0.156

30% PD 0.720 -0.037 -5.139 0.183

35% PS 0.658 -0.001 -0.152 0.157

35% PD 0.668 -0.080 -11.976 0.197

N
C

P
ST

P
M

R
M

0% PS 0.926 0.096 10.367 0.154

0% PD 0.936 0.089 9.509 0.153

25% PS 0.751 0.013 1.731 0.051

25% PD 0.761 0.018 2.365 0.073

30% PS 0.695 0.007 1.007 0.042

30% PD 0.720 0.013 1.806 0.054

35% PS 0.658 0.007 1.064 0.036

35% PD 0.668 0.008 1.198 0.036

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Continued on next page
Table E.9: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of γ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 300 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

N
C

R
I

P
ST

P
M

R
M

0% PS 0.926 0.074 7.991 0.086

0% PD 0.936 0.071 7.585 0.083

25% PS 0.751 0.007 0.932 0.104

25% PD 0.761 0.023 3.022 0.107

30% PS 0.695 -0.003 -0.431 0.105

30% PD 0.720 0.002 0.278 0.111

35% PS 0.658 -0.006 -0.912 0.107

35% PD 0.668 -0.003 -0.449 0.108

N
C

R
S

P
ST

P
M

R
M

0% PS 0.926 0.077 8.315 0.094

0% PD 0.936 0.073 7.799 0.089

25% PS 0.751 -0.017 -2.264 0.103

25% PD 0.761 -0.008 -1.051 0.123

30% PS 0.695 -0.036 -5.180 0.104

30% PD 0.720 -0.043 -5.972 0.124

35% PS 0.658 -0.046 -6.991 0.106

35% PD 0.668 -0.061 -9.132 0.118

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Table E.9: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of γ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 300 subjects in each arm.
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FIGURE E.10: Bias for each of the 1000 effect estimates from each simulated data set. Estimates are from data sets with 300 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

500 Subjects in each arm
cL

D
A

0% difference in PS 0.089 -0.015 -16.854 1.863

0% difference in PD 0.043 0.022 51.163 1.880

5% difference in PS -0.702 0.007 -0.997 1.834

5% difference in PD 0.417 0.024 5.755 1.822

10% difference in PS 0.111 0.025 22.523 1.858

10% difference in PD 1.042 0.034 3.263 1.820

15% difference in PS 0.761 -0.020 2.638 1.836

15% difference in PD 1.918 0.037 1.929 1.797

P
ST

P
M

R
M

0% difference in PS 0.016 -0.055 -343.750 0.267

0% difference in PD 0.011 -0.025 -227.273 0.381

5% difference in PS 0.048 0.054 112.500 0.306

5% difference in PD 0.048 0.082 170.833 0.281

10% difference in PS 0.098 0.037 37.755 0.279

10% difference in PD 0.084 0.088 104.762 0.276

15% difference in PS 0.146 0.036 24.658 0.239

15% difference in PD 0.141 0.144 102.128 0.308

N
C

P
ST

P
M

R
M

0% difference in PS 0.016 -0.011 -68.750 0.153

0% difference in PD 0.011 -0.014 -127.273 0.147

5% difference in PS 0.048 -0.010 -20.833 0.363

5% difference in PD 0.048 0.002 4.167 0.045

10% difference in PS 0.098 -0.007 -7.142 0.257

10% difference in PD 0.084 0.002 2.381 0.049

15% difference in PS 0.146 0.002 1.370 0.038

15% difference in PD 0.141 -0.002 -1.418 0.155

Model Scenario

Mean True
Treatment
Difference

Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Continued on next page
Table E.11: Mean true treatment difference, mean bias, relative bias, and estimation standard

error of the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 500 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

N
C

R
I

P
ST

P
M

R
M

0% difference in PS 0.016 0.000 0.000 0.099

0% difference in PD 0.011 0.013 118.182 0.114

5% difference in PS 0.048 0.009 18.750 0.181

5% difference in PD 0.048 0.050 104.167 0.129

10% difference in PS 0.098 0.002 2.041 0.145

10% difference in PD 0.084 0.065 77.381 0.133

15% difference in PS 0.146 0.009 6.164 0.155

15% difference in PD 0.141 0.085 60.284 0.146

N
C

R
S

P
ST

P
M

R
M

0% difference in PS 0.016 0.031 193.750 0.173

0% difference in PD 0.011 0.069 627.273 0.214

5% difference in PS 0.048 0.044 91.667 0.232

5% difference in PD 0.048 0.089 185.417 0.198

10% difference in PS 0.098 0.027 27.551 0.505

10% difference in PD 0.084 0.119 141.667 0.320

15% difference in PS 0.146 0.065 44.521 0.236

15% difference in PD 0.141 0.121 85.816 0.390

Model Scenario

Mean True
Treatment
Difference

Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Table E.11: Mean true treatment difference, mean bias, relative bias, and estimation standard
error of the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 500 subjects in each arm.

117



Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

cL
D

A

0% PS -0.042 0.018 42.857 1.287

0% PD -0.005 -0.015 300.000 1.268

20% PS 3.716 -0.002 -0.054 1.323

20% PD 3.371 -0.070 -2.077 1.261

20% PS 3.643 0.031 0.851 1.271

20% PD 3.427 -0.063 -1.838 1.318

20% PS 3.700 0.005 0.135 1.258

20% PD 3.341 -0.049 -1.467 1.312

P
ST

P
M

R
M

0% PS 0.957 0.004 0.418 0.250

0% PD 0.956 0.030 3.138 0.377

20% PS 0.803 0.060 7.472 0.294

20% PD 0.807 0.055 6.815 0.249

20% PS 0.806 0.037 4.591 0.251

20% PD 0.802 0.057 7.107 0.243

20% PS 0.804 0.036 4.478 0.209

20% PD 0.809 0.058 7.169 0.260

N
C

P
ST

P
M

R
M

0% PS 0.957 0.058 6.061 0.101

0% PD 0.956 0.052 5.439 0.086

20% PS 0.803 -0.006 -0.747 0.362

20% PD 0.807 0.010 1.239 0.028

20% PS 0.806 -0.004 -0.496 0.256

20% PD 0.802 0.009 1.122 0.037

20% PS 0.804 0.004 0.498 0.032

20% PD 0.809 0.004 0.494 0.153

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Continued on next page
Table E.12: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of ζ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 500 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

N
C

R
I

P
ST

P
M

R
M

0% PS 0.957 0.057 5.956 0.075

0% PD 0.956 0.067 7.008 0.094

20% PS 0.803 0.012 1.494 0.160

20% PD 0.807 0.074 9.170 0.093

20% PS 0.806 0.001 0.124 0.119

20% PD 0.802 0.074 9.227 0.092

20% PS 0.804 0.002 0.249 0.124

20% PD 0.809 0.077 9.518 0.113

N
C

R
S

P
ST

P
M

R
M

0% PS 0.957 0.090 9.404 0.159

0% PD 0.956 0.125 13.075 0.207

20% PS 0.803 0.024 2.989 0.217

20% PD 0.807 0.087 10.781 0.172

20% PS 0.806 -0.008 -0.993 0.503

20% PD 0.802 0.082 10.224 0.306

20% PS 0.804 0.019 2.363 0.223

20% PD 0.809 -0.182 22.497 7.409

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Table E.12: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of ζ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 500 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

cL
D

A

0% PS 0.047 0.002 4.255 1.295

0% PD 0.039 0.007 17.949 1.332

25% PS 3.014 0.006 0.199 1.281

25% PD 3.787 -0.046 -1.215 1.246

30% PS 3.754 0.056 1.492 1.291

30% PD 4.469 -0.029 -0.648 1.290

35% PS 4.460 -0.016 -0.359 1.313

35% PD 5.259 -0.012 -0.228 1.221

P
ST

P
M

R
M

0% PS 0.941 0.060 6.376 0.088

0% PD 0.946 0.054 5.708 0.079

25% PS 0.755 0.006 0.795 0.127

25% PD 0.759 -0.026 -3.426 0.143

30% PS 0.708 0.000 0.000 0.122

30% PD 0.718 -0.031 -4.318 0.156

35% PS 0.657 0.001 0.152 0.124

35% PD 0.668 -0.086 -12.874 0.167

N
C

P
ST

P
M

R
M

0% PS 0.941 0.069 7.333 0.112

0% PD 0.946 0.067 7.082 0.120

25% PS 0.755 0.005 0.662 0.024

25% PD 0.759 0.007 0.922 0.033

30% PS 0.708 0.004 0.565 0.021

30% PD 0.718 0.007 0.975 0.028

35% PS 0.657 0.003 0.457 0.017

35% PD 0.668 0.006 0.898 0.023

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Continued on next page
Table E.13: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of γ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 500 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

N
C

R
I

P
ST

P
M

R
M

0% PS 0.941 0.057 6.057 0.064

0% PD 0.946 0.055 5.814 0.063

25% PS 0.755 0.004 0.530 0.086

25% PD 0.759 0.024 3.162 0.092

30% PS 0.708 -0.002 -0.282 0.084

30% PD 0.718 0.009 1.253 0.094

35% PS 0.657 -0.007 -1.065 0.086

35% PD 0.668 -0.007 -1.048 0.086

N
C

R
S

P
ST

P
M

R
M

0% PS 0.941 0.059 6.270 0.071

0% PD 0.946 0.055 5.814 0.065

25% PS 0.755 -0.020 -2.649 0.084

25% PD 0.759 -0.002 -0.264 0.106

30% PS 0.708 -0.037 -5.226 0.083

30% PD 0.718 -0.037 -5.153 0.108

35% PS 0.657 -0.046 -7.002 0.083

35% PD 0.668 -0.069 -10.329 0.097

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Table E.13: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of γ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 500 subjects in each arm.
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FIGURE E.14: Bias for each of the 1000 effect estimates from each simulated data set. Estimates are from data sets with 500 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

1000 Subjects in each arm
cL

D
A

0% difference in PS -0.023 -0.010 43.478 1.262

0% difference in PD 0.042 0.025 59.524 1.264

5% difference in PS -0.575 -0.048 8.348 1.307

5% difference in PD 0.431 -0.040 -9.281 1.265

10% difference in PS 0.648 0.034 5.247 1.314

10% difference in PD 1.163 -0.064 -5.503 1.282

15% difference in PS 0.716 -0.058 -8.101 1.255

15% difference in PD 1.918 0.047 2.450 1.322

P
ST

P
M

R
M

0% difference in PS 0.012 -0.056 -466.667 0.219

0% difference in PD 0.002 -0.020 -1000 0.366

5% difference in PS 0.059 0.042 71.186 0.269

5% difference in PD 0.052 0.070 134.615 0.205

10% difference in PS 0.100 0.027 27.000 0.194

10% difference in PD 0.099 0.054 54.545 0.211

15% difference in PS 0.150 0.022 14.667 0.195

15% difference in PD 0.144 0.114 79.167 0.252

N
C

P
ST

P
M

R
M

0% difference in PS 0.012 -0.011 -91.667 0.088

0% difference in PD 0.002 0.005 250.000 0.090

5% difference in PS 0.059 -0.004 -6.780 0.020

5% difference in PD 0.052 0.006 11.538 0.028

10% difference in PS 0.100 -0.003 -3.000 0.018

10% difference in PD 0.099 0.006 6.061 0.026

15% difference in PS 0.150 -0.004 -2.667 0.017

15% difference in PD 0.144 0.006 4.167 0.029

Model Scenario
Mean True

Treatment Difference
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Continued on next page
Table E.15: Mean true treatment difference, mean bias, relative bias, and estimation standard

error of the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 1000 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

N
C

R
I

P
ST

P
M

R
M

0% difference in PS 0.012 -0.009 -75.000 0.057

0% difference in PD 0.002 0.009 450.000 0.056

5% difference in PS 0.059 0.002 3.390 0.149

5% difference in PD 0.052 0.059 113.462 0.123

10% difference in PS 0.100 0.000 0 0.129

10% difference in PD 0.099 0.075 75.757 0.104

15% difference in PS 0.150 -0.003 2.000 0.110

15% difference in PD 0.144 0.085 59.028 0.103

N
C

R
S

P
ST

P
M

R
M

0% difference in PS 0.012 0.028 233.333 0.162

0% difference in PD 0.002 0.065 3250.000 0.194

5% difference in PS 0.059 0.050 84.746 0.238

5% difference in PD 0.052 0.095 182.692 0.176

10% difference in PS 0.100 0.047 47.000 0.215

10% difference in PD 0.099 0.139 140.404 0.172

15% difference in PS 0.150 0.051 34.000 0.201

15% difference in PD 0.144 0.176 122.222 0.176

Model Scenario
Mean True

Treatment Difference
Mean
Bias

Relative
Bias (%)

Estimation
Standard

Error

Table E.15: Mean true treatment difference, mean bias, relative bias, and estimation standard
error of the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 1000 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

cL
D

A

0% PS 0.005 -0.006 -120.000 0.898

0% PD -0.021 -0.019 90.476 0.929

20% PS 3.647 0.006 0.165 0.912

20% PD 3.336 0.012 0.360 0.912

20% PS 3.693 -0.013 -0.352 0.945

20% PD 3.363 0.026 0.773 0.936

20% PS 3.712 0.021 0.565 0.899

20% PD 3.375 -0.010 -0.296 0.926

P
ST

P
M

R
M

0% PS 0.971 -0.016 -1.648 0.210

0% PD 0.969 0.012 1.238 0.360

20% PS 0.807 0.050 6.196 0.251

20% PD 0.813 0.045 5.535 0.185

20% PS 0.805 0.026 3.230 0.177

20% PD 0.810 0.048 5.926 0.189

20% PS 0.805 0.026 3.230 0.176

20% PD 0.808 0.035 4.332 0.215

N
C

P
ST

P
M

R
M

0% PS 0.971 0.036 3.708 0.057

0% PD 0.969 0.041 4.231 0.059

20% PS 0.807 -0.001 -0.124 0.014

20% PD 0.813 0.010 1.230 0.016

20% PS 0.805 -0.001 -0.124 0.014

20% PD 0.810 0.010 1.235 0.017

20% PS 0.805 -0.001 -0.124 0.012

20% PD 0.808 0.010 1.238 0.020

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Continued on next page
Table E.16: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of ζ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 1000 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

N
C

R
I

P
ST

P
M

R
M

0% PS 0.971 0.032 3.296 0.036

0% PD 0.969 0.042 4.334 0.040

20% PS 0.807 0.004 0.496 0.138

20% PD 0.813 0.089 10.947 0.100

20% PS 0.805 -0.001 -0.124 0.115

20% PD 0.810 0.080 9.877 0.077

20% PS 0.805 -0.003 -0.373 0.089

20% PD 0.808 0.080 9.901 0.079

N
C

R
S

P
ST

P
M

R
M

0% PS 0.971 0.068 7.003 0.152

0% PD 0.969 0.099 10.217 0.193

20% PS 0.807 0.029 3.594 0.236

20% PD 0.813 0.103 12.669 0.162

20% PS 0.805 0.014 1.739 0.212

20% PD 0.810 0.103 12.716 0.167

20% PS 0.805 0.012 1.490 0.195

20% PD 0.808 0.098 12.129 0.148

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Table E.16: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of ζ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 1000 subjects in each arm.
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E.3. SUBGROUP PARAMETER ESTIMATES Group 4.111d

cL
D

A

0% PS -0.017 -0.017 100.000 0.869

0% PD 0.022 0.006 27.273 0.884

25% PS 3.072 -0.042 -1.367 0.936

25% PD 3.768 -0.028 -0.743 0.918

30% PS 3.740 0.021 0.561 0.885

30% PD 4.526 -0.037 -0.817 0.905

35% PS 4.428 -0.037 -0.835 0.926

35% PD 5.293 0.036 0.680 0.904

P
ST

P
M

R
M

0% PS 0.959 0.040 4.171 0.065

0% PD 0.967 0.033 3.413 0.051

25% PS 0.748 0.009 1.203 0.093

25% PD 0.761 -0.025 -3.285 0.112

30% PS 0.705 -0.001 -0.142 0.085

30% PD 0.711 -0.006 -0.844 0.114

35% PS 0.655 0.004 0.611 0.088

35% PD 0.664 -0.078 11.747 0.146

N
C

P
ST

P
M

R
M

0% PS 0.959 0.047 4.901 0.066

0% PD 0.967 0.036 3.723 0.069

25% PS 0.748 0.003 0.401 0.012

25% PD 0.761 0.004 0.526 0.020

30% PS 0.705 0.002 0.284 0.010

30% PD 0.711 0.003 0.422 0.016

35% PS 0.655 0.002 0.305 0.010

35% PD 0.664 0.003 0.452 0.016

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Continued on next page
Table E.17: Mean true treatment effect, mean bias, relative bias, and estimation standard

error of γ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 1000 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

N
C

R
I

P
ST

P
M

R
M

0% PS 0.959 0.039 4.067 0.041

0% PD 0.967 0.030 3.102 0.037

25% PS 0.748 -0.001 -0.134 0.063

25% PD 0.761 0.031 4.074 0.079

30% PS 0.705 -0.009 -1.277 0.064

30% PD 0.711 0.009 1.266 0.072

35% PS 0.655 0.012 1.832 0.054

35% PD 0.664 -0.003 -0.452 0.067

N
C

R
S

P
ST

P
M

R
M

0% PS 0.959 0.036 3.754 0.044

0% PD 0.967 0.032 3.309 0.039

25% PS 0.748 -0.025 -3.342 0.062

25% PD 0.761 0.007 0.920 0.089

30% PS 0.705 -0.042 -5.957 0.063

30% PD 0.711 -0.036 -5.063 0.087

35% PS 0.655 -0.027 -4.122 0.055

35% PD 0.664 -0.077 -11.596 0.084

Model Scenario
Mean True

Treatment Effect
Mean
Bias

Relative
Bias (%)

Estimation
Standard Error

Table E.17: Mean true treatment effect, mean bias, relative bias, and estimation standard
error of γ for the extended progression models for repeated measures and the sub-
group extension of the constrained longitudinal data analysis model in different
scenarios for 1000 subjects in each arm.
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FIGURE E.18: Bias for each of the 1000 effect estimates from each simulated data set. Estimates are from data sets with 500 subjects in each arm.
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Group 4.111d APPENDIX E. RESULTS FROM THE SUBGROUP ANALYSIS

E.4 Subgroup Statistical Power

Subjects
per arm Scenario cLDA PSTPMRM

NC
PSTPMRM

NC
RI PSTPMRM

NC
RS PSTPMRM

30
0

0% difference in PS 0.035 0.174 0.068 0.051 0.048

0% difference in PD 0.041 0.185 0.063 0.018 0.016

5% difference in PS 0.825 0.291 0.315 0.348 0.36

5% difference in PD 0.854 0.539 0.337 0.471 0.462

10% difference in PS 0.893 0.446 0.393 0.519 0.53

10% difference in PD 0.897 0.593 0.402 0.609 0.607

15% difference in PS 0.932 0.551 0.442 0.681 0.672

15% difference in PD 0.944 0.673 0.425 0.659 0.676

50
0

0% difference in PS 0.052 0.167 0.068 0.034 0.028

0% difference in PD 0.056 0.171 0.062 0.012 0.014

5% difference in PS 0.954 0.32 0.407 0.417 0.423

5% difference in PD 0.971 0.584 0.432 0.554 0.542

10% difference in PS 0.977 0.572 0.45 0.652 0.67

10% difference in PD 0.981 0.626 0.459 0.733 0.7

15% difference in PS 0.994 0.723 0.538 0.824 0.829

15% difference in PD 0.987 0.741 0.535 0.817 0.824

10
00

0% difference in PS 0.04 0.158 0.064 0.024 0.015

0% difference in PD 0.041 0.213 0.049 0.011 0.012

5% difference in PS 1 0.444 0.49 0.491 0.528

5% difference in PD 0.999 0.642 0.52 0.67 0.661

10% difference in PS 1 0.76 0.584 0.831 0.844

10% difference in PD 1 0.639 0.578 0.85 0.828

15% difference in PS 1 0.879 0.697 0.974 0.96

15% difference in PD 0.998 0.841 0.697 0.938 0.93

TABLE E.19: Statistical power of extended progression models for repeated measures and the
subgroup extension of the constrained longitudinal data analysis model in different scenarios,
and for a different number of subjects in each arm.
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E.4. SUBGROUP STATISTICAL POWER Group 4.111d

Subjects
per arm Scenario cLDA PSTPMRM

NC
PSTPMRM

NC
RI PSTPMRM

NC
RS PSTPMRM

30
0

0% difference in PS 0.045 0.045 0.046 0.045 0.045

0% difference in PD 0.045 0.045 0.045 0.045 0.045

5% difference in PS 0.86 0.085 0.216 0.314 0.347

5% difference in PD 0.862 0.090 0.235 0.639 0.623

10% difference in PS 0.932 0.107 0.296 0.496 0.52

10% difference in PD 0.901 0.111 0.291 0.729 0.728

15% difference in PS 0.948 0.133 0.331 0.662 0.664

15% difference in PD 0.948 0.123 0.316 0.774 0.763

50
0

0% difference in PS 0.045 0.045 0.045 0.045 0.045

0% difference in PD 0.045 0.045 0.045 0.045 0.045

5% difference in PS 0.945 0.118 0.323 0.478 0.525

5% difference in PD 0.965 0.099 0.313 0.687 0.687

10% difference in PS 0.975 0.154 0.372 0.703 0.743

10% difference in PD 0.976 0.130 0.363 0.818 0.796

15% difference in PS 0.994 0.198 0.487 0.851 0.866

15% difference in PD 0.986 0.155 0.458 0.889 0.89

10
00

0% difference in PS 0.045 0.045 0.045 0.045 0.045

0% difference in PD 0.045 0.045 0.045 0.045 0.045

5% difference in PS 1 0.146 0.393 0.598 0.7

5% difference in PD 0.999 0.193 0.482 0.798 0.786

10% difference in PS 1 0.176 0.493 0.871 0.904

10% difference in PD 1 0.228 0.555 0.923 0.898

15% difference in PS 1 0.300 0.623 0.982 0.971

15% difference in PD 0.998 0.322 0.673 0.975 0.958

TABLE E.20: Calibrated statistical power of progression models for repeated measures and the
subgroup extension of the constrained longitudinal data analysis model in different scenarios,
and for a different number of subjects in each arm. The highlighted numbers in each row
(expect the scenario: no effect) highlights the model(s) which has(have) the highest statistical
power.
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