
Summary

Compilers are used countless times every day as part of software
development. They serve to fix many errors before the code is even
run on the machine, such as with type checking, but as with all
software programs, there is the concern of introducing bugs. De-
pending on where the bug is introduced it can be benign, but it
can also lead to the flawed code generation. That is, even following
the semantics of the programming languages and correctly imple-
menting a well known algorithm might still result in bugs, since the
code generated by the compiler, the code that actually runs on the
machine, might not reflect the higher-level implementation because
of miscompilation of the compiler. This is the motivation behind
the verification of compilers, i.e. ensuring that the compiler is faith-
ful to the semantics of the language, such that the generated code
is accurate. A well known verified compiler project is CompCert,
which is working towards a formally verified C compiler. A large
part of the challenges they are facing is of course the size of the C
language, but also the lack of a formal semantics. Resulting in a lot
of work to bridge the gap between the implied semantics and the
verification effort.

What can be done for making proof easier, is first and foremost
the presence of a sound formal semantics. Additionally abstract
machines can be a tool to prove compiler correctness.

This report seeks to develop and implement an abstract ma-
chine for the call-by-push-value language described by Levy [16],
and prove its correctness by showing that it is faithful to the se-
mantics described in [16].

The report starts by introducing call-by-push-value and its syn-
tax and semantics, then proceeds to present the notion of bind-
ing in lambda calculus, and how these tie into the call-by-push-
value interpreter. Next is the presentation of functional abstract
machines, where the well known SECD and Krivine machines are
presented, culminating in the presentation of the call-by-push-value
abstract machine. Finally, correctness of abstract machines is dis-
cussed and the call-by-push-value abstract machine is proven correct
using bisimulation. This report demonstrates the concerns involved
in implementing and proving correctness of an abstract machine.
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Abstract machines are a cheap method of implementation, that offers better
performance compared to interpreters, while being a tool to prove compiler
correctness. This report presents the implementation and proof of correctness
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1 Introduction

Software is at the heart of modern society and one of the essential tools that
enables that is compilers. They compile a source language, typically a high-
level programming language, into a target language, which can then be further
compiled, run on an abstract machine (AM) or run natively on the machine, if
the target language is machine code. Compilers are one of the tools that enable
developers to write in languages closer to human intuition and create ambitious
programs and systems, however, not all compilers are created equal.

Say you implement a well known algorithm, such as a sorting algorithm,
compile it and run it, but the result is wrong. That is, the code generated by
the compilers was erroneous, and the behaviour and meaning of the program
has been changed during compilation. A compiler that produces minor or rare
errors, can be considered a nuisance in simple systems, but for safety-critical
systems it is a major concern, which is the motivation behind proving compilers
correct. That is to say, ensuring that compilers do not change the meaning
of a program during compilation. A well known example of this is CompCert,
which is working towards a formally verified C compiler [5]. Where formally
verified means that it is exempt from miscompilation issues, which they use the
Coq theorem prover to prove. Compcert mentions several empirical studies that
have found issues in popular production compilers, such as [9, 26].

The challenges that CompCert face are in large part the size of the C lan-
guage, but also that initial C implementations were not based on a formal
semantics. CompCert therefore has to bridge the gap by reverse engineering
existing implementations.

So what can be done to enable easier verification of a compiler, is to base the
language on a sound formal semantics. This was the case with Standard ML,
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which sought to standardise the language [19]. The efforts of standardisation
meant that implementations such as ML Kit could be a direct translation of the
1990 definition [19, 20]. Another example is CakeML, which is an implemen-
tation of a significant subset of Standard ML, that has been formally verified
using the HOL4 theorem prover [4]. Having a well established semantics and
a implementation that closely mirrors the semantics makes it much simpler to
prove correctness of the implementation.

The two main ways of implementing a language, is to either implement the
semantics, i.e. interpretation, or to compile the language to an intermediate
form that can be evaluated, such as with an abstract machine. Both ways
would be syntax-directed in that an implementation of the semantics would
evaluate a term by constructing derivation trees according to the reduction
rules, and that an AM would evaluate the instructions as they appear on the
control stack. The key difference is that the transition rules for AMs do not
have conditions, and simply evaluate the top-most instruction and move the
stacks around. AMs therefore offer a means of evaluation on a lower level of
abstraction, but above that of real hardware machines, as discussed by Diehl
et al. in [6]. Furthermore, as presented by [14], abstract machines offer many
benefits, such as better performance than that of interpreters, functions as a
cheap implementation device, and as a tool to prove compiler correctness.

Diehl et al. present an extensive bibliography of AMs and an insight into
the research field of AMs [6]. AMs serve as an intermediate stage of compila-
tion in order to bridge the gap of high level programming languages and real
hardware machines. By utilising an intermediate stage, it becomes simpler to
reason from higher-level language to the intermediate representation, and also
to reason about the representation with respect to the underlying computer
architecture. AMs are a formal description or implementation capable of exe-
cuting a specific set of instructions, where those instructions are tailored to the
specific operational needs of the source language, or class of languages.

Diehl et al. also highlights that AMs are appealing with respect to proving
correctness of code generation, along with various analyses and transformations
[6]. Lastly, by leveraging a common abstract machine, or platform, the reach
of the source language is significantly wider. A well known example of util-
ising abstract machines, and the concept of a common compilation target, is
Microsoft’s .NET platform, which ties together multiple languages, such as C#,
F# and Visual Basic, using the intermediate language Common Intermediate
Language (CIL) [7]. CIL enables optimisations to it, and its abstract machine,
to be exploited by all the source languages. Furthermore, by consolidating all
the target languages into one language and abstract machine, it becomes sim-
pler to achieve and maintain cross-platform support since it is only necessary
to support CIL on the respective platforms.

In this report I wish to develop, and prove correctness of, an abstract machine
that uses call-by-push-value (CBPV), a parameter mechanism first described
by Paul Levy [16]. CBPV is an active area of research [10, 23, 17, 8] and a
subsuming paradigm of call-by-value and call-by-name, which is to say, that
the two evaluation strategies can be expressed with simply CBPV. This means
CBPV can be used to implement both languages such as Standard ML, which is
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call-by-value, and Haskell, which is call-by-name. Lastly, by using the semantics
provided by Levy [16] to direct the implementation, it should enable a simpler
proof of correctness.

Section 2 will present call-by-push-value (CBPV), notions of binding and the
implementation of a translator and interpreter for CBPV. This will be followed
by Section 3, which will present well known AMs and the definition of the
developed CBPV AM. Section 4 will present the proof of correctness for the
CBPV AM, and finally Section 5 will conclude the report.

2 Call-by-push-value and its implementation

This section will present call-by-push-value (CBPV), its syntax and semantics,
as well as translations of CBPV based on Levy [16]. Whereafter it will discuss
the different notions of binding variables and the considerations required in
developing an implementation of the CBPV language, and finally present parts
of the implementation.

2.1 Introducing call-by-push-value

Call-by-push-value is an idealised calculus first discovered by Paul Levy [16].
It is a variant of simply typed lambda calculus, which incorporates computa-
tional effects, and therefore combines functional and imperative programming.
A noteworthy aspect of call-by-push-value (CBPV) is that it subsumes call-by-
value (CBV) and call-by-name (CBN). CBV and CBN can be translated to and
from CBPV, and the transformation preserves the semantics, which suggests
that, from a semantic viewpoint, CBV and CBN are sub-systems of CBPV [16].

CBPV has many variants, and since this report wishes to develop an im-
plementation of CBPV it would be natural to consider the classic variant as
presented by Levy [16]. The classic CBPV is typed, but since types are not
central to the challenges tackled by this report we consider an untyped setting.
Furthermore, only a core subset of CBPV will be considered and implemented.

2.2 Call-by-push-value syntax and semantics

The syntax can be seen in Definition 1 and 2, which present the set of values
Val and the set of computation Comp respectively.

Definition 1 (Values). The formation rules for values in call-by-push-value is
as follows

V ∈ Val ::= x | thunk M

Definition 2 (Computations). The formation rules for computations in call-
by-push-value is as follows

M,N ∈ Comp ::= λx.M | MV | let x = V in M | force V | return V | M to x in N
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A value is:

• a variable x

• or a thunk M , where a thunk is a suspended computation, such as a
λ-abstraction λx.M .

Computations are::

• λ-abstraction λx.M , and application MV

• a let x = V in M , x is bound to the value V in M , i.e. M [V/x]

• a force V , which runs a suspended computation, i.e. a thunk

• M to x in N , where M is first evaluated to a computation of the form
return V , and then V is bound to x in N , as so N [V/x].

Definition 3 presents the set of terminals Term, where Term ⊂ Comp,
and Table 1 contains the semantics of CBPV.

Definition 3 (Terminals).

T ∈ Term ::= λx.M | return V

(CBPV-LET)
let x = V in M → M [V/x]

(CBPV-TO)
M → M ′

M to x in N → M ′ to x in N

(CBPV-RETURN)
(return V ) to x in M → M [V/x]

(CBPV-FORCE)
force thunk M → M

(CBPV-APP)
M → M ′

MV → M ′V

(CBPV-BETA)
(λx.M)V → M [V/x]

Table 1: Small-step semantics of CBPV [16]

Tables 2 and 3 present the translations for CBV and CBN to CBPV, and vice
versa. The use of these translations can be seen in Section 3.5, with Examples
8 and 9.
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CBV term CBPV computation
x return x
λx.M return thunk λx.M
MN M to f in (N to g in (force

f)g)

Table 2: Decomposition of CBV into CBPV [16]

CBN term CBPV computation
x force x
λx.M λx.M
MN M(thunk N)

Table 3: Decomposition of CBN into CBPV [16]

2.3 Notions of binding

In the usual semantics of λ-calculus, bindings are explained as substitutions. In
this section we will present the concepts that make this possible. The following
section is in large part based on Barendregt [1], except modifications made with
respect to CBPV.

There are two primary binding models in λ-calculus, and those are syntac-
tic binding (substitution) and semantic binding (environments). Both models
define how values are bound to free variables. In syntactic binding, the variable
in a β-reduction is immediately substituted for the value, whereas in seman-
tic binding the binding is stored in the environment. Then, when a variable
is reached during reduction, the value of the variable is looked up in the en-
vironment and substituted for the binding. This section will present syntactic
binding, and Section 3.2 will present semantic binding.

Essential concepts for both binding models is that of free and bound vari-
ables. Those are presented in Definitions 4 and 5, which inductively define the
set of free and bound variables in a term M . Using FV() and BV(), you can de-
rive AV(), as seen in Definition 6, which defines the set of all variables in a term
M . Furthermore, Definition 7, presents the notion of open and closed lambda
terms.

Definition 4 (Free and bound variables). The set of free variables for a term
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M , denoted FV(M) is defined inductively as follows.

FV(x) = {x}
FV(MV ) = FV(M) ∪ FV(V )

FV(λx.M) = FV(M)− {x}
FV(let x = V in M) = (FV(V ) ∪ FV(M))− {x}

FV(M to x in N) = (FV(M) ∪ FV(N))− {x}
FV(return V ) = FV(V )

FV(force V ) = FV(V )

FV(thunk M) = FV(M)

Definition 5 (Bound variables). The set of bound variables for a term M ,
denoted BV(M) is defined inductively as follows.

BV(x) = {};
BV(MV ) = {};

BV(λx.M) = {x};
BV(let x = V in M) = {x};

BV(M to x in N) = {x};
BV(return V ) = {};
BV(force V ) = {};

BV(thunk M) = {}.

Definition 6 (All variables). The set of all variables for a term M , denoted
AV(M) is defined as follows.

AV(M) = FV(M) ∪ BV(M).

Definition 7 (Open and closed terms). M is a closed λ-term if FV(M) = ∅.

Definition 8, presents how free variables are substituted for their binding. It
is worth noting the need for a fresh variable y′, in the cases that y ∈ N , to ensure
that the substitutions remain capture-avoiding, since the substitutions could
otherwise change the behaviour of the term, as seen in Example 1. Additionally,
since circular definitions are not allowed, y cannot be a free variable of V in a
term let y = V in M .

Definition 8 (Substitution in CBPV). The result of substituting N for the free
occurrences of x in M , denoted M [N/x]. In case of name collisions a fresh
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variable y′ is introduced. Substitution is defined as follows

x[N/x] ≡ N ;

y[N/x] ≡ y, if x ̸≡ y;

(MV )[N/x] ≡ (M [N/x])(V [N/x]);

(λy.M)[N/x] ≡ λy.(M [N/x]), if y /∈ N ;

(λy.M)[N/x] ≡ λy′.((M [y′/y])[N/x]), if y ∈ N ;

(let y = V in M)[N/x] ≡ (let y = (V [N/x]) in (M [N/x])), if y /∈ N ;

(let y = V in M)[N/x] ≡ (let y′ = (V [N/x]) in ((M [y′/y])[N/x])), if y ∈ N ;

(M1 to y in M2)[N/x] ≡ (M1[N/x]) to x in (M2[N/x]), if y /∈ N ;

(M1 to y in M2)[N/x] ≡ (M1[N/x]) to x in ((M2[y
′/y])[N/x]), if y ∈ N ;

(return V )[N/x] ≡ return (V [N/x]);

(force V )[N/x] ≡ force (V [N/x]);

(thunk M)[N/x] ≡ thunk (M [N/x]).

Example 1 (Capture-avoiding substitution). The following substitution is not
capture-avoiding, since behaviour is changed as a result of substitution.

(λx.y)[x/y] →
(λx.y[x/y]) →
(λx.x)

The behaviour is changed from the function λx.y to the identity function λx.x.

To avoid capturing variables, we need to ensure that there are no name
collisions during substitution. That is, in a substitution

(λx.M)[N/y]

we have that if x ̸= y and x is not a free variable of N , then the substitution
can be said to be capture-avoiding.

The renaming of bound variables and their free occurrences, as seen in Def-
inition 8 for the binding constructs, is known as α-conversion, and can be seen
in Definition 9. An example of the use of α-conversion to solve a name colli-
sion, can be seen in Example 2. α-conversion also serves as a means to assert
equivalence between two terms, which can be seen in Example 3.

Definition 9 (α-conversion). The renaming of bound variables without modi-
fying behaviour, such that they are different from free ones, is denoted by =α,
and defined as follows

λx.M =α λy.M [y/x], provided that y does not occur in M .

Example 2 (Name collision and α-conversion). In the term below, it is unclear
what the application of z will substitute. The inner abstraction λx is shadowing
the bound variable x, which is bound from the outer abstraction. Thus it is
unclear, which abstraction the variable is bound to.

(λx.(λx.x)y)z
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Here, α-conversion can be used to rename the outer lambda. Thereby making it
clear, which variable will be substituted in the application and dispel the ambi-
guity. An α-conversion could be as follows

(λw.(λx.x)y)z →
(λx.x)y) →
y

Example 3 (Equivalence and α-conversion). Due to the compatibility rules
(presented by Barendregt [1]), we can replace terms and sub-terms by equivalent
terms in any term context. That is, say we have the following term

λx.x(xx)x

If we have, (λy.yy)x = xx, then we can replace the sub-term xx and have the
following term and equivalence.

(λx.x((λy.yy)x)x = λx.x(xx)x

Likewise with α-conversion, two terms differing only in the names of bound
variables are said to be α-equivalent. Such as with

(λx.x)z = z = (λy.y)z

In the presentation of lambda calculus in [1], Barendregt states a convention,
that has since been referred to as Barendregt’s convention, which can be seen
in Convention 1. In simple terms, the convention states that, in a lambda term
no two variables can share the same name, which can be understood to mean
that variable names are implicitly α-converted to avoid variable capturing and
name collisions. Nonetheless, an implementation would have to perform these
conversions explicitly, and the interpreter presented in Section 2.4 does this.

Convention 1 (Barendregt’s convention). If M1, . . . ,Mn occur in a certain
mathematical context (e.g. definition, proof), then in these terms all bound
variables are chosen to be different from the free variables [1].

However, there is a way to make Barendregt’s convention hold, thereby sim-
plifying the required bookkeeping, and that is to use De Bruijn notation, which
can be seen in Definition 10 and Example 4. De Bruijn notation is a well known
way of avoiding name variable capturing, collisions, and thereby eliminate the
need for α-conversion.

Definition 10 (De Bruijn notation). When using De Bruijn notation, every
variable is replaced by a number, or index, denoting how much further up in its
syntax tree the binding construct occurs, counting from the inside out [3].

Example 4 (Transformation to De Bruijn notation). As seen in Definition 10,
De Bruijn notation is a method of representing variables in a way that avoids
names and instead uses numerical indices. Transforming the following term to
De Bruijn notation is as follows

λx.λy.x y → λ.λ.#1 #0

9



The variable name x has been replaced by #1, as there is one abstraction between
the binding occurrence and the free occurrence, whereas y has been replaced by
#0.

2.4 Implementation of the interpreters and translator

This section will present the interpreter for call-by-push-value (CBPV) and a
translator to, and from, CBPV. For the purpose of aiding the development
of the interpreter for CBPV, interpreters for call-by-value (CBV) and call-by-
name (CBN) were implemented as well, where the interpreters implement the
definitions of CBV and CBN seen in Definition 11 and Definition 12 respectively.
Similarly, the translator made it possible to test translated terms from CBV and
CBN, and assert that the interpreter for CBPV preserved the behaviour as ex-
pected. The three interpreters have in common, that they are implementations
of the semantics, and therefore compute terms by constructing derivation trees
according to the semantics. Furthermore, they all employ syntactic binding and
use α-conversion to avoid variable capturing.

Definition 11 (CBV interpreter lambda calculus). The formation rules for
untyped lambda calculus are as follows

M ::= x | λx.M | MN

Values have the following form

V ::= x | λx.M

(CBV-1)
M → M ′

MN → M ′N

(CBV-2)
N → N ′

(λx.M)N → (λx.M)N ′

(CBV-3)
(λx.M)V → M [V/x]

Table 4: Call-by-value semantics

Definition 12 (CBN interpreter lambda calculus). The formation rules for
untyped lambda calculus are as follows

M ::= x | λx.M | MN

The goal of implementing the CBPV interpreter is for it to serve as a basis
for the later design and implementation of an abstract machine for CBPV, which
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(CBN-1)
M → M ′

MN → M ′N

(CBN-2)
(λx.M)N → M [N/x]

Table 5: Call-by-name semantics

is introduced in Section 3.5. The focus will be on implementing the syntax and
semantics, and not error handling of malformed terms etc. The interpreters and
translator were implemented in Haskell.

This section will first present the data structures used in representing lambda
terms. Following it will be a presentation of translator and the CBPV inter-
preter. Lastly, the implementation of topics discussed in Section 2.3 will be
presented, namely the implementation of FV() and AV(), substitution, and α-
conversion.

Listing 1 presents the data structure that represents terms in the implemen-
tation. Listing 2 presents the implementation for translation between CBV and
CBN to CBPV, and vice versa, as seen in Tables 2 and 3. Listing 3 presents
the CBPV interpreter, which demonstrates the implementation of the semantics
seen in Table 1.

type Name = String

data Term = Let Name Term Term |
To Name Term Term |
Lam Name Term |
App Term Term |
Return Term |
Force Term |
Thunk Term |
Var Name

Listing 1: CBPV Syntax

cbvCBPV : : Term −> Term
cbvCBPV t@(Var ) = Return t
cbvCBPV (Lam x t ) = Return (Thunk (Lam x (cbvCBPV t ) ) )
cbvCBPV (App t1 t2 ) = To f t1 ’ (To g t2 ’ app )

where f = newvar $ Set . f romList [ t1 ’ , t2 ’ ]
g = newvar $ Set . insert (Var f ) $ Set . f romList [ t1 ’ , t2 ’ ]
t1 ’ = cbvCBPV t1
t2 ’ = cbvCBPV t2
app = App ( Force $ Var f ) (Var g )

cbpvCBV : : Term −> Term
cbpvCBV (Return t@(Var ) ) = t
cbpvCBV (Return (Thunk (Lam x t ) ) ) = Lam x (cbpvCBV t )
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cbpvCBV (To f t1 (To g t2 app ) ) = case app of
App ( Force (Var f ) ) (Var g ) −> App (cbpvCBV t1 ) (cbpvCBV t2 )

−> error ( . . . )

cbnCBPV : : Term −> Term
cbnCBPV t@(Var ) = Force t
cbnCBPV (Lam x t ) = Lam x (cbnCBPV t )
cbnCBPV (App t1 t2 ) = App (cbnCBPV t1 ) (Thunk (cbnCBPV t2 ) )

cbpvCBN : : Term −> Term
cbpvCBN ( Force t@(Var ) ) = t
cbpvCBN (Lam x t ) = Lam x (cbpvCBN t )
cbpvCBN (App t1 (Thunk t2 ) ) = App (cbpvCBN t1 ) (cbpvCBN t2 )

Listing 2: Implementation of CBN-CBPV translation

reduce : : Term −> Term
reduce t@( Let x t1 t2 )

| value t1 = sub ’ x t1 t2
| otherwise = error ( . . . )

reduce t@(To x ( Return t1 ) t2 )
| value t1 = sub ’ x t1 t2
| otherwise = error ( . . . )

reduce (To x t1 t2 ) = To x ( reduce t1 ) t2
reduce ( Force (Thunk t ) ) = reduce t
reduce t@(App (Lam x t1 ) t2 )

| value t2 = sub ’ x t2 t1
| otherwise = error ( . . . )

reduce (App t1 t2 ) = App ( reduce t1 ) t2

Listing 3: Implementation of CBPV semantics

As seen in Definition 8, substitution in binders is conditional to prevent
capturing of variables. This can be seen in Listing 4, where freeIn is used to
check if the bound variable y is free in the substitution, if it is, newvar is used
to produce an unused variable name z, and α-conversion is then performing
by substituting the variable name z. Listing 5 and 6 are implementations of
the functions FV() and AV(), and Listing 7 presents the function newvar, which
produces unused variable names.

sub ’ : : Name −> Term −> Term −> Term
sub ’ x s t@(Lam y t1 )

| not $ f r e e I n x t = t
| f r e e I n y s = Lam z $ sub ’ x s $ sub ’ y (Var z ) t1
| otherwise = Lam y $ sub ’ x s t1
where z = newvar $ Set . s i n g l e t o n t

. . .

.

.
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.

sub ’ x s t = sub x s t

Listing 4: Substitution for nested binders

f r e e : : Term −> Set . Set Name
f r e e (Var x ) = Set . s i n g l e t o n x
f r e e (App t1 t2 ) = Set . union ( f r e e t1 ) ( f r e e t2 )
f r e e (Lam x t ) = Set . delete x $ f r e e t
f r e e ( Let x t1 t2 ) = Set . delete x $ Set . union ( f r e e t1 ) ( f r e e t2 )
f r e e (To x t1 t2 ) = Set . delete x $ Set . union ( f r e e t1 ) ( f r e e t2 )
f r e e ( Return t ) = f r e e t
f r e e ( Force t ) = f r e e t
f r e e (Thunk t ) = f r e e t

Listing 5: Implementation of FV(M)

vars : : Term −> Set . Set Name
vars (Var x ) = Set . s i n g l e t on x
vars (App t1 t2 ) = Set . union ( vars t1 ) ( vars t2 )
vars (Lam x t ) = Set . insert x $ vars t
vars ( Let x t1 t2 ) = Set . insert x $ Set . union ( vars t1 ) ( vars t2 )
vars (To x t1 t2 ) = Set . insert x $ Set . union ( vars t1 ) ( vars t2 )
vars ( Return t ) = vars t
vars ( Force t ) = vars t
vars (Thunk t ) = vars t

Listing 6: Implementation of AV(M)

newvar : : Set . Set Term −> Name
newvar t s = head $ dropWhile ( ‘ Set .member ‘ vs ) xs

where vs = var s s t s
xs = iterate ( ’ x ’ : ) ”x”

Listing 7: Function for finding unused variable name

The implementation presents a compelling case for the use of De Bruijn
notation, as that would simplify aspects of the substitution, which is why De
Bruijn notation is often preferred for implementations.

3 Implementing an abstract machine for call-by-
push-value

This section will present well known abstract machines (AM), namely the SECD
and Krivine machines, and it will present the abstract machine for the CBPV
language, the CBPV AM. The presentation of the SECD and Krivine machines
is based on Xavier Leroy’s presentation in [15].
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The section will first present the structure of a functional AM, followed by
presentations of the SECD machine, the Krivine machine, and lastly the CBPV
AM.

3.1 Implementation of the abstract machines

The transition rules of the SECD, Krivine, and CBPV AM machines, have been
the basis for their respective implementation in Haskell. The implementations
are a straightforward representation of the respective rules.

The computation examples of the AMs, seen in Examples 6-9, have been
created using the implementations and a pretty printer for LATEX.

3.2 Functional abstract machines

Common for all the abstract machines presented in this report is that they
use semantic binding, which was briefly mentioned in Section 2.3, as well as
De Bruijn notation, which was presented in Section 2.3, in Definition 10 and
Example 4. Example 5 presents how substitution is performed in semantic
binding.

Example 5 (Substitution using semantic binding and De Bruijn notation).
Variable bindings are stored in the environment and substituted when needed.
The environment is typically implemented as a stack, such that look-up can be
performed according to the De Bruijn index, and the stack grows as each binding
β-reduction pushes a new value to the stack, as so

(λ.#0)(λ.#0 #0)[ ] →β #0[(λ.#0 #0)] →lookup (λ.#0 #0)[(λ.#0 #0)]

Definition 13, presents a general formalisation of a functional abstract ma-
chine.

Definition 13 (Abstract machine).

An abstract machine is a 4-tuple (C, E ,S,→), where

C ∈ C is the set of the possible control instructions

E ∈ E is the set of the possible variable bindings

S ∈ S is the set of the possible evaluations

⟨C,E, S⟩ → ⟨C ′, E′, S′⟩

C, E, and S are stacks, where C holds the control instructions, E is the
environment holding variable bindings, and lastly S holds the intermediate eval-
uations. If xs is a stack and x is an element, then x :: xs and x : xs denote
that the element x is placed on top of the stack xs.

Variable bindings are stored in E, such that look-up of variables is denoted
as E(i), where i is the De Bruijn index of the variable in question, and so E(i)
is the i-th entry in the environment E.
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An initial configuration for an abstract machine is of the form ⟨C, ϵ, ϵ⟩, where
C ̸= ϵ.

It is necessary to be able to compile terms into instructions for the machine,
hence we need a definition for compiling terms of the source language, lambda
calculus, into the target language, instructions of the respective abstract ma-
chines.

3.3 The SECD machine

The SECD machine is a highly influential abstract machine, which was designed
by Peter Landin [13] and evaluates call-by-value lambda calculus. The lambda
calculus recognised by the presented machine can be seen in Definition 14.

Definition 14 (SECD lambda calculus). The formation rules for untyped lambda
calculus are as follows

M ::= x | λx.M | MN | let x = V in N | n | M +N | M −N

Values have the following form

V ::= x | λx.M | n

(CBV-1)
M → M ′

MN → M ′N

(CBV-2)
N → N ′

(λx.M)N → (λx.M)N ′

(CBV-3)
(λx.M)V → M [V/x]

(CBV-4)
let x = V in N → N [V/x]

Table 6: Call-by-value semantics

The machine gets its name from the configuration, which uses four stacks: an
evaluation stack S, an environment E, a control C, and a dump D. The modern
variant of SECD uses De Bruijn notation to look into the environment, which
enables the removal of the dump D. The formal introduction of the modern
SECD machine can be seen in Definition 15.

Definition 15 (Modern SECD machine).

A configuration of the SECD machine is of the form ⟨C,E, S⟩, where
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• C is the remaining control instructions

• E is the environment of variable bindings

• S is the stack of values

An initial configuration for the SECD machine is ⟨C, ϵ, ϵ⟩, where C ̸= ϵ, as seen
in Definition 13, and the final configuration is ⟨ϵ, ϵ, v :: S⟩, where v ∈ V .

The formation rules of the control instructions for the SECD machine are
as follows

C ::= I :: C | ϵ

I ::= access(i) | closure(C) | return | apply

| let | endlet | const(n) | add | sub

The instructions describe the following behaviour

• access(i), push the i-th field of the environment

• closure(C), push the closure with the current environment

• return, terminate current function, and jump back to caller

• apply, pop function closure and argument, and perform application

• let, pop value and add it to environment

• endlet, discard first entry in environment

• const(n), push integer n on the stack

• add, pop two integers, and push their sum

• sub, pop two integers, and push their difference

The transition rules of the SECD machine can be seen in Table 7. The
transition rules are determined by the instruction on top of the control stack C.
Here we have that there are only values placed in the evaluation stack S and in
the environment E. Thus the arguments for application are always values, as
expected for call-by-value.

As stated in Section 3.2, we need a definition for compiling terms of the
source language to the target language. Definition 16, presents the rules for
compilation from the lambda calculus, seen in Definition 14, to the SECD in-
structions, seen in Definition 15. Lastly Example 6, presents the steps involved
with making use of the abstract machine, compiling from terms to instructions
and finally computing the compiled instructions using the machine.

Definition 16 (Compilation from lambda calculus to SECD instructions). The
compilation rules for lambda calculus to SECD instructions are
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(SECD-1) ⟨access(i) :: C,E, S⟩ → ⟨C,E,E(i) :: S⟩

(SECD-2) ⟨closure(C ′) :: C,E, S⟩ → ⟨C,E, clo(C ′, E) :: S⟩

(SECD-3) ⟨return :: C,E, v :: clo(C ′, E′) :: S⟩ → ⟨C ′, E′, v :: S⟩

(SECD-4) ⟨apply :: C,E, v :: clo(C ′, E′) :: S⟩ → ⟨C ′, v :: E′, clo(C,E) :: S⟩

(SECD-5) ⟨let :: C,E, v :: S⟩ → ⟨C, v :: E,S⟩

(SECD-6) ⟨endlet :: C, v :: E,S⟩ → ⟨C,E, S⟩

(SECD-7) ⟨const(n) :: C,E, S⟩ → ⟨C,E, n :: S⟩

(SECD-8) ⟨add :: C,E, n :: m :: S⟩ → ⟨C,E, (m+ n) :: S⟩

(SECD-9) ⟨sub :: C,E, n :: m :: S⟩ → ⟨C,E, (m− n) :: S⟩

Table 7: Transition rules of SECD

J#iK = access(i)

Jλ.MK = closure(JMK : return)
Jlet V in NK = JMK : let : JNK : endlet

JMNK = JMK : JNK : apply
JnK = const(n)

JM +NK = JMK : JNK : add
JM −NK = JMK : JNK : sub

Example 6 (Compiling and computing call-by-value lambda calculus with the
SECD machine). The following term has been chosen to demonstrate the call-
by-value nature of the SECD machine.

(λx.x)((λx.x)(λx.x))

Before it can be compiled using the rules from Definition 16, it needs to be
transformed into De Bruijn notation, as seen below

(λ.#0)((λ.#0)(λ.#0))

Then using the compilation rules for the SECD machine, it results in the fol-
lowing instructions

M,M,M, apply, apply

Where M is the identity function, Jλx.xK.

Following the transition rules from Table 7, and the initial configuration
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presented in Definition 13, ⟨C, [ ], [ ]⟩, results in the following computation.

⟨[M,M,M, apply, apply], [ ], [ ]⟩ →
⟨[M,M, apply, apply], [ ], [N ]⟩ →
⟨[M, apply, apply], [ ], [N,N ]⟩ →
⟨[apply, apply], [ ], [N,N,N ]⟩ →
⟨[access(0), return], [N ], [clo([apply], [ ]), N ]⟩ →
⟨[return], [N ], [N, clo([apply], [ ]), N ]⟩ →
⟨[apply], [ ], [N,N ]⟩ →
⟨[access(0), return], [N ], [clo([ ], [ ])]⟩ →
⟨[return], [N ], [N, clo([ ], [ ])]⟩ →
⟨[ ], [ ], [N ]⟩

Where M is the identity function, J(λx.x)K, and N the closure J(λx.x)[ ]K.

Looking at the final configuration in Definition 15 and the compilation rules
in Definition 16. It is clear that the final configuration is in the correct form,
and that it is equivalent to λx.x, which is the expected result.

3.4 The Krivine machine

The Krivine machine is a call-by-name machine described by Jean-Louis Krivine
in [12]. The lambda calculus recognised by the presented machine can be seen
in Definition 17.

Definition 17 (Krivine lambda calculus). The formation rules for untyped
lambda calculus are as follows

M ::= x | λx.M | MN

(CBN-1)
M → M ′

MN → M ′N

(CBN-2)
(λx.M)N → M [N/x]

Table 8: Call-by-name semantics

Similar to the SECD machine, it utilises De Bruijn notation, a control C, an
environment E, and an intermediate evaluation stack S. However, unlike the
SECD machine, the stacks S and E do not contain values, but instead thunks,
where a thunk is a delayed evaluation in the form of a closure clo(C,E).

Definition 18 (Krivine machine).

A configuration of the Krivine machine is of the form ⟨C,E, S⟩, where
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• C is the remaining control instructions

• E is the environment of variable bindings

• S is the stack holding thunks

An initial configuration for the Krivine machine is ⟨C, ϵ, ϵ⟩, where C ̸= ϵ, as
seen in Definition 13, and the final configuration is ⟨grab :: C,E, ϵ⟩.

The formation rules of the control instructions for the Krivine machine, are
as follows

C ::= I :: C | ϵ

I ::= access(i) | grab | push(C)

The instructions describe the following behaviour

• access(i), start evaluating the i-th thunk in the environment

• grab, pop one argument and add it to the environment

• push(C), push a thunk for code C

The transition rules for the Krivine machine can be seen in Table 9. The
transition rules are determined by the instruction on top of the control stack
C. Here we have that there are only thunks placed in the evaluation stack S
and the environment E. Thus, applications are always performed with thunks,
hence the parameter-mechanism is call-by-name.

(KRIV-1) ⟨access(i) :: C,E, S⟩ → ⟨C ′, E′, S⟩, if E(i) = clo(C ′, E′)

(KRIV-2) ⟨grab :: C,E, clo(C ′, E′) :: S⟩ → ⟨C, clo(C ′, E′) :: E,S⟩

(KRIV-3) ⟨push(C ′) :: C,E, S⟩ → ⟨C,E, clo(C ′, E) :: S⟩

Table 9: Transition rules of the Krivine machine

As stated in Section 3.2, we need a definition for compiling terms of the
source language to the target language. Definition 19, presents the rules for
compilation from the lambda calculus, seen in Definition 17, to the Krivine
instructions, seen in Definition 18. Lastly Example 7, presents the steps involved
with making use of the abstract machine, compiling from terms to instructions
and finally computing the compiled instructions using the machine.

Definition 19 (Compilation from lambda calculus to Krivine instructions).
The compilation rules for lambda calculus to Krivine instructions are

J#iK = access(i)

JλMK = grab : JMK
JMNK = push(JNK) : JMK
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Example 7 (Compiling and computing call-by-name lambda calculus with the
Krivine machine). The following term is non-terminating in call-by-value, but
terminating in call-by-name. Thus it has been chosen to demonstrate the call-
by-name nature of the Krivine machine.

(λy.(λx.y)((λx.xx)(λx.xx)))(λz.z)

Before it can be compiled using the rules from Definition 19, it needs to be
transformed into De Bruijn notation, as seen below

(λ.(λ.#1)((λ.#0 #0)(λ.#0 #0)))(λ.#0)

Then using the compilation rules for the Krivine machine, it results in the fol-
lowing instructions

push([grab, access(0)]), grab, push(M), grab, access(1)

Where M is the recursive argument, J(λx.xx)(λx.xx)K.

Following the transition rules from Table 9, and the initial configuration
presented in Definition 13, ⟨C, [ ], [ ]⟩, results in the following computation.

⟨[push([grab, access(0)]), grab, push(M), grab, access(1)], [ ], [ ]⟩ →
⟨[grab, push(M), grab, access(1)], [ ], [clo([grab, access(0)], [ ])]⟩ →
⟨[push(M), grab, access(1)], [clo([grab, access(0)], [ ])], [ ]⟩ →
⟨[grab, access(1)], [clo([grab, access(0)], [ ])], [clo(M, [clo([grab, access(0)], [ ])])]⟩ →
⟨[access(1)], [clo(M, [clo([grab, access(0)], [ ])]), clo([grab, access(0)], [ ])], [ ]⟩ →
⟨[grab, access(0)], [ ], [ ]⟩

Where M is the recursive argument, J(λx.xx)(λx.xx)K.

Looking at the final configuration in Definition 18 and the compilation rules
in Definition 19. It is clear that the final configuration is in the correct form,
and that it is equivalent to λz.z, which is the expected result.

3.5 An abstract machine for call-by-push-value

The abstract machine for call-by-push-value is based on the Modern SECD
machine, and as such it has the same configuration consisting of three stacks:
an evaluation stack S, an environment E, a control C. The SECD machine
performs call-by-value, by ensuring that there are only values placed in S and
E, unlike the Krivine machine where the stacks S and E contain thunks rather
than values, resulting in call-by-name.

However, in CBPV the definition of values is different from that of CBV, such
as thunks being considered values in CBPV, as seen in Definition 1 in Section
2.2. Furthermore, evaluation of CBPV does not result in values, but rather
terminals, as presented in Definition 3 in Section 2.2. The stack S therefore
contains elements in the set Val ∪ Term. Definition 20 presents the abstract
machine for CBPV.
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Definition 20 (CBPV AM).

A configuration of the CBPV machine is of the form ⟨C,E, S⟩, where

• C is the remaining control instructions

• E is the environment of variable bindings

• S is the stack of values and terminals

An initial configuration for the CBPV AM is ⟨C, ϵ, ϵ⟩, where C ̸= ϵ, as seen
in Definition 13, and the final configuration is ⟨ϵ, ϵ, T :: S⟩, where T ∈ Term.

The formation rules of the control instructions for the CBPV AM are as
follows

C ::= I :: C | ϵ

I ::= access(i) | closure(C) | return | apply | begin | end

| thunk(C) | force | return(V )

The instructions describe the following behaviour

• access(i), push the i-th field of the environment

• closure(C), push the closure with the current environment

• return, terminate current function, and jump back to caller

• apply, pop function closure and argument, and perform application

• begin, pop value and add it to environment

• end, discard first entry in environment

• thunk(C), pushes thunk to stack

• force, pops thunk of stack and evaluates C

• return(V ), pushes terminal to stack

As mentioned, the CBPV AM is based on the SECD machine, and as such
the transition rules concerning abstractions, applications, and variable lookup
remain unchanged. It has however been extended with additional rules in order
to handle the additional constructs of CBPV. Table 10 presents the transition
rules of the CBPV AM.

As stated in Section 3.2, we need a definition for compiling terms of the
source language to the target language. Definition 21, presents the rules for
compilation from CBPV, presented in Section 2.2, to the CBPV machine in-
structions, seen in Definition 20.

In addition, as presented in Section 2.2, call-by-value (CBV) and call-by-
name (CBN) can be translated to CBPV. As such, the SECD and Krivine
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(AM-1) ⟨access(i) :: C,E, S⟩ → ⟨C,E,E(i) :: S⟩

(AM-2) ⟨closure(C ′) :: C,E, S⟩ → ⟨C,E, clo(C ′, E) :: S⟩

(AM-3) ⟨return :: C,E, t :: clo(C ′, E′) :: S⟩ → ⟨C ′, E′, t :: S⟩

(AM-4) ⟨apply :: C,E, v :: clo(C ′, E′) :: S⟩ → ⟨C ′, v :: E′, clo(C,E) :: S⟩

(AM-5) ⟨begin :: C,E, return(v) :: S⟩ → ⟨C, v :: E,S⟩

(AM-6) ⟨begin :: C,E, v :: S⟩ → ⟨C, v :: E,S⟩

(AM-7) ⟨end :: C, v :: E,S⟩ → ⟨C,E, S⟩

(AM-8) ⟨thunk(C ′) :: C,E, S⟩ → ⟨C,E, thunk(C ′) :: S⟩

(AM-9) ⟨force :: C,E, thunk(C ′) :: S⟩ → ⟨C ′ :: C,E, S⟩

(AM-10) ⟨return(thunk(C ′)) :: C,E, S⟩ → ⟨C,E, return(thunk(C ′)) :: S⟩

(AM-11) ⟨return(access(i)) :: C,E, S⟩ → ⟨C,E, return(E(i)) :: S⟩

Table 10: Transition rules of the CBPV AM

example terms, presented in Example 6 and 7 respectively, can be translated into
CBPV, from there into CBPVmachine instructions, and finally be evaluated and
reach the same result all while preserving the semantics. Therefore, Example 8
will present the translation, transformation, compilation, and execution of the
SECD example term in the CBPV machine, and Example 9 likewise for the
Krivine example.

Definition 21 (Compilation from call-by-push-value to CBPV machine instruc-
tions). The compilation rules for CBPV lambda calculus to CBPV machine in-
structions are

J#iK = access(i)

Jλ.MK = closure(JMK : return)
JMV K = JMK : JV K : apply

Jlet V in MK = JV K : begin : JMK : end
JM to in NK = JMK : begin : JNK : end
Jreturn V K = return(JV K)
Jthunk MK = thunk(JMK)

Jforce (thunk M)K = JMK
Jforce V K = JV K : force

Example 8 (Compiling and computing call-by-push-value lambda calculus with
the CBPV AM: CBV example term). The following term, is the term used in
Example 6 for the SECD machine.

(λx.x)((λx.x)(λx.x))

Since the SECD machine evaluates using the CBV semantics, the term will be
translated as a CBV term to CBPV. Translating the term into CBPV is done
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according to the rules presented in Table 2 in Section 2.2. Using those rules we
get the following CBPV term

M to f in (M to p in (M to q in (force p)q)) to g in (force f)g

Where M is the identity function, return (thunk (λx.return x)).

Before it can be compiled into CBPV machine instruction, it needs to be
transformed into De Bruijn notation, as seen below

M to in (M to in (M to in (force #1)#0)) to in (force #1)#0

Where M is the translated identity function, return (thunk (λ.return #0)).

Then using the compilation rules for the CBPV machine, it results in the
following instructions

M, begin,M, begin,M, begin, P, end, end, begin, P, end, end

Where M is the identity function, Jreturn (thunk (λ.return #0))K, and P is
the application J(force #1)#0K.

Finally, following the transition rules from Table 10 and the initial configura-
tion presented in Definition 20, ⟨C, [ ], [ ]⟩, it results in the following computation
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⟨[return(M), begin, return(M), begin, return(M), begin, P,Q], [ ], [ ]⟩ →
⟨[begin, return(M), begin, return(M), begin, P,Q], [ ], [return(M)]⟩ →
⟨[return(M), begin, return(M), begin, P,Q], [M ], [ ]⟩ →
⟨[begin, return(M), begin, P,Q], [M ], [return(M)]⟩ →
⟨[return(M), begin, P,Q], [M,M ], [ ]⟩ →
⟨[begin, P,Q], [M,M ], [return(M)]⟩ →
⟨[P,Q], [M,M,M ], [ ]⟩ →
⟨[force, access(0), apply, Q], [M,M,M ], [M ]⟩ →
⟨[closure([return(access(0)), return]), access(0), apply, Q], [M,M,M ], [ ]⟩ →
⟨[access(0), apply, Q], [M,M,M ], [clo([return(access(0)), return], [M,M,M ])]⟩ →
⟨[apply, Q], [M,M,M ], [M, clo([return(access(0)), return], [M,M,M ])]⟩ →
⟨[return(access(0)), return], [M,M,M,M ], [clo([Q], [M,M,M ])]⟩ →
⟨[return], [M,M,M,M ], [return(M), clo([Q], [M,M,M ])]⟩ →
⟨[Q], [M,M,M ], [return(M)]⟩ →
⟨[end, begin, P, end, end], [M,M ], [return(M)]⟩ →
⟨[begin, P, end, end], [M ], [return(M)]⟩ →
⟨[P, end, end], [M,M ], [ ]⟩ →
⟨[force, access(0), apply, end, end], [M,M ], [M ]⟩ →
⟨[closure([return(access(0)), return]), access(0), apply, end, end], [M,M ], [ ]⟩ →
⟨[access(0), apply, end, end], [M,M ], [clo([return(access(0)), return], [M,M ])]⟩ →
⟨[apply, end, end], [M,M ], [M, clo([return(access(0)), return], [M,M ])]⟩ →
⟨[return(access(0)), return], [M,M,M ], [clo([end, end], [M,M ])]⟩ →
⟨[return], [M,M,M ], [return(M), clo([end, end], [M,M ])]⟩ →
⟨[end, end], [M,M ], [return(M)]⟩ →
⟨[end], [M ], [return(M)]⟩ →
⟨[ ], [ ], [return(M)]⟩

Where M is the identity function Jthunk (λ.return #0)K, R the body of the
identity function Jreturn xK : return, Q the instructions
end, end, begin, access(1), force, access(0), apply, end, end, and P the application
J(force #1)#0K.

Looking at the final configuration in Definition 20 and the compilation rules
in Definition 21, the resulting CBPV term is return (thunk (λ.return #0)).
Transforming the term back to named variables we get return (thunk(λx.return x)),
and finally translating the term from CBPV to CBV, we get λx.x, which is the
result from the SECD machine. The CBPV AM therefore corroborates the re-
sults of SECD machine in Example 6, and the translations described by Levy
[16].

Example 9 (Compiling and computing call-by-push-value lambda calculus with
the CBPV machine: CBN example term). The following term, is the term used
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in Example 7 for the Krivine machine.

(λy.(λx.y)((λx.xx)(λx.xx)))(λz.z)

Since the Krivine machine evaluates using the CBN semantics, the term will be
translated as a CBN term to CBPV. Translating the term into CBPV is done
according to the rules presented in Table 3 in Section 2.2. Using those rules we
get the following CBPV term

(λy.(λx.force y)(thunk (M (thunk M))))(thunk (λz.force z))

Where M is the abstraction λx.(force x)(thunk (force x)).

Before it can be compiled into CBPV machine instructions, it needs to be
transformed into De Bruijn notation, as seen below

(λ.(λ.force #1)(thunk (M (thunk M))))(thunk (λ.force #0))

Where M is the abstraction λ.(force #0)(thunk (force #0)).

Then using the compilation rules for the CBPV machine, it results in the
following instructions

closure([closure([access(1), force, return]), R, apply, return]), N, apply

Where N is the argument Jthunk (λ.force #0)K, R is the recursive argument
Jthunk (M (thunk M))K, where M is the abstraction Jλ.(force #0)(thunk (force #0))K.

Finally, following the transition rules from Table 10 and the initial configura-
tion presented in Definition 20, ⟨C, [ ], [ ]⟩, it results in the following computation

⟨[closure([closure([access(1), force, return]), R, apply, return]), N, apply], [ ], [ ]⟩ →
⟨[N, apply], [ ], [clo([closure([access(1), force, return]), R, apply, return], [ ])]⟩ →
⟨[apply], [ ], [N, clo([closure([access(1), force, return]), R, apply, return], [ ])]⟩ →
⟨[closure([access(1), force, return]), R, apply, return], [N ], [clo([ ], [ ])]⟩ →
⟨[R, apply, return], [N ], [clo([access(1), force, return], [N ]), clo([ ], [ ])]⟩ →
⟨[apply, return], [N ], [R, clo([access(1), force, return], [N ]), clo([ ], [ ])]⟩ →
⟨[access(1), force, return], [R,N ], [clo([return], [N ]), clo([ ], [ ])]⟩ →
⟨[force, return], [R,N ], [N, clo([return], [N ]), clo([ ], [ ])]⟩ →
⟨[closure([access(0), force, return]), return], [R,N ], [clo([return], [N ]), clo([ ], [ ])]⟩ →
⟨[return], [R,N ], [clo([access(0), force, return], [R,N ]), clo([return], [N ]), clo([ ], [ ])]⟩ →
⟨[return], [N ], [clo([access(0), force, return], [R,N ]), clo([ ], [ ])]⟩ →
⟨[ ], [ ], [clo([access(0), force, return], [R,N ])]⟩

Where N is the argument Jthunk (λ.force #0K, R is the recursive argument
Jthunk (M thunk M)K, where M is the abstraction Jλ.(force #0)(thunk (force #0))K.

Looking at the final configuration in Definition 20 and the compilation rules
in Definition 21, the resulting CBPV term is a closure λ.force #0. Transform-
ing the term back to named variables we get λz.force z, and finally translating
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the term from CBPV to CBN, we get λz.z, which is the result from the Krivine
machine. The CBPV AM therefore corroborates the results of Krivine machine
in Example 7, and the translations described by Levy [16].

3.6 Analysis of the call-by-push-value abstract machine

This section will discuss the performance of the CBPV AM relative to the
SECD and Krivine machines when run on the same term, as seen in Examples
6-9. While the section will investigate and argue for some of the performance
deficits in the CBPV AM, it will not be an exhaustive or in-depth performance
analysis of the CBPV AM, but instead provide simply insights into aspects of
the performance.

Looking first at the call-by-value example, seen in Example 6 and 8. We
see that the CBPV AM performs around 2.9 times more reductions than the
SECD machine, as seen in Table 11. These can in large part be explained by
the initial translation from call-by-value to call-by-push-value. Looking at the
translation rules of call-by-value to call-by-push-value, seen in Table 2, we see
that an application MN is translated to the following

MN →trans M to f in (N to g in (force f)g)

Then by looking at the compilation rules for the SECD machine, seen in Table
16, we have that an application is compiled to 3 instructions, JMK : JV K : apply.
Whereas, looking at the compilation rules for the CBPV AM, as seen in Table
21, the translated equivalent results in 8 instructions, JMK : begin : JNK : begin :
access(g) : access(f) : force : apply.

In Example 8, this leads to 19 CBPV AM instructions, compared to just
5 SECD instructions. Note that the discrepancy with respect to Table 11 is
largely due to nested instructions.

SECD reductions 9
CBPV AM reductions 25

Table 11: Performance on the call-by-value example term

The comparison of the CBPV AM and the Krivine machine, is however
not as straightforward. While Table 12 presents that the CBPV AM performs
around 2.2 times more reductions compared to the Krivine machine, they are
difficult to directly compare in contrast to SECD comparison, since the CBPV
AM is based on the SECD machine. However, there is a fundamental difference
between the SECD and Krivine machines, as noted by Leroy [15], the SECD
and Krivine machines illustrate two subtle different ways of evaluating function
applications, namely eval-apply and push-enter respectively. Thereby making
it difficult to make a direct comparison.

In [15], Leroy goes on to present the ZAM machine, which is a call-by-value
push-enter model, and also the underlying model of the bytecode interpreters
of OCaml. Leroy presents that the eval-apply approach performs extra work
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Krivine machine reductions 5
CBPV reductions 11

Table 12: Performance on the call-by-name example term

compared to the push-enter approach. It would therefore be interesting to see
if the CBPV AM could leverage the ZAM machine to improve performance.

4 Proving correctness of abstract machines

This section will present the work behind proving the correctness of the CBPV
AM. First, Section 4.1 will discuss what correctness means in the context of an
abstract machine, as well as the methods. Finally, Section 4.2 will present the
proof of correctness for the CBPV AM.

4.1 Correctness of abstract machines

This section will discuss the meaning of correctness with respect to abstract
machines and their respective semantics. The following presentation is largely
based on Xavier Leroy’s presentation in [15].

In order to define correctness in the context of abstract machines and their
semantics. It is necessary at this point to understand, that we have two ways
of executing a given source term. First is by evaluating the term using the
semantics, i.e. M →∗ T , and the other is by compiling it to machine instruc-
tions and then executing the instructions using an abstract machine, such as
⟨JMK , ϵ, ϵ⟩ →∗ ⟨ϵ, ϵ, T :: ϵ⟩ in the case of the CBPV AM.

The question then becomes, whether the two execution paths agree, which
is to say, does the abstract machine adhere to the semantics of the source lan-
guage. The notion of observational equivalence can be used as a means to assert
equivalence based on observable behaviours. So for the execution of a term M
and a configuration ⟨JMK , ϵ, ϵ⟩, we have that, if they exhibit the same behaviour,
they can be said to be equivalent. The behaviours are

• Termination on (a state representing) a terminal T ∈ Term. If the seman-
tics terminate, then so does the machine, and vice versa for the machine.

M →∗ T ⇐⇒ ⟨JMK , ϵ, ϵ⟩ →∗ ⟨ϵ, ϵ, JT K :: ϵ⟩ (1)

• Divergence, never terminating. If the semantics reduces forever, then so
does the machine, and vice versa for the machine.

M →∗ ∞ ⇐⇒ ⟨JMK , ϵ, ϵ⟩ →∗ ∞ (2)

• Error, getting stuck. If the semantics get stuck, then so does the machine,
and vice versa for the machine.

M →∗ M ′ ̸→⇐⇒ ⟨JMK , ϵ, ϵ⟩ →∗ . . . ̸→ (3)
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Leroy presents two ways of proving correctness of the SECD machine, which are
relevant since the CBPV AM is based on the SECD machine, using small-step
semantics and big-step semantics. However, he finds that the proofs using small-
step are heavy, and that while the proofs using big-step are more convenient,
they do not account for all of the behaviours seen in Equations 1-3.

Like Leroy, Nielson & Nielson [21] used big-step semantics to prove correct-
ness of their implementation. They did it first by proof of induction on the
derivation trees, that for each derivation tree in the semantics there was a cor-
responding finite computation sequence on the abstract machine. Secondly, by
induction on the length of the computation sequences, that there was a corre-
sponding derivation tree in the big-step semantics. The proof is also quite heavy,
and following it Nielson & Nielson present an alternative proof technique, which
is to use bisimulation as seen in Definition 22.

Definition 22 (Correctness of Implementation using Bisimulation [21]).

1. Prove that one step in the structural operational semantics can be simu-
lated by a non-empty sequence of steps on the abstract machine. Show that
this extends to sequences of steps in the structural operational semantics.

2. Prove that a carefully selected non-empty sequence of steps on the abstract
machine can be simulated by a step in the structural operational semantics.
Show that this extends to more general sequences of steps on the abstract
machine.

Bisimulation was discovered by Park [22], used and refined by Milner [18] to
prove his translation from λ-calculus to π-calculus, and lastly expanded upon
by Sangiorgi [24].

By using bisimulation, it is possible to demonstrate that the compilation
respects Equations 1-3 all at once, without the proof becoming unmanageable or
heavy. Furthermore, it becomes straightforward to perform a resource analysis,
since the steps in the machine are directly tied to reductions in the semantics.
Hence the proof of correctness for the CBPV AM will be using bisimulation.

4.2 Proof of correctness for CBPV AM

The proof uses bisimulation to prove the correctness of the CBPV AM. The
definition of bisimulation employed in this proof can be seen in Definition 23,
and Definition 24, presents the notion of an abstract machine implementing a
term.

Definition 23 (Bisimulation). A relation R ⊆ CBPV ×CBPV AM is called
a bisimulation if it holds that when (M, ⟨C,E, S⟩) ∈ R then

1. M → M ′ ⇒ ∃⟨C ′, E′, S′⟩.
⟨C,E, S⟩ →∗ ⟨C ′, E′, S′⟩, such that (M ′, ⟨C ′, E′, S′⟩) ∈ R
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2. ⟨C,E, S⟩ → ⟨C ′, E′, S′⟩ ⇒ ∃⟨C ′′, E′′, S′′⟩.
⟨C ′, E′, S′⟩ →∗ ⟨C ′′, E′′, S′′⟩ and M → M ′, such that (M ′, ⟨C ′′, E′′, S′′⟩) ∈
R

Definition 24 (Implementable). ⟨C,E, S⟩ implements M , if there exists a
bisimulation R, such that (M, ⟨C,E, S⟩) ∈ R. We write ⟨C,E, S⟩ imp M .

Definition 25 and 26 introduce notation necessary for reasoning about the
decompilation of machine configuration to terms. Definition 25, allows us
to disregard trailing end and return instructions, while Definition 26 provides
the translation between semantic binding and syntactic binding, by perform-
ing substitutions in the term with respect to the bindings in the environment,
E. The use of Definition 25 and 26 can be seen in the machine-equivalent of
(λx.M)V → M [V/x] below

⟨JV K : closure(JMK : return) : apply, ϵ, ϵ⟩ →3 ⟨JM ′K : return, JV K , S⟩

In order to match the termM [V/x], it is necessary to disregard the trailing return
and substitute the binding from E into the compiled term JM ′K, to produce
JM ′σEK = M [V/x]. Otherwise the machine configuration and term wouldn’t
match, despite the two being equivalent.

Definition 25 (Garbage collection). We write C ≈ C ′, if C = C ′ : (end, return)∗

Definition 26 (Translating semantic binding to syntactic binding). For an E
we have substitution σE given by σE(i) = E(i).

Definition 27 is the bisimulation relation proposed to prove the correctness
of the implementation. The membership constraints for the relation clearly
encapsulate the three sets of terms in CBPV, namely the first constraint matches
Val and Term, while the second constraint matches Comp. Worth noting
is the condition with respect to the top element of the stack S, seen in the
second constraint. If S ̸= clo( , ) :: S′, then we know the term is not a nested
application, however, if C = JV K : apply and S = clo(C ′, E′) :: S′ then we know
the reduction is of the form ((λx.λy.N)V ′)V → (λy.N [V ′/x])V , which results
in the following machine reduction

⟨closure(closure(JNK : return) : return) : JV ′K : apply : JV K : apply, ϵ, ϵ⟩ →5

⟨JV K : apply, E′, clo(JNK : return, [JV ′K]) :: S⟩

The case enablesRH to capture the otherwise excluded pair ((λy.N [V ′/x])V, ⟨JV K :
apply, E′, clo(JNK : return, [JV ′K]) :: S⟩) ∈ RH .

Definition 27 (A bisimulation for the implementation).

RH = {(Q, ⟨ϵ, ϵ, JQK⟩) | Q ∈ (Val ∪Term})}
∪ {(M, ⟨C,E, S⟩) | M ∈ Comp.

If S ̸= clo( , ) :: S′ then ∃M ′.C ≈ JM ′K and M ′σE = M.

If C = JV K : apply and S = clo(C ′, E′) :: S′ then

clo(C ′, E′) = Jλ.M ′σE′K and M = (λ.M ′σE′)V }
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Lastly, the proof of correctness can be seen in Theorem 1, followed by its
proof.

Theorem 1 (Correctness of CBPV AM).

∀M ∈ Comp ∪Val. ⟨C,E, S⟩ imp M , where (M, ⟨C,E, S⟩) ∈ RH .

Proof. We have that, for each term M it can be compiled (J K) to a machine
configuration ⟨C,E, S⟩.

The proof idea involves proving that RH is in fact a bisimulation using
Definition 23, and to do it via a case-analysis on the respective pairs in RH .

The induction hypothesis is therefore, if (M, ⟨C,E, S⟩) is a pair in RH , then
the immediate components of M are also represented in RH , and therefore has
matching transitions.

We now show that the relation RH , seen in Definition 27, is a bisimulation
correlating terms of the CBPV language and machine configurations of the
CBPV AM.

(thunk M, ⟨thunk(JMK), ϵ, ϵ⟩) ∈ RH .

• thunk M ̸→, and so there is nothing to match.

• ⟨thunk(JMK), ϵ, ϵ⟩ → ⟨ϵ, ϵ, thunk(JMK)⟩ ̸→, and thunk M ̸→. In the
definition of RH we see that the pair (thunk M, ⟨ϵ, ϵ, thunk(JMK)⟩) ∈
RH .

(λx.M, ⟨closure(JMK : return), ϵ, ϵ⟩) ∈ RH .

• λx.M ̸→, and so there is nothing to match.

• ⟨closure(JMK : return), ϵ, ϵ⟩ → ⟨ϵ, ϵ, clo(JMK : return, [ ])⟩ ̸→, and
λx.M ̸→. In the definition ofRH we see that the pair (λx.M, ⟨ϵ, ϵ, clo(JMK :
return, [ ])⟩) ∈ RH .

(MV, ⟨JMK : JV K : apply, ϵ, ϵ⟩) ∈ RH .

• MV → M ′V , using rule (CBPV-APP). If M ′ is a component of
M in the pair (M, ⟨C,E, S⟩) ∈ RH . We have that, per the the
induction hypothesis, there exists a ⟨C,E, S⟩ →∗ ⟨C ′, E′, S′⟩, such
that (M ′, ⟨C ′, E′, S′⟩) ∈ RH .

• ⟨JMK : JV K : apply, ϵ, ϵ⟩ → ⟨JM ′′K : JV K : apply, E′, S′⟩, and M →
M ′, where M ′′σE = M ′. Then, per the induction hypothesis, there
exists a continuation ⟨JM ′′K : JV K : apply, E′, S′⟩ →∗ ⟨JM ′′′K : JV K :
apply, E′′, S′′⟩, such that (M ′′, ⟨JM ′′′K , E′′, S′′⟩) ∈ RH .

((λx.M)V, ⟨closure(JMK : return) : JV K : apply, ϵ, ϵ⟩) ∈ RH .

• (λx.M)V → M [V/x], using rule (CBPV-BETA). That is matched
by ⟨closure(JMK : return) : JV K : apply, ϵ, ϵ⟩ →3 ⟨JMK : return, JV K , clo([ ], [ ])⟩.
In the definition ofRH we see that the pair (M [V/x], ⟨JMK : return, JV K , clo([ ], [ ])⟩) ∈
RH .
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• ⟨closure(JMK : return) : JV K : apply, ϵ, ϵ⟩ →3 ⟨JMK : return, JV K , clo([ ], [ ])⟩,
and (λx.M)V → M [V/x]. In the definition RH we see that the pair
(M [V/x], ⟨JMK : return, JV K , clo([ ], [ ])⟩) ∈ RH .

(force V, ⟨JV K : force, ϵ, ϵ⟩) ∈ RH .

• For force V to reduce, V needs to be a thunk M as per (CBPV-FORCE),
as such force thunk M → M . This is matched by ⟨thunk(JMK) :
force, ϵ, ϵ⟩ →2 ⟨JMK , ϵ, ϵ⟩. In the definition of RH we see that the
pair (M, ⟨JMK , ϵ, ϵ⟩) ∈ RH .

• Establishing again, that for a reduction to take place, V must be a
thunk M , and as such ⟨thunk(JMK) : force, ϵ, ϵ⟩ →2 ⟨JMK , ϵ, ϵ⟩. This
is matched by force thunk M → M . In the definition of RH we see
that the pair (M, ⟨JMK , ϵ, ϵ⟩) ∈ RH .

(return V, ⟨return(JV K), ϵ, ϵ⟩) ∈ RH .

• return V ̸→, and so there is nothing to match.

• ⟨return(JV K), ϵ, ϵ⟩ → ⟨ϵ, ϵ, return(JV K)⟩ ̸→, and return V ̸→. In the
definition of RH we see that the pair (return V, ⟨ϵ, ϵ, return(JV K)⟩) ∈
RH .

(let x = V in M, ⟨JV K : begin : JMK : end, ϵ, ϵ⟩) ∈ RH .

• let x = V in M → M [V/x], using rule (CBPV-LET). That is
matched by ⟨JV K : begin : JMK : end, ϵ, ϵ⟩ →2 ⟨JMK : end, JV K , ϵ⟩. In
the definition ofRH we see that the pair (M [V/x], ⟨JMK : end, JV K , ϵ⟩) ∈
RH .

• ⟨JV K : begin : JMK : end, ϵ, ϵ⟩ →2 ⟨JMK : end, JV K , ϵ⟩, and let x =
V in M → M [V/x]. In the definition of RH we see that the pair
(M [V/x], ⟨JMK : end, JV K , ϵ⟩) ∈ RH .

(M to x in N, ⟨JMK : begin : JNK : end, ϵ, ϵ⟩) ∈ RH .

• M to x in N → M ′ to x in N , using rule (CBPV-TO). If M ′ is
a component of M in the pair (M, ⟨C,E, S⟩) ∈ RH . We have that,
per the induction hypothesis, there exists a ⟨C,E, S⟩ →∗ ⟨C ′, E′, S′⟩,
such that (M ′, ⟨C ′, E′, S′⟩) ∈ RH .

• ⟨JMK : begin : JNK : end, ϵ, ϵ⟩ → ⟨JM ′′K : begin : JNK : end, E, S⟩, and
M → M ′ where M ′′σE = M ′. Then, per the induction hypothesis,
there exists a continuation ⟨JM ′′K : JV K : apply, E′, S′⟩ →∗ ⟨JM ′′′K :
JV K : apply, E′′, S′′⟩, such that (M ′, ⟨JM ′′′K : JV K : apply, E′′, S′′⟩) ∈
RH .

((return V ) to x in M, ⟨return(JV K) : begin : JMK : end, ϵ, ϵ⟩) ∈ RH .

• (return V ) to x in M → M [V/x], using rule (CBPV-RETURN).
That is matched by ⟨return(JV K) : begin : JMK : end, ϵ, ϵ⟩ →2 ⟨JMK :
end, JV K , ϵ⟩. In the definition ofRH we see that the pair (M [V/x], ⟨JMK :
end, JV K , ϵ⟩) ∈ RH .
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• ⟨return(JV K) : begin : JMK : end, ϵ, ϵ⟩ →2 ⟨JMK : end, JV K , ϵ⟩, and
(return V ) to x in M → M [V/x]. In the definition of RH we see
that the pair (M [V/x], ⟨JMK : end, JV K , ϵ⟩) ∈ RH .

5 Conclusion

In this report, we have described, implemented, and proved the correctness of an
abstract machine that recognises a core subset of the CBPV language described
in [16]. As a part of developing the call-by-push-value abstract machine (CBPV
AM) various implementations have taken place, such as the implementation
of an interpreter and translator for call-by-push-value, call-by-value and call-
by-name, as well as the implementation of the SECD machine and Krivine
machine. This was done in order to support the development of the CBPV AM.
Correctness of the CBPV AM was proved using bisimulation.

5.1 Discussion

As mentioned, the implementation focused on a core subset of the CBPV lan-
guage, and therefore does not cover all the construct described in [16], such
as pairs, match etc. The extension of the implementation to include these
constructs would likely be a reasonably straightforward affair, since the imple-
mentation is in Haskell, the source code closely mirrors that of the semantics,
transition rules, compilation etc.

A limitation of the proof is that it is a pen and paper proof, in the sense
that there could remain ambiguity, and so by formalising the proof in a theorem
prover, such as Coq, it is possible to eliminate any ambiguity and assert the
correctness of the proof, and thereby the implementation. Formalising the proof
would also enable extensions of the implementation to be machine-checked, and
since the implementation is in Haskell, the path to formal verification using Coq
shouldn’t be too arduous, considering projects such as hs-to-coq exist and have
been successful in translating Haskell code into Coq [25, 2, 11].

5.2 Future work

As mentioned in Section 3.6, and evident in Examples 6-9, the CBPV AM
performs about twice as many reductions as the Krivine machine, and around
2.9 times more reductions compared to the SECD machine. It would be worth
investigating this by performing a proper resource analysis of the CBPV AM,
using the bisimulation proof as a basis, to identify the reason for the relatively
poor performance and to illuminate potential avenues that it could be alleviated.
One of these could be the ZAM machine presented in [15], which adapts the
push-enter method from the Krivine machine and applies it to call-by-value,
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thereby reducing the number of reductions compared to the eval-apply method
of the SECD machine.
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