
Title: Predictive Insights: Machine Learning and FOSS Project Sustainability

Project period: February 2024 -

June 2024

Project group:

cs-24-dad-10-09

Participants:

Jonas Højen Tarp

jtarp19@student.aau.dk

Mathias Kudahl Laursen

mkla19@student.aau.dk

Steffan Klockmann

sklock18@student.aau.dk

Abstract:

This thesis explores the use of machine learn-

ing models to predict the graduation and retire-

ment of Free and Open Source Software (FOSS)

projects within the Apache Software Foundation

Incubator (ASFI) using sustainability metrics.

By training models with established sustainabil-

ity indicators, we demonstrated predictive po-

tential for ASFI projects. Key metrics impact-

ing predictions included community size, de-

velopment activity, growth, communication fre-

quency, and turnover. Our findings highlight

a link between sustainability and ASFI grad-

uation and retirement, advocating for a com-

bined qualitative and quantitative approach to

improve our understanding and its prediction

accuracy.

Supervisor: Adam Alami

Department of Computer Science

Date: 14/06/2024

Number of pages: 58

1

Contents

1 Introduction 6

2 Related Works 9

2.1 Health and sustainability of FOSS communities 9

2.1.1 Predicting FOSS sustainability . 12

2.2 Apache retirement and sustainability . 13

3 Methods 16

3.1 FOSS Sustainability Measurement . 16

3.2 Data Collection . 17

3.3 Data processing . 18

3.4 Models . 21

3.4.1 Description of the models . 22

3.5 Training and testing of the models . 23

3.5.1 Parameters . 24

3.5.2 Stratified cross-validation . 26

3.5.3 Confusion Matrix . 27

3.5.4 Feature importances . 27

4 Findings 29

4.1 Algorithm accuracy . 29

4.1.1 Confusion matrices . 29

4.1.2 ROC-AUC & F1 scores . 31

4.2 Feature importance . 32

2

4.3 Summary . 35

5 Discussion 36

5.1 Predictive capabilities . 36

5.2 Graduation, retirement and sustainability 38

5.3 The implications of important features . 39

5.4 Future Work . 41

5.4.1 Applications for non-Apache projects 41

5.4.2 Applications for Apache decision making 41

5.4.3 Addressing data imbalance . 42

5.4.4 Using sequential data . 43

5.4.5 Using indicators from the ASFI . 44

5.5 Summary . 44

6 Threats to Validity 46

6.1 Internal validity . 46

6.1.1 The human factor . 46

6.1.2 Singular data points . 47

6.1.3 Unknown indicator factors . 47

6.1.4 Unused indicators of sustainability 48

6.1.5 Using stratified cross validation . 48

6.1.6 Data imbalance . 49

6.2 External validity . 50

6.2.1 Transferability . 50

7 Conclusion 51

8 Bibliography 57

A Appendix 58

3

Summary

Motivation

Many software projects today use open source software in their development. This depen-

dency makes it essential to understand what makes open source projects fail or succeed.

The Apache Software Foundation Incubator (ASFI) provides support for a broad range of

open source software projects wishing to enter the Apache Software Foundation. These

project repositories are publicly available and it is possible to track their development

progress from their beginnings to their outcomes of either retirement or graduation. Ma-

chine learning makes it possible to use this data to predict the success or failure of projects

based health indicators from the literature.

Aim

Established indicators of FOSS sustainability are inherently present and relevant when in-

vestigating Apache projects, providing opportunities for deeper insights into the internal

process of retiring and graduating these projects. The objective of this thesis is to utilize a

set of FOSS sustainability indicators to train and test predictive machine learning models

on the question of whether a given project would retire or fail based on its health indica-

tors. We propose the following research question:

How can machine learning models that incorporate FOSS sustainability metrics be used to

predict the likelihood of graduation and retirement for ASF incubator projects?

4

Methods

In the pursuit of answering our research question we utilized a variety of methods. We

used Perceval to expand an existing dataset, which contained data from ASFI projects.

The dataset was expanded from 217 to 224 ASFI projects, to train a variety of machine

learning models to predict project graduation and retirement. While training the models,

we used the stratified k fold technique using 10 splits. In evaluating these models, we

used ROC-AUC scores, F1 scores and confusion matrices. We also investigated the feature

importances from the best performing models, in order to uncover which sustainability

metric had the largest impact on the models.

Results

We found that the models with the highest ROC-AUC and F1 scores were random forest,

gradient boosting and logistic regression. When we evaluated the confusion matrices we

found only random forest and gradient boosting showed confidence in their predictions of

retired samples. We extracted the feature importances from these two models. Evaluation

of these feature importances revealed that the sustainability metrics that had the largest

impact on the prediction of our models were STA-8 (Size), TEC-4 (Overall dev. activity),

STA-4 (Growth), COM-2 (Frequency of communication) and STA-9 (Turnover).

Conclusion

We conclude that it is possible to use machine learning models that incorporate FOSS sus-

tainability metrics to predict the likelihood of graduation and retirement for ASFI projects.

This can be done using random forest and gradient boosting algorithms, but we also rec-

ommend future studies use a dataset that contains more retired samples than the one used

in this thesis, as the data imbalance proved to be a detriment to the performance of the

models.

5

P9 Chapter 1

Introduction

Free and Open Source Software (FOSS) has become an integral part of digital infrastruc-

ture. It is used in every part of our society, from large corporations, to small startups, to

government institutions. Recent studies have shown that 90% percent of all software de-

veloped uses FOSS in some regard, which further emphasizes the critical role FOSS plays

in software development[1].

FOSS development is often characterized by teams that are distributed over a wide range

of geographical and organizational boundaries, and under a license that allows use, mod-

ification and redistribution of the software’s source code [2]. The developers of these

projects often work for free, and perform the core tasks such as developing, debugging

and improving the software itself. They are often motivated to work on FOSS because

they either have a personal need for what is being developed, enjoy the work in itself or

want to improve their skills and reputation [3].

As a significant amount of software development projects use FOSS to some degree, it is

important to understand what makes FOSS projects sustainable [4]. FOSS projects are

communities that often consist of several contributors with different roles. Furthermore,

the people participating in FOSS project communities often do so for different reasons[2].

Another characteristic of FOSS projects is that people can participate as they see fit, and

are also able to easily leave or join the projects[2].

This alludes to a large number of different factors that determine the sustainability of a

given project. This is further supported by Linåker et al. who have defined 107 differ-

ent health indicators of FOSS projects[4]. This suggests that if a FOSS project wants to

maintain steady progress, these health indicators should be considered.

6

To narrow the scope of this thesis, we will focus on FOSS projects from the Apache Soft-

ware Foundation Incubator (ASFI). The ASFI provides services for projects looking to enter

the Apache Software foundation. More specifically, it helps projects adapt to the Apache

style of governance and operations, while also providing support to help them progress

[5]. While in the incubator, a project can either graduate to become a part of the Apache

Software Foundation, or retire to the Apache Attic. Project graduation occurs through a

democratic process involving the voting of board members [6]. When a project retires it

is often a process begun by the developers themselves, and it is rare for the board of the

Apache Software Foundation to shut down a project against their will. The final retirement

decision, however, always comes down to board member voting [7].

Studies such as Linåker et al. have extensively documented different indicators that re-

flect the sustainability of FOSS communities both on a operational and a developmental

level [4]. Looking at the sustainability of FOSS projects in the context of the ASFI, these

indicators may in some ways be linked to the principles of ”retirement” and ”graduation”.

By making this assumption, the indicators have the potential to be used as predictors of

whether a project is going to graduate and become an official Apache project or retire to

the Apache Attic, where it may not be further developed[8].

By predicting if a FOSS project is going to graduate or retire, stakeholders are able to make

informed decisions about the future of the project and the potential support it should re-

ceive. By further understanding which indicators have the biggest impact on the prediction

of the FOSS project, we can provide valuable insight into the prediction of FOSS sustain-

ability.

A way to establish a deeper understanding of the underlying relation between these indi-

cators and ASFI graduation and retirement is to use machine learning to train predictive

models. These models have the potential to recognize patterns and analyze health indi-

cators, in order to create a solid framework for predicting whether a project in the ASFI

should be graduated or retired. The models are able to process a large amount of differ-

ent indicators with complex relations and are able to identify patterns that might not be

apparent with the use of other analytical practices.

7

The insights gained from these predictive machine learning models can inform the Apache

Foundation mentors about potential sustainability issues, and would allow them to make

informed decisions on how to alleviate potential sustainability issues. By further under-

standing the importance of different indicators, a more targeted and informed effort could

be utilized to provide more effective support, thereby enhancing the overall health of the

projects. To investigate our premise, we propose the following research question:

How can machine learning models that incorporate FOSS sustainability metrics be used to

predict the likelihood of graduation and retirement for ASF incubator projects?

This thesis is structured as follows: firstly, an in-depth analysis of related research is made

to outline the current knowledge on the subject of sustainability of FOSS projects. Sec-

ondly, a methods chapter that describes and discusses the different methods used in this

thesis and the implications they bring. Thirdly, a chapter which describes the findings and

what they mean in the context of the research question. This is followed by a discussion

of the results, reflections on how future studies can benefit from our findings, a chapter

describing the possible threats to the validity of this thesis, and a conclusion summarizing

the contributions made.

8

P9 Chapter 2

Related Works

Related work includes research focusing on attempts to measure the sustainability of FOSS

communities. This also includes studies that investigate health and sustainability as tangi-

ble metrics. It also lists previous studies utilizing machine learning in order to investigate

sustainability. Related work also includes research that raises questions about the compa-

rability of sustainability and retirement from the ASFI. This chapter also establishes how

this thesis differs from existing literature.

2.1 Health and sustainability of FOSS communities
Attempts to document and assess the viability of a FOSS community have previously de-

scribed said viability using terms such as health and sustainability, often referring to the

same thing. Linåker et al. specifically refers to health as “a project’s capability to stay

viable and maintained over time without interruption or weakening [4].” For the sake of

continuity, this thesis will refer to this capability moving forward as sustainability, whereas

‘project’ and ‘community’ are used interchangeably.

Assessing the sustainability of a community is inherently a complex task, given the range of

factors one could imagine potentially affect this evaluation. For this reason, it is necessary

to establish a basis for characterizing what exactly defines sustainability as a metric for

FOSS communities.

In the literature, there is a tendency of retrieving project data from GitHub when assessing

sustainability. The implication hereof is that while the term might be broad with varying

definitions, it can usually be observed at least partially in characteristics available through

data mining. Han et al. specifically focuses on the popularity of projects on their GitHub

9

pages, using data available on the site to train machine learning models to predict popu-

larity [9]. In practice, the work of Han et al. treats the overall popularity of a project as

the success criteria, thus making it significant in predicting the sustainability of projects by

their definition of the term. It is however far from the only definition in the literature.

Linåker et al. provides a framework composed of 107 sustainability characteristics cate-

gorized into 15 themes that could be considered important when evaluating sustainability

[4].

While this is a considerably large number of characteristics to be aware of, it is also impor-

tant to note that the study does not aim to provide guidance in terms of which character-

istics to consider, or how. This leaves ample space for further exploration into how these

sustainability characteristics contribute to other aspects of software development. In this

thesis we refer to these characteristics as indicators and metrics interchangeably.

Linåker et al. notes that the method of measuring the sustainability of FOSS projects is still

emergent, and many researchers have also previously explored the field of FOSS communi-

ties, sustainability indicators and the science of trying to understand what has positive and

negative effects on FOSS project development, sometimes with different framework-based

approaches.

Crowston et al. argues that it is crucial to understand a FOSS community’s life cycle and

the motivations of its participants in order to get a deeper understanding of why the project

being worked on by its participants is successful or not [10]. The implication is that there

is something inherently complex about why FOSS projects develop they way they do. The

work of Crowston et al. finds that a healthy FOSS community can be visualised with an

onion consisting of layers of passive users, active users, core developers, co-developers

and at the centre, the founders. The underlining belief is that a sustainable FOSS project

is closely tied to a community-driven backbone of active developers, testers, and founders

with strong leadership skills and defined roles.

The importance of an active base of developers and testers is further amplified by the work

of Wahyudin et al., in which the management and monitoring of the sustainability of FOSS

projects is found to be multi-faceted and complex. Wahyudin et al. also calls for further

10

investigation into future work focusing on enhancing the ability of FOSS stakeholders to

monitor and receive early warnings about the state of the project [11]. In this regard, it

might be relevant to consider an established sustainability framework to be the catalyst of

such an investigation.

An example of utilizing the sustainability framework proposed by Linåker et al. can be

found in Alami et al., in which they empirically explore how different sustainability in-

dicators impact the software quality of FOSS communities, defining and using a set of

sustainability indicators applied on a set of data mined from ASFI projects [12]. The same

study acknowledges that the broad nature of the sustainability framework, on which it is

based, means that a very large amount of indicators could be considered factors to take

into account. This is why Alami et al. opted to narrow their focus from the original 107

sustainability indicators, down to a more feasible 16 sustainability metrics, across four

different categories based on relevancy in the literature.

The sustainability metrics chosen by Alami et al. also exclude more qualitative indicators

of sustainability that are complex to investigate, such as culture or finance, which are not

well-acknowledged in the literature. Data for this is also not readily available through

a simple data mining process. Likewise, this project also uses incubator projects, as our

training data mainly consists of the same set of Apache projects and metrics used by Alami

et al. Our study seeks to establish a narrow focus in order to reduce the ambiguity of a

trained predictive model, and the set of sustainability metrics presented by Alami et al.

provides ample opportunity for a focused approach to sustainability prediction with few

concise metrics. This also means that we do not need to re-introduce a definition to sus-

tainability, or evaluate the most meaningful indicators from the sustainability framework

proposed by Linåker et al., as the sustainability metrics used by Alami et al. are already

proven to work.

11

2.1.1 Predicting FOSS sustainability

The development activities of FOSS communities as a field of study is highly contested

and constantly evolving, and previous efforts at predicting these activities are well docu-

mented. The literature presents numerous papers exploring the prediction of FOSS devel-

opment activities, popularity, sustainability and effort estimation.

Robbles et al. provides guidelines and a tool to estimate the overall effort (months of work)

needed to put into a FOSS project for it to reach completion, based on historic data of

developer effort. This was previously done as a way to attempt to produce a tangible way

of forecasting resources and costs associated with development [13]. Xia et al. attempted

to perform a series of estimations on Apache and Linux development teams inspired by

these guidelines. What they found was that it was difficult to estimate ’efforts needed to

finish’ among the FOSS developers, as the open source projects and the developers did not

necessarily have a goal of a ’finished’ state where development would no longer take place

[14].

Due to the difficulties faced by Xia et al., we believe that working with, and applying sus-

tainability indicators to ongoing projects while expecting them to be in perpetual develop-

ment is beneficial, as it only emphasizes the importance of establishing the sustainability

of any FOSS project at any given time. For the same reason, we believe it also makes sense

for us to approach the topic of sustainability with a broad definition, and indicators that

transcend ’months needed to finish’ or ’monthly activity’.

In a later study, Xia et al. demonstrates that the development activity of individuals can be

too random to accurately predict, but development behavior of larger groups of developers

working together can be predicted with good accuracy [15]. In their approach of applying

machine learning prediction to a large selection of GitHub projects, they were able to

predict the value of their chosen indicators of sustainability on a project by project basis.

Their definition of sustainability, however, is strictly tied to measuring monthly project

activity, and thus differs from our approach to defining sustainability; our set of metrics is

extensive and covers many community aspects beyond technical activities.

The data collection method used by Xia et al. centers around performing data scraping

12

across several months in order to establish patterns of activity, which is a comparatively

different approach than our thesis, as they instead focus on how developer activity is

affected over time. Our study differs from that approach by instead training predictive

models using data mined by capturing a snapshot of a selection of FOSS projects without

taking into account how they have developed over time.

This also means that despite utilizing machine learning prediction, the findings in this

thesis will inherently differ as both the definitions of sustainability and the nature of the

training data are different. While the metrics defined by Xia et al. are not related to the

framework by Linåker et al., it is important to note that there is no unique and consoli-

dated definition of sustainability or project health, and we therefore expect to have widely

different results than Xia et al., as our approach uses indicators of sustainability, rather

than monthly activity. We also do not claim that the findings of Xia et al. are inherently

inaccurate in results or methods, but instead a different and valid approach to measuring

and predicting sustainability.

2.2 Apache retirement and sustainability
The work of Yehudi et al. was designed using the Community Health Analytics Open

Source Software (CHAOSS) framework, in an attempt to assess the sustainability of thirty-

eight open source projects by analyzing data collected over the course of a year [16]. The

purpose was to examine project culture and governance, in-person events as well as online

interactions, number of commits and number of pull requests. The study was unable to

draw any strong conclusions however, as none of the observed projects failed or suffered

significant drawbacks. The findings showed that several of the attributes stemming from

the CHAOSS framework did not seem to be significant to project longevity.

It is also relevant to note that Yehudi et al. establishes an expectation of project failure

in order to gain any insight into indicators that cause a project to become unsustainable.

This means that gaining this insight would require coincidental failure in the sense that if

none of the projects actually fail, the outcome is somewhat predictably unfulfilling. With

this in mind, this thesis differs by using data from Apache incubator projects, which are

inherently either retired or graduated, meaning that our findings are not dependent on

13

waiting for an ongoing project to ’fail’.

The research by Stănciulescu et al. draws direct parallels between project graduation from

the Apache Incubator program, and project sustainability. Our approach differs, as we con-

sider FOSS sustainability to be a complex set of factors, while graduation and retirement

could be considered more of a subjective evaluation [17]. While we do not consider the

subjectiveness of that evaluation to be something negative, we still believe it is an impor-

tant consideration when investigating FOSS sustainability. We also do not postulate that

the approach of Stănciulescu et al. is wrong. Our approach differs by having a bigger

emphasis on the complexities of what defines sustainability. This also means that we do

not consider the ability to predict graduation or retirement necessarily equal to predicting

sustainability. While this dichotomy has its merits, graduation from the incubator program

is also influenced by factors unrelated to sustainability. For example, the ASFI board may

decide to retire a project due to its inability to attract contributors, or due to the project

idea itself being considered subjectively unappealing to the board members.

This approach to sustainability as a broader term aligns our research with Alami et al.,

in the sense that our investigation into sustainability prediction is also linked to the same

metrics of sustainability found in the sustainability framework proposed by Linåker et al. In

order to empirically explore the different sustainability metrics among 217 FOSS projects,

Alami et al. examines 16 sustainability metrics across four categories to be analyzed in

order to explore the impact of sustainability metrics on software quality. While we do

not focus on software quality, we adopted the same set of 16 sustainability metrics. We

believe that the proven ability of sustainability metrics to examine code quality impact

proves their potential for the prediction of project graduation and retirement, as we are

utilizing sustainability metrics as independent variables in the same manner, merely with

a different research focus.

The framework of Linåker et al. specifically describes how the degree of sustainability of a

project at a given time is a complex thing to measure, affected by many factors. Alami et al.

specifically employs the framework to attempt to better convey sustainability as something

complex, where several different indicators must be considered. For the same reason, our

14

research takes the same holistic approach of using a collection of sustainability indicators

when training machine learning models to measure sustainability.

15

P9 Chapter 3

Methods

Our thesis seeks to enhance the understanding and predictions of project outcomes within

the ASFI. Specifically, we focus on determining the likelihood of whether projects will

graduate to become fully-fledged ASF projects or retire. The study centers around the

application of machine learning models that are trained using a set of sustainability metrics

to predict the likelihood of retirement or graduation.

3.1 FOSS Sustainability Measurement
This thesis uses an adopted version of the FOSS sustainability framework used by Alami et

al., which is based upon the framework developed by Linåker et al [12]. The framework of

Linåker et al. is divided into a set of themes with each containing a range of indicators of

sustainability, where each indicator has a distinct purpose. An example of this is the metric

”size” in the theme ”popularity”, describes how the amount of users and developers affects

the resilience of a FOSS community and its ecosystem [4]. The framework of Linåker et

al. is extensive with 107 sustainability metrics, divided into 15 themes, and is based on

146 related publications [4].

Alami et al. has rationalized this extensive framework by reducing the themes and their

sustainability metrics, based on their prevalence in the literature [12]. The framework

was further reduced by Alami et al. due to data being inaccessible because it could not be

sourced with the methods used in their research [12]. This was caused by the use of Mining

Software Repositories (MSR) techniques, constraining data mining of certain indicators

such as finance and culture. Alami et al. acknowledges that this reduction potentially

discriminates against some indicators, but still argue that the reduced framework remains

extensive, with its 4 themes and 16 indicators [12]. The framework used in this thesis

16

is almost identical to the framework used by Alami et al. The only difference being the

removal of the indicator STA-5 (knowledge concentration). When we used this metric as

computed by Alami et al., we observed that the scripts to re-compute the raw files were

erroneous. Hence, we de-scoped the metric for practicality reasons. We opted not to re-

write or debug the scripts for time constraints. As this is only a slight reduction, we argue

that the framework still remains extensive with four themes and 15 indicators.

We chose to work with the indicators used by Alami et al. as they allow for a broad

assessment of FOSS sustainability. The framework has been developed based on an ex-

tensive amount of literature on FOSS sustainability, and allows us to make comprehensive

assessments. The reduced framework of Alami et al. includes enough indicators to remain

comprehensive while fitting the scope of this thesis. We are also able to gather and use

data from the Apache Software Foundation, as the framework was made with the foresight

to do this [12].

3.2 Data Collection
We utilized much of the same project data as Alami et al. However, this dataset had a

severe data imbalance between projects which were retired and graduated. Therefore, we

opted to data mine more retired projects. The data we mined originates from ASFI projects,

as this ensures continuity with existing research. The diversity of projects in the ASFI gives

a broad insight into different types of FOSS projects, spanning from data processing to

web development and artificial intelligence, which in turn makes the findings applicable

to a wide range of FOSS projects.

The projects included in this thesis are based on the list of projects used by Alami et al.

[12]. Alami et al. used the list made by Stănciulescu et al. and includes 236 projects from

the ASFI[12]. We used this list as it is recent, facilitates data retrieval, and ensures trans-

parency in project selection. Alami et al. excluded projects without project repositories in

GitHub or Jira, as well as projects lacking issue trackers. Projects with unavailable defect

labels were excluded as some metrics could not be computed on these. This left a total of

217 projects. We added several projects to this dataset, as it did not contain a sufficient

amount retired samples, and would create a large data imbalance when training the mod-

17

els. This modification of the dataset resulted in an increase from 217 to 224 projects, with

187 graduated projects and 37 retired projects.

3.3 Data processing
In processing the dataset, we followed much of the methodology laid out by Alami et al.

The data was mined using Python scripts as well as Perceval, with the latter being used

to aggregate data components such as commits, issues and project repositories. Python

scripts were used to clone repositories from GitHub, as well as extract commits from these.

The syntax used can be found in appendix A.1. The scripts also served to download the

issues, project repositories and repository information from GitHub and Jira. Certain soft-

ware quality metrics were also extracted from the dataset using Sokrates. Finally, the data

was stored in a compressed tarball file. [18] The definitions Alami et al. used to compute

data for the various indicators can be viewed in tables 3.1 and 3.2 below

18

Metric Code Metric Name Description

COM-1 Response Time Average time it takes for the first com-

ment to appear for an issue.

COM-2 Frequency of Communica-

tion

Total number of comments in all is-

sues plus the total number of issues.

POP-1 Project Popularity Combined total of forks, stars, and

watchers.

STA-1 Age Age in years, calculated from the date

of download since the project incep-

tion.

STA-2 Attrition Cumulative decrease in the number of

commits in periods of twelve weeks

during a specified time span.

STA-3 Forks Number of forks.

STA-4 Growth Cumulative increase in the number of

PRs in periods of twelve weeks during

a specified time span.

STA-6 Life-Cycle Stage Average number of commits per

month in the last twelve months; if

below zero, the project is considered

dormant.

STA-7 Retention Cumulative total of annual increases

in the number of active contributors,

defined by activities within consecu-

tive 3-month periods.

STA-8 Size Number of contributors who have en-

gaged in at least one commit, PR, is-

sue, or issue comment, counting each

contributor only once.

Table 3.1: Summary of Metrics part 1 [18]

19

Metric Code Metric Name Description

STA-9 Turnover Count of contributors who authored

commits and have been inactive in the

preceding six-month period.

TEC-1 Contributors’ Development

Activity

Total count of commits made by non-

maintainers (contributors who have

not yet merged any PR).

TEC-2 Efficiency Time elapsed from PR creation until it

is merged or closed.

TEC-3 Non-Code Contributions Count of commits of files that are not

related to programming code (file for-

mats considered: ”txt” and ”md”).

TEC-4 Overall Development Ac-

tivity

Count of commits of coding files (ex-

cluding ”txt” and ”md”).

Table 3.2: Summary of Metrics part 2 [18]

Our methodology kept true to the methods of Alami et al. Perceval and Git were used

to mine and aggregate the various data components from both GitHub and Jira. This

study deviated mostly in the case of the techniques used to mine large scale data. This

means that new data was mined by manually inputting the commands in Perceval and Git,

which can be seen on appendix A.1. The reason for this deviation were twofold. Firstly,

this study did not have access to the precise data mining scripts used by Alami et al., so

writing a new script would also be deviating from Alami et al. as it would be difficult

to know whether the method was similar or not. Secondly, the scale of data mined was

significantly smaller, as only 8 projects were added by this thesis, meaning that writing a

script for this purpose was deemed to be excessive. In addition to the data collection and

processing methods outlined previously, this thesis also introduced a new column labeled

status. This column was specifically added to reflect the final outcome of each project

within the ASFI, categorizing projects as either ’retired’ or ’graduated’. This column serves

20

as the target variable for our machine learning models, enabling them to learn and predict

this binary outcome.

3.4 Models
This study investigated the use of six machine learning algorithms. These algorithms were

chosen because they are supervised learning algorithms. This means there is a target

variable which must be predicted[19]. Supervised learning algorithms were chosen as this

study aims to be able to predict if a project from the ASFI is going to retire or graduate.

These outcomes are binary, and are located in the ”status” column. The algorithms used

in this thesis were chosen as they are regarded as the most commonly used [19]. The

different algorithms chosen can be seen in table 3.3 below.

Decision

Trees

Random

Forest

Logistic

Regression

Gradient

Boosting

Support

Vector

Machines

K-nearest

Neighbours

Table 3.3: Chosen machine learning algorithms

The complexity of sustainability indicators creates a large chance of non-linear relation-

ships and feature interactions among the indicators. If this is the case, the gradient boost-

ing and random forest algorithms should prove to be the most successful, as these models

excel at capturing it. Decision trees are also capable of handling non-linear relationships

and feature interactions, but is prone to overfitting, which could prove to be a challenge

[19]. Overfitting means that a model has trained too much on a dataset, and thus learnt

to predict all the ”noise” in the dataset, such as irrelevant information. This results in a

model that is able to predict the information from the training data flawlessly, but will

struggle severely when facing new data [20]. If the complexity of the sustainability indica-

tors creates non-linear relationships and feature interactions, the rest of the models could

possibly struggle.

21

3.4.1 Description of the models

A decision tree is a supervised learning algorithm that can be used for both classification

and regression. It is structured like a tree, consisting of a root node, which expands into

other internal nodes, which then in turn expand into branch nodes until the algorithm

reaches a leaf node, which represents a possible outcome [21]. Looking at the decision

tree algorithm, there is a high chance of it being affected by data imbalance. This is

the case as it is a fairly simple type of algorithm, and its efficiency is mostly proven on

relatively balanced data sets [22]. The simplicity of decision trees could potentially prove

detrimental when paired with the complexity of sustainability indicators.

The random forest algorithm is an ensemble learning algorithm, which means that it works

by running several models and synthesizing them. The random forest algorithm is essen-

tially multiple decision trees strung together. This algorithm functions by splitting the

dataset into multiple training sets as well as a testing set, which is known as an out-of-bag

sample [23]. The final prediction depends on the type of task, as this algorithm can be

used both for classification and regression tasks. For a classification task, the algorithm

considers the most frequent variable to make the prediction. Also, for both types of tasks

the out-of-bag sample is used to cross-validate, which provides the final prediction. A ran-

dom forest algorithm is in many cases superior to a decision tree, as it reduces the risk

of overfitting due to the out-of-bag sample and other methods that increase the diversity

of the training samples. A downside of this is the increased processing time required by

random forest models. [23]

Logistic regression is a supervised learning algorithm used for classification tasks. The

algorithm attempts to estimate the probability of an instance belonging to a class. While

there are different types of logistic regression, the one used in this study is called binomial

logistic regression, as this only deals with two possible classes for a given instance. This

study only considers the status of FOSS projects to be either retired or graduated, and

therefore the logistic regression is binomial [24].

Gradient boosting is an ensemble learning method, which means it works by combining

multiple models. Conceptually, this method of learning is similar to that of random forest.

22

There are two main types of ensemble methods, bagging and boosting. Whereas random

forest falls under the bagging category, gradient boosting falls under the boosting category.

In practice, gradient boosting sequentially builds a model by combining the predictions of

multiple simpler models across several iterations, minimizing the error rate of the previous

iteration. This process is repeated until reaching a predefined stopping criteria [25].

A support vector machine is a form of supervised machine learning algorithm used for

classification and regression tasks. It attempts to find an optimal line that maximizes the

distance between each type of class in an N-dimensional space [26].

The K-nearest neighbours algorithm is a supervised machine learning classifier. It uses

the proximity of data points to make predictions about the groupings of the testing data.

K represents the number of neighbours that has to be considered for each prediction. It

is usually best to use an odd number, as this avoids ties in classification [27]. In this

thesis the value of K was set to 3. This is a relatively simple algorithm, and is therefore

easy to implement. It is however considered a ”lazy algorithm”, meaning that it takes

significant computing power and is thus very time and resource-consuming, making the

algorithm unable to scale effectively. Furthermore, the algorithm is prone to the ”Curse of

Dimensionality” which means it struggles with classifying data points when the number of

dimensions increases. In the context of this study there are 16 dimensions as these are the

features of the dataset. This problem usually results in overfitting [27].

3.5 Training and testing of the models
The training and testing of the machine learning models was done using the Scikit-learn

library for Python. This library contains the train test split method, which was used for

both training and testing the models. The method works by splitting the dataset into two

subsets, one for training and one for testing. The size of the two subsets depends on

the input provided by either the test size or train size parameters. It is only necessary to

provide a value (0.0-1.0) for one of the parameters, as they are complementary, which

means if the test size is set to 0.2 the train size is automatically set to the remaining 0.8. If

no input is provided, the method defaults to a test size of 0.25. [28] This study uses a train

size of 0.8 and test size of 0.2. The reason for this distribution is the relatively low amount

23

of retired project samples in the dataset. This made it necessary to dedicate a larger size of

the dataset to the training size, so as to be certain the models would have enough retired

samples to train on. This is also a common distribution of training and testing data [19].

The trade off meant a lower amount of retired samples in the testing set, which put an

increased significance upon the retired samples used for testing, however this drawback

was judged to be acceptable, as the parameters chosen to evaluate the models work well

with data imbalance. By default, the dataset is shuffled before being split into subsets, but

this can be turned off. For this study, the shuffle was left on. The reason for this is simply

that this removes the problem of arguing for one particular order of the data during the

training. It is possible to provide the random state parameter with an int which works like a

seed, in that it makes it possible to reproduce the same shuffle order by inputting the same

number. If no random state is provided, the shuffle is done at random. For the training of

the models used in this study, no random seed was provided, as while inputting a random

seed would make comparison between different models easier, it would be difficult to

argue for one specific number. While this study is interested in investigating which models

perform best, the chance of picking a number which would result in a model which was

an outlier in terms of accuracy was too great. For this reason, the method of using the

built-in cross-validation function from Scikit-learn and then examining the averages was

superior in that it allows for a more clear image of how these models will tend to perform.

The train test split method requires the user to input the features and the target variable.

As this study is interested in predicting the graduation status, this was set as the target

variable, and the sustainability indicators were set as the features. [28]

3.5.1 Parameters
Three parameters were used to sort through the models as well as to find the most useful

algorithms: The ROC-AUC (Receiver Operating Characteristic - Area Under Curve) score

and the F1 score as well as the weighted F1 score. The ROC-AUC score is a metric used for

evaluating the relationship between a machine learning model’s true positives and false

positives, ranging from 0 to 1. A score of 0.5 is equivalent to random guessing, and a score

of 1 indicates perfect performance. Generally speaking, most models do not reach a score

of 1. In fact, a perfect score may be a sign of an overfitted model. A rule of thumb is that

24

a score above 0.7 is considered acceptable, while a score above 0.8 is considered good

and above 0.9 is considered great. [29] The F1 score is a combination of the precision

(How many of the positive predictions were true positives?) and recall (How many of the

positive samples in the dataset were correctly identified by the model) metrics. It is a good

metric for measuring the performance of a model built upon an imbalanced dataset. This

is because it is the harmonic mean of recall and precision. [30] Taking both of these into

account is crucial, as an imbalanced dataset often leads to misleading precision and recall

scores. For instance, consider a dataset consisting of 990 negative samples and 10 positive

samples. If a model were to predict that all 1000 samples were negative it would have

an accuracy score of 99%. If one does not take into account that the recall score would

be 0%, the accuracy score would be able to trick an observer into thinking that the model

performs well. The recall score can be similarly tricky. A model that correctly identifies

8 out of 10 positive samples but also falsely identifies 20 negative samples as positives,

would result in a recall score of 0.8 and an accuracy score of 0.28. The advantage of

the F1 score is that it avoids falling into these traps caused by data imbalance, as both

metrics are taken into account. Like ROC-AUC, the F1 score ranges from 0 to 1. The

interpretation of the score is typically as follows: A score of below 0.5 is considered not

good, while a score between 0.5 and 0.8 is considered okay. A score between 0.8 and

0.9 is good, and anything above 0.9 is considered very good.[30] The weighted F1 score

(F1w) is used instead of the F1 score, as the F1 score treats each class equally, which is

an issue in datasets such as this one, where one class has significantly less samples than

the other classes. The weighted F1 score takes into account how many samples of each

class are present in the dataset, and weighs the score of the classes with more samples

higher than those with fewer samples. The difference between the two parameters is seen

in their formulas, where wi is the number of samples in class i divided by the total number

of samples. [31]

25

F1 = 2 · Precision · Recall
Precision + Recall

F1w =

∑N
i=1wi · F1i∑N

i=1wi

This is useful in imbalanced datasets as it gives an indication of how the model performs

overall, rather than being dragged down by poor performance resulting from the class with

fewer samples. [32]

3.5.2 Stratified cross-validation

The six machine learning algorithms were used to make models using the dataset and

the input described in section 3.5.1 In order to reduce the variance in the results and

thus give more accurate F1 and AUC-ROC scores, the method of using cross-validation

was used. The Scikit-learn library has a wide variety of built-in cross validation functions.

This thesis uses the StratifiedKFold function. It works similar to the more generic K-fold

cross-validation function which splits the training data into K amount of folds. Then, the

function trains and tests the model K times, using a different fold for testing and training

on the remaining folds. The difference between this basic function and the StratifiedKFold

function is that the latter ensures that the distributions of classes in each fold is identical to

the distribution in the original dataset [33]. This is the reason for choosing this particular

function, as the dataset used in this thesis is imbalanced. For this thesis, the amount of

folds was set to 10. This value is supported in literature, and the amount of folds are

typically set to either 5 or 10, as these have been empirically shown to result in outcomes

that are neither high in bias nor suffer from high variance [34]. The models that are

trained in this thesis therefore produce ROC-AUC and F1 scores that are based on the

averages generated by stratified cross-validation, thus reducing how much these numbers

suffer from imbalance, which in turn improves their value as parameters.

On the basis that ROC-AUC scores of at least 0.7 are considered acceptable, and only F1

scores above 0.5 were considered okay, only the models performing above these scores

were used to investigate feature importances, with the rest being discarded. As only some

26

algorithms have feature importances, models meeting the minimum score success criteria

that did not have feature importances would have to be omitted. For each cross-validation

iteration, the feature importances were stored in a list, from which the average feature

importances were calculated. In order to present the most significant features, a method

of determining which features are significant had to be chosen. This study considers a

feature to be of significant impact to the model, if the importance is at least 20 % more

than would be expected if all features were equally important. This means that in order

for a feature to be considered significant, the importance score has to be at least 0.08. This

number was calculated using the following method, where N = number of features.

100

N
· 1.2 =

100

15
· 1.2 = 0.08

3.5.3 Confusion Matrix

This thesis also uses confusion matrices to evaluate the performance of the models. The

reason for this is that it gives a clear overview of which areas a model performs good

or bad in. A confusion matrix shows the number of true positives, false positives, true

negatives and false negatives made by a model. This gives a clear overview of which

areas a model may be underperforming in, which is crucial for identifying areas for future

improvement. This is especially useful in this thesis, as an imbalanced dataset may lead to

unsatisfactory results for the underrepresented class, which may impact the performance

of other evaluation parameters, without these parameters being able to easily show why

the performance of the model may be hindered [19].

3.5.4 Feature importances

Some algorithms have a built in method of showing how much each feature in the dataset

impacted the predictions of models that use these algorithms. This is shown as a number

between 0 and 1, with the total sum of the feature importances being 1. Feature impor-

tances are therefore often used to remove features that have a low impact on predictions,

and may therefore be harmful to the overall performance of the model, as the feature may

be contributing more noise than it contributes to making accurate predictions [35]. For

27

the purpose of this thesis however, the feature importances will simply be used to investi-

gate which sustainability metrics impact the prediction of retirement and graduation the

most. As is argued in chapter 5, the data for the features used in this thesis is clearly la-

beled, cleaned and distinct from each other, and therefore it is unlikely that enough noise

is generated from the low performing features to have a noticeable impact on the overall

performance of our models.

28

P9 Chapter 4

Findings

This chapter contains the findings that resulted from the process outlined in chapter 3.

Firstly, the confusion matrices as well as the accuracy of the algorithms will be presented,

which is then followed by some brief reflections. Secondly, the algorithms that pass the

success criteria of sufficiently high ROC-AUC and F1w scores will also have the importance

of their features presented and reflected upon. As only decision tree, random forest and

gradient boosting algorithms contain feature importances, these are the only ones that will

be considered for the feature importance section, provided their scores are high enough.

The code can be accessed in full in the GitHub repository found in appendix A.

4.1 Algorithm accuracy
The following section presents metrics of accuracy relating to the testing of the trained

models. The accuracy of each model algorithm is examined in this regard.

4.1.1 Confusion matrices

The confusion matrices that resulted from the machine learning models can be found in

table 4.1 below.

29

Algorithm True Positive False Positive False Negative True Negative

Decision Tree 155 32 19 18

Random Forest 178 9 23 14

Gradient Boosting 173 14 22 15

Support Vector Machine 187 0 37 0

Logistic Regression 184 3 33 4

k-Nearest Neighbors 173 14 33 4

Table 4.1: Confusion matrices for different algorithms

As can be seen in the table, all models can confidently identify the true positives.

The model that performs worst regarding the positives is the decision tree model, which

mistakenly identified 32 negative samples as positives, while it correctly identified 155

positive samples. It is in identifying the negatives we find the largest issue. None of the

models have more true negatives than false negatives, which means that they are not

confident in predicting the retired samples. In this area, the models can be grouped into

two categories. Decision tree, random forest and gradient boosting all have false negative

and true negative scores that are relatively close to each other. This means that while the

models are not exactly making random guesses, they are unable to effectively identify the

negative class. Still, they are able to correctly identify around half of the retired samples.

The second grouping of models contains the support vector machine, logistic regression

and k-nearest neighbours. These models all show a significant inability to correctly identify

negative samples. Worst is the support vector machine which did not identify a single

negative sample. While both groupings of models struggle with identifying the negative

samples correctly, the first group does see limited success. The reason for this inability to

identify retired samples likely stems from the low amount of retired projects in the dataset.

A similar dataset with more retired samples may see more success in this regard.

30

4.1.2 ROC-AUC & F1 scores
After training and testing the models, the average ROC-AUC and F1w scores of each model

has been calculated and presented in table 4.2 below. The table also contains the outcome

of the algorithm, which refers to whether or not the algorithm passes the minimum scores

of 0.70 ROC-AUC and 0.5 F1w to be considered at least ”acceptable” and ”okay”

Algorithm Avg. ROC-AUC Avg. F1 Avg. F1w Outcome

Score Score Score

Decision tree 0.66404 0.63690 0.78306 Failed

Random forest 0.81919 0.69430 0.84258 Passed

Gradient boosting 0.79554 0.67845 0.82916 Passed

Support vector machines 0.38596 0.45498 0.76001 Failed

Logistic regression 0.84313 0.52884 0.78374 Passed

K-nearest neighbors 0.61824 0.50251 0.75424 Failed

Table 4.2: Algorithm performance summary

Table 4.2 contains three algorithms that pass the success criteria, and three that do not

pass.

The decision tree algorithm had a score of 0.66404 (ROC-AUC) and 0.78306 (F1w), which

means it did not meet the success criteria, but it was close to doing so. It had lower

scores than the random forest algorithm, which did pass with good scores of 0.81919

(ROC-AUC) and 0.84258 (F1w). This is as expected, as a random forest algorithm uses

multiple decision trees as well as containing multiple methods to reduce overfitting and

other margins of error. This could be caused by the large amount of features, as this

increases the complexity of the model, which may increase the problem caused by having

a small dataset.

Gradient boosting passed with scores of 0.79554 (ROC-AUC) and 0.82916 (F1w), which

means it has an acceptable ROC-AUC score and a good F1w score. These scores may be

due to the nature of gradient boosting, as the model will iterate several times and improve

in ways that specifically reduce the error rate of the previous iteration.

31

The support vector machine algorithm failed with scores of 0.38596 (ROC-AUC) and

0.76001 (F1w). There can be different causes for this, but an immediate cause can stem

from the nature of the algorithm. The support vector machine algorithm is most effective

when there are more features than there are samples. As this thesis has 15 features and

225 samples, it does not put this algorithm in the optimal conditions for it to be precise

[36] . However, the algorithm fails only on account of the ROC-AUC score. The F1w score

is almost high enough for to be considered a ”good” score. The fact that the ROC-AUC

score is below 0.5 means it is performing worse than randomly guessing would. However,

as the models are trained on an imbalanced dataset, it would be expected that the F1w

score performs better than the ROC-AUC score does. The low ROC-AUC score is therefore

likely a result of this, as well as the issue of samples exceeding the amount of features.

Logistic regression passed with a score of 0.84313 (ROC-AUC) and 0.78374 (F1w), which

is not surprising as logistic regression is targeted towards classification tasks where the

goal is to identify the probability of outcomes.

The K-nearest neighbours algorithm failed, but was still close to passing, as it had scores

of 0.61824 (ROC-AUC) and 0.75424 (F1w). The failure of this algorithm is likely due to

overfitting, as this algorithm is particularly vulnerable to this issue. The performance of K-

nearest neighbours is also negatively impacted by datasets with a high amount of features.

While the model documentation does not explicitly dictate what constitutes a high amount

of features, our findings indicate that 16 features might be problematic for this particular

algorithm.

4.2 Feature importance
The investigation of feature importances was done on the basis of the algorithms that met

the success criteria and can be seen to have passed in table 4.2. These are gradient boosting

and random forest. Logistic regression is omitted here despite meeting the success criteria,

as it does not contain feature importances. As outlined in the methods chapter, this part

of the study also uses cross-validation. After each fold is trained and tested, the feature

importances are appended to a list corresponding to the feature. Finally, the average

importance of all features is calculated. These can be seen below in table 4.3

32

Feature Sustainability indicator Random Forest Gradient Boosting

COM-1 Response time 0.07430 0.06910

COM-2 Frequency of communication 0.09298 0.09375

POP-1 Project popularity 0.06190 0.01906

STA-1 Age 0.04800 0.02900

STA-2 Attrition 0.05180 0.06040

STA-3 Forks 0.06300 0.03327

STA-4 Growth 0.07780 0.09275

STA-6 Life-cycle stage 0.01210 0.00851

STA-7 Retention 0.04580 0.04452

STA-8 Size 0.12900 0.27023

STA-9 Turnover 0.08918 0.04131

TEC-1 Contributors’ dev. activity 0.02150 0.00195

TEC-2 Efficiency 0.05230 0.04327

TEC-3 Non-code contributions 0.06250 0.05418

TEC-4 Overall development activity 0.12467 0.13798

Table 4.3: Feature importance table (rounded to 5 significant decimals)

Table 4.1a and 4.1b below show the features that are considered significant for each al-

gorithm, with the definition of significant being at least an importance score of 0.08, as

outlined in chapter 3

33

Feature Importance score

STA-8 0.12900

TEC-4 0.12467

COM-2 0.09298

STA-9 0.08918

(a) Significant features for random forest

(rounded to 5 significant decimals)

Feature Importance score

STA-8 0.27023

TEC-4 0.13798

COM-2 0.09375

STA-4 0.09275

(b) Significant features for gradient boosting

(rounded to 5 significant decimals)

Figure 4.1: Significant features for random forest and gradient boosting

Features STA-8, TEC-4 and COM-2 are present in both tables, while the random forest table

also contains STA-9 and the gradient boosting table contains STA-4. In both tables, STA-8

and TEC-4 have the highest scores, so these can be considered to be the most significant

features. The models do not place them in the same order of importance however, as

the gradient boosting table gives STA-8 more than twice the score than the random forest

table does. A score of 0.27023 means that the gradient boosting algorithm considers

STA-8 (size) To account for more than a fourth of the weight in the model’s decisions to

predict either graduation or retirement. This is significant considering there are a total of

16 features. Random forest gives a greater importance to COM-2 than gradient boosting

does, however this may be due to the significance of STA-8, as it monopolizes a fourth of

the available feature importance score, which drags the score of the other features down.

By comparing the tables and only noting the unique features, this study has found the

most significant features for predicting retirement or graduation. These are listed below

in table 4.4

34

Feature Sustainability indicator

STA-8 Size

TEC-4 Overall dev. activity

STA-4 Growth

COM-2 Frequency of communication

STA-9 Turnover

Table 4.4: Unique features with importance score above 0.8

4.3 Summary
Here we combine findings from the confusion matrices as well as the ROC-AUC and F1w

scores. The models that did not satisfy our accuracy criteria were discarded. The ROC and

F1w scores indicate that random forest, gradient boosting and logistic regression perform

well. However, if this is compared with the confusion matrices, logistic regression should

not be considered viable due to the almost complete inability to correctly identify a retired

sample. Random forest and gradient boosting also struggle in this area, but to a much

lesser extent, as they are able to correctly predict almost half the retired samples. This

indicates these models have potential, and that they are reliable candidates for predictive

models for retirement or graduation. If they were to be trained on a similar dataset with

the addition of more retired project samples, it is likely that these models would improve

significantly. In response to the research question of this study, we find that it is possible to

predict graduation and retirement for ASFI projects, based on a dataset that incorporates

sustainability metrics. This study finds that the most accurate machine learning models

are based on the random forest and gradient boosting algorithms. Furthermore, random

forest and gradient boosting models put a high degree of importance on STA-8 (Size),

TEC-4 (Overall dev. activity), STA-4 (Growth), COM-2 (Frequency of communication) and

STA-9 (Turnover).

35

P9 Chapter 5

Discussion

The purpose of this section is to discuss our findings, as well as the relevance and meaning

of the observed results in regard to literature relating to FOSS sustainability. We will also

discuss and suggest perspectives on FOSS sustainability prediction as a whole, as well as

the implications of integrating machine learning prediction into sustainability prediction

research and Apache project decision making.

5.1 Predictive capabilities
In this section, we will discuss the predictive capabilities of the models used to predict

graduation and retirement of ASFI projects.

Firstly, analysis of the models shows that it is possible to predict graduation and retire-

ment. This is shown by the random forest and gradient boosting models, as these had

sufficiently high ROC-AUC scores as well as weighted F1 scores, and they showed promise

in their ability to identify the retired and graduated samples, as shown in their confusion

matrices. The results suggest that while the models demonstrate promising potential, cau-

tion is advised in interpreting their predictive accuracy due to the challenges posed by

data imbalance in the training and testing sets. Still, the results suggest that if the models

were to be trained on data consisting of more retired projects, the models would have

a better performance. This argument rests on the high performance of the weighted F1

score, as this score gives insight into how the performance would be if the influence of the

data imbalance were to be removed. However, it is also important to keep in mind, that

the thresholds for acceptable scores for F1w and ROC-AUC all come from convention and

”rules of thumb”, as explained in chapter 3. The validity of these thresholds can always

be argued against on the basis that algorithms may have wildly different scores depending

36

on dataset size. However, the scores of the models tested in this thesis generally rank as

would be expected, which supports the chosen thresholds.

Secondly, it is also important to discuss the size of the dataset used in this thesis. Much

effort has been put into trying to combat the effects of data imbalance, but this does very

little to address the fact that the dataset itself is relatively small. Datasets are typically

much larger than the dataset used in this thesis. For instance, Google Translate is trained

on a dataset that uses trillions of samples [37]. While this is an extreme example, it

illustrates that a dataset consisting of 224 samples such as this one, can be considered

a small sized dataset. This is addressed in two ways. Firstly, while the dataset is indeed

small, the samples are of good quality, as there is a lot of information in each sample. Also,

the data has been cleaned and processed, which eliminates the risk of duplicate values, bad

labels and omitted values and so forth. Furthermore, they are clearly labelled, with each

label being distinct from the others. While this does not increase the size of the dataset,

ensuring a high data quality improves the usefulness of model predictions [37]. Secondly,

a general rule of thumb for the size of datasets is that the number of samples should be

an order of magnitude larger than the amount of trainable features [37]. As this dataset

has 16 trainable features, it must therefore have a minimum of 160 samples, which this

dataset does. Therefore we argue that the size of the dataset does not significantly impact

the outcome of this thesis.

One point of critique for the predictive capabilities of the models comes from the nature

of retirement and graduation. The models are trained on data which labels a given project

as retired or graduated from the Apache Incubator. However, as the final decision to retire

or graduate a project is taken by the ASFI board, this means the decision is to a certain

extent influenced by human factors. This impacts what the models actually predict. The

models do not predict whether or not a project should be retired or graduated, they predict

whether or not the board would retire or graduate them. They are effectively learning to

replicate the decision making patterns of the board. While this does not make the models

wrong, it is important to keep this issue in mind when using these models as tools for

predicting graduation and retirement.

37

5.2 Graduation, retirement and sustainability
Graduation and retirement are, in this thesis, defined as binary outcomes for whether or

not a a given ASFI project is able to come to fruition. As opposed to FOSS sustainability

literature, this is a simplified and more reductionist approach. In that sense, the predictive

capabilities discovered in our findings might imply that machine learning can contribute to

gaining valuable insights within the sphere of ASFI projects, but it is not the same as sus-

tainability outright. As established in chapter 2, the field of FOSS sustainability research is

extensive and the methods used in this thesis relies to a great extent on a framework that

assumes the measurement of sustainability to be a complex matter. With this in mind, it

is important to establish that we do not make the assumption that a retired project was

necessarily unsustainable. It is, however, relevant to explore the implication that an un-

sustainable project should, in theory, be retired. This line of thinking arguably establishes

a connection between ASFI retirement and sustainability, but not one that is as reduction-

ist as our approach to predicting retirement in the first place. The implication hereof is

that predicting the outcome of ASFI projects is inherently different from predicting the

sustainability of said projects.

There is, however, potential for valuable insight somewhere in between. Parallels can be

drawn to the findings of Yehudi et al., in which the study of FOSS sustainability indicators

proved to be difficult if only quantitative comparisons were taken into account [16]. This

can be said to be the case in our training data, in which the models trained, even though

they use different algorithms, all use cross-project quantitative comparisons to attempt

classification and prediction. In order to gain a deeper understanding of the sustainability

of FOSS projects after predicting their graduation or retirement, it may prove beneficial to

follow the recommendations of Yehudi et al., and further analyze the model data with a

combination of quantitative and qualitative data.

While this is beyond the scope of this thesis, we argue that the methodology used to

train and test our models, along with our findings, provide valuable contributions towards

deeper insight into sustainability prediction of FOSS projects in the ASFI. Specifically, the

models in this thesis are trained using data processed through the sustainability framework

38

of Linåker et al. Thus, even though our models produce predictions relating to graduation

and retirement, the predictions of those outcomes are based on a sustainability frame-

work. As established, some of the models were capable of achieving a predictive capability

that can be considered reasonable, despite their difficulties. In practice, the high model

accuracy in predicting graduation outcomes makes an interesting contribution in and of

itself, considering that the implication hereof is that sustainability metrics can be used to

predict ASFI graduation and retirement. While the argument of data imbalance being an

important factor still stands, the model imperfections observed could also stem from sus-

tainability metrics inherently being difficult to use to make quantitative comparisons, as

concluded by Yehudi et al.

5.3 The implications of important features
Looking at the features with the highest importance scores, which can be found in table

4.1a and 4.1b, and the guidelines the ASFI use to determine if a project should graduate

[6], we see several differences. Firstly, neither STA-8 (size) STA-9 (turnover) or STA-4

(growth) are apparent in the ASFI guide to successful graduation, aside from the fact that

a project should not rely on a single contributor[6]. Secondly the features TEC-4(overall

development activity) and COM-2 (Frequency of communication) do share some resem-

blance to the guide. This can be seen by the prioritization of a community’s ability to be

able to disagree and discuss technical matters without destroying relations between con-

tributors [6]. While this is not the same as COM-2, both relate to the communication in a

community, but the ASFI guide takes a different approach, focusing on how the community

should communicate and not how much. The same comparison can be made with TEC-4,

due to the fact that the ASFI guide does not have requirements regarding the overall devel-

opment activity of the project, but has a significant focus on the meritocratic structure of

a project[6]. This means that a member of the community should be given responsibility

based on the value they create for the project. Looking at how the ASFI guidelines for

graduation compares to the literature of FOSS sustainability metrics, several similarities

can be seen. For instance, it is a priority for the ASFI that project communities are open

and diverse[6], which also can be seen in Linåker et al’s. framework. While many of the

39

priorities of the ASFI concerns the community of a project, there are a few guidelines re-

garding the technical requirements of projects in the Apache Project Maturity Model [38].

This model provides a framework for evaluating the maturity of a project and its code-

base, there is still no great correlation between this suggested framework and the features

used in this thesis [38]. These are mainly about broader topics such as availability of li-

braries, security and requirements for releases. These can also be found in Linåker et al’s.

framework[4].

This clarifies that the data of the indicators used in this thesis does not represent the

current criteria the ASFI officially employ to determine if a project should graduate or not.

While this is the case, there could be several other criteria, used unconsciously, that are

related to the indicators used in this thesis, and affect the decision to graduate a project. If

the board were to graduate a particularly large project, they may not explicitly state that

”size” was taken into account, despite the fact that it could make a significant difference in

their subjective evaluation. This is interesting as the models are trained on data from the

ASFI, whose official criteria for graduation relies on other measures, but are still able to

predict the graduation or retirement of a project based on more quantitative data from the

projects. This raises two considerations. Firstly, if the ASFI should have a larger focus on

some of the quantitative measures of their incubator projects. Secondly, if future studies

should include indicators or methods capable of representing the ASFI’s current criteria

for graduation.

As all the data used in this thesis is from ASFI projects that have either retired or graduated,

it would make sense to include data on the criteria the ASFI use to determine if a project

should graduate or retire. While the random forest and gradient boosting models are able

to predict if a project is graduated comfortably and to some degree if a project is retired,

there is room for improvement based on the confusion matrices. Models that are trained

on the indicators that the ASFI prioritizes for project graduation could lead to further

findings.

It is unclear if the ASFI should incorporate more of the indicators used in this thesis in

their decision to graduate a project. There are several reasons for this. Firstly, we can only

40

look at the guidelines the ASFI has published, and it is unknown what discussions take

place when deciding if a project should graduate. Therefore, some of the indicators used

in this thesis could influence decision making when graduating a project. Secondly, it is

important to note that the importance score of each feature used to develop the models

does not necessarily reflect the actual impact on sustainability, but rather the impact a

feature has on the predictions. Therefore it is difficult to recommend if the ASFI should

include the indicators used in this thesis.

5.4 Future Work

5.4.1 Applications for non-Apache projects

The models trained in this thesis have only been trained on data from ASFI projects, and

therefore the findings are not necessarily applicable to FOSS projects outside of the ASFI.

It could, however, prove valuable to further study how our findings would apply to FOSS

projects outside of the ASFI. If further research were to take place, it would require fo-

cusing on the broader context of FOSS sustainability. Furthermore, a specific definition of

when a project is sustainable and unsustainable would have to be defined, if the same ap-

proach used in this thesis were to be replicated. If it is proven possible to predict whether

a given FOSS project was sustainable or unsustainable, this capability could be valuable

for FOSS projects in general.

5.4.2 Applications for Apache decision making

An important distinction that can also be inferred from the models regards the very nature

of their training. While it is true that the focus of this thesis is on the prediction of ASFI

projects, the data used to train the models are still based on board decisions. Thus, it can

be argued that the internal process of discussion and voting exists as a black box where

subjective factors also play a part. In practice, this means that our models do not pre-

dict project outcomes in the literal sense, but rather board decisions on retirement. With

this in mind, it may be beneficial to explore these qualitative avenues that are unavailable

through strictly quantitative comparison. In theory, a direct research partnership with the

Apache Foundation may allow for more project-oriented ML-prediction research, rather

41

than looking in at board decisions from the outside. More specifically, if the exact quali-

tative requirements for board decisions were implemented into model training, it may be

possible to enhance the decision making of the board in order to mitigate the impact of

the subjective human factor. In this regard, it may also be possible to explore whether or

not retirement and graduation can be done objectively at all, as well as the implications of

this perceived lack of objective evaluation in the question of retirement.

5.4.3 Addressing data imbalance

One of the largest issues faced by this thesis is the data imbalance of the dataset. The

impact of this is further addressed in chapter 6.

There are several ways to avoid the issues faced by data imbalance. The most obvious

solution would be to simply avoid using ASFI retirement and graduation, and instead focus

on investigating sustainability metrics. This thesis has already gathered all the retired

projects that are listed in the Apache Incubator, and this was not enough to train models

that are confident in identifying retired projects. A future study that investigates projects

that have been retired from the Apache Incubator will have to either wait for a sufficient

amount of projects to retire, or reduce the amount of graduated samples (undersampling)

and find a more qualitative way to train and evaluate machine learning models [39].

It is also possible to manipulate the data in such a way that the dataset is artificially

augmented with additional retired samples (oversampling) [40]. There are different ways

to do this. Some techniques simply clone a retired sample resulting in two identical retired

samples. While this is not problematic on a small scale, this results in a less useful and

overfitted model if done on a larger scale, as this would likely result in a model being

very good at identifying these specific samples, but would likely struggle when faced with

new data. A more sophisticated approach to oversample a dataset, is to create ”synthetic”

retired samples which are not completely identical to the original samples. Rather, these

synthetic samples are generated from the relationships between the existing samples, with

a degree of randomness introduced. This method is called Synthetic Minority Oversamplig

Technique (SMOTE), and works by taking each minority class sample and introducing

synthetic examples which are based on a selected instance of a minority class, and a k

42

nearest neighbour. A random point along the line segment between these two datapoints

is selected, and this point is then added to the dataset as a new instance of the minority

class [41] .

A future study might benefit from a combination of these solutions. Waiting for more

projects to retire and then oversampling using SMOTE could be a good balance between

not having too wait too long for new retired projects and not being forced to use too much

oversampling.

5.4.4 Using sequential data

While this thesis investigates a broad range of sustainability metrics as well as ASFI re-

tirement and graduation, it does so using data that is only collected for a single point in

time. This limits the models in what type of predictions they are able to make, as the cur-

rent models are only able to predict whether or not a project as it currently stands would

be retired or graduated from the Apache Incubator. If a future study were to dedicate a

longer period of time such as a year to gathering data monthly for a predetermined list of

Incubator podlings, it could in many ways be an improvement over the capabilities of the

models in this thesis. Firstly, this could improve the overall performance of the models,

as the dataset would be larger, and this would result in more data for the models to train

on. Secondly, it would teach the models to identify trends in Apache Incubator podlings.

For instance, it could be that a significant drop in a metric such as COM-2 (frequency of

communication) is usually accompanied by a drop in TEC-4 (overall dev. activity), which

is a metric our findings have shown to have significant impact on whether or not a project

is graduated or retired from the Apache Incubator. Of course, expanding the dataset to

include sequential data would warrant a change in the choice of machine learning al-

gorithms, as the algorithms used in this thesis are meant for classification tasks, and are

therefore not necessarily useful for handling datasets that are sequential rather than static.

A more appropriate machine learning algorithm for a future study attempting this is recur-

rent neural networks. These are specifically designed to handle sequential data, and are

ideal for tasks where the relationship between different data-points in time is of particular

importance [42]. Gathering sequential data for this dataset would dramatically increase

43

the size of the new dataset, which would increase computation time as well. Depending

on the computation power available to this hypothetical study, it might be beneficial to

exclude some of the sustainability indicators that consistently had low feature importance

scores, or simply focus on only the indicators which had high feature importance scores.

This could also further reduce the amount of noise present in the dataset.

5.4.5 Using indicators from the ASFI
Our thesis includes indicators that do not reflect the current ASFI decision making process

regarding the graduation of projects. While we had some success predicting project grad-

uation and retirement with these indicators, replicating our research with indicators that

reflect the ASFI’s graduation requirements could prove interesting. Given that the current

graduation criteria largely align with Linåker et al.’s sustainability indicator framework,

the implications regarding graduation and retirement remain applicable to sustainability.

It can be argued that a model trained specifically on data representing the current gradu-

ation criteria should be highly effective. This is because there should be a clear distinction

between graduated and retired projects. If this is not the case, it could be because the

ASFI is not consistent in their graduation and retirement decisions. Furthermore, it could

also show that there might be other factors used to determine if a project should retire or

graduate. A potential challenge for this study would be to acquire the necessary data. The

criteria used to determine if a project should graduate is mostly qualitative, and would

therefore require a different method for data collection. Furthermore the data would

potentially have to be converted from qualitative data to values that the models can be

trained on.

5.5 Summary
To summarize, this discussion considers the critical aspects of the dataset and the models

used in this thesis. It highlights the challenges faced by a small and imbalanced dataset,

while weighing the merits of data quality and data quantity. The discussion critiques the

models predictive capabilities, and points out that they predict the ASFI board’s subjective

decision making, rather than predicting if a project objectively merits graduation or retire-

ment. The chapter differentiates between predicting project graduation or retirement and

44

evaluating project sustainability, suggesting a combination of quantitative and qualitative

data for deeper insights. Further analysis has revealed discrepancies between the most

important features, and the ASFI’s graduation guidelines, and questions whether the ASFI

should incorporate more quantitative measure or if the thesis should have included more

indicators that align with the ASFI guidelines. Finally, this chapter suggests several direc-

tions that might be taken by future studies, such as incorporating non-Apache projects,

exploring qualitative decision making aspects, addressing data imbalance and using se-

quential data to predict trends in FOSS projects.

45

P9 Chapter 6

Threats to Validity

The following chapter is composed of two sections, internal validity and external validity.

These exist to discuss the validity of our findings and to establish the credibility and trust-

worthiness of this study. This chapter is also a discussion of research design issues, biases,

limitations and weaknesses. Understanding and addressing these concerns is important to

enhance the reliability of our findings.

6.1 Internal validity

6.1.1 The human factor

The data used to train the models has been mined from projects that were either retired

or graduated based on the ASFI board’s decision [7]. The voting process to graduate or

retire a project differs if the project intends to become a top level individual project or a

sub-project to an already existing top level project. Both have in common that the com-

munity itself needs to first agree in a vote to graduate a project, to start the process. If the

majority agrees, the final decision is made by the board of the Apache Software Founda-

tion if the project aims to become a top level project, or the Incubator Project Management

Committee (IPMC) if the project aims to be a sub-project. [6]. Because the final decision

is made by the board and the Apache Incubator, it is not possible to know precisely what

they base their decisions on. While this creates some uncertainty about the similarities

between a project graduating and it being sustainable, the Apache Incubator states that

it highly values open and diverse communities and argues that Apache projects should be

self-sustainable, with the ability to recruit new members, take responsible collective action

and be able to disagree on technical matters without being destructive[6]. This shows that

46

The Apache Software Foundation and Incubator to some degree includes sustainability in

their decision to graduate projects, albeit with an uncertain definition.

The board or the IPMC are also able to force a project to retire, creating the same threat

to validity of not knowing why they choose to retire a project [7]. This threat is to some

extent alleviated by the fact that it is mostly the project itself that decides to retire[7].

6.1.2 Singular data points

A concern about the data used to train the models is that our data is taken from a sin-

gle point in time for each project. Furthermore, the data used to train the models is

mined from projects that have already either retired or graduated. Since our models have

not been validated with data from projects currently active in the incubator, the outcome

remains uncertain. While the effectiveness of the models on data from currently active

projects are uncertain, there are several ways to improve this. Firstly data from current

projects could be included, allowing re-training of the models on this data. Secondly, we

could test the models on data from podlings that are not yet retired or graduated, and

then observe if the predictions match the eventual outcomes. These additions would help

prove that the models are capable of predicting ongoing projects.

6.1.3 Unknown indicator factors

Another potential threat to the validity of this thesis comes from the indicators themselves.

Despite the chosen indicators being proven to have the capacity to provide valuable insight,

it should also be taken into account what they individually imply. In particular, the indi-

cator POP-1 (popularity) is of note. This indicator is defined by how many stars a given

project has on its respective GitHub page, representing amount of times a user has marked

the project as a favourite. While this gives a picture of how many people have shown in-

terest in the project, it can be argued that it might not be expected of every user to remove

stars from projects they have lost interest in. This has the potential effect of giving a false

picture of the actual popularity of a project, since there is no guarantee of users removing

their stars from a project they no longer have an interest in.

Furthermore it is possible that the computation methods of the sustainability indicators

47

have some inherent biases. An example of this could be seen looking at the computation

of the indicator Growth (STA-4). This is an indicator with a complex definition, but was

simplified during the computation of Alami et al. due to the constraints of MSR. While

this could impact the validity of the thesis, it is only one of 15 indicators, and the feature

importance search showed that this indicator was not critical when making a prediction.

Furthermore, we acknowledge that there may be unknown, complex and qualitative fac-

tors effecting one or more sustainability indicators, but the investigation of online user

behaviors is beyond the scope of this thesis.

6.1.4 Unused indicators of sustainability

The sustainability of FOSS projects is a complex metric to predict. This thesis uses 15

different indicators, which raises the question of whether 15 indicators is enough to fully

understand the sustainability of a project. While using all 107 indicators found in the

framework by Linåker et al. could potentially give a broader picture of the current state of

the sustainability of a given project, it would be excessive and unfeasible for the scale of the

podling projects in the Apache Incubator. These projects are all in their early development,

and are adapting to the format and processes Apache projects work by. Furthermore,

some of the models used in this thesis show promise in their ability to accurately make

predictions, suggesting that the indicators used are sufficient to make accurate predictions

on Apache incubator projects.

6.1.5 Using stratified cross validation

Stratified cross validation was used when training the models to decrease the potential

problem of class imbalance. However, using this method has downsides. When using

stratified cross validation, an equal number of each sample is placed on each partition at

random in order to maintain an even distribution. This creates another problem as it is

done at random, and therefore could create a data shift. A data shift occurs when the data

is distributed in ways that do not accurately represent the actual distribution of the data

[43]. In our case, this could occur if a fold is created that exclusively has projects that are

highly influenced by a single indicator. This would not be representative of the distribution

of the entire dataset, which leads to a flawed fold. While this could have a negative effect

48

on the results of the models, we argue that the negative effects are sufficiently negated.

This is because our data shares the same context of the ASFI, and the same intention of

reaching graduation. This means that the dataset is unlikely to have differences significant

enough to cause a data shift.

6.1.6 Data imbalance

A significant challenge to the validity of this thesis comes from the imbalanced nature of

the dataset used. While the data imbalance is acknowledged throughout this thesis, it is

equally important to elaborate on, to what degree the dataset is imbalanced. Table 6.1

below illustrates what constitutes a mild, moderate or extreme data imbalance.

Degree of Imbalance Proportion of Minority Class

Mild 20-40% of the data set

Moderate 1-20% of the data set

Extreme <1% of the data set

Table 6.1: Degree of Imbalance and Proportion of Minority Class [44]

As the dataset used in this thesis consists of 224 projects with 37 of these being retired

projects, this results in the minority class being represented in only 16.52% of the total

amount of samples. This classifies the models as suffering from a moderate degree of data

imbalance. This imbalance is mitigated to a certain extent due to the methods used in this

thesis. Firstly, using the weighted F1 parameter as a measurement of model performance

reduces the impact of data imbalance on the performance scores. Secondly, the use of

stratified cross validation ensures that no model will be trained or tested on subsets con-

taining no samples from the minority retired class. While an imbalanced dataset can be

the cause of a multitude of issues, the core problem is that the models will spend most

of their training on the majority class and thus neglect the minority class. This seems to

have been the case for the models trained in this thesis, as they are unable to confidently

identify the minority class. It can be argued that this is inherently tied to the nature of the

data from the ASFI, as projects currently graduate more often than retire, thus creating

the circumstances for data imbalance. [45]

49

6.2 External validity

6.2.1 Transferability

Given the focus of this thesis being ASFI projects, it is important to consider the transfer-

ability of our findings to other contexts. While the findings may hold relevance within the

broader study of sustainability prediction in open source, it is also important to note that

our methods are focused specifically on ASFI projects, and the findings from our models do

not necessarily provide insights that can be generalized across every open source project.

Gaining such insights outside the domain of incubator projects could require more exten-

sive ML training, or a stronger emphasis on the more qualitative indicators omitted from

the methods used in this thesis, such as the impact of culture or finance on FOSS projects.

However, certain aspects of this thesis such as the impact of sustainability indicators on

incubator project outcomes, or the lessons learned through data processing and model

selection, may have broader applicability. It should be noted, however, that the training

and testing data used in this thesis are specifically tied to the ASFI, with the models be-

ing trained specifically to predict a binary outcome of retirement and graduation. Outside

the context of the ASFI, there may be various other outcomes for FOSS projects such as

abandonment, in-operation, failure, etc.

50

P9 Chapter 7

Conclusion

The purpose of this thesis was to investigate how machine learning models can be used to

predict FOSS graduation and retirement. Based on our methodology, we sought to answer

the following research question:

How can machine learning models that incorporate FOSS sustainability metrics be used to

predict the likelihood of graduation and retirement for ASF incubator projects?

Based on ML-model training using established indicators of FOSS sustainability, we were

able to demonstrate the predictive potential within the sphere of ASFI projects when uti-

lizing metrics of sustainability proposed in the literature. The findings show that it is

possible to predict ASFI project graduation and retirement. Through the analysis of confu-

sion matrices, ROC-AUC and F1 scores, we find that random forest and gradient boosting

algorithms result in models that perform best overall. While they do not achieve flawless

performance, they show considerable promise in their ability to accurately predict retired

and graduated projects. Furthermore, the findings show that the sustainability metrics that

have the largest impact on the prediction of project graduation and retirement are STA-8

(Size), TEC-4 (Overall dev. activity), STA-4 (Growth), COM-2 (Frequency of communica-

tion) and STA-9 (Turnover).

Our findings highlight the challenges faced by performing model training using a small

and imbalanced dataset, which proved difficult to avoid due to our focus on ASFI projects,

of which most are graduated and not retired. We find that a close relationship between

graduation, retirement and sustainability exists, but while a project that is not sustainable

may become a candidate for project retirement, a retired project does not necessarily lack

51

sustainability. A combined approach of using qualitative and quantitative data in model

training may be required in order to gain a deeper understanding of this relation, while

mitigating the implications of subjective evaluation.

52

Bibliography

[1] Solutionshub, The state of open source software: Current trends, future outlook, bene-

fits, and challenges, Accessed - 09-05-2024. [Online]. Available: https://solutionshub.

epam.com/blog/post/the-state-of-open-source.

[2] Kevin Crowston, Kangning Wei, James Howison, Andrea Wiggins, Free/libre open-

source software development - what we know and what we do not know, Accessed -

25/04/2024, 2006.

[3] Karim R. Lakhani, Eric von Hippel, “How open source software works: “free” user-

to-user assistance,” journal Research Policy, 2005, Accessed - 25/04/2024.

[4] J. Linåker, E. Papatheocharous, and T. Olsson, “How to characterize the health

of an open source software project? a snowball literature review of an emerg-

ing practice,” in Proceedings of the 18th International Symposium on Open Collab-

oration, ser. OpenSym ’22, , Madrid, Spain, Association for Computing Machinery,

2022, ISBN: 9781450398459. DOI: 10.1145/3555051.3555067. [Online]. Available:

https://doi.org/10.1145/3555051.3555067.

[5] Apache Incubator, The apache incubator, Accessed - 09-05-2024. [Online]. Avail-

able: https://incubator.apache.org/.

[6] Apache Incubator, Guide :: Guide to successful graduation, Accessed - 10-05-2024.

[Online]. Available: https://incubator.apache.org/guides/graduation.html#

what_is_graduation.

[7] Apache Incubator, Guide :: Guide to retirement, Accessed - 09-05-2024. [Online].

Available: https://incubator.apache.org/guides/retirement.html.

53

https://solutionshub.epam.com/blog/post/the-state-of-open-source
https://solutionshub.epam.com/blog/post/the-state-of-open-source
https://doi.org/10.1145/3555051.3555067
https://doi.org/10.1145/3555051.3555067
https://incubator.apache.org/
https://incubator.apache.org/guides/graduation.html#what_is_graduation
https://incubator.apache.org/guides/graduation.html#what_is_graduation
https://incubator.apache.org/guides/retirement.html

[8] Apache Attic, The apache attic, Accessed - 09-05-2024. [Online]. Available: https:

//attic.apache.org/.

[9] J. Han, S. Deng, X. Xia, D. Wang, and J. Yin, “Characterization and prediction of

popular projects on github,” in 2019 IEEE 43rd Annual Computer Software and Ap-

plications Conference (COMPSAC), vol. 1, 2019, pp. 21–26. DOI: 10.1109/COMPSAC.

2019.00013.

[10] K. Crowston and J. Howison, “Assessing the health of open source communities,”

IEEE Computer, vol. 39, no. 5, pp. 89–91, May 2006. DOI: 10.1109/MC.2006.152.

[11] D. Wahyudin, K. Mustofa, A. Schatten, S. Biffl, and A. M. Tjoa, “Monitoring the

”health” status of open source web-engineering projects,” Int. J. Web Inf. Syst., vol. 3,

pp. 116–139, 2007. [Online]. Available: https://api.semanticscholar.org/

CorpusID:15898385.

[12] Alami, A., Pardo, R., Linåker, J., “Free open source communities sustainability: Does

it make a difference in software quality?” Zenodo, 2023.

[13] G. Robles, A. Capiluppi, J. Gonzalez-Barahona, B. Lundell, and J. Gamalielsson,

Development effort estimation in free/open source software from activity in version

control systems, Mar. 2022.

[14] T. Xia, W. Fu, R. Shu, and T. Menzies, Predicting project health for open source

projects (using the decart hyperparameter optimizer), Jun. 2020.

[15] T. Xia, W. Fu, R. Shu, R. Agrawal, and T. Menzies, “Predicting health indicators

for open source projects (using hyperparameter optimization),” Empirical Software

Engineering, vol. 27, Jun. 2022. DOI: 10.1007/s10664-022-10171-0.

[16] Y. Yehudi, C. Goble, and C. Jay, Individual context-free online community health in-

dicators fail to identify open source software sustainability, 2024. arXiv: 2309.12120

[cs.SE].

[17] u. Stănciulescu, L. Yin, and V. Filkov, “Code, quality, and process metrics in gradu-

ated and retired asfi projects,” in Proceedings of the 30th ACM Joint European Soft-

ware Engineering Conference and Symposium on the Foundations of Software Engi-

neering, ser. ESEC/FSE 2022, , Singapore, Singapore, Association for Computing

54

https://attic.apache.org/
https://attic.apache.org/
https://doi.org/10.1109/COMPSAC.2019.00013
https://doi.org/10.1109/COMPSAC.2019.00013
https://doi.org/10.1109/MC.2006.152
https://api.semanticscholar.org/CorpusID:15898385
https://api.semanticscholar.org/CorpusID:15898385
https://doi.org/10.1007/s10664-022-10171-0
https://arxiv.org/abs/2309.12120
https://arxiv.org/abs/2309.12120

Machinery, 2022, pp. 495–506, ISBN: 9781450394130. DOI: 10.1145/3540250.

3549132. [Online]. Available: https://doi.org/10.1145/3540250.3549132.

[18] J. L. Adam Alami Raúl Pardo, Free open source communities sustainability: Does it

make a difference in software quality? Accessed - 09/06/2024, 2024.

[19] Aurélien Géron, Hands-On Machine Learning with Scikit-Learn and TensorFlow: Con-

cepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., 2017.

[20] IBM, What is overfitting? Accessed - 09-06-2024. [Online]. Available: https://www.

ibm.com/topics/overfitting.

[21] IBM, What is a decision tree? Accessed - 01/05/2024. [Online]. Available: https:

//www.ibm.com/topics/decision-trees.

[22] M. H. Ikram Chaabane Radhouane Guermazi, Enhancing techniques for learning de-

cision trees from imbalanced data, Accessed - 29/05/2024, 2019.

[23] IBM, What is random forest? Accessed - 01/05/2024. [Online]. Available: https:

//www.ibm.com/topics/random-forest.

[24] Geeks for Geeks, Understanding logistic regression, Accessed - 01/05/2024. [On-

line]. Available: https://www.geeksforgeeks.org/understanding-logistic-

regression/.

[25] Geeks for Geeks, Gradient boosting in ml, Accessed - 01/05/2024. [Online]. Avail-

able: https://www.geeksforgeeks.org/ml-gradient-boosting.

[26] Geeks for Geeks, Support vector machine (svm) algorithm, Accessed - 01/05/2024.

[Online]. Available: https://www.geeksforgeeks.org/support-vector-machine-

algorithm.

[27] Geeks for Geeks, K-nearest neighbor(knn) algorithm, Accessed - 01/05/2024. [On-

line]. Available: https://www.geeksforgeeks.org/k-nearest-neighbours/.

[28] Scikit-learn, Train test split, Accessed - 24/05/2024. [Online]. Available: https:

//scikit-learn.org/stable/modules/generated/sklearn.model_selection.

train_test_split.html#sklearn.model_selection.train_test_split.

55

https://doi.org/10.1145/3540250.3549132
https://doi.org/10.1145/3540250.3549132
https://doi.org/10.1145/3540250.3549132
https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/overfitting
https://www.ibm.com/topics/decision-trees
https://www.ibm.com/topics/decision-trees
https://www.ibm.com/topics/random-forest
https://www.ibm.com/topics/random-forest
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/understanding-logistic-regression/
https://www.geeksforgeeks.org/ml-gradient-boosting
https://www.geeksforgeeks.org/support-vector-machine-algorithm
https://www.geeksforgeeks.org/support-vector-machine-algorithm
https://www.geeksforgeeks.org/k-nearest-neighbours/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html#sklearn.model_selection.train_test_split

[29] EvidentlyAI, How to explain the roc curve and roc auc score? Accessed - 01/05/2024.

[Online]. Available: https://www.evidentlyai.com/classification-metrics/

explain-roc-curve.

[30] Nikolaj Buhl, F1 score in machine learning, Accessed - 27/05/2024. [Online]. Avail-

able: https://encord.com/blog/f1-score-in-machine-learning/.

[31] Geeks For Geeks, F1 score in machine learning, Accessed - 01-06-2024. [Online].

Available: https://www.geeksforgeeks.org/f1-score-in-machine-learning/.

[32] Scikit-learn, F1 score, Accessed - 30/05/2024. [Online]. Available: https://scikit-

learn.org/stable/modules/generated/sklearn.metrics.f1_score.html.

[33] Scikit-learn, Stratifiedkfold, Accessed - 27/05/2024. [Online]. Available: https://

scikit- learn.org/stable/modules/generated/sklearn.model_selection.

StratifiedKFold.html.

[34] James et al., An Introduction to Statistical Learning: with Applications in R. Springer-

verlag New York Inc, 2013.

[35] Codecademy Team, Feature importance, Accessed - 24/05/2024. [Online]. Avail-

able: https://www.codecademy.com/article/fe-feature-importance-final.

[36] Geeks For Geeks, Support vector machine in machine learning, Accessed - 29/05/2024.

[Online]. Available: https://www.geeksforgeeks.org/support-vector-machine-

in-machine-learning/.

[37] Google for Developers, The size and quality of a data set, Accessed - 24/05/2024.

[Online]. Available: https://developers.google.com/machine-learning/data-

prep/construct/collect/data-size-quality.

[38] Apache Software Foundation, Apache project maturity model, Accessed - 09-06-2024.

[Online]. Available: https : / / community . apache . org / apache - way / apache -

project-maturity-model.html#communit.

[39] The imbalanced-learn developers, Under-sampling, Accessed - 24/05/2024. [On-

line]. Available: https://imbalanced-learn.org/stable/under_sampling.html.

56

https://www.evidentlyai.com/classification-metrics/explain-roc-curve
https://www.evidentlyai.com/classification-metrics/explain-roc-curve
https://encord.com/blog/f1-score-in-machine-learning/
https://www.geeksforgeeks.org/f1-score-in-machine-learning/
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://www.codecademy.com/article/fe-feature-importance-final
https://www.geeksforgeeks.org/support-vector-machine-in-machine-learning/
https://www.geeksforgeeks.org/support-vector-machine-in-machine-learning/
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://developers.google.com/machine-learning/data-prep/construct/collect/data-size-quality
https://community.apache.org/apache-way/apache-project-maturity-model.html#communit
https://community.apache.org/apache-way/apache-project-maturity-model.html#communit
https://imbalanced-learn.org/stable/under_sampling.html

[40] The imbalanced-learn developers, Over-sampling, Accessed - 24/05/2024. [Online].

Available: https://imbalanced-learn.org/stable/over_sampling.html.

[41] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, W. Philip Kegelmeyer, “Smote:

Synthetic minority over-sampling technique,” Journal of Artificial Intelligence Re-

search, 2002.

[42] IBM, What are recurrent neural networks? Accessed - 01/06/2024. [Online]. Avail-

able: https://www.ibm.com/topics/recurrent-neural-networks.

[43] F. H. Victoria López Alberto Fernández, On the importance of the validation technique

for classification with imbalanced datasets: Addressing covariate shift when data is

skewed, Accessed - 29/05/2024, 2012.

[44] Google for Developers, Imbalanced data, Accessed - 24/05/2024. [Online]. Avail-

able: https://developers.google.com/machine-learning/data-prep/construct/

sampling-splitting/imbalanced-data.

[45] Apache Incubator, All incubator projects by status, Accessed - 12-06-2024. [Online].

Available: https://incubator.apache.org/projects.

57

https://imbalanced-learn.org/stable/over_sampling.html
https://www.ibm.com/topics/recurrent-neural-networks
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://developers.google.com/machine-learning/data-prep/construct/sampling-splitting/imbalanced-data
https://incubator.apache.org/projects

P9 Chapter A

Appendix

Figure A.1: Perceval syntax

GitHub repository: https://github.com/m-kudahl/fosspred

58

	1 Introduction
	2 Related Works
	2.1 Health and sustainability of FOSS communities
	2.1.1 Predicting FOSS sustainability

	2.2 Apache retirement and sustainability

	3 Methods
	3.1 FOSS Sustainability Measurement
	3.2 Data Collection
	3.3 Data processing
	3.4 Models
	3.4.1 Description of the models

	3.5 Training and testing of the models
	3.5.1 Parameters
	3.5.2 Stratified cross-validation
	3.5.3 Confusion Matrix
	3.5.4 Feature importances

	4 Findings
	4.1 Algorithm accuracy
	4.1.1 Confusion matrices
	4.1.2 ROC-AUC & F1 scores

	4.2 Feature importance
	4.3 Summary

	5 Discussion
	5.1 Predictive capabilities
	5.2 Graduation, retirement and sustainability
	5.3 The implications of important features
	5.4 Future Work
	5.4.1 Applications for non-Apache projects
	5.4.2 Applications for Apache decision making
	5.4.3 Addressing data imbalance
	5.4.4 Using sequential data
	5.4.5 Using indicators from the ASFI

	5.5 Summary

	6 Threats to Validity
	6.1 Internal validity
	6.1.1 The human factor
	6.1.2 Singular data points
	6.1.3 Unknown indicator factors
	6.1.4 Unused indicators of sustainability
	6.1.5 Using stratified cross validation
	6.1.6 Data imbalance

	6.2 External validity
	6.2.1 Transferability

	7 Conclusion
	8 Bibliography
	A Appendix

