A Strong Typed Computational Model for Shell Languages

Andersen, Christoffer Lind Bonderup, Nikolai Aaen
clan190@student.aau.dk nbondel190@student.aau.dk

June 14, 2024

mailto:clan19@student.aau.dk
mailto:nbonde19@student.aau.dk

AALBORG UNIVERSITY
STUDENT REPORT

Title:
A Strong Typed Computational Model for Shell
Languages

Theme:
Distributed systems - Programming languages

Project Period:
January 2024 - June 2024

Project Group:
Fri-91211-1

Participant(s):
Nikolai Aaen Bonderup
Christoffer Lind Andersen

Supervisor(s):
Hans Hiittel

Copies: 1
Page Numbers:

Date of Completion:
June 14, 2024

Derpartment of Computer Science
Aalborg University
http://www.aau.dk

The content of this report is freely available, but publication (with reference) may only be pursued due to agreement with the

author.

http://www.aau.dk

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Resume

I denne afhandling praesenterer vi Mg, en ny tilgang til implementering af et stezerkt typesystem i et
shell-programmeringssprog, hvor strenge spiller en central rolle. Traditionelle shell sprog, som Bash og
PowerShell, er kraftfulde veerktgjer til programmering, men lider under svage typesystemer, der kan fgrer
til kgretids-fejl, vedligeholdelsesproblemer og sikkerhedssarbarheder. Vores arbejde med Ay, adresserer
disse problemer ved at udnytte principperne fra A-kalkulen og formel typeteori til at skabe et robust,
statisk-typet shell-sprog.

De vigtigste bidrag fra denne athandling inkluderer:

1. Design og semantik af)\ ;: Vi har defineret syntaks, operationel semantik og typesystem for Agp,
hvilket sikrer, at sproget understgtter forudsigelige og konsistente strengoperationer, samtidig med
at typesikkerhed opretholdes.

2. Formel analyse: Gennem formelle beviser har vi demonstreret typesystemets korrekthed, hvilket
sikrer, at korrekt typede programmer ikke stgder pa typerelaterede kgretids-fejl.

3. Grundlag for fremtidige udvidelser: Vi har fokuseret pa at etablere de grundleeggende aspekter
af Agp, som kan udvides med mere avancerede funktioner sasom records, standard bibliotek, osv.

Ved at kombinere fleksibiliteten og nytten af traditionelle shell-miljger med robustheden af et staerkt
typesystem, tilbyder Ay, et kraftfuldt specifikation til udviklere, der gnsker at skrive mere palidelige,
vedligeholdelsesvenlige og sikre shell-scripts.

Fremtidigt arbejde Selvom denne afhandling leegger et omfattende grundlag, er der flere retninger for
fremtidig udvikling af Agp:

1. Udvidelse af semantik: Der er behov for yderligere arbejde med at modellere shell-miljget mere
fuldsteendigt, herunder avancerede filsysteminteraktioner, processtyring og handtering af input/out-
put.

2. Avancerede sprogfunktioner: Fremtidige udvidelser kunne inkorporere mere komplekse datas-
trukturer, modulaere programmeringsmuligheder og fejlbehandlingsmekanismer.

3. Praktisk implementering: En faktisk implementering af Ag, inklusive en fortolker og et stan-
dardbibliotek, er afggrende for at validere de teoretiske koncepter og ggre A4y, til et praktisk veerktsj
til anvendelse i den virkelige verden.

Arbejdet praesenteret i denne afhandling adresserer veesentlige svagheder i traditionelle shell-scriptsprog
og leegger grunden til udviklingen af mere péalidelige og sikre shell-programmeringsveaerktgjer. Ved at bygge
videre pa de principper og fundamenter, der er etableret her, har Ay, potentialet til at have en indvirkning
pa omradet for shell-scripting og automatisering, og tilbyde udviklere et mere kraftfuldt og palideligt sprog
til deres shell scripting-behov.

Page 2 of

Abstract

Shell programming languages, such as Bash and PowerShell, are widely utilised for scripting and automation
in various computing environments. However, these languages often suffer from weak typing or non-existent
type systems, leading to runtime errors, maintenance challenges, and security vulnerabilities. This thesis
introduces Agp,, a novel functional shell programming language designed to address the inherent weaknesses
of traditional shell scripting languages by incorporating a strong, statically-typed system.

Ash is based on the A-calculus, leveraging its theoretical foundations to create a robust and reliable shell
scripting environment. The language integrates explicit constructs for string manipulation, predictable and
consistent handling of string operations, and a formal model for the shell environment. By introducing
a strong type system, Ay, ensures type safety, early error detection, and improved script readability and
maintainability.

This thesis provides a detailed analysis of the theoretical foundations of Ay, including lambda calculus,
formal semantics, and type theory. It discusses the design principles, design considerations, and formal
operational semantics of the language. Furthermore, the thesis presents a comprehensive exploration of
string concatenation and interpolation, demonstrating how Az, balances the flexibility of weak typing with
the safety of strong typing.

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Acknowledgements

We would like to express our sincere gratitude to our advisor, Hans Hiittel, for his invaluable advice and
support in the creation of this thesis. His guidance and expertise have been instrumental in our work,
research, and writing process, and we are deeply appreciative of his time and effort.

Page 1 of

Contents

1.1~ The nature of shell programming|
[1.2 Moving towards stronger type systems| L
1.3 The Ay language] e
2T cal T ation
2.1 Introductionl. e
2.2 Formal operational semantics|
[2.2.1 Configurations|
222 Transitions
[2.2.3 Example of language specification| oL
2.3 Typesystems| e
[2.3.1 Typing contexts| e
[2.3.2 Type judgements|
[2.3.3 Subtyping]
[2.3.4 Soundness of a type system|
[2.4 Structural congruence|l L e e
2.5 Summary] e e e
|3 Problem analysis|
3.1 Introductionl. e
[3.2 Challenges with traditional shell languages|.,
3.3 Weak Type Systems in Shell Languages|
|3.4 The special role of strings in shells|
[3.5 Strings in Action| L
3.5.1 Commandsin Shelll.
[3.6 Designing a string-centric type system| Lo L
[3.7 String interpolation and concatenation|
[3.8 String concatenation and conversion semantics| oL
[3.8.1 Structural congruence|
[3.9 String concatenation| Lo
[3.9.1 Syntactic categories and formation rules| L L.
8.9.2 Semanticsl e e e
3.9.3 Typerules|. e
[3.10 String concatenation extended with more data types| L.
[3.10.1 Syntactic categories and formation rules|
B.10.2 Semanticd e e

N o ot O

N © © © w oo ®

13
13
14
16
16

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

[3.10.3 Type system| e e 29
[3.10.4 Example derivation|. 30
[3.10.5 Soundness proof] e e e e e 31
[3.11 String concatenation with subtyping and coercion|. 33
[3.11.1 Syntactic Categories and Formation Rules| 33
BIT2 Semanticd oo 33
8.11.3 Type System| e 34
8.11.4 Example Derivation| 35
[3.11.5 Soundness proofl e e e 36
BI2ZNextl o o 38
|4 Formal specification of Al 39
4.1 Computational Modell 39
4.2 Syntactic Categories and formation Rules| 39
M3 Semanticsl 41
[4.3.1 Small-step semantics| Lo 41
4.3.2 Explicit substitutions| 41
B33 Values oo 42
[4.3.4 Constant evaluationl Lo 42
B35 Stafd. 43

4.4 Type systeml| e e e e e e e 44
[4.4.1 The typing context|. 44
[4.4.2 Typerules|. e 45

4.5 Transition system|. L L e e e e e 45
[4.6 Structural congruence| 46
BT Valles . . . oo oo e 46
[4.8 Substitution, abstraction, and application| Lo 48
4.9 Shell operations|. 51
.10 Quoting] e e 53
4.10.1 Quoting laws| 54
[4.11 Subtyping] 55
[4.12 String operators| L e e e e e 56
4.13 Expressivity] o e e e e e e 57
.14 Summary] L e e e e e e 58
6_Soundness| 59
D1 Motivation] e e e e e 59
B2 Preservationl. e 59
... 66
[0-4 Summary|] L e e e e 69
0.4.1 Progress| e 69
[5.4.2 Preservationl. 69
(.43 Final assertion of soundness L 69

|6 Conclusion, discussion, and future work]| 70
6.1 Conclusionl e 70
6.2 Discussionl e 70
621 More features 70

Page 3 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

16.2.2 Detailed shell environment modelling|. 71

16.2.3 Better leveraging of the small-step semantics| 71

6.3 Future workl e 72
[References 74
|A Syntactic categories and formation rules| 75
[B_Semantics| 76
|IC Type system| 80

Page 4 of

1
2
3
1

2

Chapter 1

Introduction

1.1 The nature of shell programming

Shell languages, such as Bash, PowerShell, and others commonly used for scripting in Unix and Windows
environments, are characterised by their non-existent or very weak typing systems. This means that
variables in these languages are not bound to a specific type, and the type of data a variable can hold may
change during the execution of a script. The flexibility afforded by weak typing is particularly evident in
the ubiquitous use of strings as the primary data type.

In shell languages, almost all data is treated as a string|3]. This design choice simplifies many aspects
of scripting, especially given the text-based nature of command-line interfaces. Commands, filepaths, in-
put/output operations, and numerical values are manipulated as strings. This string-centric paradigm
allows for a highly flexible and dynamic scripting environment where variables can be effortlessly concate-
nated, split, or parsed without the need for explicit type declarations, since everything is considered the
same type.

For instance, in a typical Bash script, one might see variables assigned and manipulated without regard
to their underlying data types:

#!/bin /bash
a="123"

b="456"
result=$((a + b))

echo "The sum is: $result”

In this example, a and b are initially treated as strings but are implicitly converted to integers for the
arithmetic operation. The result is then seamlessly converted back to a string for output. This implicit
type conversion is an important mechanic in weakly typed languages, reducing the overhead of managing
data types but also introducing potential pitfalls if not carefully managed.

The implicit conversion between types is both a strength and a potential source of bugs in shell scripting.
While it allows for rapid development and reduces boilerplate code, it can lead to unexpected behaviour
if the script inadvertently operates on data in an unintended type[6]. For example, attempting to perform
arithmetic on non-numeric strings will result in errors or incorrect results, which might not be immediately
apparent:

#!/bin /bash
a="123abc”

3 b="456"

!

result=$((a + b)) # This will cause an error

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Here, a contains non-numeric characters, leading to an error when an arithmetic operation is attempted.
Such issues highlight the trade-offs inherent in the weakly typed nature of shell languages. These types of
errors cannot be caught before runtime, because of how the implicit conversion works.

The predominance of strings and the weak typing system in shell languages are pragmatic choices that
cater to the needs of shell scripting. These uses often require scripts that can handle a range of input
types, interface with numerous command-line tools, and perform text processing tasks efficiently. The
advantage of a weak typing system and the versatile use of strings is that it enables quick prototyping
and straightforward manipulation of textual data, an important task in the domain, therefore making shell
languages a powerful tool for automation and scripting in diverse environments.

However, this flexibility necessitates a disciplined approach to scripting. Developers must be vigilant
about input validation, type checking, and error handling to mitigate the risks associated with implicit
type conversions and the predominance of strings, and these tasks cannot be automated by tools because
of the language design.

1.2 Moving towards stronger type systems

Despite the benefits of weak typing and the extensive use of strings, we have an interest in incorporating
stronger type systems into shell languages. A stronger type system would enforce more rigorous type
checking at compile time or runtime, reducing the likelihood of type-related errors and improving overall
script reliability and maintainability as discussed in our previous report ”Requirements for a functional
shell programming language”[2].

The advantages of a stronger type system are plentiful. Firstly, with explicit type declarations and
enforcement, many common scripting errors could be caught early, reducing debugging time and improving
script stability. Furthermore, scripts with clear type annotations are easier to read and understand, making
maintenance and collaboration more straightforward. And lastly, certain optimisations become possible
when the interpreter or compiler knows the exact types of variables in advance, potentially leading to more
efficient execution.

There are several ways to go about implementing a stronger type system in a shell language. Firstly,
we could introduce optional type annotations that allow developers to specify the types of variables and
function parameters while retaining backward compatibility with untyped scripts. We could also implement
type inference mechanisms that automatically deduce the types of variables based on their usage, providing
the benefits of strong typing without the verbosity of explicit type annotations. The issue here is that we
know that there are cases where such inference is not possible. There is also the possiblity of implementing
an entirely new language that is strongly typed, but has mechanisms for easily working with the string
representation of values. In a sense, we want a type system that combine the flexibility of weak typing
with the robustness of strong typing. This approach could allow variables to be explicitly typed where
necessary while permitting implicit conversions for simpler, more dynamic tasks.

Moreover, we are particularly interested in developing type systems that can be formally proven to be
sound. A sound type system guarantees that if a program type checks successfully, it will not produce
type errors during execution. This property is critical for ensuring the reliability and robustness of scripts,
particularly in environments where script failures can have significant consequences.

By moving towards stronger and provably sound type systems, shell languages can enhance their
robustness and maintain their ease of use, providing developers with powerful tools for reliable and efficient
scripting. This direction not only improves the scripting experience but also opens up new possibilities for
safer and more maintainable automation solutions with shell scripts|2].

Page 6 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

1.3 The)\, language

To address these issues, we have created the Ay, language, a formal definition of a functional shell pro-
gramming language that solves the mentioned problems by incorporating several key features.

Firstly, g, provides explicit constructs for string manipulation, eliminating ambiguities associated
with word-expansion, word-splitting, and string interpolation. This ensures that string operations are
predictable and consistent, reducing the risk of subtle bugs that arise from implicit string manipulations.

Secondly, the language includes a model of the shell environment.

The most important contribution of Ay, is to show that we can have a strong type system in a shell
language while maintaining much of the flexibility of traditional shell languages. To overcome the lim-
itations of typical shells weak and nonexistent type system, Az, incorporates a strong, statically typed
system. This type system catches type errors at compile time, ensuring that variables and functions are
used correctly according to their types. This reduces the likelihood of runtime errors and makes scripts
easier to understand and maintain. The key to solving this problem is to introduce at type system where
strings play a central role.

While A4, benefits from a strong type system, it also allows for subtype polymorphism where appro-
priate. This is managed through a predefined set of subtype mapping, ensuring that operations are still
safe and well-defined.

Ash 1s based on the A-calculus, a model of computation that serves as the foundation for many func-
tional programming languages. The language draws inspiration from Haskell, SML, and Lisp, adopting
a declarative programming style that emphasizes immutability and the composition of functions. This
paradigm is well-suited for the shell scripting domain, where composing commands is a common practice.

Ash 1s defined by a formal semantics that specify the behaviour of its constructs precisely. The type
system is designed to be provably sound, ensuring that well-typed programs do not produce type errors
during execution. This is achieved through formal proofs based on established type theory principles,
guaranteeing the reliability and robustness of scripts.

Page 7 of

Chapter 2

Theoretical foundation

2.1 Introduction

The development of Ay, is grounded in a robust theoretical foundation that draws upon concepts from
A-calculus, formal semantics, and type theory. This section delves into the core theoretical principles that
underpin the language, providing a rigorous basis for its design and implementation.

Understanding the theoretical underpinnings of A4 is essential to understand the design and the guar-
antees promised by the language.

Firstly, we discuss formal semantics, which offer a precise description of how Ay, programs are executed.
Here we describe the formalism we use to describe the language. By defining the operational semantics,
we specify the rules that govern the execution of commands and expressions within the language. This
formalism ensures that the behaviour of Ay programs is well-defined and predictable.

Next, we examine type theory, which categorises expressions into types and enforces rules for type
correctness. The type system of Ay ensures that operations are performed on compatible types, preventing
type errors and enhancing the reliability of programs. We will explore how the type system is defined, the
rules for type checking, and the properties that ensure type safety.

By establishing a solid theoretical foundation, we aim to provide a comprehensive understanding of
the principles that guide the design of Ag,. This foundation not only supports the implementation of
the language but also facilitates reasoning about its behaviour and properties, ensuring that Ay, is both
powerful and reliable.

2.2 Formal operational semantics

Formal operational semantics is a rigorous mathematical framework used to describe the behaviour of
programs within a programming language. It provides a precise and unambiguous way to define how
program statements and expressions are executed|8]. Syntax defines the structure of valid programs in the
language using formation rules and an operational semantics use that syntax to define transition systems
based on configurations.

The benefits of formal operational semantics can be summarised as the following:

e Precision: Eliminates ambiguity in language specifications that you get when a language is specified
informally.

e Verification: Facilitates formal verification and reasoning about program correctness.

e Language Design: Aids in the design and implementation of new programming languages by
providing a clear specification of expected behaviours.

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

2.2.1 Configurations

Configurations represent the state of a program at any point during its execution. This includes:
e The current state of the memory (variable bindings, heap, etc.).
e The current point of execution (control stack, program counter, etc.).

In an operational semantics it is typically a bit more abstract than looking at control stack and program
counter, but the general idea holds [8].

2.2.2 Transitions

Transitions are rules that describe how a program moves from one configuration to another. How transitions
are specified depends on the kind of operational semantics one is creating. Fundamentally, there are two
kinds: big-step semantics and small-step semantics. Small-step semantics breaks down program execution
into individual steps. Each step represents a single computational action, such as evaluating an expression
or executing a single statement. It provides a detailed trace of execution in an atomic manner. Big-step
semantics describes the overall result of executing a complete program or large blocks of code. It focuses
on the final outcome rather than the individual steps. Transition rules are defined as (C,S) — (C',S’),
meaning configuration C' in state S transitions to configuration C’ in state S’. Evaluation is typically
written as (C, S) — S, meaning that configuration C' in state S evaluates to state S’ [§].

Transition rules are used to define transitions and evaluations formally. These are often written in the
form of logical rules. Rules are written on the form

premaises
conclusion

The premises must hold in order to use the rule, as an example we have a big-step rule for the plus operator:

<E1,S> — <’U1,S/> <E2,Sl> — <U2,S”>
<E1 + E27S> - (’Ul + va, S”>

This rule states that to evaluate Ey + F» in state S, first evaluate F; to get v; and new state S’, then
evaluate Fsy to get vo and new state S”, and finally compute the result v; + vy in state S”.

2.2.3 Example of language specification

In order to demonstrate how a big-step and a small-step semantics are formed, we need an example.
Consider the simple language with arithmetic expressions and assignment as statements in Figure [2.1]
First, we define a syntax for each syntactic category of the language (expressions and statements)

E:=nl|x|E + E>
Su=x:=F]|S1;5

Figure 2.1: Example formation rules.

For the simple abstract syntax in Figure 2.1} we will show an example small-step and big-step semantics.

Page 9 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

State

As part of both example semantics we introduce the state d, which is a mapping from variables to values.
We use this to store the contents of variables. An example of a state could be {z +— 3,y — 6}.

Small-step semantics

Again, small-step semantics describes the execution of a program as a series of individual steps. The
following is a definition of the transition rules as a small-step semantic, where ¢ is the state (a mapping
from variables to values). Note that the transitions of this small language is of the form (e, d) — (€/,d’)

We define a rule for each syntactic construct in the language, additional rules may be needed to evaluate
every step of the computation. First, we consider the rules for expressions (E) in Figure

(CONST] (n,8) = (n.6)
[VAR] m
[PLUS-1 B A BT
[PLUS-2] (o1 +<§z: gi : zizf /J>~32, &)
[PLUS-3] S

<Ul +’L)2,(5> — <’U3,(5>

Figure 2.2: Example small-step semantics for expressions.

Now, we also have to consider the category of statements, which we do in Figure

[ASSIGN-1] (:g: g; : éf ,:5,>E’ o)
[ASSIGN-2] e _<§j gi : éf/j;;’ 5
SEQ1 T e
SEQ-2) <51<%25£>1<22§2>)

[SEQ-3] (v; 53,68) = (v, ")

Figure 2.3: Example small-step semantics for statements.

Combined, the reduction rules defined in Figure and [2.3] constitutes a complete small-step semantics
for the little language defined in Figure

Page 10 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Big-step semantics

Big-step semantics describes the execution of a program as a single large step that computes the final
result. The form of transitions is the same as the small-step semantics except the rules now evaluate
subexpressions completely in on step. Now, we define the big-step semantics for expressions in Figure

[B-CONST] (n,0) = n
i(z)=n
[B-VAR]) o

<E1,(5>—>Ul <E2,(5>—>U2 V= 1v] + V2
<E1+E2,5> — v

[B-PLUS]

Figure 2.4: Example big-step semantics for expressions.

We also need a definition of the big-step semantics for statements. These can be seen in Figure [2.5

,0) = v
pasen (z = ;75) >—>_>(5[:B —]
[B‘SEQ] (S1,9) — & (So, 5/> 5"

<Sl; SQ, (5> — "

Figure 2.5: Example big-step semantics for statements.

Combined, the rules in Figure [2.4] and Figure [2.5] makes a complete big-step semantics for the small
language defined in Figure [2.1

Example derivation

Now, let us see a semantic in action. Consider the evaluation of the following program:

r=Ly:=x4+2
First, we can do the derivation using the small-step semantics.
1. Initial state: § = {}
2. After evaluating x := 1:
(x :=1,6) — (skip, o[z — 1]) = {z — 1}
3. After evaluating y := x + 2:

(y=z+2{z—1}) = (y:=1+2,{x— 1})
(y:=14+2{z—1}) > (y:=3,{x— 1})
(y :=3,{x — 1}) — (skip, {z — 1,y — 3})

Page 11 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

And the final state after evaluating is: {x — 1,y — 3}. Similarly, we can also do the derivation using
the big-step semantic rules.

1. Initial state: 6 = {}

2. Evaluating x := 1:
(x:=1,0) =2 0z — 1] ={z— 1}

3. Evaluating y := x + 2:
(x+2,{z—1}) =3

(yi=x+2,{z—1}) > {z— 1,y — 3}

And the final state is: {z — 1,y — 3}

In summary, formal operational semantics provides a framework for understanding and reasoning about
program execution through a set of mathematically precise rules. It helps in defining and analysing the
behaviour of programming languages in a rigorous way.

2.3 Type systems

A type system is a formal framework used to define and enforce the classification of expressions in a
programming language. It ensures that programs adhere to certain rules that prevent type errors, making
the programs more predictable, safer, and easier to maintain. Type systems are crucial in catching errors
at compile time rather than at runtime, thereby enhancing the reliability and robustness of software|8].

2.3.1 Typing contexts

A typing context, often denoted by the symbol I', is a fundamental component of a type system in pro-
gramming languages. It serves as a formal environment that maintains the associations between variables
and their respective types. The typing context plays a role in type checking and type inference, providing
the necessary information to determine the types of expressions within a given scope.

In more detail, a type context I' can be described as follows:

e Definition: A type context I' is a finite mapping from variables to types. It records the type
assumptions for the variables that are currently in scope:

I': Variables — Types

e Notation: The type context is usually written as a sequence of variable-type pairs:
D=lx1:71,22: T2y .., Tpn : Tp)
where each z; is a variable and 7; is the type associated with x;.

e Purpose: The primary purpose of the type context is to provide a framework for type judgments.
When checking the type of an expression, the type context is used to look up the types of free variables
within the expression. This ensures that the expression is consistent with the type assumptions in
the context.

e Example: Consider the expression (Ax : 7.¢). When determining the type of this expression, the
type context I' is extended with the new binding x : 7. This extended context is then used to type
check the body of the lambda abstraction e.

Page 12 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

The role of the type context in type judgements can be formally expressed as:
Clz—7]Fe:7

This notation indicates that under the type context I' extended with the binding x : 7, the expression e
has the type 7.

In summary, a type context I' is a structured environment that records the types of variables in scope.
It provides the foundation for making accurate type judgements, ensuring that expressions are type-checked
in a coherent and deterministic manner.

2.3.2 Type judgements

A type judgement is a formal assertion within the context of a type system that associates an expression
with a type under a given typing context. It serves as the foundation for verifying and ensuring that
expressions in a programming language adhere to the specified type rules, thus preventing type errors
during program execution.

In its most general form, a type judgement is written as:

I'te:r

where:

e I' (the typing context) is a context that maps variables to their corresponding types. It represents
the assumptions about the types of free variables in the expression.

e ¢ (the expression) is the syntactic entity whose type is being determined.
e 7 (the type) is the type assigned to the expression e under the assumptions in I".

The type judgment I' - e : 7 reads as ” under the typing context I', the expression e has the type 7.” This
relationship is derived using a set of typing rules defined by the type system, which dictate how types are
assigned to various constructs in the language. Type judgments play a role in type checking, where they
are used to ensure that programs conform to their specified types. This process involves systematically
applying the typing rules to derive type judgements for all expressions in the program. If all expressions can
be assigned types according to the rules, the program is considered well-typed, indicating that it adheres
to the language’s type constraints and is free from certain classes of errors.

In summary, a type judgement provides a formal mechanism for associating expressions with types
within a type system. It encapsulates the rules and assumptions under which an expression is deemed to
have a particular type, thereby contributing to the correctness and reliability of programs.

2.3.3 Subtyping

Subtyping is a fundamental concept in type theory and programming languages, which expresses that one
type (the subtype) is a specialized version of another type (the supertype). This relationship facilitates
flexible and reusable code if implemented correctly since functions or data structures designed to work
with a supertype can also operate with any of its subtypes|11].

Fundemental to subtyping is the subtyping relation. If type S is a subtype of type T' (denoted S <: T'),
an instance of S can be used wherever an instance of T' is expected. Futhermore, it is genreally accepted
that it should follow the Liskov Substituion Principle, which says that objects of a superclass should be
replaceable with objects of a subclass without affecting the program’s correctness.

Page 13 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Adding subtyping to a language Subtyping must be designed to maintain type safety. If a subtype
can be substituted for a supertype, operations defined for the supertype should remain valid for the
subtype. This involves defining type checking rules that incorporate subtyping. This should of course
also be reflected in the operational semantics in such a way that we maintain the soundness property.
In operational semantics, the semantics describe how the execution of expressions modifies the program
state. When subtyping is involved, the semantics must account for an expression of a subtype appearing
in a context expecting a supertype, possibly involving implicit or explicit type conversions at runtime.
Here, object-oriented languages are a good example of subtyping. In object-oriented languages, subtyping
is closely related to inheritance. The operational semantics must specify how methods are dispatched
when an object is treated as an instance of a supertype but is actually an instance of a subtype. This
involves defining the lookup rules for methods and attributes, ensuring that the correct method (possibly
overridden in the subtype) is called. It is of course also related to polymorphism, where a single function
can operate on arguments of different types, provided they are subtypes of a common supertype. Again,
the operational semantics must handle polymorphic functions correctly, ensuring they operate seamlessly
with any subtype passed to them.

Example Consider a simple typed language with subtyping. Suppose we have types Animal and Dog,
with Dog being a subtype of Animal (Dog <: Animal).
The subsumption rule allows a Dog to be treated as an Animal:

IfI' - d:Dog and Dog <: Animal, then I' - d : Animal

When the program evaluates an expression involving a Dog where an Animal is expected, the semantics
ensure the correct type handling:

(d : Dog) evaluated in the context of (a : Animal) — treat d as Animal

In conclusion, subtyping enhances the flexibility and reusability of code but introduces complexity into
the operational semantics of a language.

2.3.4 Soundness of a type system

The soundness of a type system is a fundamental property that ensures the reliability and correctness of
a programming language’s type-checking mechanism. Essentially, a type system is sound if it guarantees
that programs which pass type checking will not encounter certain types of runtime errors. This concept
is crucial in providing confidence that type-checked programs adhere to their specified type constraints
during execution|11].

Formally, the soundness of a type system can be expressed through two main properties: type safety,
which encompasses both progress and preservation.

e Progress: This property states that well-typed programs will never get stuck. Specifically, if a
program is well-typed, then at any point during its execution, the program is either in a final state
(i.e., it has completed execution) or there is a valid step that can be taken to continue execution.
In other words, a well-typed program will not reach a state where no further execution steps are
possible except for specific, well-defined cases like reaching a value[l1].

e Preservation (subject reduction): This property ensures that the types of expressions are main-
tained throughout execution. Formally, if an expression e has a type T" and it takes a step to another
expression €’ (e — €’), then the resulting expression ¢’ will also have the type 7. This means that
the execution of well-typed programs preserves the type correctness of intermediate expressions|11].

Page 14 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Soundness is vital for several reasons:

e Reliability: A sound type system ensures that programs behave as expected with respect to their
type annotations. This reduces the likelihood of unexpected type-related runtime errors.

e Optimisation: Compilers can make optimisations based on the guarantees provided by a sound
type system. For example, if the type system guarantees that a variable will always hold an integer,
the compiler can generate more efficient machine code.

e Maintainability: Type soundness aids in program maintenance by catching type errors at compile
time, which makes it easier to refactor and extend codebases without introducing new type-related
bugs. This goes in hand with the fact that types provide documentation for a piece of code, allowing
for easier understanding of what interfaces different abstractions implement.

We adopt the strategy of syntactic type soundness proposed by Wright and Felleisen|12] which is based
on the notion of subject reduction devised by Curry and Feys [4]. if 'Fe:7and e — € then T'F € : 7
where in I' F e : 7, e is the subject and 7 is the predicate. Subject reduction states that the reduction
of the subject(expression) should preserve the predicate(type). To prove soundness start by first showing
progress, we do proof by induction on the height of the derivation tree of reduction rules (the reduction
rules (e,d) — (¢/,0)) [12]. We start this section by introducing the 2 definitions for the soundness properties
and defining what it means to have be a well-typed configuration.

In our soundness proofs in this thesis, we use the following definitions:

Definition 1 (Barendregt’s variable convention). If Ty ... T,, occur in a certain mathematical context (e.g.
definition, proof), then in these terms all bound variables are chosen to be different from the free variables
[7]. The validity of the equivalence relation is unchanged by variable names, assuming that all rules hold,
it follows that the names of bound variables are different to the free variables.

Definition 2 (Preservation/Subject reduction). We have that if T'te: T and e — €, then T ¢ : T for
all reduction rules.

Definition 3 (Progress). if 'k e: T, then e is either a value or there exists an €' such that e — €.

Definition 4 (Well-typed configuration). A configuration is well-typed under the typing environment T"
(e,0):7if: IrTke:T

When we have shown that progress and preservation holds we have a guarantee for soundness, meaning
that if a term is well-typed, it will always be well-typed. This is not only an important verification and
safety guarantee for any programming language, but especially for shell languages, since runtime errors
can become dangerous.

Example Consider a simple type system for a language with integer and boolean types. The type system
includes rules for type checking expressions like arithmetic operations and comparisons. For example, an
addition operation a + b is well-typed if both a and b are integers, and the result is also an integer.

e Progress: If the expression 1 + 2 is well-typed (as an integer), execution will proceed to the result
3 without getting stuck.

e Preservation: If x + 1 is well-typed and x steps to a value 5, then 5+ 1 is also well-typed (as an
integer), preserving the type correctness through execution.

By ensuring that a program that passes type checking adheres to its specified types during execution,
soundness of the type system provides a robust foundation for building reliable, and efficient software.

Page 15 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

2.4 Structural congruence

Structural congruence is a relation that defines when two syntactic expressions in a formal system can be
considered equivalent in structure[8]. This relation is fundamental in the study of operational semantics
and type systems, as it allows us to reason about programs by simplifying or rearranging expressions
without changing their meaning. We denote structural congruence by =.

Example An example of structural congruence in action is how the + operator works in mathematics.
For the + operator, the following equivelences hold:

e Commutativity: The order of certain expressions can be swapped without affecting their equiva-
lence.

e1 + ea=ex + €1

e Associativity: Grouping of expressions can be changed without affecting their equivalence.

(e1 + e2) + es=e1 + (e2 + e3)

e Identity: Certain expressions have an identity element that can be added or removed without
affecting equivalence.

where 0 is the identity element for the operator —+.

Structural congruence ensures that programs can be reasoned about in a modular and flexible way,
allowing transformations that preserve the semantics of the program. This is crucial for proving properties
of programs. An important property as seen from a type system perspective is that structural equivalences
must preserve the type of the expression in order to be valid in a strongly typed system. This is important
since that is an obvious limitation of how equivalences can be used, and something we must remember
when defining Agp,.

2.5 Summary

In this chapter, we have laid the theoretical foundations essential for the development and understanding of
the A\g, language. Our exploration has covered several core areas, including formal operational semantics,
type systems, and structural congruence, all of which contribute to the robustness and reliability of Agp.
We began by discussing formal operational semantics, which provide a rigorous mathematical framework
for describing the behaviour of programs within A;,. By defining the syntax and the transition systems for
our language, we ensured that the execution of commands and expressions is precise and unambiguous. This
foundational work is critical for predicting and reasoning about the behaviour of Ay, programs. The type
system was another important part. We detailed how types are assigned to expressions within A4, ensuring
that operations are performed on compatible types. This prevents type errors and enhances the reliability
of scripts. We introduced key concepts such as typing contexts, type judgements, and subtyping, which
collectively enforce type safety and provide early error detection. The type system’s soundness, guaranteed
by the properties of preservation and progress, further ensures that well-typed programs do not encounter

Page 16 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

type-related runtime errors. We also delved into structural congruence, a relation that allows us to reason
about the equivalence of syntactic expressions. This concept is crucial for simplifying and rearranging
expressions without altering their meaning, thereby supporting the modularity and flexibility of Agp.

In summary, the theoretical foundations presented in this chapter establish a comprehensive and rigor-
ous basis for Agp. By integrating formal semantics and a robust type system, we have created a language
that combines the flexibility and utility of traditional shell environments with the reliability and safety of
modern type systems. These theoretical principles not only guide the design and implementation of Agp
but also facilitate reasoning about its behaviour and properties, ensuring that it is dependable.

The theory presented here sets the stage for further exploration and development of Agy. As we move
forward, these theoretical foundations will underpin our efforts to define the Ay, language.

Page 17 of

Chapter 3

Problem analysis

3.1 Introduction

The evolution of shell languages has significantly influenced the landscape of scripting and automation
in computing environments|5]. Despite their widespread use and powerful capabilities, traditional shell
languages like Bash and Zsh suffer from inherent limitations due to their weak type systems. These
limitations often lead to runtime errors, security vulnerabilities, and maintenance challenges, making shell
scripting a daunting task for developers. This chapter sets the stage for the development of Ay, a language
that aims to integrate the formal foundations of A-calculus with the practical utilities of traditional shell
environments. The primary objective of Ay is to create a robust type system that enhances the reliability,
security, and maintainability of shell scripts. By leveraging a strong type system, A, seeks to mitigate the
weaknesses of traditional shell scripting, providing developers with a more powerful and versatile scripting
language.

We begin by discussing the core challenges associated with traditional shell languages, focusing on
the implications of their weak type systems and the over-reliance on strings for data representation. We
then introduce the concept of a strong type system and outline its numerous benefits, including type
safety, early error detection, improved code clarity, optimisation opportunities, and enhanced security.
The chapter explores the core concepts and definitions required for understanding the formal operational
semantics of shell scripting. We explore how strings, numerals, and booleans can be modelled within a
type system, and we define the syntactic categories and formation rules for these data types. Additionally,
we present the semantic rules for string operations, demonstrating how a strong type system can handle
implicit conversions and ensure type correctness.

By extending the semantics to support multiple data types and implementing coercion, we illustrate
how A4, can provide a flexible scripting environment with sound foundations. Through detailed example
derivations and soundness proofs, we validate the robustness of our proposed type system. This chapter
provides the necessary foundation for developing As, by addressing the challenges of weak type systems in
traditional shell languages and demonstrating the benefits of strong typing. By laying this groundwork,
we aim to pave the way for the creation of next-generation shell languages that combine the power and
flexibility of traditional shells with the robustness and safety of modern type systems.

3.2 Challenges with traditional shell languages

In the domain of shell scripting, there are numerous elements that can be modelled formally through a type
system and formal operational semantics. These elements include environment variables, file descriptors,
the file system’s state, process management, input/output redirections, command sequencing, conditional

18

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

execution, looping constructs, parallel execution, and more[2|. Each of these components plays a critical role
in the behaviour and functionality of shell scripts, and formal modelling can provide a rigorous foundation
for understanding and reasoning about their interactions.

Formal operational semantics allows us to define precise rules for how shell commands transition the
state of the system. This includes how commands manipulate the current working directory, set and unset
environment variables, handle input and output streams, launch and manage processes, and interact with
the file system. By capturing these stateful mechanics, we can ensure that the behaviour of shell scripts
is predictable and well-defined. Despite the wide range of aspects that can be modelled, we have chosen
to focus our efforts on developing a strong type system for shell languages. We recognise the weak type
systems typically found in shell scripting as a significant limitation. The lack of robust type-checking
mechanisms often leads to runtime errors, security vulnerabilities, and maintenance challenges, which can
hinder the reliability and efficiency of shell scripts. It is important to note that shells type systems can be
considered so weak that they do not formally have a type system.

Traditional shell languages often allow for dynamic typing and implicit type conversions, which can
result in subtle bugs that are difficult to detect and debug[6]. For instance, the incorrect handling of string
and integer types, or the unintentional use of uninitialised variables, can lead to unexpected behaviours
and script failures. These issues are compounded in large and complex scripts, where the lack of type
safety can make code maintenance and refactoring particularly challenging. By introducing a strong type
system, we aim to address these weaknesses and enhance the overall robustness of shell scripting. A strong
type system can enforce type correctness at compile time, catching many errors early in the development
process and reducing the likelihood of unexpected behaviours during execution. This not only improves the
reliability of shell scripts but also facilitates easier debugging and maintenance by having type information
available.

A strong type system can provide several benefits[11]:

e Type safety: Ensures that operations are performed on compatible types, preventing common errors
such as type mismatches and invalid operations.

e Early error detection: Identifies type-related errors during the development phase, reducing the
risk of encountering these errors at runtime.

e Code clarity: Enhances code readability and maintainability by making type constraints explicit,
thereby reducing the cognitive load on developers.

e Optimisation opportunities: Enables compilers to generate more efficient machine code by lever-
aging type information, potentially improving script performance.

e Security: Mitigates certain types of vulnerabilities, such as injection attacks and buffer overflows,
by enforcing strict type constraints. This property of course depends on the type system.

Moreover, a strong type system can support advanced language features such as type inference, poly-
morphism, and generic programming, further enhancing the expressiveness and flexibility of shell scripts.
These features can make shell scripting more powerful and versatile, enabling developers to write more
complex and robust scripts with greater ease. Although many of these features are a step beyond what we
aim to do with this project, it is still important to have in mind what we can do once we have established
the basis of a strong type system.

In summary, while there are many facets of the shell domain that can benefit from formal modelling,
our decision to prioritise a strong type system is driven by the need to mitigate the inherent weaknesses of
traditional shell scripting|2]. We believe that this approach will lead to more reliable, secure, and main-
tainable shell scripts, ultimately contributing to the broader adoption and effectiveness of shell languages

Page 19 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

in various computing environments. By focusing on a strong type system, we aim to provide a solid foun-
dation for the development of next-generation shell languages that combine the power and flexibility of
traditional shells with the robustness and safety of modern type systems.

3.3 Weak Type Systems in Shell Languages

Shell languages, such as Bash, Zsh, and others, are widely used for scripting and automating tasks in
Unix-like operating systems. Despite their power and flexibility, these languages often suffer from weak
type systems, which can lead to various issues in script reliability, security, and maintainability|2].

A type system can be considered weak if it lacks strict type enforcement and fails to catch type-related
errors at compile time[11]. Shell languages exhibit the following characteristics that contribute to their
weak type systems|3]:

e Dynamic typing: Shell variables are dynamically typed, meaning their types are determined at
runtime. This flexibility allows variables to change types based on the context of their usage. For
example, a variable that holds an integer can later be used as a string without any explicit conversion,
which can lead to unintended behaviour. This is of course because an integer is a string in typical
shell languages.

e Implicit type conversions: Shell languages frequently perform implicit type conversions. For
instance, arithmetic operations can automatically convert strings to integers, and vice versa, without
explicit type declarations. This can result in subtle bugs, especially when dealing with user inputs
or variable assignments.

e Lack of type annotations: Most shell languages do not support type annotations or declarations.
This absence of explicit type information makes it difficult to reason about the types of variables and
function arguments, leading to potential type mismatches and runtime errors.

The weak type systems in shell languages can lead to several significant issues. Since type errors are
not caught at compile time, they often manifest as runtime errors, causing scripts to fail unpredictably and
leading to downtime and other operational issues|2]. Additionally, weak typing can contribute to security
vulnerabilities. A strong type system can enforce stricter type constraints, mitigating such risks. Scripts
written with weak type systems can also be difficult to maintain and extend. Refactoring such scripts
can introduce new bugs if type-related assumptions are violated. Moreover, debugging type-related issues
in shell scripts can be challenging due to the dynamic nature of variable typing and implicit conversions.
Consider the following examples to illustrate type-related issues in shell scripts:

1 # Example 1: Implicit type conversion
> num="123"

3 sum=9$ ((num + 10))

1 echo $sum # Outputs 133

6 num="abc”
7 sum=$ ((num + 10))
s echo $sum # Causes a runtime error

10 # Example 2: Dynamic typing and type mismatches
11 var="Hello”

2 var=$ ((var + 1))

13 echo $var # Causes a runtime error

Page 20 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

In the first example, the variable num is implicitly converted to an integer for the arithmetic operation,
which works as expected for numeric strings but causes a runtime error for non-numeric strings. In the
second example, the variable var is treated as a string and later used in an arithmetic context, leading to
a type mismatch and runtime error.

In summary, while shell languages provide powerful tools for automation and scripting, their weak type
systems pose significant challenges for making safe scripts. By recognising and fixing these weaknesses,
developers can improve the reliability, security, and maintainability of their shell scripts. Moving towards
stronger type systems and better type-checking mechanisms will lead to more robust and error-free scripting
environments, enhancing the effectiveness of shell languages in various computing contexts.

3.4 The special role of strings in shells

In addition to weak type systems, another significant challenge in traditional shell languages is the over-
reliance on strings for data representation and manipulation. Strings are fundamental to shell programming,
serving as the primary medium for specifying file paths, constructing commands, processing inputs, and
representing various types of data[2]. While this string-centric approach simplifies language design and
provides a uniform way to handle data, it also introduces complexities and limitations that can affect script
functionality, readability, and maintainability. Therefore, understanding the nature of strings role in shell
languages and string manipulation is essential for effective shell programming. This section explores the
fundamental aspects of strings in shell programming, exploring their usage, manipulation techniques, and
the challenges they pose.

Traditional shell languages, such as Bourne Again Shell, predominantly utilise strings as their funda-
mental data type[3]. The over reliance on strings can lead to a range of issues, particularly with string
interpolation, quoting, and when strings are used to represent some distinct type of data. For instance, the
treatment of white-space and special symbols often results in unpredictable behaviours if not meticulously
managed, leading to crashes and hard-to-debug errors|6]. This is mainly due to the odd parsing strate-
gies used by shells. The lack of strict data typing in traditional shells forces programmers to manually
handle type conversions and validations, increasing the risk of runtime errors and security vulnerabilities.
Additionally, this string-centric model hampers the ability to perform efficient static analysis, making it
difficult to catch errors.

The over-reliance on strings also contributes to the opacity and complexity of shell scripts, as developers
must constantly deal with the nuances of string manipulation and parsing[6]. This can result in scripts that
are difficult to read, maintain, and extend, ultimately impacting the productivity and reliability of shell
programming. To address these limitations, it is important to develop a better type system within shell
languages. A robust type system would provide clearer semantics for different types of data, reducing the
ambiguity inherent in treating everything as a string. By incorporating a more sophisticated type system,
shell languages could enforce stricter type checks, catching errors at compile time rather than at runtime.
This would not only improve the reliability and safety of shell scripts but also enhance their readability
and maintainability.

3.5 Strings in Action

To demonstrate the crucial role of strings in shell programming, we will explore how commands work
in typical shell languages, with a specific focus on string manipulation and how command interfaces are
defined as strings.

Page 21 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

3.5.1 Commands in Shell

In the context of Bash (Bourne Again SHell) and other shell languages, a ”"word” refers to a sequence
of characters considered as a single unit by the shell[3]. Words are fundamental syntactic and semantic
elements in shell programming. They can represent commands, arguments, or data inputs. Bash uses
spaces (or other Internal Field Separator (IFS) characters) to separate words, treating each word as a
distinct string. For example, consider the command:

cp myfile.txt backup/myfile.txt

In this command:

e cp is the first word, representing the copy command.

e myfile.txt is the second word, indicating the source file name.

e backup/myfile.txt is the third word, indicating the destination path and file name.

Each string separated by spaces is treated as a distinct word by the shell. Words can be grouped into a
single word using quotes. This is particularly useful for handling filenames or arguments containing spaces.
For instance:

cp "my file.txt" "backup/my file.txt"

Here, "my file.txt" and "backup/my file.txt" are treated as single words despite containing spaces,
thanks to the enclosing quotes. This example highlights how strings, when quoted, can be preserved as
single words, emphasizing the importance of understanding string and word boundaries in Bash. In Bash
scripting, grasping how strings are parsed into words and how these words are processed is essential for ac-
curately handling commands, arguments, and data manipulation. Commands are essentially compositions
of strings. The syntax for defining a command is:

(command) = (string)+

In this context, we will not consider word expansion or variables, as these are extended features be-
yond fundamental command mechanics. A command is composed of one or more strings. A simple shell
command like mkdir dirl dir2 dir3 is interpreted as a list of strings: ["mkdir", "diri", "dir2",
"dir3"], where the first string identifies the command. This identifier can be either a file path to an
executable or the name of an executable within the shell’s search path. Commands mirror the argument
interface to processes in Unix, characterised by the main function’s signature: int main(int argc, char
*xxargv) { ... }. The entire list of strings constituting the command is passed to the executable.

The structure of commands includes:

1. The first string as the name or location of the executable command. This is either a direct file path
or a command name recognised within the shell’s environment path.

2. Subsequent strings are treated as arguments to the command, providing specifics on how the com-
mand operates.

Page 22 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

This structure emphasises the modular and executable nature of commands within the shell, where
commands are not only limited to named functions but also include executable files, all determined by
their position and context within the command sequence. As established earlier, the first string in a
command is the command name or identifier. The following order describes how the commands are looked
up by the shell:

1. The shell looks up the command name in its list of built-in commands.

2. If not found, it searches for an executable in the directories listed in the $PATH environment variable
or in the current working directory.

3. If not found, the shell reports an error.

When a command is defined with a command name, the shell runs the command with all the strings
making up the command passed to the process that executes the command. The actual mechanics of
running a command are beyond the scope of this section. It is important to note that the command name
string is not a special string; it is just a string like any other.

3.6 Designing a string-centric type system

It should be obvious from our analysis of how commands work that strings play an important role in shell
programming. They serve as the medium through which we communicate with external processes. Because
of this, we propose designing our type system in such a way that strings are given special consideration.
This string-centric approach is necessary to accurately reflect the nature of shell programming, where
strings form the backbone of command interfaces and data exchange.

However, focusing on strings does not mean sacrificing the robustness of our type system. Our goal is
to maintain a strong type system while accommodating the unique requirements of string handling in shell
programming. OQur observation is the following: in typical shells most pieces of data are strings until they
are implicitly converted to something else doing an operation such as arithmetic. But why not do it in the
other direction? Everything is the most particular datatype that it represents, and is converted to strings
when needed. Most of the data worked with in shells, such as booleans and numbers, have neat string
representations, so conversions are entirely possible. Then all data types that are representable as strings
can be used as strings, as long as all operations that strictly require a string converts that piece of data to
its string representation. Or maybe, we don’t even need to convert anything to strings at all, if the data
types can be used in string operations by only converting to strings when absolutely necessary. Operations
such as string concatenation does not need the operation to actually convert anything to strings in order
to work. Only when the string resulting value is used as a string, for example if it is being read.

In order to go about designing a type system with special focus on strings, we should explore how we
can built such a type system and how it would materialise. We can start our exploration with what we want
to do with strings. The most important string operations is string concatenation and string interpolation,
and as we will explain in the next section, they are in fact the same.

3.7 String interpolation and concatenation

String interpolation is a programming technique that allows you to insert the value of variables or ex-
pressions into a string. It makes it easier to construct strings dynamically by embedding variable values
directly within a string template. Different programming languages offer various ways to achieve string
interpolation.

Page 23 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

In Bash, string interpolation is straightforward and uses the $ symbol to insert the value of variables
into strings|3]. An example can be seen in Listing |3.1

1 # Define a variable
2 name="Nikolai”

3 age=24
4

5 # Simple string interpolation

6 echo ”"Hello, $name!” # Output: Hello, Nikolai!

s # Interpolating multiple variables

echo ”"$name is $age years old.” # Output: Nikolai is 24 years old.

¢

10

11 # Using curly braces to avoid ambiguity

12 file_extension="1txt”

15 echo ?The file is named ${name}.${file_extension}” # Output: The file is named
Nikolai. txt

14

15 # Arithmetic operations within a string

16 number=>5

17 echo ”The double of $number is $((number * 2)).” # Output: The double of 5 is 10.

Listing 3.1: String Interpolation in Bash

Bash offers a straightforward method for string interpolation, but it is somewhat simplistic. This is
because, in Bash, all values are fundamentally treated as strings. Bash lacks distinct data types, except in
special cases where string values are implicitly converted, such as in arithmetic and boolean comparisons.
There are also arrays and mappings, but these are rarely used.

Python provides a more sophisticated approach to string interpolation compared to Bash. Unlike Bash,
Python supports multiple data types, yet its string interpolation syntax is similarly straightforward. This
is achieved through underlying semantics that handle type conversions seamlessly|9]. In Python, there
are several methods for string interpolation, including the % operator, the str.format () method, and
f-strings (formatted string literals). These methods offer flexibility and power in constructing dynamic
strings. We will be focusing on string interpolation of the f-string kind, since they are similar to how Bash
string interpolation works.

Conventions, such as F-strings, provide a convenient and readable way to embed expressions inside
string literals using curly braces in python and $ in Bash. However, you can achieve the same result using
a string concatenation operator such as + in Python. This approach involves converting each expression
to a string and concatenating it with other string parts. An example of this can bee seen in Listing [3.2]
and Listing [3.3] which are fundamentally equivalent programs. In that sense, f-strings are essentially just
syntactic sugar for string concatenation with automatic conversion to strings.

1 name = ” Nikolai”
> age = 24
3 greeting = f”Hello, {name}! You are {age} years old.”
4+ print (greeting)
Listing 3.2: String Interpolation using F-strings

1 name = " Nikolai”
2 age = 24
3 greeting = ”"Hello, 7 + str(name) + 7! You are ” + str(age) + 7 years old.”

. print (greeting)

Listing 3.3: String Interpolation using String Concatenation

Page 24 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

In Listing [3.3] it is necessary to explicitly convert non-string values to strings using the str () function.
This can make the code verbose and harder to read, especially when dealing with multiple variables
and expressions. In contrast, f-strings, such as in Figure provide a more elegant solution. They
automatically handle the conversion of non-string values to strings, allowing for a more concise and readable
syntax. We could imagine that we could make string concatenation work in a similar way by converting
its arguments automatically into strings if such a representation is available for the datatype.

As we can see, string interpolation is just syntactic sugar for string concatenation with implicit conver-
sions to strings. In essence, string interpolation allows for a more readable and convenient way to construct
strings by embedding expressions directly within string literals. However, under the hood, this process
is translated into a series of string concatenation operations. The operational semantics for this process
involve evaluating each expression within the interpolation, converting the result to a string if necessary,
and then performing the concatenation.

We will now explore a few semantic of how string concatenation with such behaviour can be defined
formally in Section |3.8

3.8 String concatenation and conversion semantics

In order to get a better insight into how string operations work, we explore a few simple string concatenation
semantics inspired by those described in Section We will start with the most basic one in Section [3.9
which resembles how we would view string concatenation in a language such as Bash. Then, we extend
that semantics to support more data types in Section [3.10]and see how that changes the semantics. Finally,
we use structural congruence to improve upon the semantics from Section [3.10]in Section [3.11

3.8.1 Structural congruence

Before we introduce a concrete semantics for string operations, we want to look at some properties for
the operations we want to perform. Specifically, we want to introduce some structural equivalences that
are valid for string concatenation. Structural congruence, denoted as = defines when two expressions are
considered equivalent in structure. For our string concatenation, we can define structural congruence rules
for reflexivity, symmetry, transitivity, associativity of concatenation.

Reflexivity)
Symmetry)

e=e
If e = €9, then es = €1

If e = ey and eg = e3, then e; = ez (Transitivity)

o~~~ o~

(61 o 62) ocez =e€10 (62 o 63) Associativity)

Figure 3.1: Structural equivalences in for string concatenation.

It should be obvious that these properties hold for string concatenation operations. These properties
are important when defining a programming language, since they have an impact on how one should define
an evaluation strategy for a certain expression. Does it matter if we evaluate e; before eo, or whether they
switch places in a larger expression? That is some of the questions we get answered when defining the
structural congruence’s in a language. These properties hold for all of the languages we will present in this
thesis.

Page 25 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

3.9 String concatenation

The first semantics are simple rules without any other data types than strings. The general idea is to
showcase how a string only languages would handle string operations, such that we can built upon this
foundation later. In the language we have the following:

3.9.1 Syntactic categories and formation rules

reV
sesS
ecE

Figure 3.2: Syntactic categories for the simple string concatenation language.

In Figure V is the set of all variables, S is the set of all strings, and E is the set of all expressions.

ex=x|s|eoey

Figure 3.3: Formation rules for expressions.
As seen in Figure the string concatenation operator is denoted as o.

3.9.2 Semantics

In order to define string concatenation we develop a big step semantics. To define a big step semantics of
our language, we need to introduce the value category v € S, which encompasses all possible string values.
This category allows us to formalise the behaviour and evaluation of strings within our system.

Our semantic model is represented as a transition system as a triple (C,—,T'), where:

C =FE (expressions)
T =S (type of values)
In order to define our operational semantics we need to define two functions, ¢ and €. o is the
representation of the environment in this simple calculi. ¢ maps from variables to strings o(x) € S. € is

a function that maps elements from the syntactic category of strings S to the value category of strings S.
These functions are used in Figure [3.4

[VAR] T it o(z) =v

[STRING] s if €(s) =

el — vl es — Uy
[CONCAT)] 1 610162—2>U 2 if v =vy 0wy

Figure 3.4: Big-step semantics for a simple string concatenation language.

Page 26 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

The transition system is defined in Figure The rule [VAR] states that a variable z transitions to a
value v if the variable x is mapped to the value v in the environment o. Essentially, this rule retrieves the
value associated with the variable from the environment. The rule [STRING] says that a string literal s
transitions to a value v if the evaluation of s using the mapping function € results in v. This rule directly
maps string literals to their corresponding values. The rule [CONCAT] handles the concatenation of two
expressions e and ey transitions to the value v if e; transitions to the value v; and e transitions to the
value eo, and the concatenation of v1 and wvo results in v.

3.9.3 Type rules

To define the type system for our language, we introduce a set of type rules that ensure the syntactic
expressions are correctly typed. These rules enforce that operations on strings are valid and that the
resulting types are consistent within the semantic framework. Now, these are very simple right now since
we only have strings, but we will expand on them shortly. The type rules for simple string operations are
summarised in Figure [3.5

The typing context I' is a mapping from variables to their types. It provides the necessary information
to type-check expressions involving variables. For example, if I'(x) = String it means that the variable x
is known to have the type String within this context. In this simple language we have that Vo € V.I'(z) =
String since I is a total mapping from variables to strings.

I'(x) = String

[T-VAR] 'z : String
[T-STRING] ' s: String
I'key: Stri I'Fey: Stri
[T-CONCAT] el ring €9 ring

I'Fejoey: String

Figure 3.5: Type rules for string concatenation.

In Figure we have the type rules. The rule [T-VAR] states that a variable x is of type String if «
is present in the typing context I' with the type String. The rule [T-STRING] states that a string literal
s is always of type String, regardless of the context. The rule [T-CONCAT] states that the concatenation
of two expressions e; and es is of type String if both e; and ey are of type String in the typing context I
We will base our later type systems on the same system of a typing context I'. This description outlines
the complete semantics for a basic form of string concatenation, assuming all values involved are strings.
An example of a language that utilises this type of string concatenation is Bash, as discussed in Section
Now, let us expand on this to include more than just strings as data types.

As we can see with this small-semantics, it is not particularly difficult to built a semantics for string
operations when we are only dealing with strings as in languages like Bash, but what if we are not just
dealing with strings like in Python, where we have multiple data types? Then we still want to deal with

string operations as easily as in this small semantics, but we obviously need other systems or mechanics to
handle this.

Page 27 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

3.10 String concatenation extended with more data types

We will now expand the language with numerals and booleans, which are types that are easily representable
as strings. To expand the syntax to include numerals and booleans, we need to extend the syntactic
categories and the formation rules to incorporate these additional types. Additionally, we’ll modify the
semantics to handle implicit conversions of numbers and booleans to strings during concatenation.

We will introduce new syntactic categories for numerals and booleans, and define new formation rules.
We will also update the semantics to handle these new types and their implicit conversions.

3.10.1 Syntactic categories and formation rules

We extend the syntactic categories from Figure with the categories from Figure 3.6

reV
seS

neN
beB
ecE

Figure 3.6: Caption

In Figure N is the set of all numerals and B is the set of all booleans. Furthermore, we extend the
formation rules in [3.3] as described Figure [3.7]

ex=x|s|n|bleoey
Figure 3.7: Formation rules for expressions.

3.10.2 Semantics

To define the semantics of the expanded language, we need to handle the implicit conversion of numerals
and booleans to strings during concatenation. We update our semantic model and introduce the necessary
functions and rules. First, the value category v € V now includes strings, numerals, and booleans, where
N is the set of numerals values and B is the set of boolean values:

sesS

neN

beB
veV=SUNUB

Our semantics model remains a transition system represented as a triple (C,—,T), where:
C =E (expressions)

T =V (type of values)

Page 28 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

We redefine our functions ¢ and e to handle the new types. Specifically, I' maps variables to values
in V, and € maps elements from the syntactic categories S, N, and B to the equivalent value in the value
category V.

[VAR] =7 if o(z) =v
[STRING] s if e(s) =5
INUM] 7= if €(n) =n
[BOOL] — it eb)=b
[CONCAT] - —e>1voleg ei? = if S = toString(v;) o toString(va)

Figure 3.8: Semantic rules for the expanded string concatenation language.

The transition system is defined in Figure The rule [VAR] states that a variable x transitions to
a value v if the variable x is mapped to the value v in the environment I'. The rule [STRING] states that
a string literal s transitions to a value v if the evaluation of s using the mapping function € results in v.
The rule [NUM] states that a numeral n transitions to a value v if the evaluation of n using the mapping
function € results in v. The rule [BOOL] states that a boolean b transitions to a value v if the evaluation
of b using the mapping function € results in v. The rule [CONCAT] handles the concatenation of two
expressions e; and eg, and it ensures that the values vy and vy are implicitly converted to strings before
concatenation. The toString function is a mapping from values v € V to their string representations
in the value category S. For values in S, this function serves as an identity function. How exactly this
conversion from values in N and B is made is considered an implementation detail.

3.10.3 Type system

To define the type system for our expanded language, we introduce new type rules that ensure the syntactic
expressions involving numerals and booleans are correctly typed. These rules enforce that operations on
strings, numerals, and booleans are valid and that the resulting types are consistent within the semantics
of the type system. We update the typing context I' such that we can type-check expressions involving
variables. The typing context I" is defined as a total mapping from variables V to types {Bool, String, Num}.
This means that for any variable z € V, I'(x) will specify whether z is of type Bool, String, or Num. For
example, if I'(z) = String, it means that the variable x is known to have the type String within this
context.

Page 29 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

I'(x) =T T € {String, Num,Bool}

VAR 'cax:T
[T-STRING] T String
[T-NUM] TFn N
[T-BOOL] TF b Bool
[T-CONCAT] I'te:Th T'keg:Ty Ty,T> € {String, Num,Bool}

I'Fejoey: String

Figure 3.9: Type rules for the expanded string concatenation language.

In Figure we have the updated type rules. The rule [T-VAR] states that a variable x is of type
T if x is present in the typing context I' with the type T, where T can be String, Num, or Bool. The
rule [T-STRING] states that a string literal s is always of type String. The rule [T-NUM] states that a
numeral n is always of type Num. The rule [T-BOOL] states that a boolean b is always of type Bool. The
rule [T-CONCAT] states that the concatenation of two expressions e; and ey is of type String if both e;
and eq are of types that can be converted to strings (String, Num, or Bool) in the typing context I'.

3.10.4 Example derivation

In this example we create a derivation of the type system and semantics in order to provide a better
intuition of how the rules are applied. We use the example ”You are ” o 24 o 7 years old!”.

First, it is shown in the derivation using the type rules in Figure which demonstrates that
”You are "o 240 7 years old!” is well-typed.

'+ "You are ”: Strin TF 24 um L0 VOM)
[T-STRING] [T-STRING]

I'F (”You are 70 24) : String I'= 7 years old!” : String
2” ” ” 9 . [T_CONCAT]
I'F (7You are 70240 ” years old!”) : String

[T-STRING]
g

Figure 3.10: Type derivation for string concatenation with multiple data types.

Secondly, we show in Figure that there exists a derivation for ”You are "o 24 o0 7 years old!” such
that the program evaluate down to ” You are 24 years old?.

”»

7 7 5 [STRING] S7——5+ [NUM]
You are ” — "You are 24 — 24 [CONCAT]

"You are ¥ o024 — "You are 247

"You are ¥ o024 0”7 years old!” — 7You are 24 years old!”

[STRING]

7 years old!” — 7 years old!”
[CONCAT]

Figure 3.11: Example derivation for string concatenation with multiple data types.

As we have seen Figure [3.10| and Figure the type system seems well-defined and the semantics

Page 30 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

seem to work too. Now, we want to show that the type system is sound, such that we can confidently say
the type system and semantics are well-defined.

3.10.5 Soundness proof

A type system is considered sound if it guarantees that programs which have been successfully type-checked
will not produce certain kinds of runtime errors related to types. In other words, if a program is well-typed
according to the rules of the type system, it will not encounter type errors when it is executed. This
concept is crucial in programming languages because it provides a form of correctness assurance, meaning
that type-related errors can be caught at compile time rather than at runtime. To prove the soundness of
the type system for the expanded string concatenation language with numerals and booleans, we need to
show that well-typed programs do not go wrong. This involves demonstrating two key properties:

e Preservation: If a well-typed expression takes a step in the operational semantics, the resulting
expression is also well-typed.

e Progress: A well-typed expression is either a value or can take a step according to the operational
semantics.

We start by showing the preservation property.

Theorem 1 (Preservation: the reduction rules preserves types). Assume that e is an expression, if T'Fe: 7
ande — ¢, thenT'Fé : 1.

Proof. We proceed by induction on the derivation of the evaluation e — ¢’.

Case [VAR]:

T =0 if O'(l’):’l}

From the typing rule [T-VAR], we have I' - x : T where I'(z) = T. Since z — v by looking up z in
o, and assuming the environment ¢ maps variables to values of the correct type, we have I' - v : T'.

Case [STRING]:
= if 6(8) =S

From the typing rule [T-STRING], we have I' - s : String. Since s — S and S is the string value
corresponding to s, I' =S : String by definition.

Case [NUM]:

n=n if e(n):n

From the typing rule [T-NUM], we have I' - n : Num. Since n — n and n is the numeral value
corresponding to n, I' - n : Num by definition.

Case [BOOL]:

R if €(b) =b

From the typing rule [T-BOOL], we have I' - b : Bool. Since b — b and b is the boolean value
corresponding to b, I' F b : Bool by definition.

Page 31 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [CONCAT]:
ep —»v1 ez —v2 S=toString(v;) o toString(vs)
e10ey — S
From the typing rule [T-CONCAT], we have I' - ejoey : String if ' Fe; : T and I' F ey : Th
where T, Ty € {String, Num, Bool}.

Assume e; — v; and es — vy. By the induction hypothesis, I' F vy : T} and I' F vy : T5. Since vy
and vy are values, toString(v;) and toString(ve) produce string values. Thus, S = toString(v;) o
toString(vy) is a string, and hence I' - s : String.

O
Now that we have shown the preservation property, we show the progress property.

Theorem 2 (Progress: an expression is either a value or can be evaluated further). Assume that e is and
expression. If '+ e : T, then e is either a value or there exists an €' such that e — €.

Proof. We proceed by induction on the derivation of the typing judgment I' e : T
Case [T-VAR]:
I'(x) =T T € {String, Num, Bool}
I'rax:T

Variables are assumed to be mapped to values in the environment o, so they can take a step to their
corresponding value.

Case [T-STRING]:

'k s:String
A string literal is already a value.
Case [T-NUM]:
I'Fn: Num
A numeral literal is already a value.
Case [T-BOOL]:
I'Fb:Bool

A boolean literal is already a value.

Case [T-CONCAT]:
'te:Th Thkey:Ty, Ty,T; € {String, Num,Bool}
I'kejoey: String

If e; is not a value, then by the induction hypothesis, there exists €} such that e; — €}. Hence,
e1 0 ey — €} o eg. Similarly, if eg is not a value, then es — €, and e; o eg — eq 0 €. If both e and ey
are values, then e; o e — v where v is a string.

O

Conclusion Since both preservation and progress properties hold, we have shown that the type system for
the expanded string concatenation language with numerals and booleans is sound. Well-typed expressions
do not go wrong: they either evaluate to a value of the correct type or can take a step according to the
operational semantics.

Page 32 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

3.11 String concatenation with subtyping and coercion

While the semantics defined in Section is satisfactory, we can improve upon the generality of the
conversion to strings by introducing a coercion rule and the use of subtyping.

3.11.1 Syntactic Categories and Formation Rules

To define string concatenation through structural congruence, we use the same syntactic categories as those
in Figure [3.6

reV
sES
neN
beB
ec E

Figure 3.12: Formation rules for the language.

ex=z|s|n|bleoey
Figure 3.13: Extended formation rules for structural congruence.

3.11.2 Semantics

In the semantics of our language with multiple data types , we use most of the same definitions for o,
€, and toString from Section Our values also remain the same as in Section Our transition
system (C, —,T) is also the same, except that we introduce new transition rules — as seen in Figure

[VAR] =7 if o(z) =v
[STRING] s if e(s) =s
INUM] = if €(n) =n
[BOOL] ;o p e =b
[CONCAT)] G 22 irs=s505
[TO-STRING] v s if S = TOSTRING(V)

Figure 3.14: Semantic rules for the expanded string concatenation language with structural congruence.

Page 33 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

The semantics presented in Figure define how expressions in an expanded string concatenation
language with structural congruence are evaluated. According to the [VAR] rule, variables are evaluated
based on their assignments in the environment; if a variable x is assigned the value v in the environment
o, then x evaluates to v. For literals, the evaluation is straightforward: according to the [STRING] rule,
a string s maps to its corresponding value s, the [NUM] rule specifies that a numeric literal n maps to n,
and the [BOOL] rule states that a boolean literal b maps to b, all based on the interpretation function e.
String concatenation is handled by the [CONCAT] rule, which evaluates the sub-expressions individually;
if e; evaluates to $; and ey evaluates to Sg, then the concatenation of e; and e results in the string S; o Ss.
Coercion between types is managed by the [TO-STRING] rule, which indicates that if s is the string
representation of the value v, then v evaluates to the string s.

These rules collectively provide a consistent framework for evaluating expressions in this language,
ensuring that variables, literals, concatenations, and type coercion are interpreted correctly.

3.11.3 Type System
Formally, the set of types 7 can be defined as:
T ::= String | Num | Bool

These types ensure that expressions within the language are type-safe and that type conversions are
well-defined and consistent.

We introduce subtyping in order to allow values that are not strings but are representable as strings
through a coercion to be used in places where strings are required. The subtyping relation A <: B indicates
that type A is a subtype of type B. For our language, we define the subtyping relation as follows:

Num <: String
Bool <: String
T <:71 (reflexivity)

This means:
1. Any numeric type (Num) can be considered a subtype of String.
2. Any boolean type (Bool) can be considered a subtype of String.

3. Any type is a subtype of itself (reflexivity).

Page 34 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

IT-VAR)] I(@) =7
I'Fz:7
[T-STRING] T s String
[T-NUM]J .
[T-BOOL] T Bool
reavea R e
[T-SUB] Phe:m m<im

'ke:m

Figure 3.15: Type rules for the expanded string concatenation language with structural congruence.

The type rules for the expanded string concatenation language through coercion provide a framework for
ensuring the type correctness of various expressions within the language. According to the [T-VAR] rule,
if the type environment I' assigns a type 7 to a variable x, then x has type 7. This ensures that variables
are used consistently with the types assigned to them in the type environment. The [T-STRING] rule
asserts that a string literal s is of type String. This rule guarantees that all string literals are recognised
as having the correct string type within the type system. Similarly, the [T-NUM] rule specifies that a
numeric literal n is of type Num. This rule ensures that numeric literals are correctly typed as numbers.
The [T-BOOL] rule states that a boolean literal b is of type BOOLEAN. This rule confirms that boolean
literals are appropriately typed as booleans within the type system. The [T-CONCAT] rule handles the
type of string concatenation expressions. It states that if both expressions e; and ey are of type String,
then their concatenation ej o eg is also of type String. This ensures that the result of concatenating two
strings is itself a string. The [T-SUB| rule introduces subtyping into the type system, allowing for more
flexible type checking. It states that if an expression e has type 71, and 71 is a subtype of 7o (denoted
71 <:T9), then e can be assigned the type 7.

These rules collectively provide a consistent type system for the expanded string concatenation lan-
guage, ensuring that variables, literals, concatenations, and type coercion are correctly typed and managed
within the language framework.

3.11.4 Example Derivation

To illustrate how the subtyping relation and type rules work, as in Section |3.10] we create a derivation
of the type system and semantics to provide a better intuition of how the rules are applied. We use the
example 24 o 7 years old!” (The example from Section is too long).

First, we show the type derivation using the type rules in Figure[3.16

I'F24:Num Num <:String
I'F24: String '+ 7 years old!” : String
I'F 2407 years old!” : String

[T-SUB]

[T-STRING]
[T-CONCAT]

2

Figure 3.16: Type derivation for 24 o ” years old!”.

Page 35 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Next, we show the semantic derivation in Figure [3.17] illustrating that the expression evaluates to
724 years old!.

24 — 24
toString(24) — 724"

[TO-STRING] 24 = toString(24)

[STRUCT] -

[STRING]
[CONCAT]

24 — 7247 years old!” — 7 years old!”

24 0 7 years old!” — 724 years old!”

2

Figure 3.17: Semantic derivation for 24 o 7 years old!”.

As in Section we now show a soundness proof for the type system. We want to prove that this
type system is actually sound, since structural congruence introduces a more generalised version of implicit
type conversion.

3.11.5 Soundness proof

To prove the soundness of the type system for the expanded string concatenation language with structural
congruence, we need to show that well-typed programs do not go wrong. This involves demonstrating the
two key properties:

e Preservation: If a well-typed expression takes a step in the operational semantics, the resulting
expression is also well-typed.

e Progress: A well-typed expression is either a value or can take a step according to the operational
semantics.

We start by showing the preservation property.

Theorem 3 (Preservation: the reduction rules preserves types). Assume e is and expression. IfT'Fe: T
ande — ¢, thenT' e :T.

Proof. We proceed by induction on the derivation of the operational semantics e — €.

Case [VAR]:

=0 if O'(IL’):U

Given I' -z : 7 and * — v, we need to show I' F v : 7. By the [T-VAR] rule, I'(x) = 7, and since z
evaluates to v, v must have type 7.

Case [STRING]|:
535S if 6(3) =S

Given I' F s : String and s — S, we need to show I' - s : String. By the [T-STRING] rule, s is a
string literal and s is its value, which is of type String.

Case [NUM]: .
n=n if e(n) =N

Given I' F n : Num and n — n, we need to show I' - n : Num. By the [T-NUM] rule, n is a numeric
literal and n is its value, which is of type Num.

Page 36 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [BOOL]:

5 5 if e(b)=Db
Given I' F b : Bool and b — b, we need to show I' - b : Bool. By the [T-BOOL] rule, b is a boolean
literal and b is its value, which is of type Bool.

Case [CONCAT]: s ey
€1 0€e3 — S

if S=510859

Given I' - ej oeg : String and ej oea — S, we need to show I' - s : String. By the premises, e; — 3
and e — S9, and by induction hypothesis, I' - 51 : String and I' F Sg : String. Therefore, S = S 059
is a string, and I' - 5 : String.

Case [TO-STRING]|:
V=5 if S = tOStI‘iIlg(V)

Given I' - v : 7 and v — s, we need to show I' - s : String. By the subtyping relation, 7 <: String,
and thus, s is the string representation of v, which means I' s : String.

Now that we have proved the preservation property, we need to show the progress property.

Theorem 4 (Progress: an expression is either a value or can be evaluated further). Assume that e is and
expression. If ' e : T, then e is either a value or there exists an €' such that e — €.

Proof. We proceed by induction on the derivation of the typing judgement I' e : T

Case [T-VAR]:
(z)=r71
I'tax:7
Variables are assumed to be mapped to values in the environment o, so they can take a step to their
corresponding value.

Case [T-STRING]:

I'-s:String
A string literal is already a value.
Case [T-NUM]:
I'Fn:Num
A numeral literal is already a value.
Case [T-BOOL]:
I'Fb:Bool

A boolean literal is already a value.

Page 37 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [T-CONCAT]:
I'Fep:String I'Feg: String

I'Fejoey: String

If e; is not a value, then by the induction hypothesis, there exists €} such that e; — €}. Hence,
e1 0 ey — €} o eg. Similarly, if ey is not a value, then es — € and ej o ea — eq 0 €. If both e and ey
are values, then e; o e — v where v is a string.

Case [T-SUB]|: .
e:m T <:Ty
I'Fe:nm

By the induction hypothesis, if I' - e : 7y, then e is either a value or there exists ¢’ such that e — €.
Since 7 <: T, we consider the possible subtyping relations:

e If 74 = Num and 75 = String, then by the subtyping relation Num <: String, we know that e
can take a step according to the [TO-STRING] rule.

e [f 71 = Bool and 7 = String, then by the subtyping relation Bool <: String, we know that e
can take a step according to the [TO-STRING] rule.

Therefore, in both cases, e can take a step to toString(e) which is of type String. Thus, the progress
property holds for 75.

O

Conclusion Since both preservation and progress properties hold, we have shown that the type system for
the expanded string concatenation language with structural congruence is sound. Well-typed expressions
do not go wrong: they either evaluate to a value of the correct type or can take a step according to the
operational semantics.

3.12 Next

Now that we have showcased how a type system can be built around a string-centric model, we will describe
how we have implemented Ay, with this in mind. This implementation ensures that the type system uses
subtyping to allow data types that can be represented as strings to be treated as strings. We have focused
on creating a robust framework that maintains the simplicity and familiarity of traditional shell syntax
while providing the benefits of a strong type system.

Page 38 of

Chapter 4

Formal specification of),

In this section, we introduce Ay, a language designed to illustrate how we can model a shell language with
a sound type system. Ay, extends the traditional A-calculus by integrating features commonly found in
Unix-like shell environments, such as string interpolation, incorporating core operating system functions,
representing the file system, and a highly concurrent environment.

The main goal of)y, is to demonstrate how these features can be formalised within a theoretical frame-
work, providing a foundation for implementing a shell programming language. By combining the rigour
of A-calculus with practical elements of shell programming, A, is supposed to serve as a bridge between
theoretical computer science and real-world shell programming. We will begin by defining the syntactic
categories and formation rules of Ay, followed by an exploration feature by feature of its operational se-
mantics, type rules, and structural equivalences, concluding with a discussion on the properties of the type
system and formal proofs of soundness.

4.1 Computational Model

The Ay, language is based on the Ao-calculus presented in the paper ”Explicit Substitutions” by Abadi,
Cardelli, Curien, and Lévy|[l]. The Ao-calculus refines the classical A-calculus by making substitutions
explicit, providing a framework for studying substitution theory with robust mathematical properties. This
explicit handling of substitutions allows for a detailed understanding and verification of the implementation
of A-calculus, and serves as a good foundation of an implementation of a language based on A-calculus,
since it is well-suited for usage within a small-step semantics. The Az, language leverages these properties
to manage and manipulate substitutions directly, ensuring precise and efficient computation.

4.2 Syntactic Categories and formation Rules

The Ay, language extends the traditional A-calculus by introducing features such as quoting expressions,
core operating system functions, and a representation of the file system. These extensions allow Az, to
effectively handle shell scripting tasks while maintaining the formal rigour of A-calculus. This section
defines the syntactic categories and formation rules of Ay, which form the foundation of the language’s
structure and semantics. The language is defined by the syntactic categories in Figure 4.1

39

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

n e N (Numerals)
beB (Booleans)
s€S (String)
peP (Filepath)
0c€O (OS-level Constants)
reV (Variables)
ecE (Expressions)
7eT (Types)
ceM (Substitutions)

Figure 4.1: Syntactic categories of the language.

The categories can be described in the following way:

N (Numerals) Numerals, which are representations of natural numbers.
B (Booleans) Booleans, which represent the truth values: ‘true‘ and ‘false’.

S (String) Strings, which are sequences of characters used to represent text. Examples include "hello”,
”world”, and ” Christoffer”.

P (Filepath) File paths, which are strings representing the locations of files within a filesystem. File paths
can be absolute, starting from the root directory, or relative, starting from the current directory.

V (Variables) Variables, which are placeholders for values that can change during program execution.
Variables are used to store data that can be modified or retrieved later.

O (OS-level Constants) OS-level constants, which are specific to the operating system environment and
remain constant. Examples include environment variables and predefined system paths.

E (Expressions) Expressions, which are combinations of variables, constants, and operators that evaluate
to a value. The formation rules for E is described in Figure |4.2

ex=n|b|s|plo|z|Ax:Te|elo]|eroes]||e]]|[e]
Figure 4.2: Formation rules for E.

T (Types) Types, which classify data into categories such as integer, boolean, string, etc. Types help
define the kind of operations that can be performed on the data and how the data is stored. This

category can be seen in Figure 4.3

T = string | unit | filepath | num | bool | 7| |71 — T2 | T1 072
Figure 4.3: The types in the Ay

Page 40 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

M (Substitution) In this language we use explicit substitution and for that reason we need M. The
formation rules for M is described in Figure

ou=1id]| (e/x) -0

Figure 4.4: The formation rules for substitutions.

In conclusion, the syntactic categories and formation rules of Ay, provide a foundation for representing
and manipulating various types of data and operations within the language. By extending the traditional
A-calculus with additional categories and rules, Ay, is equipped to handle the concepts found in shell
scripting.

4.3 Semantics

The semantics of Ag, provides a formal framework for understanding the behaviour and execution of
programs written in the language. This section describes the small-step operational semantics, explicit
substitutions, values, constant evaluation, and the shell state. By defining these aspects, we can precisely
describe how Ay, programs are evaluated and executed in a small-step semantics, ensuring correctness and
predictability in their behaviour.

4.3.1 Small-step semantics

The semantics of Agp, is defined through a small-step operational semantics. This approach specifies how
individual computational steps are performed, allowing us to describe the execution of programs as a
sequence of small, atomic transitions. Each step represents a single reduction or evaluation rule applied
to a part of the program, gradually transforming it until a final value is reached. In small-step semantics,
the execution of an expression e proceeds through a series of transitions:

€e—€1 —>€e3—> - —>V

where each e; is an intermediate expression and v is the final value. By using small-step semantics, we can
formally reason about the correctness and properties of Ay, programs, and we will use it later in order to
prove the soundness property.

4.3.2 Explicit substitutions

In Agp, explicit substitutions are the mechanism for handling variable bindings. This approach incorporates
bindings directly into the syntax, which is crucial for modelling the language using small-step semantics.
Explicit substitutions allow us to accurately maintain the correct environment throughout partial evalua-
tion steps. This approach is borrowed/inspired by Abadi et al|l].

Explicit substitution involves systematically replacing variables in an expression with their correspond-
ing values as defined by a substitution mapping. This method is essential for implementing variables and
scopes within the language. Because Ay, is described using small-step semantics, it is necessary to store
variable bindings for each partial transition. The substitution mapping, denoted by o, is a finite mapping
from variables to values and is an integral part of the syntax. A substitution mapping is represented
syntactically as shown in Figure [4.4

This systematic approach to substitutions ensures that variable bindings are consistently and correctly
managed throughout the evaluation process in Agp,.

Page 41 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

4.3.3 Values

Values in Ay, are categorised as shown in Figure |[4.5

neN
beB
seS
peP
ceC

qeqQ
ueUu

V=NUBUSUPUCUQUU

Figure 4.5: Definition of the value categories in Asp.

The definitions of the categories are the following:

N The set of natural numbers. These include all positive integers starting from 1, 2, 3, and so on. Natural
numbers are typically used for counting and ordering.

B The set of boolean values. This set contains exactly two elements: true and false. Boolean values are
used in logic operations and conditions.

S The set of strings. Strings are sequences of characters and are used to represent text. Examples include
"hello”, "world”, and ”7123”.

P The set of file paths. File paths are strings that represent the locations of files within a filesystem. They
may be absolute (starting from the root directory) or relative (relative to some other directory).

C The set of closures. Closures are functions along with the referencing environment for the non-local
variables of that function. They are used in language to encapsulate functionality along with the
context in which it operates.

Q The set of quoted values. A quote is just an expression which execution has been suspended. So the
actual value of a quoted expression is just E. Therefore, a quoted expression can be seen as a function
without parameters.

U The set of the unit value. In the semantics we use U to represent the unit value.

V The set of all values. These include all values from all other categories, and are used when we need to
say that we have some value, but not any specific value from a category.

4.3.4 Constant evaluation

We define a function v in Figure that evaluates values from the syntactic categories to the values of the
value categories. This constant evaluation function is used to define our value axioms in the semantics.

Page 42 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Numerals)

2
—~
S
I
g
o
D
]
o
&+
<
o
D
e
—~

Booleans)
Strings)
Filepaths)

I
:
o]
¢
©]
[
-+
<
o
@)
0p]
—~

Figure 4.6: Caption

4.3.5 State

In Agp, the shell state is a component that encapsulates the current environment of the shell, including the
current working directory and the file system. The shell state is denoted by d and is a tuple consisting of
the current working directory and the file system. This section defines the shell state and its role in the
operational semantics of Agp,.

The shell state ¢ is represented as a tuple of the current working directory p and the file system fs. It
belongs to the category of states, denoted by A.

€A where §=(p,£s)

The current working directory, represented by P, is a file path that indicates the directory in which the
shell is currently operating. It is essential for resolving relative file paths and executing commands within
the correct context.

File System Representation

To represent an element in the file system, we define file values, F'Val:

FVal =P U File U Dir
Where:
e P represents aliases within the file system.

e File (denoted as ¥*) represents files.

e Dir represents directories.
Filesystem Tree A filesystem tree is described as a partial mapping from paths to sets of file values:
Dir =P — P(FVal)

Filesystem Lookup A path p within the operating system can be described by the function fs, which
performs a lookup in the filesystem tree:

fs:P— FVal
fs(p) = Dir(p)

Operations on the Filesystemm We define several important operations on the filesystem, including
insertion, deletion, and referencing the current working directory.

Page 43 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Insertion Insertion of a file value fval at a path p is represented by extending the filesystem fs:

fslp > foal]
This operation adds fwval to the set of values associated with the path p.

Deletion Deletion of a file at a path p is represented by removing the value at the specified path:

fs[p — undef]

This operation sets the path p as undefined in the filesystem.

Current Working Directory To reference the current subtree or current working directory, we
denote it as cwd. The current working directory is a path value in the filesystem.

In conclusion, the semantic tools of Ay, are provided such that we can define semantics for understanding
how programs are executed. The small-step operational semantics offer a step-by-step approach to program
evaluation, while explicit substitutions handle variable bindings effectively. The categorisation of values
and the constant evaluation function ensure that data is manipulated consistently and correctly. Finally,
the definition of the shell state encapsulates the current environment of the shell, allowing for accurate
modelling of the execution context. Together, these components form a comprehensive semantic framework.

4.4 Type system

Having established the operational semantics of Az, we now turn our attention to the type system. The
type system serves as a formal framework that categorise expressions into different types, ensuring that
operations are performed on compatible types and thus preventing type errors during evaluation.

A well-defined type system is crucial for guaranteeing the correctness of programs written in Agp. It
provides the foundation for proving important properties such as type safety, which ensures that well-typed
programs do not cause runtime type errors. In the following sections, we will define the syntactic categories
of the type system, introduce the rules for type checking, and explore the typing rules for various constructs
in Ash-

We will demonstrate in Chapter [5|that Ay, type system is sound, which means that well-typed programs
are guaranteed to evaluate correctly according to the operational semantics we have defined.

4.4.1 The typing context

In the A;p language, the typing context I' plays the role of ensuring that variables and expressions are used
consistently according to their types throughout a script. The typing context is a formal construct that
maps variables to their respective types, providing the necessary information for type checking and type
inference within the language.

I': Var — Types

The typing context I' is defined as a finite set of assumptions about the types of variables. Formally,
it can be expressed as:
Fe=0|Tx:7

where T is either the empty context () or an extension of an existing context I" with a new variable z and
its associated type 7.

Page 44 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

The primary function of the typing context I' is to provide a mapping from variables to their types,
which is essential for the type checking process. When an expression is evaluated, the typing context
ensures that each variable used within the expression has a well-defined type, thereby preventing type
errors.

Variable Typing For a variable x, the typing context I' allows us to determine its type by looking it
up in the context. This can be expressed as:

Nz)=r1

VAR T

This rule states that if a variable x has a type 7 in the typing context I', then z is well-typed with type 7
under I.

Extending the Typing Context As a script is type-checked, the typing context I' is extended to
include new variable bindings. For example, when a new variable is introduced in a lambda-binding, the
context is updated to include the type of the new variable. This is crucial for maintaining the integrity
of the type system throughout the script. By maintaining a consistent mapping of variables to types,
the language can detect and prevent type errors at compile time, thus ensuring that well-typed programs
do not produce type errors during execution. This formal mechanism provides a foundation for building
reliable and robust scripts.

In summary, the typing context I' in Mg, is an essential component of the type system, providing a
structured way to manage and enforce the types of variables and expressions.

4.4.2 Type rules

In Mgy, type rules are used to define how expressions and commands are assigned types within the language.
These rules are for ensuring that programs are type-safe, meaning that they do not produce type errors
during execution. Type rules are written in a formal notation that specifies the conditions under which a
particular expression or command has a given type.

A type rule in A4y is written in the form of an inference rule, as described in Chapter

I' - Premises
I" + Conclusion

where the premises are conditions that must be satisfied for the conclusion to hold in the given type context.
The conclusion states the type of an expression or command given the premises. The type system is then
defined as a collection of these rules.

4.5 Transition system

Before we can define the small-step semantic rules, we must first define the transition system.

The transition system for evaluating Ay, is defined as a triple (C, —,T), where C' is the configuration
space, — is the transition relation, and 7T is the set of terminal configurations.

The configurations C' and terminal configurations 7" are defined as shown in Figure [4.7]

Page 45 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

C=(ExA)U(VxA)
T=VxA

Figure 4.7: Transition system configurations.

Transitions in the system are written in the form (e, §) — (¢’, '), indicating that an expression e with
the state § transitions to a new expression €’ with an updated state §’.

Now that the basis for the transition system has been defined, we can go into detail with specific
language features.

4.6 Structural congruence

Structural congruence allows us to consider two syntactically different expressions as equivalent if they can
be transformed into each other through a series of structural rules, defined through equivalences. The rules
of structural congruence provide a way to formalise this equivalence. These rules enable us to manipulate
expressions to reveal their underlying structure and equivalence, rewriting them into different forms, which
is crucial for simplifying complex expressions and proving properties about systems.

Figure present the fundamental rule for structural congruence in Agp:

e=e (e1,0) = (e},0) € =¢]

[STRUCT] RS

Figure 4.8: Rule for faciliating the use of structural congruence

The [STRUCT] rule is crucial for maintaining the consistency of the evaluation process. It states
that if an expression e is structurally congruent to another expression ej, and e; can evaluate to €] with
a corresponding state evaluation from § to ¢’, then e can evaluate to an expression €’ that is structurally
congruent to €] with the same state transition.

4.7 Values

Values are the basic units of data that the language manipulates, including numerals, booleans, strings,
file paths, unit values, and variables. We begin by detailing the small-step semantics, which describe how
these values are computed step-by-step, followed by the type rules that ensure values are used consistently
according to their types. First we need to define the structural equivalences that are valid for the simple
value formations. Those can be seen in Figure

Page 46 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

[S-NUM]| nlo] =n
[S-BOOL] blo] = b
[S-STRING] slo] = s
[S-FILEPATH] plo] =p
[S-UNIT] unitfo] = unit

Figure 4.9: The equivalences for values formations.

Figure 4.9 presents several equivalences that describe how different types of values remain unchanged
when a substitution is applied to them. These equivalences ensure that the fundamental values in our
formal system are stable under substitution, preserving their identity and integrity.

The [S-NUM] equivalence states that when a substitution o is applied to a numeral n, the numeral
remains unchanged. Formally, this is expressed as n[o] = n. This rule indicates that numeric values are
constants and do not vary with substitutions. This is fundamentally the same for all the other rules. Now,
the actual reduction rules for the value formations can be seen in Figure [4.10

[INUM] s S e =n
[BOOL] 5.5) > (0,0) if y(b) =Db
[STRING] G oee ! V(s)=s
[FILEPATH] .5) = (p.3) if y(p) =P
[UNIT] (unit,) — (u,8)
[VAR] o s g Troveo

Figure 4.10: Small-step semantics for basic syntactic categories.

The semantic rules in Figure describe the evaluation process for various basic expressions in a
small-step operational semantics. Each rule shows a single evaluation step. The [NUM] rule states that
if a numeric literal n is constantly evaluated to the value n in the interpretation function ~, then (n,d)
evaluates to (n,0). This is roughly the same for the rules [BOOL], [STRING], [FILEPATH], and
[UNIT]. The [VAR] rule states that if a variable x maps to the value v in the substitution environment o,
then (xo,0) evaluates to (v,d). These rules show how numbers, booleans, strings, file paths, unit values,
and variables are evaluated step-by-step, ensuring each expression reduces to its corresponding value while
keeping the state § unchanged.

Page 47 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

[T-NUM] I'Fn:num
[T-BOOL] T'Fb:bool
[T-STRING] 't s:string
[T-FILEPATH] 't p:filepath
[T-UNIT] T'Fu:unit
[T-VAR] i(i)x: ;

Figure 4.11: Type rules for basic syntactic categories.

In Figure we have the type rules for literals and variables. First, the rule [T-NUM)] specifies
that a numeral n is always of type num. Similarly, the rule [T-BOOL] specifies that a boolean b is always
of type bool, and the rule [T-STRING] specifies that a string s is always of type string. These rules
ensure that in any typing context I', numerals, booleans, and strings are recognised with their correct types
without any ambiguity.The rule [T-FILEPATH] specifies that a filepath p is always of type filepath,
and the rule [T-UNIT] specifies that a unit value u is always of type unit. These rules ensure that file
paths and unit values are also correctly typed in any context. The rule [T-VAR] is slightly different, as it
deals with variables rather than literals. It ensures that a variable x has the type 7 if the typing context
I' maps « to 7. This means that if the context I' associates the variable x with type 7, then x has type
7. This rule is ensures that the type checker can verify that bindings are used according to their declared

types.

4.8 Substitution, abstraction, and application

In A\gp, variable substitution, abstraction and application are fundamental constructs. This section explores
the small-step semantics and type rules for these constructs and how they are applied and used.

Figure illustrates the equivalence rules that govern variable substitution, lambda abstraction, and
function application in our formal system. These rules define how expressions can be transformed or
simplified while preserving their meaning. Below is a detailed explanation of each rule presented in the
figure.

Page 48 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

[BETA] (Az.e1)ez = eg[(ez/x)]
[VAR-1] zl(e/z) 5| =e
[VAR-2] z((e/y) - s] = x[s]
[VAR-3] vlid =z

[APP] (e1 e2)[o] = (e1]o])(e2[0])

[ABS] (Az.e)[s] = Ay.(e[(y/x) - s])
[APP-1] o=
[APP-2] b
[SYMM] ZS;

[TRANS] ,

Figure 4.12: Equivalence rules variable substitution, abstraction, and application.

First, the [BETA] rule describes the process of beta reduction, which is the application of a lambda
abstraction to an argument. Specifically, the expression (Az.e1)es is equivalent to eq[(e2/z)], meaning that
eo is substituted for z in e;. This rule is fundamental for evaluating function applications. Next, we have
three rules governing variable substitution. The [VAR-1] rule states that substituting e for x in z yields
e. Formally, this is written as z[(e/z) - s] = e. The [VAR-2] rule addresses the case where x and y are
different variables; substituting e for y in z leaves x unchanged, hence z[(e/y) - s] = z[s]. Lastly, the
[VAR-3] rule indicates that applying the identity substitution to a variable x results in z itself, expressed
as z[id] = z. The [APP] rule focuses on function application and substitution. It asserts that applying a
substitution o to the application of two expressions e; and ey is equivalent to applying the substitution to
each expression individually and then applying the resulting expressions together. For lambda abstractions,
the [ABS] rule explains how to apply a substitution s to a lambda abstraction. The expression (Ax.e)[s]
is equivalent to Ay.(e[(y/z) - s]), where y is a fresh variable that does not occur in e or s. This rule helps
maintain the correct scope and binding of variables during substitution. Finally, the figure includes two

rules for application equivalence. The [APP-1] rule states that if two expressions e; and ey are equivalent,
€1 e=e€9 e
then applying another expression e to both results in equivalent applications: ~ e; = eg . Similarly, the

[APP-2] rule asserts that if e; and e are equivalent, then applying them to another expression e results
e e =ee
in equivalent applications: ~ e; = ea . We also have reduction rules for applications that mimic running

a external commands in a shell. They are given in Figure

Page 49 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

[APP-LEFT] te1,0) = (e}, 9)
(e1e2,0) — (€] ea,8")

(e2,6) — (e3,0")

[APP-FILEPATH] (ps,d) — (u,d)

[APP-STRING] (s's,6) — (u,0)

Figure 4.13: Small-step semantics for application.

First, the [APP-LEFT] rule describes the evaluation of the left side of an application. Specifically,
if the expression (eq,d) transitions to (e}, d’), then the application (ej es,d) transitions to (€] ez, d’). This
rule allows the evaluation to proceed by focusing on the leftmost part of the application first. Next,
the [APP-RIGHT] rule handles the evaluation of the right side of an application when the left side is
already a value. If the expression (ez, d) transitions to (e}, d’), then the application (v; e, d) transitions to
(vi€eh,0"). Here, vy is a value, so the focus shifts to evaluating the right side of the application. The [APP-
FILEPATH] rule describes a specific application where a file path is applied to a string. The application
(p's,0) transitions to (U, d), where U represents the unit value. This rule captures the semantics of applying
a file path to a string, resulting in a unit type. Finally, the [APP-STRING]| rule handles the application
of two string values. The application (S S,0) transitions to (u,d), where u is the unit value. This rule
defines the evaluation of applying one string to another, resulting in a unit type.

Together, these rules define how abstractions work, variable substitutions, how closures are applied,
and how the shell specific operations work. They ensure a systematic method for handling function-related
expressions within the overall semantics. We also have the type rules for variable substitutions, abstractions
and applications as described in Figure

Page 50 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Fx—rT1|ke:7

T-AB

[S] 'FM\z:7e):7— 7
I'Fe:7—=7 Threy:T

[T-APP] I'kFejey: 7

IT'FooI! TMke:T

[T-CLOS] Ckelo]: T

[T-ID] TFidoT

T-CONS] I'Fe:7 koI

L'k (e/x) o[z 1]

I'Fep:filepath I'F ey : string

[T-APP-FILEPATH] .
I'Fepey:unit

I'Fe;:string 'k ey :string
I'Fejes:unit

[T-APP-STRING]

Figure 4.14: Type rules for abstraction and application.

First, the [T-ABS] rule handles lambda abstractions. It states that if under the context I, extending
I’ with mapped to 7 results in e having type 7/, then the lambda abstraction Az : 7.e has the function
type 7 — 7'. Next, the [T-APP] rule defines the type for function application. If under the context ', e;
has type 7 — 7’ and eg has type 7, then the application ej ez has type 7. The [T-CLOS] rule deals with
expressions under substitutions. If under the context I', a substitution o results in a new context I'” such
that e has type 7 in I, then e[o] has type 7 in T.

The > operator in the type rules serves to manage and track substitutions within typing contexts.
The > operator specifically facilitates the application of substitutions to typing contexts, ensuring that
the resulting contexts accurately reflect the transformations applied to expressions. In the type rules, the
> operator is used to denote the relationship between an original context I' and a new context I after
applying a substitution o. The [T-ID] rule states that the identity substitution id maps a context I' to
itself. The [T-CONS] rule explains how to type a substitution that extends an environment. If under the
context I, e has type 7 and the substitution o maps I' to I, then the extended substitution (e/x)- o maps
I’ to I'” extended with mapped to 7.

The [T-APP-FILEPATH] rule specifies the type for applying a filepath to a string. If under the
context I', e; has type filepath and ey has type string, then the application e; es has type unit.
Similarly, the [T-APP-STRING] rule defines the type for applying one string to another. If under the
context I', both e; and ey have type string, then the application e; es has type unit. The semantics
and type rules for variable substitution, abstraction and application in A, provide a systematic approach
to evaluating and typing function-related expressions. These rules ensure that substitutions are correctly
typed and evaluated, lambda abstractions are correctly formed, closures are applied consistently, and
shell-specific operations are handled appropriately.

4.9 Shell operations

Ash, includes core shell commands and their semantics to interact with the file system and the current
working directory. The small-step semantics for these operations are defined in Figure 4.15

Page 51 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

where § = (p, fs)

[CWD] (cwd, 8) — (p,)
(e,0) — (e, &)
[CD-1] (cd e,d) — (cd e’,0)
[CD-2] (cd p.3) = (U0 “here 7= (p.1s)
(e,0) — (', &)
[TOUCH-1] (touch e,d) — (touch €, ¢’)
[TOUCH-2] (touch p, (0 £8)) — (0.0} o 0" = (p', £s[p — fuall)
(e,0) = (¢/, &)
[MKDIR-1] (mkdir e,d) — (mkdir ¢/, ')
[MKDIR-2] kdir p.(p.5s)) = (o) |0 — (Pl Eslp = fuall)
(e,0) — (e, &)
[RM-1] (mkdir e,d) — (mkdir ¢/,)
[RM-2] (rm p. (0. £5)) = (0. if ' = (p’, £s[p > undef])

Figure 4.15: Small-step semantics for built in shell functionality.

The semantic rules in Figure define the evaluation process for core shell commands within the Ay
language. Each rule describes how specific commands interact with the current state 6. The [CWD] rule
handles the cwd command, which retrieves the current working directory. Given the state 6 = (p, fs), the
command evaluates to the current working directory p without changing the state, denoted as (cwd,d) —
(P, 6).

The [CD-1] and [CD-2] rules address the evaluation of the ¢d command, which changes the current
working directory. The [CD-1] rule manages the initial evaluation step, taking the command argument e
and progressing it to e’. This is shown as (cd e,) — (cd e’,0) if (e, d) — (¢/,0’). The [CD-2] rule finalises
the evaluation when the argument is fully evaluated to a value p, updating the current working directory
and leaving the file system unchanged, formally expressed as (cd p,d) — (u,d’), where &' = (p, £s).

The [TOUCH-1] and [TOUCH-2] rules describe the behaviour of the touch command, which creates
a new file. The [TOUCH-1] rule handles the partial evaluation of the command argument, evaluating
from e to €/, shown as (touch e,d) — (touch ¢,0) if (e,d) — (¢/,0’). The [TOUCH-2] rule completes
the evaluation when the argument is a fully evaluated path p, creating a new file in the file system. The
[MKDIR-1] and [MKDIR-2] rules are similar but pertain to the ‘mkdir‘ command, which creates a new
directory. The initial evaluation step is managed by [MKDIR-1], evaluating from e to €', indicated as
(mkdir e, d) — (mkdir €/, 0) if (e, d) — (€¢/,¢’). The final evaluation step, described by [MKDIR-2], creates
a new directory at the evaluated path p. Finally, the [RM-1] and [RM-2] rules describe the behaviour of
the ‘rm‘ command, which removes a file or directory. The [RM-1] rule handles the initial evaluation of
the command argument, evaluating from e to €/, shown as (rm e,d) — (rm €’,9) if (e,0) — (¢/,d’). The
[RM-2] rule completes the evaluation by removing the file or directory at the evaluated path p. These
rules collectively ensure that core shell commands in Ay, are evaluated correctly, reflecting their intended

Page 52 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

behaviour in modifying the shell state and file system.

[T-CWD] 'k cwd: filepath

I'Fe: filepath

[T_CD] I'Fcde:unit
T-TOUCH I'-e:filepath
[T-) I' F touch e : unit
T-MKDIR I'Fe: filepath
[B] I' - mkdir e : unit

T-RM] I'-e: filepath

I'Frme:unit

Figure 4.16: Type rules for built-in functionality.

In Figure we have the type rules for shell functionality. The rule [T-CWD] states that the
cwd command, which retrieves the current working directory, has the type filepath. This ensures that
whenever cwd is used, it is recognized as a file path.

The rule [T-CD] ensures that the cd command, used to change the current working directory, is
correctly typed. The command takes an argument e of type filepath and results in a value of type
unit. Similarly, the rule [T-TOUCH)] verifies the typing for the touch command, which creates a new
file. The command takes an argument e of type filepath and returns a value of type unit. The rule
[T-MKDIR] specifies the typing for the mkdir command, which creates a new directory. Like touch, the
mkdir command takes an argument e of type filepath and returns a value of type unit.

Finally, the rule [T-RM] ensures that the rm command, used to remove files or directories, is correctly
typed. The command takes an argument e of type filepath and results in a value of type unit.

4.10 Quoting

Quoting in Az, is a mechanism used to delay the evaluation of expressions, allowing them to be treated as
data rather than executable code. This feature is particularly useful for string interpolation, constructing
complex commands, and manipulating code as data within the language. In many shell languages, we have
the idea of building commands, which are code that need to include variables and expressions without
immediately evaluating them. In Ay, quoting serves a similar purpose but extends its utility to managing
the evaluation context of expressions more broadly. Quoting is denoted by the operator |-|. When an
expression e is quoted as |e], its evaluation is suspended, and it is treated as a literal value rather than
being executed immediately. This allows the expression to be passed around, stored, or manipulated
without triggering its evaluation. Unquoting, denoted by the operator [-]|, resumes the evaluation of a
quoted expression. When [e] is encountered, the expression inside the quotes is evaluated in the current
context. Now consider the following example where quoting is used to construct a command:

gee = | gee -ansi -Wall” |

Here, gcc is a macro which calls the GCC compiler. We want to use this macro to compile files in our

Page 53 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

operating system, we use the command by:
cmd = geco (cwd o” first_file.c”)
To execute the command, the expression is unquoted:

[emd]

Unquoting ecmd evaluates the expression gec o (cwd o ” first_file.c”) under the current environment.
A quoted value acts like a macro, waiting to be used until it is unquoted. The goal of this mechanism
is to introduce a powerful tool to construct programs by string interpolation. The reduction rules for
unquoting/quoting is defined by structural congruence and the [STRUCT] rule presented in section

I'Fe:r
[T-QUOTE] T+ [e] : 7]
[T-UNQUOTE] W

Figure 4.17: Type rules for quoting.

In Figure we have the type rules for quotation. First, the rule [T-QUOTE] specifies how an
expression e is handled when it is quoted. Quoting an expression means treating it as a syntactic entity
rather than evaluating it immediately. This rule means that if an expression e has type 7 in the typing
context I', then the quoted expression |e| has the type |7]| in the same context. Quoting preserves the
type information of the expression while marking it as quoted.

The rule [T-UNQUOTE] specifies how an expression e is handled when it is unquoted. Unquoting an
expression means evaluating it within the current context. This rule means that if a quoted expression e
has the type |7| in the typing context I', then the unquoted expression [e| has the type 7 in the same
context. Unquoting effectively removes the quotation, allowing the expression to be evaluated with its
original type.

4.10.1 Quoting laws

This subsection will expand upon the quoting laws presented in section with some rules for type
equivalence. Some quoted expressions need additional rules to ensure structural congruence. Quoting in
Ashp provides a powerful mechanism for managing when and how expressions are evaluated, enabling more
flexible and dynamic shell scripting capabilities, while still maintaining the properties desired for static
analysis. To ensure consistent behaviour, As, defines several laws governing quoting and unquoting;:

Page 54 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

[REFL] e=e

[INV] lefl=e
[IDEM] LLel] = Le]
[QCON] lea o lez] = ler o e

Figure 4.18: Rules for structural congruence of quoted expressions

These laws ensure that quoting and unquoting operations behave predictably and consistently within
the language. The first law states that [e] and |e| and are each others inverse as we can see in the [INV]
rule, the quoting mechanism is also idempotent (rule [[DEM]), nested quotes have no meaning. The last
rule [QCON] is for concatination of quoted expressions, the [QCON] rule states that concatinating quoted
expressions should be still be quoted. However, the [QCON] is not always correct. We have to introduce
laws for type equivalence to guarantee correctness of quoting.

[T-IDEM] L) = 7]

[T-CONSTR] string o string = string
[T-QSUB] |string| = string
[T-QCON] [71) o [r2) = |71 072

Figure 4.19: Rules for type equivalence for quoted expressions

Now, the rule [T-IDEM] states that a quoted type is equal to the same type with nested quotes. This
rule ensures that quoted types are idempotent. the rule /[T-CONSTR] states that a concatination type
that is only strings is just of type string. In section |4.11]we introduce subtyping to the type system because
we want to be able to use quotes as strings, however for this to be sound later, we need to introduce a type
equivalence rule for the subtyping. Finally, concatinating quoted types must follow the rule [QCON]

4.11 Subtyping

The general idea of the quoting construct is to pack base types into a quoted type |7| and unquoting will
unpack the basetype from the quoted expression. We need a mechanism which allows an expression of type
S to be used as type T' and this mechanism is called subtyping (subtype polymorphism). To describe this
relationship, let S <: T be the subtyping relation which states ”.S is a subtype of T” which is described by
the T-SUB inference rule. We define an axiom for the subtyping relation which described string as the
maximum element, and any quoted type |7 is a subtype of string.

Page 55 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

bool <: string

num <: string
filepath <: string
unit <: string

|7] <:string

We formalise the subtyping relation by providing inference rules for deriving expressions presented in Figure
First we have that any subtyping relation need to be reflexive and transitive, this follows from the
rule of subsumption. Subtyping abstractions require more work, we need to consider the contravariants
and covariants of the subtyping relation [11].

Covariance is the variance described directly by the subtyping relation, if we have a function f of type
T11 — Ti2, then under the subtyping relation, f has the type 11 — 799 where 711 <: 721 and 719 <: Too.
We can observe this by the concatenation operator 711 o 712 <: 791 0 799 [11].

Contravariance is the subtyping relation described by reverse subtyping relation (that is, the subtyping
relation for base types is reversed for | 7]). This is only present in the left-hand premise of the [T-ARROW]
rule, where the parameter of the abstraction 7o is safe in the context of the abstraction 791 <: 711 [11].

I'Fe:ms 1s<:T

[T-SUB]

F'ke:7
[T-REFL] TT
T1<tTy T2 <!T3
[T-TRANS] nn
[T-ARROW] 21 <iTi1 T2 <t 722

T11 — T12 <: T2l — T929

Figure 4.20: Type rules for subtyping.

4.12 String operators

(e1,0) — (€}, ")
[CONCAT'l] <€]_ o 6276> — <€,1 o e2, 6 >

(e2,0) — (€h, ")
[CONCAT-2] Vo e2,8) = (Vocy o)
[CONCAT—?)] <V1 o Vs, 6> _ <V, 5) ifv= V1 0Vo

Figure 4.21: Small-step semantics for concatenation.

Page 56 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

The semantics for concatenation in Figure describe how expressions involving the concatenation oper-
ator (o) are evaluated step-by-step. These rules ensure that concatenation operations are properly reduced
until they reach their final form. The [CONCAT-1] rule handles the case where the left operand of the
concatenation needs further evaluation. If the expression e; evaluates to €} with an updated state ¢’, then
the concatenation ej o eg transitions to €] o ea with the same updated state §’. This ensures that e; is fully
evaluated before the concatenation proceeds. The [CONCAT-2] rule addresses the evaluation of the right
operand when the left operand is already a value v. If the expression ey evaluates to ef, with an updated
state ¢, then the concatenation Vv o e transitions to v o e, with the same updated state ¢’. This ensures
that ey is fully evaluated before the concatenation result is computed. The [CONCAT-3] rule defines
the final step of the concatenation operation. If both operands v; and vo are already values, and their
concatenation results in the value v, then v; ovy evaluates to v with the state d remaining unchanged. This
completes the concatenation process by combining the two values into a single result.

These rules collectively ensure that concatenation operations are evaluated in a systematic and step-
by-step manner, handling both the evaluation of individual operands and the final combination of values.
We also introduce a new rule for explicit substitution for concatination:

[S-CONCAT)] (e1 0 e3)o = (e10) o (e20)

Figure 4.22: Explicit substitution for concatenation.
The rule S-CONCAT states that we can perform substitution on an expression which is e; o es by

subtitution both subexpressions.

I'Fer:mm Theoy:m
I'Fejoey:m0m

[T-CONCAT]

Figure 4.23: Type rule for concatenation.

The [T-CONCAT] rule in Figure provides the type checking mechanism for concatenation op-
erations in Agy. This rule states that if we have two expressions e; and es they become concatination
types and we do not forget typing information this way, since we have the type equivalence T-CONSTR
presented in section The expression |e;| o |e2] represents the concatenation of the quoted forms of
e1 and es. In Mg, concatenation combines these quoted values into a single expression by the type rule
T-QCON presented in section

4.13 Expressivity

Now, with quoting established as a mechanism, we look at how it can be used. Quoting is a versatile tool
which we want to show. First let us introduce a function to construct relative paths.

rel := Az : filepath . |cwd] oz

Page 57 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Now, we can use the abstraction either by unquoting or composing quotes.

path := [rel 7 [src”]
cd_src:= |ed (rel 7 /src”)|

new_path :=rel ” [src” o” /main.c’

Its worth noting that these example show some uses for quoting and the expressivity it provides by treating
commands and macros by string interpolation. The path definition constructs a quote from calling the
abstraction and unquotes the result (of type filepath), cd_src constructs a macro from the quote yielded
by rel 7 /src” passing the quoted result to cd (resulting in type |unit|), new_path is an example of simple
concatination with quoted values to construct a new path (of type | filepath]).

4.14 Summary

This chapter has detailed the formal specification of Ay, a functional shell language designed to address
the limitations of traditional shell scripting languages by incorporating a strong type system and robust
operational semantics.

We began by establishing the syntactic categories and formation rules that define the structure of
Ash- These foundational elements extend the traditional A-calculus to include string interpolation, core
operating system functions, and a model of the file system, which are essential for practical shell scripting.
The computational model, based on the Ao-calculus, emphasises explicit substitutions, offering a precise
and efficient framework for computation. This model ensures that substitutions are handled explicitly,
which is crucial for maintaining clarity and correctness in program evaluation. The small-step operational
semantics provide a formal description of how Ay, programs are executed. This formalism is key to reasoning
about program behaviour and ensuring that programs execute as expected.

The type system of Ay, is designed to catch type errors at compile time, enhancing the reliability of
scripts, which we will prove that it does. By integrating these theoretical principles, Agp aims to offer a
more reliable scripting environment than traditional shell languages, while maintaining their flexibility and
ease of use. This formal specification forms the basis for implementing and reasoning about A4, providing
a structured approach to developing and maintaining shell scripts with strong type guarantees.

With this framework in place, we are now equipped to demonstrate that the type system of Ay, is
sound, ensuring that well-typed programs are free from type errors during execution.

Page 58 of

Chapter 5

Soundness

5.1 Motivation

Now, we have presented the evaluation rules for Ay, along with a type system to prevent type errors. A
type system is said to be sound if well-typed programs cannot produce type errors, this is a property we
want to prove for the Az, such that we have some guarantee of correctness. To prove soundness in the Agp
type system, we informally define it as 2 properties which together guarantees an invariant such that a
well-typed expression will never get stuck and will remain well-typed:

e Progress: A well-typed term is either a value or can be evaluated one step further.
e Preservation: If a well-typed term can be evaluated, then the result is also well-typed.

In the domain of shell programming, errors can become dangerous because we are working with the
underlying operating system. In Ay, have introduced a type system to prevent runtime errors however, we
need to prove that progress and preservation hold. Now we begin the soundness proof.

5.2 Preservation
Lemma 1 (Substitution strengthening). If T'eo : 7 then T eo’ : 7 where 0’ = 0 | yy(c)-

Lemma [1] says that we can remove elements from a substitution if those variables are not part of the
free variables in our expression as those should not affect the typing judgement of that expression. We are
not going to prove Lemma |1} but assume that it holds.

Lemma 2 (Structural congruence preserves types). If e = €', then we we have T'Fe: 7 iff THeé : 7
Proof. We proceed by induction in the reduction rules for =.

Case [S-NUM]:
nlo] =n

ool TMEke:T

We assume I' - nfo] = n. We need to show I' - n : 7. By the rule [T-CLOS] Fkelo]:T
we have that TFn: 7, IV Fn: 7 for all I and 7 = num

o, TVhe:T

AssumeI' - n : 7. We need to show I' - no] : 7. From the rule [T-CLOS] we have I'kefo]:T
then by Lemma |l| we have I' - no : 7 because we know fv(n) = ¢

29

Y

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [S-BOOL]: The proof for this case is similar to [S-NUM].
Case [S-STRING]: The proof for this case is similar to [S-NUM].
Case [S-UNIT]: The proof for this case is similar to [S-NUM].

Case [S-FILEPATH]: The proof for this case is similar to [S-NUM].
Case [S-CONCAT]:

(e1 0 e2)[0] = (ea]o]) o (e2[0])
We assume I' - (e1 0 e2)[0] : string. We need to show I' F (e1[o]) o (e2[o]) : string.
From the typing rule [T-CONCAT], we know:

I'Fep:string I'Feg:string
I'Fejoes: string

By the induction hypothesis, if I' - e; : string and I'F o > TV, then I'" I e1[0] : string. Similarly, if
'k e :string and '+ o> T, then I F eg[o] : string.

Therefore, T' F (e1[o]) o (e2[o]) : string by the typing rule for concatenation, which states that if
I'Fep:string and I' - es : string, then I' - ej o ey : string.

Thus, the preservation property holds for concatenation.

Case [REFL]:

e=e
We use the axiom [REFL] e = e which holds trivially since I' - e: 7 if and only if ' - e : 7.
Case [SYMM]:

)
Il
)

e=e
We use the rule [SYMM] e = ¢/, by induction hypothesis we have that I' F ¢’ : 7 if and only if
I' e : 7 which implies we also have ' e : 7 if and only if '€’ : 7

Case [TRANS]:
e=e

. —
€1 =€ e =¢e
We use the rule [TRANS] e=e , by induction hypothesis we have I' - ¢’ : 7 if and only if
't € : 7 which also implies ' ¢’ : 7 if and only if ' Fe: 7

Case [ABS]:
Az : 1.e)[s] = My.(e[(y/z) - s])

Assume I' F Az : 7.e : 7 — 7/ and I' + s> I'. By the typing rule for abstractions, we have
Flz—T1|kFe: 7.

When (Az : 7.e)[s] = My : 7.(e][(y/x) - s]), we need to show I' = Ay : 7.(e[(y/x) - s]) : 7 — 7.
By substitution, the type of Ay : 7.(e[(y/z) - s]) is 7 — 7/ since 'y — 7] b e[(y/x) - s] : T/, we have:

Cly— 1] Fel(y/z)-s]: 7
CHXy:7.(e[(y/x)-s]):7— 7

Therefore, the preservation property holds for abstractions.

Page 60 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [APP]:
(e1 e2)[o] = (er[o])(ez2[0])

We assume I' - (e1 eg)[o] : 7. We need to show I' - (e1[o])(ez[o]) : T.
From the typing rule [T-CLOS], we have:

IF'FopI” TMhe:T
F'kelo]:T

Applying this to (e1 e2)[o]:

C'k(egeo]:7 = Tko>l' TVkejex:r

From the typing rule [T-APP], we have:

I"kFer:mm—=71 I"Fey:m
I'kFeley: T

Applying the substitution o to both e; and es:
I'rFep:m =7 = Threo]:mn—7
IMFey:mp = Thesfo]:m
Therefore, by the typing rule [T-APP]:

Fkeifo]:m—7 Thkeo]:n
't (e1][o])(e2fo]) : 7

Thus, I' - (eg ez)[o] : 7 if and only if T - (e1[o])(e2[o]) : 7, proving the property of the lemma for
the [APP] case.

The case can be extended by considering that subtyping can be applied. By induction hypothesis we
have I' F ey eg[o] : 7 and (e; ez)[o] = (e1]o])(e2][o]). By the the [T-SUB] rule

I‘I—e:TS1 Te <: T2
F'ke:r

We have that if (1) and (2) hold, the expression becomes well-typed by subtyping.

Case [APP-1]:
€1 e=e€g e
€1 = €2
We assume I' - e; e : 7 and we use the rule [APP-1] e; ¢ = e3 e, by induction hypothesis we have
I'keye:7ifand only if I' - ey e: 7 which implies '+ e1 e: 7 if and only if ' Feg e : 7.

Case [APP-2]:
€ el =€ €

€1 = €2
We assume I' F e e; : 7 and we use the rule [APP-2] ee; = e e3 then, by induction hyopthesis we
have that ' - e eo : 7 if and only if I' - e e; : 7 which implies ' e e; : Tif and only if ' e ey : 7.

Page 61 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [VAR-1]:
x[(e/x)-s]=e
We assume I' =z : 7. We need to show I' e : 7.
Since I'(z) = 7 and by substitution, z[(e/z) - s| = e, e retains the type .
Case [VAR-2]:
T#y
zl(e/y) - 5] = x[s]

We assume I' - 2 : 7. We need to show I' - z[s] : 7.

Since x # y, substitution does not change the variable z. Therefore, the type of x[s| remains 7.
Case [VAR-3]:
z[id) =z
We assume I' -z : 7. We need to show I' -z : 7.
This follows directly since applying the identity substitution does not change the variable z.

Therefore, in all cases, the preservation property holds for variables.

Case [INV]:
[le]T=e
We assume I' - [|e]] : 7, then we have 2 subcases:
Subcases [INV]:
1. Subcase [T-QUOTE]

We want to show that [|e|] = e, there exists a derivation of using the rules [T-

UNQUOTE] and [T-QUOTE]:

I'kFe: 7
'k le]:[7]
Lk le]]:T
which concludes this subcase.
2. Subcase [T-SUB]
'k |e]:|7]

We use the rule [T-UNQUOTE] I' t- [|e|] : | 7] now, by [T-SUB] we have that

Tke:|r|t |7] <: string?
I'te: string

and since (1) and (2) hold, we have I' I e : string which concludes this subcase.

Case [IDEM]: el = L

We assume I' - | |e]] : 7 then we have 2 subcases:

Subcases [IDEM]:

Page 62 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

1. Subcase [T-QUOTE]

Lke:rW
By the rule [T-QUOTE] we have I' - |e] : [7], then we have that (1) holds and by
induction hypothesis we have I' - | [e]] : 71. 7 = 71 and a quoted expression is a value
which concludes this subcase.

2. Subcase [T-SUB]

Lke:7™
Again, by the rule [T-QUOTE] we have I' - |e] : 7] and (*) holds and by induction
I'te: Ts(l) Ts <o @
hypothesis we have I' - | |e] | : 71, by the rule [T-SUB] we have F'ke:r ,
then since (1) and (2) hold, since I' F | |e] | and |7] <: string. Finally by [T-SUB| we
have that I' - | |e] | : string which concludes this subcase.

Case [QCON]:
le1] o |e2] = |e1 oea]
We assume I' - |e;1| o |ea] : 7 we again have 2 subcases:
Subcases [IDEM]:
1. Subcase [T-CONCAT]

By [T-CONCAT] we have that

F|—612L7’1J F"@Q:LTQJ
'k le1] o ez] : [m1] o |72]

Now we have 7 = |71] o |71»], then by [T-QUO] (type equivalence for concatenated
quoted expressions) concludes this subcase by |71 o |[12] = |71 0 T2].

2. Subcase [T-SUB]

F'ke:|m| Thes:|m]
By [T-CONCAT] we have that T'F |e1] o |ea| : |71 o [72] Then, by [T-QUO] we
I'Fej: 7'1(1) I'keg: 7'2(2)
have I'F ey | : [71] and T'F [ez] : [72] since (1) and (2) hold we have that I' F e; :
|71] and ' F ea : |72]. Now both expressions can be subtyped by [T-SUB] by
I'kFe:|[r] |7] <:string
T'te: string

O

Theorem 5 (Preservation: the reduction rules preserves types). Assume that e is an expression, if U'Fe: T
and e — €', thenT e : 7.

Proof. We proceed by induction over the reduction rules.

Case [CONCAT-1]:
(e1,0) — (€1, ")

(€1 0e9,0) — (€] oeq,d)

Assume I' - ej o ey : string.

Page 63 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

From the typing rule [T-CONCAT], we know:

I'-ey:string I'key:string

I'Fejoey: string

By the induction hypothesis, if I' - e; : string and T-CONCAT, then T' I~ ¢} : string. Therefore,
'k ¢} oey: string since I' F ey : string is unchanged.

Thus, the preservation property holds for [CONCAT-1].
Case [CONCAT-2]:
(€2,6) = (e3,8")
<V © €2, 6> — <V o 6/27 5/>

Assume I' - Vvoes : string.

From the typing rule [T-CONCAT], we know:

I'Fv:string T['Fes:string
I'Evoey: string

By the induction hypothesis, if ' - es : string and (e2,d) — (€5, 0’), then ' - €, : string. Therefore,
I'Fvoé,: string since I' F v : string is unchanged.

Thus, the preservation property holds for [CONCAT-2].

Case [CONCAT-3]:

Viova) = (v,0) LV =Vievs

Assume I' - vy o vy @ string.
From the typing rule [T-CONCAT], we know:

I'vy:string T'lFvy: string

I'Fviovy: string
Since V = Vvy o Vg, V is of type string.
Thus, the preservation property holds for [CONCAT-3].
Case [STRUCT]: By Lemma [2| we have shown that structural congruence preserves types.
Case [CWD]:

(ewd 3) = (p.0) where 6 = (p, fs)

Assuming I' - cwd : filepath. We need to show I' - p : filepath. Since § = (cwd,fs) and p = cwd
and p is of type filepath, I' - p : filepath holds.
Thus, the preservation property holds for [CWD].
Case [MKDIR-1]:
(e,0) — (€/,8)
(mkdir e, d) — (mkdir €/, d)

Page 64 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

We assume I' F mkdir e : unit. We need to show I' - mkdir €’ : unit. From the typing rule, we

know:
I'Fe:filepath

I' F mkdir e : unit

By the induction hypothesis, if I' - e : filepath and (e,d) — (€’,d’), then I' - ¢’ : filepath.
Therefore, I' F mkdir €’ : unit.

Thus, the preservation property holds for [MKDIR-1].

Case [MKDIR-2]:

: ! __ /
lmkdir p, (P, £5)) = (w8 10— (PhEsUP)

We assume I' - mkdir e : unit. We need to show I' - unit : unit. Since mkdir p results in the unit
type, I' - unit : unit holds trivially. Thus, the preservation property holds for [MKDIR-2].

Case [RM-1]:
[] (e,0) — (€/,8)

(rm e,) — (rm €, 0")

We assume I' = rm e : unit. We need to show I' - rm ¢’ : unit. From the typing rule, we know:

I'Fe:filepath
I'Frme:unit

By the induction hypothesis, if I' - e : filepath and (e,d) — (€’,0’), then I' I ¢’ : filepath.
Therefore, I' b rm €’ : unit. Thus, the preservation property holds for [RM-1].

Case [RM-2]:

(e p. (P 2)) o) 10— (PhEEAP)

Assuming I' - rm e : unit, we need to show I' - unit : unit. Since rm p results in the unit type,
't unit : unit holds trivially. Thus, the preservation property holds for [RM-2].
Case [TOUCH-1]:
(e,0) — (¢/, &)
(touch e,d) — (touch €', d’)

We assume I' F touch e : unit. We need to show I' - touch €’ : unit. From the typing rule, we

know:
I'ke: filepath

I' - touch e : unit

By the induction hypothesis, if I' - e : filepath and (e,d) — (¢/,d), then T" F ¢’ : filepath.
Therefore, I' F touch €’ : unit.

Thus, the preservation property holds for [TOUCH-1].

Case [TOUCH-2]:

o
(touch p, (p/,£5)) = (u,5) 0 = (PLEsUP)

We assume [" F touch e : unit. We need to show I' F unit : unit. Since touch p results in the unit
type, I' - unit : unit holds trivially.

Thus, the preservation property holds for [TOUCH-2].

Page 65 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [CD-1]:
[] (e,0) — (¢/, &)
(cd e,0) — (cd e’,6)

Assuming I' - cd e : unit, we need to show I' F cd €’ : unit.

From the typing rule, we know:
I'Fe:filepath

I'Fcde:unit

By the induction hypothesis, if I' - e : filepath and (e,d — (¢/,d’), then I' - ¢’ : filepath.
Therefore, I' - cd €' : unit.

Thus, the preservation property holds for [CD-1].
Case [CD-2]:

’_
(A p.0) = (U0 where ¢’ = (p, fs)

We assume ' - cd e : unit. We need to show I' - unit : unit. Since cd p results in the unit type,
I'F unit : unit holds trivially. Thus, the preservation property holds for [CD-2].

O

Now we have shown that the progress property holds for the A;h type system. Now we also need to
show progress for Ag, in order to complete the soundness proof.

5.3 Progress

Theorem 6 (Progress: an expression is either a value or can be evaluated further). Assume that e is and
expression. If '+ e : T, then e is either a value or there exists an €' such that e — €.

Proof. We proceed by induction on the derivation of the typing judgement I' e : T.
Case [T-NUM]:
I'Fn:num
A numeral literal is already a value.
Case [T-BOOL]:
I'Fb:bool

A boolean literal is already a value.

Case [T-STRING]:
I's:string

A string literal is already a value.

Case [T-FILEPATH]:

I'Fp:filepath

A filepath literal is already a value.

Page 66 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [T-UNIT]:

I'F unit : unit

The unit value unit is already a value.

Case [T-VAR]:
I(z)=71
I'txz:7
Variables are assumed to be mapped to values in the environment, so they can take a step to their
corresponding value.
Case [T-ABS]|:
Nr:tke:7
'EAz:1e):7—1

A lambda abstraction (Az : 7.e) is already a value.

Case [T-APP]:
I'Fe:7—=7 Thkeg:T
I'kFejey: 7

If €1 is not a value, then by the induction hypothesis, there exists €/ such that (e,) — (€}, d’). Hence,
(€1 e2,0) — (€] e2,d). Similarly, if ey is not a value, then (es,d) — (€}, 0’) and (ej e2,d) — (e1 €5,).
If both e; and eg are values, then by the [BETA] rule, ((Az.e1)ea,d) — (e1]ea/z],d).

Case [T-CLOS]:
F'Forl” T'ke:T
F'kelo]: 7

If e is not a value, then by the induction hypothesis, there exists e’ such that (e,d) — (€/,d').
Therefore, (e[a],d) — (¢'[a],).

Case [T-ID]:
'=idsT

The identity substitution id does not change the expression to which it is applied. Therefore, id
does not transition and is already in a terminal configuration.

Case [T-CONS]:
I'te:7 TkFopI!
'k (e/x) o1z — 1]

This rule is about typing substitutions. It indicates that if we have a substitution of the form (e/z)-o,
then we need to ensure e has the type 7 and o is a valid substitution. If I" F e : 7, then e is either a
value or there exists e’ such that (e,d) — (¢’,’). Then we have either of two options:

1. e is a value. In this case, e[o] remains a value.

2. {(e,8) — (€/,4"). By the induction hypothesis, since e can take a step to €', the substitution
application respects this transition:

(e[o], 8) — (€'[o],3)

Thus, e[o] either progresses to €’[o] or remains a value.

Page 67 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

For the progress case involving substitution [T-SUB], we confirm that the application of a substi-
tution to an expression either results in a value or in an expression that can take a transition step.
Substitutions do not take transitions themselves but ensure the resultant expression adheres to the
transition rules.

Case [T-APP-FILEPATH]:
I'Fep:filepath I'Fey: string

' e es:unit

If e1 is not a value, then by the induction hypothesis, there exists €/ such that (e, d) — (€}, d’). Hence,
(e1 e9,0) — (€] e2,d"). Similarly, if es is not a value, then (es, §) — (€}, ") and (ey e2,0) — (e1 €},0").

Case [T-APP-STRING]:
I'Fey:string I'Fey:string

I'Fejes:unit

If 1 is not a value, then by the induction hypothesis, there exists €} such that (e, d) — (€}, d’). Hence,
(e1 e2,0) — (€] e2,d"). Similarly, if es is not a value, then (es, §) — (€5, 0’) and (ej e2,d) — (e1 €),0").

Case [T-CONCAT]:
I'-ey:string I'key:string

I'Fejoey: string

If ey is not a value, then by the induction hypothesis, there exists e} such that (e1,d) — (€],d).
Hence, (e1 o e9,0) — (€] o e2,d') from rule [CONCAT-1]. Similarly, if es is not a value, then
(e2,0) — (eh,¢") and (e1 o eq,d) — (e1 0 €, d’) from rule [CONCAT-2]. If both e; and ey are values,
then by the [CONCAT-3] rule, (e; o eg,d) — (v,d’), where v is a string value.

Case [T-QUOTE]:
I'te:r
'k lel:[7]

Quotes (|e]) are considered values in the language. Therefore, when we encounter an expression of
the form |e|, it is inherently a value, regardless of whether e itself is a value or can take a step. This
is because the act of quoting e encapsulates it as a value within the quote.

In other words, the expression |[e] does not need to transition further because it is treated as an
atomic value in its quoted form. As a result, there is no need for an evaluation rule to further
transition |e]. This directly ensures the progress property, as |e| will never be in a state where it
needs to take a step to transition to another expression.

Case [T-UNQUOTE]:
'ke:|7]
L'kJel:7

If e is a value, specifically of the form |v], then by the rule [INV]:
([Le]1,0) = (e, 0)

Hence, [e] progresses directly to e.

If e is not a value, then by the induction hypothesis, there exists e’ such that (e,d) — (¢’,d’).
Therefore, ([e],d) — ([€'],d).

Page 68 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Case [T-CWD]:

I'F cwd : filepath

The current working directory cwd is already a value of type filepath.

Case [T-CD]:
I'Fe:filepath
I'Fcde:unit

If e is not a value, then by the induction hypothesis, there exists e’ such that (e, §) — (¢/,¢’). Hence,
(cd e,0) — (cd €,d’") by [CD-1]. If e in cd e is a value, then there exists the transition such that
(cd e,d) — (u,d’) by [CD-2].

The proof is roughly the same for the [T-TOUCH], [T-MKDIR], and [T-RM] cases.

That is the end of the progress proof. O

5.4 Summary

We have now established both the progress and preservation properties for the Ay, language, demonstrating
that well-typed expressions are either values or can take a step according to the evaluation rules, and that
types are preserved during evaluation (we will never become stuck in a non-terminal configuration).

5.4.1 Progress

For each case of the type rules, we have shown that a well-typed expression is either a value or can transition
to another expression:

e For base types like numerals, booleans, strings, filepaths, and units, we have shown that these are
values.

e For complex constructs such as lambda abstractions, applications, substitutions, concatenations,
quotes, and unquotes, we have demonstrated that they either are values or can make progress ac-
cording to the semantics.

5.4.2 Preservation
For each transition step in the evaluation, we have shown that the type of the expression is preserved:
e Application of functions and substitutions maintains the type consistency of the expressions.

e Structural congruence and rewriting rules ensure that transitions between equivalent forms preserve
types.

e Special constructs like quoting and unquoting were shown to correctly handle type transformations
without violating the type rules.

5.4.3 Final assertion of soundness

With both progress and preservation established, we conclude that the Ay, languages type system is sound.
This means that if a term is well-typed, it will always be well-typed and never be stuck. Therefore, the
soundness of the type system guarantees the reliability of Ag;’s behaviour as specified by its typing and
evaluation rules. This ensures that well-typed programs in Ay, will execute correctly without type-related
runtime errors, providing a solid foundation for the language’s correctness and robustness.

Page 69 of

Chapter 6

Conclusion, discussion, and future work

6.1 Conclusion

In this thesis, we have introduced Ay, an approach to implementing a strong type system in a shell
programming language where strings play a central role. Traditional shell scripting languages, such as
Bash and PowerShell, are powerful tools for automation but often suffer from weak typing systems, leading
to runtime errors, maintenance difficulties, and security vulnerabilities. Our work on Ay, addresses these
issues by leveraging the principles of A-calculus and formal type theory to create a robust, statically-typed
formal specification for a shell language.

The key contributions of this thesis include:

1. Design and semantics of A\g;;: We have defined the abstract syntax, operational semantics, and
type system of Ay, ensuring that the language supports predictable and consistent handling of various
features from shell scripting and string handling.

2. Formal analysis: Through formal proofs, we have demonstrated the soundness of the type system,
ensuring that well-typed programs do not encounter type-related runtime errors.

3. Foundation for future extensions: We have focused on establishing a solid foundation for Ay,
which can be extended with more advanced features such as records, namespacing, and concurrency
constructs.

In conclusion, the work presented in this thesis addresses critical weaknesses in traditional shell scripting
languages and sets the stage for the development of more reliable and secure shell programming tools. While
the formal specification still requires some work in order to be a fully fledged language specification for a
modern programming language, we are satisfied with ground work presented in this thesis, which can be
built and improved upon.

6.2 Discussion

While the development of Ay, has established a foundation for a strongly-typed shell programming language,
there are areas for further enhancement. Specifically, the language could be more feature-rich, and the
modelling of the shell environment could be more detailed.

6.2.1 More features

Although the primary focus of this project was on fundamental aspects, Ag; could benefit from additional

features common in modern programming languages, such that the language specification could feel more

70

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

complete in the sense that it documents the features you would expect in a modern programming language:

e Data structures: Incorporating records, tuples, and lists would allow for more structured data
handling and manipulation through abstraction.

e Namespacing and modules: Implementing namespacing and modularity would prevent naming
conflicts and support better code organisation and reuse. Something that is difficult to do well in
traditional shells.

e Error handling constructs: Advanced error handling constructs are crucial for creating robust
and fault-tolerant scripts. This was originally planned to be a feature, but getting to having it proved
more cumbersome. Here our inspiration was to add a better error handling system to shell languages,
through exceptions or some other error mechanism, since traditional shell languages have awful error
handling mechanisms, since they involve dealing with return codes explicitly.

e Concurrency and parallelism: Adding constructs for concurrency and parallelism would model
the inherently parallel nature of shell languages. Here, it would be interesting to how that behaviour
modelled in a formal semantics, such that it can be reasoned about. Also, this seems like an important
thing to model since one of shells main functions is to deal with processes and jobs.

The idea is that the language needs to capture the entirety of a language. Right now, Ag, may be a
bit more like a single part of a larger whole, as the language ends up being an expression based concept,
but obviously needs more constructs in order to be complete. We would argue that this is alright, since
the purpose of the language is to showcase our take on a computational model with a type system for shell
languages, where strings play a large role, and to demonstrate the quoting system.

6.2.2 Detailed shell environment modelling

The current version of A\, captures basic shell operations but lacks comprehensive environment modelling.
For improved practicality, the following should be considered:

e Filesystem Representation: A more detailed representation, including permissions, links, and
metadata, would allow for more complex file operations and interactions, such that our model better
reflects the reality of the file system.

e Process management: Modelling of job control, background processes, and signal handling would
provide a more accurate representation of Unix-like shells.

¢ Environmental variables and configuration: A thorough implementation of environmental vari-
ables and configurations would mimic real-world shell behaviour, improving the language’s practical-

ity.

By expanding language features and providing a more detailed model of the shell environment, Az,
could become a more powerful and practical tool, capable of handling a broader range of scripting tasks
more effectively.

6.2.3 Better leveraging of the small-step semantics

As the language stands, we don’t gain significant advantages from using small-step semantics instead of
big-step semantics. This is primarily because we haven’t yet modelled any concurrent behaviour, which
was part of the original plan for Ay, to capture the parallel nature of shell languages. Given the current

Page 71 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

features, a big-step semantics might have been simpler to implement, as the reduction rules would have
been simpler to formulate, and notable, there would have been a lot less reduction rules. Although we may
not fully benefit from small-step semantics by the end of this project, having this foundation will make it
easier to extend)\, with concurrent features in the future.

6.3 Future work

In this paper, we have presented Ay, an approach to implementing a strong type system in a shell pro-
gramming language where strings play a large role. While this work lays a solid foundation, there are
several directions for future research and development to further enhance Ay, and its applicability.

Expand on the semantics to model the shell environment more completely The current se-
mantics of Ay, provides a robust framework for handling strings and basic type safety. However, the shell
environment encompasses a wide range of functionalities and interactions that are not yet fully modelled.
Future work should aim to:

1. Incorporate a more comprehensive representation of file systems: This includes modelling
file permissions, directories, symbolic links, and various file operations more accurately.

2. Extend process management semantics: Model the creation, management, and termination of
processes, including background and foreground processes, job control, and inter-process communi-
cation.

3. Improve handling of input/output streams: Enhance the semantics to better model standard
input, output, and error streams, including piping, redirection, and the use of subshells, since this is
something that plays a large role in external commands.

By expanding the semantics to cover these aspects, As, can more accurately reflect the real-world
complexities of shell environments, making it a more practical and powerful tool for users.

Expand on language features The primary focus of this paper has been to establish the fundamental
aspects of Agp. However, there are numerous advanced language features that could enhance the usability
and expressiveness of Agp:

1. Records and Data Structures: Introduce more complex data structures such as records, tuples,
and lists to allow more structured data handling and manipulation.

2. Namespacing and Modules: Implement namespacing mechanisms to prevent naming conflicts
and support modular programming, making scripts more organized and maintainable.

3. Error Handling Constructs: Develop advanced error handling constructs to manage exceptions
and errors more gracefully within scripts. This was an original goal for Ay, that we didn’t get to.

4. Concurrency and Parallelism: Add constructs for concurrent and parallel execution.

These features will not only expand the language’s capabilities but also make it more realistic as a
formal specification of modern shell programming language.

Page 72 of

A Strong Typed Computational Model for Shell Languages January 2024 - June 2024

Implementation of a shell language following the)\, specification To validate the theoretical
foundations and practical applicability of Ag,, an actual implementation of the language is essential to
validate the specification in reality. Future work should involve:

1. Developing a compiler or interpreter: Create a compiler or interpreter that adheres to the
Ash specification, ensuring that the strong type system and other language features are correctly
implemented.

2. Creating a standard library: Develop a comprehensive standard library to support common
scripting tasks, such as file manipulation, text processing, and system operations.

3. Real-world testing and feedback: Communicate with potential users to test the implementation
in real-world scenarios, gather feedback, and improve the specification.

By undertaking these steps, the Ay, language can transition from a theoretical framework to a practical
tool that offers real benefits to its potential users.

Page 73 of

References

1]

ESES

ENNET)

[10]
[11]

[12]

M. Abadi et al. “Explicit substitutions”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’90. San Francisco, California, USA: Asso-
ciation for Computing Machinery, 1989, pp. 31-46. 1SBN: 0897913434. DOI: [10.1145/96709.96712.
URL: https://doi.org/10.1145/96709.96712.

Christoffer Lind Andersen and Nikolai Aaen Bonderup. Requirements for a functional shell program-
ming language. Technical report. Aalborg University, Jan. 2024. URL: mailto:clan19@student.aau.
dk,mailto:nbondel9@student.aau.dk.

Bash Reference Manual. 5.2. GNU. Sept. 2022.

Haskell B. Curry, Robert Feys, and William Craig. “Combinatory Logic, Volume I”. In: Philosophical
Review 68.4 (1959), pp. 548-550. DOI: |10.2307/2182503.

IBM Developer. Accessed: 2024. URL: https://developer.ibm.com/tutorials/1-1linux-shells/.

Yiwen Dong et al. “Bash in the Wild: Language Usage, Code Smells, and Bugs”. In: 32.1 (Feb. 2023).
1SsN: 1049-331X. DOI: [10.1145/3517193. URL: https://doi.org/10.1145/3517193.

E. Engeler. “H. P. Barendregt. The lambda calculus. Its syntax and semantics. Studies in logic and
foundations of mathematics, vol. 103. North-Holland Publishing Company, Amsterdam, New York,
and Oxford, 1981, xiv + 615 pp.” In: Journal of Symbolic Logic 49.1 (1984), pp. 301-303. DOI:
10.2307/2274112.

Hans Huttel. Transitions and trees. Cambridge, England: Cambridge University Press, Oct. 2012.
Mark Lutz. Learning Python. en. 5th ed. Sebastopol, CA: O’Reilly Media, June 2013.

OpenAl DALL-E. A strong metal seashell. Image generated by OpenAl’s DALL-E. Generated: 11-
01-2024. 2024.

Benjamin C Pierce. Types and Programming Languages. en. The MIT Press. London, England: MIT
Press, Jan. 2002.

Andrew K. Wright and Matthias Felleisen. “A Syntactic Approach to Type Soundness”. In: Inf.
Comput. 115 (1994), pp. 38-94. URL: https://api.semanticscholar.org/CorpusID:31415217.

74

https://doi.org/10.1145/96709.96712
https://doi.org/10.1145/96709.96712
mailto:clan19@student.aau.dk,mailto:nbonde19@student.aau.dk
mailto:clan19@student.aau.dk,mailto:nbonde19@student.aau.dk
https://doi.org/10.2307/2182503
https://developer.ibm.com/tutorials/l-linux-shells/
https://doi.org/10.1145/3517193
https://doi.org/10.1145/3517193
https://doi.org/10.2307/2274112
https://api.semanticscholar.org/CorpusID:31415217

Appendix A

Syntactic categories and formation rules

Syntactic categories

necN (Numerals)
beB (Booleans)
s€S (String)
peP (Filepath)
0c€O (OS-level Constants)
reV (Variables)
ecE (Expressions)
7eT (Types)
ceM (Substitutions)
Formation rules
ex=n|b|s|plo|z| x:Te|elo]|eroes]| |e]]|]e]

ou=1id| (e/x) o

75

Appendix B

Semantics

Transition system

The transition system for evaluating Ay, is defined as a triple (C, —, T'), where C'is the configuration space,
— is the transition relation, and 7T is the set of terminal configurations.

C=(ExA)U(VxA)
T=VxA

Structural congruence

Rewriting rules
e=e; (e1,0) = (e],0") e =¢€)
(e,0) — (/, &)

[STRUCT]

76

A Strong Typed Computational Model for Shell Languages

January 2024 - June 2024

Structural equivalences

[BETA]

[VAR-1]

[VAR-2]

[VAR-3]
[APP]
[ABS]

[APP-1]

[APP-2]

[SYMM]

[TRANS]

[APP-LEFT]

[APP-RIGHT]
[APP-FILEPATH]

[APP-STRING]

[REFL]
[INV]
[IDEM]

[QCON]

(Az.e1)es = er(ea/x)]

€ el =€ €
€1 = €2
e =e
e=c¢e
e=e e =¢€
e=¢e
(e1,0) — (€],d")
(€1 e2,0) — (€] ea,d")
(e2,0) — (e5,d")
<V1 62,6> — <V1 6,2,5/>

[le]T=e
Llel] = le]

Page 77 of

A Strong Typed Computational Model for Shell Languages

January 2024 - June 2024

[S-NUM]
[S-BOOL]
[S-STRING]
[S-FILEPATH]
[S-UNIT]

[S-CONCAT)]
Reduction rules
[NUM]
[BOOL)]
[STRING]

[FILEPATH]

[UNIT]

[CONCAT-1]

[CONCAT-2]

[CONCAT-3]

nlo] =n
blo] =b
slo] = s
plo]=p

unit[o] = unit

(e 0e3)o = (e10) o (e20)

o) = oy LW =n

.0 5 (b,9y 1) =b

G0 S oy s =s

0.0 = (poy 1P =P
(unit, §) — (u,d)
(e1,6) — (e1,9")

<€1 062,5> — <€/1 O€2,5>
<6275> — <6,2)5,>

(Voeg,) = (Voeh, o)

if v=viovy

Vi oV, 0) — (V,0)

Page 78 of

A Strong Typed Computational Model for Shell Languages

January 2024 - June 2024

[CWD]

[CD-1]
[CD-2]
[TOUCH-1]
[TOUCH-2]
[MKDIR-1]
[MKDIR-2]
[RM-1]

[RM-2]

(evd.0) = (p.oy) "0 T (PES)

(e, 8) — (e, &)
(cd e,d) — (cd e?,0)

r_
(cd p,d) — (u,d) where §' = (p, fs)

<€, 5> — <€/, 5/>
(touch e,d) — (touch €, ¢’)

(touch p, (P, £9)) = () 0 — P Eelp fual]

(e,0) = (¢/, &)
(mkdir e, d) — (mkdir €/, d’)

(adiz p, (o, £5)) > (u oy 0~ (P felp = fual)

<€’ 5> — <€/, 5,>
(mkdir e, d) — (mkdir €/, ¢’)

(rm p, (p', £s)) — (u, &) if 0 = (p', £s[p — undef])

Page 79 of

Appendix C

Type system

T1, T2 ::= bool | string | num | filepath |unit |74 — o | [71] | 1072
[T-NUM] I'Fn:nun
[T-BOOL)] I'Fb:bool

[T-STRING] 't s:string
[T-FILEPATH] I'+p:filepath
[T-UNIT)] T'hw:unit
(z) =
TVAR] A e
T-ABS] lz—7]Fe: 7
FrFAz:te):7—1

T-APP] I'Feg }7_?;;2 :l;/l— €y T

T-CLOS] I+ JFDE’Q[U]F’: }; e:T
[T-ID] I'FidoT
"T-CONS] te:7 T'kopI”

[T-APP-FILEPATH]

[T-APP-STRING]

'k (e/z) o1z — 7]

'Fe;:filepath I'F ey : string

I'ke ey :unit

I'-ep :string I'ley: string

I'e1es:unit

80

A Strong Typed Computational Model for Shell Languages

January 2024 - June 2024

[T-CONCAT]

[T-QUOTE]

[T-UNQUOTE]

[T-CWD]

[T-CD)]

[T-TOUCH]

[T-MKDIR]

[T-RM]

Subtyping

[T-SUB]

[T-REFL]
[T-TRANS]

[T-ARROW]

I'Fer:mm They:m
I'Fejoeg:1i0my

I'Fe:r
L'k lel:[7]
F'ke:|[7]

' cwd : filepath

I'Fe: filepath
I'Fcde:unit

I'Fe:filepath
I' F touch e : unit

I'Fe: filepath
I' - mkdir e : unit

I'Fe:filepath
I'krme: unit

bool <: string

num <: string
filepath <: string
unit <: string

|7] <:string

I'Fe:ms 15<:7
I'te:r

TIT

T <:Tg To <:T3
71 <! T3

To1 <:T11 Ti2 <:T92
T11 — T12 <:T21 — T929

Page 81 of

A Strong Typed Computational Model for Shell Languages

January 2024 - June 2024

Quoting

L)) = 7]
| string| = string
string o string = string

|71 o |72] = |11 0 T2]

(
(
(
(

T-IDEM)
T-QSUB)
T-CONSTR)
T-QUO)

Page 82 of

	Introduction
	The nature of shell programming
	Moving towards stronger type systems
	The sh language

	Theoretical foundation
	Introduction
	Formal operational semantics
	Configurations
	Transitions
	Example of language specification

	Type systems
	Typing contexts
	Type judgements
	Subtyping
	Soundness of a type system

	Structural congruence
	Summary

	Problem analysis
	Introduction
	Challenges with traditional shell languages
	Weak Type Systems in Shell Languages
	The special role of strings in shells
	Strings in Action
	Commands in Shell

	Designing a string-centric type system
	String interpolation and concatenation
	String concatenation and conversion semantics
	Structural congruence

	String concatenation
	Syntactic categories and formation rules
	Semantics
	Type rules

	String concatenation extended with more data types
	Syntactic categories and formation rules
	Semantics
	Type system
	Example derivation
	Soundness proof

	String concatenation with subtyping and coercion
	Syntactic Categories and Formation Rules
	Semantics
	Type System
	Example Derivation
	Soundness proof

	Next

	Formal specification of sh
	Computational Model
	Syntactic Categories and formation Rules
	Semantics
	Small-step semantics
	Explicit substitutions
	Values
	Constant evaluation
	State

	Type system
	The typing context
	Type rules

	Transition system
	Structural congruence
	Values
	Substitution, abstraction, and application
	Shell operations
	Quoting
	Quoting laws

	Subtyping
	String operators
	Expressivity
	Summary

	Soundness
	Motivation
	Preservation
	Progress
	Summary
	Progress
	Preservation
	Final assertion of soundness

	Conclusion, discussion, and future work
	Conclusion
	Discussion
	More features
	Detailed shell environment modelling
	Better leveraging of the small-step semantics

	Future work

	References
	Syntactic categories and formation rules
	Semantics
	Type system

