A Multimodal Large Language Model for
Music Captioning

AALBORG UNIVERSITY
STUDENT REPORT

MASTER PROJECT
MATHEMATICAL ENGINEERING

Authors: Supervisors:
Anders Lauridsen Zheng-Hua Tan
Jacob Mgrk Sven Ewan Shepstone
Jakob Olsen Pablo Martinez-Nuevo

Francesc Lluis Salvadd

June 3, 2024

Copyright © Aalborg University 2024

AALBORG UNIVERSITY
STUDENT REPORT

Title:
A Multimodal Large Language Model for
Music Captioning

Theme:
Natural Language Processing

Project Period:
spring-semester 2024

Project Group:
{ahll19, jmark18, jols19}@student.aau.dk

Authors:
Anders Lauridsen
Jacob Mgrk
Jakob Olsen

Supervisors:
Zheng-Hua Tan

Sven Ewan Shepstone
Pablo Martinez-Nuevo
Francesc Lluis Salvadé

Number of Pages: @

Date of Completion:
June 3, 2024

Department of Mathematical Sciences
Skjernvej 4A

Aalborg University
http://www.math.aau.dk

Abstract:

In this project, the goal was to implement
a multimodal model, using an audio en-
coder and a large language model, capable
of creating music descriptions given a song.
A multimodal converter model was devel-
oped for captioning 10 second music clips.
The model was consistently able to gen-
erate descriptions, however, it struggled
with hallucinations and inaccuracies. The
model’s performance was measured using
the BERTScore and a qualitative evalua-
tion. Future work should prioritize fine-
tuning the large language model together
with the audio projection layer to com-
bat the current issues. Hereafter, further
research should look into other language
models, improve the prompt used, and try
different audio encoders.

The content of this report is freely available, but publication (with reference) may only be pursued due to

agreement with the authors.

http://www.math.aau.dk

ik j% }

V [
Anders Lauridsen Jacob Mgrk

/=

Jakob Olsen

iv

jakobolsen
Pencil

jakobolsen
Pencil

jakobolsen
Pencil

Preface

This project was written in the period from February 1st, 2024 to June 3rd, 2024 by three
Mathematical Engineering students at Aalborg University in the final semester of the Mas-
ter’s. We would like to thank supervisors Zheng-Hua Tan, Sven Ewan Shepstone, Pablo
Martinez-Nuevo, and Francesc Lluis Salvadé for their support throughout the project pe-
riod.

In this project, it is assumed that the reader has an understanding of the subjects pre-
sented during study for the Bachelor’s and Master’s degrees in Mathematical Engineering
from Aalborg University.

Aalborg University, June 3, 2024

Contents

Introductiod
|I .1 Problem Statemend

|2 Natural Language Processind

2.1 Transformer Architecturd
0.2 Mistral 7B
2.3 Prompting e
D.4 Evaluationl

R.41 BERTSCOT . . o o o oot e e e

|3 LoRA and Quantizatiod

B LoRA|
8.2 QUANIZALION i e e

B.Q.l QLoRéI

4 Multimodal Modeld
1.1 Multi-Window Masked Autoencodell

1.2 J2A-2.x Implementation and Architecture{

b Experimend

b Discussiod

b.l Further Researcd

t? Conclusiod

B 0 phy]

|Z J2A—1.E]

Ié 1 Featureé

IB Training Conﬁguration4

ID J2A-2.x Responsesl

vi

b.1 Quantitative Evaluatiod
b.2 Qualitative Evaluatiod

12
12
13
14

16
17
17

21
21
23

28
29

31

32

36
36

37

38

39

1 | Introduction

The music industry has undergone several years of consecutive growth. Much of this
growth can be attributed to the advent of music streaming, which represented 65% of the
music industry’s revenue for 2021 [[I]. Recent advances have been made in music-related
machine learning, such as the advent of the Sunof platform. However, music-related tasks
for modern machine learning models have not been researched as much as tasks related
to text and images [2].

Music-related machine learning models are of interest to companies that produce head-
phones, speakers, televisions, soundbars, and more. To improve user experience, these
products often come with a method for the user to adjust the equalization of the prod-
ucts. Equalization tools might be too complicated for many users. Therefore, a machine
learning model, which helps users adjust the equalization, might be of interest to such
companies. A natural way to interact with such a model, without removing all agenc
from the users, is to utilize modern advancements in Natural Language Processing (@3,
An illustration of this type of model can be seen in Figure [L.1].

Equalization
User Prompt —){ Languages Model Parameters

Figure 1.1: A simple model that takes a text prompt as input and returns equalization
parameters.

One reason for the increased interest in is the development of a new model archi-
tecture called the transformer [3]. This model architecture excels in handling long-range
dependencies and is therefore very useful for language tasks. Language models that build
on the transformer architecture, which are colloquially known as Large Language Mod-
els (S), have driven the increased interest in multimodal models. A multimodal model
is a model that can handle two or more modalities [4].

In [2] they present the LLark model, a multimodal model, which is able to solve three
different music-related tasks. These tasks are defined as music understanding, music cap-
tioning, and music reasoning. Music understanding is the task of extracting a single and
generally global property of a piece of music, such as the tempo or the key of a song.
Music captioning is the task of summarizing a piece of music in a plain text format. Mu-
sic reasoning is the task of combining multiple pieces of information about that piece of
music, or relating information about the music to information external to that piece of
music.

https://suno.com/about

https://suno.com/about

CHAPTER 1. INTRODUCTION

To improve the system from Figure we propose a multimodal model shown in Figure @
This proposed change adds the music as context for the model, which may improve the
process of determining the equalization parameters. The task of the sound describer of our
proposed model is analogous to the music captioning task from the LLark model [2].

Music Clip

W—» Sound Describer L nss o :
J Large Language Equalization
et sl " Model Parameters

Figure 1.2: Two combined machine learning models. The sound describer is a multimodal
model, which takes a sound clip as input and returns a text description of the given input.
The second model is an Large Language Model) which takes a user prompt and a
music text description as input, and returns fitting equalization parameters.

The sound describer in Figure @ can be designed in many different ways. One way is
to use a multimodal converter [5], which is the approach used in the LLark model. The
structure of our proposed sound describer is illustrated in Figure [1.3.

Sound Describer
Music Clip

W—»{ Audio Encoder }—) Audio Projector ——»!

N

Large Langue
Model

Text Description of
Music

Hidden Text Tokenization and

Prompt Embedding

N _d

Figure 1.3: The figure shows a multimodal converter setup. The model handles the audio
modality by connecting the audio encodings to the Large Language Model) using a
projection layer. Furthermore, the text prompt is tokenized and embedded to be passed into
the . The output of the is then a description of the music clip. The prompt
instructs the to solve the task of music captioning and is not accessible by the user.

One of the challenges in developing multimodal models for audio is the difficulty in ob-
taining large high-quality, richly annotated music datasets. The largest sets of such data
we have been able to find, which are also used in [2], are YouTube8M-MusicTextClips [6]
and MusicCaps [[7]. YouTube8M-MusicTextClips provides over 4 thousand 10 second mu-
sic clips captioned by the YouTube video annotation system and MusicCaps has over 5
thousand 10 second music clips captioned by human experts.

To develop a model capable of describing music clips, we test multiple approaches to the
problem. This way we can compare performance between the models and set a direction
for further development on the topic.

1.1. PROBLEM STATEMENT

1.1 Problem Statement

This project aims to develop a multimodal model that can generate captions for short
music clips. To achieve this, we propose the following research question:

Using an audio encoder and a large language model, is it possible to create a multimodal
model that can generate captions for music clips of 10 seconds?

2 | Natural Language Processing

Natural Language Processing () has been a large area of research for many years. The
field has made a large leap with the advent of the transformer architecture which was first
proposed in [3]. The transformer was proposed in order to rectify the issues associated
with Recurrent Neural Networks (@S Long Short-Term Memory () Networks,
and Gated Recurrent Neural Networks () Some of these issues include vanishing
gradients and the non-parallelizable process by which inference is carried out. These issues
impede the size of the context that the model can be "aware” of, and the speed of inference
and training of the model.

The Mistral 7B model is a transformer model which can be used for generating natural
language [8]. This Large Language Model () uses the transformer structure as the
one proposed in [3] but with a few modifications made to increase the inference speed. To
interact with an @, prompting is used for having a text-based ”conversation” with the
model. To evaluate the quality of an m text output there exist many methods as this
is not a straightforward task. Methods for evaluating an include making humans
evaluate the text output of the m or using text distance measures between captions
what is considered ground truth in this type of experiment) and the text output from the
L

In Section @ we describe the general structure of the transformer models. In Section @
we introduce the Mistral 7B model, and the modifications they have made to the traditional
transformer architecture proposed in [3]. In Section we introduce the concept of
prompting and different strategies that can be used for interacting with the . Lastly,
different ways of evaluating ang@ are introduced in Section P.4.

2.1 Transformer Architecture

Transformers are purely attention-based models, which can make use of an encoder-decoder
structure. The encoder and decoder both consist of multiple layers, which consist of
Feedforward Neural Networks (S), Multi-Head Attention (MHA), and normalization
sublayers, the decoder then has an additional sublayer, namely a masked II\&XI sublayer.
An illustration of the architecture can be seen in Figure R.1l.

4

2.1. TRANSFORMER ARCHITECTURE

Positional
Encoding

Inputs

Output
Probabilities

' ' '
Input [e T
Embedding > Encoder 1 Encoder 2 }7 —){ Encoder N
Softmax

h 4

g

ra Y ra
Input T o N -
Embedding | * > Decoder 1 > Decoder 2 }7 4){ Decoder N H Linear ‘
T ~ / . A e _
Outputs

(Shifted Right)

Positional

Encoding
(0 ™y

Encoder N |

. TR
([=, MultiHead Addition and Feed-Forward
< Attention Normlisation Meural Network

Addition and

Normlisation

= Masked Multi- Addition and E Multi-Head Addition and Feed-Forward Addition and
= Head Attention Normlisation Attention Mormlisation Meural Network Mormlisation

Decoder 1, .., N

Figure 2.1: An illustration of a transformer using the encoder-decoder structure. Here the
Q, K, and V are the query, key, and value matrices. The connections skipping the Multi-
Head Attention) and Feedforward Neural Network) sublayers are residual

connections. The output shifted right is the target sequence with a starting token in front.

The encoder-decoder structure is designed to allow for variable input and output lengths,
as compared to a traditional Deep Neural Network () such as a large . Using an
one has to define the input sequence length and the output sequence length. Using
an encoder and decoder structure allows for arbitrary sequence lengths in the sequence-to-
sequence type task which the transformer was designed to solve [3]. The variable sequence
length is made possible in the encoding stage by updating a hidden internal state, which
represents the input to the model. The variable output length is made possible by the
decoder choosing tokens based on the hidden state, and only stopping once a special
end-of-sequence token has been reached.

In Figure @ it can be seen that the input is first embedded, where after a positional
encoding is added. The positional encoding is needed since transformers do not have any
positional knowledge, unlike s, which have knowledge of other tokens in a sequence
from the recurrence of the model.

There are multiple ways of implementing positional encoding, both learned and fixed. In
[B] they implement the following positional encoding

S1n m s 1I 7 even,

x N
cos (1000021‘/dmodel) , if ¢ odd,

PE(x,i) = (2.1)

5

CHAPTER 2. NATURAL LANGUAGE PROCESSING

where x is the position, ¢ is the dimension of the positional encoding, and d,,e4e; is the
dimension of the model. The positional encoding is unique for each embedded token in
the sequence, and in practice gives the model context for which tokens appear where in
the input sequence.

The sublayer_consists of multiple attention heads. An illustration of a single atten-
tion head and the sublayer can be seen in Figure @

Scale Dot-Product Attention Multi-Head Attention
| Mathul | | Linear |

. _¢_
Concat
Softmax

Mask (Optional) p’ I 3
h
‘ Scales Dot-Product Attention M

Mathul

!

o
>
.
>
o
>

:
:
:

o —
-

—
—
—

Figure 2.2: On the left, the scaled dot-product Attention is illustrated. On the right, the
Multihead attention is illustrated. Here Q, K, and V are the query-matriz, key-matriz,
and value-matriz, respectively.

In [3], the attention function implemented, in a single attention head, is called scaled
dot-product attention and is calculated using (2.2).

Attention(Q, K, V') = softma QK V. (2.2)
Y) = X) *
Vi,

where dj is the dimension of the queries and the keys, and the softmax function is calcu-
lated row-wise. The query-matrix (@), key-matrix (K), and value-matrix (V') are created
by row-wise concatenating the queries, keys, and values. This is done to speed up the
computation.

When is carried out the queries, keys, and values are projected by WiQ, WHE and

WY, and then the calculations of the attention scores are carried out in parallel. This

calculation is shown in (R.3).

MultiHead(Q, K, V) = Concat(head, . .., head,)W©,

2.3
head; = Attention(QWiQ, KWZ-K, VI/VZ-V)7 (2:3)

where W2 WK ¢ Rdmoderxdi WV ¢ RdmoderXdv and WO g RhvXdmodet

6

2.2. MISTRAL 7B

Passing information only through the attention mechanisms of the transformer can lead
to sub-par performance. In [9] it was shown that residual connections, as those illustrated
in Figure ﬁl, improve the accuracy of deep neural networks and make the networks easier
to train. For this reason, residual connections are present in the transformer architecture
presented in [3].

As mentioned in the beginning of this section, a decode layer consists of a masked
sublayer. The purpose of the masking is to stop leftward flow of information in the
attention calculation.

2.2 Mistral 7B

Mistral Al is a French startup which quickly raised a lot of money in 2023 [[10]. In Septem-
ber 2023 Mistral Al released their first Mistral 7B under the Apache 2.0 license
[11]. Within half a year they released the Mixtral 8x7B model under the same Apache 2.0
license, which outperforms similarly sized, or even some larger, models from both Meta
and OpenAl [10]. Mistral AI’s CEO is quoted saying that Mistral Al is ”[commited to
pursuing] an open, responsible and decentralised approach to technology” [12]. The open
nature and performance of the models released by Mistral AI make them good choices for
this project.

The Mistral 7B model was first introduced in [8]. This architecture follows the one pro-
posed in [B] closely, with four select modifications. The four optimizations imjylemented

in [§] are Grouped Query Attention (@), Sliding Window Attention (), Rolling
Buffer Cache (), and pre-fill and chunking.

@ uses the same query for multiple attention calculations, which reduce the amount of
data which has to be moved in and out of memory. m reduced the number of tokens
a given attention calculation attends to by implementing a windowed approach. This
window is slid over the tokens in sequence, to give the model the global context normal
attention calculations would. M leverages the window size to reduce the amount of
memory operations needed to carry out attention calculations. Pre-filling and chunking
once again leverage the windowed approach of the model to reduce the number of memory
operations needed for inference.

These modifications reduce the model’s memory footprint, increase inference speed, and
allow for a larger context to be parsed by the model.

2.3 Prompting

This section is heavily based on the guide [13] and leans on the OpenAl Application
Programming Interface () platform.

Interaction with an is often done in a ”chatting” context, where the user prompts the
, and a "conversation” can be had between the user and the . What is of interest
in this project is interaction with the intent of solving a task, such as music description.
These tasks could also be text summarization, among many others.

How the prompt is written, or how large of a conversation history is passed to the model,
can drastically change the output of the . The process of creating different prompts
and other interactions, such as allowing the to query a database for information, is
known as prompt engineering. In the following, we discuss a few of these techniques and

7

CHAPTER 2. NATURAL LANGUAGE PROCESSING

choose to only discuss methods within the scope of this project. Many more techniques
exist, but they are beyond the scope of this project.

The most basic way of prompting an is known as zero-shot prompting. A zero-
shot prompt will not contain any examples which demonstrate how a task is successfully
completed. An example of such a prompt is given in [13] and shown below.

Classify the text into neutral, negative or positive.
Text: I think the vacation is okay.
Sentiment:

In practice, this technique only works for basic tasks, and more advanced methods of
prompting are needed for more complicated tasks.

Sometimes more context needs to be given to an in order to solve a task. One way of
providing this context is by using few-shot prompting. In few-shot prompting, examples
are provided in the prompt itself, in order to condition the m on the knowledge present
in the context. An example which showcases this ”in-prompt” learning is given in [13] and
shown below.

A 7whatpu” is a small, furry animal native to Tanzania. An example of a sentence that
uses the word whatpu is:
We were traveling in Africa and we saw these very cute whatpus.

To do a ’farduddle” means to jump up and down really fast. An example of a
sentence that uses the word farduddle is:

The provided example has 1 demonstration of what a task looks like, making it a 1-shot
prompt. This number can be increased, mostly limited by the context size of the m
used. This method does however not lend itself well to more complicated tasks.

The most complicated prompting technique we will explore in this report is chain-of-
thought prompting, which was first introduced in [14]. This method of prompting in the
most simple of cases asks the to reason about its answer. This can be done in tandem
with either zero-shot or few-shot prompting. As before zero-shot prompting provides no
examples in the prompt itself, and few-shot prompting provides some examples. Examples
of these techniques are provided in [15], and shown below.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the golf balls
are blue. How many blue golf balls are there?
A: Let’s think step by step.

The above example showcases zero-shot chain-of-thought prompting where the answer is
"guided” by the presence of Let’s think step by step.

Q: Roger has 5 tennis balls. He buys 2 more cans of tennis balls. Each can have 3 tennis
balls. How many tennis balls does he have now?

A: Roger started with 5 balls. 2 cans of 3 tennis balls each is 6 tennis balls. 5 + 6 = 11.
The answer is 11.

Q: A juggler can juggle 16 balls. Half of the balls are golf balls, and half of the
golf balls are blue. How many blue golf balls are there?
A:

2.4. EVALUATION

The above example showcases few-shot chain-of-thought prompting, where a more detailed
context is given to the .

2.4 Evaluation

When training the model we can use a distance metric between the output produced by
the model, and the ground truth. However, as mentioned in [2], several issues belie the
task of evaluating a music captioning model.

One issue is that of semantic distance between summarizations or descriptions of music
clips. Though the sentiment and quality of a description might match closely to another,
the actual words used and in which order will harm the evaluation. These issues are
addressed by several different evaluation models, such as ROUGE [16], BERTScore [17],
or GPT-4 [18]. ROUGE uses an n-gram comparison approach, and as such it is susceptible
to not matching synonyms. BERTScore uses learned embedding maps, in order to gauge
semantic similarity without considering the words themselves. The GPT-4 based approach
uses the large context window and good task solving skills of GPT-4 to produce evaluations
which correlate strongly with human evaluations. These models show good performance
in cases where the data only consists of text, such as summarizing articles, but as pointed
out in [2] this does not solve all issues relevant to our project.

Another issue is that music description is inherently a creative task, where very different
descriptions can be considered equally correct. This issue is solved in [2] by employing
human evaluation, where humans are tasked with listening to a clip, and then judging
two different descriptions of that music (one generated by the LLark model, and the other
obtained from their music database). While we agree that this evaluation technique would
theoretically produce the highest quality results, this is not feasible in this project due to
time constraints.

Due to the time constraint of this project we choose to implement automatic evaluation.
While a multi-modal model using GPT-4 multimodally where it has access to the music
clips might produce the highest quality evaluations, this model would fall outside the scope
of this project as well.

Instead, we choose to implement the BERTScore, since this is easy to implement and
the latest models implementing the BERTScore show a Pearson correlation with human
evaluation of approximately 0.6.

2.4.1 BERTScore

We employ a wrapper from Hugging Face of the open source implementation of the
BERTScore, which is distributed under the MIT license. The code is written by the
authors of [17], and can be found at [19].

Each evaluation by the BERTScore interface provides the recall, precision, and F1 score,
which are performance metrics for binary classification problems. In these classification
problems, the predictions and labels are either positive or negative. A true or false negative
or positive is the case where the prediction either matches or does not match the label.
The number of false negatives, true negatives, false positives, and true positives in the
classification set are denoted F'N, TN, F P, and T P, respectively. Using these quantities
we can define

CHAPTER 2. NATURAL LANGUAGE PROCESSING

TP TP
Recall = ?, Precision = m,

9 (2.4)
(Recall) ™ + (Precision) ™’

where P = TP + FFN which is the number of positive labels. These metrics define the
recall, precision, and F1 score in a binary classification problem [2(].

F1 Score =

The BERTScore metrics draw inspiration from (@), but are calculated differently. The
general idea behind the BERTScore is that the captions and predictions are tokenized and
then embedded by a given BERT model. The cosine similarity, which is the cosine of the
angle between two vectors, is then computed between each pair of embedded tokens. These
cosine similarities are then used to compute a sort of generalized recall, precision, and F1
score. A weighting is also applied to these scores based on the commonality of words. In
practice, the scores provided by this method tend to fall in a small interval, instead of the
theoretically possible interval of [0,1]. To account for this a re-scaling can be carried out
based on the empirically worst-case performance of the model. The empirical nature of
the rescaling can result in values falling outside of the theoretical range of [0, 1].

Example @ illustrates how the BERTScore works for different sets of sentences. We used
ChatGPT-3.5 from OpenAl to generate the sentences, and their rephrasings.

Example 2.1: BERTScore Example
In this example, only the F1 scores of the BERTScores will be used.

The BERTScore interface is loaded with the microsoft/deberta-xlarge-mnli model
as this shows the best correlation to human evaluation amongst the available models.
Baseline re-scaling is also enabled, and the model language is set to English.

The phrases used in this example are listed in Table El!

F1 Score Caption Sentences Prediction Sentences
0.82 The cat sat on the mat. The feline rested on the rug.
0.66 She danced gracefully across the Her movements were elegant as she
stage. traversed the platform.
0.26 He wrote a heartfelt letter to his The aroma of freshly baked bread
friend. wafted from the bakery down the
street

Table 2.1: Example sentence pairs for the BERTScore calculation, along with their approx-
imate F1 score.

It is not surprising the first sentence pair scores highly, since the prediction sentence is
mostly constructed of synonyms of the words in the caption sentence. The score of the
second sentence also makes sense, since they are semantically similar, but not necessarily
describing the same thing. The most surprising thing about the last score is that it is
not 0, since the sentences are not semantically similar, nor do they contain any significant
amount of synonyms.

10

2.4. EVALUATION

This illustrates that the BERTScore can function as a rough guide for semantic similarity,
but it is not sophisticated enough to deduce any meaning about a given sentence.

11

3 | LoRA and Quantization

In this chapter Low-rank Adapter () [21] is_introduced. is an approach de-
veloped for fine-tuning Large Language Models (S) Hereafter, quantization theory
for machine learning and QLoRA [22] are introduced. QLoRA is a quantized version of
, which makes the process of fine-tuning s more accessible since it requires less
memory.

3.1 LoRA

is a method developed to fine-tune large-scale pre-trained language models. Existing
techniques before often introduced increased inference time for a fine-tuned model.
An approach that could combat this issue is to update all weights in the pre-trained
model. However, this would be a very computationally heavy task for each time a model
is fine-tuned. The advantages of using the approach are that it makes training more
efficient, it does not introduce any additional computation time when running_inference,
and it makes it possible to use a pre-trained model to train multiple small modules
each specialized for different tasks [21].

The general idea behind the approach is illustrated in_Figure @, where W € Rk
i

represents the query, key, value, or output weight matrix. [LoRAl adds two new matrices,
A € R™* and B € R¥" for each weight matrix, where r < min(k, d). then only
updates A and B to calculate the new weights as

W' =W + AW =W + BA, (3.1)

where W' is the new weight matrix. A is initialized as entrance-wise standard normal
distributions and B as a zero matrix. The output matrix A is then given as

b=Wx+ AWz = Wz + BAz, (3.2)

where x is the input. This means that at the first iteration, the contribution from A and
B will simply be b = Wz as B = 0, where after A and B are updated from the pre-trained
weights.

12

3.2. QUANTIZATION

b

4 N

Pre-Trained (Frozen)
Weights

W e Raxk

- /
~ 7

T

Ai; 7 N(0,1)

Figure 3.1: The reparametrization used in the Low-rank Adapter) article. Only A
and B are trained.

3.2 Quantization

Running s can be a challenge on consumer hardware. For example, GPT-3 has around
176B parameters and just to run inference with a model of this size will take more than
700 GB memory [21].

Quantization is a technique used to reduce the computational and memory costs of running

inference by representing the weights with low-precision data types like 8-bit integer (
instead of the usual 32-bit floating point ()

When quantizing from to it is common to rescale the input data type into the
range of the target data type, using normalization by the absolute maximum value of the

input elements. This is done because [nt§ only can represent 256 values and it is important
to use the entire range of the range [22]. Consider quantizing a tensor (X fioat32)
into an [nt§ tensor (X;ns) of range [—127,127], we then get the quantisation

~

127
X — d X 3.3
int8 roun (absmax(Xﬂoatgz) float32>) ()
= round(Cfioats2 * X floats2), (3.4)

where cfjoq¢32 is the quantization constant. With this approach, large magnitude values,
such as outliers, in the input tensor can cause problems. One problem is that some
quantization bins will have very few or no numbers in them. In other fields, an easy
solution to this could be discarding the outliers, but in machine learning the outliers are
often the most important values [22].

Another common approach to prevent the outlier problem is to chunk the input tensor into
blocks that are independently quantized with their own quantization constant. The input
tensor X € RY*” is chunked into n contiguous blocks of size B by flattening the input
tensor and slicing it into n blocks, where n = (b- h)/B. These blocks are then quantized

13

CHAPTER 3. LORA AND QUANTIZATION

using (@), resulting in a quantized tensor and n quantization constants [22].

3.2.1 QLoRA

QLoRA is a method, which makes it possible to load and fine-tune a quantized 4-bit model
without significant performance degradation compared to a 16-bit fully fine-tuned baseline
model. Using QLoRA, a model with 65B parameters can be fine-tuned using less than
48 GB memory instead of more than 780 GB. To get this improvement in memory use,
QLoRA introduces three innovations, namely: 4-bit NormalFloat, Double Quantization,
and Paged Optimizers [22]. These innovations are combined to create a approach
with a lower memory footprint.

4-bit NormalFloat

[0.97, 0.9, 0.84, 0.77, 0.7, 0.63, 0.57] [0.56, 0.62, 0.68, 0.74, 0.79, 0.85, 0.91, 0.97] Probability
[-1.88,-1.3,-0.98,-0.73,-0.53, -0.34, -0.17] [0.15, 0.3, 0.46, 0.63, 0.82, 1.05, 1.35, 1.88] Z-score
[-1.88,-1.3,-0.98, -0.73, -0.53, -0.34, -0.17, 0.0, 0.15, 0.3, 0.46, 0.63, 0.82, 1.05, 1.35, 1.88] Concatenation
[-1.0,-0.69, -0.52, -0.39, -0.28, -0.18, -0.09, 0.0, 0.08, 0.16, 0.24, 0.33, 0.44, 0.56, 0.72, 1.0] Normalisation

Figure 3.2: The idea behind 4-bit Normalfloat) The standard normal distribution

s quantized into 17 quantiles, and the Z-scores are found, concatenated, and normalized.

The 4-bit Normalfloat (% is a new datatype the authors of [22] have created to store
data using less memory. is designed to be an ideal datatype for normal distributions,
which makes sense since the weights of pre-trained neural networks usually follow a normal
distribution with zero mean. The idea behind is illustrated in Figure @ The weights
of each chunk follow their own zero-mean normal distribution. The weights of each of these
chunks are then scaled to fit into a chosen range. For the range is [—1, 1] [22].

In the data type, the standard normal distribution is split into 17 quantiles, eight to
the left of zero and nine to the right. This is done because we want an exact representation
of zero. When the quantiles are found they are normalized to the range [—1,1]. Now an
input weight tensor can be quantized by normalizing it to the range [—1, 1] using absolute
maximum rescaling, which is equivalent to rescaling the standard deviation of the weight
tensor to match the standard deviation of the data type [22].

Double Quantization

Double Quantization (@) is the process of quantizing the quantization constant. This
can result in a memory saving of approximately 3 GB on a model with 65B parameters
[22]. It is possible to get this kind of memory saving since there is an overhead when
performing independent 4-bit quantization, on each block of a chunked input tensor. The
overhead is caused by the n quantization constants, which usually are saved as .
Quantizing all these using a single quantization constant is what results in the memory
savings.

14

3.2. QUANTIZATION

Paged Optimizers

Paged optimizers apply the NVIDIA unified memory feature, which automatically applies
page-to-page transfers between the CPU and GPU to avoid errors when the GPU occa-
sionally runs out of memory. The method works like memory paging between CPU RAM
and disk. It is used to move the paged memory for the optimizer states to the CPU RAM
from the GPU when it runs out of memory. When the memory is needed for the optimizer
update step it is moved back to the GPU memory [22].

15

4 | Multimodal Models

Multimodal models refer to models capable of handling multiple modalities. The idea of
combining multiple modalities is not new. However, recently there has been a significant
increase in the study of multimodal s M]. The recent development in multimodal
s includes models that can handle modalities such as videos, images, audio, and text
in a single model [23].

To create a multimodal model of any kind it requires a way to combine the different
modalities into a shared space. In [§] they split these different ways into four categories,
multimodal converters, multimodal perceivers, tools learning, and a data-driven approach.
The multimodal converters take the output of one modality and input it directly to the
m through a simple projection layer. The multimodal perceivers is used to minimize
the semantic gap between the modalities by converting multimodal features to multimodal
tokens that is consistent with the embedded representation of the . The tools learning
can be used as a way to extend the functionality of a given multimodal model by extending
its capabilities with other foundation models. Lastly, there is the data-driven approach,
which is often used to fine-tune a given multimodel model to fit a specific task. An example
of this could be the LLava-Med [24], which is a LLava model [25] modified for medical
data.

When working with audio as a modality, audio encoders are used to reduce the dimension
of the audio while losing only a little information about the audio file. For combining an
encoding and text, recent work has shown good performance of the multimodal converters,
specifically a simple projection layer [25, 2]. The projection layer can consist of a simple
linear layer, but it may also contain multiple trainable layers. The most important part of
the projection is that it manipulates the size of the encoded audio to match the input size
of the , without excessively reducing the amount of information in the embedding. A
common issue with the projection layer approach is hallucination, which may arise from
misalignment of the encoding and text features. There is a two-stage solution that is
often used to combat this issue. Firstly, the projection layer should be trained while the
parameters of the m and the encoder are frozen. Secondly, the trained projection layer
should be trained together with the @ with only the parameters of the encoder being
frozen [B, 25).

When using the model setup suggested in Figure @, both the encoder, the , and
the audio projector are trainable. Here it is possible to use an off-the-shelf audio encoder
and a pre-trained or fine-tuned, . In 2] they use an existing audio encoder, and a
pre-trained .

16

4.1. MULTI-WINDOW MASKED AUTOENCODER

4.1 Multi-Window Masked Autoencoder

The encoder used in this project is part of the Masked Autoencoder () family of
encoders. These encoders work by passing only a few patches of an image, encoding these
patches, and passing the encoded patches to the decoder [26]. In order to apply such an
encoder on an audio signal a spectrogram is created based on the audio.

A model that uses the ll\m structure is the Multi-Window Masked Autoencoder ()
[@] The model structure of IMW—MAEI is illustrated in Figure @ They use log mel-
spectrograms as input and partition them into non-overlapping patches. In our model, we
only use the encoder of the and hence the decoder is not discussed further in
this report.

? -
:Ae - Dec'oder
—_ — with
E S%4

Encoder
N

2

"

MW-MHA

Figure 4.1: Overview of the Multi- Window Masked Autoencoder) architecture.

Image is from .

The encoder uses 20% non-masked patches which are chosen randomly. Hence, the ma-
jority of the patches are not processed during the training of the encoder. The positional
embedding of the visible patches is added using a sinusoidal positional embedding.

4.2 J2A-2.x Implementation and Architecture

This section describes the design and implementation of two multimodal models, as well
as an approach to training the models. The two models are called J2A-2.0 and J2A-2.1,
together referred to as J2A-2.x. The implementations are inspired by the approach used in
[@ This approach utilizes Mistral-7B-0penOrca” and follows the multimodal conversion
approach. Furthermore, we also elaborate on different specifications and decisions that
have been made in the process of creating the two models. To test the Hugging Face
framework and to get familiar with the necessary tools for this project, we have also
created a simple model that is found in Appendix Al but will not be considered further in
this report.

The two models are differentiated by sub-version instead of major version since they are
architecturally very similar. These models are multimodal models and can parse music
clips to obtain a text description. This is enabled by employing the Multi-Window Masked
Autoencoder () Eﬁ] and projecting the encoded audio to the input layer of the

Thttps: //huggingface.co/0Open-0rca/Mistral-7B-0penOrca

17

https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca

CHAPTER 4. MULTIMODAL MODELS

underlying Large Language Model () Figure @ illustrates the architecture for J2A-
2.x.

J2A-2.x

Music Clip
Encode Clip using)
W—P MW-MAE Audio Projector

Hidden Text Prompt —){ Tokenize & Embed

Concatenate
Embeddings

‘ Concatenate
Attention Masks

Text D iption of i

Music Clip
__4,{ Tokenize & Embed }—)[Cross—Entrop}r Loss] D:ﬂ(;osd: g::;:%ﬁd }74 Text 3e;:;|ip;:t|on

For Training For Inference

Figure 4.2: A flowchart overview of the J24-2.x model.

In Figure @ it can be seen that both for training and inference a hidden hard-coded single
prompt is parsed to the alongside the encoded music clip. This is done to guide the
model in what we would like it to focus on and to understand the task. For training the
output of the , it is compared to a tokenized label, which is seen as ground truth.
The comparison is done using cross-entropy loss. The loss is then used to update the
parameters in the model. For inference, the output of the is detokenized to get the
output in a text format. This text is then the description of the music.

The data used to train the models comes from two datasets, the YouTube8M-MusicTextClips
[6] and the MusicCaps [[7] datasets. YouTubeS8M-MusicTextClips consists of over 4 thou-
sand songs, each with a description made by the YouTube video annotation system. Mus-
icCaps has over 5 thousand songs with a similar description but written by human experts.
Furthermore, MusicCaps also has a list of music aspects such as genre, mood, instrumen-
tation, etc.

The text captions are around four sentences long in both datasets. The descriptions are
based on 10-second clips of the YouTube videos. Combined, the two datasets yield a total
of about 9 thousand songs, as some of the videos were unavailable as they were marked
as unavailable, private, or age-restricted.

The models are not trained, tested, or validated on the exact same training, test, and valida-
tion datasets. However, they use the same number of songs for each of the three categories.
We combined and shuffled the data from MusicCaps and YouTube8M-MusicTextClips
and used 80% for training, 10% for validation, and 10% for testing. The size of the
different datasets is shown in Table B.1. In Table more training configurations are
specified.

The output of the encoder is a tensor in R2*690%3840 = This tensor needs to be mapped
to R409 in order to make it match the input layer of the . The difference between
J2A-2.0 and J2A-2.1 is in how this task is performed.

J2A-2.0 does so by considering the tensor as a set of 690 matrices and takes the mean of
these in order to get a matrix in R2*3%40, This matrix is then passed to the audio projector
in Figure . From previous versions of J2A-2.0 we suspected that the encoding did
not contain enough information for our model and therefore we created J2A-2.1.

18

4.2. J2A-2. X IMPLEMENTATION AND ARCHITECTURE

Train Test Validation

Size 7212 902 902
Hours 20.0 2.5 2.5

Table 4.1: Size of the train, test, and validation dataset.

J2A-2.1 instead considers the tensor to be two matrices in R690%3480 - Ap average is then
taken over these 2 matrices in order to get a single matrix in R690%3480 This matrix is
passed to the audio projector in Figure where a pooling layer is included before a
normalization layer and the linear layer.

Audio Projector
{ 3 i TN
—» LayerNorm —){ Linear }——b
N R
(a)
Audio Projector
s 0N f \ 'd "
Pool }—b LayerNorm —){ Linear
M V. b . M V.
(b)

Figure 4.3: An insight of how the Audio Projector from Figure @ looks for J24-2.0 in
Figure . Similarly, the audio projector for J24-2.1 is shown in Figure .

The hard-coded single prompt for J2A-2.x consists of a system message to determine how
the language model should respond. Then there is a user message that specifies what the
model should find an answer to. The prompt can be found in Listing . The system
and user persona method of witting prompts is inspired by the OpenAl API.

In this project, we use the Llama tokenizera. This tokenizer is based on an unsupervised
text tokenizer and detokenizer called SentencePiece. This is a fast C++ based subword to-
kenizer that is trained directly on sentences that are not pre-processed [29]. The tokenizer
takes frequent word combinations on the data it is trained on and encodes this together,
e.g., "l1I” could be a common character combination that is saved as one token.

After the tokenization, the embedding works as a lookup table for a token to a vec-
tor that carries more information about each token. The different Mistral models use
torch.nn.Embedding, which is a matrix with the vocabulary size of the tokens as the
number of rows and the hidden size of the language model as the number of columns.

For training, only the gradients of the audio projector are updated, hence the audio encoder
and remain the same throughout training. Since the @ is not being fine-tuned

’https://huggingface.co/docs/transformers/main/en/model_doc/llama

19

https://huggingface.co/docs/transformers/main/en/model_doc/llama

CHAPTER 4. MULTIMODAL MODELS

during training we have used the fine-tuned version of Mistral-7B-Instruct-v0.2 called
Mistral-7B-0OpenOrca, which is trained to be specialized for chatting.

Before presenting the model tests we will look into the loss curves, shown in Figure @
For both models, the loss curve from the training data follows the one calculated on the
evaluation data. This indicates that the models are not overfitted. The loss curves also
indicate that it is not necessary to train the models more than ~ 50 epochs. The loss
curves for both models seem similar after the initial drop that happens within the first
few epochs. Both models have been trained on an NVIDIA L40 GPU with 48 GB memory.
The training time for J2A-2.0 is 114,6 hours and 141 hours for J2A-2.1. The difference
in training time is probably because of the larger audio projection layer in J2A-2.1.

10 10
—— Train Loss —— Train Loss
Validation Loss Validation Loss

8 8
6 6

b @

3 8

~
.

\
Wi r‘V\/’\«MJM\N"\/\/»/\Am" : M\’AAL“/\J\W/\'\’/\\/ N V"N\N

T v T T T T T v T T T T
] 50 100 150 200 250 300 0 50 100 150 200 250 300
Epoch Epoch

(a) J24-2.0 (b) J24-2.1

Figure 4.4: Training and validation loss.

20

5 | Experiment

In this chapter, we present the results from testing J2A-2.0 and J2A-2. 1 that are described
in Section #.2. We will use the BERTScore that is elaborated on in Chapter E, to make a
quantitative evaluation of the text that is obtained using the two models.

The BERTScore can be interpreted as a lower bound for the model performance in the
sense that the labels may not always encapsulate all information about a given song. Hence,
a song may get a bad BERTScore if it says something different than the label, even if it
describes the music well.

We also conduct a qualitative analysis of chosen predictions, where we comment on the
prediction versus the labels and the music clip itself.

5.1 Quantitative Evaluation

Our evaluation set consists of 902 music clips. We calculate the BERTScore for each of
the inferences calculated by the models. This generates 2 sets we can use for evaluation
of the models.

Eyo = {Lz‘,Pf'O,F(Li,Hm)H € [1,902]
, (5.2)

}
}

Eyy = {Li, P!, F(Li, P2")]i € [1,902]

where L; and P; are the label and prediction, respectively, for music clip ¢, and F' is the
F1 score of a label and prediction.

After calculating the BERTScore of each label-prediction pair, we will inspect the distri-
bution of F1 scores over the evaluation data.

In order to get an overview of the general performance of the models a histogram of their
F1 scores has been created. These histograms can be seen in Figure p.1l.

21

CHAPTER 5. EXPERIMENT

I F1 Score
=== Mean F1 Score J9A-2 1

J2A-2.

Figure 5.1: Distribution of F1 scores of inferences carried out in evaluation of J24-2.0
and J24-2. 1.

As mentioned in Section the F'1 score is a scalar in the closed interval [0, 1]. However,
because of the re-scaling they can fall below zero, when the score is close to zero before
re-scaling, as is the case in Figure p.1.

J2A-2.0 J2A-2.1

Mean 0.186 0.149
Variance 0.007 0.009

Table 5.1: Mean and variance of the F1 scores for J2A-2.0 and J2A-2.1.

The results in Table a do seem to imply that the J2A-2.0 outperforms J2A-2.1. This
will be discussed further in Chapter f.

To visualize how close the distributions of the F1 scores are to each other a QQ-plot
is illustrated in Figure @ The QQ-plot shows that the distributions are quite similar,
except ﬁr a few outliers. The largest outlier in Figure @ corresponds to the response in
Table p.2.

22

5.2. QUALITATIVE EVALUATION

® F1 Score Quantiles
— 45° Reference

@
0.4 1
@,
0.3
- 0.2+
Q
<q
I
Law]
0.1 1
[)
@
[)
[)
0.1 - ¢
—0.1 0.0 0.1 0.2 0.3 0.4

J2A-2.0

Figure 5.2: QQ of J24-2.0 and J24-2.1.

An interesting test is to examine the correlation between the F1 scores. For this the
Pearson correlation [@] has been used. Only 161 data points are in common between
the test dataset of J2A-2.0 and J2A-2.1. These are the only points used to calculate
the Pearson correlation. The Pearson correlation is 0.382. This means that there is some
correlation between the F1 score of the two models and the song that is scored. Although
the score may not seem convincingly high, it should be noted that running inference twice
on the same model would also result in varying F1 scores and may therefore result in a
similar Pearson correlation.

5.2 Qualitative Evaluation

This subsection is a subjective look into the results produced by J2A-2.0 and J2A-2.1.
A subset of the inferences will be evaluated qualitatively, in order to get a more nuanced
understanding of the models performance than what the BERTScore can provide. This
section includes the inferences with the best and worst F1 scores, along with 2 randomly
picked examples.

An index of what clip belongs to which inference table can be found in Table @ The
table includes external links to the videos on YouTube where the clips are from. The links
are timestamped and the clips are the 10 seconds following that timestamp.

In Table @ the worst response for J2A-2.0 is presented. Here it is clear that the re-
sponse from J2A-2.0 is bad, since it response with a combination of Cyrillic and Chinese

23

CHAPTER 5. EXPERIMENT

characters.

Label

J2A-2.0 —0.32

This slow pop song features a male
voice singing the main melody. The
voice is emotional. This is accom-
panied by a piano playing chords in
the background. A synth plays a
repetitive two note phrase in this
There is no percussion in
The mood of this song
is romantic. There are no other in-
struments in this song. This song
can be played in a dreamy sequence
in a romantic movie.

song.
this song.

WEA KK W amsa ZIR, K HE R
& J& thing. cmauss. #[F], ¥ lum #
[f: target for ¥% her #H

Table 5.2: Label and inferences for J24-2.0, where J24-2.0 scored the worst.

score is written in the top right.

The F1

In Table @ the worst response for J2A-2.1 is presented. Here it can be seen that the
response from J2A-2.1 has multiple short sentences, which are music-related, but they are
contradicting. For example lounge pop and pop rock would not be the same. Furthermore,
it repeats itself in two ways. One way it repeats itself is simply having the same sentence
twice, here it is "Great for pop song”. Another way is that it mentions a lot of different

sub-genres of pop.

Label

J2A-2.1 —0.12

This song contains an acoustic drum-
set holding the groove and changing
his beat after a fill-in to a four
on the floor with a kick on every
beat. Mixed voices are singing a
soulful sounding melody then an e-
piano takes over playing a melody
before a trumpet and a saxophone
come in playing a loud melody. In
the background you can hear percus-
sion such as a cowbell being panned
to the right side of the speakers.
The crowd is cheering and clapping
along. This song may be playing at
a live concert.

Great for
pop song. Great for pop song. Per-
fect for radio commercial. Shin-
kicker. Euro pop lounge song. Pop
dance floor track from the east.
Lounge pop. Pop rock song. No

Eastern-sounding music.

Table 5.3: Label and inferences for J24-2.1, where J24-2.1 scored the worst.

score is written in the top right

The F1

In Table EE the best response for J2A-2.0 is presented. Here it can be seen that the
response from J2A-2.0 is coherent and gets multiple things correct, such as male vocal

24

5.2. QUALITATIVE EVALUATION

and the fact that it is hip hop. Also, there are no statements which are plain wrong,
although the last sentence does not make sense.

Label J2A-2.0 0.44

Loopy hip hop track with laid back | Lush, clean-sounding hip-hop track
male vocal with modulated elec-| with four different layers of au-
tronic elements having a spooky | totuned male vocals and lo-fi pro-
vibe. duction. Has a moody vibe. Could
easily be paired as part of an "ar-
tifact" intro prom

Table 5.4: Label and inferences for J24-2. 0, where J24-2.0 scored the best. The F1 score
is written in the top right.

In Table @ the best response for J2A-2.1 is presented. Here it can be seen that the
response is correct in multiple aspects, such as the gender of the singer, some instruments,
and genres are very similar. It also mentions two artists who are both rappers. The
response says that one of the artists is lip syncing, which is incorrect and an example of
the model hallucinating.

Label J2A-2.1 0.49

Funky rap song with male vocals, | groovy hip hop track with male rap
electronic trap beats and bass | vocal, grooving bass and positive
drops. Great for party mood. synth with snared drumming. Sounds
party. Excellent for dance clubs.
A$AP Rock featuring 21 Savage lip
syncing.

Table 5.5: Label and inferences for J24-2. 1, where J24-2. 1 scored the best. The F1 score
is written in the top right.

Two examples of the results are presented in Table @ and Table @ together with three
examples in Appendix E Looking at the response from J2A-2.0 in Table it can be
seen that the response includes that the music clip contains drumming, which is correct,
but not mentioned in the label. Here we also see an example of the model being completely
wrong, since the song is not sung by a K-pop band.

It can be seen that the responses from both models are often coherent and make sense at
the beginning, but become more incoherent or wrong, as you read through them. Some
of the things that the models often mentions are the vocal, the genre, and some of the
instruments. In general the models often include something correct, but also something
incorrect. It also seems like the two models have similar F1 scores for same clips, which
does not contradict the calculated Pearson correlation calculated in section . Here
Table @ is an example where the F1 scores are further apart.

25

CHAPTER 5. EXPERIMENT

Label

J2A-2.0 0.22

J2A-2.1 0.08

This is a rock and roll
piece used as an accom-
paniment for a dance.
There is a male vo-
cal singing at a low-
to-medium pitch. The
main melody is being
played by an electric
guitar while the bass
guitar is repeating a
bass line with a groovy
pattern in the back-
ground. The acoustic
drums are playing an up-
beat 4/4 rock and roll
beat. There is a raw
feeling to it. The tune
is catchy. This piece
could be playing in the
background of a sports
bar or a rock bar. It
could also work well at
sports venues.

Pop track with female

vocals, groovy guitar

lines and percussive
elements. Great for
breakdancing. Doing

the dance. Groovy in

nature. Is cheerful
and somewhat composi-
tion. Has an up beat

vibe to it.

Pop song youth vibes
with processed male
vocals,
and bass lines
with beautiful syn-
thDMA. Great for stand-
ing on stage. Straight-
forward pop with
pact. Perfect. Manner
Bugle by Helmau

beats
along

drum

im-

Table 5.6: Random sample of label and inferences. The F1 score is written in the top right.

to. The singer has
a raspy and energetic
voice.

bles untalented lyrics
being sung by K-pop boy
band. Feels soothing
with minimal bass, how-
ever the chorus is p

Label J2A-2.0 0.15 | J2A-2.1 0.12
This is an upbeat, soul- Pop song with boy-| Hoovering sample fea-
ful and funky song.| ish high pitched male | turing trap beats and
It's got a catchy and | vocals and drumming | akin pads and various
fast paced rhythm which | tempo. The track | taps. Ideal for under-
makes it good to dance | feels <closely resem-| ground rapper expres-

sion . Ideal for under-
ground rapper. Quality
is poor. the zona sound
is well versed in this

Latin tune.

Table 5.7: Random sample of label and inferences. The F1 score is written in the top right.

26

5.2. QUALITATIVE EVALUATION

Database ID Table reference URL

Table @ MusicCaps_ 680 https://youtu.be/
5h5NdW6cYY07t=30

Tabkegzi MusicCaps_ 2945 https://youtu.be/

UoxHw012gNO7t=10

Table @ YouTube8M-MusicTextClips_ 2643 https://youtu.be/
nSKbBOFsPg47t=87

Table @ YouTube8M-MusicTextClips_ 324 https://youtu.be/YH_
RsDHvwOw?t=100

Table @ MusicCaps_ 1441 https://youtu.be/
D8-x1T8M4gk?t=30
Table @ MusicCaps_ 4059 https://youtu.be/

grEO01wTsSPg7t=30

Table El! YouTube8M-MusicTextClips_ 3860 https://youtu.be/
falPDZ5xuMo7t=125

Table @ MusicCaps_ 781 https://youtu.be/
6ieg51P5Up07t=30

Table @ YouTubeS8M-MusicTextClips 1094 https://youtu.be/
7J9AXxZBOR87t=125

Table 5.8: Table linking the inference tables to their respective music clips.

27

https://youtu.be/5h5NdW6cYY0?t=30
https://youtu.be/5h5NdW6cYY0?t=30
https://youtu.be/UoxHwOl2gN0?t=10
https://youtu.be/UoxHwOl2gN0?t=10
https://youtu.be/nSKbB0FsPg4?t=87
https://youtu.be/nSKbB0FsPg4?t=87
https://youtu.be/YH_RsDHvwOw?t=100
https://youtu.be/YH_RsDHvwOw?t=100
https://youtu.be/D8-x1T8M4gk?t=30
https://youtu.be/D8-x1T8M4gk?t=30
https://youtu.be/grE0lwTsSPg?t=30
https://youtu.be/grE0lwTsSPg?t=30
https://youtu.be/falPDZ5xuMo?t=125
https://youtu.be/falPDZ5xuMo?t=125
https://youtu.be/6jeq5lP5Up0?t=30
https://youtu.be/6jeq5lP5Up0?t=30
https://youtu.be/7J9AXxZBOR8?t=125
https://youtu.be/7J9AXxZBOR8?t=125

6 | Discussion

Two models have been created using the multimodal converter structure, those being J2A-
2.0 and J2A-2.1. We chose this method as it provides a simple way to pass the audio to
the Large Language Model () and others have had great success using this approach

2.

An important part of the implementation is that only the parameters in the projection
layer are updated during training. As mentioned in Chapter H this is only the first step
of training a multimodal converter model, where the second step is fine-tuning both the
and the projection layer together. We have not implemented the second step of this
process due to time constraints.

The quantitative evaluation in Chapter a shows that J2A-2.0 performs marginally better
than J2A-2.1 since it has a slightly higher mean and a smaller variance, which indicates
that J2A-2.0 is more consistent in the quality of its responses. Both models _generally
perform poorly, their means are both lover than the bad example in Example P.1f, where
the F1 score was 0.26. As mentioned in the beginning of Chapter a the F1 score can be
interpreted as a lower bound for the model performance. Therefore, the low F1 score does
not guarantee poor performance.

In the qualitative evaluation, we see that the models’ responses are often about music, and
sometimes in coherent sentences, which indicates that the models are aware of the subject
of the music captioning task. This can also be because the knows this from the
prompt since we specify that it should describe music. Even though the responses contain
music descriptions, the model still seems to hallucinate a lot. There are multiple examples
where the response is wrong on both genre, instruments, and gender of the singer. This is
likely because only the projection layer of the model is trained [5]. Although the sentences
are sometimes coherent, part of the responses is often gibberish. They often start with
descriptions that make sense and usually match the music clip. Towards the end of the
responses, the quality quickly diminishes. This can be because the itself needs more
training on music-related data or for the specific task at hand.

The prompt used for the two models, shown in Listing @, specifies that the model
prediction should not be repetitive. Although this is specified, we still encounter this type
of repetition in the case shown in Table .3. We also specify that it should describe the
music style and any unique features of the clip, its chords, tempo, and the instruments
used. Although this is specified the model ends up often mentioning the vocal, the genre,
and some of the instruments. This may be due to the labels not containing any information
about chords and tempo. Therefore, the model does not get a lower loss if these things
are mentioned. This might indicate that the prompt should be changed. We could either
make the prompt more simple or make sure to ask for things that are also mentioned in

28

6.1. FURTHER RESEARCH

the captions.

In general, there is no noticeable performance difference between the two models. The
only clear difference is the F1 score, where the J2A-v2.0 seems to perform a little better,
but this is not enough to conclude that one model is better than the other. The QQ-plot
and Pearson correlation indicate that the larger audio encodings and the extra layer in
the audio projection do not yield any noticeable improvements for J2A-2.1 as compared
to J2A-2.0.

There is a large variation in quality and content in the data. It contains everything from
rap music to guitar lessons®. This indicates that the quality of data is not the best for
our use case, as we are only interested in captioning music clips. If there are a limited
amount of these types of clips then it may not be enough to have a large impact on the
models. The quality of the recordings is also not consistent. There are examples of both
live recordings with audience noise and older recordings of lower quality. This might make
the models more resilient to noise in the data, but this is not within the scope of this
project. As such, it would be preferable to have only high quality recordings in the data
for this project.

Our proposed models might produce worse results than LLark [2] in their current state.
However, our models also have several advantages. The encoder and used in our
models are distributed under the Apache 2.0 license. The MusicCaps dataset is distributed
under a Creative Commons license, and the YouTube8M-MusicTextClips dataset is dis-
tributed under a permissive research license from Adobe. This means that the J2A-2.x
models are open and free to use for academic and teaching purposes. If the YouTube8M-
MusicTextClips dataset was not used during training, then the J2A-2.x models would
fall under the Apache 2.0 license, allowing commercial uses. Since our model is more fo-
cused on its music captioning task than the more general set of tasks of LLark, we expect
J2A-2.x to be more computationally effective if current issues are fixed.

6.1 Further Research

As mentioned in Chapter @, a common way_to combat the hallucination issue is to fine-
tune the projection layer together with the . This approach is the highest priority for
further research, as training only the projection layer rarely yields the best performance
for a multimodal converter model.

Further research might also include using a larger and better performing . An example
of another language model that could be tested is Mixtral-8x7B [31].

In this project, we implemented only zero-shot prompting. Using different techniques,
such as zero- to many-shot chain-of-thought prompting might produce better results, than
what we were able to achieve. Doing so would require one to consider the multi-modality
of the models, and how one might be able to integrate examples of the projected music clip,
in order to gain better performance by changing just the prompt. Another approach could
also be to test a more simple prompt where the user does not ask for it to describe specific
things about the music clip, but rather to make a general music description. Lastly, it
could also be of interest to train a model using no prompt to see how the performance is
affected. This is mostly of interest when also training the since this might learn to

An example of a guitar lesson is https://www.youtube.com/watch?v=IgGB4nQIAcQ&t=210s from the
MusicCaps dataset.

29

https://www.youtube.com/watch?v=IqGB4nQIAcQ&t=210s

CHAPTER 6. DISCUSSION

answer in the music domain from the labels only. A challenge with this is that it might
require more data.

Since the Multi-Window Masked Autoencoder () is only used for encoding, it
might be of interest to test how using other audio encoders might impact the performance
of the models. Encoders that could be interesting to test are the Jukebox encoder [32]
since it is used for the LLark model [2] and the Whisper encoder [33], since it is used in
28].

When testing the models it would be interesting to look at some of the metadata in the
MusicCaps [[7] dataset. Specifically, the dataset contains an aspect list with relevant key-
words for each song in the dataset. This could for instance be 'male voice’ or ’instrumental
music’. It would be interesting to check through each of these lists for each song in the
test data set and see if our model response contains any of these keywords or perhaps syn-
onyms of the keywords. Since we are interested in how well we can describe a given music
clip, this approach may provide an alternative to only looking at the F1 score [19].

Another approach for this project would have been trying different ways of combining
the modalities. As discussed in Chapter Y there are multiple ways to combine different
modalities [5]. In this report, we use the multimodal conversion approach. However, a
similar approach could be to use a multimodal perceiver which may give the m a better
context for the audio encodings. This approach can be thought of as an initial conversion
of audio to text before the @ processes the audio encoding. The tools learning approach
may also be a good alternative. With this approach, one can use an existing model and
extend its features in a toolbox-like manner. This can be done by using an existing image-
to-text model and modifying it to handle the audio modality, or reshaping the encoding
such that it can be parsed as an image. The advantage of this approach is that the language
model is already fine-tuned for a caption task, and only needs to be fine-tuned to describe
music clips. The data-driven approach is also a feasible option and can be employed by
fine-tuning existing audio captioning models for our more specific music captioning task.
This could for instance be implemented by using an audio captioning model like ACTUAL
[B4] or the one proposed in [35].

30

7 | Conclusion

In this project, the goal was to create a multimodal model that is able to describe 10 second
music clips. To do so we chose to build a model with the multimodal converter approach,
using a projection layer to pass the audio to the Large Language Model () We chose
this method as it provides a simple way to pass the audio to the m and others have had
great success using this approach. We developed and evaluated two model variants, J2A-
2.0 and J2A-2.1. We did this to test if a more complex projection layer would increase the
performance of the model, J2A-2.1 being the one with a more complex projection layer.
While J2A-2.0 showed slightly better performance in the quantitative evaluation, both
models generally struggled, particularly with coherence and specificity in their responses.
In conclusion, the overall results highlighted significant challenges that need addressing,
including hallucination and inaccurate statements for both models.

To address these challenges the trained audio projection layer should be trained together
with the . Moreover, further research into other s, trying other prompt strategies,
and audio encoders, in order to improve the models’ performance is of interest.

31

Bibliography

1]

2]

3]

Mark Savage. The global music market was worth $26bn in 2021. BBC, 03
2022. Available at: https://www.bbc.com/news/entertainment-arts-60837880
(Accessed 06/05/2024).

Josh Gardner, Simon Durand, Daniel Stoller, and Rachel M. Bittner. Llark: A
multimodal instruction-following language model for music, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in
neural information processing systems, 30, 2017.

Jiayang Wu, Wensheng Gan, Zefeng Chen, Shicheng Wan, and Philip S. Yu. Multi-
modal large language models: A survey, 2023.

Shezheng Song, Xiaopeng Li, Shasha Li, Shan Zhao, Jie Yu, Jun Ma, Xiaoguang Mao,
and Weimin Zhang. How to bridge the gap between modalities: A comprehensive
survey on multimodal large language model, 2023.

Sami Abu-El-Haija, Nisarg Kothari, Joonseok Lee, Paul Natsev, George Toderici,
Balakrishnan Varadarajan, and Sudheendra Vijayanarasimhan. Youtube-8m: A large-
scale video classification benchmark, 2016.

Andrea Agostinelli, Timo I. Denk, Zaldn Borsos, Jesse Engel, Mauro Verzetti, Antoine
Caillon, Qingqging Huang, Aren Jansen, Adam Roberts, Marco Tagliasacchi, Matt
Sharifi, Neil Zeghidour, and Christian Frank. Musiclm: Generating music from text,
2023.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Deven-
dra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume
Lample, Lucile Saulnier, et al. Mistral 7b. arXiw preprint arXiv:2310.06825, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770-778, 2016.

Vishal Mathur. A french ai start-up may have commenced an ai revolution, silently,
2023.

Mistral Al team. Bringing open ai models to the frontier, 2023.

Lucas Ropek. Buzzy startup just dumps ai model that beats gpt-3.5 into a torrent
link, 2023.

32

https://www.bbc.com/news/entertainment-arts-60837880

BIBLIOGRAPHY

[13]

[14]

[15]

[20]

[21]

Elvis Saravia. Prompt Engineering Guide. hitps://github.com/dair-ai/Prompt-
Engineering-Guide, 12 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V
Le, Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language
models. Advances in neural information processing systems, 35:24824-24837, 2022.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwa-
sawa. Large language models are zero-shot reasoners. Advances in neural information
processing systems, 35:22199-22213, 2022.

Abigail See, Peter J Liu, and Christopher D Manning. Get to the point: Summariza-
tion with pointer-generator networks. arXiv preprint arXiv:1704.04368, 2017.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert. arXvv preprint arXiv:1904.09675,
2019.

Liyan Tang, Zhaoyi Sun, Betina Idnay, Jordan G Nestor, Ali Soroush, Pierre A Elias,
Ziyang Xu, Ying Ding, Greg Durrett, Justin F Rousseau, et al. Evaluating large
language models on medical evidence summarization. npj Digital Medicine, 6(1):158,
2023.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian QQ Weinberger, and Yoav Artzi.
Bertscore: Evaluating text generation with bert. Available at: https://github.
com/Tiiiger/bert_score.

Tom Fawcett. An introduction to roc analysis. Pattern recognition letters, 27(8):861—
874, 2006.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language
models. arXiv preprint arXiv:2106.09685, 2021.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Effi-
cient finetuning of quantized llms. Advances in Neural Information Processing Sys-
tems, 36, 2024.

Chenyang Lyu, Minghao Wu, Longyue Wang, Xinting Huang, Bingshuai Liu, Zefeng
Du, Shuming Shi, and Zhaopeng Tu. Macaw-llm: Multi-modal language modeling
with image, audio, video, and text integration. arXiv preprint arXiv:2306.09093,
2023.

Chunyuan Li, Cliff Wong, Sheng Zhang, Naoto Usuyama, Haotian Liu, Jianwei Yang,
Tristan Naumann, Hoifung Poon, and Jianfeng Gao. Llava-med: Training a large
language-and-vision assistant for biomedicine in one day, 2023.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction
tuning. Advances in neural information processing systems, 36, 2024.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick.
Masked autoencoders are scalable vision learners, 2021.

33

https://github.com/Tiiiger/bert_score
https://github.com/Tiiiger/bert_score

BIBLIOGRAPHY

[27]

[37]

Sarthak Yadav, Sergios Theodoridis, Lars Kai Hansen, and Zheng-Hua Tan. Masked
autoencoders with multi-window local-global attention are better audio learners, 2023.
ICLR2024, The Twelfth International Conference on Learning Representations, Vi-
enna, Austria.

Paul Mou. Listening with LLM. Available at: https://paul.mou.dev/posts/
2023-12-31-1listening-with-11m/.

Taku Kudo and John Richardson. Sentencepiece: A simple and language indepen-
dent subword tokenizer and detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226, 2018.

Israel Cohen, Yiteng Huang, Jingdong Chen, Jacob Benesty, Jacob Benesty, Jing-
dong Chen, Yiteng Huang, and Israel Cohen. Pearson correlation coefficient. Noise
reduction in speech processing, pages 1-4, 2009.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche
Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou
Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample,
Lélio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep
Subramanian, Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet,
Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of
experts, 2024.

Prafulla Dhariwal, Heewoo Jun, Christine Payne, Jong Wook Kim, Alec Radford,
and Ilya Sutskever. Jukebox: A generative model for music. arXiv preprint
arXtw:2005.00341, 2020.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and
Ilya Sutskever. Robust speech recognition via large-scale weak supervision, 2022.

Yiming Zhang, Hong Yu, Ruoyi Du, Zheng-Hua Tan, Wenwu Wang, Zhanyu Ma,
and Yuan Dong. Actual: Audio captioning with caption feature space regularization.
IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2023.

Minkyu Kim, Kim Sung-Bin, and Tae-Hyun Oh. Prefix tuning for automated au-
dio captioning. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 1-5. IEEE, 2023.

Sebastian Bock, Filip Korzeniowski, Jan Schliter, Florian Krebs, and Gerhard Wid-
mer. madmom: a new Python Audio and Music Signal Processing Library. In Pro-
ceedings of the 24th ACM International Conference on Multimedia, pages 1174-1178,
Amsterdam, The Netherlands, 10 2016.

pedromatias97. music-genre-detector-finetuned-gtzan_ dset. Avaliable at: https://
huggingface.co/pedromatias97/genre-recognizer-finetuned-gtzan_dset.

34

https://paul.mou.dev/posts/2023-12-31-listening-with-llm/
https://paul.mou.dev/posts/2023-12-31-listening-with-llm/
https://huggingface.co/pedromatias97/genre-recognizer-finetuned-gtzan_dset
https://huggingface.co/pedromatias97/genre-recognizer-finetuned-gtzan_dset

Nomenclature

Application Programming Interfacel
Beats Per Minutd

Deep Neural Networkl

Double Quantizatior]

Feedforward Neural Networkl
Grouped Query Attention

Gated Recurrent Neural Networkl
Larce Language Model

[Long Short-Term Memoryl
Low-rank Adaptel]

Masked Autoencodell

Multi-Head Attentiod
Multi-Window Masked Autoencoderi
1-bit Normalﬂoaﬂ

Natural Language ProcessingJ
Rolling Buffer Cachd

Recurrent Neural Networkl

Sliding Window Attentiod

32-bit floating point

8-bit intege;l

35

A | J2A-1.0

This model is constructed from fine-tuning the Mistral-7B-Instruct-v0.2 model. The
prompt used for this model is heavily inspired by the example given in [2] from their
captioning task. The features, described below, are merged with the prompt to give
context to the . An overview of the model is seen in Figure .

J2A-1.0

Music Clip

Merge Features Into . .
W—» Feature Extractor Promnt J LLM ‘

| |

Hard-Coded Single i . . Decode Tokens to Text Description
Prompt ‘ el e L:el Music Desaiption_ > of Music

Figure A.1: A flowchart overview of the J24-1.0 model together with the data that has
been used to train the model.

A.1 Features

From the songs, we extracted features inspired by the approach in [2]. We use [36] to
extract Beats Per Minute (), key, downbeats, and chords. We also use [37] to generate
genres for the songs.

The chords and downbeats are given in inequidistant time intervals where a new interval
is started each time the chord or downbeat in the audio changes. The genre classifier has
five overall categories (reggae, hip-hop, rock, and country) and comes with a percentage
indication of the likelihood that a song is a given genre.

36

B | Training Configurations

Specification
Learning rate 0.0015
Optimizer torch.optim.Adam
Loss function torch.nn.functional.cross_entropy
Mistral 7B weight datatype bfloat16
Number of training epochs 300

Table B.1: Different functions and configurations used during training of J24-2.x.

37

C | Prompt

<|im_start|> system
You are an expert AI assistant who is knowledgeable about music

—

r g

—

production, musical structure, music history, and music styles, and
you are hearing audio of a short clip or loop extracted from a piece
of music. IMPORTANT!! Do not repeat yourself or use redundant words.
DO NOT use contradicting describing words, like "fast" and "slow",
"light" and "dark", and "high pace" and "low
pace".<|im_end|><|im_start|> user

Provide a detailed musical description of the clip, from the perspective

[

rri

of a musical expert describing the clip as they hear it being played.
Make sure to describe the musical style, any unique features of the
clip, its chords, tempo, and the instruments used.
<|im_end|><|im_start|> assistant

Listing C.1: Prompt used for J2A-2.x

38

D | J2A-2.x Responses

graduation

Label J2A-2.0 0.14 | J2A-2.1 0.16
Uptempo pop rap music | 1980's style special Reggae style vocal fe-
ideal for easy listen-| effects, groovy funky | male singing with drums
ing accompanied by rap | bass lines, and drum | and bass lines. Sounds
male vocal, synth and | beat of this punk | sex appeal. Ideal
drums. song. This song sounds | dance great rhythm for
like growing cells in | a sleepover. Great for
a lab experimenting | mood 1lifting. Sounds
room. This song may | 90's. Great bedroom
be playing at a school- | karaoke. Great for a

smoking shop

Table D.1: Random sample of label and inferences. The F1 score is written in the top
right.
Label J2A-2.0 0.22 | J2A-2.1 0.14
A male singer sings This recording is of Calm hip hop featur-
this poignant melody.| an Allan Eaton song.| ing male rap with elec-

The tempo pop is slow
with a steady drum-
ming rhythm, cymbal
crashes, guitar accom-
paniment, keyboard or-
gan accompaniment and a
strong bass line. The
song is a poignant love
song.

Two male vocals are
singing together while
the male is singning in
a high pitch. Synthe-
sized pads are heard
in the background. The
recording is meant for
playing in any fitness
class

tronic elements and
synth Dbass. Ideal
for dancing in a funky
yet casual environment.

Read more into the
groove. Perfect for
dancing in a Thouse

party. Great running
gait featuring female
vocalist

Table D.2: Random sample of label and inferences.

right.

The

39

F1 score is written in the top

APPENDIX D. J2A-2.X RESPONSES

Label J2A-2.0 0.22 | J2A-2.1 0.29
Energetic jiving pop | An unpolished male low a male baritone
music with peppy elec-| gothic melodic voice | narration accompanied
tronica. Music com-| of Western storyteller | by male vocals and

prises of male lead vo-| over deep reverb sound- | acoustic guitar with
cal,synth, vocal har-| ing seashores waves | synth horns and ambi-
monies and drums. with drone,bass violin, | ent string notes lead-
percussion synthesized | ing into high paced
pad and guitar. If you | electronic music part.
want to med Heard in a podcast. In-
terference is caused by
Doppler effect.

Table D.3: Random sample of label and inferences. The F1 score is written in the top
right.

40

	Title page
	Introduction
	Problem Statement

	Natural Language Processing
	Transformer Architecture
	Mistral 7B
	Prompting
	Evaluation
	BERTScore

	LoRA and Quantization
	LoRA
	Quantization
	QLoRA

	Multimodal Models
	Multi-Window Masked Autoencoder
	J2A-2.x Implementation and Architecture

	Experiment
	Quantitative Evaluation
	Qualitative Evaluation

	Discussion
	Further Research

	Conclusion
	Bibliography
	J2A-1.0
	Features

	Training Configurations
	Prompt
	J2A-2.x Responses

