SUMMARY

Autonomous Mobile Robots (AMRs) are steadily becoming more prevalent for everyday use. Ap-
pliances such as lawnmowers, vacuum cleaners and warehouse AMRs are becoming increasingly
autonomous, which necessitates the utilization of exploration and patrolling capabilities. Exploration
allows a AMR to navigate and map unknown environments while patrolling allows it to traverse and
monitor known environments. These capabilities are, however, often researched and developed in
isolation and as such, little research has been done to tie them together. To tie these fields together,
this paper proposes a pipeline that facilitates exploration and patrolling. This pipeline utilizes various
existing problems of the domain in conjunction, which provides a bridge from exploration to patrolling.
The pipeline utilizes a pre-existing autonomous exploration package to map unknown environments

with the Gmapping slam algorithm. Drawing inspiration from the Art Gallery Problem concerning how
to place cameras to achieve map coverage, The map generated during exploration is processed and
converted to a simple polygon. After this, triangulation is applied to partition the obtained polygon
into a set of triangles, in which centroids are used to place the waypoints designated for patrolling.
These waypoints can then be used for closed-path generation, which can be provided to the AMR. This
phase also supports the partitioning of the closed-paths for distribution to multiple AMRs for patrolling.
The proposal was evaluated through simulations conducted in five different rooms of small to medium

size. Those experiments measured the idleness of closed-paths with different numbers of partitions.

The experiments found that idleness decreased across all test rooms, in correlation with partitions.
Additionally, the findings suggest that the area of the room affects the plateauing effect of idleness,
albeit no large room was experimented on. The exploration time was evaluated as well, the paper found
that, compared to patrolling time, optimization of the exploration technique is required.

The proposed solution showed that a pipeline facilitating patrolling and exploration is possible, how-
ever, further studies are needed to optimize the proposed solution and verify its impact in very large
environments.
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I. INTRODUCTION

Autonomous mobile robots (AMRs) have seen increasing
use across a wide range of industries, from household
appliances such as lawnmowers [11] and vacuum cleaners
[12] to industrial tasks in monitoring [[13]] and warehousing
[14]]. The adoption of AMRs has surged, with a significant
increase in operational robot stock reported in recent years,
[15]], particularly benefiting sectors like hospitality, healthcare,
transportation, and logistics [15]]. Although individual robots
are capable, their full potential is often realized through
teamwork in applications like forest fire detection and terrain
mapping [[13]], [16]. This collaboration presents challenges,
including exploration and patrolling, making it a key research
area in developing multi-AMR systems that focus on opti-
mization for tasks like mine detection [17]] and area patrolling
[18] to enhance collective performance and safety. While
exploration and patrolling are key components in building
multi-AMR systems in various domains, strategies for these
are still typically researched and developed independently.

This paper aims to develop a bridge between exploration
and patrolling by creating a pipeline for generating a series of
patrolling routes from a region that has been explored. This
will make it feasible for robots to autonomously explore an
area and subsequently devise patrolling strategies without the
input of a human operator.

Once an area is explored, the map can be transformed into
a simple polygon. The Art Gallery Problem (AGP) is applied
to partition an explored area [[19]] into a set of triangles that
can be turned into a series of waypoints that can in turn be
applicable for path planning.

The following sections will describe a pipeline tying
exploration and patrolling together. Section [lI| will cover
previous work related to the topics of path planning and
exploration, while[subsection III-A]- [subsection III-C] will
present the problems in more detail. The pipeline is presented
in[subsection ITI-D]along with a technical description of its
components, as well as which challenges must be addressed.
The results are evaluated in and with possible
shortcomings and improvements discussed in[section V1|
The paper is then summarized and concluded in [section VII|
whereby future development goals are addressed.
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This paper is proceeding work from a semester project [[20]
developed by the authors of this paper. The aforementioned
project as well as this paper build upon the work from the
Linorobot2 project and numerous variations [|1]-[6].

II. BACKGROUND INFORMATION

Most work on both AMR exploration and patrolling systems
focuses on either one or the other. This paper aims to bridge
this gap, integrating both into one system. Both will be
explored here, with further explanation and expansion in
[subsection III-B|and [subsection III-C|respectively. AGP
and Triangulation will also be explored in this section, and

eventually applied in the pipeline in[subsection ITI-D]

A. Exploration Problem

The exploration problem can be defined as to allow a robot,
without any external system other than its sensors, to create
a map of [an] environment and locate itself into this map.
(21]

The AMR must orient itself in its surroundings to explore
and navigate that unknown environment. It can generate a
map of the area while traversing new yet unexplored parts of
its environment. Simultaneous Mapping and Localization
(SLAM) is a technique that enables robots to perform exactly
this task.

In SLAM, a robot makes relative observations of landmarks
in its environment, measuring the relative distances between
these landmarks allows the robot to place itself in the environ-
ment space [22]]. This allows AMRs to determine their location
within an environment and simultaneously create a map of that
environment using its measurements [22]], [23]]. The technique
is suitable for various AMR platforms such as Unmanned
Ground Vehicles (UGV’s), Unmanned Aerial Vehicles
(UAV’s) and Autonomous Underwater Vehicle (AUV’s) that
each specialize in different terrain types to traverse [22].

SLAM-based algorithms compare favourably in compar-
isons between different exploration types of exploration
algorithms, such as in a paper by Andreasen et al. [24]. This
paper uses Random Ballistic Walk (RBW) [25] as a baseline
for comparison, with SLAM-based algorithms generally
outperforming the alternatives. A further comparison by Trejos
et al. [21]] compares SLAM-based algorithms to determine
the best-performing ones. KARTO-SLAM [26] stands out as a
well-performing choice in most use cases, with relatively low
resource consumption.

A variation of SLAM known as Multi-SLAM is an extension
of the SLAM technique to allow multiple robots to explore
simultaneously and message discoveries among themselves,
providing a collaborative knowledge base for the AMRs [27].

The specific implementation used in this paper is explored

in [subsection TTT-Bl

B. Patrolling Problem

The Patrolling Problem can be defined as surveillance tasks
using multiple mobile robots, which involve frequent visits to
every point of the environment? [28]]

Patrolling algorithms allow AMRs to provide systematic
coverage of an explored environment. This is essential for
monitoring and surveillance tasks, where environmental
changes should be acknowledged and monitored. These
algorithms should be scalable to multi-AMR systems.

A series of comparisons between various patrolling
algorithms were published by Portugal et al. [28], [29]. Each
environment was modelled as a graph, where the average
graph idleness was used as an evaluation metric. This means
that the time-delta between subsequent visits to a node in the
environment graph should be as low as possible. The Cyclic
Algorithm for Generic Graphs (CGG) [|30] performed well
across all the environments with varying amounts of AMRs.
This algorithm generates a closed-path for each AMR to follow
in a loop. However, worthy of note is that all algorithms
improve dramatically, with all of them eventually converging
on the same result if the number of AMRs is increased. This
makes sense since the number of AMRs will eventually equal
the number of nodes, making the optional strategy to stand
still at a waypoint.

A notable difference between patrolling algorithms is
whether they use online or offline planning strategies [31].
Online planning makes decisions in real-time, whereas offline
planning utilizes pre-determined strategies. CGG uses offline
planning, as it generates the closed-paths beforehand. If
one AMR should become unresponsive, then CGG could be
executed again, creating updated closed-paths for the number
of remaining AMRs.

The specific implementation used in this paper is explored
inlsubsection II1-C]

C. Art Gallery Problem (AGP)

AGP is defined as how many cameras do we need to guard
a given gallery, and how do we decide where to place
them? [19]. This type of problem is similar to the challenges
of AMR patrolling to ensure all areas are visited by a robot.
Especially for surveillance or security tasks, minimizing blind
spots is important to prevent breaches.

However, some key differences arise. When solving the
art gallery problem, the solution involves placing stationary
cameras to cover the entire area at various locations. Robots,
especially AMRs are seldom stationary. Thus, the solution
turns toward finding patrolling routes AMRs can travel to
surveil an area.

D. Triangulation

Triangulation plays a significant role in solving the art
gallery problem as a method of implementing efficient
patrolling strategies for efficient coverage and movement
of AMRs. This involves the decomposition of a polygon
into triangles [19]. A method developed by B. Delaunay
triangulates and ensures a maximal set of non-intersecting
diagonals, such that the circumcircle of each triangle includes
no points [32]]. Decomposing a polygon in this manner avoids
sliver triangles |32] which undesirable properties can lead to
worse results [33]]. Using this method, each AMR is assigned
to patrol a set of waypoints based on the generated triangles
for various tasks such as data gathering or monitoring.
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III. METHODOLOGY

This section describes a pipeline that bridges the gap
between exploration and patrolling tasks. Implementations

of solutions to the problems described in and

subsection [I-B|are detailed, with the pipeline being described

in [subsection TT-DI

A. Architecture

A reference architecture for the system is illustrated in
IFigure 1| There is a Coordination Server which is respon-
sible for communicating with the AMRs and continuously
receiving information about map exploration, positioning, and
patrolling. The Coordination Server collects the maps from
the AMRs and provides them with closed-paths.

Both the simulated and physical environment are designed
such that each AMR is equipped with a navigation server. This
allows the AMRs to patrol, make decisions and execute tasks
independently of each other and of the Coordination Server.
The only thing it depends on from other systems is the closed-
paths from the Coordination Server.

Physical Robot ‘

Navigation Server Navigation Server Navigation Server

Fig. 1: Autonomous Reference Architecture for the AMR
system.

shows the communication process in the pipeline.
The communication process starts when autonomous ex-

ploration is initiated in the explore lite node. A start flag is
then published to the exploration listener node to track the
exploration progress. Once an exploration is finished and an
environment is fully mapped, it will send a file path to the
Map Server which shows where it should store the map of the
explored area. The next step is then to publish the file location
to the Map Polygonization node that is responsible for path

generation, as shown in [Figure 3|

—

/
SLAM “
Manager |

\\\ 4

Mexplore
Lite

Restart flag
Start/Stop Flag

N 7N N

"/ Exploration | [ Map \ Patrolling \‘
Listener / \ Polygonization | Publisher
/ Map (pgm, yaml) '\ /

Start flag

Closed-paths B
File Path l Goal Poses

TN -

/
“‘ Map \ ‘ Navigation |
\ Server / Server

N4 N4

Fig. 2: Pipeline communication diagram.

The Slam Manager node’s purpose is to start slam-toolbox
with the proper configuration. After the Map Polygonization
node is finished, the Slam Manager will be restarted to switch
from localization to mapping mode to prepare for patrolling.
The Patrolling Publisher node gives the closed-path to the
AMRs as a set of goal poses to the Navigation Server which
keeps track of which goal pose is the next destination.

B. Exploration Task

The AMRs need to initially traverse and map an environ-
ment, by using the SLAM method, as detailed in[subsec- |
This created map will eventually be used as the
patrolling environment.

The specific AMRs used in this paper utilize the Robot
Operative System 2 (ROS2) [34], which supports the SLAM
library SLAM-Toolbox [35]]. SLAM-Toolbox utilizes a modified
version of Karto-SLAM, however, while the SLAM-Toolbox
package provides the ability to map and localize within
an environment, it does not provide the ability to SLAM
autonomously without further additions.

The package known as explore lite |36]] provides, in
combination with the ROS2 stack, the ability to explore and
localize autonomously. The package was originally authored
by J. Horner [37] for ROS, and later ported to ROS2. It utilizes
a frontier-based exploration method, based on work by B.
Yamauchi [38]]. However, due to the specific implementation
of explore lite’s map merging, the Gmapping algorithm [39] is
used instead of Karto-SLAM. Switching the specific SLAM
algorithm could improve the performance of the overall

system, and is discussed in[subsection VI-B} SLAM-Toolbox
and Karto-SLAM are still utilized in the patrolling task in

[subsection TII-Cl

C. Parrolling Task

The pipeline discussed in[subsection III-D] generates closed-
paths patrolling routes for the AMRs to follow. These closed-

paths are created from the map generated during the explo-
ration task, as discussed in[subsection II[-B} This necessitates
a topological graph representation of the environment to create
patrolling routes through the CGG algorithm.
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The graph is created from waypoints, which are gener-
ated through a modified implementation of the AGP [|19]
introduced in [subsection II-C| Each closed-path is a series of
these waypoints for each AMR to visit. One patrolling task
involves visiting each waypoint in a specific order, which
can be repeated indefinitely for continuous patrolling. This
constitutes an offline planning strategy, where each AMR is
assigned a closed-path at the start of patrolling, and they do
not make any decisions during the task besides creating paths
between waypoints and obstacle avoidance. This additional
functionality is provided by SLAM-Toolbox, using Karto-
SLAM to update the environment continuously.
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Fig. 3: Pipeline for generating closed-paths on map.

D. Pipeline

The pipeline converts a map to a set of n patrolling routes.
The process starts with an initial map, acquired from the

exploration step in Four major phases

follows; polygonization, triangulation, graph construction, and
path generation. The entire process is illustrated in[Figure 3]

The polygonization and triangulation phases take inspira-
tion from the AGP, whereas the remaining phases are purpose-
built for the pipeline.

The pipeline takes a map as a . pgm file, with a complemen-
tary .yaml file that describes the size and origin of the map,
as input to start processing.

The map is initially preprocessed by applying a Gaussian
blur [40], [41] to remove imperfections from the SLAM
mapping output. A binary image that distinguishes between
walls and floor area is created. Contours are found in the
binary image, and filtered based on a predetermined threshold.
The polygonization process is applied to these contours to
create a 2-dimensional polygon which represents the layout
of the map. The contours and polygon are shown in green and

blue respectively in phase 2 in[Figure 3]

The polygon is triangulated in phase 3 by applying the
Delaunay triangulation method [32]], [42]. Centroids are then
found in the middle of each triangle. These centroids are
designated as waypoints in the eventual patrolling routes.
This differs from AGP, which places its surveillance points
at the vertices of the triangles instead of in the centre. While
placing a waypoint in the corner of a room is the most efficient
approach with cameras, these waypoints end up along the
walls of a room. The AMRs should instead enter an area and
traverse paths that provide better coverage and flexibility
for a moving surveillant. A discussion about potential
improvements to achieve this goal and what constitutes good
coverage can be found in

A graph representation can then be created from the
waypoints in phase 4. Waypoints are connected by placing
an edge to their nearest neighbour. However, this introduces
problems that need to be accounted for, as the triangulation
phase can create triangles and waypoints inside and outside
of the polygon. All waypoints that are generated outside the
polygon need to be removed as it is unreachable for an AMR.

In some cases, a nearest neighbour can reside on the other
side of a wall. To prevent the creation of those edges, a check
is made to determine whether an edge intersects a wall prior
to addition. This prevents an AMR from traversing from one
side of a wall to another, even if the waypoint coordinates
are nearest neighbours. If such an intersection happens, the
edge is saved in a list of rejected edges for later use. After all
waypoints are connected, another check is made to search for
disconnected sections in the graph called islands.

As illustrated in if such an island is discovered,
an edge from the rejected edges list is added to the graph
regardless of the edges’ intersection with walls. This is
acceptable due to the AMRs obstacle avoidance capabilities,
ensuring it will navigate around any wall or obstacle to reach
to the waypoint.

4 2 [ !

Fig. 4: Graph with two-node island.

Finally, the graph is partitioned into n roughly equally large
subgraphs (one for each AMR) in phase 5, using the Girvan-
Newman algorithm [43]], [44] for community cluster detection.
A closed-path can be generated from each subgraph utilising
an algorithm for the Travelling Salesman Problem [45]], [46].
The reason the graph isn’t simply divided into n subgraphs
with an equal number of nodes is that this method can lead
to unbalanced results. The goal is to create closed-paths
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where each AMR takes the same amount of time to patrol its
respective path. Two examples in [Figure 3]illustrate this issue.
In the left example, there are four roughly equal subgraphs.
The blue subgraph has only five nodes but would require a
significant amount of travel to reach a sixth node, making it
comparable in size to the other subgraphs. An AMR travelling
to the nearest nodes would take longer than if another AMR
included those nodes in its closed-path. Similarly, in the right
example, the blue subgraph has two fewer nodes than the
green one. However, the distance to any nodes in the green
subgraph is so great that it is more efficient for the AMR in the
green subgraph to travel to the extra nodes than for the AMR in
the blue subgraph to travel to any nodes in the green subgraph.

Fig. 5: Graph division with 4 paths (left) and 2 paths (right).

IV. EXPERIMENTAL SETUP

Exploration was compared to the patrolling paths provided
by the pipeline, to measure the impact of knowing the map
in advance. The cycle time is captured during these phases
of the experiments. Furthermore, key measures for patrolling
algorithms are measured in the form of the worst and mean
idleness of the patrolling routes during the experiments.
Idleness in this case refers to the time between two visits to
the same waypoint. The worst idleness should represent the
longest time-slot where an area is unobserved. Overall, these
measurements support the feasibility of a patrolling pipeline
of this type. This is measured for 1-4 partitions, where a
closed-path is generated for each partition of the map. This
is to measure the impact that partitioning the closed-path
and distributing the partitions to multiple AMRs has on the
idleness.

Due to constraints (more on this in m), a single robot has
been utilized to carry out the experiments. However, a single
patrolling robot can still give valuable results and emulate a
multi-AMR patrolling scenario by traversing each closed-
path sequentially and measuring the idleness of each closed-
path independently. This ensures results that are similar to
experimenting with multiple robots patrolling simultaneously.
This should not impact the idleness metric, i.e. the worst
idleness of the graph is simply equal to the worst idleness
among the sequential closed-paths.

A. Simulation Setup

All experiments and simulations for this study are run on an
Ubuntu 22.04.4 LTS system running on an Intel i7-8700 CPU

W

at 3.2 GHz, 16 GB of DDR4 2666MHz RAM and an Nvidia
1060 with 3Gb of VRAM.

For each experiment, two parameters are provided to the
pipeline, a Wor1d (environment) and Number of Cycles.
The world parameter is the map used for the simulation and
provided to the Gazebo simulator, and the number of cycles is
the number of times the patrolling cycle will be performed. All
experiments are run for 10 cycles. These parameters can be
specified at startup, allowing for practical control contrary to
hard-coding parameters directly in the pipeline. It also allows
for setting up multiple experiments to be run in sequence.

To provide a variety of experimental scenarios, different
rooms were selected, which is a set of experiment rooms [@]
and a small warehouse building to represent a more real-
world-like environment. Each of the three experiment rooms
increases in complexity, with each adding more obstacles.
These experiment environments can be seen in [Figure 6|and

as well as full-scale images can be seen in[Appendix |

Fig. 6: Experiment room No obstacles (Top), some
obstacles (Middle) and Many obstacles (Bottom) displayed
collectively.

Fig. 7: Small warehouse Environment.
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B. Physical Setup

The AMRs are differential drive robots consisting of two
drive wheels capable of moving independently of each
other and a free-turning swivel wheel. They are furthermore
equipped with a LIDAR sensor for mapping the world, an
IMU, a tick sensor for localization and a Raspberry Pi 4 and
Teensy microcontroller for logic flow.

(R —
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Fig. 8: Physical Exploration Area.

The experiments are carried out in the hallway shown in

located at Aalborg University to test the physical
robots in different environments. As with the experiments

described in [subsection [V-Ala parameter Number of

Cycles is given for each experiment and the idleness of a
closed-path and cycle iteration is measured.

V. RESULTS

This section will focus on the simulated results. The phys-

ical robots were unable to perform the experiments described
in[section IVldue to hardware issues. This is described further

in Appendix ]

A. Simulation results

The results of the idleness experiments are plotted in
[Figure 11|and[Figure 12| They show the Worst Idleness and
Average Idleness on the whole map across 10 patrolling
cycles, with 1-4 closed-paths on each map. We can see a
correlation between idleness and the number of AMRs, with
average and worst idleness decreasing as the amount of
closed-paths increases. Interestingly, some maps seem to
plateau when the number of AMRs becomes large enough,
lessening the benefit from adding more AMRs. The point
where this plateau occurs should happen at a higher amount
AMRs if the map is larger, and smaller if the map is smaller.
Some results have been highlighted in this section as plots,

with the rest of them being in

The average time to patrol a closed-path on a given map
can be seen in for four closed-paths. Each patrol

has been executed 10 times. This shows the relative difference
between one patrol run and another. Some of the maps show
little difference between subsequent runs, whereas others show
a general downward trend.

A general trend across all five maps is the decrease in
time as the cycle iterations increase. It is believed that the
AMRs become more familiar with the map over time, as
a result of its cost-map function, and thus find it easier to
navigate. Such that it in a way becomes more "confident"
in its navigational abilities on subsequent runs. The average
time for all experiments on the warehouse map can be seen in
This shows the improvement in the average time
per closed-path when more AMRs are added to the patrolling.
Each showed improvements when going from one to two
closed-paths, with marginal improvements thereafter. Larger
maps should show more pronounced differences when adding
more AMRs.

4 AMR N

3 AMR N

2 AMR N

1 AMR N

Exploration =
| |
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Fig. 9: Time to run exploration vs patrolling averaged over
10 executions.
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Fig. 10: Time to run exploration vs patrolling for 10
iterations.
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A histogram of the average exploration time compared to
the patrolling time of the Many Obstacles map can be seen
in figure [Figure 9] Whilst the results in[Figure 9|indicate
that exploration would be the faster option in comparison to
patrolling, it is not necessarily possible to conclude. It can be
seen in[Figure 10| that the range of time spent on exploration
varies on the currently simplistic map. If this were to be
simulated on a much more complex map, it could indicate that
exploration is not as feasible. A larger test environment should
make this difference more pronounced. It also indicates that
the cycle-to-cycle variance becomes less when the number of
AMRs increases.

2,000 #
1,800 | —o— No obstacles
1.600 + Some obstacles
= ’ —=— Many obstacles
- 1,400 —+— Warehouse
2 1,200 |
5 1,000
5 L0007
2 800 1
=
S 600 |
400 +
200
0

1 2 3 4
AMR’s Closed-paths (s)

Fig. 11: Worst Idleness over the number of closed-paths
averaged over 10 runs.
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Fig. 12: Average Idleness over the number of closed-paths
averaged over 10 runs.
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Fig. 13: Time over cycle iteration with 4 AMRs.
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Fig. 14: Time over cycle iteration in Warehouse map.

VI. REFLECTIONS & FUTURE WORK

This section explores possible improvements to the system,
while also documenting some shortcomings.

A. Shortcomings

1) Exploration: The currently implemented exploration
algorithm does not guarantee a fully explored map due to
the random nature of the RBW. Additionally, for a given
map, it can be difficult to tweak the exploration parameters
optimally. This means that the patrolling task is more reliable
if one wants to strive for coverage of the entire environment
predictably.

2) Larger Environments: The results in suggest
that the effect of the number of closed-paths in a patrolling
plan might be correlated to the size of the patrolled envi-
ronment. Hence, the testing scenarios could be expanded to
include larger maps with features such as large disconnected
areas, corridors, and large open areas. This would show the
impact of multiple AMRs in complex environments.
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3) Traction on Physical AMR: The physical AMRs were
unable to perform the physical experiments, as mentioned
infsection V] This is largely due to slippage issues with
the AMRs wheels. Possible solutions to this could include
different wheels, as well as performing the tests in a different
environment with less slippery terrain.

4) Multi-AMR support: The exploration and patrolling
task currently only supports a single AMR. This is due to two
problems. The first being the traction problems mentioned
above, and the second being time constraints. There was not
enough time to implement proper multi-AMR support, so the
multi-AMR patrolling task was emulated using just one AMR,
as explained in[section IV] A future work task would be to
include this feature.

5) Karto-SLAM in Explore Lite: The exploration algo-
rithm described in [subsection II-A] Karto-SLAM, was only
implemented in the patrolling task, whereas the exploration
task ended up utilizing a different algorithm. One of the
advantages of Karto-SLAM is its low resource usage, which is
ideal for physical AMR which might be resource-limited. For
instance, the AMRs used for the experiments in this paper run
on a Raspberry Pi 4 8Gb, so implementing a more efficient
exploration algorithm might improve performance. It would
also reduce the complexity of the system if the same SLAM
algorithm could be used for both the exploration and patrolling
tasks.

B. Improvements

1) Clustering of waypoints: The graph construction
phase of the pipeline in[subsection ITI-D|could potentially be
improved by reducing the number of waypoints in the final
graph. This could be achieved with clustering of waypoints,
where a community detection algorithm could be used to
locate areas where multiple waypoints are in the same room or
otherwise close to each other. The waypoints could be reduced
to just one waypoint, reducing the number of waypoints that
the AMRs need to traverse.

2) Highway detection: Some environments might have
long corridors where the AMRs potentially could increase
their movement speed safely. These corridors could function
as highways for the AMRs. Detecting these highways might
allow the AMRs to traverse their patrolling paths quickly.

3) Keep out zones: Complex real-world environments
often have areas where patrolling is redundant or unimportant.
Below tables, behind furniture, etc. Being able to beforehand
select areas where the AMRs do not need to patrol would save
time the AMR would otherwise have spent patrolling areas that
are not of interest.

4) Robot disconnection: The current system sends
a closed-path to each AMR, and lets them patrol their
environment based on that. The system could be made
more fault-tolerant if the coordination server mentioned in
[subsection TTT-A] could detect unresponsive AMRs. Then the
system could run the pipeline again with n — 1 AMRs and
generate new closed-paths for the remaining AMRs.

VII. CONCLUSIONS

This paper proposed a pipeline that allows AMRs to explore
an environment and automatically generate patrolling routes to
cover that environment.

The pipeline utilized the Art Gallery Problem and Delaunay
triangulation to create a series of waypoints that capture the
areas of the environment that need to be patrolled. Closed-
paths were constructed from these waypoints, creating closed-
paths for each AMR to follow. They visit each waypoint in
order in a cyclic manner.

The patrolling routes were tested in five simulated
environments, where the pipeline was shown to generate
feasible closed-paths effectively for patrolling. Worst and
average idleness were measured at each waypoint to show
the incremental improvements to the patrolling task from
partitioning the environment into additional closed-paths.
Exploration times have also been measured and compared
to patrolling time, albeit the results were suboptimal. The
patrolling setup provides a guarantee of coverage and less
variance from cycle to cycle than the exploration setup,
making the patrolling setup a viable solution for patrolling
tasks.

While this paper shows indications that a pipeline can
generate patrolling routes in conjunction with exploration,
further studies still need to be done to optimize and verify if
the impacts will be similar on a larger scale.

The software stack used in this project has been released as
open source, allowing for usage in future projects.
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APPENDIX A
PRELIMINARIES

A. Polybot

The robots used in this paper were provided by the Department of Distributed Systems at Aalborg University.

B. Linorobot2

Linorobot?2 is a package designed to ease the setup of physical robots. It contains a set of launch files and hardware drivers for
different hardware components and models. The Polybots have been specifically designed to work with Linorobot2, making the
use of it an obvious choice.

APPENDIX B
IMPLEMENTATION

This section shows new components added to the project, as well as some changes that have been made to existing software.

A. RPLIDAR changes

Minor changes had to be made to the RPLIDAR package as there was no launch file working for the RPLIDAR A1, as well as
the scan mode had to be changed to function with the RPLIDAR Al.

B. Explore Lite changes

The Explore lite was changed to publish as a message once the exploration was finished. This allowed us to start polygoniza-
tion, triangulation and generating patrolling routes.

C. Exploration listener

An exploration listener was implemented to listen for the end exploration flag by Explore lite to start the initial pipeline. This
node also saves the map from the exploration and publishes the file path to map polygonization

D. Map polygonization

This node was made to receive the destination of the explored map and then activate all the internal triangulation, path
generation and partitioning. Furthermore, this node publishes the file path to the patrolling publisher with where the patrolling
path waypoints are located.

E. Patrolling Publisher

The purpose of the patrolling publisher is to run the CGG patrolling algorithm from the waypoints provided at the path
received from polygonization. This node will also keep track of running either a set number of cycles or running indefinitely.

F. Map CLI Publisher

A CLI-based map publisher was made as a debug tool which allowed for publishing a map path directly to map polygoniza-
tion. This made it possible to run the pipeline from the map polygonization phase, thereby bypassing the exploration stage and
saving time during development.

APPENDIX C
PROJECT MANAGEMENT

A. Time Management

A rough time-schedule was made at the beginning of the project period. This schedule can be seen in An updated
version at the end of the project period can be seen in
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Fig. 15: Gantt Chart at beginning of project period.
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Fig. 16: Gantt Chart at end of project period.

The charts are distinctly different in the sense that the overall project direction changed throughout the project. Exploration
was de-emphasised and the pipeline bridge between exploration and patrolling was added. The Implementation on the initial
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chart was split into three distinct groups of tasks, namely exploration, patrolling, and the pipeline. Separating these tasks
allowed them to be worked on concurrently, and for each to gain more specific requirements. Some phases of the project also
ended up taking a larger amount of time than at first expected. This was due to multiple tasks requiring a lot of configuration

of the software stack, which revealed numerous bugs that interrupted progress on the overall project. This led to it being a very
iterative process in which some tasks would have to be reset with different approaches, trying different configurations etc. Some
of the major issues that led to a lot of time being spent were:

o Incorrect Firmware: The Firmware available for the teensy microcontrollers was inoperable. Once the correct firmware
was acquired, a recurring issue was that the teensy microcontroller at random was unable to be flashed with new firmware
when changes were made.

« ROS2 Topic availability: At stages of the process we had ROS2 topics that didn’t start up correctly as there were incorrect
configurations preventing nodes from starting up. The lack of proper debugging messages in the software stack led to this
type of issue taking a lot of time.

« URDF issues: At the start of the project, no URDF was fitting the Polybot that the project worked with, so it was required
to make one from scratch. This led to transformations between robot parts not being correct and the system not registering
them correctly, and at times the robot model not being able to be displayed, thereby making simulation not possible to start.

o PCB shorts: The PCB’s in the robots turned out to be a big cause of wasted time, as the original design for the custom
PCBs was not made with soldering in mind. This mistake meant that the island that the pins on the board, which pins were
supposed to be soldered to, made no contact with most of the boards. In the end, it required the PCB circuit traces to be
scratched open to allow for new solder joints to be attached to the traces.

B. MoSCoW Analysis

A set of requirements are outlined in[Table I} in which they are prioritised as either Must Have, Should Have, Could Have, or
Will Not Have. The system described in is capable of exploration and patrolling tasks, which are tied together with a
path creation pipeline.

Requirement M S C W
R1 A user can specify a route for the robots to
follow
R2 A user can start an exploration task X
R3 A user can see the status of a task X
R4 A user can pause a task X
R5 A user canresume a task X
R6  The system is secure X

R7  The pipeline can create a closed-path from X
an explored map

R8  The AMRs can navigate around obstacles X
automatically

R9  The AMRs can map their environment X
during exploration

R10 The ARMscan update a map of their X
environment dynamically

R11  The system supports exploration tasks X

R12  The system supports patrolling tasks X

R13  The system can perform multi-AMR X
exploration

R14  The system can perform multi-AMR X
patrolling

R15 The system captures comparable data from X
experiments

R16  The system can run experiments X
unsupervised

R17  The system can run multiple experiments X
automatically

TABLE I: MoSCoW analysis of requirements.
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Requirements R1, R2, R3, R4, and RS describe what a user can do with the system. They can initiate both exploration and
patrolling tasks, as well as see the status of either task.

Requirement R7 describes the capabilities of the pipeline. It should be able to take an explored map as input from an explo-
ration task and produce a set of closed-paths for a patrolling task to use.

Requirement R8, R9, and R10 describe the capabilities of the AMRs. They should be able to explore an environment,
mapping while it does so. It should be able to update its environment on subsequent readings, and navigate around obstacles.

Requirements R6, R11, R12, R13, R14, R15, R16, and R17 describe general capabilities of the system as a whole. The
system should support both exploration and patrolling tasks. Ideally, it also allows for multi-AMR exploration and patrolling.
The system can also be able to capture data from experiments, which can be scheduled and run unsupervised. Finally, the system
is secure, making it fitting for tasks such as security patrolling and surveillance.

C. Task Management Framework

The project work was managed in the collaborative workspace tool Notion [49]. It uses a database-system which lets the user
show the same data in multiple views. This means that the group could create a list of tasks, and these would automatically be
converted to the other views. Examples of this can be seen in[Figure 19} [Figure 18| and [Figure 17} They show a Task Table,
Kanban Board, and Timeline/Gantt Chart respectively. The group would create a task in the Task Table view, where they would
specify a time period, any parent or subtasks, as well as a status. The task will then be converted to a time-slot on the Timeline
view which functioned as the group’s calendar, as well as a card on the Kanban Board view. This allowed the group to keep
track of the status of running tasks, as well as the project overall.

& P10 Planning

& Timeline view

Open in Calendar

obots Turn Properly

> Implement Patrolling Algorithm

Write Thesis

Fig. 17: Notion Gantt Timeline.
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& P10 Planning
D Board
® Not started In progress
Hand-in M T Write Thesis 8 guration

g Algorithms

Proof Read Tt vestigate S.0.A Algorithms

Implementation Buffer Implement Pi

ation Algorithms

mulation

Fig. 18: Notion Kanban Board.

& P10 Planning

Done
Done
Proof Read Th: ® Not started
In progress
In progress
In progress
In progress
Done
Impl uffed Y 4 y 2 Done
Implement Ex gorithms m 4 Done

Write T m h ruar 2 ebr & Done

Implement Ex gorithms Write Thesis u 5 bruary 16 2 Done

Implemen uffe M . Done

Fig. 19: Notion Task Table.

APPENDIX D
AMR PARTS LIST & WIRING DIAGRAMS

The following is a parts list for the AMRs:

1x Raspberry Pi 4 8Gb

1x Teensy 4.1 microcontroller with custom breakout PCB
1x Im2596 voltage step-down converter with display

1x Adafruit BNOO55 absolute orientation sensor

1x RPLIDAR Al LiDAR sensor

1x 5000 mAh 11,1V LiPo 3SIP battery

1x L298N dual h-bridge motor controller

2% Pololu geared DC motor with encoders

A wiring diagram for the Teensy PCB can be seen in and a wiring diagram for the AMRs can be seen in
These figures are adapted from Appendix A and B of this project group’s 9th semester project [[20]].
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E RN R RN NN NORONONCONC)

(a) Diagram of the Custom PCB breakout board for the Teensy

microcontroller.

(b) Diagram of the wiring for the Robots.

aL

Fig. 20: Teensy PCB diagram & robot wiring diagram.

APPENDIX E
FULL-SIZE IMAGES OF ARCHITECTURE AND PIPELINE
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4 4
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N AN /
. 4 .
Physical Robot Physical Robot
‘ Navigation Server ’ ‘ Navigation Server ’
- 2N J

Physical Environment

)

Physical Robot Physical Robot
(. AN

Physical Robot Physical Robot
- -

Fig. 21: Autonomous Reference Architecture for the AMR system.
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Fig. 22: Pipeline communication diagram.
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Fig. 23: Pipeline for generating closed-paths on map.

APPENDIX F
SIMULATION ENVIRONMENTS FULL-SIZE IMAGES

Fig. 24: Full-size simulation environments, a room with no obstacles, some obstacles, and many obstacles
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Fig. 25: Full-size simulation small warehouse environment.

APPENDIX G
ALL DATA PLOTS
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Fig. 27: Time to run exploration vs patrolling for 10
iterations. Fig. 30: Time over cycle iteration with 1 AMR.
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Fig. 31: Time over cycle iteration with 2 AMRs.
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Fig. 32: Time over cycle iteration with 3 AMRs.

2,000
1,800 + —o— No obstacles
1,600 | Some obstacles
—=— Many obstacles
1,400 —+— Warehouse
1,200 |
1,000 |
800
600
400 + — L ou
200 o—e—o—6 0o o o

1 2 3 4 5 6 7 8 9 10
Cycle Iteration (n)

Fig. 33: Time over cycle iteration with 4 AMRs.
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Fig. 34: Time over cycle iteration in Warehouse map.
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Fig. 36: Time over cycle iteration in the Some Obstacles
map.
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35: Time over cycle iteration in the No Obstacles map.
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Fig. 37: Time over cycle iteration in the Many Obstacles

map.
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APPENDIX H
PHYSICAL ROBOT EXPERIMENTATION

Execution of physical robot experiments was attempted, however low friction between the robot’s wheels and the floor caused
the robot to slip a lot, which brought it to a standstill. Although the robots were unable to explore, data regarding its initial
surroundings was transmitted and the space around the robot was mapped correctly. This confirms that the pipeline also works
on the physical robots. In[Figure 38| the robot with original wheels didn’t provide enough traction on the floor. Additional efforts
were made to try to improve the traction by adding weight to the robot and new 3D printed wheels as seen on|Figure 39

Fig. 38: Physical AMR with original wheels providing slippage

Fig. 39: Robot with new wheels
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