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Summary
This thesis concerns the analysis and control of a mobile wheeled inverted pendulum (MWIP), a
dynamic system that exhibits nonlinear and unstable open-loop characteristics. The main objectives of
this research are to develop a dynamic and electrical mathematical model of the MWIP and use it to
design robust control schemes that can control the MWIP under varying load and external conditions.

Motivation

The reason for examining such a system is its possible use case for the local company Turf Tank which
design line marking robots that automatically paints line markings for the sports industry. The company
is facing problems with the its current solution, where it applies two Permanent Magnet Synchronous
Machines (PMSMs) at the front and two caster wheels at the rear. The caster wheels produce
undesirable characteristics and the company wishes to explore the possibility of removing the caster
wheels altogether, while keeping the same painting accuracy and capabilities.

Structure

The thesis is split into four parts: the analysis of a pre-existing prototype and its limitations; the
derivation of the mechanical and electrical models that govern the behaviour of the MWIP; using those
models to design a linear quadratic controller that controls the pitch, yaw, and speed of the MWIP; and
lastly applying the designed controller on the prototype to validate the model and control.

Preliminary Analysis

The preliminary analysis of the pre-existing prototype reveals electrical components that are deficient to
the use case. The microcontroller unit (MCU) is deemed to slow for the LQR controller and more
advanced control strategies, and the I/O capabilities of the existing MCU is insufficient for further
development of the prototype. The Inertial Measurement Unit (IMU) that provides the orientation and
position of the MWIP is deemed to be too noisy due to the mount. Furthermore, the IMU is replaced
with another unit which has a sensor fusion algorithm. The MWIP is powered by two PMSM hub motor
that are driven by an ODrive v3.6 motor driver.

Modelling

The mathematical model includes a three-dimensional dynamic model of the MWIP and is derived
using Lagrangian mechanics. The mechanical model is limited to level and even surfaces, and the
sloshing effect of the paint within the paint tank is not considered. The PMSM motor is modelled in the
rotating reference frame using the Clarke and Park reference frame transformation and field oriented
control (FOC) is applied in order to control the current and the torque of the motor. The motor driver is
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using two three-phase six step inverters which are also modelled to establish its impact on the control of
the motors.

Control

The dynamic model of the mechanics is linearised about the upright standstill position for the design of
the full state feedback LQR control. The controller is applied to the dynamic model of the electrical and
mechanical system to validate it using simulation.

Experiments

Multiple experiments are conducted on the MWIP to investigate the performance of the prototype. The
hall effect sensors fitted to the motors are validated. The FOC loop of the current is validated using both
linear and nonlinear simulation and experiments on the prototype. The motor parameters are found
using optimisation that seeks to minimise the error between the model and tests executed on the
prototype. The control is implemented on a Teensy MCU and tested under repeatable conditions in the
laboratory.
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Nomenclature
Abbreviations

2WMRs Two-wheeled mobile robots

AC Alternating current

ACO Ant colony optimisation

BLDC Brushless DC

CM Centre of mass

DC Direct current

etc Et cetera

FIFA Federation Internationale de Football Association

FOC Field oriented control

GA Genetic algorithm

GPS Global Positioning System

HODOSMC High-order disturbance-observer-based sliding mode control

IAE Integral of absolute error

IMU Inertial measurement unit

LQG Linear quadratic Gaussian

LQR Linear quadratic regulator

LTI Linear time-invariant

MCU Microcontroller unit

MIMO Multiple-input-multiple-output

MPC Model predictive control

MTWIP Mobile two-wheeled inverted pendulum

MWIP Mobile wheeled inverted pendulum

PI Proportional-integral
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PID Proportional-integral-derivative

PMSM Permanent magnet synchronous machine

PP Pole pairs

PSO Particle swarm optimisation

PWM Pulse width modulation

RMS Root mean square

SA Simulated annealing

SISO Single-input-single-output

SMC Sliding mode control

SVPWM Space vector pulse width modulation

Constants

g Gravitational acceleration 9.82 m/s2

Symbols

α Yaw angle of the frame

β Pitch angle of the frame

λλλ abcs( f ) Flux linkage contribution to the Stator flux linkage of the windings from the permanent magnet

λλλ abcs(s) Flux linkage contribution to the Stator flux linkage of the windings from the stator currents

λλλ abcs Stator flux linkage of the windings

τττ Joint torques

ṡ Linear velocity of the MWIP system

λ f Flux linkage of the permanents magnet

x̃ Error between the reference and the feedback

Ai Three-dimensional rotation matrix for i = {1,2,3}

A System matrix

B Input matrix

C(q, q̇) Coriolis and centripetal vector

C Output matrix

D(q) Inertia matrix



D Direct coupling matrix

ei,max Maximum allowed control signal of each input i = {1, ...,5}

ei,max Maximum allowed deviation of the state i = {1, ...,5}

G(q) Gravity vector

J Inertia tensor

Jc Inertia tensor of the container

JT Inertia tensor of the tank

K Feedback gain matrix

PCMF,local Centre of mass of the frame in the local coordinate system

PCMT,local Centre of mass of the tank in the local coordinate system

PCMW1,local Centre of mass of wheel 1 in the local coordinate system

PCMW2,local Centre of mass of wheel 2 in the local coordinate system

Q Non-conservative externally applied torques

Q Relative importance of the error

q Generalised coordinate vector

R Relative importance of the energy expenditure

Rs Stator resistance

Si Local lengths for i = {1,2,3}

u Input vector

x State vector

y Output vector

µ Coulomb friction coefficient

µ0 Permeability of air

ωc Crossover frequency

ωe Electrical angular velocity

ωr Mechanical angular velocity

Φm Magnetic flux

ρp Density of the paint



τ Time constant

θe Electrical angle

θr Mechanical angle

A Surface area

B Magnetic field density

b Viscous friction

Bv Viscous friction in wheels

Bm f Magnetic field

CMF Centre of mass of the frame

CMT Centre of mass of the tank

CMW1 Centre of mass of wheel 1

CMW2 Centre of mass of wheel 2

d Depth of the container

dH Width of the Hall element

ei Back emf for winding i = {a,b,c}

F1 Force applied by motor 1

F2 Force applied by motor 2

Gc Current controller

Gp Plant for q-axis current

Gol.c Transfer function of the open loop q-axis current

h Height of the container

IH Current flowing through the Hall element

id d-axis current

iis Stator current for winding i = {a,b,c}

Iq(s) q-axis current in the Laplace domain

JF ,xy Inertia of the frame with respect to xy axes

JW ,xy Inertia of the wheel with respect to xy axes

K Kinetic energy



Ki Integral gain

Kp Proportional gain

KR Rotational translation energy

KT Kinetic translation energy, Torque constant

Kv Kv rating

L Lagrangian

L Length of the pendulum

LP Paint level

Ls Stator inductance

LACMF Distance from the origin to the CM of the frame

LACMT Distance from the origin to the CM of the tank

LACMW Distance from the origin to the CM of the wheel

Ld d-axis inductance

Lii Mutual inductance i = {a,b,c}

Li j Self inductance i = {a,b,c}, j = {a,b,c} where j ̸= i

Lls Leakage inductance

Lm Magnetising inductance

Lq q-axis inductance

Ls Stator inductance

M Mass of the cart

m Mass of the pendulum

mF Mass of the frame

mW Mass of the wheel

mc Mass of the container

mp Mass of the paint

MI Modulation index

ncpr Hall effect sensor count-per-revolution

P Potential energy



Pe Electrical power

RH Hall constant

Rs Stator resistance

rw Wheel radii

rdw Distance to the surrounding wire which produce the magnetic field

s Distance travelled

s Laplace operator

T1 Torque delivered by motor at wheel 1

T2 Torque delivered by motor at wheel 2

Te Output torque

Ts Modulation period

Tdi f f Difference torque

Tsum Sum torque

u Input to the system

VH Voltage output of the hall effect sensor

Vi Space voltage vector i = {0,2, ...,7}

vd, f f Feedforward term for the d-axis voltage

vis Stator voltage for winding i = {a,b,c}

Vp Volume of the paint

vq, f f Feedforward term for the q-axis voltage

Vq(s) q-axis voltage in the Laplace domain

w Width of the container

x Horizontal displacement of the cart



Contents

1 Introduction 1

2 Problem Statement 5

3 Design of Prototype 7
3.1 Original Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 New Prototype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Modelling of the Mobile Wheeled Inverted Pendulum System 19
4.1 Mechanical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.2 Electrical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3 Overview of the System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.4 Permanent Magnet Synchronous Motor Model . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Linear Control Schemes 43
5.1 Control Design for the Inner loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Control Design for the Outer loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Experiments 47
6.1 Test of Hall Sensor Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2 Validation of the q-axis Current Loop . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.3 Validation of Motor Model in Open Loop . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Code Utilised in the Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5 Validation of the Mobile Wheeled Inverted Pendulum Model . . . . . . . . . . . . . . 58
6.6 IMU Measurement Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Discussion 63
7.1 Differing Hall Sensor Voltage Magnitudes . . . . . . . . . . . . . . . . . . . . . . . . 63
7.2 Expected Phase Currents for Blocked Rotor Test . . . . . . . . . . . . . . . . . . . . . 64
7.3 Offset in Current Value for Blocked Rotor Test . . . . . . . . . . . . . . . . . . . . . 65
7.4 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.5 Modelling of System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8 Conclusion 71

xv



9 Future Work 73
9.1 Nonlinear Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.2 Investigation of the Dynamical Effects of Sloshing . . . . . . . . . . . . . . . . . . . 73
9.3 Removal of Ground Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.4 Validation of the Mobile Wheeled Inverted Pendulum Model . . . . . . . . . . . . . . 74

Bibliography 75

A Previous Model of the Prototype A 1

B Inertial Measurement Unit A 5

C Python Code to Communicate with ODrive A 15

D Investigation of Minimum A 19

E Models of the System A 21
E.1 Simulation of Mechanics and Electronics . . . . . . . . . . . . . . . . . . . . . . . . A 21
E.2 Lagrange Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 28

F Determining Kv rating A 35

G Linear Quadratic Regulator A 39

H Data from Experiments A 41
H.1 Data from Investigation of the Back emf waveform . . . . . . . . . . . . . . . . . . . A 41
H.2 Test of the Closed q-axis Current Loop . . . . . . . . . . . . . . . . . . . . . . . . . . A 43
H.3 Additional Test of the Closed q-axis Current Loop . . . . . . . . . . . . . . . . . . . . A 43
H.4 Test of the IMU GY-91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 44

I Arduino Code A 47
I.1 Arduino code using BNO055 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 47
I.2 Arduino code using the GY-91 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A 55
I.3 Arduino code for the Arduino UNO . . . . . . . . . . . . . . . . . . . . . . . . . . . A 59



Chapter 1

Introduction
The use of robotics is ever-increasing and becoming more entangled in our everyday life. According to
[1], the forecast for the installation of industrial robots projects growth in the coming years. An area
that is widely used in the industry is field robotics. This field of robotics is defined as robots intended
for outdoor applications, often operating in unstructured or semistructured environments that can
change over time [2].

The machines are used in a multitude of areas including: unmanned aerial vehicles for surveillance and
package delivery [3, 4], surgery [5], building and construction [6, 7], mining [8, 9], space exploration
[10], forestry [11], agriculture [12, 13], and autonomous driving of automobiles and trucks [14, 15]. To
operate a controlled field robot either automatically, or remotely, the following three parts are required:
a guidance system which consists of the robot’s sensors and computes the reference determining the
position, velocity and acceleration to be used in the motion control; a navigation system that uses the
data collected from the available sensors to determine the state and motion of the robot; and finally, a
control system, or motion control system, to determine the amount of force or torque required by the
actuators to satisfy the intended control objective [16].

Various automatic guidance systems have been developed to make systems capable of functioning
autonomously with one shown to have an accuracy of less than 12 mm [12, 17]. These systems employ
sensors such as global positioning system (GPS), machine vision, etc. [12]. The affordability of these
technologies has greatly improved, and progress is being made in navigation to provide more precise
data [18]. Such advancements are enabling the expansion of the technology and its application.

[19, 20] suggest to expand the range of application of field robotics to sports, which is a relatively new
area with scarce amount of publications compared to the aforementioned areas. In [20], it is proposed
that the robots can perform periodic tasks such as cutting grass and line marking of a football pitch.
These tasks are time-consuming and mostly performed manually by skilful personnel as the football
pitch is required to meet certain standards issued by Federation Internationale de Football Association
(FIFA).

To reduce manual labour companies such as Turf Tank makes line marking robots. Turf Tank’s robots
uses GPS to determine the position of the robot and the layout of the pitch. The robots are used for
sports such as football, baseball, tennis, and more. The major components of the robots consist of: two
wheels actuated by two permanent magnet synchronous machines (PMSMs), two castor wheels, a paint
container and nozzle, a battery pack, and a casing.

An example of one of Turf Tank’s robots is the Turf Tank Two, which is seen in Figure 1.1. Turf Tank
uses control algorithms to automate the line marking process, minimising the risk of crooked lines as
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Chapter 1. Introduction

well as reducing paint consumption by 50 % as compared to manual line markings according to their
own data [21].

(a) View of Turf Tank Two (b) Side view of Turf Tank Two

Figure 1.1: Pictures of Turf Tank two.

Currently, Turf Tank faces problems with their castor wheels. The castor wheels reduce the normal
force on the traction wheels leading to an increased chance of slip. When slip occurs it increases the
line marking tolerance, especially for substrates with low traction as e.g. clay tennis courts.
Furthermore, as the robot turns, the friction in the ball bearing swivels yields an undesirable impact on
the robots orientation. The castor wheels are also prone to collect dirt and grass which further increases
the friction in the ball bearings which results in increasingly unpredictable behaviour during turning.

To resolve these issues, a new design without caster wheels is proposed as seen in Figure 1.2, which in
addition also reduces the material and production cost of the design. The proposed design is a
two-wheeled self-balancing robot, which falls under the category called mobile wheeled inverted
pendulum (MWIP), also known as mobile two-wheeled inverted pendulum (MTWIP) or two-wheeled
mobile robots (2WMRs) in some literature. A previously constructed prototype is available [22]
limiting this thesis to the modelling and control of said prototype.

Figure 1.2: Sketch of proposed design consisting of two wheels and a rod representing the upper body of the robot.

The robot is an underactuated system as it has three degrees of freedom while only only having two
control inputs from two motors. The paint used by the robot during operation results in a change in
mass, change in centre of mass (CM), and introduces sloshing of the liquid during accelerations. As the
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Chapter 1. Introduction

robot is subject to tight tolerances these dynamics must be considered when creating control schemes.

The study of MWIPs and control thereof originates in 1987 where [23] studied the two-wheeled balance
control technology. Since then, a myriad of MWIPs have been developed with each of them utilising
different control strategies. Earlier published works use linear control strategies such as [24] where a
single-input-single-output (SISO) proportional-integral-derivative (PID) controller is applied by
considering the problem as a 2D case, or as in [25] where multiple SISO-controllers are applied for a
3D case. However, due to the complexity of the system and uncertainties the majority of recent
publications proposes more complex control structures such as linear quadratic Gaussian (LQG) control
[26], fuzzy logic control [27], high-order disturbance-observer-based sliding mode control
(HODOSMC) [28], adaptive super-twisting control [29], model predictive control (MPC) [30], adaptive
fuzzy logic proportional-integral control [31]. To get an overview of the various control methods related
to MWIPs, [32] suggests to divide methods into four distinct categories:

1. Linear control methods:
Firstly, the dynamics of the system are derived mainly based on either Lagrange method or
Newton-Euler method [32]. Secondly, the dynamics are linearised around a linearisation point to
obtain the approximated linear model. Finally, using the approximated linear model, linear
controllers are derived and applied to control the system, for example linear quadratic regulator
(LQR), feedback linearisation control, etc.

2. Robust control methods:
Robust control is widely used for MWIP systems due to model uncertainties, varying work
conditions, external disturbances, characteristics of underactuated robot, and the nonlinear
instability. Similar to the linear control method, firstly the dynamics of the system are derived
mainly based on either Lagrange method or Newton-Euler method. Thereafter, methods such as
H2, H∞, LQG, sliding mode control (SMC) can be applied to realise robust control.

3. Intelligent control methods:
An intelligent control system is able to adapt to the changes in its environment by evaluating it.
Based on the evaluation the control system alternates the controller to improve its characteristics
accordingly [33]. These methods include adaptive control, fuzzy logic, neural network amongst
others. Occasionally, a combination of intelligent techniques are utilised, for example fuzzy
adaptive controller, fuzzy neural network controller, etc. [32].

4. Combination of intelligent control and optimisation algorithms:
Typically, the intelligent control methods have a number of parameters, which the control
performance depends on. Thus, it is not uncommon that the intelligent control is combined with
optimisation algorithms which are responsible for optimising the control parameters to achieve
optimal control. Examples of optimisation algorithms include particle swarm optimisation (PSO),
genetic algorithm (GA), ant colony optimisation (ACO), and simulated annealing (SA).

The initial phase of analysis involves an examination of a prefabricated prototype used for initial testing
of the feasibility of the solution. Thereafter, the prototype is to be modelled and control strategies
suggested to ensure the desired capabilities.
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Chapter 2

Problem Statement
This thesis is carried out in order to investigate the feasibility of an MWIP solution to automatic field
line marking. This is done by investigating an MWIP prototype and applying linear control schemes to
establish the applicability of the solution.
This leads to the following problem statement:

How can a prototype of a mobile wheeled inverted pendulum with varying payload be
modelled and controlled to be self-balancing?

Key Objectives
The key objective of the thesis is as follows:

• Analyse existing prototype with the aim of improving upon it.

• Establish requirements for further development of the prototype.

• Development of system model.

– Mechanical model of MWIP.

– Electrical model of motors.

– Verification of models.

• Establishment of linear controller.

• Evaluation and comparison of controllers in real world applications.

Evaluation Criteria
The controllers are evaluated based on the performance of the existing prototype’s control and
compared to each new developed controller. This is done by following a predetermined trajectory, both
on the nonlinear model and the prototype, and evaluating the difference between the desired and actual
trajectory. Specifically the root mean square (RMS) tracking error, the Integral of Absolute Error (IAE)
and the peak tracking error are evaluated. The RMS error quantifies the average tracking error over
time, while the IAE further penalises large and sustained errors. The peak tracking error defines the
overall tolerance of the line tracking. Furthermore the controllers are tested under disturbance
conditions seen in real world applications like grass substrate and slopes.

Delimitations

• Fitting the painting nozzle to the robot is out of scope.

• Implementation of GPS feedback
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Chapter 3

Design of Prototype
In this chapter, the previous prototype is analysed to achieve an understanding of the system in order to
build upon the pre-existing design. Subsequently, the solutions to the encountered problems with the
existing design of the prototype and modifications are described. Lastly, the system requirements and
the final prototype are presented.

3.1 Original Prototype

In this section, the initial prototype developed by [22] is presented and analysed in order to achieve an
understanding of the solution, and gain knowledge for further development of the prototype. The
original prototype without castor wheels is seen in Figure 3.1.

(a) Front view with paint tank (b) Back view without paint tank

Figure 3.1: The constructed prototype viewed from the front and back.

The frame consists of joint aluminium extrusions held in place by angle brackets. The paint tank is
fitted between the aluminium extrusions and held in place by a set of 3D printed supports, the two upper
supports have broken and are therefore not available in this thesis.

The primary electrical components of the prototype and their purpose are listed in the following:

• Power source
The power source is a lithium ion battery [34] consisting of 14 ICR18650 batteries with a total
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Chapter 3. Design of Prototype

nominal voltage of 25.9 V and a capacity of 4 Ah. The battery is mounted at the top of the
prototype using two black 3D printed parts and zip ties.

• Inertial measurement unit
The prototype features a GY-91 [35] inertial measurement unit (IMU). The IMU provides a three
axis gyroscope, three axis accelerometer, three axis magnetometer, and a barometer. The IMU is
used to determine the orientation, velocity and acceleration of the prototype. The IMU receives
5 V through a buck converter, and draws 4 mA. The IMU is seen mounted at the bottom of the
frame on a perfboard along with the other electrical components.

• Microcontroller unit
The microcontroller unit (MCU) is an Arduino Nano [36] with a clock speed of 16 MHz and one
serial communication port. The MCU is responsible for receiving and interpreting signals
received by the IMU and the motor driver. It is powered with 5 V through the buck converter and
draws 19 mA. The MCU is also fitted to the perfboard.

• Buck converter
To convert the 25.9 V output of the battery to the 5 V needed for the MCU and IMU, a DC-DC 5 A
buck converter [37] is implemented. The buck converter has a maximum output power of 75 W
with a maximum conversion efficiency of 96%. The buck converter is also fitted to the perfboard.

• Joystick module
A joystick module [38] is included for analogue and digital control of the prototype. The joystick
module features a two-axis thumb joystick, six buttons, and a switch. The module is not seen in
the figures, as it is used to control the prototype.

• Motor driver
The ODrive v3.6 [39] is chosen as the motor driver as it is compatible with the Arduino and can
operate two brushless direct current (BLDC) motors at a maximum of 120 A per motor. The
motor driver can receive an input voltage between 12 V and 56 V. The motor driver is seen fitted
above the paint tank.

• BLDC hub motors
The robot is actuated by two three-phase BLDC motors [40], the motors are controlled through
the ODrive that receives signals from the Arduino Nano. The BLDC motors are taken from a
DENVER HBO-6620 Hoverboard [41]. The tires are 168 cm in diameter, and the motor is fitted
with an incremental encoder, with a resolution of 90 counts per revolution. The power at
maximum torque is 477 W where it draws a current of 13.22 A.

3.1.1 Previous Approach for Modelling the System

Here, the approach by [22] for the model of the system is outlined to gain an understanding of their
model and how it is used for the control design.

The mechanical model of the robot is simplified to an inverted pendulum on a cart in the planar case
with a single input as seen in Figure 3.2.
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Figure 3.2: Inverted pendulum on a cart (b: viscous friction, F : external force as the system’s input u, g: gravitational
acceleration, L: length of the pendulum, m: mass of the pendulum, M: mass of the cart, β : pitch angle).

The pendulum represents the frame of the robot and is assumed to have an evenly distributed mass. The
system has two degrees of freedom; the pitch angle of the pendulum β , and horizontal displacement of
the cart x. u is the input to the system in the form of a force F .

State space representation is used to describe the linear time-invariant (LTI) system. Here, the LTI
system is a set of n first-order differential equations which is written in matrix/vector form as given in
(3.1).

ẋ = Ax+Bu (3.1a)

y = Cx+Du (3.1b)

x is the state vector that contains the n number of state variables. The order of the system is determined
by the dimension of the state vector. u and y are the input- and output vector of the system. A, B, C, and
D are the system matrix, the input matrix, the output matrix, and the direct coupling matrix.

Through a dynamic analysis of the system found in Appendix A, the state space model of the system is
given by (3.2).

d
dt


x
ẋ
β

β̇

=


0 1 0 0

0 −(I+mL2)b
I(m+M)+MmL2

m2gL2

I(m+M)+MmL2 0

0 0 0 1
0 −mLb

I(m+M)+MmL2
−bmgL(m+M)

I(m+M)+MmL2 0




x
ẋ
β

β̇

+


0
I+mL2

I(m+M)+Mm2

0
mL

I(m+M)+Mm2

u (3.2a)

y =

[
1 0 0 0
0 0 1 0

]
x
ẋ
β

β̇

 (3.2b)

Instead of making use of the state space model to derive a transfer function, the previous group realised
their model through Matlab Simulink using the Simscape package.
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The two BLDC motors’ stator voltage is modelled by an equivalent inductance-resistance circuit by
neglecting the back emf.

The control system is a three-layer cascade control, controlling the pitch angle of the robot. The inner
loop controls the motor current using a PI controller tuned by the ODrive to have a bandwidth of
100 rad/s based on ODrive’s recommendations. The middle loop controls the two BLDC motor’s speed
using a proportional-integral (PI) controller tuned based on the same recommendations. The outer loop
controls the pitch angle of the robot using a PID controller.

A Simulink tool is used to create a transfer function of the two inner loops. Matlab’s SISO tool is
applied to tune the pitch angle PID controller and ensure a stable response based on the determined
transfer function.

3.1.2 Experiments and Model Testing

Initially, the pitch angle PID controller for the system is tested. It does not yield a desirable results as
the system becomes unstable during testing. Furthermore, the model of the two inner loops cannot be
validated.

To accommodate the issue, a new controller is proposed which is tuned based on an iterative approach
and yields a system that is stable with an empty, half full, and full paint bucket. Additionally, a Kalman
Filter is applied to filter the sensor noise from the gyroscope readings.

Using the new controller seven experiments with the robot are conducted. Three different surfaces are
used in these experiments: a flat surface inside, a grass surface, and a tilted surface of 6◦ inside. Only
the first and last of them are recorded as the grass surface is deemed too uneven and the low clearance
between the frame and the ground resulted in the robot getting stuck, thus only the recorded cases are
included. For these surfaces the following experiments are conducted, and the results are estimated
based on the data given in [22]:

• On a flat surface indoors:

– Self-balancing tests:
Make the robot balance itself:

* With empty tank, the pitch angle oscillates between to −0.17◦ and 0.15◦

* With half full tank, the pitch angle oscillates between −0.35◦ and 0.41◦

* With full tank, the pitch angle oscillates between −0.27◦ and 0.26◦

– Applying a step input of 1.33◦ pitch angle with varying levels of liquid:

* With empty tank

· Overshoot: 2.04−1.33
1.33 ·100 = 53.4 %

· Steady state error: 1.48−1.33
1.33 ·100 = 11.3 %

· Rise time: 0.154 s

* With half full tank

· Overshoot: 2.15−1.33
1.33 ·100 = 61.7 %
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· Steady state error: 1.47−1.33
1.33 ·100 = 10.5 %

· Rise time: 0.170 s

* With full tank

· Overshoot: 2.13−1.33
1.33 ·100 = 60.2 %

· Steady state error: 1.49−1.33
1.33 ·100 = 12.0 %

· Rise time: 0.158 s

• On a tilted surface of 6◦ indoors:

– Self-balancing tests:
Make the robot balance itself:

* With an empty tank

· The robot’s angle is shown to oscillate between 1.11◦ and 1.60◦, meaning a
peak-to-peak value of 0.49◦

During the experiments, a number of critical problems are encountered, which are mentioned in the
following:

• Inadequate model
The previous group deemed their model inadequate as it is not validated from the experiments.
The previous group suggests that this could be due to the lack of introducing the dynamics of the
filter in the system.

• IMU is not fixated properly
As the IMU is movable, it can potentially cause excess noise in the feedback.

• Ground clearance
It experiences issues with uneven surfaces as the ground clearance is low and as a result the frame
can collide with the ground.

• Inadequate MCU
The MCU is no longer able to receive or transmit data, and will therefore need to be substituted.
The previous group presumes that the MCU lacks processing power. Additionally, it is not
possible to implement feedback from the controller and the wireless communication as it does not
have a sufficient number of serial ports.

• Breakage of the existing supports for the paint bucket
Some of the supports for the paint bucket are broken and will have to be replaced.

3.2 New Prototype

Based on the experiences of the previous group, it is chosen to modify the prototype to avoid similar
issues and improve the design. The modified prototype with the paint tank is seen in Figure 3.3.

11



Chapter 3. Design of Prototype

(a) Side view without paint tank. (b) Front view without paint tank.

Figure 3.3: The modified prototype viewed from the front and side.

3.2.1 Solutions to Identified Problems

To resolve the critical problems the following solutions are chosen:

• Secure the IMU to the frame to moderate the noise.

• Mount the wheels on the lower side of the frame in order to increase the ground clearance
resulting in a higher centre of mass.

• Implementation of a new MCU, with increased clock speeds and additional serial communication
ports.

• New supports for paint bucket due to breakage of the existing supports.

Inertial Measurement Unit

The IMU is upgraded to a BNO055 Intelligent 9-axis absolute orientation sensor [42]. The switch from
the GY-91 to BNO055 is made as a spare BNO055 is available at no additional costs.
The accuracy of the two sensors are comparable with the primary difference being software
implementation.
The BNO055 offers an integrated sensor fusion algorithm which calibrates the gyroscope,
accelerometer, and magnetometer. After this calibration, the BNO055 calculates the absolute
orientation of the IMU based on a fusion of the three sensors’ output when it is set in the default mode.
The fusion of signals is done by the BNO055’s onboard MCU and thereby allows for faster code
integration compared to the GY-91 where the signals needs to be fused manually on an external MCU.
The signals are fused in order to obtain outputs with greater reliability, as they are less prone to sensor
reading outliers and external factors. The working principle of the IMU and a description of why the
signals are fused is described in Appendix B.
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Inertial Measurement Unit Mount

On the original prototype the IMU is fastened to a perfboard mounted to the frame within an acrylic
casing. Therefore a new mount is designed as shown in Figure 3.4 in order to mitigate the noise
connected with vibrations of the mount.

SOLIDWORKS Educational Product. For Instructional Use Only.Figure 3.4: Mount and casing to the IMU.

Microcontroller Unit

The MCU is upgraded to the Teensy 4.0 [43] as the original Arduino Nano MCU is unresponsive, and
therefore needs to be substituted. The ARM Cortex-M7 600 MHz processor of the Teensy provides a
significant increase in processing power compared to the Arduino Nano’s ATmega328 16 MHz
processor, and it provides seven serial ports as opposed to the single serial port of the Arduino Nano,
and therefore allows for more sensor inputs. The operating voltage of the Teensy and Arduino Nano is
the same, 5 V, but the Teensy draws a current of 100 mA as opposed to the 19 mA of the Arduino Nano.
Furthermore the prices of the Teensy 4.0 and the Arduino Nano are within 1 USD [44] [45].

Microcontroller Unit Mount

Due to the requirements of the IMU mount, it is chosen to move the MCU and other electrical
components to the top of the frame below the battery as seen in Figure 3.5.

SOLIDWORKS Educational Product. For Instructional Use Only.Figure 3.5: Mount and casing to the MCU and buck converter.
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Paint Bucket Support

The paint bucket supports broke during the testing of the existing prototype. New supports are not 3D
printed, instead, the paint bucket is supported using luggage straps to ensure quick release and exchange
of paint buckets while being lightweight and cheap, as shown in Figure 3.3.

3.2.2 System Requirements for Prototype

Before completing the modifications and changes to the robot, the system requirements are needed to
get an overview of the wanted capabilities and how to achieve these. The system of requirements are
seen in Table 3.1.

Table 3.1: List of system requirements.

Requirement Description

Able to compete with Turf Tank’s cur-
rent solution

Straight line speed of 1 m/s.
Straight line tolerance of ±5mm.

Capable of steering Able to control each wheel independently

Capable of self-balancing Able to balance itself on flat and tilted surfaces.

Wireless communication Able to send and receive data from the computer directly
to the robot through a wireless communication.

Able to prevent collisions with obsta-
cles

Capable of detecting obstacles and stopping before collid-
ing with them.

Superior control compared to the orig-
inal one

During the self-balancing test it has to oscillate less than
the following under the specified conditions:

• On a flat surface indoors:
– With empty tank: the peak-to-peak value of the

angle needs to be less than 0.32◦
– With half full tank: the peak-to-peak value of

the angle needs to be less than 0.76◦
– With full tank: the peak-to-peak value of the

angle needs to be less than 0.53◦
• On a tilted surface of 6◦ indoors:

– With empty tank: the peak-to-peak value of the
angle needs to be less than 0.49◦

Applying a step input of 1.33◦ for the pitch angle, the re-
sponse demonstrate better performance than:

• With empty tank:
– Overshoot must be lower than 54.3 %
– Steady state error must not exceed 11.3 %
– Rise time must be less than 0.154 s

• With half full tank:
– Overshoot must be lower than 61.7 %
– Steady state error must not exceed 10.5 %
– Rise time must be less than 0.170 s

• With full tank:
– Overshoot must be lower than 60.2 %
– Steady state error must not exceed 12.0 %
– Rise time must be less than 0.158 s
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3.2.3 Further Development

To extend the capabilities of the prototype to those listed in Table 3.1, a new set of components are
introduced and described below.

Wireless Serial Communication

As an alternative to having the joystick module physically connected to the MCU, two HC-12
transceivers [46] are included. The purpose of the HC-12 transceivers is to allow for wireless
communication between the user and the prototype. This is done by connecting one of the HC-12
transceivers to the MCU, and the other to a spare Arduino UNO MCU which is readily available.
Furthermore, the joystick module is connected to the Arduino UNO, thereby making it possible to send
position inputs from a computer to the prototype while receiving e.g. sensor information from the IMU.
Each of the HC-12 transceivers draws a continuous current of 100 mA and is supplied with a voltage of
5 V. According to [46], a 1N4007 diode has to be connected in series with its power supply when it is
supplied with a voltage greater than 4.5 V in order to avoid heating of its low-dropout regulator.
Furthermore, a 330 µF 25 V decoupling capacitor is connected between the power supply input and
ground in order to reduce the signal noise produced by surrounding components.

Proximity Sensors

As an addition to the prototype two HC-SR04 [47] ultrasonic sensors are implemented. These sensors
supplies distance measurements to objects in front of and behind the prototype. Based on these
measurements the prototype can be programmed to stop if objects appear within a certain distance, and
thereby reducing the risk of collision with surrounding objects. The HC-SR04 measures distances
between 20 and 400 cm with a resolution of 0.3 cm. The HC-SR04 draws a current of 15 mA and is
supplied an operating voltage of 5 V.

In Figure 3.6 the main components and the corresponding connections are depicted, while Figure 3.7
describes the circuit for wireless communication between the users PC and the MCU. Lastly Table 3.2
describes the function of the wires. The ODrive is initialised using the python code shown in
Appendix C.
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Lithium Ion
Battery

Motor 1Motor 0

BNO055
(IMU)

Buck
Converter

Teensy 4.0
(MCU)

HC12
(Transceiver)

ODrive v3.6
(Motor Driver)

HC-SR04
(Proximity Sensor)

HC-SR04
(Proximity Sensor)

330µf 25V
Capacitor

+ -

IN4007
Diode

Figure 3.6: Wiring diagram of electrical components on the robot (IMU: inertial measurement unit, MCU: microcontroller
unit).

Joystick Module

HC12
(Transceiver)

IN4007
Diode

330µf 25V
Capacitor

PC

Figure 3.7: Wiring diagram of wireless part.
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Table 3.2: Wire colour description.

Colour Meaning Colour Meaning

Red Power input Blue Dashed Motor Coil A Input
Black Ground Yellow Dashed Motor Coil B Input
Pink Serial Data Line Light Green Dashed Motor Coil C Input
Purple Serial Clock Line Yellow Full Hall Sensor A Output
Dark Green Receive Blue Full Hall Sensor B Output
Brown Transmit Light Green Full Hall Sensor C Output
Grey General-Purpose Input/Output

3.3 Summary

A description of the original prototype is made, it covers the physical and electrical components and
their uses. Furthermore, the planar model of the prototype is presented and used for the system
modelling and control. The results obtained from the previous experiments and the encountered issues
are documented. These results serves as a baseline for the control of the prototype and the encountered
issues are resolved. Subsequently, a set of system requirements are made, and new components which
fulfils the requirements are implemented.
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Chapter 4

Modelling of the Mobile Wheeled Inverted
Pendulum System
As a foundation for analysis and control design, mechanical and electrical models of the self-balancing
robot are developed. Furthermore an overview of the system is presented in a block diagram that
describes how it functions.

4.1 Mechanical Model

A three-dimensional mechanical model is made in order to analyse the full dynamics of the MWIP. This
allows for the design of a controller that controls both the pitch and yaw of the MWIP and to analyse
the coupling between them.

The mechanical model is derived using Lagrangian mechanics where the frame, paint, and paint tank
are considered as solid masses. The changes in the CM and inertia of the paint tank are considered as a
function of the paint level in the tank, while the fluid of the paint is assumed to be at rest. Thus, sloshing
of the paint is not included in the mechanical model.

To derive the mechanical model of the self-balancing robot, the following assumptions are made:

• The robot is on a level surface i.e. ż = 0.

• Frame and bucket cannot roll.

• Tank yaws and pitches with frame.

• Wheels cannot slip.

• Sloshing effect is simplified to the standstill case.

The known parameters of the mechanical system are listed in Table 4.1.

The generalised coordinates consist of the yaw angle of the frame α , the pitch angle of the frame β , and
distance travelled s as depicted in Figure 4.1. This gives the following generalised coordinate vector q:

q =
[
α β s

]T
(4.1)

Using the Euler-Lagrange equation, the joint torques τττ are defined by the Lagrangian L as:

τττ =
d
dt

∂L
∂ q̇

− ∂L
∂q

(4.2)

The Lagrangian is defined as:

L = K −P (4.3)
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Table 4.1: Parameters of the mechanical system.

Parameter Symbol Value

Distance from the origin to the CM of the frame LACMF 16.8 cm
Distance from the origin to the CM of the wheel LACMW 24.4 cm

Mass of the frame mF 9.00 kg
Mass of the wheel mW 1.56 kg
Inertia of the frame JF,xx 1.28 kgm2

JF,yy 1.01 kgm2

JF,zz 0.283 kgm2

Inertia of the wheel JW,xx 3.00 ·10−3 kgm2

JW,yy 3.50 ·10−3 kgm2

JW,zz 3.50 ·10−3 kgm2

This means that the kinetic energy K and potential energy P must be found as functions of the
generalised coordinates in order to derive the mechanical model. The kinetic energy is given by the
mass and velocity of the CMs while the potential energy is given by the positions of the CMs.

4.1.1 Analysis of Change in Mass

The varying amount of paint in the paint tank yields a change in the tank’s mass, and as a consequence
its CM and inertia change. The paint container’s mass mc is measured to be 0.45 kg and the paint is
assumed to have a density equal to water. The mass of the paint is found using the volume of the
container, which is estimated to be 0.28x0.235x0.19 m. The mass of the paint mP is given as a function
of the paint level within the tank:

mP = ρPVP = ρPLPwd (4.4)

ρP and VP denote the density and the volume of the paint, respectively. The paint level LP varies from 0
to 0.28 m, and wP and dP denote the width and the depth of the container, respectively. Through
SolidWorks the bottom of the container is measured to be 0.114 m above the origin. The distance from
the origin to the CM of the tank LACMT is determined by assuming the container and paint to be two
rigid bodies:

LACMT =
mP

LP
2 +mc

h
2

mP +mc
+0.114 (4.5)

Where h is the height of the container.
The inertia tensor of a rigid body is defined as:

J =

Jxx Jxy Jxz

Jyx Jyy Jyz

Jzx Jyz Jzz


The off diagonal terms are considered negligible, the inertia of the rectangular cuboid about its centre is
given as (4.6).
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CMF
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CMT

CMW1

x,sCMW2

y

z

α

β

Figure 4.1: Illustration of the system (CMF : centre of mass of the frame, CMT : centre of mass of the tank, CMWi: centre
of mass of wheel i = {1,2}, Fi: force applied by motor i = {1,2}, LACMF : distance from the origin to CM of frame, LACMT :
distance from the origin to the CM of the tank, ṡ: linear velocity of the MWIP system, α: yaw angle, β : pitch angle).

Jc =


1

12 m
(
h2 +d2

)
0 0

0 1
12 m

(
h2 +w2

)
0

0 0 1
12 m

(
d2 +w2

)
 (4.6)

Where Jc is the inertia tensor of the container, and the mass m is the mass of the container and the paint
within it. In order to determine the inertia about the wheel axis (the axis that coincides with the centre
of both wheels), the parallel axis theorem given below is used:

JT = Jc +ml2 where l =
[
LACMT LACMT 0

]T

Combining the two above equations the inertia of the tank and paint is given below:

JT =


1

12

(
(mP +mc)(h2 +d2)

)
+(mP +mc)L2

ACMT 0 0
0 1

12

(
(mP +mc)(h2 +w2)

)
+(mP +mc)L2

ACMT 0
0 0 1

12

(
(mP +mc)(d2 +w2)

)


(4.7)

The CM and the diagonal of the inertia tensor are seen plotted as a function of the paint level in the
container in Figure 4.2.
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(a) Centre of mass as a function of paint level.
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Figure 4.2: Variation in the tank properties due to the paint level.

A minimum for the CM is observed at 0.055 m of paint level. The minimum is caused by the differing
rate of change of the paint’s and tank’s contribution as seen in Appendix D.

4.1.2 Lagrangian Mechanics

The derivation is in accordance with Figure 4.1. The positions of the CMs in the local coordinate
system are defined as:

PCMF,local = A1S1 (4.8a)

PCMW1,local = A2S2 (4.8b)

PCMW2,local = A3S2 (4.8c)

PCMT,local = A1S3 (4.8d)

Here, the distance the frame travels in the global coordinate system is not taken into account.

Where A1, A2, and A3 are three-dimensional rotation matrices given as:

A1 =

cos(α) −sin(α) 0
sin(α) cos(α) 0

0 0 1


 cos(β − π

2 ) 0 sin(β − π

2 )

0 1 0
−sin(β − π

2 ) 0 cos(β − π

2 )

 (4.9a)
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A2 =

cos(α + π

2 ) −sin(α + π

2 ) 0
sin(α + π

2 ) cos(α + π

2 ) 0
0 0 1

 (4.9b)

A3 =

cos(α − π

2 ) −sin(α − π

2 ) 0
sin(α − π

2 ) cos(α − π

2 ) 0
0 0 1

 (4.9c)

S1, S2 and S3 are local lengths given as:

S1 =

LACMF

0
0

 (4.10a)

S2 =

LACMW

0
0

 (4.10b)

S3 =

LACMT

0
0

 (4.10c)

The velocities of the CMs are given as the time derivative of the positions plus the velocity of the frame
moving in the global coordinate system:

ṖCMF = ṖCMF,local +

ṡcos(α)

ṡsin(α)

0

 (4.11a)

ṖCMW1 = ṖCMW1,local +

ṡcos(α)

ṡsin(α)

0

 (4.11b)

ṖCMW2 = ṖCMW2,local +

ṡcos(α)

ṡsin(α)

0

 (4.11c)

ṖCMT = ṖCMT,local +

ṡcos(α)

ṡsin(α)

0

 (4.11d)

The kinetic translational energy, KT is given as:

KT =
1
2
(
mF ṖT

CMF ṖCMF +mW ṖT
CMW1ṖCMW1 +mW ṖT

CMW2ṖCMW2 +mT ṖT
CMT ṖCMT

)
(4.12)
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The kinetic rotational energy, KR is given as:

KR =
1
2


α̇

β̇

0


T

JF

α̇

β̇

0

+
 α̇

β̇ + ṡ r
0


T

JW

 α̇

β̇ + ṡ r
0

+
 α̇

β̇ − ṡ r
0


T

JW

 α̇

β̇ − ṡ r
0

+
α̇

β̇

0


T

JT

α̇

β̇

0




(4.13)

The kinetic energy is given as the sum of the translational and kinetic energy:

K = KT +KR (4.14)

The potential energy is given as:

P =
[
0 0 g

]
(mFPCMF +mW PCMW1 +mW PCMW2 +mT PCMT ) (4.15)

The kinetic and potential energy is then used in (4.3) and the Lagrangian is used in (4.2) to derive the
joint torques.

The non-conservative externally applied torques, Q are given as:

Q =


T1
r LACMW − T2

r LACMW + 2BvLACMW
r α̇

2Bvβ̇

T1
r + T2

r + 2Bv
r ṡ

 (4.16)

Where T1 and T2 denote the torques delivered by the motors at wheel 1 and wheel 2, respectively. All
terms in the Euler-Lagrange equation are now known, and the dynamic equations of motion can be
represented using the general form given in (4.17).

τττ = D(q)q̈+C(q, q̇)+G(q) (4.17)

Where D(q) is the inertia matrix consisting of masses and moments of inertia terms, C(q, q̇) is the
Coriolis and centripetal vector consisting of velocity product terms, and G(q) is the gravity vector. The
inertia matrix is given as:

D =

D(1,1) 0 0
0 D(2,2) D(2,3)
0 D(3,2) D(3,3)

 (4.18)

where the entries are:

D(1,1) = JF,(x,x)+JT,(x,x)+2JW,(x,x)+
L2

ACMT (mp +mc)

2
+

L2
ACMFmF

2
+2L2

ACMW mW

+
L2

ACMT cos(2β )(mp +mc)

2
+

L2
ACMFmF cos(2β )

2

(4.19a)

D(2,2) = mFL2
ACMF +(mp +mc)L2

ACMT +JF,(y,y)+JT,(y,y)+2JW,(y,y) (4.19b)

D(2,3) = D(3,2) =−sin(β )(LACMFmF +LACMT mp +LACMT mt) (4.19c)

D(3,3) = mF +2mW +mp +mc +
2JW (y,y)

r2 (4.19d)
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The Coriolis and centripetal vector is given as (4.20).

C =

 α̇β̇ sin(2β )(L2
ACMFmF +L2

ACMT mp +L2
ACMT mt)

−1
2(α̇

2 sin(2β )(L2
ACMFmF +L2

ACMT mp +L2
ACMT mt))

β̇ 2 cos(β )(LACMFmF +LACMT mp +LACMT mt)

 (4.20)

The gravity vector is given as (4.21).

G =

 0
−cos(β )(LACMFmF +LACMT mp +LACMT mt)

0

 (4.21)

The accelerations of the generalised coordinates are found by solving (4.17) for q̈:

q̈ =−D−1(C+G−Q) (4.22)

The Matlab script used to calculate the Lagrangian and solve for the acceleration are given in
Appendix E.2.

4.2 Electrical Model

To describe the characteristics of the actuation of the system, an electrical model of the three-phase
BLDC motor is developed. The notation presented in [48] is used for the derivation, and symmetrical
windings are assumed. The BLDC motors’ parameters used in the development of the electrical model
are listed in Table 4.2. The stator resistances and inductances are measured using the ODrive’s onboard
software, while the torque constants and the Kv ratings are measured in Appendix F.

Table 4.2: Parameters of the BLDC motors (counts-per-revolution (cpr.)).

Parameter Symbol Value Unit
Motor 0 Motor 1

Stator resistance Rs 0.246 0.244 Ω

Stator inductance Ls 0.408 0.401 mH
Torque constant KT 0.303 0.305 Nm/A

Wheel radii rw 0.0825 0.0825 m
Number of poles P 30 30 [−]

Hall effect sensor cpr. ncpr 90 90 [−]

Motor Kv rating Kv 2.86 2.84 Vs

As a step in the modelling of the BLDC motor, its driving principle is explained. The driving principle
of a BLDC motor is to change the active phases depending on the permanent magnet position placed on
the rotor in order to produce a continuous torque. Thus emulating the driving principle of direct current
(DC) motor with brush commutators. A circuit diagram of the BLDC motor is shown in Figure 4.3.
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n

MotorInverter

Figure 4.3: Circuit diagram of the BLDC motor (a: phase a, b: phase b, c: phase c, ia,b,c: phase currents a, b, and c, n: neutral
point, Vdc: Direct current voltage, Qi: MOSFET where i = {1, ..,6}).

In Figure 4.4 a two pole three-phase BLDC motor with Hall effect sensors is illustrated. The BLDC
motor operate with electronic commutation by using the magnet position placed on the rotor side. The
rotor position is detected by using Hall effect sensors placed within the motors that detects the generated
magnetic fields. Based on the rotor position, the inverter activates two of the switches accordingly,
allowing the current to flow in two of the phases and thereby producing a continuous torque.

a b

c

S

N

H2

H3H1

Figure 4.4: Sketch of a BLDC motor (a: phase a, b: phase b, c: phase c, H1: Hall effect sensor 1, H2: Hall effect sensor 2, H3:
Hall effect sensor 3, N: north pole of permanent magnet, S: south pole of permanent magnet).

In Figure 4.5, the driving principle of a two-pole three-phase BLDC motor is illustrated including its
Hall sensor outputs, back emfs, phase currents, and torque during operation [48].
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Figure 4.5: Driving principle of the BLDC motor (ea,b,c: back emf of phase a, phase b, and phase c, Hi: Hall sensor output
i = 1,2,3, ia,b,c: phase current a, b, and c, Ta,b,c: torque generated by phase a, b, and c, Te: output torque, Qi: switches of the
inverter i = {1,2, ...,6}, θr: mechanical angle).

In the figure, the electrical cycle consists of six different sections as there is only one pole pair.
However, the implemented BLDC motors have fifteen pole pairs, and as there are six states for each
pole pair, the number of sections is ninety in each revolution of the motor. The back emfs are
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trapezoidal, and the phase currents are constant, resulting in non-sinusoidal flux as it depends on these
currents. As a result, the BLDC motors utilise their three-phase quantities for control as opposed to
alternating current (AC) motors which use dq axes frame for their control. The dq transformation is
used for sinusoidal quantities where the three-phase currents are transformed into the currents of the d-
and q-axes, but as BLDC motors’ quantities are non-sinusoidal such a transform is nonsensical [48].

To begin the derivation of the model of the three-phase BLDC motor, the voltage equations are
considered. The stator voltage equation consists of the voltage drop due to the stator resistance Rs and
the rate of change of the stator flux linkage of the windings λλλ abcs:

vabcs = Rsiabcs +
dλλλ abcs

dt
(4.23)

The subscript abc denotes the three windings while s denotes the stator. The four vector and matrix
quantities are written as:

vabcs =

vas

vbs

vcs

 (4.24a)

Rs =

Rs 0 0
0 Rs 0
0 0 Rs

 (4.24b)

iabcs =

ias

ibs

ics

 (4.24c)

λλλ abcs =

λas

λbs

λcs

 (4.24d)

The flux linkage consists of the contribution from the stator currents and the permanent magnet placed
in the rotor denoted with subscript (s) and ( f ) respectively.

λλλ abcs = λλλ abcs(s)+λλλ abcs( f ) (4.25)

Inserting (4.25) into (4.23) results in (4.26).

vabcs = Rsiabcs +
dλλλ abcs(s)

dt
+ eabcs Where eabcs =

dλλλ abcs( f )

dt
(4.26)

eabcs is the back emf due to the magnet flux from the permanent magnet.

The stator flux linkage λλλ abcs(s) produced by the stator current is given as (4.27).

λλλ abcs(s) = Lsiabcs =

Laa Lab Lac

Lba Lbb Lbc

Lca Lcb Lcc


ias

ibs

ics

 (4.27)
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The inductances with subscripts containing repeated letters denote the self inductance while the non
repeating subscripts denote the mutual inductances. For the mutual inductances the first letter represents
the specific winding while the second letter represents the current producing the flux linkage in the
other winding.

Due to the assumption of symmetrical windings, the self inductances are equal and the mutual
inductances also are equal. Thus, the inductances can be written as:

Laa = Lbb = Lcc = Ls = Lls +Lm (4.28)

Lab = Lac = Lba = Lca = Lcb =−1
2

Lm = M (4.29)

Where Lls and Lm denote the leakage inductance and magnetising inductance, respectively.

Using (4.27) to (4.29) for rewriting the voltage equation stated in (4.26):

vabcs = Rsiabcs +Labcs
diabcs

dt
+ eabcs (4.30)

vas

vbs

vcs

=

Rs 0 0
0 Rs 0
0 0 Rs


ias

ibs

ics

+
Ls M M

M Ls M
M M Ls

 d
dt

ias

ibs

ics

+
eas

ebs

ecs

 (4.31)

Due to the winding symmetry of the stator, the stator currents which flow through the neutral wire has
the same quantities, but as they differ by 120◦ the vector sum of the three currents is: ias + ibs + ics = 0,
which can also be seen be applying Kirchhoff’s current low to the phase windings of Figure 4.3. Using
this relation the second term of the equation is rewritten, e.g. for the first row it is written as:

d
dt

(Lsias +M(ibs + ics)) =
dias

dt
(Ls −M) (4.32)

Rewriting the other rows of (4.31) as well, yields:vas

vbs

vcs

=

Rs 0 0
0 Rs 0
0 0 Rs


ias

ibs

ics

+
Ls −M 0 0

0 Ls −M 0
0 0 Ls −M

 d
dt

ias

ibs

ics

+
eas

ebs

ecs

 (4.33)

The output torque equation of the BLDC motor is calculated using the electrical power Pe, which is the
product of the output torque Te and the mechanical angular velocity ωr:

Pe = Teωr Where ωr = ωe/PP (4.34)

Where ωe is the electrical angular velocity and PP is the number of pole pairs.

The electrical power can also be calculated as the product of the stator current and the voltage generated
by the back emf:

Pe = iaseas + ibsebs + icsecs (4.35)

By using (4.35) and rewriting (4.34), the torque is determined as (4.36).

Te =
iaseas + ibsebs + icsecs

ωr
= 2

EI
ωr

(4.36)
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4.2.1 Control of the Brushless DC motor

Assuming the motor driver applies proper commutation of the phase currents, the control of the BLDC
motor is the similar to that of a DC motor. Under the assumption of proper commutation, the BLDC
motor’s operating speed is proportional to the applied DC voltage [48]. Therefore, the circuit diagram
in Figure 4.3 is simplified to the equivalent circuit model depicted in Figure 4.6.

e

i Rs Ls

+

−

v

Figure 4.6: Equivalent circuit model of the BLDC motor (e: back emf, i: current, Ls: stator inductance, Rs: stator resistance,
v: voltage).

The voltage equation of the equivalent circuit model is given by (4.37).

v = Rsi+Ls
di
dt

+ e (4.37)

Where v, i, and e are voltage, current, and the back emf induced by the rotor rotating its magnetic field.
Rs and Ls are stator resistance and stator inductance, respectively.

The back emf is estimated through (4.38).

e = Kvωr (4.38)

Where Kv is the Kv rating of the motor.

As is seen the back emf is estimated through (4.38) by measuring the angular velocity, thereby allowing
feedforward compensation of the back emf and eliminating it in (4.37). Thereby, a first order transfer
function with voltage as the input and current as output is established:

I(s)
V (s)

=
1

Ls s+Rs
(4.39)

The output torque is determined as the product of the current and the torque constant:

Te = KT i (4.40)

4.3 Overview of the System

To provide an overview of the system, a block diagram is made which is shown in Figure 4.7. The
MCU is responsible for managing the settings of the IMU and sending the measured data to the PC.
Initially, it is decided to use the information generated by the IMU to measure the following states: α ,
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Figure 4.7: Diagram of the system (va,b,c: phase voltages a, b, and c, IMU: inertial measurement unit, MCU: microcontroller
unit, MWIP: mobile wheeled inverted pendulum, ṡ: linear velocity of the MWIP system, α: yaw angle, β : tilt angle).

α̇ , β , β̇ , and ṡ. The ODrive is responsible for controlling the motors using the method of field oriented
control (FOC). The method is for AC motors and therefore uses sinusoidal phase currents for the motor
in order to produce a continuous torque, as explained in Section 4.4. However, as explained in
Section 4.2, the BLDC motors have a trapezoidal back emf, therefore the sinusoidal phase currents
causes the motors to produce a noncontinuous torque. This is also mentioned in [49] where it is stated
that the controllability for motors with trapezoidal back emf may be reduced. Therefore an investigation
of the waveform of the motors’ back emf is performed to determine if the controllability is affected.
The diagram of the ODrive is given in Figure 4.8.
In this thesis, it is chosen to utilise the current loop control mode in the ODrive. This is achieved by
setting the ODrive to torque control which ensures only the current control is active. However, the
ODrive calculates the reference torque based on a current reference applied to it. Thus, the MCU is set
to send a current reference to the ODrive as seen in Figure 4.7. The diagram only includes a single
motor as control of the motors are identical. The Clarke and Park transformations are introduced in
Section 4.4.
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Figure 4.8: Diagram of the current loop with one motor controlled by the ODrive using field oriented control (•∗: reference,
ia,b,c: phase currents a, b, and c, id,q: dq-axes current, iα,β : α,β -axes current, MCU: microcontroller unit, PI: proportional-
integral controller, PWM: pulse width modulation, va,b,c: phase voltages a, b, and c, vd,q: dq-axes voltage, vα,β : α,β -axes
voltage, θe: electrical angle of the rotor, ωr: mechanical angular velocity).

4.3.1 Investigation of the Back Emf Waveform

To investigate the back emf waveform of the BLDC motors and see if they are trapezoidal as stated in
Figure 4.5, tests are conducted on motor 1. The back emf is measured by using voltages probes to
measure the line-to-line voltages. The setup for the test illustrated in Figure 4.9. The conditions for the
test are as follows:

• No input is applied to the system

• The motor is allowed to spin freely

• An electric hand drill that spins the motor
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vc

Motor 1

Oscilloscope

Voltage probes

Figure 4.9: Setup for investigation of the back emf waveform (va,b,c: phase voltages a, b, and c).

The test is conducted by spinning the motor using an electric hand drill until the steady state speed is
reached. At the steady state speed the voltage is measured on the oscilloscope. The measurement of the
signals’ amplitude for the test using the faster speed of the drill is shown in Figure 4.10. In
Appendix H.1, the measurement of the signals’ frequency using the faster speed of the drill is
documented, alongside the measurements of the signals’ frequency and amplitude using the slower
speed of the drill. In Figure 4.10, and the figures seen in the appendix, the waveform of the back emf is

Figure 4.10: Oscilloscope measurement of the back emf waveform with the drill set to the fastest speed, where the oscilloscope
measures the amplitude of the signal.

observed to be sinusoidal, which is not the case for a BLDC motor. As described in Figure 4.5, the back
emf waveform of a BLDC motor is trapezoidal. However, it also implies the controllability is not
affected through the use of the ODrive. The sinusoidal back emf indicates that it is a PMSM. The
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BLDC motor and PMSM are often confused due to the structural similarity, and a method to tell them
apart is by the shape of the back emf as performed here [48]. Therefore, a revision of the motor model
is made in Section 4.4 where a PMSM model is developed to replace the BLDC motor model.

4.4 Permanent Magnet Synchronous Motor Model

In this section the working principle of the PMSM is described. Reference frame transformations are
used in order to create a model of the machine and apply FOC. The FOC is analysed and the pulse
width modulation (PWM) realisation is documented.

4.4.1 Working Principle

The PMSM works by inducing a magnetic field in the stator windings that align with the magnetic field
of the permanent magnets. By rotating the induced magnetic field in the stator windings the permanent
magnets also rotates at equal speed.

The stator winding layout of the motors are shown in Figure 4.11. The hub motors are fitted with 30
permanent magnets mounted to the inner surface of the rotor. The stator has 27 slots where each phase
is wound in alternate polarity around three consecutive teeth followed by the next phase and the next.
This pattern is repeated three times [50, 51, 52].

Point
Common

Phase C

Hall C

Phase B

Hall B

Phase A

Hall A

Figure 4.11: Winding layout of the PMSM.

The PMSM is modelled in the rotating dq reference frame in order to simplify the model and apply
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FOC in the dq reference frame.

4.4.2 Modelling in Rotating Reference Frame

The transformation from the three-phase abc reference frame to the dq reference frame takes two steps,
the first step is the Clarke transform that yields the stationary reference frame, the Park transform is then
applied to that reference frame which yields the rotating dq reference frame. The reference frames and
the transformations are explained in the following.

The stationary reference frame denoted with αβ is the reference frame where the α-axis aligns with
one of the phases, typically the a-phase. The transformation from three-phase abc reference frame to
the αβ reference frame is the Clarke transformation and is given in (4.41) along with its inverse which
transforms from the αβ reference frame to the three-phase abc reference frame. The Clarke transform
shown here is the power invariant version of the Clarke transform, this is seen by the factor

√
2/3

multiplied the transformation matrix. The power invariance is due the fact that the power, which is the
product of voltage and current, must be equal in both the three-phase abc reference frame and the
two-phase αβ reference frame. The non power invariant factor is 2/3 [48, 53].

[
fα

fβ

]
=

√
2
3

[
1 −1

2 −1
2

0
√

3
2 −

√
3

2

] fa

fb

fc


 fa

fb

fc

=

 1 0

−1
2

√
3

2

−1
2 −

√
3

2

[ fα

fβ

]
(4.41)

Another significant reference frame is the rotating dq reference frame. This reference frame has the
d-axis aligned with the rotor flux. The transformation from the αβ reference frame to the dq reference
frame is the Park transform and is given as (4.42) along with its inverse.[

fa

fq

]
=

[
cos(θe) sin(θe)

−sin(θe) cos(θe)

][
fα

fβ

] [
fα

fβ

]
=

[
sin(θe) cos(θe)

−cos(θe) sin(θe)

][
fa

fq

]
(4.42)

Combining both transformations it is possible to go directly from the abc reference frame to the dq
reference as shown in (4.43).

[
d
q

]
=

√
2
3

[
sin(θe) sin

(
θe − 2π

3

)
sin
(
θe +

2π

3

)
cos(θe) cos

(
θe − 2π

3

)
cos
(
θe +

2π

3

)]
a

b
c


a

b
c

=

√
2
3

 sin(θe) cos(θe)

sin
(
θe − 2π

3

)
cos
(
θe − 2π

3

)
sin
(
θe +

2π

3

)
cos
(
θe +

2π

3

)
[d

q

] (4.43)

In reality the Clarke and Park transforms produce a third signal, the zero signal, which is always zero
for balanced three phases signal, which is the case for most electrical machines and the reason it is not
included here.

Figure 4.12 shows a three-phase signal 120◦ out of phase and the signals produced by the Clarke and
the Park transforms. The voltage equations in the dq reference frame is given as (4.44), and the torque
is given as (4.45) [48, 53].
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Figure 4.12: Signal transformation using Clarke and Park transform.

The ODrive applies FOC without field weakening assuming surface mounted permanent magnets with
feedforward compensation of the coupling terms and the back emf.

d
dt

id =
1

Ld
(vd +LqPPωriq −Rsid) (4.44a)

d
dt

iq =
1
Lq

(vq −LdPPωrid −Rsiq −PPλ f ωr) (4.44b)

Te =
3
2

PP(λ f iq +(Ld −Lq)id iq) (4.45)

Where id and iq are the d-axis and q-axis currents, vd and vq are the d-axis and q-axis voltages, Ld and
Lq are the d-axis and q-axis inductances, and λ f is the flux linkage of the permanents magnet.

Assuming surface mounted permanent magnets the inductances in the dq reference frame Ld and Lq are
equal i.e. Ld = Lq = Ls, because the permanent magnets are spread evenly around the surface of the
rotor. Thus, simplifying the voltage equations to (4.46) and the torque to (4.47), it is seen that only the
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q-axis current is the torque producing current.

d
dt

id =
1
Ls
(vd +LsPPωriq −Rsid) (4.46a)

d
dt

iq =
1
Ls
(vq −LsPPωrid −Rsiq −PPλ f ωr) (4.46b)

Te =
3
2

PP(λ f iq) (4.47)

The q-axis current is the torque producing current. The d-axis current is the flux-producing current and
is set to zero as the FOC is without field weakening.

In order to simplify the control of the PMSM the coupling terms and the back emf terms are
compensated for using feedforward. By measuring the motor speed and the phase current the terms can
be cancelled, as shown in the block diagram in Figure 4.13. The feedforward terms are given in (4.48).

vd, f f = LPPωriq (4.48a)

vq, f f = ωrPP(Lsid +λ f ) (4.48b)

This results in a first order decoupled current dynamics shown in (4.49) assuming perfect compensation,
which allows for linear control of the current which is also the case for current control of the BLDC
motor.

d
dt

id =
1
Ls
(vd −Rsid) (4.49a)

d
dt

iq =
1
Ls
(vq −Rsiq) (4.49b)

To design a controller of the torque producing current, a transfer function for the q-axis current is
derived using Laplace transform, as given in (4.50).

Iq(s)
Vq(s)

=
1

Ls s+Rs
(4.50)
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Figure 4.13: Block diagram of field oriented control and feedforward compensation of PMSM (•∗: reference, •̃: error between
reference and feedback, ia,b,c: phase currents a, b, and c, id,q: dq-axes current, iα,β : α,β -axes current, PI: proportional-integral
controller, PWM: pulse width modulation, va,b,c: phase currents a, b, and c, vd,q: dq-axes voltage, vα,β : α,β -axes voltage, θe:
electrical angle, ωr: mechanical angular velocity).

4.4.3 Space Vector Pulse Width Modulation

In order to convert the DC voltage source from the battery to three-phase voltages a six-step inverter is
used. In Figure 4.14, a circuit of the three-phase inverter is presented. The ODrive uses symmetric
space vector modulation to control the switching of the MOSFETs [54].

−
+

Vdc

S1

S4

S3

S6

S5

S2

ia ib ic

c

a b

n

Figure 4.14: Circuit of three-phase inverter (a: phase a, b: phase b, c: phase c, ia,b,c: phase currents a, b, and c, n: neutral
point, Vdc: direct current voltage, Si: MOSFET where i = {1, ..,6}).

By analysing the phase voltages in the eight switch states a complex space vector can be made.
Table 4.3 shows the phase voltages generated by the different switch states of the inverter. The last
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column shows the complex space vector resulting from these phase voltages, as given as in (4.51).

V =
2
3
(vas +avbs +a2vcs) Where: a = e j2π/3, a2 = e j4π/3 (4.51)

Figure 4.15 shows the space vector with its real axis aligned with the α-axis in the αβ reference frame.

Table 4.3: Phase voltage and space voltage vector as a function of switching.

Switch States Phase Voltages Space Voltage Vector

S1 S3 S5 van vbn vcn Vn,n = {0, ...,7}

0 0 0 0 0 0 V0 = 0 ∠0◦

1 0 0 2
3Vdc −1

3Vdc −1
3Vdc V1 =

2
3Vdc ∠0◦

1 1 0 1
3Vdc

1
3Vdc −2

3Vdc V2 =
2
3Vdc ∠60◦

0 1 0 −1
3Vdc

2
3Vdc −1

3Vdc V3 =
2
3Vdc ∠120◦

0 1 1 −2
3Vdc

1
3Vdc

1
3Vdc V4 =

2
3Vdc ∠180◦

0 0 1 −1
3Vdc −1

3Vdc
2
3Vdc V5 =

2
3Vdc ∠240◦

1 0 1 1
3Vdc −2

3Vdc
1
3Vdc V6 =

2
3Vdc ∠300◦

1 1 1 0 0 0 V7 = 0 ∠0◦

The reference vector V ∗ is given by the two inner control loops controlling the d and q-axis currents
transformed to the αβ reference frame.

α,Re,a

β , Im

V1(1,0,0)

V2(1,1,0)V3(0,1,0)

V4(0,1,1)

V5(0,0,1) V6(1,0,1)

V0(0,0,0)
V7(1,1,1)

V ∗
1

2

3

4

5

6
2/3Vdc

Figure 4.15: Output voltage vector in the complex plane (Vdc: DC voltage, Vn: Space voltage vector n = {0,2, ...,7}).

The active switch states are determined by the reference vector as the two adjacent switch states. In the
case of the figure where the reference vector is in sector m = 1, it is switch state V1 and V2 as well as the
zero voltage vectors V0 and V7 that are active. In order to have the same fundamental volt-second
average as the reference vector throughout the modulation period Ts, each switch state is active a certain
time. By assuming a constant DC voltage the following expression must be true:

V ∗Ts =VnT1 +Vn+1T2 (4.52)
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By splitting this expression into its α and β components yields the following:

Ts|V ∗|cos(φ) =
2
3

T1Vdc cos
(

m
π

3

)
+

2
3

T2Vdc cos
(
(m+1)

π

3

)
(4.53a)

Ts|V ∗|sin(φ) =
2
3

T1Vdc sin
(

m
π

3

)
+

2
3

T2Vdc sin
(
(m+1)

π

3

)
(4.53b)

where T1 and T2 are the time that the switch states are active, and m is the sector. Solving (4.53) for T1

and T2 yields:

T1 =
2√
3

TsMI sin
(

π

3
m−φ

)
(4.54a)

T2 =
2√
3

TsMI cos
(

π

3
m−φ +

π

6

)
(4.54b)

where MI is the modulation index, given as (4.55). The ODrive has a maximum modulation index of
around 70% [55].

MI =
|V ∗|
2
3Vdc

(4.55)

If T1 +T2 < Ts then the zero voltage vectors are applied in the remaining time:

T0 = Ts − (T1 +T2) (4.56)

To exemplify the symmetrical modulation technique, the symmetrical switching of sector 1 is illustrated
in Figure 4.16.

0 0 0 1

0 0 1 1

0 1 1 1

V0 V1 V2 V7

T0 T2T1

Ts

2
T0
2

S1

S3

S5 1 0 0 0

1 1 0 0

1 1 1 0

V7 V2 V1 V0

T0 T1T2

Ts

2
T0
2

Switching period 2Ts

On sequence Off sequence

Figure 4.16: Illustration of the symmetric space vector pulse width modulation for sector 1 in Figure 4.15 (S1,3,5: switch states,
Ts: modulation period, T0: zero voltage time, T1,2: time effective vectors are active, V0,7: zero vectors, V1,2: effective vectors).

This means that in sector 1, V1(1,0,0) is on for time T1 and V2(1,1,0) is on for time T2 and either
V0(0,0,0) or V7(1,1,1) is on for T0. The sequence in which the voltage vectors are on is symmetric to
reduce the high order harmonics and increase the voltage modulation range. The symmetrical SVPWM
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technique splits the zero voltage time T0 into two parts, and applies the active states in the centre of the
modulation period. This means that in sector 1, if S1 = S2 = S3 = 0 (i.e. all upper switches are off), the
sequence is all follows: V0(0,0,0) followed by T0/2 → V1(1,0,0) followed by T1 → V2(1,1,0) followed
by T2 → V7(1,1,1) followed by T0/2. If all switches are on in the beginning of the modulation period,
the sequence is reversed. This can be done for all sectors as the zero voltage vector is used in all sectors
[48, 53, 56].

4.5 Summary

Firstly, a mechanical model of the robot is developed using the Euler-Lagrange formulation and the
changing inertia of the paint tank effect on the system is addressed. Then, an electric model of the
BLDC motors is made. This is followed by an overview of the system displayed in a block diagram.
The back emf of the motors are investigated to validate the motor model. The investigation shows the
back emf wave as sinusoidal, which is the case for PMSMs and not BLDC motors. Therefore, it is
chosen to make a PMSM model to replace the BLDC motor model.
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Chapter 5

Linear Control Schemes
This chapter describes the approach and reasoning for the chosen controllers. It reveals how the
controllers are designed based on the linearised models of the physical system.

In order to control the system, cascade control is implemented with the inner loop controlling the
current using the ODrive, and the outer loop controlling the states of the MWIP through the use of the
MCU and the IMU, as seen in Figures 4.7 and 4.8. A PI controller is employed to control the current of
each motor, while MIMO control is utilised to control the torque of the motors.

5.1 Control Design for the Inner loop

As the ODrive provide the current control, the model developed in the section is used to describe how
the ODrive realises the control. However, ODrive does not provide documentation of the method used
to realise their current controller. Therefore, it is assumed that the ODrive uses pole-zero cancellation to
determine the values of the proportional and integral gains in the PI controller. For the derivation of the
pole-zero cancellation method, [48] is used as a reference. As the q-axis current is the current producing
torque to make the PI controller for this loop, as the d-axis is set always to be zero. The calculation of
the gains, the plant for the q-axis current, Gp (derived in Section 4.4) and the current controller, Gc

stated in (5.1) and (5.2) are used.

Gp(s) =
1

Ls s+Rs
(5.1)

Gc(s) = Kp +
Ki

s
= Kp

(
1+

Ki

Kp s

)
= Kp

(
s+ Ki

Kp

s

)
(5.2)

Kp and Ki are the proportional and integral gain. Using these, the open loop transfer function for the
q-axis current, Gol.c is determined as (5.3).

Gol.c(s) = Gp(s)Gc(s) =
1

Ls s+Rs
Kp

(
s+ Ki

Kp

s

)
=

1
Ls

s+ Rs
Ls

Kp

(
s+ Ki

Kp

s

)
(5.3)

To cancel the pole −Rs/Ls for the system, the term Ki/Kp needs to be equal to it:

Ki

Kp
=

Rs

Ls
(5.4)

Using the relation given in (5.3), the open current loop transfer function becomes:

Gol.c(s) =
1
Ls

Kp(s+ Rs
Ls
)

(s+ Rs
Ls
)s

=
1

Ls
Kp

s
(5.5)
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By taking the magnitude of the open loop transfer function and inserting jωc, it is observed that the
crossover frequency, ωc for the system is determined by Kp/Ls, as stated in (5.6).

|Gol.c(s)|=
1

| La
Kp

s|
= 1 ⇒ ωc =

Kp

Ls
(5.6)

If the required bandwidth is set to ωc, Kp is obtained from (5.6):

Kp = Lsωc (5.7)

Ki is determined by inserting (5.7) in (5.4).

Ki = Kp
Rs

Ls
= Rsωc (5.8)

It is desired to transform this first order system to have a bandwidth of 100 rad/s based on the
recommendation from [57]. Based on the values stated in Table 4.2, the resulting values for Kp and Ki

are 0.04 and 23 respectively.

A block diagram of the closed-loop system of the q-axis current with the PI controller is seen in
Figure 5.1.

+
− PI 1

L s+Rs

I∗q Ĩq Vq Iq

Figure 5.1: Closed-loop block diagram of q-axis current loop for the PMSM (•∗: reference, •̃: error between reference and
feedback, Iq: q-axis current, Ls: inductance, Rs: stator resistance, s: Laplace operator, PI: proportional-integral controller).

As a controller for the inner loop of the system has been designed, the design of a controller for the
outer loop of the system is initiated.

5.2 Control Design for the Outer loop

In this section an LQR is proposed as the controller of the outer loop.

5.2.1 Linear Model of Mechanical System

For the purpose of implementing a linear controller for the multiple-input-multiple-output (MIMO)
system, the dynamics are linearised and a state space model is created. The states are given in (5.9).

x =
[
α α̇ β β̇ ṡ

]
(5.9)

The distance travelled by the frame s is not included as a state because the other states are independent
of it.

To decouple the control and simplify the analysis, the input to the system is changed to represent the
difference and sum torque:

Tdi f f = T1 −T2 (5.10)

Tsum = T1 +T2 (5.11)
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This changes the non-conservative externally applied torque given in (4.16) on page 24 to (5.12).

Q =


Tdi f f

r LACMW + 2BvLACMW
r α̇

2Bvβ̇

Tsum
r + 2Bv

r ṡ

 (5.12)

The dynamics of the system is not changed by representing the torques like this, only the analysis of the
system changes.
The state space model is derived by linearising the differential equations given by (4.22), at zero, i.e.
linearising with the frame at the upright position and a full paint of tank, meaning L = h. This gives the
following state space model assuming full state feedback.

α̇

α̈

β̇

β̈

s̈

=


0 1 0 0 0
0 0.0085 0 0 0
0 0 0 1 0
0 0 21.5 0.0032 −0.0071
0 0 −3.96 −0.0006 0.0046




α

α̇

β

β̇

ṡ

+


0 0
1.218 0

0 0
0 −1.019
0 0.654


[

Tdi f f

Tsum

]
(5.13a)

y =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1




α

α̇

β

β̇

ṡ

+


0 0
0 0
0 0
0 0
0 0


[

Tdi f f

Tsum

]
(5.13b)

5.2.2 Linear Quadratic Regulator
The LQR controller provides a systematic method to determine the feedback gains based on
comprehensible parameters. The LQR controller is determined by subjective iterative estimation of the
importance of the state error and expenditure of energy.
The block diagram depicting the control of the robot is given in Figure 5.2.

Mux B

[5×2]

+
+

∫
C

[5×5]

A

[5×5]

+
−K

[2×5]

KTGpPI

KTGpPI

+
−

+
−

Demux

T1

T2

I1

I2

V1

V2

I∗1

I∗2

ẋ x

5×1

x∗

x̃5×12×1

y

Current loops

Figure 5.2: The linear closed-loop block diagram (•*: reference, •̃: error, A: system matrix, B: input matrix, C: output matrix,
Gp: plant for the q-axis current, Ii: current for motor i = {1,2}, Ti: torque applied by motor i = {1,2}, K: feedback gain matrix,
KT : torque constant, PI: proportional-integral controller, Vi: voltage for motor i = {1,2}).
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The control law is given as (5.14).

u =−Kx̃ (5.14)

x̃ is the error between the reference and feedback. The feedback gain matrix K is derived by minimising
the performance index given in (5.15).

J =
∫

∞

0

(
xT Qx+uT Ru

)
dt (5.15)

Where Q and R are positive definite. Q determines the relative importance of the error, and R
determines the relative importance of the energy expenditure. The theory behind LQR and the method
to derive the optimised feedback gain matrix are presented in Appendix G.

The Q and R matrices are determined based on the following guidelines:

Q(i, i) =
1

e2
i,max

(5.16)

R(i, i) =
1

u2
i,max

(5.17)

Where i = {1, . . . ,5}, ei,max represents the maximum allowed deviation of the state, and ui,max

represents the maximum allowed control signal of each input.

It is wanted for the robot to have less deviation from desired states of α , α̇ , and ṡ compared to β and β̇ .
Noted that the robot should be able to be self-balancing, but the referenced tilt angle is less important
than maintaining overall stability of the system. Using the parameters given below the optimised
feedback gain matrix K is determined as (5.18).

emax =
[
0.50 1 10 10 2

]
umax =

[
10 10

]

K =

[
20.0 11.5 0 0 0

0 0 −64.86 −15.0 −5.00

]
(5.18)

5.3 Summary

Two linear controllers are proposed for controlling the system. The current loop is designed with a PI
controller for each motor using pole-zero cancellation to determine the controller gains. An LQR
controller is designed for the outer loop and the control gains are determined based on the maximum
allowed deviation of the state and the maximum allowed control signal of each input.
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Chapter 6

Experiments
In this chapter, the experiments performed on the system are documented.

6.1 Test of Hall Sensor Outputs

To verify the functionality of the hall effect sensors, the output voltage of the hall effect sensors is
measured using three voltage probes. The experimental setup is depicted in Figure 6.1. Afterwards it is
compared with the expected waveforms depicted in Figure 6.2. The conditions for the experiment are
listed in the following:

• Only the current loop is used in the test along with ’motor 1’.

• The motor is allowed to spin freely.

• A reference of 1 A is given for the q-axis current while the d-axis current reference is to zero.

PWM
Inverter

Lithium Ion
battery

va

vb

vc
Motor 1

Oscilloscope

Voltage probes

Hall effect 
sensor

a b z
Hall 

signals

Figure 6.1: Setup for the test of the Hall sensors (PWM: pulse width modulation, va,b,c: phase voltages a, b, and c).

The produced output voltage waveforms from the measurements are depicted in Figure 6.3. The
timescale on the oscilloscope is adjusted to increments of 2 ms and the produced waveforms are
extracted from the oscilloscope.
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0° 60° 120° 180° 240° 300° 360° θr

Hall a

Hall b

Hall z

Combined

Figure 6.2: Expected Hall sensor output voltage waveforms (Hall a,b,z: Hall sensor output voltage waveform, Combined:
Hall a, b, and c on one axis, θr: rotor position).

Figure 6.3: Oscilloscope measurements depicting the output voltage of the three Hall sensors in three colours, with each grey
horizontal line representing 1 V and each grey vertical line representing 2 ms (green waveform: Hall signal a, yellow waveform:
Hall signal b, turquoise waveform: Hall signal z).

As can be derived from the comparison of Figures 6.2 and 6.3, the Hall effect sensors produce 3.3 V
logic output voltage waveforms which overlap the preceding hall effect sensor with the first third of its
conduction interval, during the middle third of its conduction interval the other hall effect sensors are
turned off, and the last third of the conduction interval overlaps the subsequent Hall effect sensor. Thus,
it is concluded that the Hall effect sensors trigger at the expected instances from Figure 6.2, but as is
seen in Figure 6.3, the output voltage level of the three hall effect sensors differs in magnitude.

6.2 Validation of the q-axis Current Loop

To validate the linear model of the q-axis current loop with a PI controller, a test is conducted using
only one of the motors since their controls are identical. It is validated using the closed-loop system as
it is not possible to test the current response in open loop.
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6.2.1 Analysis of the Modelled Closed q-axis Current Loop

For comparison, the response of the modelled q-axis current loop is analysed, and a pole-zero plot of
the closed-loop system is made in Figure 6.4. From the figure, it is seen that there is a dominant pole
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Figure 6.4: Pole-zero plot of closed current loop (×: pole, ◦: zero).

placed at −100 rad/s. As a rule of thumb, if the ratio of the poles placed farther on the left divided with
the dominant poles is 5-10 or greater, the poles placed farther away may be neglected [58]. Thus, the
dominant pole dictates the system’s transient response. Using the dominant pole, the time constant τ of
the system is determined as [58]:

τ =
1

ωr
=

1
100s−1 = 10ms (6.1)

Furthermore, as the dominant pole has a zero valued imaginary part, the system’s transient response has
the characteristics of a first order system as shown in Figure 6.5.
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Figure 6.5: Step response of the closed current loop.

6.2.2 Test of the Closed q-axis Current Loop

The test is conducted on ’Motor 1’ under the following conditions:

• The motor is blocked making it unable to rotate.
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• A reference of 2 A is given for the q-axis current while the d-axis current reference is zero.

The experimental setup for the test is illustrated in Figure 6.6. To measure the current output of the
phases, an oscilloscope is connected to the phase wire using a current probe.

PWM
Inverter

Lithium Ion
battery

va

vb

vc

Motor 1

Oscilloscope

Current probes

ia

ib

ic

Blocked 
rotor

Figure 6.6: Setup for test of the closed q-axis current loop (ia,b,c: phase currents a, b, and c, PWM: pulse width modulation,
va,b,c: phase voltages a, b, and c).

In a blocked rotor test the coupling terms and the back emf in (4.46) on page 37 are zero, because they
are proportional to the motor speed, which in turn also suppresses the feedforward control. The current
response is DC because the electrical angle θe is constant throughout the test. By analysing (4.42) on
page 35 it is seen that if θe is zero, the transformation matrix becomes the identity matrix thus
eliminating AC currents. Therefore, the expected phase current response is a first order response on all
three phases, where one of the phases converges to 2 A while the other two phases converges to −1 A as
Kirchhoff’s current law dictates that the sum of the current phases must equal zero and assuming that
the the phase resistance is equal on all phases. This is also seen by evaluating the inverse Clarke-Park
transform given by (4.43) on page 35 in steady state, represented in the power variant version below:a

b
c

=

 sin(θe) cos(θe)

sin
(
θe − 2π

3

)
cos
(
θe − 2π

3

)
sin
(
θe +

2π

3

)
cos
(
θe +

2π

3

)
[d

q

]
=

 sin(0) cos(0)
sin
(
0− 2π

3

)
cos
(
0− 2π

3

)
sin
(
0+ 2π

3

)
cos
(
0+ 2π

3

)
[0

2

]
=

 2
−1
−1


The test results of the three phases’ current response is shown in Figure 6.7. The phase currents are
fluctuating throughout the tests. Contrary to expectations, the results show that the currents are not
evenly distributed between phase b and phase c. The current flowing through phase c is significantly
larger than the one flowing through phase b. Furthermore, before the input is given there is an offset in
the current value. This is evident from the figures, which zoom in on the the beginning of the test, as
shown in Appendix H.2 where, for example, the current of phase a has an offset on the y-axis of 80 mA.
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(a) Phase a current.
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(b) Phase b current.
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(c) Phase c current.

Figure 6.7: Phase current response in blocked rotor test.
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Figure 6.8: Current loop validation using the step response of phase a to determine the time constant.

The system is validated by analysing the time constant measured using the step response. The time
constant is defined as 1−1/e ≈ 0.632. This means that the time constant can be measured as the time it
takes the current to reach 63.2 % of its final value. In Figure 6.8, step response of the phase a is used to
determine the time constant. The input time is 0.0928 s, and the time at 63.2 % is measured to be
0.103 s. By subtracting the first value with the second one, the time constant is determined to be
10.2 ms. In the figure, the transient response of the system is displaying characteristics of a first order
system as expected.
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Table 6.1: Comparison of the model with the physical system for the closed current loop.

System Time constant

Physical system 10.2 ms
Modelled system 10.0 ms

Difference 1.96 %

The measured results compared with the modelled system are stated in Table 6.1. It results in a
difference of 1.96 % for the time constant when comparing the model with the physical system.

6.3 Validation of Motor Model in Open Loop

In this section the motor model’s transient behaviour is validated in order to ensure that the model
accurately represents the physical system, which is critical for the effective design, analysis, and
implementation of the control systems. Firstly, a model without the SVPWM is compared to the model
with SVPWM to simplify the model for further analysis, the Simulink models are given in
Appendix E.2. Then, the maximum modulation index is implemented in the simplified model. Lastly,
an optimisation algorithm is used to find the unknown motor parameters and the friction coefficient.

Figure 6.9 shows the simulated motor current under the same conditions as Section 6.2. The blue curve
shows the current using SVPWM and switch conditions as described in Section 4.4.3, while the orange
curve shows the current simulated without SVPWM. As seen in the figure the current response is
similar for both simulations, but the SVPWM simulation shows some noise in the response, which
occurs because of the switching. Based on this, it is concluded that the simplified model is
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Figure 6.9: Comparing between SVPWM model and simplified model.

representative of the SVPWM model, and it is used in the following validation. The block diagram of
the simplified model is shown in Figure 6.10.

The friction characteristics are unknown for the motors, so it is assumed that the friction is dominantly
viscous. An initial guess is made using a steady state analysis of the speed response with a current of
1 A as seen in Figure 6.11. In steady state the dynamics of the motor is simplified using:
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Figure 6.10: Block diagram of simplified motor model (•∗: reference, •̃: error between reference and feedback, Bv: viscous
friction, ia,b,c: phase currents a, b, and c, id,q: dq-axes current, iα,β : α,β -axes current, J: inertia of the motor, MI: modulation
index, PI: proportional-integral controller, PP: pole pair, s: Laplace operator, va,b,c: phase currents a, b, and c, vd,q: dq-axes
voltage, vα,β : α,β -axes voltage, θe: electrical angle, µ: friction coefficient, ωr: mechanical angular velocity).
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Figure 6.11: Open loop motor velocity response with a current of 1 A applied at t = 0.1.

ω̇r =
1
J
(Te −Bvωr) = 0

This means that either the sum within the parentheses is zero or the inertia is infinite which is trivial:

Te −Bvωr = 0 ⇒ Bv =
Te

ωr
=

2
3 PPλ f iq

ωr
(6.2)

As seen in Figure 6.11, the speed at steady state is approximately 61 rad/s and the current is 1 A, which
results in:

Bv =
2
3

PPλ f iq
ωr

= 0.0022Nms (6.3)

Letting the motor spin freely during a step input in q-axis current to 1 A gives the speed and voltage
response shown in Figure 6.12, where the test response is plotted alongside the simulation response.
These show different transient behaviour.

Assuming that the inertia, pole pairs, resistance and inductance are the known parameters, leaves the
friction and the flux linkage as variables. By introducing Coulomb friction to the dynamic equation of
motion:

ω̇r =
1
J
(Te −Bvωr −µ sign(ωr)) (6.4)

where µ is the Coulomb friction coefficient.
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Figure 6.12: Response with a q-axis current of 1 A applied at t = 0.1.

6.3.1 Parameter Identification Using Optimisation

To identify the true friction coefficients and the true flux linkage, an optimisation algorithm is
employed. The objective function is given as (6.5). In each iteration ten simulations are run to simulate
the response from a q-axis current reference i∗q = 1A to i∗q = 2A in 0.1 A increments, and compared to
ten tests with the same current reference. The total error between the simulations and tests are squared
and summed to calculate the objective function.

J(x) = ∑(ωsim −ωtest)
2 +∑(vq,sim − vq,test)

2 (6.5)

where

x =
[
Bv µ λ f

]
The evaluation of the objective function is summarised in the following steps:

1. The optimisation algorithm is given an initial guess for design variables (Bv,µ and λ f ).

2. The Simulink model is run ten times using the design variables.

3. The error between the Simulink model’s speed and voltage, and the speed and voltage measured
in the test is calculated.

4. The objective function is evaluated.
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This is run iteratively until the optimisation algorithm find a local minimum. The optimised friction
parameters and flux linkage is found as:

Bv = 887 ·10−6 Nms

µ = 0.181Nm

λ f = 0.014Wb

(6.6)

The speed and voltage response using the optimised parameters are shown in Figure 6.13.
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(b) q-axis voltage.

Figure 6.13: Response with a q-axis current of 1 A applied at t = 0.1.

Implementing the Coulomb friction changes the non-conservative externally applied torque used in the
Euler-Lagrangian derivation of the dynamics (see (4.16) on page 24) to (6.7).

Q =


Tdi f f

r LACMW +Bv
2LACMW

r α̇ +µ
2LACMW

r sign(α̇)

2Bvβ̇ +2µsign(β̇ )
Tsum

r + 2Bv
r ṡ+ 2µ

r sign(ṡ)

 (6.7)

6.4 Code Utilised in the Experiments

This section explains the code used in the control of the MWIP system.
In Figure 6.14, a flow chart describing the Arduino code for wireless communication and obstacle
avoidance is presented. These code blocks are the first to be executed after predetermination of
variables, and a setup code which enables the different pins. The point of these code blocks is to receive
input from the user, and ensure that the MWIP does not collide with surrounding objects. Secondly, the
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code block described in Figure 6.15 is executed, this code block is used to extract signals from the IMU
and convert them into a current reference for the two motors. Here, various control schemes can be
implemented in the "Torque calculation" block based on both the IMU signals and the motor velocities
and positions. The full Arduino code is found in Appendix I.

Power on

Data recieved

Store data

No

Yes

Extract robot references

Read ultrasonic sensor

Obstacle detected
YesTorque input to

maintain distance

No

Start IMU code

Wireless communication code block

Obstacle avoidance
code block

Figure 6.14: Flow chart describing the working principle of the wireless communication and obstacle avoidance Arduino code
blocks.
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Yes
Motors idle

No

Get IMU sensor signals

Alpha

Beta

Alphad

Betad

Torque calculation

Current calculation

Current Motor 0
Motor 0 current >= Cap

Motor 0 current < Cap Motor 1 current < Cap

Motor 1 current >= Cap

ODrive v3.6

Motor 0 Motor 1

Current Motor 1

sd calculation

Start IMU code

IMU calibratedCalibrate

Load calibration

Stop pressed

Unwrap

Motor 0 current = cap Motor 1 current = cap

Current, Voltage, Velocity, Position Motor Position and Motor Velocity

Robot references
wireless code block

Start wireless code

Setup code
runs first time

Figure 6.15: Flow chart describing the working principle of the IMU Arduino code block.
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6.5 Validation of the Mobile Wheeled Inverted Pendulum Model

For the validation of the MWIP system, an open loop test of the system is not viable because the open
loop system is unstable. Therefore, it is chosen to use the closed-loop system with the LQR controller
as seen in Figure 5.2 where the ODrive is controlling the current loops.

6.5.1 Analysis of the Modelled Closed-Loop System

To test the modelled closed-loop system, a square wave reference is given to either the yaw angle or
linear speed, respectively, while the rest of the states are given a zero reference throughout the
simulation.

Figure 6.16 shows the closed-loop yaw and speed step response using the LQR controller on both the
linear and nonlinear model with both a full and empty paint tank. Where it is seen that the linear model
sufficiently models the dynamics of the system. Figure 6.16d shows the speed step response with an
empty tank where it is seen that the controller has sufficient disturbance rejection to control the robot
with a varying mass. The Matlab code used to run the simulation is given in Appendix E.1.

6.5.2 Test of the Modelled Closed-Loop System

Initial testing of the MWIP shows that the robot is able to stay upright but converges to a pitch angle just
above zero, which results in the robot drifting slightly and not standing still. During the iterative process
of determining the best LQR gains, the Teensy and the radio communication device failed, which
limited further testing of the prototype. The Teensy still turns on, but the communication between the
PC and the Teensy is nonexistent. It is assumed that the micro-USB port failed on the board.

A new Teensy is acquired and testing of the prototype continues, with no change to the other electrical
components and their layout, in the hope of the failure being a fluke. The only difference is that the new
Teensy is configured to only receive power through its 5 V pin and not through the PC via the
micro-USB.
This however resulted in the new Teensy also failing, this time likely caused by a short between the
3.3 V pin and the 5 V pin, which is fatal for this type of MCU. Continuity is measured between several
of the I/O pins, ground and the 3.3 V pin, which is typical for this type of failure [59, 60].

6.5.3 Changes to the Prototype

To resolve the issue new units are ordered, however the Teensy 4.0 model is unavailable, thus two
Teensy 4.1 MCUs are ordered instead. As a new MCU has to be incorporated into the system, it is
chosen to make modifications to the system. Instead of powering the Teensy through the buck-converter
from the battery, it is chosen to power the Teensy from the PC during troubleshooting and by the
ODrive’s 5 V output pin during testing when it is not connected to a PC. As a consequence, the distance
sensors are removed and the perfboard is changed to a breadboard for easy assembly and testing.
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(b) Yaw step response with empty tank
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(c) Speed step response with full tank
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(d) Speed step response with empty tank

Figure 6.16: Closed-loop step response of linear and nonlinear model with full and empty paint tank.
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After implementing the Teensy 4.1, the signals sent by the IMU are examined before initiating further
tests. While examining the IMU signals, an abrupt stop of the signals is observed between the MCU and
the IMU. Therefore, it is chosen to measure the input pin from the MCU to the IMU, the results are
presented in Figure 6.17. Activating the pull-up resistor yields the signals given in Figure 6.18. As is
seen in both figures, the I2C clock and data signals do not have clear high and low signals, which
corrupts the communication, between the Teensy and the IMU.
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(a) I2C clock pin voltage with the pull-up resistor off.
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(b) I2C data pin voltage with the pull-up resistor off.

Figure 6.17: BNO055 I2C clock and data pin voltage with the pull-up resistor off.
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(a) I2C clock pin voltage with the pull-up resistor on.
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(b) I2C data pin voltage with the pull-up resistor on.

Figure 6.18: BNO055 I2C clock and data pin voltage with the pull-up resistor on.

To determine if the new MCU is causing the issue, the MCU is connected to the old IMU GY-91. It is
observed that the connection between the MCU and the GY-91 is not disrupted over an extended period
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of time. Then, the signals received from the GY-91 are examined. The examined signals with the
pull-up resistors off are shown in Figure 6.19, where high and low signals are seen with some noise,
possibly due the pull-up resistors on the IMU, enabling the pull-up resistors on the Teensy yields the
signal given in Figure 6.20 with less noise than with the pull-up resistors off.
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(a) I2C clock pin voltage with the pull-up resistor off.
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(b) I2C data pin voltage with the pull-up resistor off.

Figure 6.19: GY-91 I2C clock and data pin voltage with the pull-up resistor off.
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(a) I2C clock pin voltage with the pull-up resistor on.
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(b) I2C data pin voltage with the pull-up resistor on.

Figure 6.20: GY-91 I2C clock and data pin voltage with the pull-up resistor on.

Based on the results, it is chosen to proceed using the old GY-91 10-axis orientation sensor. In
Appendix H.4 the three accelerometer signals, gyroscope signals, and magnetometer signals are shown.
It is seen that the IMU is not capable of measuring magnetic fields which limits its yaw measurement to
the gyroscope signal and removes its ability to tilt compensate the roll and pitch angles.
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6.6 IMU Measurement Noise

Figure 6.21 shows the raw data from the gyroscope measuring the pitch angle β of the robot. Through
time 0 s to 4.5 s the robot is manipulated manually and the sensor measures a change in angle as shown.
At a time of 6 s the battery is connected and the ODrive receives power, some time after this the IMU
measurements are corrupted and spike up to 34.9 rad/s.
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Figure 6.21: IMU pitch angle measurements when connecting ODrive to power.

6.7 Summary

Initially, the Hall effect sensor outputs are measured to ensure their integrity. Subsequently, the inner
current loop is validated and is found to behave similarly to the modelled system. With the current loop
validated the motors are validated from input torque to speed, and motor parameters are estimated. With
the models validated and the parameters found an Arduino script is made to control the MWIP with
LQR control. Initial testing is performed before the MCU and transceiver communication fails, which
leads to troubleshooting faults in the design of the prototype.
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Discussion
The chapter entails the observations made, with the purpose of discussing their causes.

7.1 Differing Hall Sensor Voltage Magnitudes

To explore the cause of differing voltage magnitudes the structure of the Hall effect sensor is
investigated. In Figure 7.1, a sketch of a Hall effect sensor is depicted. The relationship between the
output voltage and the components of the Hall sensor is described by (7.1).

Hall element

B

IH

VH

dH

Figure 7.1: Sketch of a Hall effect sensor (B: magnetic field density, dH : width of Hall sensor element, IH : Hall sensor current,
VH : Hall sensor voltage).

VH =
RH

dH
IHB (7.1)

Where VH is the voltage output of the Hall effect sensor, RH is the Hall constant, dH is the width of the
Hall element, IH is the current flowing through the Hall element, and B is the magnetic field density
[48]. The cause of the difference in voltage level is suspected to originate from a variance in either RH

or dH between the three Hall effect sensors, which would explain the difference in voltage level. This is
suspected as the difference in magnitude is constant where a difference in B or IH would depend on
surrounding magnetic fields and thereby be varying as described by the following.

A surrounding magnetic field induces an electromotive force in a current carrying wire in said magnetic
field according to Faraday’s law [61]:

em f =−dΦM

dt
=
∫

B⃗m f · d⃗A (7.2)

Where em f is the electromotive force, Φm is the magnetic flux, t is the time, Bm f is the magnetic field,
and A is the surface area which the magnetic field lines passes. The magnetic field can be calculated
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through Ampere’s law [61]:

Bm f =
µ0I

2πrdw
(7.3)

Where µ0 is the permeability of air, I is the current flowing through the wire, and rdw is the distance to
the surrounding wire which produce the magnetic field. The induced current can be calculated through
Ohm’s law [61]:

I =
em f

R
(7.4)

Where I is the induced current, and R is the resistance in the wire. As the induced electromotive force is
produced by a change in magnetic flux, the induced current in the Hall effect sensor would be time
varying, which is not observed during the testing.

7.2 Expected Phase Currents for Blocked Rotor Test

The expectation is that phase b and phase c both have a current of −1 A, but the test result rejected that
hypothesis as described in Section 6.2.2.

A simulated current response of the three phases, displaying the expected theoretical responses, is
shown in Figure 6.7.
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(c) Phase c current.

Figure 7.2: Simulated phase current response in blocked rotor test.
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It is seen the b and c phases are of equal magnitude as opposed to the observed results from the physical
system. During a blocked rotor test the electrical angle θe is constant, and if the reference current i∗dq is
constant the reference vector V ∗ is constant, and the sector is constant. By assuming that the reference
vector is in sector 1 shown in Figure 4.15 on page 39, the adjacent switch states are V1 and V2, where the
active switches are (1,0,0) and (1,1,0). That means that during one switching sequence phase a only
sees positive currents, phase c only sees negative currents, and phase b sees both negative and positive
currents. Assuming that both switching states are on at an equal amount of time, phase b would have an
average current of 0 A. Then the steady state current of phase a and c is determined by the duration the
switch states are active.

This could be investigated by measuring the emitter pins of the MOSFETs while running the blocked
rotor test to measure the signal. However, it has not been possible to locate the emitter pins on the
ODrive, thus the investigation is abandoned.

7.3 Offset in Current Value for Blocked Rotor Test

In the tests of the closed current loop, there is an offset in the current value. To investigate this, two
additional tests are made: one only measuring noise and one to enter closed-loop mode without a torque
reference.

The noise measurement of the phase current is given in Figure 7.3 where the system is turned off and
the oscilloscope measures phase currents. There is observed a fluctuating current with a maximum
amplitude of 2 mA. Therefore it verifies the system is subject to a certain amount of noise, but it is of
negligible size. The test of the system entering closed-loop control mode is shown in Figure 7.4. It is

Figure 7.3: Measurement of noise for the phase currents.

observed that the phase currents draw currents with an amplitude of approximately 25 mA, which
verifies that the system requires a certain amount of current upon entering closed-loop control mode.
The phase currents are fluctuating similarly to what is observed in the experiment (See Appendix H.2),
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Figure 7.4: Measurement of phase current when commanding the system to enter closed-loop mode without a torque reference.

but with lower magnitude. However, even combined with the noise, it cannot reach the same magnitude
as the offset as observed in the experiments, which indicates that an additional unknown cause might be
affecting the current readings.

7.4 Hardware

In this section the hardware and its implementation is discussed.

Motor and Motor Driver

The motor and Hall effect sensors should be able to perform the required control, as it is close to its
usual functionality of hover board control, which is also in the low speed high torque domain. The
motor driver however is a third party motor driver which is normally use for hobby grade BLDC motors
and PMSMs operating at high speed and low torque.

Communication

The serial communication between the Teensy and ODrive both support baud rates up to and beyond the
standard 115200 bit/s, but during testing the communication between the two components would
suddenly terminate after a few seconds of operation. This problem is solved by lowering the baud rate
to 57600 bit/s where the communication is stable.

This approach is unsatisfactory as the speed of the control loop is essential for fast control of the robot.
The control of the robot is, throughout this thesis, only studied in the continuous case which is less
accurate with fewer samples per second. An analysis of the control in the discrete domain needs to be
made in order to ascertain its impact on the control.

During testing of the MWIP issues with communication between the MCU, ODrive, and IMU are
encountered. To investigate these communication problems, a test is performed where the MCU circuit
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is isolated from the ODrive circuit as illustrated in Figure 7.8. During the test the pitch angle and motor
velocity from both motors are logged, while the system is moved back and forth. The data output from
this test is seen in Figure 7.5. From these results, it is seen that the IMU provides a pitch angle to the
MCU, but the ODrive does not provide velocity feedback from the motors. According to [62] a
common ground has to be present between the MCU and the ODrive to communicate via UART.
Therefore the test is repeated with a common ground between the MCU and ODrive as illustrated in
Figure 7.7. The data obtained from the test is given in Figure 7.6. It is seen that the ODrive sends motor
velocity values to the MCU, but the IMU no longer provides a pitch angle. A possible cause for this
problem is ground looping [63]. Ground loops result in a difference in potential between the ground
wires, and thereby, the current flowing in the ground wire can not be pulled to zero. Ground loops form
when a system has multiple paths to ground as in Figure 7.7 where the ground for the system can either
be the battery in the PC or the battery powering the ODrive. When ground loops are present in a system,
the GPIO signals can vary significantly from the intended 3.3 V logic level, and current flows through
the pins into the MCU if the induced voltage from the wire inductance and current is sufficiently large
[63]. It could explain why two of the MCUs have stopped responding when the Teensy ports are only
3.3 V tolerant. Furthermore, ground loops introduce noise to surrounding electrical signals, which could
result in increased noise measured by the IMU.
A potential solution to the problem is to include an isolator between the MCU and the ODrive, thereby
allowing transfer of signals without a physical ground between the components.
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(b) Motor 0 velocity.
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(c) Motor 1 velocity.

Figure 7.5: Pitch and motor speed readings with no common ground.
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Figure 7.6: Pitch and motor speed readings with common ground.
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Figure 7.7: Illustration of possible ground loops in the system (Sprials represents the ground loops, each colour represents a
ground reference at different voltage references, IMU: inertia measurement unit, MCU: microcontroller unit).
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Figure 7.8: Illustration of separated ground connections in the system (Each colour represents a ground reference at different
voltage references, IMU: inertia measurement unit, MCU: microcontroller unit).

7.5 Modelling of System

The dynamic model of the robot lacks two major disturbances, the robot travelling on uneven or tilted
surfaces, and the paint sloshing with in the paint tank. In real world application the robot could be
travelling on uneven or tilted surfaces, and the paint sloshing could be a significant disturbance to the
system. The ability to model such events could give further understanding of the dynamic system
behaviour in these conditions and allow for quick testing of control strategies in repeatable simulation
conditions.
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Conclusion
The former version of the prototype is analysed, and a revision of the design to extend the robot’s
capabilities is made in accordance with the requirements stated in Table 3.1.

In the modelling of the system, a mechanical model of the MWIP and an electrical model of the BLDC
motors are developed. Subsequently, an investigation of the motors’ back emf is made, where it is
shown that the back emf waveform is sinusoidal, which implies the motors are PMSMs. Therefore, an
electrical model of the PMSMs is made. Field Oriented Control is used to control the torque of the
PMSMs.

A transfer function for the q-axis current is developed based on the linearised electrical model. Using
the transfer function, a PI controller is derived using the method of zero-pole cancellation to determine
the gains. The transfer function is validated using the closed q-axis current loop with the PI controller.
The results showed a difference of 1.96 % in the time constant between the model and the system.

For control of the torque of the PMSMs, an LQR controller is developed. The controller is derived
using the linearised mechanical model in state-space representation. The LQR controller is tested to
confirm that the controller ensures a stable closed-loop response.

Having developed the linear controllers to be used in the experiments, a complete nonlinear simulation
model is derived with the intention of comparison with the experimental results. However, as mentioned
in Chapter 6, the physical system experienced unresolved issues. Consequently, data collection using
LQR and the outer loop is unobtainable. Therefore, it is not possible to evaluate the model against the
physical system or to test the performance of the LQR controller on the physical system.
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Future Work
This chapter presents topics that can be used in the further development of the prototype, specifically,
regarding the control of the system, the incorporation of the paint tank dynamics, and the removal of
ground loops.

9.1 Nonlinear Control

As described in the introduction, MWIP systems are prone to model uncertainties, varying work
conditions, external disturbances, characteristics of underactuated robot, and the nonlinear instability.
Furthermore, in this case, it is intended to incorporate a tank containing varying levels of paint, which
affects the system’s CM and the inertia as described in Section 4.1. Additionally, the sloshing of the
paint acts as a disturbance to the system. Therefore, it is beneficial to use nonlinear controller design
which is more robust than a linear controller design. Below, two control design are mentioned that
could be of interest for further development of the MWIP system.

9.1.1 Sliding Mode Control

An example of a control design would be the sliding mode controller. This controller design is based on
the discrepancy between the actual plant and its mathematical model due to external disturbances, plant
parameters, and unmodelled dynamics. According to [64], it might possibly be the best approach for
handling bounded uncertainties or disturbances and unmodelled dynamics.

9.1.2 Model Predictive Control

Model predictive control (MPC) is a control scheme controlling the system by predicting future
behaviour based on a dynamic model of the system. MPC can be implemented using either the linear or
nonlinear model. The input to the system is determined by predicting the future behaviour of the system
under certain control inputs, and optimising in order to minimise the state error. The input to the system
is determined by predicting the future behaviour of the system under certain control inputs, and
optimising in order to minimise the state error.

9.2 Investigation of the Dynamical Effects of Sloshing

As of this point, the tank has not been included physical system during the experiments. However, as
pointed out in the introduction, the sloshing effects affect the control of the system. The impact of the
sloshing effects can have on the system is unknown, it might result in a large enough disturbance on the
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control to cause the system to become unstable. Therefore, an investigation of the dynamical impact of
the sloshing should be conducted.

9.2.1 Prevention of Sloshing

In case of the sloshing effects are too large to be compensated solely by the control, the solution would
be to reduce the amount of liquid sloshing. Different methods, such as baffles or floating foams, are
developed for prevention of liquid sloshing by reducing the amplitude through energy dissipation. It is
unclear which of these methods would result in the greatest reduction, consequently the optimal choice
remains speculative. Furthermore, both of the options would require some volume, leaving less space
for the paint in the paint tank.

9.3 Removal of Ground Loops

In order to resolve the communication issues between the MCU, ODrive, and IMU an isolator can be
placed between the ODrive and MCU. The function of the isolator is to allow data transfer between the
components without having a physical ground connection between them. For choice of isolator [63]
recommends a ISO7762F signal isolator from Texas Instruments, which could resolve the
communication issues.

9.4 Validation of the Mobile Wheeled Inverted Pendulum Model

As described in the Experiments chapter, the model of the MWIP is not validated due to hardware
issues. It is essential to determine the validity of the model and verify it describes the system, as the
control schemes are derived based on the model. The validation process can be performed using the
approach mentioned in the Experiments chapter when the hardware issues have been resolved.
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bicycle,” Nihon Kikai Gakkai ronbunshū. C, vol. 55, no. 513, pp. 1229–1234, 1989.

[24] N. M. A. Ghani, F. Naim, and T. P. Yon, “Two wheels balancing robot with line following
capability,” World Academy of Science, Engineering and Technology, vol. 55, no. 7, pp. 634–638,
2011.

[25] G. H. Lee and S. Jung, “Line tracking control of a two-wheeled mobile robot using visual
feedback,” International journal of advanced robotic systems, vol. 10, no. 3, pp. 177–, 2013.

76

https://turftank.com/us/turf-tank-two/


Bibliography

[26] K. M. Ibrahim and M. N. Noaman, “Optimal control approach for robot system using lqg
technique,” Journal Europeen des Systemes Automatises, vol. 55, no. 5, pp. 671–677, 10 2022.
[Online]. Available: https://www.proquest.com/scholarly-journals/
optimal-control-approach-robot-system-using-lqg/docview/2807002194/se-2

[27] W.-F. Kao, C.-F. Hsu, and T.-T. Lee, “Motion control of mobile-wheeled inverted pendulum robot
with center-of-mass offset,” in 2018 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), 2018, pp. 2128–2133.

[28] J. Huang, M. Zhang, S. Ri, C. Xiong, Z. Li, and Y. Kang, “High-order disturbance-observer-based
sliding mode control for mobile wheeled inverted pendulum systems,” IEEE transactions on
industrial electronics (1982), vol. 67, no. 3, pp. 2030–2041, 2020.

[29] M. Zhang, J. Huang, and Y. Cao, “Adaptive super-twisting control for mobile wheeled inverted
pendulum systems,” Applied Sciences, vol. 9, no. 12, 2019. [Online]. Available:
https://www.proquest.com/scholarly-journals/adaptive-super-twisting-control-mobile-wheeled/
docview/2331354136/se-2

[30] J. Shen and D. Hong, “Model predictive control using dynamic model decomposition applied to
two-wheeled inverted pendulum mobile robot,” in 2022 19th International Conference on
Ubiquitous Robots (UR), 2022, pp. 332–337.

[31] A. Unluturk and O. Aydogdu, “Machine learning based self-balancing and motion control of the
underactuated mobile inverted pendulum with variable load,” IEEE Access, vol. 10, pp.
104 706–104 718, 2022.

[32] J. Huang, M. Zhang, and T. Fukuda, Robust and intelligent control of a typical underactuated
robot : mobile wheeled inverted pendulum, ser. Research on Intelligent Manufacturing.
Singapore: Springer, 2023.

[33] N. Mahdavi Tabatabaei, E. Kabalci, and N. Bizon, Microgrid Architectures, Control and
Protection Methods, ser. Power Systems. Cham: Springer International Publishing, 2020.

[34] Samsung SDI Co.,Ltd. (2009) Specification of product for lithium-ion rechargeable cell - model :
Icr18650-26f. Accessed: 12-04-2024. [Online]. Available:
https://www.batteryspace.com/prod-specs/ICR18650-26F.pdf

[35] Arduino S.r.l. (n.d.) 10DOF Gyro + G-Sensor + kompas + Barometer GY-87 GY-88 GY-91.
Accessed: 15-04-2024. [Online]. Available:
https://arduinotech.dk/shop/10dof-gyro-g-sensor-kompas-barometer-gy-87-gy-88-gy-91/

[36] ——. (n.d.) Nano v3.0 atmega328 16m 5v micro-controller ch340g board. Accessed: 15-04-2024.
[Online]. Available:
https://arduinotech.dk/shop/nano-v3-0-atmega328-16m-5v-micro-controller-ch340g-board/

[37] Elektronik Lavpris Aps. (n.d.) Product name: Dc-dc step down module power supply module
power converter 5a xl4015. Accessed: 12-04-2024. [Online]. Available:

77

https://www.proquest.com/scholarly-journals/optimal-control-approach-robot-system-using-lqg/docview/2807002194/se-2
https://www.proquest.com/scholarly-journals/optimal-control-approach-robot-system-using-lqg/docview/2807002194/se-2
https://www.proquest.com/scholarly-journals/adaptive-super-twisting-control-mobile-wheeled/docview/2331354136/se-2
https://www.proquest.com/scholarly-journals/adaptive-super-twisting-control-mobile-wheeled/docview/2331354136/se-2
https://www.batteryspace.com/prod-specs/ICR18650-26F.pdf
https://arduinotech.dk/shop/10dof-gyro-g-sensor-kompas-barometer-gy-87-gy-88-gy-91/
https://arduinotech.dk/shop/nano-v3-0-atmega328-16m-5v-micro-controller-ch340g-board/


Bibliography

https://elektronik-lavpris.dk/files/sup216/151525_1661504246.pdf

[38] Handson Technology. (n.d.) Joystick shield for arduino uno/mega. Accessed: 12-04-2024.
[Online]. Available:
https://handsontec.com/dataspecs/module/Arduino%20Shield/Joystick%20Shield.pdf

[39] ODrive Robotics. (2021) Specifications. Accessed: 12-04-2024. [Online]. Available:
https://docs.odriverobotics.com/v/0.5.4/specifications.html#electrical-specifications

[40] Parallax Inc. (2020) 6.5 inches hub motor with encoder. Accessed: 24-04-2024. [Online].
Available: https://www.parallax.com/product/6-5-hub-motor-with-encoder/

[41] Denver A/S. (n.d.) Denver hbo-6620black mk2. Accessed: 12-04-2024. [Online]. Available:
https://denver.eu/productpdf/4291

[42] Bosch Sensortec. (2014) BNO055 Intelligent 9-axis absolute orientation sensor. Accessed:
16-04-2024. [Online]. Available:
http://www.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf

[43] NXP Semiconductors. (2019) i.mx rt1060 crossover processors for consumer products. Accessed:
12-04-2024. [Online]. Available: https://www.pjrc.com/teensy/IMXRT1060CEC_rev0_1.pdf

[44] PJRC. Teensy 4.0 development board. Accessed: 29-05-2024. [Online]. Available:
https://www.pjrc.com/store/teensy40.html

[45] Arduino S.r.l. Arduino nano. Accessed: 29-05-2024. [Online]. Available:
https://store.arduino.cc/products/arduino-nano

[46] Seeed Technology Co., Ltd. (n.d.) Ultrasonic ranging module hc - sr04. Accessed: 12-04-2024.
[Online]. Available: https://elektroshoppen.dk/help/HC-12_User_Manual.pdf

[47] Elecfreaks. (n.d.) Ultrasonic ranging module hc - sr04. Accessed: 22-05-2024. [Online].
Available: https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf

[48] K. Sang-Hoon, Electric motor control : DC, AC, and BLDC motors. Amsterdam, Netherlands:
Elsevier, 2017.

[49] ODrive Robotics. (2021) Odrive reference. Accessed: 17-05-2024. [Online]. Available:
https://docs.odriverobotics.com/v/0.5.6/fibre_types/com_odriverobotics_ODrive.html

[50] O. Weigl, “Project hoverarm,” https://discourse.odriverobotics.com/t/project-hoverarm/441,
February 2018, accessed 28-05-2024.

[51] K. Bartholomew, “Project hoverarm,”
http://blog.kyleb.me/2018/01/hoverboard-motor-teardown.html, January 2018, accessed
28-05-2024.

[52] Anonymous, “Hoverboard foc motor settings vesc,”
https://forum.esk8.news/t/hoverboard-foc-motor-settings-vesc/25343/3, April 2020, accessed

78

https://elektronik-lavpris.dk/files/sup216/151525_1661504246.pdf
https://handsontec.com/dataspecs/module/Arduino%20Shield/Joystick%20Shield.pdf
https://docs.odriverobotics.com/v/0.5.4/specifications.html#electrical-specifications
https://www.parallax.com/product/6-5-hub-motor-with-encoder/
https://denver.eu/productpdf/4291
http://www.adafruit.com/datasheets/BST_BNO055_DS000_12.pdf
https://www.pjrc.com/teensy/IMXRT1060CEC_rev0_1.pdf
https://www.pjrc.com/store/teensy40.html
https://store.arduino.cc/products/arduino-nano
https://elektroshoppen.dk/help/HC-12_User_Manual.pdf
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSR04.pdf
https://docs.odriverobotics.com/v/0.5.6/fibre_types/com_odriverobotics_ODrive.html
https://discourse.odriverobotics.com/t/project-hoverarm/441
http://blog.kyleb.me/2018/01/hoverboard-motor-teardown.html
https://forum.esk8.news/t/hoverboard-foc-motor-settings-vesc/25343/3


Bibliography

28-05-2024.

[53] P. C. Krause, O. Wasynczuk, S. Sudhoff, S. Pekarek, and S. D. Sudhoff, Analysis of Electric
Machinery and Drive Systems., 3rd ed., ser. IEEE Press series on power engineering. Hoboken,
N.J: Wiley, 2013.

[54] O. Weigl and Bockwurst, “Discussion on odrive driving principles,” https:
//discord.com/channels/369667319280173067/562767743473156138/582558180777656337, May
2019, accessed 28-05-2024.

[55] S. Greenberg, “Discussion on odrive modulation index limit,” https:
//discord.com/channels/369667319280173067/369678934985408524/1091109882578604123,
March 2023, accessed 28-05-2024.

[56] D.-W. Chung, J.-S. Kim, and S.-K. Sul, “Unified voltage modulation technique for real-time
three-phase power conversion,” IEEE transactions on industry applications, vol. 34, no. 2, pp.
374–380, 1998.

[57] ODrive Robotics. (2021) Hoverboard motor and remote control setup guide. Accessed:
19-03-2024. [Online]. Available: https://docs.odriverobotics.com/v/0.5.6/hoverboard.html

[58] J. M. Philips and C. L. Parr, Feedback Control Systems, 5th ed. Pearson, 2013.

[59] P. Stoffregen, “Technical support of shorted teensy 4.0,”
https://forum.pjrc.com/index.php?threads/teensy-4-0-shorted-permanently-with-gnd.60185/,
March 2020, accessed 30-05-2024.

[60] ——, “Technical support of shorted teensy 4.0,”
https://forum.pjrc.com/index.php?threads/3-3v-line-shorted-to-gnd.26506/, August 2014,
accessed 30-05-2024.

[61] P. Scherz and S. Monk, PRACTICAL ELECTRONICS FOR INVENTORS, 4th ed. New York, NY:
McGraw-Hill Education, 2016.

[62] ODrive Robotics. Uart interface. Accessed: 30-05-2024. [Online]. Available:
https://docs.odriverobotics.com/v/0.5.6/uart.html

[63] ——. Ground loops. Accessed: 30-05-2024. [Online]. Available:
https://docs.odriverobotics.com/v/latest/articles/ground-loops.html

[64] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding Mode Control and Observation, ser.
Control Engineering. New York, NY: Springer New York, 2014.

[65] Advanced Navigation. Inertial measurement unit (imu) – an introduction. Accessed: 30-05-2024.
[Online]. Available: https:
//www.advancednavigation.com/tech-articles/inertial-measurement-unit-imu-an-introduction/

[66] Analog Devices, Inc. Mems gyroscope provides precision inertial sensing in harsh, high
temperature environments. Accessed: 30-05-2024. [Online]. Available: https://www.analog.com/

79

https://discord.com/channels/369667319280173067/562767743473156138/582558180777656337
https://discord.com/channels/369667319280173067/562767743473156138/582558180777656337
https://discord.com/channels/369667319280173067/369678934985408524/1091109882578604123
https://discord.com/channels/369667319280173067/369678934985408524/1091109882578604123
https://docs.odriverobotics.com/v/0.5.6/hoverboard.html
https://forum.pjrc.com/index.php?threads/teensy-4-0-shorted-permanently-with-gnd.60185/
https://forum.pjrc.com/index.php?threads/3-3v-line-shorted-to-gnd.26506/
https://docs.odriverobotics.com/v/0.5.6/uart.html
https://docs.odriverobotics.com/v/latest/articles/ground-loops.html
https://www.advancednavigation.com/tech-articles/inertial-measurement-unit-imu-an-introduction/
https://www.advancednavigation.com/tech-articles/inertial-measurement-unit-imu-an-introduction/
https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html


Bibliography

en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html

[67] S. S. Ahmadi, “Vibrations of micro-gyroscopes, fundamentals and review,” Multidisciplinary
Engineering Science and Technology, vol. 7, no. 9, 2020.

[68] V. Grygorenko. (n.d.) Sensing – magnetic compass with tilt compensation. Accessed: 30-05-2024.
[Online]. Available: https:
//www.infineon.com/dgdl/Infineon-AN2272_PSoC_1_Sensing_Magnetic_Compass_with_Tilt_
Compensation-ApplicationNotes-v04_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0731b0d05573

[69] S. Tomazic, “Commutative rotations in 3d euclidean space and gimbal spatial angles,” IPSI BGD
TRANSACTIONS ON INTERNET RESEARCH, vol. 14, no. 1, 2018.

[70] Movella Technologies B.V. (2023) Understanding gimbal lock and how to prevent it. Accessed:
30-05-2024. [Online]. Available: https://base.movella.com/s/article/
Understanding-Gimbal-Lock-and-how-to-prevent-it?language=en_US

[71] J. B. Kuipers, QUATERNIONS and ROTATION SEQUENCES A Primer with Applications to
Orbits, Aerospace and Virtual Reality, 1st ed. Princeton, NJ: Princeton University Press, 2002.

[72] K. Ogata, Modern Control Engineering, 5th ed. Upper Saddle River, N.J: Prentice Hall, 2010.

80

https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.analog.com/en/resources/technical-articles/mems-gyroscope-provides-precision-inertial-sensing.html
https://www.infineon.com/dgdl/Infineon-AN2272_PSoC_1_Sensing_Magnetic_Compass_with_Tilt_Compensation-ApplicationNotes-v04_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0731b0d05573
https://www.infineon.com/dgdl/Infineon-AN2272_PSoC_1_Sensing_Magnetic_Compass_with_Tilt_Compensation-ApplicationNotes-v04_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0731b0d05573
https://www.infineon.com/dgdl/Infineon-AN2272_PSoC_1_Sensing_Magnetic_Compass_with_Tilt_Compensation-ApplicationNotes-v04_00-EN.pdf?fileId=8ac78c8c7cdc391c017d0731b0d05573
https://base.movella.com/s/article/Understanding-Gimbal-Lock-and-how-to-prevent-it?language=en_US
https://base.movella.com/s/article/Understanding-Gimbal-Lock-and-how-to-prevent-it?language=en_US


Appendix A

Previous Model of the Prototype
Initially, a free body diagram of the system shown in Figure A.1 is drawn. The system has two degrees
of freedom, one for the translational motion of the cart and one for the rotation of the pendulum.
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Figure A.1: Free body diagram of the cart with an inverted pendulum

Where F , b, g, l are the external force, viscous friction, gravitational force, and length of pin connection
to the COM of the pendulum. θ is the pendulum angle from the vertical downwards position. beta is the
pitch angle. The horizontal displacement of the cart is described by x. The constraint of the pin
connecting the two bodies creates reaction forces between them; these are denoted as N and P for the x-
and y-direction respectively.

Using Newton’s second law the forces for the x- and y-direction of the cart are derived as (A.1).

∑Fx = F −N −bẋ = Mẍ (A.1a)

∑Fy = P = 0 (A.1b)

Determining the forces for the x- and y-direction, and the moment for the pendulum results in (A.2).

∑Fx = N = mẍp (A.2a)

∑Fy = P−mg = mÿp (A.2b)

∑τ =−Nl cos(θ)−Pl sin(θ) = θ̈ I (A.2c)

Where subscript p denotes pendulum.

Using algebra N and P are solved for. Initially, the position of the pendulum’s centre of mass is

A 1
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determined:

xp = x+ l sin(θ) (A.3)

yp =−l cos(θ) (A.4)

To determine the translational velocity and acceleration, the position is differentiated w.r.t. time:

ẋp = ẋ+ l cos(θ)θ̇ (A.5a)

ẏp = l sin(θ)θ̇ (A.5b)

ẍp = ẍ+ l cos(θ)θ̈ − l sin(θ)θ̇ 2 (A.5c)

ÿp = l sin(θ)θ̈ + l cos(θ)θ̇ 2 (A.5d)

The reaction force N of the pendulum is determined by using (A.2) and (A.5):

N = mẍp (A.6)

N = m
(
ẍ+ l cos(θ)θ̈ − l sin(θ)θ̇ 2) (A.7)

N = mẍ+ml cos(θ)θ̈ −ml sin(θ)θ̇ 2 (A.8)

The same procedure is performed for P:

P = mÿp +mg (A.9)

P = m
(
l sin(θ)θ̈ + l cos(θ)θ̇ 2)+mg (A.10)

P = ml sin(θ)θ̈ +ml cos(θ)θ̇ 2 +mg (A.11)

Using (A.2) the equations of motion for the cart and pendulum are determined:

Mẍ+bẋ+N = F (A.12)

θ̈ I =−Nl cos(θ)−Pl sin(θ) (A.13)

By inserting the expressions for N and P, the equations of motion are rewritten. For the cart the
equation of motion becomes:

Mẍ+bẋ+mẍ+ml cos(θ)θ̈ −ml sin(θ)θ̇ 2 = F (A.14a)

(M+m)ẍ+bẋ+ml cos(θ)θ̈ −ml sin(θ)θ̇ 2 = F (A.14b)
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For the pendulum the equation of motion becomes:

θ̈ I =−
(
mẍ+ml cos(θ)θ̈ −ml sin(θ)θ̇ 2) l cos(θ)−

(
ml sin(θ)θ̈ +ml cos(θ)θ̇ 2 +mg

)
l sin(θ)

(A.15a)

θ̈ I =−mẍl cos(θ)−
(
ml2 cos2(θ)+ml2sin2(θ)

)
θ̈ +ml2 sin(θ)cos(θ)θ̇ 2 (A.15b)

−ml2 cos(θ)sin(θ)θ̇ 2 −mgl sin(θ) (A.15c)

θ̈ I =−mẍl cos(θ)−
(
ml2 cos2(θ)+ml2sin2(θ)

)
θ̈ −mgl sin(θ) (A.15d)

By using the identity sin2(θ)+ cos2(θ) = 1 and isolating ẍ on the right side of the equation results in:

(I +ml2)θ̈ +mgl sin(θ) =−mẍl cos(θ) (A.16)

Then (A.14) and (A.16) are linearisered to get a linear system of equations. The equilibrium of interest
is when the pendulum is in upward vertical position, therefore the system is linearised at θ = π .
Furthermore, it is desired to let the pitch angle represent the pendulum’s position from the equilibrium,
resulting in θ = π +β . Using the small angle approximation, the nonlinearities in the system becomes:

cos(θ) = cos(β +π)≈−1 sin(θ) = sin(β +π)≈−β θ̇
2 = β̇

2 ≈ 0

Substituting these into the equations results in:

(M+m)ẍ+bẋ−mlβ̈ = F (A.17)

(I +ml2)β̈ −mglβ = mẍl (A.18)

Then the system can be arranged in the state space representation where F is assumed to be a control
input u:

d
dt


x
ẋ
β

β̇

=


0 1 0 0

0 −(I+mL2)b
I(m+M)+MmL2

m2gL2

I(m+M)+MmL2 0

0 0 0 1
0 −mLb

I(m+M)+MmL2
−bmgL(m+M)

I(m+M)+MmL2 0




x
ẋ
β

β̇

+


0
I+mL2

I(m+M)+Mm2

0
mL

I(m+M)+Mm2

u (A.19a)

y =

[
1 0 0 0
0 0 1 0

]
x
ẋ
β

β̇

 (A.19b)

where only the position of the cart and pitch angle is feedback. The transfer functions of the system is
then determined using the following expression [58]:

G(s) =C(sI −A)−1B (A.20)
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Appendix B

Inertial Measurement Unit
In this appendix, the theory behind an Inertial Measurement Unit (IMU) is presented. The idea behind
an IMU is to convert the sensors’ inertia into a dataset which describes the motion or orientation of the
sensor [65]. For a 9-axis IMU, three different sensors are available: an accelerometer, a gyroscope, and
a magnetometer is available, with each providing information in three dimensions. The information
provided by each sensor can then be used individually or fused to determine the units orientation in
three dimensions. Below the workings of the three different sensors and their contribution to three
dimensional orientation is described.

In Figure B.1 a sketch of an accelerometer is illustrated. The purpose of an accelerometer is to obtain
the sensor’s accelerations, but these are not measured directly by the sensor. The sensor works by
suspending a mass in a set of springs presented as the "Movable Part" and the springs in Figure B.1.
Secondly, a set of conductive parts are fixed around the mass, these parts are depicted as "Fixed Part for
X&Y" and "Fixed Part for Z".

Based on the distance between the movable and fixed part, it is possible to calculate the capacitance,
given by the formula:

C =
εA
d

(B.1)

Where C is capacitance, ε is the dielectric permittivity of the material, A is the parallel plate area, and d
is the distance between two conductive plates.
As the sensor moves, the fixed parts move with it, but due to inertia the movable part opposes the
movement, and thereby cause a displacement of the springs, and change the distance between the
movable and fixed parts. Thereby a change in capacitance is related to a change in spring deflection,
given by:

F = kdx (B.2)

Where F is force, k is the spring constant, and dx is the change in spring length. This is related to
accelerations through the formula:

F = ma (B.3)

Where m is the mass of the movable part and a is acceleration. This relation is then utilised in the x, y
and z direction to obtain accelerations in three directions. Furthermore, the gravitational acceleration of
the accelerometer has to be factored into the calculations, as it influences the values in the direction that
points upwards. Based on the calculated accelerations it is possible to obtain the orientation of the
sensor. In Figure B.2 illustrates how the pitch β is approximated based on the calculated accelerations.
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Movable Part

Fixed Part for Z

Fixed Part for X&Y

d

A

k

x

Figure B.1: Illustration of the working principle of an accelerometer, (k: Spring constant, d: distance between movable part
and fixed part, A: Overlapping surface area of movable part and fixed part).

From the situation depicted in Figure B.2 the pitch of the IMU is approximated with a tangent function:

β = atan
(

ax

az

)
(B.4)

The tangent approximation works well within +/- 45 degrees as shown in Figure B.3, but other methods
are needed beyond this point as is explained later. Similar calculations can be made for roll, but not for
yaw as it is measured perpendicular to the gravitational acceleration, which makes this approach
unusable for calculation of the yaw.

The problem with calculating the orientation of the sensor based on the accelerometer alone is that high
frequency vibrations in the system results in a force on the accelerometer and thereby a change in angle.
In order to circumvent this problem, a low pass filter is implemented, as it filters out the high frequency
vibrations, which is present due to e.g. surrounding motors. The discrete low pass filter is calculated
using the following:

β f iltered = βmeasured p1 +βold p2 (B.5)

1 = p1 + p2 (B.6)

Where β f iltered represents the pitch angle with the low pass filter applied, βmeasured is the measured pitch
angle, βold is the previously measured pitch angle, and p1,2 represent filter constants which determine
the amount of filtration.

The downside to the low pass filter is a reduced response time of the system, which is undesirable when
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β

β

az

ax

IMU

IMU Tilted

Ground

g

Figure B.2: Illustration of IMU pitch approximation calculation, (az: Acceleration in z direction, ax: Acceleration in x direc-
tion, g: Gravitational acceleration, β : pitch angle).
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-0.7854 [rad]
0.7854 [rad]

Figure B.3: Graph of atan function from -π to π , with vertical lines at +/- 45◦

dealing with MWIPs as they rely on fast response times in order to keep upright. In order to reduce the
effects of vibrations without sacrificing response time, the accelerometer data is fused with the data
from the gyroscope.

In Figure B.4 a sketch of a gyroscope is illustrated. A gyroscope works by suspending three discs
(Rotor, Gimbal, and Spin Axis in Figure B.4), from a frame. These discs are then allowed to spin based
on gravitational forces, and surrounding rotations. The Gimbal is the outer ring which when turned
rotates the inner rings alongside it. The intermediate axis is the Spin axis which can rotate the Rotor, but
not the Gimbal, and lastly the Rotor only rotates itself. From this configuration a phenomenon known as
Gimbal lock can occur, where the Spin axis orientates the Rotor and Gimbal in the same plane which in
turn reduces the gyroscopes degrees of freedom from three to two. This phenomenon is discussed later.
For the gyroscope to measure angular velocities a set of mechanisms are placed within the discs. These
mechanisms can be e.g. micro-electromechanical systems. Micro-electromechanical systems works by
resonating a small mass proportionally to the angular velocity using the Coriolis effect as illustrated in
Figure B.5 [66]. When the small masses resonate an electrical signal proportional to the angular
velocity is produced. As a result of this setup gyroscopes are less susceptible to vibrations compared to
accelerometers [67].
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Gyroscope Frame

Spin Axis

Gimbal

Rotor

Figure B.4: Illustration of a gyroscope with name convention of different components.

Rotation Rotation

Reaction
Force

Reaction
Force

Resonating mass Resonating mass

Figure B.5: Sketch of the working principle of a micro-electromechanical system gyroscope.

From the gyroscope the pitch is calculated as:

βG = βGold +ωGydt (B.7)

Where βG is the pitch calculated by the gyroscope, βGold is the previously calculated pitch, dt is an
increment in time, and ωGy is the angular velocity measured by the gyroscope.

The problem with the gyroscope measurement is that it is prone to drifting as any non zero value, either
from noise or DC offset, contributes to a continuous drift of the calculated angle. As a result it is
preferable to remove the low frequency components of the gyroscope, in order to filter out the drift.
Thereby the short term gyroscope measurements is more accurate than the accelerometer
measurements, but the accelerometer performs better on long term measurements. In order to fuse these
signals to obtain a measurement which is trustworthy at both low and high frequencies, a
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complimentary filter is implemented:

β = (βold +ωGy) p1 +βA p2 (B.8)

1 = p1 + p2 (B.9)

p1 > p2 (B.10)

The complimentary filter works by including a high pass filter on the gyroscope readings, and a low
pass filter on the accelerometer readings. This hereby solves the vibration and drift problem.

The next problem is that yaw needs to be calculated. The gyroscope can measure yaw, but the reading is
prone to drifting, and as the accelerometer cannot measure yaw, it cannot be fused as is the case for
pitch and roll.
To solve this issue a magnetometer is included. In Figure B.6, the working principle of a magnetometer
is illustrated. A magnetometer works by calculating the angle between the magnetic field of the

N S
Magnetic

North Pole
Magnetic

South Pole

Figure B.6: Illustration of the working principle of a magnetometer, (N: north pole of the magnet, S: south pole of the magnet).

magnetometer and the earth’s magnetic north pole. From this consideration the yaw of the IMU is
calculated as depicted in Figure B.7. This calculation is done with the tangents approximation as is
done for both the accelerometer and the gyroscope. Thereby roll, pitch and yaw can be calculated, but it
is advantageous to expand the calculations and make the IMU tilt compensated. This is advantageous as
when the IMU is pitched and then yawed compared to the ground the output of the IMU is a
combination of roll, pitch, and yaw as it is in a local coordinate frame. Therefore by making it tilt
compensated, the IMU output is related to the global reference frame.

This is done with Euler angles as explained in [68]:

Cγ =

1 0 0
0 cos(γ) sin(γ)
0 −sin(γ) cos(γ)

 (B.11)
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ym

xm

α

Magnetic North

mx

my

Figure B.7: Illustration of IMU yaw approximation calculation, (mx: magnetic value in x direction, my: magnetic value in y
direction, α: yaw angle in relation to magnetic north).

Where Cγ represents rotation matrix for roll, and γ is the roll angle.

Cβ =

cos(γ) 0 −sin(γ)
0 1 0

sin(β ) 0 cos(β )

 (B.12)

Where Cβ is the rotation matrix for pitch, and β is the pitch angle.

These rotation matrices can be combined to obtain:

xm = mx cos(γ)+my sin(β )sin(γ)+mz cos(β )sin(γ) (B.13)

ym = my cos(β )−mz sin(β ) (B.14)

Where xm is the orientation of the x-axis for the magnetometer, ym is the orientation of the y-axis for the
magnetometer, and mx,y,z is the measured magnetic value in the x, y, and z direction.

When rotating with Euler angles the order of rotation is of great significance as the rotations are not
commutative [69]. As a result of this three operations have to be carried out depending on the chosen
scheme. Here either proper Euler angles with an a-b-a sequence or Tait-Bryan Euler angles with an
a-b-c sequence can be used. With a-b-a sequence referring to rotation sequences where the first and last
rotation is done around the same axis with the middle being about a second axis. When using Euler
angles Gimbal lock can be encountered as explained in the gyroscope section. In order to avoid Gimbal
lock it is necessary to change the rotation sequence or use quaternions [70].

The use of quaternions furthermore circumvents the use of tangent approximations [71]. [71] is used to
introduce the concept of quaternions. According to [71], a quaternion is defined as:

q = q0 +q (B.15)
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Where q0 is a real number (scalar), and q is an ordinary vector in R3, given by:

q = iq1 + jq2 + kq3 (B.16)

With i, j,k denoting the orthonormal basis of R3 given as:

i = (1,0,0) (B.17)

j = (0,1,0) (B.18)

k = (0,0,1) (B.19)

As a result of this a quaternion is a sum of a scalar and a vector and an element of R4, which is not
defined in ordinary linear algebra.

In order to define quaternions William Rowan Hamilton defined a set of fundamental products which
must be satisfied when taking the product of two quaternions:

i2 = j2 = k2 = i jk =−1 (B.20)

i j = k =− ji (B.21)

jk = i =−k j (B.22)

ki = j =−ik (B.23)

As a result of this the product of two quaternions is not commutative.

For any unit quaternion:

q = q0 +q = cos(θ)+usin(θ) (B.24)

With u representing the unit vector which represents the direction of the quaternion q, calculated by:

u =
q
|q|

=
q

sin(θ)
(B.25)

The quaternion rotation operator, Lq(v), is used to describe rotations of a vector, v, in R3 by using a
associated quaternion q. This is done by defining the vector, v, as:

v = 0+v (B.26)

With this definition the quaternion rotation operator is calculated as:

Lq(v) = qvq∗ (B.27)

With the complex conjugate q∗ given as:

q∗ = q0 −q = cos(θ)−usin(θ) (B.28)
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Which is expanded to:

Lq(v) = (q2
0 −|q|2)v+2(q ·v)q+2q0(q×v) (B.29)

This rotation operator represents a rotation in R3 with the axis of rotation given by q, and the angle of
rotation is twice the angle associated with q. To illustrate this rotation the cases in Figures B.8 and B.9
is considered. Figure B.8 represents the rotation operators components, and Figure B.9 represents the
rotation operators geometry.

q n

m
n⊥sin(2θ)

ncos(2θ)

2θ

n⊥

Figure B.8: Rotated vector components.

Where the vector v is given by:

v = a+n (B.30)

With a describing the component of v along the vector part of q, and n the component of v normal to the
vector part of q.

Where as the vector a lies along the vector q its rotation operator is simply a scalar multiple of q:

Lq(a) = kq = a (B.31)

Using n the rotation operator is described as:

Lq(n) = (q2
0 −|q|2)n+2(q ·n)q+2q0(q×n) (B.32)

Using the relation in (B.25) it is simplified to:

Lq(n) = cos(2θn)+ sin(2θn⊥) (B.33)

Thereby Lq(a+n) describes a rotation of n by 2θ up to the vector m as shown in Figure B.9.
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n⊥

m

2θ
n

a v

q

Lq(a+n)

Figure B.9: Rotation operator geometry.

From this, quaternions is used to describe either vector rotations or frame rotations, where:

qvq∗ (B.34)

Represents a rotation of the vector v with respect to a fixed coordinate frame, and:

q∗vq (B.35)

Represents a rotation of the coordinate frame with respect to the vector v.

Based on these quaternions it is possible to circumvent the problems encountered with Euler angles, and
obtain a tilt compensated IMU.
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Python Code to Communicate with ODrive
1 import odrive
2 import time
3 import sys
4 import math
5

6 odrv0 = odrive.find_any ()
7 print("Found Odrive")
8

9 try:
10 print("Erasing configurations")
11 odrv0.erase_configuration ()
12 except:
13 pass
14 odrv0 = odrive.find_any ()
15

16 odrv0.config.enable_brake_resistor = True
17 print("Enabled brake resistor")
18

19 odrv0.config.dc_max_negative_current = -0.001
20 print("Set DC max negative current")
21

22 odrv0.axis0.motor.config.pole_pairs = 15
23 odrv0.axis1.motor.config.pole_pairs = 15
24 print("Configured number of pole pairs")
25

26 odrv0.axis0.motor.config.resistance_calib_max_voltage = 4
27 odrv0.axis1.motor.config.resistance_calib_max_voltage = 4
28 print("Set resistance calibrated max voltage")
29

30 odrv0.axis0.motor.config.requested_current_range = 25
31 odrv0.axis1.motor.config.requested_current_range = 25
32 print("Set current range")
33

34 odrv0.axis0.motor.config.current_control_bandwidth = 100
35 odrv0.axis1.motor.config.current_control_bandwidth = 100
36 print("Set current control bandwidth")
37

38 odrv0.axis0.motor.config.torque_constant = 0.31 # 8.27 / 13.63
39 odrv0.axis1.motor.config.torque_constant = 0.31 # 8.27 / 13.63
40 print("Defined torque constant")
41

42 odrv0.axis0.encoder.config.mode = 1 # ENCODER_MODE_HALL
43 odrv0.axis1.encoder.config.mode = 1 # ENCODER_MODE_HALL
44 print("Entered config mode")
45

46 odrv0.axis0.encoder.config.cpr = 90
47 odrv0.axis1.encoder.config.cpr = 90
48 print("Set CPR - count pr rotation")
49

50 odrv0.axis0.encoder.config.calib_scan_distance = 150
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51 odrv0.axis1.encoder.config.calib_scan_distance = 150
52 print("Set scan distance")
53

54 odrv0.config.gpio9_mode = 0 # GPIO_MODE_DIGITAL
55 odrv0.config.gpio10_mode = 0 # GPIO_MODE_DIGITAL
56 odrv0.config.gpio11_mode = 0 # GPIO_MODE_DIGITAL
57 print("Set GPIO mode")
58

59 odrv0.axis0.encoder.config.bandwidth = 100
60 odrv0.axis1.encoder.config.bandwidth = 100
61 print("Set config bandwidth")
62

63 odrv0.axis0.controller.config.enable_torque_mode_vel_limit = True
64 odrv0.axis1.controller.config.enable_torque_mode_vel_limit = True
65 odrv0.axis0.controller.config.enable_vel_limit = True
66 odrv0.axis1.controller.config.enable_vel_limit = True
67 odrv0.axis0.controller.config.vel_limit = 80/(2* math.pi)
68 odrv0.axis1.controller.config.vel_limit = 80/(2* math.pi)
69 print("Set velocity limit")
70

71 odrv0.axis0.controller.config.control_mode = 1 # TORQUE_CONTROL
72 odrv0.axis1.controller.config.control_mode = 1 # TORQUE_CONTROL
73 print("Set control mode - Torque control")
74

75 # Save configuration and proceed
76 try:
77 odrv0.save_configuration ()
78 except:
79 pass
80

81 odrv0 = odrive.find_any ()
82 try:
83 odrv0.reboot ()
84 except:
85 pass
86

87 odrv0 = odrive.find_any ()
88

89 print("Starting motor calibration of axis0")
90 odrv0.axis0.requested_state = 3 # AXIS_STATE_MOTOR_CALIBRATION
91 print("Sleeping for 45 seconds")
92 time.sleep (45)
93

94 print("Starting motor calibration of axis1")
95 odrv0.axis1.requested_state = 3 # AXIS_STATE_MOTOR_CALIBRATION
96 time.sleep (45)
97 print("Sleeping for 45 seconds")
98

99 odrv0.axis0.motor.config.pre_calibrated = True
100 odrv0.axis1.motor.config.pre_calibrated = True
101 print("Set motor to pre calibrated")
102

103 print("Starting encoder hall polarity calibration of axis0")
104 odrv0.axis0.requested_state = 12 # AXIS_STATE_ENCODER_HALL_POLARITY_CALIBRATION
105 print("Sleeping for 15 seconds")
106 time.sleep (15)
107 print("Starting encoder hall polarity calibration of axis1")
108 odrv0.axis1.requested_state = 12 # AXIS_STATE_ENCODER_HALL_POLARITY_CALIBRATION
109 print("Sleeping for 15 seconds")
110 time.sleep (15)
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111

112 odrv0.axis0.encoder.config.pre_calibrated = True
113 odrv0.axis1.encoder.config.pre_calibrated = True
114 print("Set encoder to pre calibrated")
115

116 odrv0.config.uart_a_baudrate = 115200
117 print("Set baudrate")
118

119 odrv0.config.enable_uart_a = True
120 print("Enable uart -a")
121

122 odrv0.config.gpio1_mode = 4 # GpioMode.UART_A
123 odrv0.config.gpio2_mode = 4 # GpioMode.UART_A
124 print("Set GPIO 1 and GPIO 2 mode")
125

126 odrv0.axis0.config.startup_closed_loop_control = True
127 odrv0.axis1.config.startup_closed_loop_control = True
128 print("Set startup closed loop control")
129

130 # Save configuration and proceed
131 try:
132 odrv0.save_configuration ()
133 except:
134 pass
135

136 odrv0 = odrive.find_any ()
137

138 print("Phase inductance")
139 print(odrv0.axis0.motor.config.phase_inductance)
140 print(odrv0.axis1.motor.config.phase_inductance)
141

142 print("Phase resistance")
143 print(odrv0.axis0.motor.config.phase_resistance)
144 print(odrv0.axis1.motor.config.phase_resistance)
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Investigation of Minimum
To investigate the behaviour of the CM, (4.4) and (4.5) are combined resulting in (D.1).

LACMT =
ρPL2

Pwd
2(ρPLPwd +mc)

+
mch

2(ρPLPwd +mc)
+0.114 (D.1)

Only the first two terms are of interest, as the last term simply offsets the y-axis. The first term is the
contribution from the paint while the second term is from the tank. These are seen plotted in Figure D.1.
The first term is increasing with respect to the paint level nearly at a linear rate, only offset by the mass
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Figure D.1: Contribution of the two first terms in the calculation of CM of the tank stated in (D.1).

of the container. The second term has an inverse relation to the paint level. Their rate of change differ,
resulting in the CM achieving a minimum at 0.055 m.
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Models of the System

E.1 Simulation of Mechanics and Electronics

1 clc; clear; close all
2 addpath (" Functions ")
3

4 % Dimensions [m]
5 L_ACMW = 0.243620;
6

7 % Wheel radius [m]
8 r = 0.1651/2;
9

10 % Pole pairs
11 PP = 15;
12

13 % Stator resistance [Ohm]
14 Rs = 0.2463109940290451;
15

16 % Inductance [Henry]
17 La = 0.000408201856771484;
18

19 % Permanent magnet flux linkage
20 lambda = 0.014009204;
21

22 % Current controller bandwidth
23 w_cc = 100;
24

25 % Current controller gains
26 K_P = La*w_cc;
27 K_I = Rs*w_cc;
28

29 % DC-voltage source
30 Vdc = 28;
31

32 % Maximum modulation index
33 M = 0.70;
34

35 %% Simulation
36

37 % Time
38 t0 = 0;
39 dt = 1e-3;
40 t1 = 12;
41

42 t = t0:dt:t1-dt;
43

44 % Data size
45 N = length(t);
46

47 % Preallocating memory
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48 alpha_1dd = zeros(size(t));
49 alpha_1d = zeros(size(t));
50 alpha_1 = zeros(size(t));
51 beta_1dd = zeros(size(t));
52 beta_1d = zeros(size(t));
53 beta_1 = zeros(size(t));
54 s = zeros(size(t));
55 sd = zeros(size(t));
56 sdd = zeros(size(t));
57 x = zeros(size(t));
58 xd = zeros(size(t));
59 y = zeros(size(t));
60 yd = zeros(size(t));
61 K = zeros(size(t));
62 P = zeros(size(t));
63 T = zeros(size(t));
64 w_1 = zeros(size(t));
65 w_2 = zeros(size(t));
66 theta_1 = zeros(size(t));
67 theta_2 = zeros(size(t));
68 theta_1e = zeros(size(t));
69 theta_2e = zeros(size(t));
70 T_T = zeros(2,length(t));
71 V_dq1 = zeros(2,length(t));
72 V_dq2 = zeros(2,length(t));
73 Valphbet1 = zeros(2,length(t));
74 Valphbet2 = zeros(2,length(t));
75 a1 = zeros(size(t));
76 a2 = zeros(size(t));
77 Id_dq1 = zeros(2,length(t));
78 Id_dq2 = zeros(2,length(t));
79 I_dq1 = zeros(2,length(t));
80 I_dq2 = zeros(2,length(t));
81 I_abc1 = zeros(3,length(t));
82 I_abc2 = zeros(3,length(t));
83 V_abc1 = zeros(3,length(t));
84 V_abc2 = zeros(3,length(t));
85 I_error_int1 = zeros(2,length(t));
86 I_error_int2 = zeros(2,length(t));
87 I_ref1 = zeros(2,length(t));
88 I_ref2 = zeros(2,length(t));
89 I_error1 = zeros(2,length(t));
90 I_error2 = zeros(2,length(t));
91 T_1 = zeros(size(t));
92 T_2 = zeros(size(t));
93 xdhat = zeros(5,N);
94 xhat = zeros(5,N);
95

96 % Paint height
97 L = 0.28;
98

99 % Initial conditions
100 beta_1 (1) = 0;
101 alpha_1 (1) = 0;
102

103 x(1) = 0;
104 y(1) = 0;
105

106 beta_1d (1) = 0;
107 alpha_1d (1) = 0;
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108 sd(1) = 0;
109

110 K(1) = Kf(L,alpha_1 (1),alpha_1d (1),beta_1 (1),beta_1d (1),sd(1));
111 P(1) = Pf(L,beta_1 (1));
112 T(1) = K(1) + P(1);
113

114 % Controller
115 K_LQR = [20.0000 11.5336 -0.0000 -0.0000 -0.0000
116 0.0000 0.0000 -64.8638 -14.9927 -4.9930];
117

118 % Reference
119 p = 1/4;
120 % alpha_1_ref = pi/4* square (2*pi*p/2*t) + pi/4;
121 % sd_ref = zeros(size(t));
122 alpha_1_ref = zeros(size(t));
123 sd_ref = square (2*pi*p/2*t);
124

125 % System matrix
126 A = [0 ,1.0000 , 0, 0, 0;
127 0,0.0022, 0, 0, 0;
128 0, 0, 0, 1.0000 , 0;
129 0, 0 ,21.4652 , 0.0008 , -0.0018;
130 0, 0, -3.9643,-0.0001, 0.0012];
131

132 % Input matrix
133 B = [ 0, 0;
134 1.2172 , 0;
135 0, 0;
136 0 , -1.0182;
137 0, 0.6538];
138

139 % Output matrix
140 C = eye(5);
141

142

143 startLoop = tic;
144 for n = 2:N
145

146 if mod(n,N/10) == 0
147 clc
148 fprintf(’ Runtime: %.1f s \n ETA: %.1f s \nProgress: %.0f %% \n’, toc(

startLoop), toc(startLoop)/(n/N) - toc(startLoop) , n/N*100)
149 end
150

151 %%% CONTROLLER %%%
152

153 % Reference virtual input - Linear Quadratic regulator
154 T_T(:,n) = -K_LQR*[ alpha_1(n-1) - alpha_1_ref(n);alpha_1d(n-1);beta_1(n-1);beta_1d(n

-1);sd(n-1) - sd_ref(n)];
155

156 % Current references
157 I_ref1(:,n) = [0;( T_T(1,n)/2 + T_T(2,n)/2) /(2/3* PP*lambda)];
158 I_ref2(:,n) = [0;( T_T(2,n)/2 - T_T(1,n)/2) /(2/3* PP*lambda)];
159

160 % Current errors
161 I_error1(:,n) = I_ref1(:,n) - I_dq1(:,n-1);
162 I_error2(:,n) = I_ref2(:,n) - I_dq2(:,n-1);
163

164 % Integral of error
165 I_error_int1 (:,n) = [RK4(I_error_int1 (1,n-1),I_error1(1,n),dt);
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166 RK4(I_error_int1 (2,n-1),I_error1(2,n),dt)];
167 I_error_int2 (:,n) = [RK4(I_error_int2 (1,n-1),I_error2(1,n),dt);
168 RK4(I_error_int2 (2,n-1),I_error2(2,n),dt)];
169

170 % PID Controller
171 V_dq1(:,n) = K_P*I_error1(:,n) + K_I*I_error_int1 (:,n) + [-PP*w_1(n-1)*I_dq1(2,n-1)*

La;PP*w_1(n-1)*I_dq1(1,n-1)*La + PP*lambda*w_1(n-1)];
172 V_dq2(:,n) = K_P*I_error2(:,n) + K_I*I_error_int2 (:,n) + [-PP*w_2(n-1)*I_dq2(2,n-1)*

La;PP*w_2(n-1)*I_dq2(1,n-1)*La + PP*lambda*w_2(n-1)];
173

174 % Inverse Park transform
175 Valphbet1(:,n) = rot(theta_1e(n-1))*V_dq1(:,n);
176 Valphbet2(:,n) = rot(theta_2e(n-1))*V_dq2(:,n);
177

178 % Limiting
179 a1(n) = sqrt(Valphbet1 (1,n)^2 + Valphbet1 (2,n)^2) /(2/3* Vdc);
180 a2(n) = sqrt(Valphbet2 (1,n)^2 + Valphbet2 (2,n)^2) /(2/3* Vdc);
181

182 if a1(n) > M
183 a1(n) = M;
184 Valphbet1(:,n) = Valphbet1 (:,n)*M/a1(n);
185 end
186 if a2(n) > M
187 a2(n) = M;
188 Valphbet2(:,n) = Valphbet2 (:,n)*M/a2(n);
189 end
190

191 % Returning to dq reference frame
192 V_dq1(:,n) = [ cos(theta_1e(n-1)),sin(theta_1e(n-1));
193 -sin(theta_1e(n-1)),cos(theta_1e(n-1))]* Valphbet1(:,n);
194 V_dq2(:,n) = [ cos(theta_2e(n-1)),sin(theta_2e(n-1));
195 -sin(theta_2e(n-1)),cos(theta_2e(n-1))]* Valphbet2(:,n);
196

197 %%% PLANT %%%
198

199 % Change in current dq-reference frame
200 Id_dq1(:,n) = [V_dq1(1,n)/La + PP*w_1(n-1)*I_dq1(2,n-1) - Rs*I_dq1(1,n-1)/La;
201 V_dq1(2,n)/La - PP*w_1(n-1)*I_dq1(1,n-1) - Rs*I_dq1(2,n-1)/La - PP*

w_1(n-1)*lambda/La];
202 Id_dq2(:,n) = [V_dq2(1,n)/La + PP*w_2(n-1)*I_dq2(2,n-1) - Rs*I_dq2(1,n-1)/La;
203 V_dq2(2,n)/La - PP*w_2(n-1)*I_dq2(1,n-1) - Rs*I_dq2(2,n-1)/La - PP*

w_2(n-1)*lambda/La];
204

205 % Current dq-reference frame
206 I_dq1(:,n) = [RK4(I_dq1(1,n-1),Id_dq1(1,n),dt);
207 RK4(I_dq1(2,n-1),Id_dq1(2,n),dt)];
208 % Current dq-reference frame
209 I_dq2(:,n) = [RK4(I_dq2(1,n-1),Id_dq2(1,n),dt);
210 RK4(I_dq2(2,n-1),Id_dq2(2,n),dt)];
211

212 % Torque
213 T_1(n) = 2/3*PP*lambda*I_dq1(2,n);
214 T_2(n) = 2/3*PP*lambda*I_dq2(2,n);
215

216 % Acceleration
217 beta_1dd(n) = beta_1ddf(L,T_1(n),T_2(n),alpha_1d(n-1),beta_1(n-1),beta_1d(n-1),sd(n

-1));
218

219 % Numerical Integration
220 beta_1d(n) = RK4(beta_1d(n-1),beta_1dd(n),dt);
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221 beta_1 (n) = RK4(beta_1(n-1) ,beta_1d(n) ,dt);
222

223 % Acceleration
224 alpha_1dd(n) = alpha_1ddf(L,T_1(n),T_2(n),alpha_1d(n-1),beta_1(n),beta_1d(n));
225

226 % Numerical Integration
227 alpha_1d(n) = RK4(alpha_1d(n-1),alpha_1dd(n),dt);
228 alpha_1 (n) = RK4(alpha_1(n-1) ,alpha_1d(n) ,dt);
229

230 % Acceleration
231 sdd(n) = sddf(L,T_1(n),T_2(n),alpha_1d(n),beta_1(n),beta_1d(n),sd(n-1));
232

233 % Numerical Integration
234 sd(n) = RK4(sd(n-1),sdd(n),dt);
235 s(n) = RK4( s(n-1), sd(n),dt);
236

237 % Global velocity
238 xd(n) = cos(alpha_1(n))*sd(n);
239 yd(n) = sin(alpha_1(n))*sd(n);
240

241 % Global position
242 x(n) = RK4(x(n-1), xd(n),dt);
243 y(n) = RK4(y(n-1), yd(n),dt);
244

245 % Wheel speed
246 w_1(n) = sd(n)/r - alpha_1d(n)*L_ACMW/r;
247 w_2(n) = sd(n)/r + alpha_1d(n)*L_ACMW/r;
248

249 % Wheel position
250 theta_1(n) = RK4(theta_1(n-1), w_1(n),dt);
251 theta_2(n) = RK4(theta_2(n-1), w_2(n),dt);
252

253 % Eletrical angle
254 theta_1e(n) = wrapTo2Pi(theta_1(n)*PP);
255 theta_2e(n) = wrapTo2Pi(theta_2(n)*PP);
256

257 % Kinetic energy
258 K(n) = Kf(L,alpha_1(n),alpha_1d(n),beta_1(n),beta_1d(n),sd(n));
259

260 % Potential energy
261 P(n) = Pf(L,beta_1(n));
262

263 % Total energy
264 T(n) = K(n) + P(n);
265

266 end
267 endLoop = toc(startLoop);
268

269 %% Linear model simulation
270

271 % Preallocating memory
272 X = zeros(5,length(t));
273 Xd = zeros(5,length(t));
274 Y = zeros(5,length(t));
275 U = zeros(2,length(t));
276

277 startLoop = tic;
278 for n = 2:N
279

280 if mod(n,N/10) == 0
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281 clc
282 fprintf(’ Runtime: %.1f s \n ETA: %.1f s \nProgress: %.0f %% \n’, toc(

startLoop), toc(startLoop)/(n/N) - toc(startLoop) , n/N*100)
283 end
284

285 % Linear Quadratic Regulator
286 U(:,n) = -K_LQR *(X(:,n-1) - [alpha_1_ref(n);0;0;0; sd_ref(n)]);
287

288 % Change in states
289 Xd(:,n) = A*X(:,n-1) + B*U(:,n);
290

291 % States
292 X(:,n) = [RK4(X(1,n-1),Xd(1,n),dt);
293 RK4(X(2,n-1),Xd(2,n),dt);
294 RK4(X(3,n-1),Xd(3,n),dt);
295 RK4(X(4,n-1),Xd(4,n),dt);
296 RK4(X(5,n-1),Xd(5,n),dt)];
297

298 % Output
299 Y(:,n) = C*X(:,n);
300 end
301

302 %% States
303 close all
304

305 figure ()
306 tiledlayout (3,2)
307

308 nexttile
309 SetFigure (0,0)
310 hold on
311 plot(t,alpha_1d)
312 plot(t,X(2,:))
313 ylabel(’Change in yaw [rad/s]’)
314 xlabel(’Time [s]’)
315 legend(’Nonlinear model ’,’Linear model’)
316 hold off
317

318 nexttile
319 SetFigure (0,0)
320 hold on
321 plot(t,alpha_1)
322 plot(t,X(1,:))
323 ylabel(’Yaw [rad]’)
324 xlabel(’Time [s]’)
325 hold off
326

327 nexttile
328 SetFigure (0,0)
329 hold on
330 plot(t,beta_1d)
331 plot(t,X(4,:))
332 ylabel(’Change in pitch [rad/s]’)
333 xlabel(’Time [s]’)
334 hold off
335

336 nexttile
337 SetFigure (0,0)
338 hold on
339 plot(t,beta_1)
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340 plot(t,X(3,:))
341 ylabel(’Pitch [rad]’)
342 xlabel(’Time [s]’)
343 hold off
344

345 nexttile
346 SetFigure (0,0)
347 hold on
348 plot(t,sd)
349 plot(t,X(5,:))
350 ylabel(’Speed [m/s]’)
351 xlabel(’Time [s]’)
352 hold off
353

354 nexttile
355 SetFigure (0,0)
356 hold on
357 plot(t,cumtrapz(sd)*dt)
358 plot(t,cumtrapz(X(5,:))*dt)
359 ylabel(’Distance [m]’)
360 xlabel(’Time [s]’)
361 hold off
362

363 return
364

365 %% Step response
366 close all
367

368 StepYawLQR = figure;
369 hold on
370 SetFigure (1 ,1.5)
371 plot(t,alpha_1_ref ,’DisplayName ’,’Reference ’)
372 plot(t,X(1,:),’DisplayName ’,’Linear model’)
373 plot(t,alpha_1 ,’DisplayName ’,’Nonlinear model’)
374 xlabel(’Time [s]’)
375 ylabel(’Yaw [rad]’)
376 set(gca ,’YTick ’ ,0:pi/4:pi/2)
377 set(gca ,’YTickLabel ’,{’0’,’\pi/4’,’\pi/2’})
378 ylim ([ -0.1 pi /2*1.1])
379 % legend(’Location ’,’northoutside ’,’Orientation ’,’horizontal ’)
380 hold off
381

382 % exportgraphics(StepYawLQR ,’StepYawLQR_no_paint.pdf ’,’ContentType ’,’vector ’)
383 % exportgraphics(StepYawLQR ,’StepYawLQR.pdf ’,’ContentType ’,’vector ’)
384

385 StepSpeedLQR = figure;
386 hold on
387 SetFigure (1 ,1.5)
388 plot (12+t,sd_ref ,’DisplayName ’,’Reference ’)
389 plot (12+t,X(5,:),’DisplayName ’,’Linear model ’)
390 plot (12+t,sd,’DisplayName ’,’Nonlinear model ’)
391 xlabel(’Time [s]’)
392 ylabel(’Speed [m/s]’)
393 hold off
394

395 % exportgraphics(StepSpeedLQR ,’StepSpeedLQR_no_paint.pdf ’,’ContentType ’,’vector ’)
396 % exportgraphics(StepSpeedLQR ,’StepSpeedLQR.pdf ’,’ContentType ’,’vector ’)
397

398 return
399
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400 %% Functions
401

402 % Fourth order Runge -Kutta - Numerical integration
403 function y = RK4(x,xd,dt)
404

405 k1_2 = dt * xd;
406 k2_2 = dt * (xd + k1_2 /2);
407 k3_2 = dt * (xd + k2_2 /2);
408 k4_2 = dt * (xd + k3_2);
409

410 y = x + (k1_2 + 2*k2_2 + 2*k3_2 + k4_2)/6;
411

412 end

E.2 Lagrange Calculations

1 clc; clear; close all
2

3 % Dimensions [m]
4 L_ACMF = 0.168196;
5 L_ACMW = 0.243620;
6

7 % Masses [kg]
8 m_F = 8.997397;
9 m_W = 1.516;

10

11 % Wheel size [m]
12 r = 0.1651/2;
13

14 % Inertia [kg*m^2]
15 J_F = diag ([1.277718 , 1.007450 , 0.282509]);
16 J_W = diag ([0.003898 , 0.003495 , 0.003495]);
17

18 % Gravitational acceleration [m/s^2]
19 % g = 9.82;
20 syms g
21

22 % Viscous friction
23 Bv = 0.00088710922374912487987225206964581;
24

25 % Coulumb friction
26 mu = 0.18084925969874254825242587685352;
27

28 %% Positions of COM
29 disp(’Progress: Positions of COM’)
30 tic
31

32 % Generalised coordinates
33 syms alpha_1 alpha_1d alpha_1dd beta_1 beta_1d beta_1dd s sd sdd real
34

35 clear A1 S1 PCMF A2 S2 PCMW1 A3 PCMW2
36

37 % Main frame COM
38 A1 = rot3D(alpha_1 ,beta_1 - pi/2,0);
39 S1 = [L_ACMF ;0;0];
40

41 PCMF = simplify(A1*S1);
42
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43 % Wheel 1 COM
44 A2 = rot3D(alpha_1 + pi/2,0,0);
45 S2 = [L_ACMW ;0;0];
46

47 PCMW1 = simplify(A2*S2);
48

49 % Wheel 2 COM
50 A3 = rot3D(alpha_1 - pi/2,0,0);
51

52 PCMW2 = simplify(A3*S2);
53

54 % Paint level
55 syms L real positive
56

57 % Density
58 rho_pain = 1000;
59

60 % Tank height
61 h = 0.28;
62

63 % Tank width
64 w = 0.235;
65 d = 0.190;
66

67 % Distance from origin to bottom of tank
68 d_bT = 0.114;
69

70 % Mass of tank
71 m_tank = 0.45;
72

73 % Mass of paint
74 m_pain = rho_pain *(L*w*d);
75

76 % Inertia
77 J_T = diag ([1/12*(( m_pain + m_tank)*(h^2 + d^2)) + (m_pain + m_tank)*(( m_pain*L/2 +

m_tank*h/2)/( m_pain + m_tank) + d_bT)^2;...
78 1/12*(( m_pain + m_tank)*(h^2 + w^2)) + (m_pain + m_tank)*(( m_pain*L/2 +

m_tank*h/2)/( m_pain + m_tank) + d_bT)^2;...
79 1/12*(( m_pain + m_tank)*(d^2 + w^2))]);
80

81 % Paint tank COM
82 S3 = [( m_pain*L/2 + m_tank*h/2)/( m_pain + m_tank) + d_bT ;0;0];
83

84 PCMT = simplify(A1*S3);
85

86 toc
87

88 %% Velocities of COM
89 disp(’Progress: Velocities of COM’)
90 tic
91

92 clear PCMFd PCM2d
93

94 % Time derivative
95 PCMFd = difft(PCMF , [alpha_1 ,beta_1 ]) + rot3D(alpha_1 ,0,0)*[sd ;0;0];
96 PCMW1d = difft(PCMW1 , [alpha_1 ,beta_1 ]) + rot3D(alpha_1 ,0,0)*[sd ;0;0];
97 PCMW2d = difft(PCMW2 , [alpha_1 ,beta_1 ]) + rot3D(alpha_1 ,0,0)*[sd ;0;0];
98 PCMTd = difft(PCMT , [alpha_1 ,beta_1 ]) + rot3D(alpha_1 ,0,0)*[sd ;0;0];
99

100 toc
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101

102 %% Lagrangian
103 disp(’Progress: Lagrangian ’)
104 tic
105

106 clear KT KR K P Lag dL_dqd d_dt_dL_dqd dL_dq tau
107

108 % Translational energy
109 KT = 1/2*( m_F*(PCMFd ’)*PCMFd + m_W*(PCMW1d ’)*PCMW1d + m_W*(PCMW2d ’)*PCMW2d + (m_pain +

m_tank)*(PCMTd ’)*(PCMTd));
110

111 % Rotational energy
112 KR = 1/2*([ alpha_1d;beta_1d ;0]’*J_F*[ alpha_1d;beta_1d ;0] ...
113 + [alpha_1d;beta_1d + sd/r;0]’*J_W*[ alpha_1d;beta_1d + sd/r;0] ...
114 + [alpha_1d;beta_1d - sd/r;0]’*J_W*[ alpha_1d;beta_1d - sd/r;0] ...
115 + [alpha_1d;beta_1d ;0]’*J_T*[ alpha_1d;beta_1d ;0]);
116

117 % Total kinetic energy
118 K = KT + KR;
119

120 % Potential energy
121 P = [0,0,g]*(m_F*PCMF + m_W*PCMW1 + m_W*PCMW2 + (m_pain + m_tank)*PCMT);
122

123 % Lagrange equation
124 Lag = K - P;
125

126 % Derivative w.r.t. qd
127 dL_dqd = [diff(Lag ,alpha_1d)
128 diff(Lag , beta_1d);
129 diff(Lag , sd)];
130

131 % Derivative w.r.t. time
132 d_dt_dL_dqd = difft(dL_dqd ,[alpha_1d ,alpha_1 ,beta_1d ,beta_1 ,sd,s]);
133

134 % Derivative w.r.t. q
135 dL_dq = [diff(Lag ,alpha_1);
136 diff(Lag , beta_1);
137 diff(Lag , s)];
138

139 % Joint torque
140 tau = d_dt_dL_dqd - dL_dq;
141

142 toc
143

144 %% Robotics notation
145 disp(’Progress: Robotics notation ’)
146 tic
147

148 % Acceleration and gravity terms in D, and q qd terms in C
149 [D,C] = equationsToMatrix(tau ,[alpha_1dd ,beta_1dd ,sdd ,g]);
150

151 % Gravity terms
152 G = simplify(combine(D(:,4),’sincos ’));
153

154 % Accelerations terms
155 D = simplify(combine(D(: ,1:3),’sincos ’));
156

157 C = simplify(combine(-C,’sincos ’));
158

159 % Difference and sum torques
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160 syms T_diff T_sum
161 % syms T_1 T_2
162 % T_diff = T_1 - T_2;
163 % T_sum = T_1 + T_2;
164

165 Q = [T_diff/r*L_ACMW + 2*Bv*L_ACMW/r*alpha_1d + 2*mu*L_ACMW/r*sign(alpha_1d);
166 2*Bv*beta_1d + 2*mu*sign(beta_1d);
167 T_sum/r + 2*Bv/r*sd + 2*mu/r*sign(sd)];
168

169 qdd = simplify(combine(D\(Q - C - G*9.82) ,’sincos ’));
170

171 alpha_1dd = simplify(combine(qdd(1),’sincos ’));
172 beta_1dd = simplify(combine(qdd(2),’sincos ’));
173 sdd = simplify(combine(qdd (3),’sincos ’));
174

175 toc
176

177 return
178

179 %% Creating matlab functions
180 disp(’Progress: Creating Matlab functions ’)
181 tic
182

183 % Matlab functions
184 addpath (" Functions ")
185 matlabFunction( alpha_1dd ,"File","Functions/alpha_1ddf ");
186 matlabFunction( beta_1dd ,"File","Functions/beta_1ddf ");
187 matlabFunction( sdd ,"File","Functions/sddf");
188 matlabFunction(subs(K,g ,9.82) ,"File","Functions/Kf");
189 matlabFunction(subs(P,g ,9.82) ,"File","Functions/Pf");
190

191 toc
192 %% Linear Model
193 clc;
194

195 L = 0.28;
196 alpha_1dd = subs(alpha_1dd ,[ str2sym(’L’),str2sym(’sign(alpha_1d)’),str2sym(’sign(beta_1d)

’),str2sym(’sign(sd)’)],[L,0,0,0]);
197 beta_1dd = subs( beta_1dd ,[ str2sym(’L’),str2sym(’sign(alpha_1d)’),str2sym(’sign(beta_1d)

’),str2sym(’sign(sd)’)],[L,0,0,0]);
198 sdd = subs( sdd ,[ str2sym(’L’),str2sym(’sign(alpha_1d)’),str2sym(’sign(beta_1d)

’),str2sym(’sign(sd)’)],[L,0,0,0]);
199

200 T = jacobian ([ alpha_1dd;beta_1dd;sdd],[alpha_1;alpha_1d;beta_1;beta_1d;sd;T_diff;T_sum]);
201 T = double(subs(T,[ alpha_1;alpha_1d;beta_1;beta_1d;sd;],...
202 [ 0; 0; 0; 0; 0;]));
203

204 B = double(T(:,[end -1,end]));
205

206 B = double ([0,0;
207 B(1,:);
208 0,0;
209 B(2,:);
210 B(3,:)])
211

212 T = double(T(:,1:end -2));
213

214 A = [0,1,0,0,0;
215 T(1,:);
216 0,0,0,1,0;
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217 T(2,:);
218 T(3,:)]
219

220 C = diag ([1,1,1,1,1]);
221

222 D = 0;
223

224 sys = ss(A,B,C,D);

Figure E.1: State space model of the mechanical system with the linear quadratic regulator.
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Figure E.2: Simulink model for Nonlinear PMSM with and without SVPWM.
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Figure E.3: Simulink model of the nonlinear mechanical model with the linear quadratic regulator.
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Determining Kv rating
To determine the Kv rating of the motors a tests are performed on both motors. The test are conducted
using the following conditions:

• No input is applied to the system

• The motor is allowed to spin freely

• An electric hand drill is used to spin the motor

In Figure F.1, the setup for the tests is depicted. The tests are conducted by spinning the motor using an
electric hand drill until the steady state speed is reached. At the steady state speed the voltage is
measured on the oscilloscope. The oscilloscope measures the voltage amplitude and frequency of the
sinusoidal signals.

The Kv rating is given as half the measured peak to peak back emf measured across two phases:

Kv =
ω

1
2VA

(F.1)

where ω is the mechanical speed of the motor, and VA is the peak to peak value, or amplitude, of the
sinusoidal back emf.

va

vb

vc

Motor 1

Oscilloscope

Voltage probes

Figure F.1: Setup for determining Kv rating of the motor (va,b,c: phase voltages a, b, and c).

The test is repeated three times for each motor, and the results are shown in Table F.1.
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Table F.1: Data from Kv rating tests

Motor 0 Test 1 Test 2 Test 3 Unit

Voltage amplitude 6.96 6.88 7.04 V
Electrical frequency 23.92 23.28 23.99 Hz

Electrical speed 150.3 146.3 150.7 1/s
Mechanical speed 10.02 9.752 10.05 1/s

Kv rating 2.880 2.835 2.855 V s

Motor 1 Test 1 Test 2 Test 3

Voltage amplitude 6.88 7.04 7.04 V
Electrical frequency 23.18 23.75 24.03 Hz

Electrical speed 145.6 149.2 151.0 1/s
Mechanical speed 9.710 9.949 10.07 1/s

Kv rating 2.823 2.826 2.860 V s

Based on the six total tests the Kv rating is calculated as the average of the results obtained for each
motor, this yields the Kv ratings listed below:

Kv,0 = 2.856Vs

Kv,1 = 2.836Vs
(F.2)

With Kv,0 and Kv,1 representing the Kv rating of motor 0 and motor 1, respectively.

Relationship between Velocity Constant, Torque Constant and Flux linkage

By analysing the power of a surface mounted PMSM the flux linkage of the permanent magnet can be
found using the measured Kv rating. The power is given as:

P =
3
2

iqvq = T ω (F.3)

Dividing q-axis current and motor speed ω on both sides gives:

3
2

vq

ω
=

T
iq

(F.4)

The left hand side of this equation is simplified by denoting vq/ω as the phase velocity constant K∗
v , and

the expression for torque is inserted:

3
2

1
K∗

v
=

3
2 PPλ f iq

iq
=

3
2

PPλ f (F.5)

Solving for the flux linkage:

λ f =
1

K∗
v PP

(F.6)
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The transformation from phase voltage to line-to-line voltage in a balanced three-phase system is
√

3
which gives:

λ f ,0 =
1

Kv,0
√

3PP
= 0.0135Wb (F.7)

λ f ,1 =
1

Kv,1
√

3PP
= 0.0136Wb (F.8)

The torque constant is defined as the relationship between the torque generating current and the torque
i.e.:

KT,0 =
3
2

PPλ = 0.303Nm/A (F.9)

KT,1 =
3
2

PPλ = 0.305Nm/A (F.10)
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Linear Quadratic Regulator
In this appendix the underlying theory behind the linear quadratic regulator is presented.

The following theory is based on the derivation given in [72]. Given the linear system equations:

ẋ = Ax+Bu (G.1)

with the control law given as:

u =−Kx (G.2)

The control vector K is chosen such that the performance index J is minimised:

J =
∫

∞

0

(
xT Qx+uT Ru

)
dt (G.3)

Inserting the control law (G.2) in the linear system equations (G.1) yields:

ẋ = Ax−BKx = (A−BK)x

Henceforward it is assumed that the matrix A−BK is stable i.e. all eigenvalues have negative real parts.

Inserting the control law (G.2) into the performance index (G.3) yields:

J =
∫

∞

0

(
xT Qx+xT KT RxK

)
dt

=
∫

∞

0

(
xT (Q+KT RK)x

)
dt

A positive definite matrix P is introduced as:

xT (Q+KT RK)x =− d
dt
(xT Px)

Which yields:

xT (Q+KT RK)x =−ẋT Px−xT Pẋ =−xT ((A−BK)T P+P(A−BK)
)

x

Eliminating x from the equation above yields:

(A−BK)T P+P(A−BK) =−(Q+KT RK) (G.4)

As the matrix A−BK is stable there exists a positive-definite matrix P that satisfies (G.4).
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Evaluating the performance index using the P matrix yields:

J =
∫

∞

0

(
xT (Q+KT RK)x

)
dt =−xT Px|∞0 =−x(∞)Px(∞)+x(0)T Px(0)

And as the system is assumed stable x(∞)→ 0 which yields the performance index in terms of the
initial condition and P:

J = x(0)T Px(0)

To solve this equation another matrix T is introduced:

R = TT T

This is permissible as R is positive definite. Rewriting (G.4) by introducing T:

(A−BK)T P+P(A−BK)+(Q+KT TT TK) = 0

AT P+PA+(TK− (TT )−1BT P)T (TK− (TT )−1BT P)−PBR−1BT P+Q = 0

Minimising J with respect to K, simplifies the minimisation to:

xT (TK− (TT )−1BT P)T (TK− (TT )−1BT P)x

As this expression is non negative, it is minimised when it is zero or when:

TK = (TT )−1BT P

Isolating K in the above equation yields the optimised feedback gain matrix:

K = T−1(TT )−1BT P = R−1BT P (G.5)

Reducing (G.4) by inserting K yields the reduced-matrix Riccati equation:

AT P+PA−PBR−1BT P+Q = 0 (G.6)

which must also be satisfied by the matrix P.

The procedure to obtain the optimal feedback gain matrix K is to solve (G.6) for P and if P is positive
definite the system A−BK is stable. Then substituting P into (G.5) yields the optimised feedback gain
matrix K.
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Data from Experiments

H.1 Data from Investigation of the Back emf waveform

Figure H.1 shows the measurement of the signals’ frequency using the faster speed of the drill. The
measurements of the signals’ frequency and amplitude using the slower speed of the drill are seen in
Figures H.2 and H.3.

Figure H.1: Oscilloscope measurement of the back emf waveform with the drill set to the fastest speed, where the oscilloscope
measures the frequency of the signal.
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Figure H.2: Oscilloscope measurement of the back emf waveform with the drill set to the slowest speed, where the oscilloscope
measures the frequency of the signal

Figure H.3: Oscilloscope measurement of the back emf waveform with the drill set to the slowest speed, where the oscilloscope
measures the amplitude of the signal
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H.2 Test of the Closed q-axis Current Loop

Figure H.4 displays the offset in the current value in the beginning of the tests.
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Figure H.4: Phase current response in blocked rotor test with zoomed windows.

H.3 Additional Test of the Closed q-axis Current Loop

Figure H.5 shows an additional test of the Closed q-axis Current Loop where the rotor is in a different
position.
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Figure H.5: Additional test of phase current response in blocked rotor test.

H.4 Test of the IMU GY-91
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(b) Accelerometer measurements.
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(c) Magnetometer measurements.

Figure H.6: Measurements received from the GY-91.
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Arduino Code

I.1 Arduino code using BNO055

Below the Arduino code including wireless communication, obstacle avoidance, and the BNO055 IMU
is included

1 // IMU Libs
2 #include <Wire.h> // I2C communication
3 #include <Adafruit_Sensor.h> // Common for all adafruit sensors to allow for reading

values
4 #include <Adafruit_BNO055.h> // Sensor specific to allow for reading values
5 #include <utility/imumaths.h> // math package for IMU
6 #include <EEPROM.h> // Allows for saving IMU calibration on MCU
7

8 // IMU calibration variables
9 bool zero = true;

10 bool calibrate = true;
11 int zeroTime = 50;
12

13 // Set sample time of the IMU
14 #define BNO055_SAMPLERATE_DELAY_MS (100)
15

16

17 // Check I2C device address
18 // id , address
19 Adafruit_BNO055 bno = Adafruit_BNO055 (55, 0x28);
20

21 // IMU reading variables
22 double alpha ,beta ,sd,beta_meas ,betad ,beta_old ,betai ,s,s_gain;
23 // Variable for integration
24 unsigned long start;
25 // Variable for unwrapping of yaw angle
26 int unwrapFlag = 0;
27

28

29 // ODrive lib
30 #include <ODriveArduino.h>
31 // Printing with stream operator
32 template <class T> inline Print& operator <<(Print &obj , T arg) { obj.print(arg);

return obj; }
33 template <> inline Print& operator <<(Print &obj , float arg) { obj.print(arg , 4);

return obj; }
34

35 // Declare serial port for ODrive
36 #define odrive_serial1 Serial1
37 ODriveArduino odrive1(odrive_serial1);
38

39

40 // Wireless comunication
41 #define HC12 Serial2 // Set wireless comunication to use Serial 2 (7 and 8 pin)
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42 byte incomingByte; // Variable to store incoming data
43 String readBuffer = ""; // Variable to store incoming data
44 # include "ctype.h" // Formatting lib
45

46 // Ultrasonic sensor
47 const int trigPin = 23; // HC-SR04 trigger pin
48 const int echoPin = 22; // HC-SR04 echo pin
49 float duration , distance; // For calculation of distance
50 bool obstacle = 0; // Variable to signal the presence of a obstacle
51

52 // LED
53 const int ledPin = 13; // On board LED
54

55 // Variable for emergency stop
56 int stop = 0;
57

58 // Variables for storing motor currents
59 float motor0_current;
60 float motor1_current;
61

62 // Codeblock for Sensor details
63 void displaySensorDetails(void)
64 {
65 sensor_t sensor;
66 bno.getSensor (& sensor);
67 Serial.println("------------------------------------");
68 Serial.print("Sensor: "); Serial.println(sensor.name);
69 Serial.print("Driver Ver: "); Serial.println(sensor.version);
70 Serial.print("Unique ID: "); Serial.println(sensor.sensor_id);
71 Serial.print("Max Value: "); Serial.print(sensor.max_value); Serial.println(" xxx"

);
72 Serial.print("Min Value: "); Serial.print(sensor.min_value); Serial.println(" xxx"

);
73 Serial.print("Resolution: "); Serial.print(sensor.resolution); Serial.println(" xxx

");
74 Serial.println("------------------------------------");
75 Serial.println("");
76 delay (500);
77 }
78

79 // Display some basic info about the sensor status
80

81 void displaySensorStatus(void)
82 {
83 // Get the system status values (mostly for debugging purposes)
84 uint8_t system_status , self_test_results , system_error;
85 system_status = self_test_results = system_error = 0;
86 bno.getSystemStatus (& system_status , &self_test_results , &system_error);
87

88 // Display the results in the Serial Monitor
89 Serial.println("");
90 Serial.print("System Status: 0x");
91 Serial.println(system_status , HEX);
92 Serial.print("Self Test: 0x");
93 Serial.println(self_test_results , HEX);
94 Serial.print("System Error: 0x");
95 Serial.println(system_error , HEX);
96 Serial.println("");
97 delay (500);
98 }
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99

100 // Display sensor calibration status
101

102 void displayCalStatus(void)
103 {
104 // Get the four calibration values (0..3)
105 // Any sensor data reporting 0 should be ignored ,
106 // 3 means ’fully calibrated"
107 uint8_t system , gyro , accel , mag;
108 system = gyro = accel = mag = 0;
109 bno.getCalibration (&system , &gyro , &accel , &mag);
110

111 /* The data should be ignored until the system calibration is > 0 */
112 Serial.print("\t");
113 if (! system)
114 {
115 Serial.print("! ");
116 }
117

118 /* Display the individual values */
119 Serial.print("Sys:");
120 Serial.print(system , DEC);
121 Serial.print(" G:");
122 Serial.print(gyro , DEC);
123 Serial.print(" A:");
124 Serial.print(accel , DEC);
125 Serial.print(" M:");
126 Serial.print(mag , DEC);
127 }
128

129

130 // Display the raw calibration offset and radius data
131

132 void displaySensorOffsets(const adafruit_bno055_offsets_t &calibData)
133 {
134 Serial.print("Accelerometer: ");
135 Serial.print(calibData.accel_offset_x); Serial.print(" ");
136 Serial.print(calibData.accel_offset_y); Serial.print(" ");
137 Serial.print(calibData.accel_offset_z); Serial.print(" ");
138

139 Serial.print("\nGyro: ");
140 Serial.print(calibData.gyro_offset_x); Serial.print(" ");
141 Serial.print(calibData.gyro_offset_y); Serial.print(" ");
142 Serial.print(calibData.gyro_offset_z); Serial.print(" ");
143

144 Serial.print("\nMag: ");
145 Serial.print(calibData.mag_offset_x); Serial.print(" ");
146 Serial.print(calibData.mag_offset_y); Serial.print(" ");
147 Serial.print(calibData.mag_offset_z); Serial.print(" ");
148

149 Serial.print("\nAccel Radius: ");
150 Serial.print(calibData.accel_radius);
151

152 Serial.print("\nMag Radius: ");
153 Serial.print(calibData.mag_radius);
154 }
155

156 // Ultrasonic distance measuring code block
157 void distance_meas () {
158
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159 // Turn off trigger
160 digitalWrite(trigPin , LOW);
161 // Allow time for pulling the pin low
162 delayMicroseconds (2);
163 // Trigger ultrasonic sensor
164 digitalWrite(trigPin , HIGH);
165 // 10 microsecond echo
166 delayMicroseconds (10);
167 // Turn off trigger
168 digitalWrite(trigPin , LOW);
169

170 // Read distance as pulse on echo pin
171 duration = pulseIn(echoPin , HIGH);
172 // Convert to cm using speed of sound , /2 because it travels out and back
173 distance = (duration *.0343) /2;
174

175

176 // Trigger onboard LED if distance is less than 10 cm
177 if (distance < 5){
178 digitalWrite(ledPin , HIGH);
179 obstacle = 1;
180 // Halt the motors
181 odrive1.SetCurrent (1, 0);
182 odrive1.SetCurrent (0, 0);
183 }
184 else {
185 digitalWrite(ledPin , LOW);
186 obstacle = 0;
187 }
188 }
189

190 // Code block for wireless communication
191 void Wireless (){
192 while (HC12.available ()) { // If HC -12 has data
193 readBuffer = (HC12.readStringUntil(char (10))); // Send the data to Serial

monitor
194

195 int str_len = readBuffer.length () + 1;
196 char char_array[str_len ];
197 readBuffer.toCharArray(char_array ,str_len);
198 // Check incoming data for stop variable
199 sscanf(char_array ,"%d" ,&stop);
200 }
201

202 }
203

204 // IMU code block
205 void IMU_code (){
206

207 //Save old yaw value for integration
208 double alpha_old = alpha;
209 // Update IMU values
210 sensors_event_t orientationData , angVelocityData , linearAccelData;
211

212 // Get quaternion values and convert to euler
213 imu::Vector <3> euler = bno.getQuat ().toEuler ();
214 bno.getEvent (& angVelocityData , Adafruit_BNO055 :: VECTOR_GYROSCOPE);
215 bno.getEvent (& linearAccelData , Adafruit_BNO055 :: VECTOR_LINEARACCEL);
216

217 // Save values from gyroscope and accelerometer
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218 float alphad = -angVelocityData.gyro.z;
219 betad = -angVelocityData.gyro.y;
220 alpha = euler.x();
221 beta_meas = euler.y();
222

223 // Unwrap the yaw angle
224 if(alpha -alpha_old < -3.1415){
225 unwrapFlag = unwrapFlag + round(abs((alpha -alpha_old)/(2*3.1415)));
226 }
227 else if(alpha -alpha_old > 3.1415){
228 unwrapFlag = unwrapFlag - round(abs((alpha -alpha_old)/(2*3.1415)));
229 }
230

231 float alphaU = alpha + unwrapFlag *6.283;
232

233

234 // Start time for dt
235 start = millis () * 1e-3;
236

237 // Get motor velocities
238 float w0 = odrive1.GetVelocity (0) *(2*3.1415);
239 float w1 = -odrive1.GetVelocity (1) *(2*3.1415);
240

241 // Torque calculations
242 sd = (0.2436* alphad - 0.0825* w0 - 0.0825* w1 - 0.2436* alphad)/2;
243 float T_diff = ( -20*( alphaU) - 11.5*( alphad) + 0*( beta_meas) + 0*( betad) + 0*(sd));
244 float T_sum = (0*( alphaU) + 0*( alphad) + 65*( beta_meas) + 15*( betad) + 5*(sd));
245 float kt = 0.31;
246

247 // Convertion to current
248 motor0_current = (T_diff /2 + T_sum /2)/(kt);
249 motor1_current = (T_sum /2 - T_diff /2)/(kt);
250

251 // Insert cap on current reference
252 float cap = 4;
253 if(abs(motor1_current) < cap){
254 if(abs(motor1_current) < 0){
255 odrive1.SetCurrent (1,0 * ((abs(motor1_current))/( motor1_current)));
256 }
257 else {
258 odrive1.SetCurrent (1, motor1_current);
259 }
260 }
261 else{
262 odrive1.SetCurrent (1,cap * ((abs(motor1_current))/( motor1_current)));
263 }
264

265 if(abs(motor0_current) < cap){
266 if(abs(motor0_current) < 0){
267 odrive1.SetCurrent (0,-0 * ((abs(motor0_current))/( motor0_current)));
268 }
269 else {
270 odrive1.SetCurrent(0,- motor0_current);
271 }
272 }
273 else{
274 odrive1.SetCurrent(0,-cap * ((abs(motor0_current))/( motor0_current)));
275 }
276

277
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278 }
279

280

281

282 void setup() {
283 pinMode(PIN_A4 , INPUT_PULLUP); // Enable pullup resistors for I2C

communication with BNO055
284 pinMode(PIN_A5 , INPUT_PULLUP);
285 pinMode(ledPin , OUTPUT); // Set inbuilt led as output
286 pinMode(trigPin , OUTPUT); // Set ultrasonic trigger pin as output
287 pinMode(echoPin , INPUT); // Set ultrasonic echo pin as input
288 Serial.begin (115200); // Open serial port for result printing
289 HC12.begin (9600); // Open serial port to HC12 (for wireless)
290 odrive_serial1.begin (57600); // Open serial port to odrive (for motor

control)
291

292 Wire.begin(); // Begin I2C
293 Wire.setClock (400000); //400 khz clock
294

295 delay (1000);
296

297 while (! Serial) delay (10); // wait for serial port to open!
298

299 // Set motor current to zero during setup
300 odrive1.SetCurrent (1, 0);
301 odrive1.SetCurrent (0, 0);
302

303 Serial.println("Orientation Sensor Test"); Serial.println("");
304

305 // Initialise the sensor
306 if (!bno.begin ())
307 {
308 // There was a problem detecting the BNO055 ... check your connections
309 Serial.print("Ooops , no BNO055 detected ... Check your wiring or I2C ADDR!");
310 while (1);
311 }
312 // Calibration code
313 if(calibrate) {
314 int eeAddress = 0;
315 long bnoID;
316 bool foundCalib = false;
317

318 EEPROM.get(eeAddress , bnoID);
319

320 adafruit_bno055_offsets_t calibrationData;
321 sensor_t sensor;
322

323 /*
324 * Look for the sensor ’s unique ID at the beginning oF EEPROM.
325 */
326 bno.getSensor (& sensor);
327 if (bnoID != sensor.sensor_id)
328 {
329 Serial.println("\nNo Calibration Data for this sensor exists in EEPROM");
330 delay (500);
331 }
332 else
333 {
334 Serial.println("\nFound Calibration for this sensor in EEPROM.");
335 eeAddress += sizeof(long);
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336 EEPROM.get(eeAddress , calibrationData);
337

338 displaySensorOffsets(calibrationData);
339

340 Serial.println("\n\nRestoring Calibration data to the BNO055 ...");
341 bno.setSensorOffsets(calibrationData);
342

343 Serial.println("\n\nCalibration data loaded into BNO055");
344 foundCalib = true;
345 }
346

347 delay (1000);
348

349 // Display some basic information on this sensor
350 displaySensorDetails ();
351

352 // Optional: Display current status
353 displaySensorStatus ();
354

355 //Use external time crystal for the BNO to give better time readings
356 bno.setExtCrystalUse(true);
357

358 // Calibrate sensor
359 sensors_event_t event;
360 bno.getEvent (&event);
361 if (foundCalib){
362 Serial.println("Move sensor slightly to calibrate magnetometers");
363 while (!bno.isFullyCalibrated ())
364 {
365 bno.getEvent (&event);
366 delay(BNO055_SAMPLERATE_DELAY_MS);
367 }
368 }
369 else
370 {
371 Serial.println("Please Calibrate Sensor: ");
372 while (!bno.isFullyCalibrated ())
373 {
374 bno.getEvent (&event);
375

376 imu::Vector <3> euler = bno.getQuat ().toEuler ();
377

378 double x = euler.y() * (180/3.1415);
379 double y = euler.z() * (180/3.1415);
380 double z = euler.x() * (180/3.1415);
381

382 Serial.print("X: ");
383 Serial.print(x, 4);
384 Serial.print(" Y: ");
385 Serial.print(y, 4);
386 Serial.print(" Z: ");
387 Serial.print(z, 4);
388 Serial.print("\t\t");
389

390 // Display calibration status
391 displayCalStatus ();
392

393 // New line for the next sample
394 Serial.println("");
395
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396 // Wait the specified delay before requesting new data
397 delay(BNO055_SAMPLERATE_DELAY_MS);
398 }
399 }
400

401 Serial.println("\nFully calibrated!");
402 Serial.println("--------------------------------");
403 Serial.println("Calibration Results: ");
404 adafruit_bno055_offsets_t newCalib;
405 bno.getSensorOffsets(newCalib);
406 displaySensorOffsets(newCalib);
407

408 Serial.println("\n\nStoring calibration data to EEPROM ...");
409

410 eeAddress = 0;
411 bno.getSensor (& sensor);
412 bnoID = sensor.sensor_id;
413

414 EEPROM.put(eeAddress , bnoID);
415

416 eeAddress += sizeof(long);
417 EEPROM.put(eeAddress , newCalib);
418 Serial.println("Data stored to EEPROM.");
419 }
420 else {
421 bno.setExtCrystalUse(true);
422 }
423

424 if(zero) {
425 Serial.println("Zeroing ... Please do not move the device");
426 delay (1000);
427 }
428 // Set BNO to sensor fusion mode
429 bno.setMode(OPERATION_MODE_NDOF);
430 delay (500);
431

432 }
433

434 void loop() {
435

436 Wireless (); // Check wireless
437 distance_meas (); // Check for obstacles
438

439 // Check for emergency stop
440 if (stop == 1){
441 Serial.println("Stop");
442 // Set motor current to 0
443 odrive1.SetCurrent (1, 0);
444 odrive1.SetCurrent (0, 0);
445 // Check wireless again
446 Wireless ();
447 }
448 else{
449 // If no obstacle is prescent , then proceed
450 if (obstacle == 0){
451 IMU_code ();
452 }
453 }
454

455
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456 }

I.2 Arduino code using the GY-91

Below the Arduino code using sensor fusion and the GY-91 is included

1 #include "FastIMU.h"
2 #include <Wire.h>
3

4 #define IMU_ADDRESS 0x68 // Change to the address of the IMU
5 #define PERFORM_CALIBRATION // Comment to disable startup calibration
6 MPU6500 IMU; // Change to the name of any supported IMU!
7

8 // Currently supported IMUS: MPU9255 MPU9250 MPU6886 MPU6500 MPU6050 ICM20689 ICM20690
BMI055 BMX055 BMI160 LSM6DS3 LSM6DSL QMI8658

9

10 calData calib = { 0 }; // Calibration data
11 AccelData accelData; // Sensor data
12 GyroData gyroData;
13 MagData magData;
14

15 #include <ODriveArduino.h>
16 // Printing with stream operator
17 template <class T> inline Print& operator <<(Print &obj , T arg) { obj.print(arg);

return obj; }
18 template <> inline Print& operator <<(Print &obj , float arg) { obj.print(arg , 4);

return obj; }
19 #define odrive_serial1 Serial1
20 ODriveArduino odrive1(odrive_serial1);
21

22 // Torque constant
23 float K_T = 0.3152;
24

25 // Define pi
26 const float pi = 3.14159265358979323846;
27

28 // Degrees to radians and radians to degree convertation
29 float deg2rad = pi /180;
30 float rad2deg = 180/pi;
31

32 // Bias in manual calibration
33 float X_bias;
34 float Y_bias;
35 float Z_bias;
36

37 // Times
38 float start_IMU;
39 float start_control;
40

41 // Gyroscope variables
42 float gyroX , gyroXd , accelX , velX , posX , magX;
43 float gyroY , gyroYd , accelY , velY , posY , magY;
44 float gyroZ , gyroZd , accelZ , velZ , posZ , magZ;
45

46 // Angles and change in angles
47 float alpha , alphad;
48 float beta , betad;
49 float Gamma , Gammad;
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50

51 // Motor variables
52 float i_1 ,i_2;
53 float w0 ,w1;
54 float theta0 ,theta1;
55 float sd;
56 float T_diff , T_sum;
57

58 // Initial time
59 float t0;
60

61 void setup() {
62

63 // Enable pull up resistors to IMU
64 pinMode(PIN_A4 ,INPUT_PULLUP);
65 pinMode(PIN_A5 ,INPUT_PULLUP);
66

67 // Initialise I2C Comminucation
68 Wire.begin();
69 Wire.setClock (400000); //400 khz clock
70

71 // Allows gyro reading up to 2000 degree/second
72 IMU.setGyroRange (2000);
73

74 // Initialise serial communication with PC
75 Serial.begin (115200);
76 delay (100);
77

78 // Initialise serial communication with ODrive
79 odrive_serial1.begin (115200);
80 delay (100);
81

82 // Checking for faults with IMU
83 int err = IMU.init(calib , IMU_ADDRESS);
84 if (err != 0) {
85 Serial.print("Error initializing IMU: ");
86 Serial.println(err);
87 while (true) {
88 ;
89 }
90 }
91 delay (100);
92

93 // Performing automatic calibration
94 #ifdef PERFORM_CALIBRATION
95 Serial.println("FastIMU calibration - Keep IMU level.");
96 delay (500);
97 IMU.calibrateAccelGyro (& calib);
98 IMU.init(calib , IMU_ADDRESS);
99 #endif

100

101 // Performing automatic calibration
102 int I = 50;
103 for (int i = 0; i <= I; i++) {
104 // Read gyroscope
105 IMU.update ();
106 IMU.getGyro (& gyroData);
107

108 // Define bias
109 X_bias += gyroData.gyroX;
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110 Y_bias += gyroData.gyroY;
111 Z_bias += gyroData.gyroZ;
112

113 // Delay
114 delay (10);
115 }
116

117 X_bias = X_bias/I;
118 Y_bias = Y_bias/I;
119 Z_bias = Z_bias/I;
120

121 Serial.println("Calibration done!");
122 delay (100);
123

124 t0 = millis ();
125 }
126

127 void IMU_code () {
128

129 // Creating change in time dt since last calculation
130 float end = start_IMU;
131 start_IMU = 1E-3 * millis ();
132 float dt = start_IMU - end;
133

134 // Reading IMU data
135 IMU.update ();
136 IMU.getGyro (& gyroData);
137 IMU.getAccel (& accelData);
138 IMU.getMag (& magData);
139

140 // Gyroscope data
141 gyroXd = (gyroData.gyroX - X_bias)*deg2rad;
142 gyroYd = (gyroData.gyroY - Y_bias)*deg2rad;
143 gyroZd = (gyroData.gyroZ - Z_bias)*deg2rad;
144

145 // Change in states
146 alphad = gyroZd;
147 betad = gyroYd;
148 Gammad = gyroXd;
149

150 // Integration
151 gyroX = RK4(gyroX ,gyroXd ,dt);
152 gyroY = RK4(gyroY ,gyroYd ,dt);
153 gyroZ = RK4(gyroZ ,gyroZd ,dt);
154

155 // Accelerometer data
156 accelX = accelData.accelX;
157 accelY = accelData.accelY;
158 accelZ = accelData.accelZ;
159

160 // Magnetometer data
161 magX = magData.magX;
162 magY = magData.magY;
163 magZ = magData.magZ;
164

165 // Pitch from accelerometer
166 float beta_accel = atan2(-accelX ,sqrt(pow(accelY ,2) + pow(accelZ ,2)));
167

168 // Roll from accelerometer
169 float gamma_accel = atan2(accelY ,accelZ);
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170

171 // Yaw from gyroscope
172 alpha = gyroZ;
173

174 // Complimentary filter on pitch
175 beta = (beta + gyroYd*dt)*0.95 + beta_accel *(1 - 0.95);
176

177 // Complimentary filter on roll
178 Gamma = (Gamma + gyroXd*dt)*0.95 + gamma_accel *(1 - 0.95);
179

180 }
181

182 void LQR_Control (){
183

184 // Creating change in time dt since last calculation
185 float end = start_control;
186 start_control = 1E-3 * millis ();
187 float dt = start_control - end;
188

189 // Read motor speeds
190 w0 = odrive1.GetVelocity (0) *(2*pi);
191 w1 = odrive1.GetVelocity (1) *(2*pi);
192

193 // Integrate
194 theta0 = RK4(theta0 ,w0 ,dt);
195 theta1 = RK4(theta1 ,w1 ,dt);
196

197 // Linear velocity
198 sd = (0.2436* gyroZd - 0.0825* w0 - 0.0825* w1 - 0.2436* gyroZd)/2;
199

200 // LQR - Gain matrix
201 T_diff = ( -20.0*( alpha - 0) - 11.53*( alphad - 0) + 0.00*( beta - 0) + 0.00*( betad - 0)

+ 0.00*( sd - 0));
202 T_sum = ( 0.0*( alpha - 0) + 0.00*( alphad - 0) + 64.86*( beta - 0) + 14.99*( betad - 0)

+ 4.99*( sd - 0));
203

204 // Motor current references
205 i_2 = (T_sum + T_diff)/(2* K_T);
206 i_1 = (T_sum - T_diff)/(2* K_T);
207

208 // Saturate current
209 i_1 = limit_value(i_1 , -10, 10);
210 i_2 = limit_value(i_2 , -10, 10);
211

212 // Request current on ODrive
213 odrive1.SetCurrent(0,-i_1);
214 odrive1.SetCurrent (1,i_2);
215

216 }
217

218 void loop() {
219

220 // Read gyroscope
221 IMU_code ();
222

223 // Controller
224 LQR_Control ();
225

226 }
227
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228 // Fourth order Runge -Kutta numerical intergration
229 float RK4(float x, float xd , float dt) {
230 float k1_2 , k2_2 , k3_2 , k4_2;
231

232 k1_2 = dt * xd;
233 k2_2 = dt * (xd + k1_2 /2);
234 k3_2 = dt * (xd + k2_2 /2);
235 k4_2 = dt * (xd + k3_2);
236

237 return x + (k1_2 + 2*k2_2 + 2*k3_2 + k4_2)/6;
238 }
239

240 // Saturation function
241 float limit_value(float value , float min_limit , float max_limit) {
242

243 if (value < min_limit) {
244 return min_limit;
245 } else if (value > max_limit) {
246 return max_limit;
247 } else {
248 return value;
249 }
250 }

I.3 Arduino code for the Arduino UNO

Below the Arduino code including wireless communication and joystick measurements from the
Arduino UNO is included.

1 // Lib for ekstra serial port as 0 and 1 are reserved for serial monitor
2 #include <SoftwareSerial.h>
3 // Serial port for HC12
4 SoftwareSerial HC12(10, 11); // HC -12 TX Pin , HC -12 RX Pin
5

6

7 // Joystick variables
8 #define VRX_PIN A0 // Pin connected to VRX pin
9 #define VRY_PIN A1 // Pin connected to VRY pin

10 int sender = 0;
11 bool stop = 0;
12

13 }
14

15 void setup() {
16 HC12.begin (9600); // Open serial port to HC12 (for wireless)
17 Serial.begin (9600); // Start serial monitor
18 pinMode(but_PIN , INPUT); // Define button as input
19 }
20

21 void loop() {
22 // Read stop button
23 stop = digitalRead (2);
24 // Read joystick potentiometer , convert value into a set reference for the Teensy MCU
25 if (analogRead(VRX_PIN) > 500){
26 sender = sender +1;
27 }
28 else if (analogRead(VRX_PIN) < 400){
29 sender = sender -1;
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30 }
31 if (sender > 1023){
32 sender = 1023;
33 }
34 else if (sender < 0){
35 sender = 0;
36 }
37 if (stop == 0){
38 sender = 0;
39 }
40 // Send the stop and joystick value to the Teensy
41 HC12.println(String(stop) + "," + String(sender) );
42 // Print values in the Arduino serial monitor
43 Serial.println(String(stop) + "," + String(sender) + "," + String(analogRead(VRX_PIN))

);
44 }
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