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0.1. Summary v

0.1 Summary

This report aims to explore different methods of profiling Python applications, with
the goal of identifying which pieces of information are required to predict energy
usage to a sufficient degree of accuracy. The intent is that once a reliable method
has been established, it can be implemented with minimal effort from developers.

0.1.1 Monitoring

To have a better understanding of the energy usage over time, we chose to create
a systemd daemon service that wrote readings of the powercap energy interface,
and sensors temperature to a file every 0.5 seconds. This has a marginal effect on
the energy usage of the system, and was enough of a task that the fan activity
could be clearly seen on the resulting graphs, but was chosen as a way to easily
demonstrate the profile throughout the course of the experiment

0.1.2 Algorithms

We chose to profile 5 algorithms: sleeping; the nbody problem; the mandelbrot set;
a binary tree generator; and a benchmark that compares dataframe technologies.
The intent of these choices was to try and cover a broad spectrum Python patterns.

0.1.3 Performance Profiling

For this report, we chose to examine Bash time, the Python sys settrace function-
ality, and the python cProfile module. We found that the settrace functionality
had too much overhead to be feasible in a realistic environment, with a minimum
of 50x increase in execution time. The cProfile method had better overhead but
unfortunately did not expose fundamental enough information to be useful for
cross-functionality. The Bash time command was the most useful, however the re-
lationship has not been fully understood yet: running the Python sleep command
appeared to have no energy cost, which suggested that energy would be propor-
tional to CPU time; this was disproven by multithreaded algorithms surprisingly
having lower energy cost overall. We found that despite this, all algorithms ap-
peared to correlate with real time, furthermore that repetitions of each algorithm
would consistently scale with this number - suggesting that the algorithm itself
would have a consistent energy footprint.

0.1.4 Summarised Conclusion

In conclusion, we believe that the information required to predict energy usage
has not been fully covered in this report, and suggest that further investigation
into CPU loads would be required to get a full picture of energy costs.
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Chapter 1

Introduction

1.1 Problem Statement

1.1.1 Context

Energy usage is a growing concern of the computing industry[8, 17], with Python
being a widely used language[41], it is a prime candidate for energy optimisation
research.

Energy optimisation has incentivised approach in several computing sectors,
including but not limited to server hosting and mobile technology.

Data centres account for a significant portion of global electricity demand[7],
which presents a promising avenue for reducing costs of long-term running ser-
vices in an effort to reduce such costs[4, 6].

Similarly, mobile devices require limited batteries to operate, leading to a rather
obvious incentive to optimise their energy usage for longer uptime[42].

1.1.2 Issue

Surveys on conventional knowledge on energy consumption show a general lack
of understanding for avenues to improving power saving[24], this means that even
if developers choose to optimise their code for energy efficiency, they may not
know how to do so. This issue is exacerbated by the opacity of the variety of
modern hardware (which can be complex to learn the details of ) and the layers of
abstraction that modern computers operate on - leading to a lack of understanding
of the energy costs of specific operations.

The concept that this report hinges on is the fact that performance profiling is
relatively a lot easier, as there are more readily available system agnostic tools that
simply measure the time taken for a specific operation to execute. This is in con-
trast to energy profiling, which requires system level tools or physical hardware to
measure the energy readings. Developers who want to measure the energy profile

2
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of their system must find and implement such tools which require knowledge of
the system that the software is running on, information which may not even be
readily accessible in situations such as automated testing or cloud computing.

In summary, while both performance and energy profiling have their own chal-
lenges, performance profiling is more accessible and easier to implement than en-
ergy profiling.

1.1.3 Objectives

The objective of this report is to study the relationship of Python performance
against its energy usage, with the goal of leveraging performance profiling to pre-
dict the energy profile of a Python application. To do this, we will have to find
patterns that affect performance and energy in consistent ratios, such as specific
system calls, memory interactions, or higher level concepts. Furthermore, we must
test that these patterns scale, as specific concepts involving memory management
and caching may require more advanced approaches to make accurate predictions.
A completed product of this research would be a process that can be implemented
with minimal developer effort or performance overhead, to aid in the adoption of
energy efficient programming practices. The questions we aim to answer are:

• How does the performance of a Python application relate to its energy usage?

• What techniques are required to accurately infer the energy profile of a
Python application?

• How can these techniques be applied in a convenient and non-invasive man-
ner?

1.1.4 Justification

The positive correlation between performance optimisation and energy optimisa-
tion is rather intuitive, as many strategies for performance optimisation (such as
reducing unnecessary execution) are congruent with energy optimisation. This
correlation appears to transcend programming languages themselves, with studies
into energy usage of languages coming up with similar ratios of energy against
time for the same algorithms[25].

In comparison to performance profiling, energy profiling can be far more cum-
bersome to execute - as there is no truly accurate way to attribute energy usage to
any specific process. This has lead to the suggestion of using performance profiling
as a proxy to loosely optimise energy cost[2] with papers suggesting that execution
time can be used to directly infer energy cost[3].
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1.2 Related Work

Scaphandre

Scaphandre[36] is a tool that is designed to monitor the energy usage of a system,
similar to the purpose of this report they seek to “enable the tech industry to shift
towards more sustainability”. As of the writing of this report, Scaphandre has had
updates as recent as 4 months ago, and 1.5k stars on GitHub, which are good
indicators of a healthy project.

Intel Power Gadget/Monitor

Intel Power Gadget[14] is a tool that is designed to monitor the energy usage of
Intel CPUs, as of October 13, 2023, the tool has been deprecated in favour of the
more general Intel Performance Counter Monitor(PCM) [13] - which is designed
to analyze CPU resource utilisation on Intel processors.

1.3 Performance Profiling

This section will explore accepted ways to profile the speed of Python applications.
Microsoft Visual Studio recognizes three forms of profiling: sampling, instrumen-
tation, and tracing[27]. Profiling is a balance, as the more detailed the profiling,
the more overhead is introduced to the script, in this section we will explore all
the aforementioned methods of profiling, and find the most appropriate balance
between detail and overhead.

Bash Time

Assuming the script is being run in a bash terminal, the time command[19] is a
typical simple approach to finding execution time; as per the documentation this
outputs 3 values: real, user, and sys time. Real time refers to the total time taken
for the script to execute, user time refers to the time spent executing instructions
on the CPU in user space, while sys time refers to the time spent executing calls in
kernel space with elevated privileges. This is immediately more useful than simply
timing the experiment, as it gives us insight into the execution time at different
levels of processing. The Bash time function returns results in milliseconds, with
both user and sys time being translated from clock ticks within the CPU - this
makes it difficult to judge the accuracy of such measurements, as “the value of HZ
varies across kernel versions and hardware platforms”[20], for the purpose of this report
we will assume it is sufficient. Lastly, as the timer is not connected to the script
being tested, there is no way to create a profiler that can locate exact points of
inefficiency, simply indicate that they exist if the program is running slower than
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expected - this can be partially circumvented by creating profiles for units of code
that can be applied using static profilers.

1 from time import sleep
2 sleep (5)
3

4 >>> real 0m5 ,022s
5 >>> user 0m0 ,018s
6 >>> sys 0m0 ,004s

Listing 1.1: Measuring the Bash time output of running the sleep command from the Python time
module to maximise the real time

1 x = 0
2 for i in range (100000000):
3 x += i
4

5 >>> real 0m6 ,539s
6 >>> user 0m6 ,509s
7 >>> sys 0m0 ,010s

Listing 1.2: Measuring the Bash time output of iteration in Python to maximise the usr time

1 writer = open(’dumpfile.txt ’, ’w’)
2 large_text = ’x’ * 100000000
3 writer.write(large_text)
4 writer.close()
5

6 >>> real 0m1 ,307s
7 >>> user 0m0 ,210s
8 >>> sys 0m0 ,797s

Listing 1.3: Measuring the Bash time output of writing to a file in Python to maximise the sys time

Perf

Perf is a complex Linux tool designed to collect a myriad of different events, for this
section we will focus on the record and report functionality, which gathers samples
of the cycles event, this compiled information can be displayed as a report with
various different tools, such as the gecko tool displayed in fig1.1. Perf has the
advantage of (if enabled) describing the entire system in its report, which can
be useful to ascertain whether the script is being affected by other processes, or
causing extra load not accounted for in the script.
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Figure 1.1: Comparing a Python script that sleeps for 5 seconds (left) to the busy calc script from 1.3
(right) note the increased amount of samples for busycalc, which may be used to predict its increased
load

Python Profiler

The python profiler[31] is a standard tool for profiling Python applications, it im-
proves on Bash time by providing information on the time within each call of
the script, allowing for a more granular understanding of what might be causing
performance bottlenecks. As per the documentation, the timer is limited by the
underlying clock rate (1ms) - additionally due to the time between an event and
the call for the clock state can introduce inaccuracies for calls that execute many
times in a short period. The python profiler is split into two parts, the cProfile
and profile modules, the cProfile module is a C extension with minimal overhead
that is intended for our use-case, while the profile module is a pure Python im-
plementation that is designed to be more approachable for tasks such as creating
extensions - for our purposes we will focus on cProfile. While the Python profiler
is a powerful tool, it is not without drawbacks, as calls themselves can be nebulous:
1.4 shows how the previously created busycalc script has only a single identifiable
call. This suggests that simply attaching a value to each call is not enough, and
that predicting an energy reading using this information will take a more complex
approach.

1 $ time python -m cProfile busycalc.py
2 3 function calls in 6.221 seconds
3

4 Ordered by: cumulative time
5

6 ncalls tottime percall cumtime percall filename:lineno(function
)

7 1 0.000 0.000 6.220 6.220 {built -in method
builtins.exec}

8 1 6.220 6.220 6.220 6.220 busycalc.py:1(<module >)
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9 1 0.000 0.000 0.000 0.000 {method ’disable ’ of ’
_lsprof.Profiler ’ objects}

10

11

12

13 real 0m6 ,303s
14 user 0m6 ,277s
15 sys 0m0 ,010s

Listing 1.4: Running cProfile on the busycalc script

Python Logging

The previous sections showed that there are many easy ways to record the time
before and after script execution, so this section will rather focus on situations
where this is not desired - namely in applications that are not expected to run for
short periods of time.

Logging is a standard concept within programming, generally used to extract
information about the state of a program from a user’s perspective. The standard
Python logger[30] is simple and allows timings to be attached to log messages,
however this only operates up to a millisecond resolution, so for more precise
calculations, this functionality has to be expanded on. When logging events, the
desired effect is to retrieve the most accurate and high resolution time available,
this is done by running the Python in-built time[33] utility - as of Python3.7, time
provides six different functions at nanosecond resolution[34], preventing loss of
precision due to floating point calculations. Similarly to Bash time, the different
functions provide different insights into the execution of the script, these can be
explored provided that logging is explored as a method of profiling.

The issue with logging is that it is not a standard method of profiling, and re-
quires changes to the script to provide valuable insights into where time is being
invested in the script. Lastly, as logging is an invasive process, it will undoubt-
edly affect the performance of the script, which introduces the decision of correct
logging intervals to minimize overhead while still retrieving sufficiently precise
data.
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Figure 1.2: An example of logging being used to find the time after every 10,000 executions of adding
to i. Note that while the logging library has a time function, there is no way to inject higher resolution
timers without manually calling them. In the output there is also the perf counter, showing a far
higher precision output of execution

PyTracer

As an alternative to logging, the Python sys package includes a settrace module[32]
that allows for the injection of code into individual callbacks of the Python inter-
preter. This is a powerful tool, as it allows us to analyse individual stack frames,
we can use this to analyse executed opcodes and derive energy usage metrics from
predictions of their energy footprint - to understand the opcodes we will need to
make further use of the disassembler module dis[29]. Furthermore, these frames
contain contextual information that will allow a working profiler to pinpoint areas
of contention to developers.

The major drawback of tracing is similar to logging, as any form of tracing is
invasive, and will skew results, this can be mitigated if the footprint of the tracer
is known and accounted for in the final results.
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Figure 1.3: An example of using pytracer to trace the execution of a function that adds two values
via iterating over the first, the output at the bottom is split into calling add(1, 10) (left) and add(2, 10)
(right), first the bytecode of the function is printed using the diassembler module (with line numbers
on the far left), followed by the individual opcodes being run - note that the output on the right is
identical except for the repeated opcodes in the output on the right.



Chapter 2

Setup

2.1 Setup

The experimentation in this paper are being performed on a laptop with the battery
removed, the specifications are as follows:

Laptop: Lenovo ThinkPad P1
CPU: Intel(R) Core(TM) i7-8850H CPU @ 2.60GHz
Memory: 32GB
Disk: 500GB SAMSUNG MZVLB512HAJQ-000L7
OS: Ubuntu 23.10
Kernel: 6.5.0-28-generic

2.2 Approach

It is unlikely that a single ratio can model the relationship between performance
and energy, this report will attempt several methods at extrapolating contextual
information of a script to predict its energy usage. Certain programming concepts
such as memory management and may require more advanced instrumentation to
make accurate predictions, such as multithreading, which has positive effects on
performance at the cost of negative effects on energy usage[26]. The goal of this
paper is to find a method that produces the most accurate predictions with the
minimum effort of implementation. In reality, we do not expect to need incredibly
accurate predictions, the aim is that the result of this paper can be used to find
areas of greater energy cost, as long as we can expose these areas, we are not
concerned with the exact energy values.

To find the most accurate model, this report will attempt to use a variety of
forecasting techniques to predict energy readings from performance readings, then
compared against actual energy readings to find the most accurate model.

10
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Experiment Process

As even the most sanitised systems are unlikely to have a completely stable power
usage, we will need to have multiple runs of each. For this report we have chosen
to run each experiment 10 times, then average results deemed to not be outliers -
outliers will be identified by unexplained rises in temperature, or large deviation
from the mean. We choose 10 experiments as a maximum amount of tests that
we can complete within the time constraints of this report, accounting for failed
experiments and the time taken to set up each experiment. There will be a 10-
minute gap for each experiment, this length of time has been chosen simply as a
convenient length of time for plotting results, allowing for faster visual inspection
of the data.

2.3 Data Collection

Energy Data Collection

Energy data collection will be done using intel’s Running Average Power Limit(RAPL)
interface, which is widely accepted as a sufficiently reliable method of measuring
energy[39, 16, 12]. It provides a simple interface for retrieving energy usage, and
breaks down energy usage into multiple domains, which can be examined sepa-
rately. It should be noted that throughout this report we focus on the PSys domain,
which contains a slightly more complete picture of the energy usage of the system
that the other domains - this domain is unfortunately not widely available on all
processor models[15], and so the results of this report may not be repeatable on
other systems.

The RAPL interface has multiple points of access, which on Linux all depend
on the powercap framework[21]. This section will explore the best approaches to
collecting data from RAPL to get the best test results. For the purposes of our
experiments we will retrieve the energy values in micro-Joules directly from the
framework (this can be done simply by reading the files exposed in the powercap
interface). Our method for retrieving this data is to manually find where each
RAPL domain is stored, and retrieving the number that is stored there - later we
can compare these numbers to retrieve a delta of energy usage. To have a better
idea of the energy usage throughout a script’s execution, we will retrieve the energy
usage at regular intervals, this will also help identify any anomalous behaviour
in the energy usage. The disadvantage of this is similar to the disadvantage of
physical energy meters, as there is no way to guarantee that the beginning of the
script is synced with the first energy reading, multiple experiments can mitigate
this issue. It should be noted that the perf functionality mentioned in 1.3 can also
be used to retrieve energy usage, however we have decided that manual retrieval
is more reliable for our purpose.
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The first and easiest way to measure the energy usage of a script is to measure
the energy before and after, this functionality is provided quite simply via the perf
tool. To understand the affect of individual constructs on execution time, there is
a need for a more granular measurement of energy, this can be done one of two
ways - either by injecting energy measurements into the scripts themselves, or by
having a separate process measuring the energy level at specified intervals. The
first approach has the advantage of being able to measure the energy usage of
the components themselves, while the second approach is much less invasive and
can be applied broadly. Due to the structured nature of RAPL interface writes,
an outside polling approach seems to be more advantageous, as more granular
measurements will not necessarily provide additional data. This does introduce
the possibility of synchronisation issues between the script and the polling process.

Our first attempt at a polling process for energy usage is with the use of a cron
job that runs every second, the job is simply a Bash script that saves data points to
a logfile that can then be plotted.

Unfortunately cron does not expose the ability to run a job at a higher frequency
than once a minute, so we must implement a script that executes the polling pro-
cess in a loop at 1 second intervals. This has two disadvantages: firstly, if there
is any interruption of the script, the polling process will be offset ( if the script
is delayed by a second, then there will be a 2-second gap between measurements,
and consequently a duplicate value at the start of the next minute); additionally, as
the script executes in non-zero time, every execution will delay the next poll, this
means that the interval does not remain consistent even with perfect execution.
Finally, in the event that the results of this report are to be reproduced, it should
be noted that the cron service is not a guaranteed part of all Linux systems, and
may have to be manually installed.
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Figure 2.1: Using crontab to poll for energy usage every second, the inconsistency of intervals can be
seen to cause spikes in the data that would have to be normalised for a more accurate representation
of the data.

The next logical step is to attempt to take advantage of the systemd[11] service
manager, which allows creation of custom daemon services, this includes a timer
functionality that allows us to run a polling script every second. As we can see
in fig.2.2, the systemd service provides a more consistent interval between polls,
which reduces variance.

Figure 2.2: Using systemd to poll for energy usage every second, the consistency of intervals can be
seen to provide a more consistent data set, however there is still clear visible variation in the data
that may pollute results
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Supplementary Data Collection

In the interest of a full picture; we also retrieve the temperature statistics of the
machine, as it may help to explain anomalous behaviour in the results we find. This
is simply done by parsing the output from the sensors command, which provides
the temperature of the CPU cores. Unfortunately the sensors command does not
provide functionality to request specific data, so some post processing is required
to achieve plottable output - this is done by using the awk command to extract
the relevant data, and can be seen on line 7 in listing 2.1. For plotting, we have
chosen to simply average the temperatures of all cores, which may lead to an over-
representation of multithreaded workloads, as the CPU will be hotter when all
cores are in use.

For this report we have chosen not to log the workload of the CPU, a tech-
nique used by the Scaphandre tool [10] This has been done as a time constraint,
as we would have to implement extra monitoring, parsing, and analysis to retrieve
meaningful data from the workload of the CPU.

Polling Frequency

The first step in data collection is to determine the frequency at which we will poll
the system, this is important as higher poll rates will affect the system more, while
providing more accurate data. Intel claims an update frequency of approximately 1
millisecond[35], providing an upper limit for viable frequency, however the value
that we choose will likely be lower than this, due to the time required to read
from the RAPL interface. As it is impossible to guarantee exact intervals (to within
microseconds), we will normalize all results to Joules/second, this will also prevent
higher poll frequencies from having lower energy readings, allowing for easeier
comparisons of the true invasiveness of the polling system.

In addition to finding the optimal polling frequency, this section will provide a
baseline control dataset that can be compared against future data.

Rate - 1s A rate of 1 second produces unremarkable results, as there is a lack
of comparison so far.
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Figure 2.3: Polling the powercap interface at a rate of every second for an hour; psys stats in are:
min - 12.61, max - 15.65, mean - 13.70, std - 0.41

Rate - 0.5s A rate of 0.5 seconds has a noticeable increase in power usage,
however variance is slightly lower, this could either be due to random chance, or
it may indicate that there is a pattern to the volatility of RAPL’s power readings,
which suggest the possibility of modeling the baseline pattern of the system to
predict future power usage. This rate also exposes a cyclical pattern to temperature,
which may be useful for future analysis.

Figure 2.4: Polling the powercap interface at a rate of every 0.5 seconds for an hour; psys stats are:
min - 16.41, max - 21.24, mean - 17.97, std - 0.38

Rate - 0.2s A rate of 0.2 seconds uses almost double the energy of the 1 second
rate, and has much higher variance, making it the worst choice for a polling rate.
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Figure 2.5: Polling the powercap interface at a rate of every 0.2 seconds for an hour; psys stats are:
min - 18.29, max - 26.30, mean - 20.61, std - 0.58

Conclusion

Unfortunately increasing the rate past 0.2 seconds appears to crash the systemd
process, and has been deemed not viable for experimentation. As results are rel-
ative, we choose the polling rate of 0.5 seconds, as it provides a good balance
between invasiveness and repeatable patterns - and better models temperature
change. Readers repeating the process may also want to use these results to ex-
trapolate the energy cost of the polling system - this can be done by taking the
difference between the mean of the 0.5s rate and the 1s rate, and then multiplying
this that difference by 2 (note that this is unlikely to be accurate, and is disproved
by our results where the difference between 1 and 0.5 should be smaller than the
difference between 0.5 and 0.2).

Lastly, RAPL occasionally resets the powercap interface to zero readings - this
interferes with results, as it is no longer possible to simply compare the power
reading before and after results. Due to the nature of powercap updates, we will
never receive a zero value, so the current process is to subtract the first power usage
value from the maximum, and then add the final value - it is important to note that
this approach will not work for experiments that run long enough to have two or
more updates.

The resulting collection logic is displayed in listing 2.1, this is executed by the
systemd service in listing 2.2 which is in turn executed by the timer service in
listing 2.3.

1 ENERGYOUT =###############
2 TEMPOUT =#################
3 ENERGY_FILE=$(cat ###############)
4
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5 time=$(date +"%y-%m-%d %T")
6 energy=$(cat $ENERGY_FILE | sed -z ’s/\n/,/g’)
7 temp=$(sensors | awk -F ’ ’ ’/^Core/{gsub ("[[: space :]]+" ,""); printf

"%s,", $1}’)
8

9 echo "RUNNING POWERLOG"
10 printf "$time ,$energy\n" >> $ENERGYOUT
11 printf "$time ,$temp\n" >> $TEMPOUT

Listing 2.1: power and temperature logging script - variable names have been replaced with hash
characters

1 [Unit]
2 Description=Run profiler every second
3 StartLimitIntervalSec =60
4 StartLimitBurst =61
5

6 [Service]
7 ExecStart =/usr/bin/bash #########/ powerlog.sh
8 User =#######
9

10 [Install]
11 WantedBy=multi -user.target

Listing 2.2: systemd service

1 [Timer]
2 OnUnitActiveSec =1s
3 AccuracySec =1us
4 Unit=profiler.service

Listing 2.3: systemd timer

2.4 Experimental Algorithms

The intent of this section is to define and justify the algorithms we have chosen to
test in our research, additionally, we can use preliminary tests of each algorithm as
a baseline for their respective energy footprints in the Implementation chapter.

Experimental Space

To prevent bias in specific operations, this paper will attempt to use a variety of
scripts that perform different purposes. As a time constraint, the scripts should be
simple to execute, and ideally should have very little ambiguity on their intended
execution - as an example, python libraries will not be considered, as they perform
many functions, and it is difficult to determine an execution path without a full
understanding of the library. Consequently, programs that operate on a resource,
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or connect to the internet will also not be considered, to prevent time wasted on
debugging network issues or misunderstandings of the operable resource.

Constraining the experimental space like this introduces an obvious bias, this
can be addressed in continuations of this research by expanding the experimental
space to include more complex scripts.

The most obvious approach is to start by running benchmarks, as they are often
designed to test the limits of a system and are likely to explore a wide range of
operations to draw conclusions. For this report we will use the scripts defined in
the Debian computer languages benchmark game[40]. Relying on benchmarks has
two major drawbacks: the first is that benchmarks necessarily are not a good rep-
resentation of a typical use case of a system, rather a way to expose the flaws of the
tested system; the second issue is that benchmarks must be designed to be compa-
rable across the tested systems - in our case this means that all the algorithms we
have taken from the benchmark games were chosen for their broad applicability
and may not cover a sufficient amount of Python constructs to be useful for our
purposes. Nevertheless, the benchmarks will provide a good starting point for our
research. In a parallel approach, we can find example code to benchmark specific
sectors by searching for research papers comparing technologies in that sector, this
provides a more focused approach to targeting specific concepts in Python, as suf-
ficiently well presented papers will provide control groups to eliminate technology
bias.

We will attempt to keep algorithms at a baseline of 10 minute runs, this dura-
tion is chosen simply for convenience, as it is short enough to run multiple times,
and long enough to aid visual analysis of the data. Each experiment will be run 10
times, to inspect variance in run time and energy usage, outliers will be identified
by unexplained rises in temperature, or large deviation from the mean.

Sleep

The most trivial process to profile is the sleep command, profiling a sleeping
Python script should give us a good baseline for the energy usage of the Python
interpreter, and the footprint of the various profiling tools.

As can be seen in fig 2.6, the Python interpreter has a completely negligible
energy impact, and can not be distinguished from the noise of the system. For this
reason, when forecasting future results, we can ignore baseline costs.
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Figure 2.6: Running sleep within Python for 10 minutes, experiment durations are highlighted in
grey

Bash Time The sleep command is important for understanding the Bash pro-
filing tool, as we can see that sleeping has no visible effect on overall power con-
sumption, we will attempt to make the assumption that when Bash profiling, time
not spent in usr or sys accounts for zero energy usage. This assumption is likely
incorrect, as simply executing the script will incur an energy cost, however we
believe that the value is low enough that it can be safely ignored.

N-Body

The n-body problem is a classic problem in physics, and is used to simulate the
motion of celestial bodies in a system. In order to come close to the 10-minute
testing time that we have previously implemented for sleep, we are running this
algorithm with an input of 50 million. As seen in 2.7, the algorithm is running at
an average of 652 seconds, which is acceptably close to the 10-minute mark, with
an average of 15211 joules of energy used. Visual analysis of the graph shows that
energy usage varies highly (with a range of 13448 to 17119 joules), though this
seems to be directly proportional to the variance of time - this suggests that more
promising results will be seen from approaches that test for time, rather than the
actual execution of the script.
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Figure 2.7: Running the n-body problem, experiment durations are highlighted in grey

Bash Time The n-body problem is a good example of a pure user space script,
after 10 runs the mean of each time is as follows: real - 10m:48s (std - 55s) user -
10m:48s (std - 55s) sys - 0.02s (std - 0.01s)

Binary Trees

Binary trees are a simple data structure that are classically used to as an excercise in
computer science - for this experiment we have specifically chosen an implementa-
tion that avoids multithreading, as we are interested in having multiple algorithms
that are sequential. As seen in 2.8, the algorithm is running at an average of 457
seconds, with an average energy usage of 10860 Joules, this is a promisingly close
result to the n-body problem (an average of 23.3J/s compared to 23.8J/s), and sug-
gests that the energy usage of the Python interpreter is consistent across different
sequential algorithms.
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Figure 2.8: Running the binary tree algorithm, experiment durations are highlighted in grey

Mandelbrot

Mandelbrot is a classic algorithm used to generate fractal images, and is often used
as a benchmark for performance, we have chosen this specific implementation as
it is highly multithreaded, as can be seen in 2.9, the core and package-0 domains
are not only far lower than previous sequential algorithms, they are also far more
stable; this suggests that further research must be done to understand how the
energy usage of multithreaded applications affect energy usage.

In our preliminary experiments, the Mandelbrot algorithm has shown to exe-
cute at an average execution time of 585 seconds, with an average energy usage of
13341 Joules (averaging 22.8J/s).

Figure 2.9: Running the mandelbrot algorithm, experiment durations are highlighted in grey
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DataFrame Tester

Python DataFrames are a powerful tool used for data manipulation and analysis,
and is being used extensively to generate the data seen in this report, we believe
that DataFrame benchmarking is a useful avenue as they are often heavily involved
in running underlying C binaries, together with the fact that there may be some
level of multithreading implemented. For this experiment we have found an ar-
ticle looking to compare and benchmark the performance of different dataframe
libraries [1] - unfortunately two of the four benchmarking libraries were too cum-
bersome to implement, this is ultimately not an issue as the validity of the test is
not a concern of this report.

As seen in 2.10, the algorithm is running at an average of 217 seconds, with an
average energy usage of 5200 Joules, unfortunately, it has been difficult to find an
input to reach an average 10-minute mark.

Figure 2.10: Running the dataframe tester, experiment durations are highlighted in grey

Bash Time The DataFrame tester brings two facets, firstly, the real time is lower
than the sum of user and sys time, this indicates that the process must be multi-
threaded - when looking at the sleep experiment, we suggested that time spent
outside the user and sys time would incur zero energy cost, while this experiment
suggests that it might be pertinent to ignore the value completely.

The statistics of the exploratory run are as follows: real - 3m:37s (std - 15s) user
- 5m:9s (std - 14s) sys - 44s (std - 1.5s)
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Tests

3.1 Bash Time

The first profiling method we will test is simply Bash time, the assumption to make
for this section is that the energy profile can be accurately predicted by simply
knowing the amount of time a process has spent in real, user, and kernel time.

Internal Consistency

The first step in our process is to verify that running an algorithm multiple times
remains consistent in terms of the amount of energy used over the time taken.
From the previous section, it is clear that there is a large amount of variance in
time taken for algorithms to complete - this section seeks to demonstrate that the
variance of time predictably scales with the variance of energy usage. If we can
prove that the energy usage of an algorithm is consistent over multiple runs, this
would suggest that time measurements are a required component of predicting en-
ergy usage. For this section, we simply use the results of the baseline experiments
performed earlier, the average times are as follows:

Sleep NBody BTree DataFrames Mandelbrot
real 10m 10m54s 7m38s 3m38s 9m46s
usr 0.02s 10m53s 7m28s 5m09s 1h46m
sys 0.01s 0.01s 10.7s 45.0s 16.5s

Next we compare the energy usage of each algorithm to the real time taken to
complete each algorithm (Joules/sec):

Sleep NBody BTree DataFrames Mandelbrot
mean 19.212 23.285 23.715 23.820 22.782

std 0.038 0.261 0.411 0.333 0.077
range 0.109 0.742 1.143 1.071 0.243

23
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From this data, we can see that the energy usage of each algorithm is consistent
over multiple runs, with each algorithm using 3.5-4.5J/s (normalising against the
results of sleep). Surprisingly despite its multithreaded nature, the Mandelbrot
algorithm is by far the most efficient, this unfortunately invalidates the theory that
we could correlate CPU time with energy usage, as the Mandelbrot algorithm uses
by far the most CPU time. For single threaded applications, this correlation may
still be possible to draw, however we do not have a sufficient sample size to make
this claim. In the following table we compare the energy usage per second of each
algorithm to the CPU time taken to complete them (the values for sleep have been
subtracted to prevent CPU time from accounting for regular background noise).

Sleep NBody BTree DataFrames Mandelbrot
mean 0 4.07 4.56 2.83 0.33

std 0 0.29 0.38 0.20 0.01
range 0 0.83 1.03 0.54 0.02

This further proves that while the time spent executing the algorithm remains
consistent, using execution time is simply not enough information to predict the
energy usage of an algorithm.

Scaling Consistency

The next step is to verify that the energy usage of an algorithm scales with the time
taken to complete the algorithm, as all the algorithms we have chosen rely heavily
on repetition. In the previous section we have shown that algorithms appear to
strongly correlate with their run-time, based on this evidence we can test that the
energy usage will scale linearly for higher work-loads (under the assumption that
running more of a similar set of instructions will lead to a linear increase in energy
usage). If this also shows a strong correlation then analysis on the underlying
process of the algorithms are likely to be the second component needed for an
accurate prediction. For the following table we have taken increments of each
algorithm and measured their energy usage over time.
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Iteration 1 2 3 4 5 6 7 8 9 10
Sleep Time (s) 399 419 439 459 479 499 519 539 559 579

Sleep Energy (J/s) 15.83 16.78 17.17 17.94 18.54 18.89 18.97 18.87 18.93 18.87
NBody Time (s) 474 488 515 548 579 616 618 648 655 676

NBody Energy (J/s) 22.94 23.29 23.28 23.37 23.55 23.05 23.18 23.07 23.07 23.07
BTree Time (s) 0 0 1 3 7 21 45 106 209 504

BTree Energy (J/s) 0.0 0.0 19.1 19.45 21.64 22.61 22.44 23.23 23.47 23.21
Dataframes Time (s) 52 111 172 225 285 346 416 468 535 576

DataFrames Energy (J/s) 11.12 23.6 23.49 23.97 24.2 23.65 24.08 23.69 23.58 24.32
Mandelbrot Time (s) 154 191 229 271 318 366 415 469 526 585

Mandelbrot Energy (J/s) 21.58 22.7 22.83 22.92 23.09 22.97 22.81 22.81 22.78 22.68

We can see from the results that at lower time sample sizes, energy usage ap-
pears to be inconsistent, but stabilises rapidly for longer lived algorithms - this is
likely due to fluctuations having a greater effect on faster run-times.

Temperature Adjusted Readings

Visually it can be noticed that as experiments continue, the average baseline tem-
perature of the CPU appears to increase slightly, unfortunately, directly correlating
this to energy usage is not possible, as the fans of the CPU reduce temperature
while maintaining higher energy usage. Unfortunately due to time constraints we
could not find the true relationship between temperature and energy usage

Conclusion

From the results of this section we can conclude that time is a required compo-
nent for predicting energy usage, as we have deemed fluctuations in execution to
correspond to changes in energy usage. We have found that there is very little
correlation with the CPU time taken to complete an algorithm and its energy cost
- disproven by the mandelbrot algorithm unexpectedly out-performing the other
algorithms, this phenomenon is further explored in the 4.2 section. For a most
basic prediction of energy usage, we can simply attach a value to the time taken
to complete an algorithm, this unfortunately may be too basic of an approach for
user’s attempting to fully understand the energy usage of their applications.

3.2 Opcode Tracing

As purely looking at time doesn’t appear to be a reliable method of predicting
energy usage, we will now attempt to look at the opcodes being executed by each
script to see if a conclusion can be drawn between executed opcodes and energy
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usage. We have already noted that opcodes can be retrieved by using the sys
module, unfortunately there does not appear to be a process that can also retrieve
the operands provided, which have been suggested to affect energy usage, but
possibly not by a significant amount [38].

Opcode Gathering

In the exploration of profiling tools 1.3 we simply took each opcode and printed it
to console. This is a good start, but fails to gather data in a meaningful way, and
will be useless for larger programs that execute more opcodes.

For testing opcode gathering in this section we will use the nbody algorithm,
as it scales easily and has a large number of operations involved. The primary
problem with any kind of granular tracing is that the operations involved in the
trace naturally interfere with the execution of the script itself, as opcodes increase
in amount this becomes a very real problem, as we will see in following examples.

We are apprehensive of the cost of tracing, and so will choose a very short
run of the nbody algorithm for this test to begin with, and monitor effects on
performance using Bash time as we introduce more invasive tracing.

To begin with, we will simply run the nbody algorithm with no tracing, we
have chosen an input of 50000 as it runs for approximately half a second (we are
also continuing to print the output of the algorithm to ensure that there is no effect
on the value). It should be noted that the tests in this section are ad-hoc, and are
not intended to be used as a benchmark.

1 offset_momentum(BODIES[’sun ’])
2 report_energy ()
3 advance (0.01 , 50000)
4

5 >>> -0.169075164
6 >>> real 0m0 ,583s
7 >>> user 0m0 ,672s
8 >>> sys 0m0 ,988s

Listing 3.1: Running the nbody problem at an input of 50000

Next we add basic tracing with no logic involved to see the cost of tracing itself.

1 def trace(frame , event , arg):
2 return trace
3

4 sys.settrace(trace)
5

6 offset_momentum(BODIES[’sun ’])
7 report_energy ()
8 advance (0.01 , 50000)
9

10 sys.settrace(None)
11
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12 >>> -0.169075164
13 >>> real 0m1 ,915s
14 >>> user 0m1 ,987s
15 >>> sys 0m0 ,973s

Listing 3.2: Tracing the nbody problem with no trace logic

Lastly, to retrieve the opcodes executed by the system, we must also enable
the tracer to trace them, we test the effect of this by adding a boolean assignment
inside the trace function.

1 def trace(frame , event , arg):
2 frame.f_trace_opcodes = True
3 return trace
4

5 sys.settrace(trace)
6

7 offset_momentum(BODIES[’sun ’])
8 report_energy ()
9 advance (0.01 , 50000)

10

11 sys.settrace(None)
12

13 >>> -0.169075164
14 >>> real 0m8 ,320s
15 >>> user 0m8 ,249s
16 >>> sys 0m1 ,057s

Listing 3.3: Tracing the nbody problem with opcodes enabled

As we can see by these tests, enabling opcodes in the trace alone has an effect
an entire order of magnitude greater than the original run-time, this likely already
makes the approach unviable for the purpose of the report, which is to create a tool
that can be used to predict energy usage in a reasonable amount of time. Despite
this, we will continue to explore the concept of opcode tracing, as it may be useful
for smaller scripts, or for gathering snippets of larger algorithms.

Finding the least logic required to trace opcodes is a difficult process, and there
are likely other ideas to attempt in achieving smaller workloads between opcodes,
here we document our attempts: First we attempt to simply print the opcodes
directly to console, this is a naive approach, but fully functional and gives us a
starting point to optimise from.

1 def trace(frame , event , arg):
2 frame.f_trace_opcodes = True
3 print(dis.opname[frame.f_code.co_code[frame.f_lasti ]])
4 return trace
5 sys.settrace(trace)
6

7 offset_momentum(BODIES[’sun ’])
8 report_energy ()
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9 advance (0.01 , 50000)
10

11 sys.settrace(None)
12

13 >>> RESUME
14 >>> LOAD_FAST
15 >>> LOAD_FAST
16 >>> GET_ITER
17 >>> ...
18 >>> -0.169075164
19 >>> ...
20 >>> LOAD_CONST
21 >>> RETURN_VALUE
22 >>> RETURN_VALUE
23

24 >>> real 20m29 ,021s
25 >>> user 2m29 ,438s
26 >>> sys 1m20 ,866s

Listing 3.4: Naive opcode printing approach

To create an efficient tracer in Python space (compiled solutions will be reserved
for future work), we have identified two potential approaches towards reducing the
overhead of the tracer:

Aggregation - Instead logging each opcode, we can aggregate the opcodes into
a map structure that gets incremented, providing a count of each opcode at the
end and reducing the amount of data being stored; the downside of this approach
is that it may not be possible to determine the order of opcodes executed.

Streaming - On Linux the Python print statement sends data to the STDOUT
stream[22], which is then flushed to the console, the print statement unfortunately
also has significant overhead[28], so to make this solution work, we will have to
bypass the regular logic Python uses and write directly to either a stream or a file,
whichever is more efficient. This solution will allow us to preserve the order of
the opcodes, and find patterns in the order of their execution, but it creates a lot of
extra data that must then be processed and analysed.

1 events = np.zeros (200)
2 def trace(frame , event , arg):
3 frame.f_trace_opcodes = True
4 events[frame.f_code.co_code[frame.f_lasti ]] += 1
5 return trace
6 sys.settrace(trace)
7 offset_momentum(BODIES[’sun ’])
8 report_energy ()
9 advance (0.01 , 50000)

10

11 sys.settrace(None)
12

13 events = pd.Series(events)
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14 print(’\n’.join([f"{dis.opname[x]} - {y}" for x, y in events[events >
0]. items ()]))

15

16 >>> -0.169075164
17 >>> POP_TOP - 1.0
18 >>> BINARY_SUBSCR - 3750000.0
19 >>> ...
20 >>> PRECALL - 500002.0
21 >>> CALL - 500002.0
22

23 >>> real 0m29 ,549s
24 >>> user 0m29 ,574s
25 >>> sys 0m1 ,001s

Listing 3.5: Tracing the nbody problem using aggregation

The most efficient aggregation solution we found was to generate a numpy[23]
array of zeros, and then increment them, this solution unfortunately still requires
indexing, which is likely the cause of the 4 times increase in execution time (we
consider the loss of memory on unused opcodes to be negligible, as the array is
only 256 elements long).

1 def trace(frame , event , arg):
2 frame.f_trace_opcodes = True
3 opout.write(str(frame.f_code.co_code[frame.f_lasti ])+’,’)
4 return trace
5 sys.settrace(trace)
6 offset_momentum(BODIES[’sun ’])
7 report_energy ()
8 advance (0.01 , 50000)
9

10 sys.settrace(None)
11

12 >>> -0.169075164
13 >>> real 0m28 ,407s
14 >>> user 0m28 ,290s
15 >>> sys 0m1 ,075s

Listing 3.6: Tracing the nbody problem using streaming

The most efficient streaming solution we found was to append to a file on the
system, while it is slightly faster than the aggregation solution, it requires more
post-processing to be useful, and notably generated 305MB of data in a script that
normally has a 0.5 second runtime. As opcode numbers are not uniform length, a
separator is required to split the opcodes, this action accounts for approximately
1/3 of the overhead.
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Conclusion

While the opcode tracing approach is interesting, and may be useful for smaller
scripts, all of our efforts to reduce the overhead of the tracer have failed, resulting in
a minimum of 50 times overhead for our most efficient attempts. A continuation of
this report may involve a compiled solution, or a more efficient method of opcode
tracing.

3.3 Python Profiler

As opcodes do not appear to be a viable approach in the current state, we will
attempt to use a more traditional approach in this section.

Implementation

Similarly to the opcode section, we will use the NBody algorithm as a test case to
understand the general overhead of the Python profiler. As can be seen in the code
snippet 3.7, we must do some extra work to capture the output of the profiler, as
it directs output to STDOUT. We then use a regex string to capture the individual
values outputted.

1 # Prepare test
2 pr = cProfile.Profile ()
3 pr.enable ()
4

5 # Run test
6 offset_momentum(BODIES[’sun ’])
7 report_energy ()
8 advance (0.01 , 500000)
9

10 # End test
11 pr.disable ()
12 s = io.StringIO ()
13 ps = pstats.Stats(pr, stream=s)
14 ps.print_stats ()
15

16 # Parse values
17 text_output = s.getvalue ().split(’\n’)
18 total_run = text_output [0]. split ()[-2] # get total run value
19 restring = r"^\s*(\d*)\/?\d*\s*(\d*\.?\d*)\s*(\d*\.?\d*)\s*(\d*\.?\d*)

\s*(\d*\.?\d*)\s*(.*)$"
20 values = [list(re.match(restring , x).groups ()) for x in text_output

[5: -3]]
21 pandas_values = pd.DataFrame(values , columns=[’ncalls ’, ’tottime ’, ’_

’, ’cumtime ’, ’percall ’, ’method ’])
22 pandas_values = pandas_values.drop(columns=[’_’])
23
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24 # Truncate method length for printing to console demo
25 pandas_values[’method ’] = pandas_values[’method ’]. str [:20]
26 print(pandas_values.sort_values(’tottime ’, ascending=False))
27

28 >>> ncalls tottime cumtime percall method
29 >>> 0 1 6.531 6.793 6.793 ####################
30 >>> 5 5000000 0.261 0.261 0.000 {built -in method mat
31 >>> 1 1 0.000 0.000 0.000 {method ’disable ’ of
32 >>> 2 1 0.000 0.000 0.000 ####################
33 >>> 3 1 0.000 0.000 0.000 ####################
34 >>> 4 1 0.000 0.000 0.000 {built -in method bui

Listing 3.7: Running the NBody problem with the cProfile profiler (file paths have been replaced
with hash values)

1 ncalls tottime percall cumtime percall method
2 1 0.000 0.000 0.000 0.000 {built -in method
3 11 0.001 0.000 0.001 0.000 {built -in method
4 1 0.000 0.000 0.000 0.000 {method ’disable
5 3.../1... 222.276 0.000 222.276 0.000 ..:15( make_tree)
6 3.../1... 230.958 0.000 230.958 0.000 ..:20( check_tree)

Listing 3.8: Running the Btree problem with the cProfile profiler, we changed the truncation style
slightly, line 5 and 6 originally have a path from root to the method

Our preliminary tests have shown that the above method increases execution
time by approximately 200%, which we consider an acceptable decrease in perfor-
mance for a test that only needs to be run once.

Unfortunately listing3.8 shows that the profiler is not as useful as we had
hoped, as the methods that take up the majority of the time are both specific to the
algorithm, so attaching a value will not be applicable for all algorithms. In conclu-
sion, we do not believe that the Python profiler is a viable method for predicting
energy usage, as the information given is not fundamental enough, as disproven
by the BTrees experiment.
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Conclusion

4.1 Conclusion

How does the performance of a Python application relate to its energy usage?

As was expected when we began this project, there are many factors that can affect
the energy usage of a Python application, our exploratory findings are as follows:

• The energy usage of a running the Python interpreter is not measurable
against the noise of the system itself, though running the interpreter with
no instructions repeatedly appeared to increase the ambient temperature of
the processor, suggesting that there are unaccounted for processes in our
monitoring. This discovery led us to believe there was a connection between
the time spent within the CPU and energy usage, as programs with low CPU
time had negligible energy usage.

• Following our previous findings, we attempted to tie CPU time to energy
usage, but found that largely multithreaded processes - that used far more
CPU time - were far more energy efficient, and more stable. This leads us to
believe that the energy usage of a process is more tied to the CPU load, as
evidenced by other studies highlighted in the Threat to Validity4.2 section.
More research is required to confirm this hypothesis.

What techniques are required to accurately infer the energy profile of a Python
application?

Due to time constraints this report has not found a definitive prediction model for
energy usage. Research of smaller scale approaches to energy usage have shown
that analysis of underlying instructions can be used to infer energy costs[9], sug-
gesting that accurate predictions require these instructions to be documented and
understood. In this report we have shown that some of these techniques can be

32
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cumbersome to build and apply, in reality this may not be an issue as the tech-
niques become automated, however we pose that such metrics are not required for
a general estimate of energy usage.

How can these techniques be applied in a convenient and non-invasive manner?

In this report we have attempted several methods to profile energy usage, rather
expectedly the only non-invasive method we have achieved is simply retrieving
time, the overhead of which could not be distinguished from the fluctuations of
the run-times themselves. In contrast, both opcode and call tracing proved to
have significant overhead; it may be argued that as these tracers only have to run
once, there is a higher tolerance for lower efficiency monitoring. We believe that
implementing these methods will however negatively affect development time, we
believe developers will be de-incentivised from experimenting, as testing new code
will require a significant amount of time to run.

Conclusion

In conclusion, we believe that counter-intuitively, the most effective method of
profiling energy does not lie in the Python profiling tools, but rather by monitoring
metrics that are already ubiquitous in the development process. Due to lack of
experimentation results, we can not definitively state the culprit of energy usage in
Python applications, but the efficiency of our multithreaded experiments, paired
with research into similar fields has led us to believe that CPU load is a major
factor in energy usage.

4.2 Threats to Validity

CPU Load

The CPU load of a system is a measure of how much of the CPU is being used
at any given time, in section2.3 we noted that monitoring CPU load would be too
cumbersome for the time requirements of this report. Unfortunately this appears
to have been a mistake, as multiple studies have shown a non-linear relationship
between CPU load and energy usage[37, 5].

Temperature

Visual inspection of the average CPU temperature throughout experiments shows
a clear increase in temperature as experiments progress, this suggests that a 10-
minute gap was not sufficient for a true reset, this is also shown by the increased
run-times for later repetitions of each algorithm. Furthermore, experimentation
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was performed in a room with standard commercial air conditioning, which in-
creases the risk of environmental factors such as temperature and humidity af-
fecting results differently at different times. Fortunately, this mistake led to the
discovery of the correlation between real time and energy usage, as the increased
run-time of each algorithm is directly proportional to the increased energy usage.

Experimental Width

Due to time constraints, we could only test a certain amount of algorithms on a
specific set of hardware, with such a narrow experimental width there is a chance
that specific algorithms or hardware quirks could have affected the results.

4.3 Future Work

More Algorithms

An exhaustive test of all Python applications is infeasible, however it can be argued
that there are many sectors that are not represented by the algorithms in this report.
Future studies could look into finding if there are specific implementations that
produce different patterns to those found in this report, and if so, what the cause
of these differences are.

Opcode Gathering

In the opcode section3.2 we deemed that opcode tracing was not a viable approach
to predicting energy usage due to its large overhead; an extension of this report
could be to attempt to create a compiled approach to opcode gathering, which may
reduce overhead sufficiently for an applicable solution.

Hardware

Difference combinations of hardware will have different effects on energy, a worth-
while future contribution could repeat similar experiments for different popular
hardware configurations, to see if the patterns found in this report are consistent
across different systems.
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Appendix A - Experimental Algo-
rithms

The code used for each experimental algorithm.

1 import time , sys
2

3 time.sleep(int(sys.argv [1]))

Listing 5.1: Sleep Algorithm

1 # The Computer Language Benchmarks Game
2 # https :// salsa.debian.org/benchmarksgame -team/benchmarksgame/
3 #
4 # contributed by Joerg Baumann
5

6 from contextlib import closing
7 from itertools import islice
8 from os import cpu_count
9 from sys import argv , stdout

10

11 def pixels(y, n, abs):
12 range7 = bytearray(range (7))
13 pixel_bits = bytearray (128 >> pos for pos in range (8))
14 c1 = 2. / float(n)
15 c0 = -1.5 + 1j * y * c1 - 1j
16 x = 0
17 while True:
18 pixel = 0
19 c = x * c1 + c0
20 for pixel_bit in pixel_bits:
21 z = c
22 for _ in range7:
23 for _ in range7:
24 z = z * z + c
25 if abs(z) >= 2.: break

35



36

26 else:
27 pixel += pixel_bit
28 c += c1
29 yield pixel
30 x += 8
31

32 def compute_row(p):
33 y, n = p
34

35 result = bytearray(islice(pixels(y, n, abs), (n + 7) // 8))
36 result [-1] &= 0xff << (8 - n % 8)
37 return y, result
38

39 def ordered_rows(rows , n):
40 order = [None] * n
41 i = 0
42 j = n
43 while i < len(order):
44 if j > 0:
45 row = next(rows)
46 order[row [0]] = row
47 j -= 1
48

49 if order[i]:
50 yield order[i]
51 order[i] = None
52 i += 1
53

54

55 def compute_row(p):
56 y, n = p
57

58 result = bytearray(islice(pixels(y, n, abs), (n + 7) // 8))
59 result [-1] &= 0xff << (8 - n % 8)
60 return y, result
61

62 def ordered_rows(rows , n):
63 order = [None] * n
64 i = 0
65 j = n
66 while i < len(order):
67 if j > 0:
68 row = next(rows)
69 order[row [0]] = row
70 j -= 1
71

72 if order[i]:
73 yield order[i]
74 order[i] = None
75 i += 1
76
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77 def compute_rows(n, f):
78 row_jobs = ((y, n) for y in range(n))
79

80 if cpu_count () < 2:
81 yield from map(f, row_jobs)
82 else:
83 from multiprocessing import Pool
84 with Pool() as pool:
85 unordered_rows = pool.imap_unordered(f, row_jobs)
86 yield from ordered_rows(unordered_rows , n)
87

88 def mandelbrot(n):
89 write = stdout.buffer.write
90

91 with closing(compute_rows(n, compute_row)) as rows:
92 write("P4\n{0} {0}\n". format(n).encode ())
93 for row in rows:
94 pass
95 #write(row [1])
96

97 if __name__ == ’__main__ ’:
98 mandelbrot(int(argv [1]))

Listing 5.2: Mandelbrot Algorithm

1 import sys
2 from math import sqrt
3

4 def combinations(l):
5 result = []
6 for x in range(len(l) - 1):
7 ls = l[x+1:]
8 for y in ls:
9 result.append ((l[x][0],l[x][1],l[x][2],y[0],y[1],y[2]))

10 return result
11

12 PI = 3.14159265358979323
13 SOLAR_MASS = 4 * PI * PI
14 DAYS_PER_YEAR = 365.24
15

16 BODIES = {
17 ’sun ’: ([0.0 , 0.0, 0.0], [0.0, 0.0, 0.0], SOLAR_MASS),
18

19 ’jupiter ’: ([4.84143144246472090e+00,
20 -1.16032004402742839e+00,
21 -1.03622044471123109e-01],
22 [1.66007664274403694e-03 * DAYS_PER_YEAR ,
23 7.69901118419740425e-03 * DAYS_PER_YEAR ,
24 -6.90460016972063023e-05 * DAYS_PER_YEAR],
25 9.54791938424326609e-04 * SOLAR_MASS),
26
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27 ’saturn ’: ([8.34336671824457987e+00,
28 4.12479856412430479e+00,
29 -4.03523417114321381e-01],
30 [ -2.76742510726862411e-03 * DAYS_PER_YEAR ,
31 4.99852801234917238e-03 * DAYS_PER_YEAR ,
32 2.30417297573763929e-05 * DAYS_PER_YEAR],
33 2.85885980666130812e-04 * SOLAR_MASS),
34

35 ’uranus ’: ([1.28943695621391310e+01,
36 -1.51111514016986312e+01,
37 -2.23307578892655734e-01],
38 [2.96460137564761618e-03 * DAYS_PER_YEAR ,
39 2.37847173959480950e-03 * DAYS_PER_YEAR ,
40 -2.96589568540237556e-05 * DAYS_PER_YEAR],
41 4.36624404335156298e-05 * SOLAR_MASS),
42

43 ’neptune ’: ([1.53796971148509165e+01,
44 -2.59193146099879641e+01,
45 1.79258772950371181e-01],
46 [2.68067772490389322e-03 * DAYS_PER_YEAR ,
47 1.62824170038242295e-03 * DAYS_PER_YEAR ,
48 -9.51592254519715870e-05 * DAYS_PER_YEAR],
49 5.15138902046611451e-05 * SOLAR_MASS) }
50

51 SYSTEM = tuple(BODIES.values ())
52 PAIRS = tuple(combinations(SYSTEM))
53

54 def advance(dt, n, bodies=SYSTEM , pairs=PAIRS):
55 for i in range(n):
56 for ([x1, y1, z1], v1, m1, [x2 , y2, z2], v2 , m2) in pairs:
57 dx = x1 - x2
58 dy = y1 - y2
59 dz = z1 - z2
60 dist = sqrt(dx * dx + dy * dy + dz * dz);
61 mag = dt / (dist*dist*dist)
62 b1m = m1 * mag
63 b2m = m2 * mag
64 v1[0] -= dx * b2m
65 v1[1] -= dy * b2m
66 v1[2] -= dz * b2m
67 v2[2] += dz * b1m
68 v2[1] += dy * b1m
69 v2[0] += dx * b1m
70 for (r, [vx, vy , vz], m) in bodies:
71 r[0] += dt * vx
72 r[1] += dt * vy
73 r[2] += dt * vz
74

75 def report_energy(bodies=SYSTEM , pairs=PAIRS , e=0.0):
76 for ((x1, y1, z1), v1, m1, (x2 , y2, z2), v2 , m2) in pairs:
77 dx = x1 - x2
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78 dy = y1 - y2
79 dz = z1 - z2
80 e -= (m1 * m2) / ((dx * dx + dy * dy + dz * dz) ** 0.5)
81 for (r, [vx, vy , vz], m) in bodies:
82 e += m * (vx * vx + vy * vy + vz * vz) / 2.
83 print ("%.9f" % e)
84

85 def offset_momentum(ref , bodies=SYSTEM , px=0.0, py=0.0, pz=0.0):
86 for (r, [vx, vy , vz], m) in bodies:
87 px -= vx * m
88 py -= vy * m
89 pz -= vz * m
90 (r, v, m) = ref
91 v[0] = px / m
92 v[1] = py / m
93 v[2] = pz / m
94

95 def main(n, ref=’sun ’):
96 offset_momentum(BODIES[ref])
97 report_energy ()
98 advance (0.01 , n)
99 report_energy ()

100

101 if __name__ == ’__main__ ’:
102 main(int(sys.argv [1]))

Listing 5.3: NBody Algorithm

1 # The Computer Language Benchmarks Game
2 # https :// salsa.debian.org/benchmarksgame -team/benchmarksgame/
3 #
4 # contributed by Antoine Pitrou
5 # modified by Dominique Wahli
6 # modified by Heinrich Acker
7 # 2to3
8 # *reset*
9

10 import sys
11

12 def make_tree(depth):
13 if not depth: return None , None
14 depth -= 1
15 return make_tree(depth), make_tree(depth)
16

17 def check_tree(node):
18 (left , right) = node
19 if not left: return 1
20 return 1 + check_tree(left) + check_tree(right)
21

22 min_depth = 4
23 max_depth = max(min_depth + 2, int(sys.argv [1]))
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24 stretch_depth = max_depth + 1
25

26 print(" stretch tree of depth %d\t check:" %
27 stretch_depth , check_tree(make_tree(stretch_depth)))
28

29 long_lived_tree = make_tree(max_depth)
30

31 iterations = 2** max_depth
32

33 for depth in range(min_depth , stretch_depth , 2):
34

35 check = 0
36 for i in range(1, iterations + 1):
37 check += check_tree(make_tree(depth))
38

39 print ("%d\t trees of depth %d\t check:" % (iterations , depth),
check)

40 iterations //= 4
41

42 print("long lived tree of depth %d\t check :" %
43 max_depth , check_tree(long_lived_tree))

Listing 5.4: BTrees Algorithm

1 import sys
2 import pandas as pd
3 import polars as pl
4

5 data_URL = "https ://raw.githubusercontent.com/keitazoumana/
Experimentation -Data/main/diabetes.csv"

6 original_data = pd.read_csv(data_URL)
7

8 amount = int(sys.argv [1])
9 # Duplicated each row [amount] times

10 benchmarking_df = original_data.loc[original_data.index.repeat(amount)
]

11 benchmarking_df.drop([’Outcome ’], axis=1, inplace=True)
12 file_name = "benchmarking_data.csv"
13 # Save the final benchmarking data
14 benchmarking_df.to_csv(file_name , index=False)
15

16

17 def read_csv_with_time(library_name , file_name):
18

19 final_time = 0
20

21 if library_name.lower () == ’polars ’:
22 df = pl.read_csv(file_name)
23 elif library_name.lower () == ’pandas ’:
24 df = pd.read_csv(file_name)
25 else:
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26 raise ValueError (" Invalid library name. Must be ’polars ’, ’
pandas ’, ’vaex ’, or ’datatable ’")

27

28

29 return {" library ": library_name , "execution_time ": final_time}
30

31 pandas_time = read_csv_with_time(’pandas ’, file_name)
32 polars_time = read_csv_with_time(’polars ’, file_name)
33

34 def group_data_with_time(library_name , df , column_name=’Pregnancies ’):
35

36 final_time =0
37

38

39 if library_name.lower () == ’polars ’:
40 df_grouped = df.groupby(column_name).first()
41 elif library_name.lower () == ’pandas ’:
42 df_grouped = df.groupby(column_name)
43 else:
44 raise ValueError (" Invalid library name. Must be ’polars ’, ’

vaex ’, or ’datatable ’")
45

46

47

48 return {" library ": library_name , "execution_time ": final_time}
49

50 pandas_df = pd.read_csv(file_name)
51 polars_df = pl.read_csv(file_name)
52

53 pandas_time = group_data_with_time(’pandas ’, pandas_df)
54 polars_time = group_data_with_time(’polars ’, polars_df)
55

56 def sort_data_with_time(library_name , df , column_name=’Pregnancies ’):
57

58 final_time = 0
59

60 if library_name.lower () == ’polars ’:
61 df_sorted = df.sort(column_name)
62 elif library_name.lower () == ’pandas ’:
63 df_sorted = pd.DataFrame(df).sort_values(column_name)
64 else:
65 raise ValueError (" Invalid library name. Must be ’polars ’, ’

vaex ’, ’datatable ’, or ’pandas ’")
66

67

68 return {" library ": library_name , "execution_time ": final_time}
69

70

71 pandas_time = sort_data_with_time(’pandas ’, pandas_df)
72 polars_time = sort_data_with_time(’polars ’, polars_df)
73
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74 def offload_data_with_time(library_name , df):
75 final_time = 0
76

77

78 if library_name.lower () == ’polars ’:
79 array = df.to_numpy ()
80 elif library_name.lower () == ’pandas ’:
81 array = pd.DataFrame(df).values
82 else:
83 raise ValueError (" Invalid library name. Must be ’polars ’, ’

vaex ’, ’datatable ’, or ’pandas ’")
84

85

86

87 return {" library ": library_name , "execution_time ": final_time}
88

89

90 pandas_time = offload_data_with_time(’pandas ’, pandas_df)
91 polars_time = offload_data_with_time(’polars ’, polars_df)

Listing 5.5: Dataframe Benchmark Algorithm
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