Thor

A tool for detecting energy hotspots in software

Master Thesis
cs-24-pt-10-01

Aalborg University
Department of Computer Science

Summary

Information and Communications Technology uses an increasing amount of en-
ergy. This energy usage can be reduced by optimizing the software that is being
used. Focusing on the parts of the software that consume the most energy, also
known as hotspots, is a good compromise if the entire software cannot be opti-
mized. Finding these hotspots is essential for this approach.

From this problem and the related works, we formulate the following problem
statement.

How can a tool, designed to find energy hotspots, be constructed to help developers gain
an insight into a program’s energy usage?

This problem statement leads to the following research questions.
® RQ1: How can hotspots reliably be detected in a program?
* RQ2: How does the hotspot detection compare to similar tools?

In this thesis, the design, implementation, and testing of Thor, a tool for detect-
ing hotspots, is presented. Thor differentiates itself from other tools by not using
energy estimation models to estimate the energy consumption. Thor uses static
instrumentation to profile the energy consumption of the functions in a program.
Thor currently supports programs written in C# and JavaScript, and can be ex-
tended to support more programming languages.

The design outlines the different components of Thor. This includes the overall
architecture where it is explained how the client interacts with Thor, and how
Thor interacts with the process-under-test.

The energy consumption is gathered using Intel’s Running Average Power Limit,
which utilizes Model-Specific Registers to keep track of the consumed energy. Mea-
surements are gathered using a sampler which regularly retrieves the consumed
energy for later use. The static instrumentation adds code which indicates when a
function has started and when it has stopped. These start and stop points are then

matched to the sampled energy measurements.

The communication between the client, server, and process-under-test is done us-
ing TCP. The process that is to be tested is gathered using Git and is then instru-
mented using either a source code to Abstract Syntax Tree parser when instrument-
ing JavaScript, or an Aspect Oriented Programming tool when instrumenting C#.
During development, an estimation feature was added to the client. This feature is
optional, and the intended use of this functionality is for when a program consists
of many small functions, each with a runtime of under one millisecond.

We conduct a test to assess whether Thor can detect hotspots, a test to assess how
Thor performs when profiling a multithreaded program, and we test Thor on two
implementations of an example web service.

The test to assess Thor’s ability to detect hotspots consists of a mix of microbench-
marks where the outcome is known before the test execution. The test was also
carried out on an existing method to allow for a comparison. The results of both
Thor and the other method are identical for the ranking of the hotspots, with a
nearly identical measured energy consumption for the different hotspots. This
shows that Thor can find hotspots.

The multithreading test shows that multithreading does introduce some pollution
to the measurements. This was enough for hotspots with almost the same energy
consumption to switch places. For hotspots with a larger gap between them, the
ranking did not change.

The example web service tests shows that Thor is able to profile a program which
is more akin to what is found in a production environment.

In conclusion, Thor is able to detect hotspots in programs written in either C#
or JavaScript, and it can be extended to support programs written in different
programming languages.

Copyright © Aalborg University 2024

AALBORG UNIVERSITY
STUDENT REPORT

Title:
Thor: A tool for detecting energy
hotspots in software

Theme:
Energy Aware Programming

Project Period:
Spring Semester 2024

Project Group:
cs-24-pt-10-01

Participant(s):

Jakob Zacho Sendergaard
Mads Christian Bruun Nielsen
Villiam Fredrik Jacobsen

Supervisor(s):
Bent Thomsen
Lone Leth Thomsen

Page Numbers:

Date of Completion:
June §, 2024

Department of Computer Science
Aalborg University
https://www.cs.aau.dk

Abstract:

Previous work have created tools
which were able to detect hotspots in
software. These tools uses estimation
to gather the energy consumption of
the different components of a software
system. We design and develop a tool,
that we call Thor, which does not make
use of estimation to gather the en-
ergy consumption, but instead uses In-
tel’s Running Average Power Limit to
gather the energy consumption. Thor
uses static instrumentation and has
support for C# and JavaScript with the
possibility to extend support to more
programming languages. Thor’s abil-
ity to detect hotspots is tested using
two tests. The system used to test
Thor, is running the Ubuntu Server op-
erating system. For one of the tests
we use an existing method for detect-
ing hotspots, the results from which
we use to compare with the results
generated by Thor. From the results,
we found that, for the first test, Thor
was able to detect the hotspots which
the existing method found and the re-
ported energy usage was similar. The
second test showed Thor in a more
complicated scenario where it also de-
tected the hotspots.

The content of this thesis is freely available, but publication (with reference) may only be pursued due to

agreement with the author.

https://www.cs.aau.dk

Contents

(I Introduction|

2 Related Works|

[3 Methodology|
[3.1 Conceptual Design|
3.1.1 Architectural Design|
3.1.2° Measuring Process|
1. 1c Instrumentationlo oo oo
[3.2 Gathering measurements|
[3.3 Intel’s Running Average Power Limit]

{4 Implementation|
4.1 Server Components|. L.

411 Tastenerl e

4.2.1 Instrumenting JavaScript|
422 Instrumenting C#{.
.3 Shared Library|. L

[5 Experimental setup|
[>.1 System Specifications & Setup| o000

iv

vi

O O N O &

Contents

[/.1.2° Security| oo
7.1 ntainerization loudl oL

[7.3 Asynctfunctions|. L L L.
[74 MSR updateinterval| oo oo 0oL
[7.5 Knowledge of thecode|.,
[7.6 Threatstovalidity|.
[7.6.1 Internal Validity|
[7.6.2 External Validity|

Bibliography

A Stubbing of micro-benchmarks|

B E . ol

[C Reverse Engineering Metalama code|

D AddiGional Workload

|[E Packet representations|
[E.1 Process-under-testpacket| 0000,
[E2 Clientpacket|. 0 ..

[F Stubbed RealWorld implementations|

34

35
35
38
42
43

47
47
47
48
48
49
49
50
50
50
51
51
53

55
56

60

65

66

67

69

70
70
71

73

Preface

Acknowledgement

We would like to thank our supervisors Bent Thomsen and Lone Leth Thomsen for
their guidance throughout the project and for their constructive feedback.

Usage of Artifical Intelligence

Artificial intelligence has assisted with the development of the implementations in
this project by using GitHub Copilot[1]. No artifical intelligence has been used to
aid in writing this thesis.

Aalborg University, June 8, 2024

Jakob Zacho Mads Christian Bruun Villiam Fredrik Jacobsen
Sendergaard Nielsen <vjacob19@student.aau.dk>
<jsandel7@student.aau.dk> <mcbn19@student.aau.dk>

vi

Chapter 1

Introduction

The energy consumption of Information and Communications Technology keeps
increasing[2, 3]. One of the areas where work is being done, to reduce the amount
of consumed energy, is with software. While software does not consume energy
directly, it controls the hardware which consumes energy. By optimizing software’s
usage of the hardware, energy consumption can be lowered. One way to reduce
the amount of time used optimizing software is to focus on optimizing the parts
of the software which uses the most energy, also known as hotspots. Optimizing
hotspots would not improve the energy efficiency as much as optimizing all parts
of a program, but in a scenario where there is a deadline, it is a compromise
between energy efficiency and time. The problem with this approach is finding the
parts of a program that uses the most energy. This project explores how to find
these parts.

Related works, focused on profiling software, are presented in Chapter 2| It was
found that there is a lack of tools or methods able to detect energy hotspots of
generic programs while not utilizing energy models to estimate energy consump-
tion.

This leads to the following problem statement.

How can a tool, designed to find energy hotspots, be constructed to help developers gain
an insight into a program’s energy usage?

This problem statement is divided into the following Research Questions (RQ):
* RQ1: How can hotspots reliably be detected in a program?

* RQ2: How does the hotspot detection compare to similar tools?

Answering these Research Questions will subsequently answer our Problem State-
ment.

This project details the development of the hotspot detection tool called Thor. The
focus of this project is on the energy profiling of functions. In this project, we use
the term function to refer to functions, methods, and procedures. The reason for
focusing on functions and not arbitrary pieces of code is to simplify the project.
Since functions are used to encapsulate the code of a system, focusing solely on
profiling functions still allow for measuring all parts of a program.

This thesis will start with a brief description of the related works in Chapter
Then the methodology is presented in Chapter (3| where our design of Thor is
detailed. This includes information about the different components and related
choices to these components. The implementation of Thor is described in Chapter
Here the specific implementation of each component is presented with argu-
mentation for our choices. We use the experimental setup detailed in Chapter [5|to
test the implementation. This chapter explains the hardware used for the tests and
the different tests conducted. The results from the tests are presented in Chapter
6l In Chapter [7]we discuss the validity of our results and other issues encountered
in the project. Lastly, in Chapter |8 we conclude our findings, and we answer the
research questions and the problem statement. This chapter ends with presenting
proposals for future work.

Chapter 2

Related Works

This chapter presents work related to this project. This includes work which has a
focus on the profiling of software.

Jagroep et al.[4] proposed a method for profiling the energy consumption of soft-
ware, which can be used to detect energy hotspots. Their method uses stubbing,
where they stub each functionality that they wish to measure in conjunction with
a leave-one-out method. They measure the consumed energy by using a WattsUp
Pro power meter[5] and Microsoft Joulemeter[6]. By executing multiple variants of
the software, where for each variant, a functionality has been stubbed, they can de-
termine the impact of the stubbed functionality on the energy consumption. They
tested the method on parts of a city guide service with a variable amount of visi-
tors. From the test they were able to identify the impact the stubbed functionality
had on the energy consumption. This method allows users to measure the energy
importance of most functionality but it requires the manual creation of stubs and
the execution of the entire software for each functionality to profile.

Rajput et al.[7] developed a tool for adding energy measurements of API calls
to Tensorflow into Python scripts using static instrumentation. This tool allowed
them to automate usage of their framework, which required instrumentation of the
code to enable energy measurements with Intel’s Running Average Power Limit
(RAPL)[8] and Nvidia System Management Interface[9]. Their developed tool is
tailored to energy measurement of deep learning and is tested on Tensorflow tuto-
rials where they concluded that it was able to measure the energy consumption of
API calls.

Schubert et al.[10] developed a tool they call eprof for relating energy consumption
to code locations. The code locations are retrieved by using stack traces and the
energy consumption is estimated using energy models. The tool is able to estimate

the energy consumption of the CPU, memory, and devices such as hard-drives. For
the CPU and memory they use statistical profiling by using the hardware perfor-
mance counters (HPC) programmed to generate an interrupt when certain thresh-
olds are reached. This interrupt is the signal for eprof to begin capturing the stack
trace. The HPCs are programmed to match the energy model used such that they
can be used to estimate the energy consumed. In a test they performed, their tool
incurred a maximum overhead of 2.7%. The highest error they reported for the
energy estimation was 7.2%.

Noureddine et al.[11], created a tool, which they call E-Surgeon, for measuring
energy consumption at a thread or method level for Java-based applications. This
tool is composed of two components. The first is called PowerAPI which collects
information about how much energy the process consumes. The second is called
Jalen, which is a profiling tool that either uses bytecode instrumentation or injects
profiling code into the application code. From this, events related to energy con-
sumption are gathered. This data is then correlated with data about energy con-
sumption using power models. They report that Jalen incur an overhead of 43.34%.
They report a margin of error of up to 3% when compared to a powermeter.

Stephenson et al.[12] developed an instrumentation tool for GPUs. This tool uses
instrumentation to inject calls to a user-defined function. They show that the tool
can be used to analyse a range of things such as memory, resilience, and more.
They found that the instrumentation incurred an overhead in the benchmarks they
performed. The overhead resulted in a slowdown of up to 160 times the base
value.

Ritu Arora et al.[13] performed a comparison of three different metaprogramming
approaches. The three approaches are Compile-time metaobjects with OpenJava,
Load-time class adaption with Javassist, and Aspect Oriented Programming (AOP)
with Aspect]. They use the three approaches to create a profiler, to assess the run-
time of functions within a program. They do this by inserting code at the start and
end of each function. In their discussion, they highlight different aspects of these
approaches. OpenJava is flexible but requires changes to the source code and has
a problem with finding return statements. Javassist changes the bytecode at either
load or compile time. Aspect] is highlighted as a safer option, as it uses language
constructs to define the changes to the code, but the locations to change can be
hard to specify.

Thomas Ilsche et al.[14] presents an overview of existing techniques for profiling.
They also combine some of these methods to show how different approaches can
complement each other. The first combination is a message-passing-interface (MPI)
and call-path sampling combination. The combination is developed as a plugin to
an existing tool which contain an instrumented library for a MPI. From the results

of this combination, they show that MPI enables a more detailed analysis. The
second combination is a combination of Hardware Counter sampling and the in-
strumentation of function calls and MPI calls. From the results of this combination
they show that the function and MPI instrumentation, which occur on enter and
exit events, give more information in short functions, whereas the sampler is better
for longer running functions where multiple samples can be gathered between the
enter and exit events.

Lehr et al.[15] propose the framework PIRA for automatic instrumentation refine-
ment for performance analysis. The framework uses instrumentation to analyse
the code and is designed to iteratively refine the instrumentation to include more
data about the important regions. Call-graphs and the amount of statements are
used to determine which parts contain more work than others. The choice of parts
to refine is based on one of two heuristics selection strategies. The GNU profil-
ing interface[16] is used to insert calls at the entry and exit of functions. They
evaluate the framework on four benchmarks in regard to the time needed to re-
fine the instrumentation and the resulting instrumentation configuration. In most
cases, PIRA converged towards the hotspots while lowering the overhead by not
instrumenting less important parts.

From the related works, we identified an area where work could be done. This
area is the lack of a tool or method for the detection of energy hotspots in generic
programs which does not use energy models to estimate the energy consumption
of programs. While Jagroep et al.’s method does not use energy models, their
approach is not automated. Therefore the tool developed should be automated.
Inspiration can be taken from the performance focused related work on how this
can be achieved. Since such a tool or method does not exist, it is unknown whether
it is better than the tools and methods which uses energy models, or the existing
method which does not use energy models. By developing such a tool or method,
an insight into the advantages or disadvantages can be gained.

Chapter 3

Methodology

This chapter explains the design and the thoughts behind the different parts of
Thor. Additional technical knowledge of Intel’s RAPL is presented, which explains
how to use it to measure energy consumption.

3.1 Conceptual Design

This section describes the design of Thor. The purpose of the different parts and
components of Thor are presented.

Thor is designed to offload profiling to another machine. This is to allow the
developer to continue the development on their own machine without affecting
the profiling. If the developer is to access the results of the profiling from their
own machine, then Thor would need to be able to act as a server.

By utilizing a server as the machine running the profiling, more than one devel-
oper would be able to see the results of a profiling by connecting to the server.
This would allow developers to collaboratively analyze the results and plan what
parts of the software that should be focused on improving. In this project, RAPL
is used for measuring energy consumption. RAPL is explained further in Section
Accessing RAPL measurements requires administrative privileges. By devel-
oping Thor as a server, it means only Thor is required to run with these privileges.
Programs that are to be measured, are not required to be granted administrative
privileges.

It is still possible for developers to utilize the tool on their own machine, but it
comes with the overhead of additional communication layers introduced by the
server.

3.1. Conceptual Design 7

The overheard for each request is small, but with enough requests it can potentially
become a problem. This is explored in Section

3.1.1 Architectural Design

The architecture of Thor is designed as a collection of components. It is designed
such that each component can be customized to fit a specific workflow without
having to make major changes to other components of Thor.

A diagram of the architecture can be seen in Figure

Server Process-Under-
Build | Start process :I'ést

&

h 4

Client Listener -«

L

Y

Y

Measurement

Preprocessor #— Matcher

t

Sampler

Measurement
Interface

Figure 3.1: Architectural Design. The arrows indicate the direction of which communication is
started.

The server consists of the following components:
¢ Listener
® Build
® Start process
® Measurement

The Listener component is responsible for handling requests from both the client
and the processes-under-test. The communication between the Client and the
Listener is what facilitates the user starting the profiling of a program and re-
trieving the results. The communication between the processes-under-test and

3.1. Conceptual Design 8

the Listener is used by the processses-under-test to signal when a measurement
should be taken, and sent to the Client.

The Build component is responsible for preparing the source code for execution.
The retrieval of the source code can be done in multiple ways and can vary based
on the needs of the users. The source code can be retrieved from a remote reposi-
tory, it can be retrieved directly from the client, or it can be moved using a physical
medium. In this project, the Build component gathers the source code from a
remote repository specified by the client using Git[17].

After gathering the source code, static instrumentation is used to annotate the
source code, after which an executable is built.

The Start process component handles starting the processes which are to be
tested. Since each program can require their own launch commands, making a
generic command is not ideal. Instead, the Client has to supply the command.
The command could be given directly by the client. This would make it easy for
a developer to change the command should they need to make changes. It could
also be bundled with the source code on the remote repository. This would make
sharing the command with other developers easier, but at the cost of having to up-
date the remote repository when wanting to change the command. Since the Build
component already interfaces with a remote repository, we also interface with the
repository for the Start process component. Because the Build component re-
trieves data from the remote repository, the command can also be retrieved by the
Build component, and then given to the Start process component.

The Measurement component consists of multiple sub-components. A sampling
approach is used for retrieving measurements, which is where a measurement is
retrieved at a regular interval. This choice is described in Section The sub-
components are the following:

® Matcher

e Sampler

® Measurement Interface
® Preprocessor

The Matcher component keeps track of all of the necessary measurements that have
been taken. Only recent measurements are saved with the oldest being discarded
upon the retrieval of a new measurement. Saving all measurements is possible
but would require more storage from the machine running the server. Since only
recent measurements are needed, the old measurements can be discarded, and less
storage is needed.

)

3.1. Conceptual Design 9

When a process tells the Listener to take a measurement the Listener asks the
Matcher for a measurement. Because a sampling approach is used, a timestamp is
included in the request from the Listener to facilitate the matching between the
request for a measurement and the sampled measurement.

The Sampler is the component which requests a measurement from the Measurement
Interface component at a regular interval. The Sampler gives the measurement
to the Matcher every time it receives one.

The Measurement Interface is the component which retrieves a measurement us-
ing RAPL. This component reads the RAPL Model-Specific-Register (MSR) when
requested and returns the value to the requester.

The Preprocessor component is used to process the values retrieved from the MSR
and convert them to joules, the process of which is explained in Section

3.1.2 Measuring Process

In order to measure the energy consumption of a section of a program, modi-
fications to the source code are made. The modifications are added with static
instrumentation, which is explained in Section 3.1.3}

Since the process-under-test has to signal to the Listener that a measurement is to
be taken, a functionality to do this is added to the program that the process-under-
test is running. This functionality is achieved with the inclusion of calls to one of
two functions which have the functionality to send signals to the Listener.

The two functions consist of a start and a stop function. These are inserted in
the source code to denote the beginning and the end of the piece of code to be
measured. Each function sends a unique identifier with the signal. This signal is
used to differentiate between start and stop calls, but the identifier also allows
for the start call to be paired with the corresponding stop call. This is useful if a
function has a different function call within it, as this would cause multiple start
calls and then multiple stop calls.

An example of the start and stop function calls can be seen in Listing

Framework.start ("id")
someFunction ()

3 Framework.stop ("id")

Listing 3.1: Start and Stop calls

3.1.3 Static Instrumentation

The measuring process makes use of start and stop function calls to signal when
a measurement is to be taken. This means that the function calls has to be added

3.2. Gathering measurements 10

to the program.

The instrumentation can be done automatically with either static or dynamic in-
strumentation. Static instrumentation implies instrumentation before or at compile-
time, while dynamic instrumentation is instrumentation at runtime. Dynamic in-
strumentation works with Just-In-Time (JIT) compiled languages such as C#[18]
and Java[19], whereas it might introduce problems with ahead-of-time compiled
languages where relevant details such as function names can be compiled away.
Static instrumentation will be used for this task, as it is able to utilize all details
within the source code. One way to apply the instrumentation statically is to make
use of a parser which constructs an Abstract Syntax Tree (AST) from source code.
By parsing the source code into an AST, the code can be analyzed and instrumented
without needing to account for syntax. Another approach is to use AOP. AOP is
a method of applying code after the default compilation step, meaning that it is
possible to insert additional code to be executed[20]. This additional code could,
for example, be the code that performs the energy measurements.

In this project, both AOP and a source code to AST parser will be used to instru-
ment two different programming languages. The implementation and usage of
these is explained in Section

3.2 Gathering measurements

There are a couple of different ways to gather energy measurements. One way to
retrieve measurements is on demand. This can be done in one of two approaches.
The first approach is that the process can send a request to the Listener compo-
nent which afterwards tells the process it has finished taking the measurement.
This way guarantees that each request gets the correct measurements, but slows
down the process. The second approach is that the process does not wait for a
response from the Listener component. This approach is faster for the process
but depending on the performance of the Listener component, it could report
incorrect measurements.

A second way is to regularly retrieve measurements with a sampler and then, when
a request for a measurement is retrieved, match the request to a measurement. The
matching can be done with a timestamp if the sampler saves the timestamp for
each measurement, and if the process sends a timestamp with the request for a
measurement. Since a timestamp is given with each request, and each measure-
ment has an associated timestamp, the moment the two are matched is not as time
sensitive as if the process was waiting for a response. This allows the server to
perform the matching even after the process is finished, lessening the overhead it
incurs, which reduces the impact it has on the performance of the system. Another

3.3. Intel’s Running Average Power Limit 11

aspect of a sampler is that it introduces an overhead with lesser variance[14].

It is possible that a request for a measurement lies between two different sampled
measurements. This can be handled in a couple of ways. The chosen measurement
can be rounded up or down to the nearest sampled measurement. This approach
has some problems. If both the start and stop requests get rounded to the same
sampled measurement, then the used energy will be zero. This means that even
if that specific function were to use most of the power due to it being executed
significantly more than the other functions, the results would not show it as a
hotspot. The chosen measurement can also be an estimate. Since it is possible for
the matcher to wait until more sampled measurements have been taken, the en-
ergy consumption between two samples can be estimated. Since each request and
sample have an associated timestamp, the request can be matched to the estimated
point between the samples.

In this project, the requests are matched to the nearest measurement, but the client
has an optional estimation feature, which is explained in Section

3.3 Intel’s Running Average Power Limit

Intel’s Running Average Power Limit (RAPL) is an interface that allows retrieval of
energy measurements through Model-Specific-Registers (MSR).

The client hardware has support for:
* Package, which is the processor die[21} Sec 15.10].
* PPO (Power Plane 0), which refers to the processor cores|21, Sec 15.10.4].

® PP1 (Power Plane 1), which refers to a specific device in the uncore, such as
an uncore graphic device[21, Sec 15.10.4]

The server hardware has support for:
® Package[21} Sec 15.10].
e PPO[2T] Sec 15.10].
* DRAM (Dynamic Random Access memory)[21} Sec 15.10].

The MSR’s are updated every 976 microseconds by default[21, Sec 15.10.1]. In-
tel’s CPUs have supported this interface since the Sandy Bridge architecture, and
AMD’s CPUs have supported it since the release of the Zen architecture[22].

Additionally, the MSR_RAPL_POWER_UNIT MSR is used. It specifies how the
values read from the other registers can be converted. Contained from bits 8 to 12
in the MSR_RAPL_POWER_UNIT register, is the Energy Status Unit (ESU), which

3.3. Intel’s Running Average Power Limit 12

specifies the unit for converting the values from the other registers to joules, which
can be done using the following formula: 0.555Y[21} Sec 15.10.1].

An attempt was made to try to modify the MSR_RAPL_POWER_UNIT MSR reg-
ister. However, it was discovered that this MSR register is read-only. Therefore, it
is not possible to increase the speed of the RAPL measurements.

Chapter 4

Implementation

This chapter details the implementation of Thor. It describes the various choices
made and some of the important code that was developed as part of the solu-
tion. The full implementation can be found on the associated GitHub Organiza-

tiorﬂ

4.1 Server Components

This section details the implementation of the components within the server. The
components are described in Section The implementation of the server can
be found on the associated GitHub repositoryﬂ

A goal for the development of the server is a low overhead, such that the server
does not use resources needed for the process-under-test. Because of the need for
a low overhead, the server is written in the Rust programming language. Other
languages such as C and C++ could have been used, as they also are efficient
languages|[23].

41.1 Listener

The implementation of the Listener component is split into two threads, the
listening thread which is responsible for listening, and the responding thread
which sends measurements to the client. This split allows the server to listen for
start and stop calls and send measurements to the client simultaneously. Inspira-
tion has been taken from the bounded buffer problem also known as the producer-
consumer problem[24, Sec 4.3]. This is because both threads share a queue, where

Thttps:/ /github.com / cs-24-pt-10-01
Zhttps:/ / github.com/cs-24-pt-10-01 /thor

13

https://github.com/cs-24-pt-10-01
https://github.com/cs-24-pt-10-01
https://github.com/cs-24-pt-10-01/thor
https://github.com/cs-24-pt-10-01
https://github.com/cs-24-pt-10-01/thor

4.1. Server Components 14

the listening thread enqueues start and stop calls, and the responding thread
dequeues these calls to send measurements to the client. The queue removes a
potential bottleneck for the listening thread, as it is not dependent on how fast
the responding thread can send measurements to the client.

The methods of communication used between the server, client, and process-under-
test is an important choice, as it has an impact on the performance of the system
due to the added I/O. It is possible to communicate between processes on the
same machine using, for example, Inter-Process Communication (IPC). Another
option is network sockets, which are intended for streaming data to other systems.
IPC can only be used within the same machine, which means that IPC cannot be
used to communicate with the client, unless the client is on the same machine. As
such, network sockets are used between the client and the server. For packets sent
between the processes and the server, it is possible to use either IPC or network
sockets, since the processes are located on the same system.

To choose between the two categories, the performance of the different methods are
considered. The performance of Anonymous Pipes, Named Pipes, UNIX Sockets,
and TCP sockets has been benchmarked[25]]. The first three are related to IPC, and
TCP sockets are a type of network socket. It was generally found that Anonymous
Pipes and Named Pipes are good choices when it comes to small packets. However,
as the buffer size increased, UNIX sockets and TCP came out on top. The perfor-
mance comparison between UNIX sockets and TCP sockets is largely negligible.
Therefore, network sockets are used. Aside from TCP sockets, there are also UDP
sockets. While UDP is faster than TCP[26], it has the possibility of losing packets.
These lost packets which represents energy measurements, can give an incomplete
picture of the energy consumption to the developer. Therefore the choice was to
go with TCP sockets. An example of a packet sent by the process-under-test, can
be seen in Appendix

Data transfer

One of the potential issues that can be encountered, is the amount of data that
is collected and subsequently transferred to the client. Depending on how much
work each function in a program does, the amount of data that is sent in a given
timeframe changes.

The format that is used to transfer data from the server to the client is JavaScript
Object Notation (JSON). JSON was chosen as it is a commonly used medium for
sending data over a network.

Since the act of sending data to the client has no impact on Thor’s ability to find
hotspots, using a different medium will not affect the results, but it may affect the
time that is required to transfer the data.

4.1. Server Components 15

An example of a JSON packet can be found in Appendix

4.1.2 Measurements

In the implementation of Thor, the energy consumption is measured with Intel’s
RAPL, which was found to be as accurate as measurements at the plug[27]. Mea-
surements from the interface have a resolution of around 1 kHz, which has been
shown capable of capturing the effect of events, such as JIT compilation, in contrast
to the 1 Hz from a power plug which was not sufficient for the task of showing the
effect of JIT compilation[28].

The RAPL measurements can be read on the Windows operating system (OS) us-
ing the rdmsr kernel command, while on the Linux OS it is possible to read the
measurements from the MSR using the filesystem, or by calling the rdmsr kernel
command. In this project we test on the Linux OS and access measurements using
the filesystem.

As mentioned in Section energy measurements are retrieved at regular inter-
vals. The amount of time between the intervals is set within a configuration file to
enable the user to define the granularity wanted. The granularity is limited by the
resolution of RAPL, so an interval under 1 kHz will only yield additional informa-
tion about when the MSR is updated. This information is useful as the ideal times
to sample are the when the MSR updates. Since the sampler is independent from
the MSRs being updated, a higher sampling rate results in some samples being
closer to the ideal times. The smaller the sampling interval is, the more overhead
the sampler will incur.

Similar to the implementation of the listener, the implementation of the measure-
ment components also takes inspiration from the bounded buffer problem. The
task of sampling at regular intervals is given to a single thread, that produces
measurements to a queue. The measurements within the queue are consumed by
function calls to the matcher executed by the responding thread of the listener
component. This setup allows for sampling without disturbances that can result in
delays between samples such as sending measurements to the client.

The matcher component is implemented as a function that uses a range map to
match measurements from the queue with timestamps from the start and stop
calls. The range map is a data structure that maps values onto ranges[29], in this
case, the values are measurements and the ranges are time. The implementation
of the range map is based on a B-tree which allows for access, insertions, and
deletion in O(log(N)) time, where N is the number of measurements[30]. The
range map allows for efficient matching between timestamps and measurements,
but it has to be kept updated with new measurements before usage. Because

4.2. Static Instrumentation 16

of the cost of updating the range map, the matcher supports matching multiple
timestamps simultaneously, as this allows for updating the range map once for
multiple timestamps. Updating the range map includes adding measurements
from the queue and removing old ones. The removal is based upon a variable
declaring how long a measurement will be stored, this variable affects performance
as the access time of the range map is dependent on its size.

It can be argued that the variable should be low, however, if too many measure-
ments are removed, then matching timestamps can be impossible because of miss-
ing measurements. The value should be set in regard to the expected maximum
delay between the process-under-test and the server.

4.1.3 Build & Start process

The Build and Start process components have been implemented as a single
component. This increases the coupling between the two parts, but simplifies the
implementation, as the build script and the run script can be combined.

The implemented joined component uses Git[17] to clone repositories using a link
supplied by the client. The repository is expected to contain a run script, which is
used to specify how the repository should be instrumented, built, and run. Section
presents the tools that are used for the instrumentation.

The run script is executed by a thread, which is started by the Listener, using a
system call. This means that when the process is finished, the thread can disconnect
the client indicating that the profiling is finished.

The two parts can be separated into different components by moving each of their
parts of the shared code into their own part, and each of their parts of the run
script into two separate scripts.

4.2 Static Instrumentation

In order to gather information about the executed code, custom code is inserted.
The techniques and tools used for instrumenting code depends on the language
that is being targeted.

As mentioned in Section we use a source code to AST parser and an AOP
tool.

Using a source code to AST parser for the purpose of instrumenting the code
requires rules for modification to be created. These rules could include that it has
to target function nodes and insert new nodes before and after. Source code to AST
parsers have the benefit that changing the target node is simple. This means that

N

4.2. Static Instrumentation 17

using such a parser allows for instrumentation of more than just functions, such as
different types of loops. Since the focus of this project is to profile functions, this
functionality is not needed for this project.

Using AOP requires the developer to define aspects, which are the functionality to
be added to the code[20]. In our case, the aspects are calls to the shared library for
measurements. Where to insert the aspects into the source code has to be defined.
This can be done through inserting tags or attributes within the code, or defining
composition rules.

4.2.1 Instrumenting JavaScript

Using the Acorn parser[31] we have implemented a tool for instrumenting JavaScript
Codeﬂ Acorn is used to parse the given JavaScript code into an AST, which is then
walked through using a tree walker.

The AST is instrumented one block at a time, where each line within the block is
searched for expressions containing function calls. If a function is found within a
line, then the line is wrapped within a start and stop node.

Return statements are handled differently to ensure that the stop node is reached.
If a function call is found within an expression of a return statement, as seen in
Listing 4.1{on line 5] then the returned expression is put into a constant declaration
instead, as seen in Listing on line This is because the stop node is placed
after the function call, so if the function call is in a return expression, then the stop
node would be placed after the return expression and therefore never be reached.
A new return statement is then added to return the constant.

To enable execution of the code within the instrumented AST, a library called
estree-util-to-js is used to convert the AST to JavaScript code[32]. An example
of code before and after instrumentation can be seen in Listing 4.T] and

functionCall () ;
const variableWithFunc = example();

function example () {
return func();

}

Listing 4.1: Example code before instrumentation

const rapl = require(’./rapl.js’);
rapl.start("1l:example.js:functionCall");
functionCall () ;

rapl.stop("1:example. js:functionCall");

5 rapl.start("2:example.js:example");

Shttps:/ / github.com/cs-24-pt-10-01/Using-acorn-to-decorate-JS

https://github.com/cs-24-pt-10-01/Using-acorn-to-decorate-JS

4.2. Static Instrumentation 18

6 const variableWithFunc = example();
7 rapl.stop("2:example. js:example");
s function example () {

9 rapl.start("5:example. js:func");

10 const __result = func();
11 rapl.stop("5:example.js:func");
12 return __result;

Listing 4.2: Example code after instrumentation

The instrumented code uses a file called rapl. js, which is a script that contains
start and stop calls for the shared library explained in Section

4.2.2 Instrumenting C#

To instrument C# code, the AOP tool called Metalama[33] is used. This tool allows
for the insertion of aspects at compile-time.

The aspect to be inserted into the code is defined with the LogAttribute class. This
class contains a method called OverrideMethod that is used to override methods
with calls to the shared library. The implementation of this class can be seen
in Listing The LogAttribute class is applied using the Fabric class, which
defines where to apply the aspect at compile time. The Fabric class can be seen in
Listing [4.4

I public class LogAttribute : OverrideMethodAspect

2 A
3 public override dynamic? OverrideMethod ()
! {
5 var methodInfo = meta.Target.Method;
6 var declaringType = methodInfo.DeclaringType;
7 var methodName = methodInfo.Name;
8 var namespaceName = declaringType?.Namespace;
9
10 Thor . Thor.start_rapl ($"{namespaceName}.{declaringType?.Name}.{
methodNamel}") ;
11 var result = meta.Proceed();
12 Thor . Thor.stop_rapl ($"{namespaceName}.{declaringType?.Namel}.{
methodNamel}") ;
13
14 return result;
15 }
6}
Listing 4.3: C# LogAttribute
1 internal class Fabric : ProjectFabric

2 {

public override void AmendProject(IProjectAmender amender) =>

N

4.3. Shared Library 19

amender . OQutbound
.SelectMany (compilation => compilation.AllTypes)
.SelectMany (type => type.AllMethods)
.Where (method => method.BelongsToCurrentProject)
.AddAspectIfEligible<LogAttribute >();

Listing 4.4: C# Fabric class

In order to call the start_rapl and stop_rapl functions, the functions are im-
ported from the shared library under the Thor namespace. The Thor namespace
can be seen in Listing

namespace Thor

{
public class Thor
{
[D11Import("libthor_lib_sync.so")]
public static extern void start_rapl ([MarshalAs(UnmanagedType.
LPUTF8Str)] string lpString);
[D1lImport ("libthor_lib_sync.so")]
public static extern void stop_rapl ([MarshalAs(UnmanagedType.
LPUTF8Str)] string lpString);
}
}

Listing 4.5: C# Thor namespace

4.3 Shared Library

To send measurements to the Thor server, a shared library is utilized by the
processes-under-test. Using a shared library enables usage in multiple program-
ming languages with a single implementation. The shared library uses the C For-
eign Function Interface (FFI), which means that every programming language that
supports this interface can use the library. Interfacing with the shared library incur
different energy efficiency overheads, but the overhead is not significant[28].

The implementation of the shared library is designed around the start and stop
functions. Both of these functions takes a string identifier as parameter which is
used to identify the function that is to be profiled, and sends a network packet to
the server. The implementation of the shared library can be found on the associated
GitHub repositoryﬂ

Since the shared library is loaded by the process-under-test, it is possible for the
process to call the associated start and stop functions using, for example, one

4https:/ / github.com/cs-24-pt-10-01/thor /tree/ main/ crates/shared-lib-sync

https://github.com/cs-24-pt-10-01/thor/tree/main/crates/shared-lib-sync
https://github.com/cs-24-pt-10-01/thor/tree/main/crates/shared-lib-sync

2

3
4
5

6

4.3. Shared Library 20

thread, or several threads. To prevent race conditions if multiple threads executes
the functions at the same time, synchronization is added to the stream that sends
packets with the help of a mutex.

In terms of sending the packets, it is possible to do so on either the executing
thread or a background thread. The potential benefit of using a background thread
is that the executing threads may be able to offload the work to the background
thread, letting them return to their work quicker. However the issue with using a
background thread is that it writes the packets in predetermined intervals, causing
measurements to be lost if the writing has not finished before the process exits.
This can occur with, for example, an unexpected exit or a process crash. It was
chosen in this project to perform packet sending on the executing thread, to ensure
that all packets will be sent to the server.

The start_rapl and stop_rapl functions can be seen in Listing These func-
tions are unsafe because they are exposed to C pointers. Both functions result in
calls to safe functions of the communication library after converting the input into
a string. This can be seen on line (12| and The #[no_mangle] attribute, seen on
line [7| and is necessary to ensure the Rust compiler maintains the function’s
name when compiled, otherwise, the function’s name will be mangled, making it
different from the intended name.

use crate::library;
use std::ffi::{c_char, CStr};

/// # Safety
///
/// This function is unsafe because it dereferences the ‘id‘ pointer.
#[no_mangle]
pub unsafe extern "C" fn start_rapl(id: *const c_char) {
let id_cstr = CStr::from_ptr(id);
let id_string = String::from_utf8_lossy(id_cstr.to_bytes()).
to_string () ;

library::start_rapl (id_string) ;

3 }

/// # Safety
i
/// This function is unsafe because it dereferences the ‘id‘ pointer.
#[no_mangle]
pub unsafe extern "C" fn stop_rapl(id: *const c_char) {
let id_cstr = CStr::from_ptr(id);
let id_string = String::from_utf8_lossy(id_cstr.to_bytes()).
to_string () ;

library::stop_rapl(id_string);

24

W N

4.3. Shared Library 21

Listing 4.6: The start_rapl and stop_rapl functions as exposed through the FFI.

Listing shows the start_rapl function from the communication library. The
function constructs a packet to be sent, and passes it to the send_packet func-
tion. The stop_rapl function is nearly identical to the start_rapl function, and
functions identically.
pub fn start_rapl(id: impl AsRef<str>) {
let packet = ProcessUnderTestPacket {
id: id.as_ref () .to_string(),
process_id: process::id (),
thread_id: thread_id::get (),
operation: ProcessUnderTestPacketOperation::Start,
timestamp: SystemTime::now ()
.duration_since(std::time::UNIX_EPOCH)
.unwrap ()

.as_nanos (),

¥

send_packet (packet) ;
}

Listing 4.7: Implementation of start_rapl in the client module, showing the construction of the
packet and the packet being passed to the send_packet function.

The send_packet function, as seen in Listing serializes the packet and sends
the packet to the server.

Since there is no server connection on the first call, it will perform initializa-
tion on the first execution, seen on line |2, signifying its connection type as a
ProcessUnderTest on line[Z

After the initialization, the packet is serialized using the bincode Rust package to
turn the packet into bytes. The serialization happens before the global mutex is
locked, as to not perform extra CPU operations while the lock is held.

Once serialization of the packet has finished on line[13} the global mutex is acquired
and locked on line The length of the packet is then written to the stream,
followed by the packet’s data. This can be seen on lines (19 and 20| respectively. The
reason behind sending the length of the packet is to tell the server how much data it
should expect to read. The size of the packet from the process-under-test can vary
due to the identifier parameter, making the packet’s size dynamic. If the identifier
parameter did not exist, the size of the packet would always be constant. The
serialized packet with an empty identifier is 40 bytes in size, and each additional
character in the identifier increases the packet size by one byte.

5

21

4.4. Client 22

fn send_packet (packet: ProcessUnderTestPacket) {
STREAM_INIT.call_once({
// making connection
let mut connection = TcpStream::connect (ADDRESS) .unwrap () ;

connection
.write_all (&[ConnectionType::ProcessUnderTest as u8])
.unwrap () ;

*CONNECTION.lock () .unwrap() = Some(connection);
I

let serialized = bincode::serialize (&packet) .unwrap();

let mut connection_lock = CONNECTION.lock() .unwrap();
let stream = connection_lock.as_mut().unwrap();

// Write length and then the serialized packet
stream.write_all (&[(serialized.len() as u8)]) .unwrap();
stream.write_all(&serialized) .unwrap();

}

Listing 4.8: The send_packet function, showing the initialization, serialization, and sending of the
packet

4.4 Client

This section will explain the overall idea of the client implementation. The com-
plete implementation can be found on the associated GitHub repositor

As mentioned in Section the measurements take the form of the amount of
energy consumed before the function is executed and the amount of energy after
it is executed. While this data on its own can be used to gather the necessary
information, having an interface to extract the information is beneficial as it can
automate away the steps a developer has to take in order to manually extract the
information. On an architectural level, as shown in Section this interface is
the client.

We implemented the client as an extension for Visual Studio Code (VSCode)[34].
VSCode is a code editor, that developers can use to write software. Implementing
the client as an extension to a tool that the developer is already using, means that
they do not have to open different programs to use the client. VSCode has existing
functionality to interact with Git[35]. Since our build module, which is detailed
in Section uses Git, it means that everything needed to profile a program to
find the hotspots can be done within the same application.

Shttps:/ / github.com/cs-24-pt-10-01/Thor-client

https://github.com/cs-24-pt-10-01/Thor-client
https://github.com/cs-24-pt-10-01/Thor-client

4.4. Client 23

The client has been implemented as a Webview extension[36]. This type of exten-
sion uses HTML in addition to JavaScript for the functionality. Node.js is used as
the runtime for the JavaScript.

As described in Section Thor uses a TCP socket for sending and retriev-
ing data from the client. To support this, the client utilizes the net module from
Node js.

The JSON received from the server can contain an arbitrary amount of measure-
ments. The server sends the data to the client in chunks of measurements. These
chunks are then, during transmission, further divided into smaller chunks by the
net module. The client cannot discern between the packages it receives so they are
all treated equally. This becomes a problem as the collection of measurements has
to be reassembled by the client, but the client is not told by the server when the last
part of a chunk is received. To signal to the client that the last part has been sent,
a delimiter is added. When the client receives a package with the delimiter, it can
then identify a complete chunk. Each chunk of measurements is then sequentially
given to the part that handles the user interface.

The received data then has to be presented to the user. The presentation includes
the accumulated energy consumption in joules, the average energy consumption
per function call in joules, the amount of function calls, and a graph. An example
of a graph can be seen in Figure which shows how the energy consumption per
call changes. The accumulated energy is included because it shows the function
that uses the most energy overall. The average energy consumed per function
call is included to allow for distinction between a few function calls that use a lot
of energy and a lot of function calls that use a little energy. This information is
presented in a table, an example can be seen in Figure and additionally the
information is also presented with each graph.

4.4. Client

Overview

Identifier Accumulated [Joules]

-realworld-example-
; 51.29

astify-realworld-example-
appylib/routes/users/index.

7- ffastify-realworld-example-
app/lib/plugins/berypt/index,s:

0:./fastify-realworld-exampl
appylib/plugins/berypt/index

 /fastify-realworld-example-
app/lib/plugins/knex/indexjs:run

2:/fastify-realworld-example-
app/lib/plugins/berypt/index.

tify-realworld-example-
app/lib/routes/articles/index js:getArticles

1:./fastify-realworld-example-
app/index.jsrequire

1: /fastify-realworld-example-
app/lib/config/config.js:require

-realworld-example-
app/index.js:undefined

Showing 1 to 10 of 251 entries

Figure 4.1: Example of the overview table

18:index.js:getArticles

0.1]

0.08

Energy (Joules)

0.04

0.02

Calls

Figure 4.2: Example of a graph produced by the client

Call count

24

4.5. Energy estimation 25

One of the limitations of Intel’s RAPL is the update rate of the registers. It is
possible for one or more functions to finish executions before the register updates.
This will cause Thor to report the energy consumption of those functions as zero,
as can be seen for some of the calls in Figure This problem is discussed further
in Section [Z4]

An optional feature of the client is the ability to enable estimation of values which
would otherwise have been set to zero. The estimation feature is explained in
Section Since it is an estimation, the feature is not enabled by default, but it
can be enabled in the user interface.

A different approach could have been taken to gather the energy consumption of
the fast functions, without the use of estimation. It could have been done by re-
peating the functions using a loop until the registers update. The register value
can then be divided by the number of times the function was executed to get
the energy consumption of a single execution. Since this approach is not using
estimation, the results more accurately represents the function’s energy consump-
tion. There are drawbacks to this approach, which is why we choose not to use it.
Firstly, some functions cannot easily be repeated in a loop. Functions that inter-
face with databases are a good example. The same information cannot necessarily
be entered into the same database multiple times as it would cause conflicts with
already existing data. Secondly, if the program that is being profiled is written in
a JIT compiled language, then executing a function in a loop would change the
behavior of the program, and the measured energy consumption would no longer
be representative of the function’s energy consumption in a normal execution of
the program. Thirdly, the execution time would increase. Whether the increase in
execution time is significant depends on the program that is being profiled.

4.5 Energy estimation

The energy consumption of a function is the difference in the register value be-
tween the start and stop call. As mentioned in Section the register updates
every 976 microseconds. It is possible for functions to be fast enough for both
the start and stop to happen before the register updates. This will result in the
reported energy consumption of the function to be zero. Since the function does
incur energy consumption, the result is misleading. To alleviate this, the energy
consumed by the function can be estimated.

The idea of the estimation functionality is that with two sequential measurements
from RAPL, the values between them can be estimated. For the estimation, the
change in the energy consumed is considered to be linear. While time and energy
consumption are not linearly correlated[23], we consider it close enough to be

4.5. Energy estimation 26

usable.

The estimation works in chunks of data as it needs two different values to be able to
estimate. A chunk consists of multiple measurements where the last measurement
has a different energy consumption than the previous measurements.

The estimation needs the energy consumption from the first and last elements, and
the timestamp from each element. By assuming a linear correlation between the
first and last measurement, the estimated energy consumption for those in-between
is a percentage of the measured value change. The percentage can be found for
each element by calculating the percentage of the time they use, and then use that
percentage to get the energy consumption.

The calculation of the percentage is done iteratively. This means that when the cur-
rent measurement has been estimated, the part between the starting measurement,
and the current measurement is removed, and the current measurement becomes
the new starting measurement. This then repeats until each measurement has been
estimated. This can be done because of the linear estimation.

Figure [4.3| and [4.4] demonstrate how the estimation works. In Figure it can be
seen that the current measurement is at 5 time units, or 50% of the time period, so
the estimation is therefore that it uses 50% of the energy which is 5 energy units.
In Figure it can be seen that the new starting position has been moved to the
end of the previously estimated part. From here the current measurement gets
estimated where it uses 1 time unit, or 20% of the remaining energy, which equates
to 1 energy unit. This process repeats until all of the remaining energy has been
used.

4.5. Energy estimation

First estimation

27

10 { = Estimated
—a— HRermaining

Energy
[,]

Time

Figure 4.3: Example of first estimation

4.5. Energy estimation 28

Second estimation

10 4 Used
—a— Estimated
g { —e— Remaining

Energy
[,]

Time

Figure 4.4: Example of second estimation

With all of the parts of Thor implemented, the implementation then has to be
tested to assess if it works. The setup used for the testing is presented in Chapter

B

Chapter 5

Experimental setup

This chapter describes the experimental setup that we use to test our implementa-
tion of Thor. This includes the system specifications for the different parts of the
setup and a description of the tests we conduct.

5.1 System Specifications & Setup

The specifications of the system running Thor in the tests can be seen in Table

Type Desktop

CPU Intel Core i7 11700F (2.5GHz, up to 4.9GHz)

DRAM DDR4 32GB 2133MHz (Corsair CMK32GX4M2E3200C16)
GPU Nvidia GeForce RTX 3060

Storage 1TB NVME SSD KINGSTON SNVS1000G

Motherboard Asus PRIME B560M-K[1]

Operating system (OS) | Ubuntu Server 22.04.4 LTS minimal installation?]

Table 5.1: The specification of the system-under-test

In order to test Thor, a laptop is used to run the client. The specifications of the
laptop can be seen in Table

1The bios was reset to default settings
2Information about minimal installation can be found here:
https:/ /www.howtoforge.com /ubuntu-22-04-minimal-server/

29

https://www.howtoforge.com/ubuntu-22-04-minimal-server/

5.2. Tests 30

Type Laptop (Acer SFX14-41G-R8A1)
CPU AMD Ryzen 7 5800U

DRAM | LPDDR4X 16GB

GPU Nvidia GeForce RTX 3050 Ti
Storage | 1TB SSD + 250GB SSD

OS Windows 11

Table 5.2: The specification of the client

To transfer data between the client and server, a router is used. The router used for
testing is a D-Link GO-RT—N30(EI which uses the 2.4 GHz band with a maximum
transfer rate of 300 Mbps.

We decided to use a router to mimic a typical work environment instead of direct
communication between the client and the server, because in a normal setting,
there would be some form of network that the data has to traverse.

The testing is done without stopping background services. We chose not to do so,
because in a production environment it may not be possible to do so. By testing
Thor with the pollution from the background services and processes present, we
demonstrate that Thor is able to find hotspots regardless of the noise.

As explained in Section the sampler requires an interval to be set. For all
tests conducted, this variable was set to 50 microseconds to capture when the MSR
changed.

5.2 Tests

To assess Thor’s ability to detect hotspots, we conduct a set of tests. These tests
can be seen in Table 5.3l

A mix of micro-benchmarks is used to verify that Thor can find hotspots, and two
implementations of a web service are used to test the usability of profiling with
Thor. The implementation of the tests can be found in our repositoriesﬂ where
each repository contains a script, such that Thor can run them automatically.

3https:/ /www.dlink.com/uk/en/products/go-rt-n300-wireless-n-300-easy-router
4https:/ /github.com/orgs/ cs-24-pt-10-01/repositories

https://www.dlink.com/uk/en/products/go-rt-n300-wireless-n-300-easy-router
https://github.com/orgs/cs-24-pt-10-01/repositories

5.2. Tests 31

Name Description Source

where the micro-benchmark
which uses the most en-
ergy is known. The bench-
marks are: Fibonacci, N-
Body, MergeSort, and Quick-
Sort

Micro-Benchmark mix | A mix of micro-benchmarks | Rosetta CodeP] and CLBG?

a web service in JavaScript
and C# based on the Real-
World API specification.

RealWorld web service | Backend implementations of | RealWorld’s GitHub repositorylt|

sumption of calls to Thor

Overhead test Measuring the energy con- | Our own implementation [

Table 5.3: Overview of tests

5.2.1 Micro-benchmark mix

The first test is a mix of different micro-benchmarks. Using micro-benchmarks
allows for a controlled environment where it can be checked if Thor can detect
energy hotspots. This test will use micro-benchmarks that have previously been
benchmarked for their energy consumption[28]. This means that we know what
Thor should report and can therefore compare the results with what is expected.
Secondly, this test will also be used to compare Thor against the method intro-
duced by Jagroep et al.[4]. Their method requires stubbing of the code tested. The
micro-benchmarks we have chosen are simple to stub and evaluate, compared to
if larger programs were used. How the micro-benchmarks were stubbed is ex-
plained in Appendix|Al The benchmarks in the mix are from Rosetta Code[37] and
the Computer Language Benchmark Game (CLBG)[38]. The micro-benchmarks
are Fibonacci, N-body, MergeSort, and QuickSort. All the micro-benchmarks re-
quire inputs. We use inputs from other work as the inputs were shown to allow
the micro-benchmarks to run for a long enough period of time such that proper
measurements could be gathered with RAPL[28|]. The inputs can be seen in Table

G4

Shttps:/ /rosettacode.org /

bhttps:/ /benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
“https:/ /github.com/avanelli/ fastify-realworld-example-app

8https:/ / github.com /Erikvdv /realworldapiminimal

https:/ / github.com/cs-24-pt-10-01/ overhead-test

https://rosettacode.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://github.com/avanelli/fastify-realworld-example-app
https://github.com/Erikvdv/realworldapiminimal
https://github.com/cs-24-pt-10-01/overhead-test

5.2. Tests 32

Benchmark name Input
Fibonacci 47
N-body 50,000,000
MergeSort A list of 40,000 random integers
QuickSort A list of 40,000 random integers

Table 5.4: Benchmarks and their associated inputs

The micro-benchmarks are written in JavaScript and are executed using Node.js
version 20.12.2.

The test is split into two parts, the first part uses Thor and the second part uses the
method by Jagroep et al. All micro-benchmarks are placed within their own file,
which is called from a main file, such that the micro-benchmarks together create
a single program. In the first part, Thor instruments every function call within
the main file. In the second part of the test, the main file is executed multiple
times where, for each execution, one of the benchmarks is stubbed. An additional
execution where no benchmarks are stubbed is executed to gather a baseline.

A second variant of this test is executed, where MergeSort is changed to be the
primary hotspot. MergeSort is chosen as it is one of the benchmarks with the
lowest energy consumption. To make MergeSort the primary hotspot, a loop before
the sorting is added. This loop contains 30,000 deep clones of the input. 30,000
was chosen during test executions where it was shown to be consistently adding
enough overhead. This is documented in Appendix D] Using deep clones does not
change the input, but it adds enough workload to make MergeSort the function
with the highest energy consumption.

During testing, it was discovered that the number of recursive calls within Fi-
bonacci was too excessive for us to handle. This is explained in Appendix Bl To
remedy the excessive number of calls, we added a parameter to our JavaScript in-
strumentation tool to indicate whether function calls within functions should be
instrumented.

The test, and its variants, are repeated 10 times each to account for possible vari-
ances between executions. The number of repetitions is not important as the goal of
the test is to find hotspots and not to accurately measure the energy consumption
of the implementation of the benchmarks. A single execution could therefore be
used, but since it is possible for outliers and random variance to occur, we chose to
have multiple executions during our testing. When using Thor, a single execution
is enough to find the hotspots.

5.2. Tests 33

Multithreading

To test Thor’s ability to profile programs with multithreading, we conduct a test
where the micro-benchmarks are profiled in parallel to see how parallelization
affects Thor’s ability to find hotspots. In this test, the main file uses worker threads
from Node.js to execute each micro-benchmark at once. This test is repeated 10
times to account for possible variances.

5.2.2 RealWorld web service

The second test is to profile implementations of a web service. The implementa-
tions are part of a collection called RealWorl which contains implementations
of a clone of the blogging website Medium.com{ '[39]. All these implementations
expose the same APIL The frontend and backend between them can vary and be
interchanged. Instead of using a frontend, the focus is only on the backend imple-
mentation. Therefore, a client is simulated by calling the API endpoints. In this
test, two implementations of the backend are profiled. The purpose of using two
RealWorld implementations is to show that Thor can detect hotspots in multiple
programming languages.

The first chosen RealWorld implementation is written in JavaScript and uses an
SQLite database. The SQLite database does not require an external connection
to a running database, which removes a variable from the test. The JavaScript
implementation is instrumented using our tool explained in Section

The second RealWorld implementation is written in C#, and also uses an SQLite
database. This implementation is instrumented by using the AOP tool called Met-
alama. A look into the compile-time generated code can be seen in Appendix

The backend implementation is tested by using the tool called Newman[40], which
is a command-line runner for the program Postman[41]. Postman allows crafting
and sending requests to sites, in order to simulate a client. In the repositories of
the two RealWorld implementations is a collection of requests to all endpoints in
the API, these are used with Newman to send requests.

The endpoints of the RealWorld API are each called 10 times to account for possible
variances and to allow for JIT compilation to take effect.

Jagroep et al.’s method[4] encounter problems when trying to use it to profile the
functions of the RealWorld implementation, which is why we do not use their

1Ohttps:/ /codebase.show / projects / realworld
Whttps:/ /medium.com/

https://codebase.show/projects/realworld
https://medium.com/
https://codebase.show/projects/realworld
https://medium.com/

N

5.2. Tests 34

method for profiling the implementations. The reason is explained in Appendix

[E

5.2.3 Overhead test

In order to determine the energy impact of using Thor, a test is performed where
the energy consumption of calls to Thor is measured. This test will show the
overhead introduced by Thor, which is present within the other tests.

Within the test, a pair of start and stop calls are repeated 10,000 times using a
for-loop. As each call is too fast for RAPL to measure, the energy consumption of
the loop is captured. To account for variances, this test is repeated 10 times.

The implementation of the overhead test can be seen in Listing

const rapl = require(’./rapl.js’);

3 rapl.start("Main")

for (let i = 0; i < 10000; i++) {
rapl.start("Call");
rapl.stop("Call");

}

rapl.stop("Main")

Listing 5.1: Overhead test implemented in JavaScript

With the experimental setup, we conduct the tests described. The results from the
tests are presented in Chapter [6|

Chapter 6

Results

With the experiemental setup described in Chapter[5, we conduct the tests to verify
that Thor is able to find hotspots within a program, and we compare Thor to an
existing method to ascertain the accuracy of Thor. Additionally, the results from
the overhead test are presented, including the effect of estimation.

6.1 Micro-Benchmark mix

The results from the micro-benchmark mix tests can be seen in Table and
In these tests, the expected outcome is that Fibonacci will have the highest energy
consumption, and N-body will have the second highest. The expected outcome is
gathered from our previous work[28].

Benchmark | Identifier Accumulated | Avg. Per Call | Call count
[Joules] [Joules]

Fibonacci 20:main.js:fib 10547.64 1054.76 10

N-body 21:main.js:nbody 1734.92 173.49 10

QuickSort | 23:main.js:sort 4.18 0.42 10

MergeSort | 24:main.js:mergeSortInPlaceFast | 3.86 0.39 10

Table 6.1: The four most expensive function calls found from profiling the micro-benchmarks with
Thor over 10 executions.

From Table [6.1| it can be seen that the expected results are achieved. This can be
identified by looking at the two most expensive function calls which are Fibonacci
and N-body. The identifier column shows the line of the function, the file, and the
name of the function.

35

6.1. Micro-Benchmark mix 36

Name Accumulated [Joules] | Average [Joules] | Difference [Joules]
No stubbing 12467.66 1246.77 0

MergeSort Stubbed | 12386.96 1238.70 8.07

QuickSort Stubbed | 12207.59 1220.76 26.01

N-body Stubbed 10661.76 1066.18 180.59

Fibonacci Stubbed | 1706.86 170.69 1076.08

Table 6.2: Results from profiling with the method by Jagroep et al. over 10 executions. The Difference
column is No stubbing’s average minus the row’s average.

The results from using the method by Jagroep et al. can be seen in Table This
method uses stubbing, so the execution with the lowest energy usage is the one
with the hotspot. Alternatively, it is also the function with the highest difference.
The usage of this method also achieves the expected results as the lowest energy
consumption is seen when Fibonacci is stubbed and the second lowest is seen
when N-body is stubbed. When comparing the results from Thor, seen in Table
and the method by Jagroep et al., seen in Table it can be noticed that the
same hotspots are identified. This shows that Thor is equally able to find hotspots
to that of Jagroep et al.’s method. Additionally, when comparing the difference
in Table with the average from Table it can be seen that the values for
Fibonacci and N-Body are similar. The values for MergeSort and Quicksort are
slightly higher when using Jagroep et al.’s method. The notable change when using
Jagroep et al.s method, is that the difference between MergeSort and QuickSort
is significant compared to the results from Thor. A possible explanation for the
difference, could be caused by the variance between executions. The variance can
be seen on Figure where the difference between the maximum and minimum
energy consumption is over 100 joules.

6.1. Micro-Benchmark mix

Energy (Joules)

QuickSort Stubbed

1250

1200

-l

"
%3]
c

1100

Calls

37

Figure 6.1: Energy consumption from the executions of the microbenchmarks with QuickSort

stubbed.

The results from the second variant can be seen in Table [6.3] and [6.4] for Thor and
Jagroep et al.’s method respectively. It can be seen that the additional workload
added to MergeSort is caught by both, as MergeSort is identified as the primary

hotspot by both methods.
Benchmark | Identifier Accumulated | Avg. Per Call | Call count
[Joules] [Joules]
MergeSort | 24:main.js:mergeSortInPlaceFast | 11167.58 1116.76 10
Fibonacci 20:main js:fib 9923.66 992.37 10
N-body 21:main.js:nbody 1505.59 150.56 10
QuickSort | 23:main.js:sort 3.73 0.37 10

Table 6.3: The four most expensive function calls found from profiling the micro-benchmarks with
Thor over 10 executions. MergeSort contain additional workload to make it the biggest hotspot

6.2. RealWorld web service 38

Name Accumulated [Joules] | Average [Joules] | Difference [Joules]
No stubbing 23767.96 2376.80 0

QuickSort Stubbed | 23700.07 2370.01 6.79

N-body Stubbed 22096.30 2209.63 167.17

Fibonacci Stubbed | 12838.47 1283.85 1092.95

MergeSort Stubbed | 12332.99 1233.30 1143.5

Table 6.4: Results from profiling with the method by Jagroep et al. over 10 executions. The Difference
column is No stubbing’s average minus the row’s average. MergeSort contains additional workload
to make it the biggest hotspot

Multithreading test
The results from the multithreading test can be seen in Table

From the results, it can be noticed that the energy usage of N-body has increased,
and MergeSort and QuickSort have doubled their energy usage in comparison
to Table Since threads share the MSRs for reading the energy used by the
machine, the benchmarks running in parallel pollute each other. This makes the
reported energy usage of the function higher than it actually is. Executing the
benchmarks in parallel did not change the first two hotspots, but MergeSort is
indicated to have a higher energy usage than QuickSort. This indicates that par-
allel execution affects the profiling of functions with a low energy consumption
more than functions with a higher energy consumption. Due to not being able
to precisely profile all functions in a multithreaded program, using Thor on such
programs requires the developer to understand the implications.

Benchmark | Identifier Accumulated | Avg. Per Call | Call count
[Joules] [Joules]

Fibonacci 9:Fib js:fib 10438.30 1043.83 10

N-body 181:Nbody.js:N_Body 2279.02 227.90 10

MergeSort | 30:MergeSort.js:mergeSortInPlaceFast | 8.83 0.88 10

QuickSort 44:QuickSort.js:sort 8.29 0.83 10

Table 6.5: The four most expensive function calls found from profiling the micro-benchmarks in

parallel with Thor over 10 executions.

6.2 RealWorld web service

The results from profiling the RealWorld web services can be seen in Table [6.6|and
The instrumentation of the services vary between the JavaScript and C# imple-
mentations. This results in different identifiers for the two implementations.

6.2. RealWorld web service 39

Identifier Accumulated | Avg. Per Call | Call count
[Joules] [Joules]
14:./index js:listen 51.29 51.29 1
50:./1ib/routes /users/index.js:hash 33.83 1.69 20
7:./1ib/plugins/bcrypt/index.js:hash 33.83 1.69 20
10:./1lib/plugins/berypt/index.js:compare | 33.20 1.66 20
12:./1ib/plugins/knex/index.js:run 31.24 31.24 1
2:./lib/plugins/bcrypt/index.js:require 12.19 12.19 1
18:./lib/routes/articles/index js:getArticles | 5.38 0.05 110
1:./index js:require 291 291 1
1:./lib/config/config js:require 2.76 2.76 1
11:./index.js:undefined 2.25 2.25 1

Table 6.6: The ten most expensive function calls of the JavaScript implementation of the RealWorld
API. undefined means that the function is inline, which do not have an identifier.

From Table it can be seen that the listen function has the highest energy
usage within the JavaScript implementation. This function initiates the service and
begins listening for requests from clients. It can be seen that hashing has a high
energy consumption, as two functions used for hashing shares the second highest
accumulated consumption. This is to be expected, as the first function, which
is from users, results in a call to the other hash function of the bcrypt plugin.
The function with the fourth highest accumulated energy usage is the compare
function from the bcrypt plugin, this function compares plaintext with hashed
information. The fifth highest accumulated usage comes from the run function of
the knex plugin, which is used to start the SQLite database. From these hotspots it
can be seen that the JavaScript implementation uses the most energy on the initial
launch and encryption. Since it is a service, the longer the service is running the
less the initial launch will have an effect on the overall energy consumption.

The results from the C# RealWorld example can be seen in Table

6.2. RealWorld web service

40

Identifier Accumulated | Avg. Per Call | Call count
[Joules] [Joules]
Main 403.44 403.44 1
UserHandler.CreateAsync 13.35 0.67 20
ArticlesHandler.GetArticlesAsync 11.68 0.10 120
ArticlesHandler.CreateArticleAsync 4.89 0.49 10
UserHandler.LoginAsync 2.90 0.14 20
ArticlesHandler. AddCommentAsync 1.73 0.17 10
ArticlesHandler.GetArticleBySlugAsync | 1.59 0.16 10
ArticlesHandler. AddFavoriteAsync 1.05 0.10 10
ArticlesHandler.DeleteFavorite 0.91 0.09 10
ArticlesHandler.DeleteArticleAsync 0.84 0.08 10

Table 6.7: The ten most expensive function calls of the C# implementation of the RealWorld API

The most energy consuming function is Main. The Main function executes the whole
logic of the program. Main can be disregarded as a hotspot, due to it not containing
any computationally heavy code of its own. Disregarding Main requires the devel-
oper to have sufficient knowledge of the source code, which is an aspect of Thor
that is discussed in Section What is noticeable is that despite certain methods,
such as the CreateAsync method of the UserHandler class as seen in Figure
using the most energy, it has a sharp decline after the initial call. The initial call
consumes 12.26 joules, where subtracting the accumulated energy consumption
from the initial call results in an average consumed joules per call of 0.06.

6.2. RealWorld web service 41

Realworlddotnet.Api.Features.Users (Api).UserHandler.CreateAsync

12

10

Energy (Joules)

0 5 10 15

Calls

Figure 6.2: Graph of the energy consumption of CreateAsync calls.

Another hotspot based on accumulated energy consumption, which is the GetArticlesAsync
method of the ArticlesHandler class, as seen in Figure[6.3} also has a sharp decline
in its energy consumption after the few initial executions.

Realworlddotnet.Api.Features.Articles (Api).ArticlesHandler.GetArticlesAsync

2.5

1.5

Energy (Joules)

0.5

0 20 40 60 80 100

Calls

Figure 6.3: Graph of the energy consumption of GetArticlesAsync calls.

6.3. Overhead test 42

Lastly, the CreateArticleAsync method of the ArticlesHandler class, as seen in
Figure follows the same pattern as the CreateAsync method. There is a large
upfront cost to the method, but after the initial call, its energy consumption per call
decreases. The initial call consumed 4.04 joules, where subtracting the accumulated
energy consumption from the initial call results in an average consumed joules per
call of 0.09. The decrease in energy consumption seen with the mentioned methods
can be attributed to initialization or JIT compilation.

Realworlddotnet.Api.Features.Articles (Api).ArticlesHandler.CreateArticleAsync

[¥5]

Energy (Joules)
L35

Calls

Figure 6.4: Graph of the energy consumption of CreateArticleAsync calls.

From the results of profiling the two RealWorld API implementations, it can be
seen that Thor can find functions with high energy usage. These functions are the
hotspots in the implementations.

6.3 Overhead test

The results of the overhead test can be seen in Figure The accumulated energy
of the calls outside the loop, indicated by the main identifier, which can be seen in
Listing is 13.88 joules, which means the average over the 10 executions is 1.388
joules. Since there are 10,000 pairs of start and stop calls, each pair, on average,
consumes 138.8 microjoules. The average energy consumption reported by the
inner function calls, indicated by the call identifier, is 71.9 microjoules. Since the
MSR is accumulating, it is unclear why there is a noticeable difference between the
outer and inner calls. In comparison to the results shown in the rest of this chapter,

6.4. Effect of estimation 43

the average consumption of start and stop calls is too small to have a noticeable
effect. This suggests that the overhead introduced by Thor had an insignificant
effect on the other results.

From Figure it can be seen that the energy consumption of the 10,000 pairs
varies. The maximum consumption of an execution is 1.505 joules and the min-
imum is 1.173 joules. The difference between maximum and minimum is 0.332
joules, because these executions contains 10,000 pairs of calls it means that there
are, on average, a 33.2 microjoules difference between the pairs of calls.

While the variation can affect hotspot detection for calls with a difference within
33.2 microjoules, any hotspots with an energy consumption that close to each other,
can be seen as equivalent.

Main
1.5
1.45
3
o, 1.35
.
= -
o 1.3
]
1.25
1.2
1.15
0 2 4 6 8
Calls

Figure 6.5: Graph of the energy consumption of the overhead test executions.

6.4 Effect of estimation

This section shows the effect of the estimation functionality explained in Section
4,51

The overhead test contains 10,000 measurements which are too fast for RAPL to
measure, but they can be estimated. Figure |6.6/shows the measurements without
estimation, where it can be seen that the change in energy consumption is not
always captured. The estimation of these can be seen in Figure The average of

6.4. Effect of estimation 44

the estimated energy consumption is 69.5 microjoules, which is close to the average
of the inner calls presented in the overhead test.

Call

Energy (Joules)

0 20k 40k 650k 80k 100k

Calls

Figure 6.6: Measurements from the overhead tests calls without estimation.

Call

0.004

—~.0.003

Joules

20.002

Energ

0.001

0 20k 40k 650k 8ok 100k

Calls

Figure 6.7: Estimation of the energy consumed for each call in the overhead test.

To see if estimation has an effect on the identified hotspots, we present the hotspots

6.4. Effect of estimation 45

from the RealWorld implementations with and without estimation. These can be
seen in Table 6.8 and [6.9

Estimated Not Estimated
Identifier Accumulated | Identifier Accumulated
[Joules] [Joules]
14:./index js:listen 51.29 14:./index js:listen 51.29
50:./lib/routes/users/index.js:hash 33.56 50:./1lib/routes/users/index.js:hash 33.83
7../lib/plugins /berypt/index js:hash 33.56 7../lib/plugins /berypt/index js:hash 33.83
10:./1ib/plugins/berypt/index.js:compare | 32.98 10:./1ib/plugins/berypt/index.js:compare | 33.20
12:./1ib/plugins/knex/index js:run 31.24 12:./1ib/plugins/knex/index js:run 31.24
2:./lib/plugins /berypt/index js:require 12.18 2:./lib/plugins/bcrypt/index.js:require 12.19
18:./lib/routes/articles/index js:getArticles | 5.98 18:./lib/routes/articles/index js:getArticles | 5.38
72:./lib/models/articles.js:first 2.93 1:./index js:require 291
1:./index js:require 2.92 1:./1ib/config/ config js:require 2.76
1:./1ib/ config/ config js:require 2.76 11:./index.js:undefined 2.25

Table 6.8: The ten most expensive function calls of the JavaScript implementation, with and without
estimation. Significant changes are highlighted with bold text.

From Table [6.8] it can be seen that estimation introduces a new function to the
ten most expensive functions of the JavaScript implementation. This is the first
function from articles.js. Without estimation, this function is measured to 2.19
joules and thereby not one of the ten most expensive, but it is estimated to consume
2.93 joules. Some existing hotspots are also estimated to have a higher accumulated
energy consumption. These are the two hash functions, the compare function, and
the getArticles function.

Estimated Not Estimated
Identifier Accumulated | Identifier Accumulated
[Joules] [Joules]
Main 403.44 Main 403.44
UserHandler.CreateAsync 13.42 UserHandler.CreateAsync 13.35
ArticlesHandler.GetArticlesAsync 12.56 ArticlesHandler.GetArticlesAsync 11.68
ArticlesHandler.CreateArticleAsync 4.89 ArticlesHandler.CreateArticleAsync 4.89
UserHandler.LoginAsync 3.07 UserHandler.LoginAsync 2.90
ArticlesHandler. AddCommentAsync 1.73 ArticlesHandler. AddCommentAsync 1.73
ArticlesHandler.GetArticleBySlugAsync | 1.66 ArticlesHandler.GetArticleBySlugAsync | 1.59
ArticlesHandler. AddFavoriteAsync 1.05 ArticlesHandler. AddFavoriteAsync 1.05
ArticlesHandler.GetCommentsAsync 0.92 ArticlesHandler.DeleteFavorite 091
ArticlesHandler.DeleteFavorite 0.91 ArticlesHandler.DeleteArticleAsync 0.84

Table 6.9: The ten most expensive function calls of the C# implementation, with and without esti-
mation. Significant changes are highlighted with bold text.

Similarly to the JavaScript implementation, estimation introduces a new function
to the ten most expensive functions in the C# implementation, the results of which
can be seen in Table The method that was added is the GetCommentAsync
method from the ArticlesHandler class. This function is measured to 0.81 joules
which is not within the ten most expensive functions, but it is estimated to use

6.4. Effect of estimation 46

0.92 joules which is within the ten most expensive functions. An existing hotspot
that is estimated to have a higher consumption, but without a change in position,
is the GetArticlesAsync method from ArticlesHandler class, which is measured
at 11.68 joules and estimated to be 12.56 joules.

From the presented estimations, it can be seen that the estimation functionality can
be used to estimate the energy consumption of fast functions, to an extent that can
highlight different hotspots.

Chapter 7

Discussion

This chapter first presents limitations of Thor in regards to a production environ-
ment. Then, some of the important aspects of Thor are discussed. Finally, threats
to validity are presented.

7.1 Limitations of Thor in a production environment

This section presents and discusses parts which are either needed or nice to have
in a production environment. These parts are not necessary to make Thor work
but they provide various benefits.

7.1.1 Instrumentation tools

To profile with Thor, the program to be profiled has to be instrumented. This
means that the profiling capabilities of Thor are limited to the instrumentation
within the process-under-test. Therefore the capability of Thor is limited by the in-
strumentation tools that are available. Manual instrumentation is possible and ex-
tends the profiling capability of Thor but would require that the developer spends
their time instrumenting. For small programs this might not be a problem, but for
larger programs, depending on how much of the program the developer wants to
instrument, it could require a substantial amount of development time.

Since Thor can be extended with additional instrumentation tools, existing tools
could be added or new tools could be created. These tools could focus on instru-
menting the specific parts the developer wants to instrument. It could also include
support for additional programming languages.

47

7.1. Limitations of Thor in a production environment 48

7.1.2 Security

Measurements of energy consumption can be used as side channel attacks[42].
The implications of this limits the usability of Thor. The way Thor’s networking
is designed, it can be used over both open and closed networks. If the server is
exposed to the web and allows users to access energy measurements, then it allows
for side channel attacks. The server should only be accessible to a closed network
to stop attackers from accessing energy measurements. Another security concern is
the execution of user code. An attacker can send repositories with malicious code
to the server to be executed. This is another reason for not exposing the server
unprotected to the web.

A security layer requiring authentication and authorization before access could
remedy this. This is not something that is currently implemented in Thor, but for
use in a production environment, such a security layer should be implemented.
Adding a security layer, would require an extension to the Listener component,
specifically to the connection to the client, but the rest of Thor does not require
change. Ways to implement such a security layer are presented in Section 8.1}

7.1.3 Containerization & Cloud

In a production environment, developers might want to use Thor within an isolated
environment using virtualization or containerization[43} 44].

An issue with these technologies is that the MSRs are not always available. It is
possible to enable access to the MSRs in an isolated environment, but it requires
disabling security features. An additional concern is that while a host can run
multiple isolated environments, if an isolated environment attempts to acquire
the energy measurement, the energy consumption will account for all running
environments. This is further explained in Section [7.1.4]

Cloud providers, such as Amazon Web Services, do not provide access to Intel’s
RAPL, or similar interfaces, due to security concerns[45]. This means that it is
important when performing energy measurements to have access to the machine
the software is running on, as a cloud provider can prevent access to the necessary
interfaces. If a company does not have access to the machine their software is
running on, they could use Thor on a different system. This does come with
the risk of the results not representing how the software will run in a production
environment. If the system is similar to the machine used in production then the
results can be expected to be similar. If hardware designed for specific purposes is
used, such as hardware for cryptography, then these should be included to mitigate
potential disparity.

It is possible for an isolated environment to send requests to the host with TCP

7.2. Resource overhead 49

sockets. This communication can, for example, be start and stop packets to Thor,
however, it does come with the cost of additional overhead[46]. The size of the
overhead is unknown and would require tests to assess. Depending on how big
the overhead is, it may or may not affect the ability of Thor to identify hotspots. For
the overhead to have an effect, it has to be big enough to pollute the measurements
to a point where distinctive hotspots cannot be found. This is primarily an issue
if the program consists of many functions with a low energy consumption, which
are executed many times.

7.1.4 Profilling more than one program

In the executed tests, only one program is executed at a time. The method of ac-
quiring energy measurements occurs through the MSR for the package energy.

This MSR accounts for the energy usage as a whole. All processes or services
running will cause this MSR’s value to increase, which include more than the
process executing the test. This pollutes the measurement.

A way to filter out this pollution, along with adding the possibility of testing multi-
ple programs at the same time, could be to analyze the CPU utilization of processes
and services. This is because the energy consumption depends on the utilization
of the processes and services on the CPU. A possible solution to this problem is
presented in Section

7.2 Resource overhead

When profiling with Thor, the process-under-test has to send start and stop calls
to the server, which introduces an overhead in resource usage. In some cases
where functions are called many times, the overhead introduced might make the
profiling unfeasible. In the case with Fibonacci, which is presented in Appendix
we encountered problems with resource usage.

The amount of calls can be reduced in multiple ways. One way would be to add
a filter to the server, such that fast function calls can be filtered out. An issue
with this approach is that the accumulated energy usage of these fast calls can be
enough to be a hotspot.

Another way to reduce the amount of calls is to instrument fewer function calls.
This was the approach taken to make Fibonacci feasible, where only the outer call
to Fibonacci was instrumented and not the recursive calls.

Alternative ways of instrumenting code are presented in Section

7.3. Async functions 50

7.3 Async functions

Async functions present an interesting difficulty for instrumentation. If an async
function that returns a promise is instrumented, then it will only result in mea-
surements for the consumption of returning a promise. This means that it is im-
portant to instrument how the promise is resolved in order to obtain the energy
consumed.

An issue that can occur when profiling async functions with Thor is that the same
thread can make multiple start calls for the same function before reaching a stop.
This results in an issue where we cannot determine which stop call is for which
start call. A possible solution is presented in Section

7.4 MSR update interval

As mentioned in Section the update interval for the MSR, is not fast enough
to capture all functions, resulting in wrongful results of zeros. This happens

when both the start and stop of a function happens within a single update of
the MSR.

We added an optional functionality to estimate the energy consumed between
measurements. This is detailed more in Section This functionality allows
for estimation of the energy consumption of functions which would otherwise be
measured to zero.

Without the estimation, Thor is still able to fulfil its purpose of finding hotspots.
The estimation does have a small impact which is explained in Section The
estimation did not have an impact on the ranking of most energy consuming func-
tions, but for the lower ranked functions, a change in ranking occurred.

For general measurement of the energy consumption of software, this feature can
provide a way to look into energy consumption of fast functions without the need
for repetitions. Future work can look into how this feature can be used to cap-
ture energy consumption of fast functions. A comparison between repetitions and
estimation can provide insights into the accuracy of estimating the energy con-
sumption of fast functions.

7.5 Knowledge of the code

The resulting hotspots reported by Thor might not always be accurate. As seen in
Section the Main function was shown as the biggest hotspot. Since the Main
function consisted mostly of other function calls, the reported energy consumption

7.6. Threats to validity 51

includes the consumption of those function calls. For a developer to locate expen-
sive parts of the code from the results, they will have to understand the code of
the parts that are reported as hotspots. For code that the developer has written
themselves this should not be a problem, but if it is written by a team of develop-
ers, there might be parts where the individual developer will have to analyze and
understand the code before it is certain that it is a hotspot.

Handling nested function calls automatically

It is possible to automatically determine the energy usage of a function call without
the inner calls. It would require what we call a function-trace, for each function to
be known. A function-trace, is a list of function identifiers, where each subsequent
function is nested within the previous function. If the function-trace is known then
the energy consumption from the function calls can be subtracted from the func-
tion’s energy consumption, resulting in just the function’s own energy consump-
tion. Adding a function-trace would therefore be beneficial as it allows functions,
such as Main, to show their own energy consumption. Possible ways to generate a
function-trace are presented in Section

Still, from our results, if the developers understand the code that is tested, this is
not an issue, but it would allow for further automation.

7.6 Threats to validity

This section will present and discuss threats to the validity of our results.

7.6.1 Internal Validity

There are aspects within the internal setup of our study that can present threats to
validity.

Validity of results

If the measurements are not accurate enough, it would threaten the validity of the
results and the ability of Thor to find hotspots. As mentioned in Section Intel’s
RAPL has been tested to be as accurate as measurements from a power plug[27],
which is enough to detect hotspots.

In Section |5.1]it is explained that the sampler is set to take a measurement every
50 microseconds. It can be argued that a sample rate under 1 kHz yields redun-
dant measurements and introduces a larger overhead. However, a high sample
rate ensures that the calls from the process-under-test are matched with a newer
measurement if the MSR is updated just before the call.

7.6. Threats to validity 52

Too much noise, or pollution, in the measurements can threaten the validity of
the results. This leads to the question of how much noise is in the measurements,
as both Thor and the OS consumes energy under testing. In the overhead test,
the overhead of multiple calls to Thor was measured. The results of the test seen
in Section [6.3| shows an average consumption per call that is too small to have a
noticeable effect on the results.

In the multithreading test, it was found that parallel executions did introduce noise,
as all micro-benchmarks, except Fibonacci, yielded a higher energy consumption.
In the case of this project, noise is acceptable as long as it does not hinder hotspot
detection.

The results from Thor in the micro-benchmark mix are validated by producing
results in correlation with both another method and measurements of the same
benchmarks from another study.

Validity of hotspots identified by Thor

The validity of the identified hotspots in the RealWorld implementations is based
on the ability of Thor to identify hotspots. As the micro-benchmark mix verifies
that Thor can identify hotspots, the validity of hotspots identified in the Real-
World implementations is dependent on the results of the micro-benchmark mix.
From the results of the micro-benchmark mix, it was verified that Thor can detect
hotspots. Because of this, the validity of the results from the RealWorld examples
has been shown.

The results from the multithreading test shown in Section illustrated how par-
allel execution can affect Thor’s ability to find hotspots. This introduces a threat
to validity regarding hotspots with lower energy consumption as MergeSort and
QuickSort were affected. This does affect the results seen from the RealWorld im-
plementations tested, as both utilize multiple threads. The size of this effect is
small, as the difference between the average energy consumption of MergeSort
and QuickSort was 0.03 joules in the micro-benchmark test and 0.05 joules in the
multithreaded test. These results indicate that the ranking of larger hotspots is not
noticeably affected.

The results from the C# implementation of the RealWorld API presents a challenge.
As explained in Section [6.2} the hotspots that were identified has the highest energy
consumption during the first calls, whereas the later calls uses less energy. This
presents the question of whether other hotspots would be found if the endpoints
were called more times. Future work can look into how variables, such as the
amount of times an endpoint is called, affect the identified hotspots within the
tests.

7.6. Threats to validity 53

Structured testing of Thor’s implementation

During the development of Thor we used manual testing to assess if our implemen-
tation worked correctly. Because of this, there could be parts or specific scenarios
that we missed. Using automated tests could, for example in a Continuous Integra-
tion (CI) pipeline, increase the likelihood that errors would get caught, provided
that appropriate tests were set up. Due to Thor requiring access to the MSRs, set-
ting up CI, or automated tests in general, becomes problematic if the tests are not
executed on a system where access to the MSRs is granted. This is further explored
in Section

From the tests we conducted, we encountered no issues with Thor, indicating that
our manual testing was sufficient.

Using the filesystem for retrieving RAPL measurements

As mentioned in Section there are multiple ways to read the RAPL measure-
ments. The experimental setup of Thor uses the Ubuntu server OS. The imple-
mentation of Thor reads the RAPL measurements from a file. This means that the
filesystem has to be accessed while reading measurements. Despite the system us-
ing a sampler, the usage of the filesystem could introduce a bottleneck to the speed
at which the measurements can be read. Accessing RAPL measurements using the
kernel command rdmsr requires using a driver. The driver could be developed to
contain the sampler. This would remove the need for the sampler to call the driver
which would further reduce the potential bottleneck.

From the executed tests, it was found that reading the measurements from the
filesystem did not cause any issues. As such, developing a driver was not war-
ranted, as that would take time away from developing the implementation of
Thor.

7.6.2 External Validity

There are aspects of the experimental setup, which, if changed, could change the
results of the tests. If Thor was tested on a different system, it might change
the results, as other systems can be less or more efficient with certain opera-
tions[47].

Thor is implemented with Intel’s RAPL, which has been shown to be reliable for
testing CPUs|[27]. Therefore, for this project where we only test the system’s CPU,
RAPL is a good choice.

In the tests, programs implemented with two programming languages have been
profiled with Thor. The languages we chose to use are some of the more popular

7.6. Threats to validity 54

languages[48]. Choosing a popular language shows that Thor works in a similar
context to what others may have.

How to generalize our findings is further detailed in Section

Chapter 8

Conclusion & Future Work

In this project, we developed a tool named Thor, which can aid developers with
finding energy hotspots in their code.

We set out to answer the following problem statement.

How can a tool, designed to find energy hotspots, be constructed to help developers gain
an insight into a program’s energy usage?

From this, we formulated the following two research questions.
* RQ1: How can hotspots reliably be detected in a program?
* RQ2: How does the hotspot detection compare to similar tools?

RQ1 is answered by a combination of our implementation and results. It was
shown that Thor is reliable in detecting energy hotspots. The implementation uses
Intel’s RAPL to get the energy consumption. This means that the implementation
used is able to find hotspots without the use of energy estimation.

RQ?2 is answered by conducting the tests explained in Section The results
from the tests are presented in Section Here it can be seen that the results pro-
duced by Thor and the results produced by Jagroep et al.’s[4] method are similar.
The only noticeable difference is that Thor reports lower energy consumption for
QuickSort and MergeSort, but they are still in the same order.

Having developed a tool to answer these research questions, we have answered the
problem statement.

The main contribution of the project is Thor, which is able to find energy hotspots
within programs written in either C# or JavaScript and can be extended to support
more programming languages. To support a new programming language a FFI

55

8.1. Future work 56

has to be made for the language in the case that the language does not support it,
and a new instrumentation tool has to be included.

An additional contribution is a client for Thor, which allow developers to view the
results in real-time. The client is in the form of a Visual Studio Code extension. The
client includes the estimation functionality. This functionality was not required to
answer the problem statement, but it sought to resolve an issue which could impact
the results of Thor. The estimation feature did not make a significant difference in
the results of our testing, but the capability still has its potential.

Comparing Thor to Jagroep et al.’s method, Thor is equally accurate in hotspot
detection. Thor has the advantage that it does not require manual changing of
the program and only requires a single execution, whereas Jagroep et al.’s method
requires manual stubbing and multiple executions. While untested, Jagroep et al.’s
method would, in theory, be able to profile multithreaded programs without any
issues due to the fact that the method uses the total energy consumption of the
entire execution, whereas Thor uses the energy consumption for each function. In
Appendix [H it is explained how Jagroep et al.’s method can have problems with
stubbing functions, but not larger components. Thor does not have a problem
with measuring individual functions, and it is therefore able to measure at a finer
granularity.

8.1 Future work

This section presents some of the future work presented in Chapter [/| Only the
future work we considered the most interesting are presented here.

Accuracy of the energy measurements

As discussed in Section [7.6.T]in the case that a function is executed on two or more
threads in parallel, issues with the measurements can occur, as is seen with the
multithreading test in Section Since all threads share MSRs for energy mea-
surements, if both functions that are executing in parallel finishes at the same time,
reading an energy measurement at the start and end of just one of the functions
will show twice the energy usage.

While this energy measurement is correct in terms of the energy consumption for
the CPU, it raises the question of how to more accurately measure the energy
consumption on a per-thread basis. Approaches could be to look at the amount of
executed instructions, or the time that a thread has been running. Tools which are
able to differentiate energy usage between processes already exist. Analyzing how
one of these tools, such as Scaphandre[49], differentiate between the processes,
would be a good starting point. While processes and threads are not the same, it

8.1. Future work 57

could help create an understanding of how to differentiate energy usage based on
multiple occurring events. A way to measure energy usage based on threads would
give a deeper insight into energy consumption of software than Scaphandre.

This would also allow for the profiling of more than just one program at a time,
which would solve the issue discussed in Section [7.1.4

Changing instrumentation to handle asynchronous functions

A possible solution to the problem with asynchronous programming mentioned
in Section is to provide unique data to the identifier of the start and stop
calls on the stack of the function. This would allow any thread which suspends or
resumes the task to provide the unique details about the function. For example,
one thread could report its timestamp, clock cycles, or some other metrics, while
another thread that then resumes the task could also report these metrics. By
using the unique data in the stack of the function, it is possible to know when the
asynchronous function starts and ends, as it is no longer tied around the lifetime
of the thread.

Generalizing our findings

As mentioned in Section further work can be done to generalize our findings.
By testing with additional applications and setups, the confidence in Thor’s ability
to find hotspots increases.

The additional setups can include other measurement interfaces such as Nvidia
SMI[9]. Other measurement interfaces would require extending the implemen-
tation of Thor, which includes changing the implementation of the Measurement
component.

Additional programs can include database management systems, machine learn-
ing, and more. Some of the interesting aspects that can be tested with additional
programs are additional programming languages and paradigms. For example,
the functional paradigm can have a high usage of recursion, which can introduce
the problem with excessive recursion explained in Appendix

Adding a function-trace

As mentioned in Section being able to account for nested functions would be
beneficial. It would give the developer a view into the consumption of a function
without the consumption of the nested functions.

This would, as was also mentioned, require function-traces. Generating function-
traces can be done in multiple ways.

8.1. Future work 58

Knowing the function-trace at compile-time could be done by analyzing the call
graph for the program. A call-graph generator, such as NDepend[50], will have to
be used to create the call-graph. The runtime call-graph generators could poten-
tially be extended to allow for interfacing during the runtime. How feasible it is
to interface with a runtime call-graph generator or if the process introduces any
other issues is unknown.

A stack-trace could also be used, and can be generated at runtime, which means
that the tools used for instrumentation is less important. A stack trace contains
more data than what is needed to construct the function-trace. This data can be
filtered such that only the necessary parts are kept.

The best approach is unknown and a comparison of the two would have to be
performed for a definitive answer.

Testing Thor using mocking

As mentioned in Section Thor is manually tested. Adding automated tests
would increase the confidence in Thor’s implementation. If CI were to be imple-
mented to enforce these tests, the confidence would increase further. Since Thor
is hosted on GitHub, GitHub’s CI setup could be used. If GitHub’s setup is to
be used, the CI runner will have to be a self-hosted runner[51] due to the lack of
access to the MSRs on GitHub’s runners.

It is also possible to mock the MSR, pretending that the values are accumulating,
or otherwise set. This would also allow testing Thor in a CI task.

A question is then how these mocked values should be represented. They could be
gathered from logging measurements over a certain period of time with varying
workloads, automatically generated using, for example, randomized values, or
manually crafted. It is unknown which representation would be best suited for the
task.

Instrumentation tools

Additional instrumentation tools can be implemented with other languages to ac-
count for the limitation of available tools mentioned in Section This project
has not tested Thor with ahead-of-time compiled languages such as C and C++.
These programming languages might present difficulties or new possibilities for
profiling. The GCC compiler has tools to instrument code during compilation[16].
These tools can be used to profile ahead-of-time compiled programs with Thor. An-
other programming language where an instrumentation tool can be implemented,
is Java. Instrumentation of Java will allow for comparison between Thor and Java
based tools, such as eprof[10] and E-surgeon[11].

8.1. Future work 59

Other approaches to instrumentation can be explored as mentioned in Section
These approaches can include ways to select which functions to instrument, as
instrumenting every function can become excessive as seen with Fibonacci. The
addition of a maximum depth variable could be used to decide which function calls
to instrument, since the depth of a function call can be calculated using a call graph.
Inspiration could also be obtained from the work by Lehr et al.[15]. If functionality
to analyze information gain from nested functions were to be implemented, Thor
could potentially be able to automatically decide if any information is gained by
going further into nested functions. This could potentially solve the problem with
Fibonacci automatically, as Thor would limit itself to just the outer layer, as the
nested layers do not change.

Security layer

As mentioned in Section an additional security layer can be implemented into
Thor.

A question to be answered is how to validate the users that should be getting the
energy measurements, from those that should not.

One approach is to perform token-based user authentication with protocols such as
OAuth 2.0[52]. A user can perform authentication with, for example, a username
and password, where Thor could then return a token. This token can then be used
to gain access to profiling.

Another approach is to take inspiration from SSH key authentication by using
public and private keys[53]. The developer can then use their private key to show
that they have access to use Thor.

To protect from man in the middle attacks[54], the security layer must also encrypt
the data exchanged. This can be done with protocols such as the Transport Layer
Security protocol[55].

Bibliography

GitHub Copilot. URL: https : / / marketplace . visualstudio . com/ items ?
1temName=GitHub.copilot!

Steffen Lange, Johanna Pohl, and Tilman Santarius. “Digitalization and en-
ergy consumption. Does ICT reduce energy demand?” In: Ecological Eco-
nomics 176 (2020), p. 106760. 1ssN: 0921-8009. por: https://doi.org/10.
1016/ j . ecolecon. 2020 . 106760. URL: https://www.sciencedirect . com/
science/article/pii/S0921800919320622.

Erol Gelenbe and Yves Caseau. “The Impact of Information Technology on
Energy Consumption and Carbon Emissions”. In: Ubiquity 2015.June (June
2015). por: 10.1145/2755977. URL: https://doi.org/10.1145/2755977.

Erik Jagroep et al. “The hunt for the guzzler: Architecture-based energy pro-
filing using stubs”. In: Information and Software Technology 95 (2018), pp. 165-
176. 1ssN: 0950-5849. por1: https://doi.org/10.1016/j . infsof . 2017 .
12.003. URL: https://www. sciencedirect . com/science/article/pii/
S50950584917303841.

Hirst .M. et al. “Watts Up? Pro AC Power Meter for Automated Energy
Recording.” In: Behavior Analysis in Practice 6 (1 June 2017), pp. 82-95. 15SN:
2196-8934. por: |10 . 1007 /BF03391795. URL: https://doi.org/10. 1007/
BF03391795.

Microsoft. Joulemeter: Computational Energy Measurement and Optimization. https:
//www.microsoft.com/en-us/research/project/joulemeter-computational-
energy-measurement-and-optimization/. 2010. (Visited on 02/22/2024).

Saurabhsingh Rajput et al. Enhancing Energy-Awareness in Deep Learning through
Fine-Grained Energy Measurement. 2024. arXiv: 2308.12264 [cs.LG]. (Visited
on 02/28/2024).

Howard David et al. “RAPL: Memory Power Estimation and Capping”. In:
ISLPED "10. Austin, Texas, USA: Association for Computing Machinery, 2010,
189-194. 1sBN: 9781450301466. DO1: 10.1145/1840845. 1840883, URL: https:
//doi.org/10.1145/1840845.1840883.

60

https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://marketplace.visualstudio.com/items?itemName=GitHub.copilot
https://doi.org/https://doi.org/10.1016/j.ecolecon.2020.106760
https://doi.org/https://doi.org/10.1016/j.ecolecon.2020.106760
https://www.sciencedirect.com/science/article/pii/S0921800919320622
https://www.sciencedirect.com/science/article/pii/S0921800919320622
https://doi.org/10.1145/2755977
https://doi.org/10.1145/2755977
https://doi.org/https://doi.org/10.1016/j.infsof.2017.12.003
https://doi.org/https://doi.org/10.1016/j.infsof.2017.12.003
https://www.sciencedirect.com/science/article/pii/S0950584917303841
https://www.sciencedirect.com/science/article/pii/S0950584917303841
https://doi.org/10.1007/BF03391795
https://doi.org/10.1007/BF03391795
https://doi.org/10.1007/BF03391795
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://www.microsoft.com/en-us/research/project/joulemeter-computational-energy-measurement-and-optimization/
https://arxiv.org/abs/2308.12264
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1840845.1840883
https://doi.org/10.1145/1840845.1840883

Bibliography 61

[12]

[15]

Nvidia. System Management Interface SMI. https://developer.nvidia.com/
nvidia-system-managementinterface. 2012. (Visited on 02/29/2024).

Simon Schubert et al. “Profiling Software for Energy Consumption”. In: 2012
IEEE International Conference on Green Computing and Communications. 2012,
pp. 515-522. por: 10.1109/GreenCom.2012.86.

Adel Noureddine et al. “Runtime monitoring of software energy hotspots”.
In: Proceedings of the 27th IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE "12. Essen, Germany: Association for Computing Ma-
chinery, 2012, 160-169. 1sBN: 9781450312042. por: 10.1145/2351676.2351699.
URL: https://doi.org/10.1145/2351676.2351699.

Mark Stephenson et al. “Flexible software profiling of GPU architectures”. In:
SIGARCH Comput. Archit. News 43.3S (June 2015), 185-197. 1ssN: 0163-5964.
DOI: [10.1145/2872887.2750375. URL: https://doi.org/10.1145/2872887.
2750375.

Ritu Arora et al. “Profiler instrumentation using metaprogramming tech-
niques”. In: Proceedings of the 46th Annual Southeast Regional Conference on XX.
ACM-SE 46. Auburn, Alabama: Association for Computing Machinery, 2008,
429-434. 1sBN: 9781605581057. por: [10.1145/1593105.1593218, URL: https:
//doi.org/10.1145/1593105.1593218.

Thomas Ilsche et al. “Combining Instrumentation and Sampling for Trace-
Based Application Performance Analysis”. In: Tools for High Performance Com-
puting 2014. Ed. by Christoph Niethammer et al. Cham: Springer Interna-
tional Publishing, 2015, pp. 123-136. 1sBN: 978-3-319-16012-2.

Jan-Patrick Lehr, Alexander Hiick, and Christian Bischof. “PIRA: perfor-
mance instrumentation refinement automation”. In: Proceedings of the 5th
ACM SIGPLAN International Workshop on Artificial Intelligence and Empirical
Methods for Software Engineering and Parallel Computing Systems. AI-SEPS 2018.
Boston, MA, USA: Association for Computing Machinery, 2018, 1-10. 1sBN:
9781450360678. por1: [10.1145/3281070.3281071. URL: https://doi.org/10.
1145/3281070.3281071.

Program Instrumentation Option. URL: https://gcc . gnu.org/onlinedocs/
gcc/Instrumentation-Options.html.

Git Community. Git. https://git-scm.com/. 2024. (Visited on 03/20/2024).

Microsoft. Instrumentation in Visual Studio (C#, Visual Basic, C++, F#). https:

//learn.microsoft.com/en-us/visualstudio/profiling/instrumentatior-
overview?view=vs-2022. 2024. (Visited on 03/06/2024).

Oracle. Package java lang instrument. https://docs.oracle.com/en/ java/
javase/11/docs/api/java.instrument/java/lang/instrument/package-

summary . html. 2023. (Visited on 03/06/2024).

https://developer.nvidia.com/nvidia-system-management interface
https://developer.nvidia.com/nvidia-system-management interface
https://doi.org/10.1109/GreenCom.2012.86
https://doi.org/10.1145/2351676.2351699
https://doi.org/10.1145/2351676.2351699
https://doi.org/10.1145/2872887.2750375
https://doi.org/10.1145/2872887.2750375
https://doi.org/10.1145/2872887.2750375
https://doi.org/10.1145/1593105.1593218
https://doi.org/10.1145/1593105.1593218
https://doi.org/10.1145/1593105.1593218
https://doi.org/10.1145/3281070.3281071
https://doi.org/10.1145/3281070.3281071
https://doi.org/10.1145/3281070.3281071
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Instrumentation-Options.html
https://git-scm.com/
https://learn.microsoft.com/en-us/visualstudio/profiling/instrumentation-overview?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/profiling/instrumentation-overview?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/profiling/instrumentation-overview?view=vs-2022
https://docs.oracle.com/en/java/javase/11/docs/api/java.instrument/java/lang/instrument/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.instrument/java/lang/instrument/package-summary.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.instrument/java/lang/instrument/package-summary.html

Bibliography 62

[20]

[27]

Gregor Kiczales et al. “Aspect-oriented programming”. In: ECOOP’97 —
Object-Oriented Programming. Ed. by Mehmet Aksit and Satoshi Matsuoka.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1997, pp. 220-242. 1sBN: 978-
3-540-69127-3.

Intel® 64 and 1A-32 Architectures Software Developer’s Manual Volume 3B: Sys-
tem Programming Guide, Part 2. URL: https://cdrdv2. intel.com/v1/dl/
getContent/671427.

Vince Weaver. Linux support for Power Measurement Interfaces. https://web.
eece.maine.edu/ vweaver/projects/rapl/rapl_support.html. 2018.

Rui Pereira et al. “Ranking programming languages by energy efficiency”.
In: Science of Computer Programming 205 (2021), p. 102609. 1ssn: 0167-6423.
DOL: https://doi.org/10.1016/j.scico.2021.102609. URL: https://www.
sciencedirect.com/science/article/pii/S0167642321000022.

E.W. Dijkstra. “Co-operating sequential processes”. English. In: Programming
languages : NATO Advanced Study Institute : lectures given at a three weeks Sum-
mer School held in Villard-le-Lans, 1966 / ed. by F. Genuys. United States: Aca-
demic Press Inc., 1968, pp. 43-112. 1sBN: 0-12-279750-7.

Nicolas Jorge Dato. IPC Performance Comparison: Anonymous Pipes, Named
Pipes, Unix Sockets, and TCP Sockets. https://www.baeldung.com/linux/ipc-
performance-comparison. (Visited on 02/28/2024).

Shaneel Narayan and Yhi Shi. “TCP/UDP network performance analysis of
windows operating systems with IPv4 and IPv6”. In: 2010 2nd International
Conference on Signal Processing Systems. Vol. 2. 2010, pp. V2-219-V2-222. por:
10.1109/ICSPS.2010.5555285.

Kashif Nizam Khan et al. “RAPL in Action: Experiences in Using RAPL for
Power Measurements”. In: ACM Trans. Model. Perform. Eval. Comput. Syst. 3.2
(Mar. 2018). 1ssN: 2376-3639. po1: 10.1145/3177754. URL: https://doi.org/
10.1145/3177754.

Jakob Zacho Sendergaard et al. Measuring energy efficiency of JIT compiled pro-
gramming languages with micro-benchmarks: A study into how JIT compilation
affects energy consumption. https://kbdk-aub . primo.exlibrisgroup.com/
permalink/45KBDK_AUB/a7me0f /alma9921650780605762. 2024.

Jetf Parsons. Crate rangemap. https://docs.rs/rangemap/latest/rangemap/.
2024. (Visited on 03/21/2024).

Rust. BTreeMap. https://doc.rust-lang.org/std/collections/struct.
BTreeMap.html. 2024. (Visited on 04/05/2024).

Acorn. Acorn community. https://github.com/acornjs/acorn. 2024. (Visited
on 04/04/2024).

https://cdrdv2.intel.com/v1/dl/getContent/671427
https://cdrdv2.intel.com/v1/dl/getContent/671427
https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
https://web.eece.maine.edu/~vweaver/projects/rapl/rapl_support.html
https://doi.org/https://doi.org/10.1016/j.scico.2021.102609
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://www.sciencedirect.com/science/article/pii/S0167642321000022
https://www.baeldung.com/linux/ipc-performance-comparison
https://www.baeldung.com/linux/ipc-performance-comparison
https://doi.org/10.1109/ICSPS.2010.5555285
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://doi.org/10.1145/3177754
https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921650780605762
https://kbdk-aub.primo.exlibrisgroup.com/permalink/45KBDK_AUB/a7me0f/alma9921650780605762
https://docs.rs/rangemap/latest/rangemap/
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
https://doc.rust-lang.org/std/collections/struct.BTreeMap.html
https://github.com/acornjs/acorn

Bibliography 63

[32] Titus Wormer. estree-util-to-js. https://github.com/syntax-tree/estree-
util-to-js?tab=readme-ov-file. 2024. (Visited on 04/04/2024).

[33] Postsharp. Metalama. https://www.postsharp.net/metalama. 2024. (Visited
on 03/07/2024).

[34] Microsoft. Visual Studio Code. https://code.visualstudio.com/. 2024. (Vis-
ited on 03/20/2024).

[35] Microsoft. Using Git source control in VS Code. https://code.visualstudio.
com/docs/sourcecontrol/overview. 2024. (Visited on 03/20/2024).

1crosoft. Webview .https://code.visualstudio.com/api/extension-
[36] Mi ft. Webview API /7 /api/
guides/webview. 2024. (Visited on 04/01/2024).

[37] Rosetta Code. https://rosettacode.org/. (Visited on 06/07/2024).

[38] The Computer Language Benchmarks Game. https : //benchmarksgame - team.
pages.debian.net/benchmarksgame/index.html. (Visited on 06/07/2024).

[39] RealWorld. Introduction. https://main-- realworld-docs .netlify. app/
docs/introl 2024. (Visited on 04/18/2024).

[40] Postman. Run and test collections from the command line using Newman CLI.
https://learning.postman.com/docs/collections/using-newman-cli/
command-line-integration-with-newman/. 2023. (Visited on 04/18/2024).

[41] Postman. What is Postman? Postman API Platform. https ://www . postman .
com/product/what-is-postman/. 2024. (Visited on 04/18/2024).

[42] Moritz Lipp et al. “PLATYPUS: Software-based Power Side-Channel Attacks
on x86”. In: 2021 IEEE Symposium on Security and Privacy (SP). 2021, pp. 355-
371. por:10.1109/5P40001.2021.00063.

[43] Jordan Shamir. 5 benefits of virtualization. URL: https://www.ibm.com/think/
insights /virtualization - benefits# : ~ : text =The % 20consolidation
200f%20the%20applications, cost%20savings’20to)20your,20organization..

[44] Container benefits. URL: https : / /docs . aws . amazon . com / whitepapers /
latest/containers-on-aws/container-benefits.html.

[45] AWS. Recent Software-based Power Side-Channel Security Research. https://
aws . amazon. com/security/security-bulletins/AWS-2023-005/. (Visited
on 05/07/2024).

[46] Eddie Antonio Santos et al. “How does docker affect energy consumption?
Evaluating workloads in and out of Docker containers”. In: Journal of Systems
and Software 146 (2018), pp. 14-25. 1ssN: 0164-1212. po1: https://doi.org/
10.1016/7j . jss.2018.07 .077. URL: https://www . sciencedirect . com/
science/article/pii/S0164121218301456.

https://github.com/syntax-tree/estree-util-to-js?tab=readme-ov-file
https://github.com/syntax-tree/estree-util-to-js?tab=readme-ov-file
https://www.postsharp.net/metalama
https://code.visualstudio.com/
https://code.visualstudio.com/docs/sourcecontrol/overview
https://code.visualstudio.com/docs/sourcecontrol/overview
https://code.visualstudio.com/api/extension-guides/webview
https://code.visualstudio.com/api/extension-guides/webview
https://rosettacode.org/
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://benchmarksgame-team.pages.debian.net/benchmarksgame/index.html
https://main--realworld-docs.netlify.app/docs/intro
https://main--realworld-docs.netlify.app/docs/intro
https://learning.postman.com/docs/collections/using-newman-cli/command-line-integration-with-newman/
https://learning.postman.com/docs/collections/using-newman-cli/command-line-integration-with-newman/
https://www.postman.com/product/what-is-postman/
https://www.postman.com/product/what-is-postman/
https://doi.org/10.1109/SP40001.2021.00063
https://www.ibm.com/think/insights/virtualization-benefits#:~:text=The%20consolidation%20of%20the%20applications,cost%20savings%20to%20your%20organization.
https://www.ibm.com/think/insights/virtualization-benefits#:~:text=The%20consolidation%20of%20the%20applications,cost%20savings%20to%20your%20organization.
https://www.ibm.com/think/insights/virtualization-benefits#:~:text=The%20consolidation%20of%20the%20applications,cost%20savings%20to%20your%20organization.
https://docs.aws.amazon.com/whitepapers/latest/containers-on-aws/container-benefits.html
https://docs.aws.amazon.com/whitepapers/latest/containers-on-aws/container-benefits.html
https://aws.amazon.com/security/security-bulletins/AWS-2023-005/
https://aws.amazon.com/security/security-bulletins/AWS-2023-005/
https://doi.org/https://doi.org/10.1016/j.jss.2018.07.077
https://doi.org/https://doi.org/10.1016/j.jss.2018.07.077
https://www.sciencedirect.com/science/article/pii/S0164121218301456
https://www.sciencedirect.com/science/article/pii/S0164121218301456

Bibliography 64

[47] Joéakim v. Kistowski et al. “Analysis of the Influences on Server Power Con-
sumption and Energy Efficiency for CPU-Intensive Workloads”. In: Proceed-
ings of the 6th ACM/SPEC International Conference on Performance Engineering.
ICPE "15. Austin, Texas, USA: Association for Computing Machinery, 2015,
223-234. 1sBN: 9781450332484. por: 10.1145/2668930.2688057. URL: https:
//doi.org/10.1145/2668930.2688057.

[48] The top programming languages. URL: https://octoverse.github.com/2022/
top-programming-languages.

[49] Scaphandre. https : / / github . com/hubblo - org/ scaphandre. (Visited on
05/30/2024).

[50] NDepend. URL: https://marketplace.visualstudio.com/items?itemName=
PatrickSmacchia.NDepend.
[51] About self-hosted runners. URL: https : //docs . github . com/en/actions/

hosting-your-own-runners/managing-self-hosted-runners/about-self-
hosted-runners.

[62] OAuth 2.0. https://oauth.net/2/. (Visited on 06/04/2024).
[53] What is SSH Public Key Authentication? https://www.ssh.com/academy/ssh/
public-key-authentication. (Visited on 06/04/2024).

[54] What is MITM (Man in the Middle Middle) Attack. https://www.imperva.com/
learn/application-security/man-in-the-middle-attack-mitm/. (Visited
on 06/04/2024).

[65] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446.
Aug. 2018. por: 10 . 17487 /RFC8446. URL: https://www.rfc-editor.org/
info/rfc8446.

[56] dnSpyEx.dnSpyEx. https://github.com/dnSpyEx/dnSpy. (Visited on 04/22/2024).

https://doi.org/10.1145/2668930.2688057
https://doi.org/10.1145/2668930.2688057
https://doi.org/10.1145/2668930.2688057
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages
https://github.com/hubblo-org/scaphandre
https://marketplace.visualstudio.com/items?itemName=PatrickSmacchia.NDepend
https://marketplace.visualstudio.com/items?itemName=PatrickSmacchia.NDepend
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://docs.github.com/en/actions/hosting-your-own-runners/managing-self-hosted-runners/about-self-hosted-runners
https://oauth.net/2/
https://www.ssh.com/academy/ssh/public-key-authentication
https://www.ssh.com/academy/ssh/public-key-authentication
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://www.imperva.com/learn/application-security/man-in-the-middle-attack-mitm/
https://doi.org/10.17487/RFC8446
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8446
https://github.com/dnSpyEx/dnSpy

Appendix A

Stubbing of micro-benchmarks

As mentioned in Section we used the method introduced by Jagroep et al.[4]
in comparison with Thor. This section will explain how the benchmarks were
stubbed. The code can be found on our repository ﬂ

The benchmarks are in the form of functions, these are replaced by stubbed ver-
sions. As N-body and Fibonacci return numbers they use the same stubbed func-
tion that returns 0. The sorting benchmarks MergeSort and QuickSort are in-place,
which means that the list given as an argument is sorted and not copied into a
new sorted list. The functions used for stubbing can be seen in listing and
A2

function stubbed(input) {
return O0;

3 }

N

Listing A.1: Stubbed function used for N-body and Fibonacci.

function stubbed (input) {
return input;

3}

Listing A.2: Stubbed function used for MergeSort and QuickSort.

Thttps:/ / github.com/ cs-24-pt-10-01/HotspotBenchmark]S/ tree/ Guzzler_method

65

https://github.com/cs-24-pt-10-01/HotspotBenchmarkJS/tree/Guzzler_method

Appendix B

Excessive recursion

This appendix explains how the amount of recursive calls from Fibonacci is a prob-
lem for Thor. While the focus is on Fibonacci, other programs can also have this
problem.

The implementation of Fibonacci used in the test, described in Section uses
recursive calls to calculate the desired number of the Fibonacci sequence, which,
in this case, is 47. The Fibonacci function can be seen in Listing

function fib(n) {
return n < 2 ? n : fib(n - 1) + fib(n - 2);

3 }

Listing B.1: Fibonacci function from Rosetta code

Using 47 as the input results in 9,615,053,951 calls of the £ib function. The example
packet from a start call, seen in Appendix [E} is 290 bytes. Assuming each start and
stop call results in a packet with a similar size, it would result in 5.576 terabytes.
This amount of data is more than what we consider reasonable for a system such
as Thor to produce.

66

@ N

Appendix C

Reverse Engineering Metalama code

To give an insight into what C# code Metalama generates at compile-time, the re-
sulting compiled binary is analyzed with a reverse engineering tool and compared.
The chosen tool for analyzing the code is dnSpyEx[56].

An example of a C# function from the RealWorld C# implementation is shown
in Listing It is the CreateAsync function in the UserHandler class, used for
creating a user.

public async Task<UserDto> CreateAsync(NewUserDto newUser,
CancellationToken cancellationToken)

{
var user = new User (newUser);
await _repository.AddUserAsync (user);
await _repository.SaveChangesAsync(cancellationToken);
var token = _tokenGenerator.CreateToken (user.Username) ;
return new UserDto(user.Username, user.Email, token, user.Bio,
user . Image) ;
}

Listing C.1: C# RealWorld CreateAsync implementation

The generated code at compile-time is different from the default implementation,
seen in Listing The decompiled code can be seen in Listing The call to
the CreateAsync_Source function, seen on line [in Listing has been added.
The CreateAsync_Source function can be seen as the original function with the
CreateAsync function now being the function containing the measurement code.
The code generated by Metalama is able to measure everything between the be-
ginning and the end of the function. However, it does not measure inside the
added CreateAsync_Source function, meaning that a deeper perspective of all sub-
function calls are not gathered. Therefore, only a broad overview of the whole
function’s energy usage is gathered.

67

| public async Task<UserDto> CreateAsync(NewUserDto newUser,

CancellationToken cancellationToken)

global::Thor.Thor.start_rapl("CreateAsync");

UserDto userDto = await this.CreateAsync_Source (newUser,
cancellationToken) ;

UserDto result = userDto;
global::Thor.Thor.stop_rapl("CreateAsync");

return result;

private async Task<UserDto> CreateAsync_Source(NewUserDto newUser,

CancellationToken cancellationToken)

User user = new User (newUser) ;
await this._repository.AddUserAsync (user);
await this._repository.SaveChangesAsync (cancellationToken) ;

string token = this._tokenGenerator.CreateToken(user.Username);

return new UserDto(user.Username, user.Email, token, user.Bio,
user.Image) ;

Listing C.2: Decompiled C# RealWorld CreateAsync Metalama generated code

68

It was found that the code generated by Metalama is equivalent to what is ex-
pected.

Appendix D

Additional Workload

As explained in Section a test is conducted where an additional workload
is added to change the primary hotspot of the micro-benchmark mix test. This
section explains how the amount of additional workload was chosen.

Deep cloning is used to add the additional workload, as it does not change the
input. As a single deep clone does not add the necessary workload, the input of
MergeSort is cloned multiple times. To find the amount needed for the desired
workload, we executed MergeSort with a varying amount of deep clones. The
executions can be seen in Table From the results presented in Section
it can be seen that the primary hotspot Fibonacci used 1054.76 joules on average.
When the input of MergeSort is cloned 30,000 times, MergeSort yields a higher
energy consumption of 1131.98 joules on average.

Deep clone count | Accumulated | Average
10000 4230.09 423.01
15000 6213.91 621.39
20000 7898.93 789.89
25000 9521.32 952.13
30000 11319.81 1131.98

Table D.1: Energy consumption of 10 executions of MergeSort with Additional deep clone with a
varying count.

69

Appendix E

Packet representations

This section shows the format of the data sent from the process-under-test to Thor
and from Thor to the client.

E.1 Process-under-test packet

An example of data, sent from the process-under-test, can be seen in Listing A
breakdown of this data can be seen in Table

26, 00, 00, 00, 00, 00, 00, 00, 31, 3A, 2E, 2F, 48, 6F, 74, 73,

70, 6F, 74, 42, 65, 6E, 63, 68, 6D, 61, 72, 6B, 4A, 53, 2F, 6D,

61, 69, 6E, 2E, 6A, 73, 3A, 72, 65, 71, 75, 69, 72, 65, DF, 06,

00, 00, 40, E8, C5, C3, 13, 7F, 00, 00, 00, 00, 00, 00, 64, E3,

cB, 78, 98, EB, D3, 17, 00, 00, 00, 00, 00, 00, 00, 00

Listing E.1: A packet sent from the process-under-test represented as hexadecimal values

70

E.2. Client packet

71

Field name Value Bytes

Length of Id 38 26, 00, 00, 00,
00, 00, 00, 00

Id 1:./HotspotBenchmark]JS/main.js:require | 31, 3A, 2E, 2F,

48, 6F, 74, 73,
70, 6F, 74, 42,
65, 6E, 63, 68,
6D, 61, 72, 6B,
4A, 53, 2F, 6D,
61, 69, 6E, 2E,
6A, 73, 3A, 72,
65, 71, 75, 69,
72,65

bit unsigned)

Process id (32 1759 DE, 06, 00, 00
bit unsigned)

Thread id (64 139722865633344 40, E8, C5, C3,
bit unsigned) 13, 7F, 00, 00
Operation Start 00, 00, 00, 00
(enum)

Timestamp (128 1716974923052475236 64, E3, CB, 78,

98, EB, D3, 17,
00, 00, 00, 00,
00, 00, 00, 00

Table E.1: Breakdown of the content within the packet sent from the process-under-test.

E.2 Client packet

After receiving a packet from the process-under-test, the server then matches the

packet’s timestamp with a RAPL measurement. This results in a packet for the
client which is serialized to JSON. A serialized example can be seen in Listing

The size of the serialized packet is 290 bytes. Packets such as this will be sent in
batches in the form of lists to the client.

{

"process_under_test_packet": {

nig":.

"process_id":
"thread_id":
"operation":
"timestamp":

} 2

"rapl_measurement": {

"1:./HotspotBenchmarkJS/main. js:require",
15647,
139632949852224 ,
"Start",
1716202972939155200

E.2.

Client packet
"Intel": {
"ppO": 149062.57501220703,
"ppl": O,
"pkg": 35349.74530029297,
"dram": O
}
Fe

"pkg_overflow": O

Listing E.2: A single packet to the client serialized to a JSON string.

72

Appendix F

Stubbed RealWorld implementations

The RealWorld web service, explained in Section is a more realistic program
than the micro-benchmark mix, which is explained in Section Using Jagroep
et al.’s method[4] on the RealWorld implementation and comparing the results to
those produced by Thor would further the confidence in Thor’s ability to detect
hotspots.

Since stubbing requires time, and the RealWorld implementations contains many
functions, it was decided to only stub the functions which Thor reported as the
ten most energy consuming functions. These can be seen in Table and for
JavaScript and C# respectively.

Stubbed JavaScript implementation

An issue which was encountered when trying to stub the 10 most energy consum-
ing functions for JavaScript is that not all of the identified hotspots can easily be
stubbed. The JavaScript implementation of the RealWorld web service contains
multiple require functions within the functions with the highest energy consump-
tion. The require function is used to import code from other sources. Since the
imported functionality is used by other parts of the implementation, removing the
require is not possible without breaking the program.

Because of these issues, only three functions of the ten most expensive were stubbed
in the JavaScript implementation. Only a single hash function was stubbed, as both
hash functions seen in Table[6.6result in the execution of the same code. The results
from 10 executions with stubbing can be seen in Table Compared to the results
of Thor, the placement of the hash and compare functions have switched places, as
compare is measured to have a bigger impact on energy consumption.

73

74

An issue encountered when trying to interpret the results is high variance of the en-
ergy consumption for the whole program. This variance can be seen in Figure
where the difference between the maximum and minimum energy consumption
is around 60 joules. This difference is larger than the consumption of the stubbed
functions. This variance can have a larger effect than the stubbed functions and
thereby change which function is identified as the hotspot.

Function stubbed Accumulated [Joules] | Average [Joules]
No function stubbed | 1718.20 171.82
getArticles 1717.60 171.76
hash 1603.11 160.31
compare 1489.91 148.99

Table E1: The energy consumption from 10 executions of the JavaScript implementation with and
without stubbing.

full
190
180
™
o 70
<}
: 160
=
R
C 50
L
140
20
0 2 4 6 8
Calls

Figure E1: The energy consumption of 10 executions of the JavaScript implementation.

The issue with the inter-dependencies could be avoided, if the entire component
is stubbed. As an example, the run function seen in Table is a function which
starts the database. Stubbing just the run function would stop code dependent
on the database from working. If the entire database was stubbed, including each
database function, then any part of the program which interacts with the database
could receive a mocked response. By stubbing entire components, the granularity

75

that hotspots can be detected at is reduced. Jagroep et al.’s method were also tested
on components and not individual functions in their own work[4].

By testing on whole components, the energy consumption for the component will
be higher, and the variance will thereby have a lesser impact.

Stubbed C# implementation

We also wanted to use Jagroep et al.’s method on the C# implementation. The
functions identified by Thor as the 10 most energy consuming functions are all
able to be stubbed, with varying degrees of work needed. Before we began testing
with stubbed versions, we ran the non-stubbed version 10 times to get the variance
between runs.

The variance can be seen in Figure It can be seen that the difference between
the maximum and minimum energy consumption is around 44 joules. The same
difference is expected to be present in the stubbed versions. Because of the differ-
ence of around 44 joules, the results from testing the stubbed versions are likely
going to vary significantly.

If we look at the energy consumption of the hotspots provided by Thor, which can
be seen in Table it can be seen that the most energy consuming hotspot, when
not counting main, is the CreateAsync method of the UserHandler class with an
energy consumption of 13.35 joules.

Because the results from using Jagroep et al.’s method can have a difference higher
than the reported energy consumption by Thor, comparing the results will likely be
inconclusive. Therefore, we decided not to test the stubbed variants and compare
them with Thor.

76

Non stubbed

450

440

430

420

Energy {(Joules)

410

Calls

Figure F.2: Variance of the energy consumption of C# Realworld implementation with no stubbing

	Front page
	English title page
	Contents
	Preface
	1 Introduction
	2 Related Works
	3 Methodology
	3.1 Conceptual Design
	3.1.1 Architectural Design
	3.1.2 Measuring Process
	3.1.3 Static Instrumentation

	3.2 Gathering measurements
	3.3 Intel's Running Average Power Limit

	4 Implementation
	4.1 Server Components
	4.1.1 Listener
	4.1.2 Measurements
	4.1.3 Build & Start process

	4.2 Static Instrumentation
	4.2.1 Instrumenting JavaScript
	4.2.2 Instrumenting C#

	4.3 Shared Library
	4.4 Client
	4.5 Energy estimation

	5 Experimental setup
	5.1 System Specifications & Setup
	5.2 Tests
	5.2.1 Micro-benchmark mix
	5.2.2 RealWorld web service
	5.2.3 Overhead test

	6 Results
	6.1 Micro-Benchmark mix
	6.2 RealWorld web service
	6.3 Overhead test
	6.4 Effect of estimation

	7 Discussion
	7.1 Limitations of Thor in a production environment
	7.1.1 Instrumentation tools
	7.1.2 Security
	7.1.3 Containerization & Cloud
	7.1.4 Profilling more than one program

	7.2 Resource overhead
	7.3 Async functions
	7.4 MSR update interval
	7.5 Knowledge of the code
	7.6 Threats to validity
	7.6.1 Internal Validity
	7.6.2 External Validity

	8 Conclusion & Future Work
	8.1 Future work

	Bibliography
	A Stubbing of micro-benchmarks
	B Excessive recursion
	C Reverse Engineering Metalama code
	D Additional Workload
	E Packet representations
	E.1 Process-under-test packet
	E.2 Client packet

	F Stubbed RealWorld implementations

