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Abstract:

Thanks to large consumption of energy
and thermal capacity of food stored
in supermarket refrigeration systems,
there exists a potential for optimis-
ing their use in terms of costs of en-
ergy, by exploiting changes in electric-
ity prices. While moving the system’s
load according to the prices can yield
nontrivial savings, it has to be done
in a way that respects operating con-
straints, especially food temperature.
For that reason, 2 model predictive
control schemes under varying elec-
tricity prices, including their reliabil-
ity under temperature sensor fault, are
presented in this thesis. As supermar-
ket refrigeration systems are not suit-
able for first-principle modelling, data-
driven methods, namely novel dy-
namic mode decomposition and neu-
ral networks are investigated for ob-
taining prediction models of compres-
sors’ power and evaporation temper-
ature for use in the controllers. To
obtain the synthetic data for training
models and perform simulation stud-
ies of the controllers, digital twin sim-
ulation models provided by Danfoss
were used. Finally, the results demon-
strate that the developed neural net-
work model can be successfully used
with the developed control schemes to
decrease costs of energy by between
6.8% and 14.1% depending on the sce-
nario.
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Summary

Supermarket refrigeration systems hold a potential for economic optimisation of
their operation, as thermal capacity of food that they store allows for moving load
in time according to periods when the electricity price is lower, thus decreasing
the overall cost of energy. However, this precooling strategy does not necessarily
mean that less energy is used.

In fact, cooling more at some time point to cool less at a later time can decrease
coefficient of performance of the system, as the efficiency of compressors will drop
as they have to deliver more power for cooling, while the strategy to minimise
only the overall energy consumption would be to limit compressor power such
that temperature of food always stays at upper permissible limit. Thus, "energy-
efficiency” in the title of the thesis is treated a bit lightly, meaning that we want to
use energy flexibility of the system to improve its cost efficiency.

Nevertheless, it is still a worthwhile goal to utilise cheap energy prices, as it
benefits both supermarket owners and electrical grid, that will require more bal-
ancing, as the share of renewable energy increases, that can be provided through
implementing load-shifting strategies in supermarkets. Throughout literature study,
the authors found out that model predictive control (MPC) is a suitable way of
achieving this goal, as it offers ways of optimising cost of system’s operation,
while maintaining its constraints like temperature of store food etc..

Prediction model used by this scheme plays a pivotal role in it being successful
or not and so does choice of modelling approach to obtain it. Previous studies
trying to optimise the system’s operation used impractical approaches relying on
first-principles modelling, that is not possible in practice, due to substantial part of
the system’s properties being unavailable, or manipulating cabinet temperatures
that results in large amount of signals that need to be predicted. Therefore, data-
driven approaches including dynamic mode decomposition (DMD) and artificial
neural networks (ANNs) were explored, with focus on manipulating compressors
rack’s power and evaporation temperature, as they are few central signals that
affect both system’s overall power and cooling.
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Ideally, DMD could be used to obtain powerful linear state-space representa-
tions even for nonlinear system, that allow for fast computations by MPC. How-
ever, due to implementation and time limitations, only ANN approach was ap-
plied to the predictive controllers, to demonstrate validity of our modelling proce-
dure. Upon obtaining the model, 2 MPC schemes were designed, economic MPC
that decided on the optimal power consumption based on electricity prices on its
own and evaporation temperature reference-tracking MPC that was operating in 3
modes, namely minimum, normal and maximum energy consumption that were
commanded by the grid to the system within 10 minutes interval, both of which
achieved savings in terms of energy costs i.e. at most 6.8% and 14.1% respectively.
We claim that these savings would have been more, if it had not been for short time
constant of cabinet temperature in the digital twin simulation model provided by
Danfoss, which used as a tool for for obtaining training data for the data-driven
model and conducting simulation study on the developed controllers, as it did not
allow for much precooling.

Lastly, reliability of the system was also considered, as the developed meth-
ods, among other things, rely heavily on accurate measurements of ambient air
temperature. A method for addressing the sensor’s bias inflicted by sun exposure
available in the literature was validated on the available digital twin model and its
application to our solution was justified by investigating impact of bias on it, that
rendered it completely unusable, owing to cabinet temperature lower constraint
violations caused by providing much higher temperature than actual to the pre-
diction model, that led to increased cooling. By applying the mentioned method
for bias compensation, the performance of MPC schemes could be recovered.

In the overall conclusion of the thesis, it is stated that while our development
was successful, there are some areas to improve in the future, mainly time constant
of the digital twin model, to increase the possible cost savings and modify the con-
trollers accordingly, and simplifying data driven model, for instance by switching
to DMD, to make the controllers less computationally expensive.
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Chapter 1

Introduction

Refrigeration systems as a whole are major users of electric energy, accounting for
approximately 20% of its consumption globally [1, 2]. Supermarket refrigeration
systems contribute substantially to this number, as together with heating, ventila-
tion and air conditioning of supermarkets account for 3-4% of overall electricity
consumption in industrialised countries [3]. In Denmark alone, 4500 supermar-
kets consume 550 000 megawatt-hours of energy every year and currently could
be used together to account for 75% of primary operating reserves of the electric
grid [4].

This is due to the fact that, owing to their size, supermarket refrigeration sys-
tems store large amount of energy, which also makes them suitable for manipu-
lating their operation to achieve cost savings, as, for one thing, this storage allows
for accumulating enough energy in form of "coldness" to be used later and [5], for
another thing, nontrivial cost savings can be achieved by doing so appropriately
[4, 6], creating an incentive for the owners of such systems to invest in solutions
optimizing their use. Therefore, it is interesting to investigate ways of utilizing
energy capability of these systems in more cost-efficient manner.

There are 2 main approaches to economic optimisation of the supermarket re-
frigeration system i.e. improving the system through extending its design with
new components that reduce operating costs by themselves and adjusting its op-
eration according with changing external factors like electricity prices or ambient
air temperature that affects the energy consumption. The former can involve heat
exchanger that recovers excess heat produced by the system for district heating, ice
tank for extra cooling on the condenser side to reduce peak energy consumption
in hot climates or photovoltaic panels for powering compressors.

While all of them are beneficial on their own, the question of how they can be
used in the best way arises. For instance, one can ask what the best time to sell



excess heat could be or when ice tank should be charged or discharged to achieve
the best peak energy consumption reduction. This leads to the point that the
system requires the latter approach to its optimisation in any case. Because of this
reason, this thesis focuses on improving the system through an optimal control
problem formulation, given that supermarket refrigeration systems are dynamic
systems.

As proper control of the system in terms of cost of operation is a prerequisite
for applying extensions to the system’s design, we state that problem initiating
our research is that supermarkets are in need of a way to optimising economic
operation of their refrigeration systems to enable costs savings both for nominal
operation and one while utilising new energy-efficiency-related components.



Chapter 2

Problem analysis

2.1 State of the art

In a broader context of energy cost optimisation, demand side management (DSM)
is a set of approaches that balance electrical grid by managing its consumer side
through altering consumers’ load profiles and patterns of energy consumption [7].
Demand response is a prominent DSM method that focuses on consumers actively
changing their consumption based on dynamic electricity prices [8].

Thermal systems are especially suitable for such strategies and considerable
number of publications on the topic has been seen for building heating, ventila-
tion and air conditioning in particular [9, 10, 11], where a commonly used tool
is Model Predictive Control (MPC). However, the previous research in supermar-
ket refrigeration systems focused mainly on the performance of the system from
operation rather than energy perspective, for instance to desynchronise switching
of on-off expansion valves to avoid negative impact on compressors [12, 13, 14],
while still commonly resorting to MPC.

Nevertheless, there has also been a recent interest in applying MPC to optimise
costs of energy consumption of supermarket refrigeration systems. Different MPC
approaches to managing energy consumption of supermarket refrigeration sys-
tems are propose in thesis by Shafiei [6]. Hovgaard et al. [5] proposed economic
MPC for direct load control of cold room participating in Smart Grid, where direct
load control scheme is utilised such that the cold room follows power reference
decided by the grid by varying compressor power, while maintaining cold room
temperature constraints. Also, interesting observation is made that the goal is to
minimise the cost of energy rather than energy itself, as minimisation of energy oc-
curs when the system operates at upper temperature constraint at all times, which
does not allow for absorbing cheap, or even free energy from its overproduction,

3



2.2. MPC approach 4

making it possible to decrease cooling at a later point. As an alternative approach
Hovgaard et al. [4] developed EMPC for indirect load control, where EMPC was
optimising energy consumption locally in the supermarket refrigeration system,
managing its consumption on its own. The limitations of this work was simula-
tion model which was first-principle and simplified, which was used mainly for
demonstration potential of energy-costs savings of capabilities of EMPC. In [15] a
methodology of stochastic EMPC for supermarket refrigeration system was also
created to account for uncertainties in electricity production and ambient air tem-
perature predictions.

As for modelling of refrigeration systems, prior work was mostly on modelling
of steady-state operation of the system for static optimisation [16, 17, 18]. Grey-box
modelling of domestic refrigerator was also presented [19], while the mentioned
work by Shafiei included both white-box modelling and subspace identification
approach [6]. As the authors are not aware of any publication on modelling dy-
namics of supermarket refrigeration systems for energy cost optimisation through
dynamic mode decomposition or artificial neural networks, these developments
are considered as one of the contributions of this thesis.

2.2 MPC approach

Given the literature study above, we can see that MPC is particularly popular in
the research area of optimisation of thermal systems’ control and it is for some
good reasons. They are given as a justification of using this approach in our thesis
and we also present our strategy for applying it in our case.

The MPC approach was chosen as a preferred control method, due to its 2
properties: intrinsic way of introducing constraints and ability to predict future.
The ability to enforce constraints is most crucial, as it is not desired to go be-
yond the safety bounds of cooled cabinet temperatures that would jeopardise food
safety. This is very important, as the most profitable operation will occur while
allowing the temperature to get close to these bounds. This is also mainly the rea-
son why there is room for optimisation: currently used fixed setpoint of suction
pressure works well for different cooling loads imposed on system by ambient air
temperature such that enough cooling is always delivered, even in the worst case.
However, this does not lead to the best use of the system when it is not being
under full-load condition, as in such a case departing from the fixed setpoint is
not allowed, which goes against idea of varying it to match the actual conditions.
Nevertheless, thanks to constraint-enforcing ability, the MPC approach is capable
of maintaining the temperature in the acceptable range during the ever-changing



2.3. Supermarket refrigeration system 5

conditions.

To achieve that, another useful property of MPC is still needed i.e. capability of
incorporating forecasts. Unlike PID control, it is capable of utilising extra informa-
tion that is already available for the supermarket refrigeration system i.e. ambient
air temperature and price forecasts. As MPC tries to see the future impact of its
actions on the manipulated variables through simulation of the system, it is also
capable of incorporating such anticipative information into its predictions, thus
resulting in control action that from perspective of PID would be non-causal, like
responding to disturbance before it actually occurs. This leads to ensuring that
even if sudden change in ambient air temperature, which changes the cooling load
occurs, the system will still stay within constraints.

The strategy taken by us in using MPC in this thesis is to utilise it as super-
visor that decides references to compressor suction pressure, which determines
the cooling available to the system to minimise energy costs for given ambient air
temperature and price, while maintaining cabinet temperature constraints, which
is illustrated in figure 2.1. The benefits of applying MPC in a supervisor manner
is that the local controller guarantees stability of the system and the MPC can pro-
vide the references at much slower sampling rate than the one of local controller,
both of which are important when applying data-driven black-box models. This
need will become apparent later when discussing how the prediction model for
MPC scheme can be obtained for the refrigeration system.

2.3 Supermarket refrigeration system

To contribute to reader’s understanding of the project and knowledge about the
system, major components of the supermarket refrigeration system, as seen in
figure 2.2 and their purpose are described below. In addition, possibility of ma-
nipulating control of each part of the system will be mentioned.

The explanation of the system begins with its low temperature, low pressure
side, or simply the part that absorbs the heat. Rack of compressors is the part
of the system that generates cooling required to remove that heat, by controlling
pressure of the refrigerant at its inlet, which at the same time is outlet of evapora-
tors, components that exchange heat with air in cooled cabinets and evaporate the
refrigerant. The evaporation temperature of refrigerant is affected by the suction
pressure of the compressor, where lowering the pressure lowers the evaporation
temperature and increases temperature difference between refrigerant and air in
cooled cabinets, resulting in allowing for lowering their temperature or, equiva-
lently, increasing available power for absorbing heat from the system. This means,
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we can lift suction pressure of the compressor to decrease its power at the cost of
raising temperature in the cabinets, due to lowering cooling power. This is an ap-
proach that is taken in this thesis to manipulate energy consumption of the system,
which is explained throughout it.

Important thing to notice at the cool side of the system is that each cabinet has
different temperature requirements based on food that is being stored inside of
it. It is reasonable to state that diary products or meat have lower temperature
requirements than cooled fresh vegetables. This is assured by electronic expan-
sion valves that control the temperature inside the cabinets through manipulating
flow of the refrigerant. This way, different temperatures are achieved, even though
the evaporation temperature is the same for all of them. However, an extra set of
compressors is present for freezers, as they have much lower temperature require-
ments creating a need for lowering the evaporation temperature. As it would be
impractical to manage this range of temperatures, extra compressor rack allows
for separation of pressures for the freezing and cooling cabinets. These 2 separate
parts of the system are called low temperature (LT) and medium temperature (MT)
respectively. At this point, it can also be noted that manipulating cabinets” temper-
ature references could be used instead of changing compressors’ suction pressures
directly to mange the system’s power consumption, as they would change the
need for cooling directly, so compressor could just match the pressure to this need.
However, the opposite approach (temperatures following the available cooling de-
livered by compressors) is more practical, as managing each cabinet’s temperature
would require a lot of processing, given that in practice there are tens of them in
the system.

During compression, compressors move the the gas refrigerant to their outlets
and increase its pressure, which is a desired effect. Lifting the pressure allows for
easier heat dissipation, as temperature rises with pressure leading to larger tem-
perature difference between refrigerant and surroundings, which causes more heat
transfer. However, there is some optimal configuration of the pressure at which
heat is exchanged that results in best coefficient of performance (COP) for a given
ambient air temperature. Thus, supermarket refrigeration systems use a special
algorithm for calculating the reference to pressure controller for maintaining the
right pressure, which should not be altered [22]. This is achieved through high
pressure valve that drops the pressure of the refrigerant. The cooling at the right
pressure is achieved at gas cooler, which is installed outside of the supermarket,
due to amount of heat that needs to be removed, because of which ambient air
temperature decides how easy it is to get rid of it. In order to control refrigerant’s
temperature, it uses fan to cause ambient air circulation through it.

After passing through high pressure valve, low temperature refrigerant can be



2.3. Supermarket refrigeration system

High pressure
valve

Receiver

Condenser

Compressor(s) (MT)

MTCompFixSpd

MT Psuc Ref

Compressor(s) (LT}

ry LT CompFrcSpd

PI
Temp. Pras. cirl.

LT P=zucRef

Text
Prec Ref__[™ py
Prec » cirl. Vrec OD{BFY OO)
Ensol
By-pass valve
Pl Ref .
cirl. ~MT tai
MT CD > Prles.
; | | i [5ensor [Sensor
I I |
Expanison )
valve(s) (MT) Evaporator(s) (MT)
Pl Ref +
cirl. LT tair
LTOD
| | I [sensod [Senserd
> > | I I
Expanison -
valve(s) (LT) Evaporatons) (LT)

Figure 2.2: Supermarket refrigeration system components diagram [21]



2.4. Data-driven modelling approach 9

reused. Nevertheless, it has to pass through a receiver, which purpose is to both
keep the excess refrigerant whenever there is lower demand for cooling and to
separate gas and liquid phase of the refrigerant, before going into evaporators.
As it is best to cool with liquid refrigerant and to maintain right pressure at the
receiver, a by-pass valve is installed that leads directly from receiver to the MT
compressor rack, skipping all of the evaporators. Once liquid refrigerant in the
receiver enters evaporators, its cycle through the system repeats.

Based on this explanation we can conclude that the only two parts of the system
that can be manipulated for managing its power are evaporators and compressor,
where compressors are feasible for real implementation, so signals related to their
operation should be investigated.

2.4 Data-driven modelling approach

As seen in the previous section, the supermarket refrigeration system is complex,
so there is an inherent difficulty in obtaining all of the parameters needed for first-
principle modelling with sufficient accuracy. To make it worse it becomes almost
impossible given that every supermarket refrigeration system is custom-made, as
most often it is constructed by different local suppliers resulting in lack of standard
for its modelling. This naturally calls for data-driven modelling.

This section does not focus on any specific method yet, however, the overall
approach is presented, especially the reasoning behind choosing particular inputs
and outputs to be used with any of the later considered methods. It was already
suggested before that the model should be simple and avoid impacting local con-
trol loops directly to account for stability of the system. Based on the previous
section, it appears that signals related to rack of compressors are potentially a
good choice when it comes to keeping amount of signals in the model to the min-
imum. This is due to the fact they describe the overall cooling of the system well,
due to the compressors being central components delivering cooling.

The following 2 signals were considered as output of the model: compressors
power and evaporation temperature, as they both define necessary information
about the cooling of the system i.e. power determines overall energy consump-
tion of the system as they account for 80% of it, while evaporation temperature
defines the minimum temperature for all of the cabinets for a given ambient air
temperature. Therefore, these 2 signals can be used together to achieve 2 goals:
improvement of energy utilisation and maintaining of the cabinet temperatures.

Initially, coefficient of performance (COP) was also considered as an output,
but in the end it was unnecessary. On one hand, it is already optimised through
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gas cooler pressure reference generator. On the other hand, we might even be
interested in destroying COP, as we might be interested in increasing the cooling,
thus decreasing efficiency of the system, when the electricity prices are low. As
COP did not serve any other purpose than to be optimised itself, it was removed
from the modelling approach.

As for the inputs, ambient air temperature, suction pressure and gas cooler
pressure were selected. Ambient air temperature obviously has an impact on how
easy it is to reject heat from the system and is the main factor driving the energy
consumption, so it must be included. Suction pressure is know to affect both
power and evaporation temperature, as lower pressure lowers down evaporation
temperature resulting in more cooling and increases power, as more refrigerant
is sucked by the compressor. It may seem that these 2 signals are sufficient and
gas cooler pressure is not needed to be added, as it is obtained based on ambient
air temperature through its reference anyway, however, from out experience the
methods data-driven methods could not perform well without it. The reason might
be that somehow it makes it easier for them to capture compression ratio, which
also decides how hard compressors need to work given specific suction pressure.
Consequently, gas cooler pressure was also included.

The scheme presented in this section should be sufficient for producing sim-
ple yet accurate models for managing energy cost-efficiency of the system while
maintaining the constraints.

2.5 Reliability considerations

Due to its size and complexity, supermarket refrigeration system can naturally be
subject to different faults. Thus, it is interesting to investigate if the control systems
developed in this thesis can be affected by any sort of fault.

As these methods rely on accurate and fault-free measurements of ambient air
temperature, just like in case of calculation of gas cooler pressure reference, a com-
mon fault that can negatively impact their performance is slowly-varying bias in
ambient air temperature sensor caused by mistakenly placing it in a spot exposed
to sun during the day. Because of the fact that the amount of bias added on top
of the measurement can reach up to 10 degrees Celsius [22], it can be easily seen
that it is a problem relevant to the aforementioned methods, as such a difference
of temperature is large enough to vary the the season perceived by the model from
spring/autumn (for instance 15 degrees Celsius peak) to summer (25 degrees Cel-
sius with bias added). This in turn will drive the solution of MPC/EMPC and
consequently the system away from optimal solution and possibly to the infeasible
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region, causing cabinet temperature violation.

Therefore, this important consideration of reliability of the proposed control
methods should be also taken into account during the development carried out in
the thesis with respect to finding out how much this fault affects the system and
possibly applying a compensation method to address it.

2.6 Task statement

Given the analysis above, the following research question for the thesis together
with the required tasks are posed:

How can energy cost-efficiency of supermarket refrigeration systems
be improved with model predictive control manipulating suction pressure reference?

Scope:

¢ The thesis shall focus on optimisation of the default supermarket refrigera-
tion system through MPC, extensions to the system are optional.

* The considered system uses CO2 as a refrigerant.
Objectives:

* A simple but highly accurate data-driven model has to be developed for
predicting signals essential to cooling and power consumption caused by it.

* MPC needs to be developed such that it minimises cost of energy usage in
the system based on the developed model and predictions of varying price
and ambient air temperature.

* Possible reliability issues of the control schemes with respect to ambient air
temperature sensor should be investigated and addressed.

* The ability of the developed system to save cost of energy should be evalu-
ated.

Limitations:

* Data for training data-driven model will be synthetic output of a digital twin
model.
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* Only MT stage of the system is considered (limitation of the model).

* No lifting of suction pressure during the night is considered (both simulation
model and time limitation).

* Solution will be trained / evaluated on a limited range (10-35 degrees Cel-
sius) of ambient air temperature (limitation of simulation model).

¢ Perfect predictions of ambient air temperature and electricity price are as-
sumed.

* Real price data will be modified to have more negative prices, which leads to
less realistic comparison (limitation of the simulation and time)

* Same price data will be used for different scenarios for ease of comparison;
the scenarios will span 1 week each.



Chapter 3

Simulation process

Previous chapter explained that supermarkets are too custom to have a standard
white- or grey- box model. In order to train and test data-driven models to be
used by MPC instead, a lot of data needs to be acquired. However, it is impractical
to perform these tests on a real setup, due to a large number of different scenarios
that must be tested, which would be costly and time-consuming, considering time
scale (order of hours) at which refrigeration systems operate.

Fortunately, this can also be performed on accurate simulation models. Danfoss
provided the authors with 2 such models, which are be briefly explained. As
preparation of data and code for simulations took substantial amount of time, this
effort is also documented here.

3.1 Simulation models

Each of the models that were introduced to the authors have their upsides and
downsides. The following section describes their complexity and argument is
made for using faster yet less 'realistic’ model.

3.1.1 Digital Twin

The initially provided model was a Digital Twin of one of typical Danish super-
markets. The simulation file includes both supermarket refrigeration system’s dy-
namics 'hidden’ inside functional mock-up unit (FMU), which was exported from
Modelica/Dymola simulation environment where the dynamics were originally
modelled, as well as default control systems, built in Simulink, used for managing
temperature and pressure references across the refrigeration system. A screenshot

13
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Figure 3.1: Main block in Digital Twin

of Digital Twin can be seen in figure 3.1.

The advantage of Digital Twin is high accuracy of data and realistic recon-
struction of the real system i.e. every single major component of the system like
expansion valve or compressor is simulated by the model as a separate part. This
includes 7 MT expansion valves, 4 LT expansion valves and 2 compressors in each
(MT and LT) compressor rack, among other components, which in total generate
over 60 signals.

The main disadvantage of the model is simulation speed. Due to being mod-
elled using Modelica and large number of components, simulating 1 day of the
system’s operation takes between 4 and 5 hours of real time on a modern office
laptop. Because of using FMU instead of Simulink blocks, it is also impossible to
study the system’s inner workings by observing how calculations are being made
such that better understanding of its operation could be gained. Nevertheless, the
control systems can be freely inspected and manipulated in order to affect system’s
excitation.
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The Digital Twin was used extensively by the authors to obtain data at the
start of the project, which unfortunately was causing a substantial bottleneck in
the process of developing models, where multiple scenarios had to be obtained,
due to its simulation speed. As the demand for simulation work grew over time,
a faster model was introduced to the authors, which is described next.

3.1.2 Fast model

The 2nd model, here referred to as a "fast model", represents system similar to the
system Digital Twin simulates, however, it was optimised for speed at the cost of
some details in the model. For instance, it represents all components in MT stage
by single evaporator, expansion valve and compressor. It also does not contain
freezers (LT stage). Nevertheless, it still remains quite complex as depicted in
tigure 3.2.

The execution speed of the model is indeed a considerable upside. As claimed
by the authors of the fast model, it runs 100 times faster than the Digital Twin,
which is in fact true, as the fast model simulates one day of operation in a time
range of 2.5-3 minutes on the same computer as in case of the Digital Twin. This
served as a very useful upgrade, because it allowed for checking different tests,
designs and ideas almost instantaneously. For example, the Digital Twin required
5 days of running the simulation continuously to obtain simulation of 1 month of
operation. Meanwhile, the fast model can simulate year of operation within less
than a day.

On the other hand, increasing execution speed of the model was to certain
extent caused by reduction in number of components included in it. It should
be noted however, that from perspective of developing supervisor for improving
energy efficiency is not a major issue, as it does not have to take into account some
details, owing to supervisor considering the system as a whole. As an example,
refrigerant mass flow is important variable linked to COP, yet it does not matter
if it is coming from multiple evaporators / expansion valves or just one bigger
component representing all of them. Similarly, compressor power models power
of all compressors in the compressor rack, so they can too be represented by a
single component.

Due to the fact that fast model already has an ice tank model connected to it
(which can be easily disabled to obtain simulations without its effect) that could
be used as an extension and as the simulation of Digital Twin would not allow
for finishing simulations in the right time, the authors continued working with the
fast model and abandoned the Digital Twin for further simulation work.
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3.2 Simulations plan and organisation

As the amount of simulations and variation of signals used in them were extensive,
the simulations had to be carried out in a systematic and organised manner. In this
section, approach to achieving this with a simulation plan and MATLAB scripts is
presented.

3.2.1 Simulations plan

In order to have sufficiently rich data as for both examples of operating conditions
and dynamic excitation a lot of simulations had to be run. To avoid running them
in a chaotic manner, it was decided how the setup of simulations in terms of inputs
should be beforehand.

To begin with, ambient air temperature data for different seasons were needed,
as it has substantial impact on how the system behaves. Initially, the data from
consecutive days of selected months were considered. However, it turned out
not be a good idea, as the data may not be sufficient to train a network based
on seasonal data only, as a sudden spike of temperature throughout one day as
compared to the others in a testing dataset would cause the network to perform
poorly for that period (this is discussed more in-depth in the next chapter).

To resolve this, the temperature data for 5 specific temperature ranges for the
network development were initially selected manually instead, such that network
would get the data of similar temperatures rather than consecutive days. To make
sure network learns the correct relationship between its outputs and the tempera-
ture, several temperature profiles were prepared for each range.

Next factor was suction pressure. In order to provide the network with suffi-
cient amount of operating ranges, simulations were run at different references of
suction pressure with several realisations of PRBS applied on top of them. To get
the full scope of operating conditions, simulations were run for each combination
of temperature range and suction pressure. Each of this combinations had 10 vari-
ants called days. Each day contained one combination of PRBS with temperature
profile.

In addition, there were few other conditions taken into consideration. Tem-
peratures had to be considered for different climates, so that the system could be
developed and tested for different locations in the world, resulting in the increase
of the number of datasets. Another potential option was running simulations with
and without ice tank.

In total, a large number of simulations was acquired. The system was simulated
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for 4 temperature ranges from 2 different climates, resulting in 400 simulations (4
temperature ranges x 10 suction pressure references x 10 days = 500 runs), which
resulted in large quantity of data. Initially, 50 simulations would occupy 6 giga-
bytes of disk space, so unnecessary signals were not logged afterwards to avoid
problem of having too much data. By doing so, the final 400 simulation runs took
"only" 22.3 gigabytes of disk space. This was further reduced by preprocessing,
which took only signals used for modelling and downsampling them, shrinking
down original size of the full data set to 2 megabytes of data of the resulting data
set.

3.2.2 Preparing environment for simulations

To carry out this large amount of simulations a programmatic approach was re-
quired to avoid repetitive entering of simulations inputs and running them as in
manual approach, that would obviously take a lot of time to do and would lead to
high risk of errors.

The core functionality is already implemented in function sim in MATLAB/
Simulink, which is capable of managing passing appropriate inputs to the simu-
lations and saving them each in separate files (it has to be noticed that given the
amount and length of simulations one can easily run out of memory in workspace,
so saving to files is preferred). An alternative version of sim function called parsim
also seamlessly implements the same functionality on multiple processor cores,
which allows for speeding up the simulation process when a lot of separate sim-
ulations are run with no added effort, assuming access to Parallel Computing
Toolbox.

Nevertheless, regardless of use of either sim or parsim, some extra functional-
ity needs to be built on top these functions. This involves proper understanding
of how data is passed to these functions and programming a loop that can insert
them in an organised manner, according to the simulation plan. In addition, input
data also had to be acquired or generated. For one thing, PRBS needed to be cre-
ated. This was done with prbs function in MATLAB, however, it had to be further
processed to be an appropriate signal with required properties like sampling time
or being injected at specific time in the simulation (for instance, after it settled from
a start up transient).

For another thing, ambient air temperature data had to be acquired. In or-
der to get realistic representation of the temperature, weather measurement data
was sought for online. However, most data bases had an issue of either having
raw, unprocessed data, storing it in hard-to-process format or made it difficult to
easily extract the required data from a bigger dataset. Fortunately, after an ex-
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tensive search, Iowa Environmental Mesonet website was found, which provides
an ever-growing weather data archive from airports around the world under the
link: https:/ /mesonet.agron.iastate.edu/request/download.phtml. This web page
offers a user interface for specifying what kind of data should be imported and
how it should be formatted, which is very useful in conjunction with the fact that
data from any country can be obtained, allowing for developing and testing of
methods presented in this work for different climates.

Considering the above, a lot of effort was required so as to get the simulations
running, also taking into account that designing environment for simulations was
an iterative process, in which the simulation environment was reconfigured as new
issues occurred and the demand for new datasets was growing.

3.2.3 Simulations data organisation

Last aspect to be covered is how data was organised in the files. The problem here
was that parsim function saves consecutive simulations datasets in files with same
name, which differ only with a number indicating simulation run number added
at the end of the name.

The solution to this was using the knowledge of order in which the simulations
were run and set of conditions that specific run was associated with. A loop was
created that went through all of the simulation dataset files and renamed them
using the information that was used for generating the data for each simulation.
The dataset files naming format is explained in figure 3.3. The colored letters stand
for values of different indicators that carry information about how the simulation
was configured. They include city for which data were obtained, whether or not ice
tank was connected to the system (left for future work), temperature level profile
used, level of suction pressure and day i.e. specific realisation of the temperature
profile and PRBS. The values of numeric indicators are integers in the range given
by square brackets.

This naming is useful not only for others to use / recreate the datasets, but also
allows for easy extraction of specific datasets that should be used for designing
neural network. This can be achieved by running a loop that extracts the dataset
files based on the specifiers in their names.

The extent of simulation tasks presented in this chapter shall be useful for
whoever would like to recreate the results, as it provides their complexity and
guideline how to complete them.
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Figure 3.3: Dataset naming format
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Chapter 4

High-level modelling of supermarket
refrigeration system

In order to optimize the cost of system’s operation with MPC, an internal model
of system’s dynamics is required for predicting the system’s behaviour for op-
timal input selection. To make the model as simple as possible, its acquisition
was carried out at the system level, considering main factors that affect overall
power and cooling capability of the system. This was required to minimise com-
putational burden while employing machine learning models, as explained in the
problem analysis. The data driven methods considered for the modelling purpose
are presented below, together with the full development of modelling approach
for supermarket refrigeration systems.

4.1 Considered modelling methods

41.1 Dynamic Mode Decomposition

Initially Dynamic mode decomposition (DMD) methodology was adopted by au-
thors in [20] to model the dynamics of considered supermarket refrigeration sys-
tem, however, due to some limitations of the DMD methodology (described at the
end of this section) for the considered system the authors also considered alterna-
tive methodologies (e.g. ANNSs) for modelling the system dynamics.

Dynamic mode decomposition (DMD) has become popular in recent years, due
to its ability to model the dynamics of linear and non-linear systems in an inno-
vative way. The technique has several advantages over more complex modelling
methods such as artificial neural networks [20]. Some of these are described below.

21
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* One of the main advantages of the DMD technique is the simple way of
identifying state space model for multiple input multiple output (MIMO)
system. The data needs to be arranged in the form of a matrix to perform
singular value decomposition (SVD) which is the basic step of DMD.

* DMD can be used to model the dynamics of both linear and non-linear sys-
tems alike. For linear systems, the DMD technique produces the model of
system dynamics precisely, however, for non-linear systems the technique re-
quires that state representation of the considered system should be extended
to estimate the Koopman operator. This representation uses the linear combi-
nation of non-linear states instead of non-linear combinations of linear states
which enable the controllers (e.g. MPC) to compute faster as compared to
the case of non-linear representation.

DMD was originally developed as a dimensionality reduction technique for
fluid dynamics. Using the concept of proper orthogonal decomposition (POD) it
estimates the eigenvalues and eigenvectors of A matrix of a dynamic system

Xpr1 = Axg

based on the provided data. The POD is performed using the singular value de-
composition (SVD) technique. In the case of linear systems the DMD eigenvalues
represent the eigenvalues of a linear system whereas in case of non-linear systems
it approximates the eigenvalues of Koopman operator [23].

Dynamic mode decomposition with control (DMDc)

In actuated systems (systems with control inputs) e.g. the supermarket refriger-
ation system considered in this project, simple DMD cannot produce an accurate
model from input output data, because the dynamics and modes obtained by sim-
ple DMD are affected by external input. However, there is a way to incorporate
the effect of control input (actuation) with an extension of DMD which is known
as DMDc. This method is an extension of DMD to approximately obtained matri-
ces A and B of a discrete time state space model with an assumption of full state
feedback and no feed forward, so matrices C and D are identity and null matrices.

Xk41 = AXk + Buk (41)
Vi = Xk (4.2)
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Extensions to Dynamic Mode Decomposition (DMD)

DMD and DMDc may encounter limitations in modelling of dynamical systems
due to linearity constraints. However, several extensions to DMD have been devel-
oped to address non-linear behavior [20].

1.

Extended DMD (eDMD): eDMD is an enhanced version of standard DMD
algorithm with additional non-linear versions of state in the state vector and
these non-linear states are used to approximate the Koopman operator [24].
Nonetheless, one big issue that arises in implementing eDMD is the choice
of non-linear extended states. If the chosen non-linear states do not approx-
imate the Koopman invariant subspace then the resulting eigenvalues might
become misleading.

Sparse Identification of Eigenvalues Sparse identification of non-linear dy-
namics (SINDy) is an approach that selects measurement functions similar
to eDMD and allows elimination of measurements that are not related to
the Koopman Operator. This technique performs well for lightly damped
eigenvalues near the origin of pole zero map.

Hankel Alternative View of Koopman (HAVOK): In this technique, data
matrices are constructed by stacking the time shifted versions of the states
and these time shifted states inherently approximate the Koopman invari-
ant subspace. The process is simplified because non-linear measurements of
states are avoided in this case.

Artificial Neural Networks (ANNs) and Autoencoders: ANNs and Autoen-
coders can approximate the Koopman Operator by finding coordinates of
non-linear system that evolves linearly in time and can be mapped back to
the original state.

Linear and Nonlinear Disambiguation Optimization (LANDO): LANDO
is useful for capturing the behavior of a dynamical system around some
operating point because it relies on local linearization of system using DMD
algorithm.

DMDc implementation for modelling of power consumption

DMDc was applied for obtaining model of compressor power consumption as
the output. Inputs to the model were ambient temperature, compressor suction
pressure and gas cooler pressure. However, DMDc was not able to produce good
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results. Initially it was speculated that this was due to non-linear behaviour of
system, hence, authors also tried neural state space and LSTM neural network for
modelling, which are presented in the next section. Later in the project, it was
found that the main issue was not having enough excitation on one of the main
input signal i.e. compressor suction pressure. Also, compressor power and suction
pressure had non-linear relationship which could be potentially solved with other
DMD methodologies like extended DMD (eDMD). However, it was decided to
proceed with neural networks instead of extended DMD version because of time
constraints since results from the neural networks were quite satisfactory.

4.1.2 Neural State-Space

A state-space model serves as a representation of a dynamic system, incorporating
both a state equation and an output equation.

x = f(x,u) (4.3)

y =g u) (44)

The state equation 4.3 explain the system behaviour over time, where x and u
represent vectors corresponding to the plant state and input, respectively. Mean-
while, the output equation 4.4 describe the relationship between the system states
and the measured outputs. For the case of power consumption modelling of super-
market refrigeration system considered in this project, the input vector consisted
of three inputs namely ambient temperature (SC3), compressor suction pressure
(MTPsuc) and gas cooler pressure (Pgc). The system had two states i.e. compres-
sor power (MTPcomp) and evaporation temperature (EvapT) and two outputs i.e.
compressor power (MTPcomp) and evaporation temperature (EvapT).

Typically, the state equation is comprised of a set of first-order ordinary differ-
ential equations (ODEs) or difference equations, often derived from fundamental
principles and also known as white-box modelling. However, deriving accurate an-
alytical equations for complex systems such as supermarket refrigeration systems
may become challenging because of system complexity and lack of comprehensive
knowledge of system dynamics for various components. Furthermore, it becomes
impractical to derive equations for each supermarket setup because physical con-
figuration of components might change according to the size of each supermarket.
For such cases, data-driven modelling has emerged as a valuable alternative. One
of the prominent approach is known as neural state space (NSS) which uses neural
networks to represent both state and output equations of a non-linear system. A
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simple neural network known as multilayer perceptron (MLP) is used by neural
state space (NSS) to approximate the state and output equations of a non-linear
system. MLP is a simple feedforward neural network consisting of multiple layers
of interconnected neurons or nodes as shown in the figure 4.1
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Figure 4.1: Multilayer Perceptron

In MLP, the first layer is the input layer which receives the input data. There
can be multiple hidden layers between input and output layers to perform trans-
formations on the input data through weighted sums and activation functions.
Each neuron in a hidden layer takes inputs from all neurons in the previous layer
and passes its output to all neurons in the next layer and the output layer pro-
duces final output of the network. The output layer can be of regression type or
classification type depending on the application. Connections between neurons
are associated with weights which represent the strength between the connections.
Additionally, each neuron has a bias term, which allows the network to capture
offsets or shifts in the data.

Weights and biases are adjusted during the training in an iterative manner to
minimize the difference between the network’s predictions and the actual target
values. Activation functions allows MLP to capture non-linear dynamics in the
data. Commonly used activation functions are sigmoid, tanh, ReLU (Rectified
Linear Unit), and softmax. Back-propagation is used for the training the network
weights and biases. The network output is compared to the true target values,
and an error signal is computed. This error signal is then propagated backward
through the network, and the weights and biases are adjusted using optimization
techniques such as gradient descent to minimize the error.

Discrete time neural state space model (sampling time Ts=600s) was created in
the MATLAB using idNeuralStateSpace function and then MLP network with the
following specifications was created to be utilized by this model.
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e Number of states=2

* Number of inputs = 3

* Number of hidden layers = 2
 Size of hidden layers = [64 64]

* Activation function = tanh

* Weights initializer method = glorot

¢ Bias initializer method = zeros

Data-Preprocessing

Following steps were used to preprocess the data required for the training and
validation of neural state space in MATLAB.

The data was complied from different simulation runs to create a comprehen-
sive dataset for training neural network effectively. After that, to remove the effect
of intermediate non-linearties, the data was downsampled to 10 minutes time in-
terval.

The data was then normalised, as normalisation has multifaceted benefits in the
training of neural network. It facilitates the converge during the training and miti-
gates the risk of dominating certain features due to large magnitudes. It also safe-
guards against the numerical instability that may arise during the training. Due to
consistent data range, smooth weight updates are ensured during the training.

After normalisation, the data was divided into 3 distinct sets namely training,
validation and test. The segmentation is necessary to avoid over-fitting of the
network during the training.

Network Training

The network was trained using nlssest function of the MATLAB used for training
of neural state space models. Following options were set for the training of the
network.

¢ Update Method = adam
* Number of Epochs = 200
* Minibatch size = 50
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Figure 4.2: Mean absolute error - NSS training
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Figure 4.2 shows the mean absolute error (training loss) of NSS trained on an
example of data from the month of May and plotted against number of epochs.

Validation

The trained network was validated with different data sets that was not used for
training but from the same range of ambient temperature conditions i.e. month of
May. The validation plot is shown in figure 4.3.

The fit percentage of 93.9 % shows a very good network fit. Nevertheless,
to check the relationship between compressor power and suction pressure, the
network was tested with ramp increase and ramp decrease in suction pressure. An
increase in suction pressure was causing increase in the power consumption which
was contrary to the physical behaviour of the system. Hence even with the good
fit of 93.9 % the model is capturing the overall trend in the power consumption
which is due to changes in ambient temperature conditions. The issue is described
in more detail in the section 4.2.
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Figure 4.3: Validation of trained NSS network

4.1.3 Long-short Term Memory Neural Network

LSTM is subset of recurrent neural networks (RNNs) family and possesses the
properties of capturing long term dependencies in a time series data. By solving
the problem of exploding and vanishing gradient that is inherent to RNNs when
learning long term dependencies, LSTM can effectively preserve and utilize the
information for longer periods of time. This unique property of LSTM makes
it one of its kind to make accurate predictions by capturing complex temporal
patterns in time series data [25].

LSTM Cell architecture

A typical LSTM cell is composed of an input gate, output gate and forget gate [26].
A cell acts as a memory block and the 3 gates regulate the flow of information
associated with the cell. The memory blocks or LSTM cells are connected in a
recurrent manner to make the LSTM architecture to maintain the state over time
and control the information flow through non-linear gating units.
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Figure 4.4: LSTM Cell Architecture [21]

Forget Gate

This step determines which information should be retained from the previous cell
states. Activation values of the forget gate are calculated based on the current
input and past output and cell states.

Input Gate

The purpose of the input gate is to combine the current input with the LSTM
output and cell state from the previous time step. Weights are associated with
each input, output and cell state for combination and a bias component is added
at the end.

Output Gate

This step calculates the output of the LSTM unit based on input at the current
timestamp and output and cell state at the previous timestamp. A typical LSTM
structure is shown in the figure 4.4

Currently, LSTM neural network is considered as one of the most powerful
tools for modelling and prediction of timeseries data. Other applications of LSTM
include natural language processing, text recognition, computer vision and image
and video captioning.
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LSTM implementation in MATLAB

LSTM network with the configuration shown in listing 4.2 was implemented in
MATLAB. The network consisted of sequence input layer, an LSTM layer of 50
nodes, a dropout layer to drop 2 percent of training data to avoid over fitting and
a regression layer at the output. Options used for training the network are also
shown in the listing 4.2.

Data prepossessing was carried out in the same manner as for neural state
space implementation. Data was complied from different simulation runs and
then down-sampled to 10-minute interval. The data was then normalized and
partitioned into training, validation and test data sets.

Listing 4.1: LSTM implementation in MATLAB

%% LSTM
numResponses = 2;
featureDimension = 3;

numHiddenUnits = 50;
maxEpochs = 300;
miniBatchSize = 5;

Networklayers = [sequencelnputlLayer (featureDimension)
lstmlLayer (numHiddenUnits)
dropoutLayer (0.02) ...
fullyConnectedLayer (numResponses)
regressionlLayer];

options = trainingOptions('adam',
'MaxEpochs ' ,maxEpochs,
'"MiniBatchSize',miniBatchSize,
'"GradientThreshold',b20,
'"'Shuffle', 'once',
'"Plots ', 'training-progress',...
'"ExecutionEnvironment', 'parallel’',...
'LearnRateSchedule', 'piecewise',...
'"LearnRateDropPeriod' ,50,...
'L2Regularization',le-3,...
'LearnRateDropFactor',0.5,...
'Verbose',O0,...
'ValidationData',{inDataValN outDataValN}) ;
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Results obtained from the LSTM implementation were also not satisfactory and
are explained in detail in the following section.

4.2 Modelling issues

Regardless of the data-driven modelling method applied, the authors experienced
some problems obtaining good model. In fact, the problems were not within the
methods, but with insufficient data having been used for the training of models.
This section discusses what the 2 main problems were and how they were diag-
nosed and addressed.

4.2.1 Causes of problems with modelling of the system

Typically, a real supermarket refrigeration system is never at rest, as it never
reaches completely steady-state operation [14], due to many local control loops
interfering with each other. Assuming that this is also the case in both digital twin
models was misleading, as in fact the fixed suction pressure references are kept
tightly by their controllers not allowing for much variation, as investigated later.
This has led to 2 major issues in modelling, regardless of the method used.

First of them was lack of input excitation. As the measured suction pressure
i.e. input to the data-driven models, was constant for nearly all the time, it did not
carry any dynamic information and the impact of this signal on the outputs could
not be retrieved by the modelling methods applied, leading to incorrect identifi-
cation of impact of suction pressure on the system, including reversed sign. To
counter this problem, a small excitation signal based on pseudo-random binary
sequence (PRBS) was applied to the suction pressure reference to introduce dy-
namics to the signal and consequently to the system (however, it is expected that
in the real system this would not be necessary, owing to the mentioned variations
in signals).

Another issue was that after applying PRBS type of signal, not enough operat-
ing points were provided to the model, because of the suction pressure reference
being fixed, resulting in the obtained models reconstructing long time patterns
(due to ambient air temperature) in data well and not capturing faster dynam-
ics (due to suction pressure). In addition, the modelling methods used could not
encapsulate the entire range of system behaviour for the normal operating range
(25-34 bars of suction pressure). To address this, new simulation runs were gener-
ated, where the suction pressure reference was varied to the respective levels, such
that there were enough reference levels covering the whole range.
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As this was a highlight discussion of the final conclusions on the issues that
were preventing obtaining good models, a more detailed explanation of observa-
tions that helped to diagnose these obstacles in modelling is provided next.

4.2.2 Attempts to improve modelling with LSTM NN

The former issue, lack of excitation, could be diagnosed much easier than lack of
suction pressure levels examples, as one could easily see from a time series plot
of suction pressure that it remains almost constant. After addressing this with
PRBS-based signal, the latter problem was not considered until some iterations
in the modelling process were done, as it also manifested itself in the mentioned
difficulty in capturing fast pressure dynamics, which caused the authors to focus
too much on this phenomenon itself.

To be more specific, it was expected that having enough excitation around an
operating point, the model should perform well at least for the area around that
point. Nonetheless, that was not the case, which made the authors initially believe
that the DMDc and NSS approaches were insufficient to model this system, which
in reality is not true, as demonstrated later in this section. For this reason, in an
attempt to verify it, LSTM NN was used in the following steps.

The network performed quite well in capturing both long- and short-term dy-
namics right from start as seen in figures 4.5 and 4.6, except for one problem -
there was a systematic bias introduced by the network. To resolve this an extra
feedback term was added to the LSTM network. It was implemented by delaying
the whole output signal in each data set offline by one sample and providing it
as an extra input to the network, and deleting the first samples of other inputs
and the power output to match dimensions with the new signal. This allowed for
obtaining a perfect reconstruction of power output for testing data sets, see figures
4.7 and 4.8, that were close to the operating point (MT suction pressure = 26.5 bar
and ambient air temperature corresponding to typical profiles in October).

Nonetheless, training data containing fixed reference with small PRBS added
on top imposes a large limitation on network’s ability to generalise for other values
of this condition. In order to test the correctness of the response in terms of sign,
ramp inputs with small slopes were input to the digital twin (after settling from
starting up). For each experiment, either of the considered inputs (ambient air
temperature or suction pressure) were kept constant at their mean values, when
the other one was tested. The final values of the ramps added on top of the mean
signals were +/- 3 degrees Celsius for ambient air temperature and +/- 0.5 bars
for suction pressure. The result are presented in the figures 4.9 and 4.10. It can be
seen that the network performs well for ambient air temperature ramps, however
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the performance of the model is severely deteriorated for suction pressure ramps.

To check if the issue lied in the network or data, the negative suction pressure
ramp data set was appended to the training data set. This resulted in improved
performance - the network was not able to follow signal exactly, however the over-
all pattern and direction was preserved (while not affecting the performance for
other testing data sets), which can be seen below 4.11. This suggested that more
operating points for suction pressure were needed in training data set, in order
to vary it far away from the default setpoint, which is the selected strategy for
optimizing costs of energy consumption, especially given that the network cannot
cope with values deviating as little as up to 2% from the mean of training data.

This development called for training model with more data. From this point
onward, the simulation model used was fast model, as even grater amount of data
was needed. After obtaining new data from new simulation model, including
ramps, the network was trained again leading to results where it performed per-
fectly for both typical operation over a day and ramp inputs, as demonstrated in
figures 4.12, 4.13 and 4.14 (note that differences compared to the previous plots
come from the fact of using other model / data sets). This made the authors re-
visit the bias issue. The question was if with more data the problem would still
persist and feedback would be required. As it turned out, the network performed
identically for both cases, so the feedback was no longer needed, indicating that
larger amount of data with wider range of values was required for obtaining the
model.

Finally, it was also investigated if it was other methods or data that were in-
sufficient. Same training and testing data were applied to NSS, which resulted
in correct model that predicted output signals closely to the ones obtained from
LSTM model. This was important from the perspective of implementing the model
in MPC in MATLAB, which is explained in more detail in the next chapter. It is
speculated that DMDc could also be applied provided the new data, however, that
was not checked, due to time limitations.

As a last remark, it can be noted that a special strategy should be taken when
applying this modelling approach in practice. Ideally, the model could be trained
on digital twin and then it could be adjusted using transfer learning to be tailored
to specific supermarket. This strategy is recommended, as it would be impractical
to perform test spanning whole range of suction pressure condition, so in order
to cover it, the pretrained network could be adjusted using values from a smaller
range of data. Here, reintroducing feedback to the network could be beneficial as
it compensates for scenarios with little data available, as seen previously. Never-
theless, this is left as a future work.
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4.3 Impact of fast model limitations

Despite main problems in modelling being due to authors own mistakes, a lot
of problems were contributed through limitations of the fast model used for the
most of the thesis work. As they affected its final shape, they are explained in this
section, as well as how they were tackled.

4.3.1 Incorrect UAir parameter

One of the important parameters in the fast model is UAir parameter, which serves
as a kind of thermal resistance, as the potential cooling load driven by ambient air
temperature is divided by it to obtain the actual cooling load affecting the system.
Consequently, the higher value of UAir is, the less load is experienced by the
system.

The problem with the parameter was that it was set to high in the original
version of the fast model, causing values of cabinet temperature to always go
negative, even for the suction pressure values that were around the default value
that should keep them in between 1 and 5 degrees Celsius. In order to fix that,
UAir was tuned such that its temperature was equal to about 3 degrees Celsius
for high ambient air temperatures (around 35 degrees Celsius). The right values
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of UAir was found to be 9000 (compared to 20000 originally).

In addition, this problem initially led to authors considering wrong signal as
cabinet temperature for later testing of controllers, especially checking if they were
not violating constraints. The value that was believed to be cabinet temperature
was in fact superheat - a difference between temperature of refrigerant and its boil-
ing temperature, as it stays positive. As the wrong signal was used for evaluating
controllers, they also needed to be redesigned. However, it did not take much
effort as the workflow was already known and it only took to change the signal
considered as cabinet temperature.

After this issue was resolved, the simulations for training and testing models
were rerun. However, that was not the only problem on the evaporator side that
affected the thesis work.

4.3.2 Lack of cabinet temperature control

In actual operation of supermarket refrigeration systems, both compressors and
expansion valves are used, where compressors deliver overall cooling and expan-
sion valves decide how much of it goes to each evaporator, as they have different
cooling requirements. This also allows to keep the pressure constant and let the
valves close more, when there is less need for cooling.

Unfortunately, the fast model did not have cabinet temperature controller im-
plemented. On of the problems that it caused was that cabinet temperature was
operating in open loop and it could not be seen affecting other parts of the system,
making some sort of estimation of thermal capacity of the stored food not possible,
meaning that the only way to obtain this information would be through providing
cabinet temperature directly to the controller, which would not be practical in real
scenario with many cabinets. The importance of this information is explained in
more detail in chapter 5. Thus, any modelling effort towards this issue was not
performed at the current stage.

This also meant that the optimization of energy cost scenario in this thesis was
degraded, as the cabinet temperature would vary freely with changes in ambient
air temperature, without any action from compressor. To resolve that, one MPC
design that tracks tracking the right evaporation temperature to maintain the cab-
inet one at 3 degrees was set as a baseline for energy cost savings comparisons.
This is further elaborated in later parts of the thesis.

It shows that the fast model had some serious limitations and these were not
the only ones. However, no more issues were noted on the evaporator side.
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4.3.3 Operating envelope

Aside from issues on evaporator side, the simulation model also had issue at the
system level. To be specific, there was certain operating envelope for which the
model was performing correctly and outside of each it was producing erroneous
results.

This can be observed in figure 4.15, where it can be seen that the model breaks
down for high pressures for both above and below some maximum and minimum
ambient air temperature (35 and 9 degrees Celsius respectively), where the results
of simulations are inconsistent in these regions. This is not as much of a problem
for high temperature case, as high suction pressure levels would lead to loss of
cabinet temperature beyond upper constraint. Nonetheless, the opposite case of
low temperatures and high suction pressures is problematic, as in this case the
pressure must be lifted to avoid drop of cabinet temperature into negative region
(however, note that that would not be so much of an issue, if cabinet temperature
control was manged with expansion valve!).

Solution to this issue was simply to limit range of ambient air temperature
conditions for which the system was tested. This unfortunately meant, that the
region in which most energy savings could be observed.
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4.4 Final network used: NSS

After addressing the issues presented in section 4.2, authors were able to success-
fully obtain good models for both neural state space (NSS) and LSTM. The mod-
elling part of the project was concluded here with both NSS and LSTM options
available for model predictive control (MPC) implementation in the next phase of
the project. However, implementation of LSTM model with MPC in the MATLAB
had some bottlenecks as explained in the section 5.2.1. Hence, it was decided to
choose NSS as the final network to be used as internal model of MPC. Listing
?? shows the specifications and figures 4.16 and 4.17 show the architecture and
analysis of final NSS network used with MPC.

Listing 4.2: Final NSS used for MPC

%% Final NSS Model

Ts=600;

obj = idNeuralStateSpace (2, NumInputs=3, Ts=Ts);

obj.StateNetwork = createMLPNetwork(obj, "state",
LayerSizes=[64 64 64 64]);

options = nssTrainingOptions("adam");

options.MaxEpochs =500;

options.MiniBatchSize =20;

options.LearnRate = 0.002;

nss = nlssest(inDataTrainN,outDataTrainN,6obj,options,
"UselLastExperimentForValidation",true);
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ANALYSIS RESULT

Concatenation of 2 inputs along dimensi...

Name Type Activations Learnable Proper... States
1 [x[k] Feature Input 2(C) x 1(B) - =

2 features
2 |ulk] Feature Input 3(C) x 1(B) - -

3 features
3 concat Concatenation 5(C) x 1(B) - -

4 |fcl
64 fully connected layer

Fully Connected

54(C) % 1(B)

Weights 64
Bias 64 x 1

*
w

64 fully connected layer

Bias 64 % 1

5 |actl Tanh 64(C) x 1(B) - -
Hyperbolic tangent
6 |[fc2 Fully Connected 64(C) x 1(B) Weights B4 x 64 -

64 fully connected layer

Bias 64 % 1

7 |act2 Tanh 64(C) x 1(B) - -
Hyperbolic tangent
g |[fc3 Fully Connected 64(C) x 1(B) Weights B4 x 64 -

64 fully connected layer

Bias 64 % 1

9 |act3 Tanh 64(C) x 1(B) - -
Hyperbolic tangent
0 |fcd Fully Connected 64(C) x 1(B) Weights B4 x B4 -

Element-wise addition of 2 inputs

11 |actd Tanh 64(C) x 1(B) - -
Hyperbolic tangent

12 |dx Fully Connected 2(C) x 1(B) Weights 2 x B4 -
2 fully connected layer Bias 2 %1

12 (xk+1] Addition 2(C) x 1(B) - -

Figure 4.17: Final NSS analysis



Chapter 5

MPC designs for energy cost savings
in supermarket refrigeration systems

As the MPC is crucial part of the thesis, it is explained in more detail in this
chapter. It follows up with explanation of how it was set up and tuned, with final
formulations being given at the end of the chapter.

5.1 Model Predictive Control

Model predictive control (MPC) is an advanced method of process control for
complex systems and can satisfy specific constraints while controlling the system.
MPC has been adopted in many industries (e.g. power systems, oil refineries
and chemical plants) for process control, because of its ability to anticipate future
events and optimization of control algorithms over a finite time horizon [27]. This
unique property is lacking in traditional controllers such as PID, which only react
to deviations from set reference points.

Model predictive control (MPC) is conceptually related to classical LQ regula-
tor, but has difference in some key points. MPC minimizes the cost function over
two receding horizons while LQ regulator minimizes the cost function over infi-
nite horizons. Infinite horizon of LQ regulator facilitates the calculation of constant
state feedback gain while MPC algorithm predicts the future outputs and optimize
the future control over two horizons [28].

The dynamic model of the plant is required to set up the MPC controller. The
model can be derived from basic principles or through system identification. As
explained in section 4 of this report, the dynamic model of the considered su-
permarket refrigeration system was obtained using system identification through
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neural state space (NSS). The use of data driven models with MPC is increasingly
becoming popular due to the availability of large amounts of data and insufficient
knowledge of exact system configurations, which could leads to bottlenecks when
performing modelling through first principles. The model is used by MPC to pre-
dict how changes in the setpoint or control elements affect the control objectives
and process constraints.

MPC solves an online optimization problem at each time step to find the op-
timal control action that minimizes the error between setpoints and at the same
time respecting the constraints. This is done by considering both current and
future timesteps data. The real time optimization is achieved by MPC iterative
approach in which it implements the current action and then recalculates for the
next timestep.

Figure 5.1 illustrates the fundamental concept of MPC implementation for set
point regulation. An optimization problem is solved at each time step k over the
subsequent prediction horizon Hp by using the predicted output of the plant ob-
tained from dynamic model of the system. The future inputs are adjusted for the
next Hc samples (known as control horizon) in such a way that error between out-
put and reference is minimized. The first value from the predicted control input is
applied to the plant and the optimization problem is repeated in a recursive man-
ner by updating the measured output and advancing the prediction and control
horizon by one step [29]

5.1.1 Receding Horizon

The basic idea of predictive control in MPC is the concept of ‘receding horizon’,
which involves the process of continuously updating and optimizing control ac-
tions based on future predictions.

Maciejowski [27] explained the idea of ‘receding horizon’ by taking an example
of single input single output (SISO) plant in discrete time. The output of the
considered system is y(k) at time step k and it is expected to track the set point
trajectory s(t). Instead of driving the plant output y(k) directly to the set point
trajectory s(k), a reference trajectory is defined with time constant Tref which
starts from the current output y(k) and adapts to the current conditions at time
k as shown in figure 5.1. An internal model predicts the plant behavior over the
prediction horizon by presuming an input trajectory u(k + i|k). The controller
selects the input such that plant behavior is optimized by assuming that the model
is strictly proper which means that output y(k) only depends on the past inputs
and not on the current input u(k). The aim of the input trajectory is to bring the
plant output to the setpoint trajectory at the end of the prediction horizon k + Hp.
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This can be achieved by multiple input trajectories, however, the aim is to vary it
in first few steps and keeping it constant afterwards and the simplest form is to
keep the input constant over the horizon.

Once the input trajectory is selected then only the first element is applied to
the process and the same process of measuring output, predicting future behav-
ior, and determining the input trajectory is repeated at each time step. The term
‘receding horizon’ is used because prediction horizon moves forward with each
time step. MPC effectively handles disturbances and changes in plant behavior by
continuously updating predictions and control actions based on the most recent
measurements and forecasts, maintaining optimal performance over time.

5.1.2 Cost function

The performance of MPC depends on the cost function which is being minimized.
The standard MPC cost function is [27]

HP Hu
Jik) =Y gtk +i) —r(k+i)|lg+ Y [|Ad(k+1)||R (5.1)
i=0 i=0

where

||x||p = xTPx

QR>=0
Hp >=1
Hu <= Hp

Q, R are semi positive weight matrices, H, is the prediction horizon and H,
is the control horizon. The objective of the cost function is to minimize the error
between output and reference while minimizing the changes in the control signal
at the same time. Weight matrices Q and R define the priorities between the
signals.

The formulation of cost function is done in terms of Au(k) instead of absolute

values of u(k) because as long as output error is zero and control signals are steady
the absolute values are irrelevant.
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5.1.3 Constraints

One of the useful properties of MPC that distinguishes it from other controllers
is the setting up of constraints on the inputs and outputs. The constraints on the
outputs are due to safety, while the constraints on the inputs are mainly because
of saturation of actuators and slew rate.

Constraints can include lower and upper bounds on the input and output val-
ues as well as rate of change manipulated variables. Constraints can be imple-
mented as hard or soft constraints. Hard constraints are defined as the constraints
which the optimization problem must satisfy, however, if its not possible to satisfy
hard constraint then the optimization problem might become infeasible [30] and
in this case there will be no change in the manipulated variables by the controller.

Hence, it is recommended to only use the physical limits of manipulated vari-
ables on the plant as hard constraints. The rate of change of manipulated variables
should correspond to the physical limit of rate of change of variables in the plant.
It is generally not recommended to set bound constraints on the output variables
unless unavoidable. The best practice is to setup the output reference and set a
heavy weight on its violation to keep the output close to the reference. It is also
a good practice to leave the output variable unconstrained for some prediction
horizon steps.

For the supermarket refrigeration system considered in this project, table 5.1
shows the summary of constraints on the manipulated variables and outputs.

Variable Type | Min | Max | Rate Min | Rate Max

MTPsuc MV | 25 34 -0.5 bar +0.5 bar
bar | bar

*Cabinet Tem- | MO | 2deg | 4deg | -inf +inf

perature (Evap- C C

Temp)

* The output of the NSS model is the evaporation temperature (MO),
while the constraint is setup on the cabinet temperature from 2 -4
degree celsius. The difference between cabinet temperature and
depends nonlinearly on suction pressure and ambient air
temperature.

Table 5.1: Summary of constraints for Economic MPC
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5.1.4 Constraint Softening

In practice, disturbances and prediction errors are inevitable [30]. So despite the
controller making its predictions, the violation in the constraints still can occur. All
hard constraints may not be satisfied when optimal manipulated variable is used
in the plant.

Hard constraints on MV bounds alone cannot lead to in-feasibility. The same
is true for the case of hard MV rate constraint alone. However, hard constraint on
both of these can lead to an infeasible solution. Except from the non-negativity
of slack variable, all other constraints in the MPC can be soft constraints. Soft
constraints allows controller to deem an optimal MV even if predicts a violation.

In multistage MPC, constraints can be soften by using slack variable e. The
weight on the slack variable decides the amount of violation allowed. The tuning
of weights of slack variable is discussed in section 5.3.

5.2 MPC strategy formulation

As discussed in chapter 4, model obtained for the power consumption of super-
market refrigeration system was a non-linear model estimated using neural state
space (NSS). Hence, linear MPC method could not be utilized for the optimization
purpose. Non-linear MPC was considered for the problem and there were two
options to select for the formulation of non-linear MPC.

The first one was generic non-linear MPC controller which can utilize the
linear /non-linear prediction model, equality constraints and cost function. The
tirst choice was generic non-linear MPC, however, the authors soon ran into a
problem because of limitations of MATLAB. The aim was to use predictions on
ambient temperature and electricity price data for minimizing the cost of opera-
tion over the prediction horizon. However, the non-linear MPC does not support
forecasts on disturbances and parameters on which were crucial for this project.

The second option was to use multistage non-liner MPC. Multistage non-linear
MPC in MATLAB support the implementation of prediction on parameters along
with disturbances. In multistage MPC cost and constraint functions can be differ-
ent for each stage. A multistage MPC controller with the prediction horizon of p
has p+1 stages where the first stage corresponds to the current time step and last
stage corresponds to the last prediction step [31]. Each stage in multistage-MPC
has its own decision variables, parameters, cost and constraint functions.

After a thorough discussion on formulation of MPC for cost minimization prob-
lem, two strategies came out as a result and it was decided to implement both
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strategies and then compare the performance. The first one is reference tracking
MPC and the second is Economic MPC. Both strategies are explained in detail on
the following pages.

5.2.1 Reference tracking MPC

In reference tracking MPC, the objective was to track the provided reference while
respecting the required constraints. The goal was to maintain the cabinet temper-
ature at the reference value.

During normal operation the cabinet temperature reference is 3 degrees Cel-
sius. However, during peak hours, the reference would be changed to 3.8 degrees
Celsius to maintain the temperature at upper bound in order to reduce consump-
tion while reference would be changed to 2.2 degrees Celsius, when signal is re-
ceived from the grid to utilise more power.

Cost function for reference tracking MPC

The cost function in case of reference tracking MPC was to minimize the error be-
tween reference evaporator temperature and measured output over the prediction
horizon. The cost function was formulated as:

H
Jref = /T:;;(RefTevap — Tevap)? + w.edt (5.2)

where e is the slack variable used and w is the weight on the slack variable.

5.2.2 Economic MPC

Supermarket refrigeration systems are affected by many disturbances that can be
predicted with some level of uncertainty e.g ambient temperature. On the other
hand, there are several constraints that need to be satisfied by the controller, while
also minimizing the cost of operation. Economic MPC (EMPC) is well suited for
this type of problem[4].

The term Economic MPC is derived from the applications where the objective
is to minimize the cost of operation. The cost function in reference tracking MPC
tries to minimize the error between reference and actual output, however, in case
of EMPC the standard cost function can be replaced with a custom cost function.
The main objective of the MPC implementation was to minimize the operational
cost of the system. The economic objective function to minimize the operational
cost of supermarket refrigeration was formulated by multiplying the electricity
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price e, (t) with the integral of power consumption of the compressor at the given
time f. The cost function is computed over the prediction horizon:

Hy .
Jec = /T—O epwcompdt (5.3)

In economic MPC, the performance of criteria can be combination of linear or
nonlinear functions of states, inputs, and outputs [32]. An economic MPC can have
the following properties:

* It can use both linear and non-linear models for prediction of states and out-
puts. As discussed in chapter 4, NSS was selected as model for compressor
energy consumption, so the internal model used by economic MPC is non-
linear.

* It can use both generic and built in quadratic cost function. The cost func-
tion formulated in equation 5.2 was used instead of the built-in quadratic
function.

* SQP algorithm was used to solve the non-linear optimization problem to
calculate the optimal moves.

5.3 EMPC formulation issues in MATLAB

While implementing EMPC and its formulation using MATLAB / Simulink Model
Predictive Control Toolbox, the authors run into several issues that were caused
either by their own programming mistakes or limitations and insufficient docu-
mentation of the software. As they took time and were of considerable importance,
they are documented below.

5.3.1 Problem 1: using LSTM NN as a prediction model

First issue encountered was inability to run LSTM NN as a meaningful prediction
model. Initial approach was to use predictAndUpdate function, which makes pre-
dictions one sample at a time and updates internal state of the network, for making
predictions inside custom prediction model function which was implemented as
in listing 5.1.

Listing 5.1: Prediction model implementation with predictAndUpdate

function x1 = stateFcn(x,u,price)
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persistent LSTMmodel inM inStd outM outStd
if isempty(LSTMmodel)
load('T5allPsucTestNet .mat');

LSTMmodel = MTPcompLSTM;
inM = inputMean;
inStd = inputStd;
outM = outputMean;
outStd = outputStd;

end

u = (u - inM) ./ inStd;

[LSTMmodel ,x1] = predictAndUpdateState (LSTMmodel ,u);
x1 = denormalise(xl, outM, outStd);

end

Unfortunately, this kind of implementation is not compatible with the way
the toolbox makes predictions. It expects that the provided function is of the
state-space form meaning state of the system and the next time step is given as a
function of state and input vectors at the current time step. On the contrary, the
predictAndUpdate function works as an input-output relation, not making how
internal state of the model is affecting the state at the next time step visible from
outside of the function. Thus, despite having the same effect as predict function, it
is not suitable for implementation in MPC in MATLAB either, as meaningful pre-
dictions on the state at the next time step cannot be made by the toolbox without
knowing how internal state at the current time step affects it.

Fortunately, if NSS is used, MATLAB has an inbuilt generateMATLABFunction
function for converting it automatically from a neural network into a nonlinear
state-space equations using its weights and biases is available. Similar work could
be done with LSTM NN, however, authors of MATLAB did not expect that LSTM
NN could be used as prediction model in MPC, as only NSS can be converted
from network to state-space format, so one would have to code own function to
do so for LSTM NN. This could be done by either hard coding, which would take
time and would be impractical whenever small change in the network is done
during development, or by creating custom function for conversion, yet, it would
take even more time. Due to time limitation, focusing more on concepts than




5.3. EMPC formulation issues in MATLAB 57

specific implementation and making modelling adjustments allowing obtaining
same results with NSS, that was not done.

It should be also noted that a side issue was resolved by using utilities for
NSS, as initial MPC would increase simulation time significantly (it would take
few minutes to proceed next 600 seconds). This happened because of MPC solver
not being able to find optimum solution, resulting in taking maximum number of
iterations, i.e. 120, of performing optimization over the whole prediction horizon.
After proper implementation of NSS, it only took few seconds to solve MPC for
one day of operation (while using NSS as a plant model as well as in case it was
applied on digital twin, it did not increase simulation time significantly).

5.3.2 Problem 2: normalisation of signals used by EMPC

After selecting NSS as a prediction model and converting it into appropriate for-
mat, the authors run into another issue, which was normalisation of the data. As
the network operates on normalised data, feeding data directly from digital twin
caused the EMPC not to work.

To be specific, this led to the EMPC not producing any new output as it kept
initial value over the whole simulation. The solution to this mistake was simple,
normalising input data (feedback) to the controller and denormalising its output
data (reference input to the suction pressure controller). However, it should be
noted that it was realised that it could cause another issue, which was cost function
misbehaving due to operating on values normalised with z-score. For example, if
the EMPC could decide to decrease suction pressure to decrease power (which is
the opposite to the actual relationship), as the cost function defined in terms of
normalised values would perceive all suction pressure values below mean (28 bar)
as less "expensive", owing to them being negative. This was resolved, by denor-
malising values in the custom cost function before applying its final computation.

Nevertheless, another overlooked issue was noticed, which was EMPC not re-
specting cooled cabinet temperature. This was caused due to the fact that decrease
of power an increase in COP are equivalent objectives (which were the only out-
puts of the network at the time), none of which accounted for "quality" of cooling.
This resulted in the suction pressure to be risen to upper constraint at all times, not
respecting the issue of variation of temperature of the cabinet with cooling load
(affected by ambient air temperature), which requires the suction pressure to be
continuously varied.

This had to be reflected with additional constraints that take into account the
cabinet temperature, which development in described in the next section.
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5.3.3 Problem 3: temperature-preserving constraints

The main idea in maintaining cabinet temperature was to construct such con-
straints that suction pressure remains in the bounds that keep the cabinet tem-
perature within desired limits (2-4 degrees Celsius), despite operating close to
these limits. 2 approaches to this were initially tested i.e. obtaining cabinet or
evaporation temperature as a static function of suction pressure and ambient air
temperature, and using evaporation temperature as an extra output of the predic-
tion model.

First approach came from the idea of investigating dependency of temperatures
on the evaporator side on other signals. It was found that these signals depend on
suction pressure and ambient air temperature, which is expected, as they are all
related to cooling. If this dependency is modelled as static function that converts
the inputs to the temperature, then it is possible to limit suction pressure correctly.
Due to ambient air temperature not being under our control, we can consider it as
a fixed value for a specific time step and find the minimum and maximum pressure
for which temperature constraint is not violated, as the static function becomes a
function of suction pressure only then and direct conversion to the temperature
occurs.

Figures 5.2 and 5.3 illustrate such dependencies. These plots were created from
reduced number of total of 31 9steady state values (or mean values after tran-
sient removal) of respective temperatures from simulation runs overall containing
all combinations of 11 fixed suction (25:35 bar) pressures with 29 fixed ambient
air temperatures (9:35 degrees Celsius). The range of temperature for this plot
was minimally limited to exclude values that were out of digital twin’s operating
envelope.

In the beginning, despite not being practical in reality, direct relationship be-
tween the cabinet temperature and suction pressure / ambient air temperature was
constructed, to test if the idea works. However, the controller was ignoring this
constraint and always lifted suction pressure to the maximum specified as upper
constraint on suction pressure only, which was implemented only for having extra
check on correctness of the method used. Thus, the temperature was not main-
tained (note that initially it was confused with superheat, however, the controller
could not manage this relation either).

Then the approach was changed to include evaporation temperature as an extra
predicted signal in the model such that the suction pressure is chosen not to exceed
certain bounds that maintain cabinet temperature in the desired range. The evapo-
ration temperature was chosen specifically, because of avoiding resorting to direct
measurements of cabinet temperature. The advantage of that is if the method is
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Steady state values of cabinet temperature
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Figure 5.2: Cabinet temperature as a function of ambient air temperature and suction pressure

Steady state values of evaporation temperature
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Figure 5.3: Evaporation temperature as a function of ambient air temperature and suction pressure
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Steady state difference between cabinet and evaporation temperature
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Figure 5.4: Difference between evaporation temperature and cabinet temperature as a function of
ambient air temperature and suction pressure

applied on a real system, there would not be problems with scaling, as all the
evaporators have same evaporation temperature applied to them.

Nevertheless, the previous work on static modelling of relationships between
signals had not gone futile, as there was a need for another static function, namely
the difference between evaporation and cabinet temperatures, which also changes
with suction pressure and ambient air temperature. This value is required in order
to translate evaporation temperature into final value of cabinet temperature. This
could be done under assumption that we are not interested about value of cabinet
temperature specifically, so long as it is bounded for bounded inputs and we are
not interested in its value during transients to new setpoints (instead we are in-
terested if its final value does not violate the constraint). The former comes from
the fact that the system is inherently stable, due to local controller, while the latter
is justified that in reality the step response of the system will be approximately of
slow first-order model.

The plot of differences between the temperatures can be seen in figure 5.4. Low
order (second order for suction pressure and first order for ambient air tempera-
ture) polynomial was fit with MATLAB fit function to the data points as seen in
figure 5.5. The function was implemented for 2 constraints as seen in listing. The
normalised values of inputs are first converted to their denormalised versions, like
in cost function, to correspond to the variables in the fit polynomial and then they
are applied to the function.
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Polynomial fit to steady state values of deltaT
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Figure 5.5: Polynomial fit to the difference function

Listing 5.2: Final implementation of temperature-preserving constraints
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function C = myIneqConFunctionwSlack(stage, x, u, dmv,
ref)

persistent outM outStd inM inStd
if isempty (outM)

end

p0O
plo
pO1
p20
pll

load ("netInfo.mat")
outM =outputMean;
outStd = outputStd;
inM = inputMean;
inStd = inputStd;

11.62;
= -0.3888;
= 0.4357;
0.003815;
-0.008486;

Jdenormalising values
Evap_temp=x(2) *outStd (2) +outM(2) ;

SC3

= u(1)*inStd (1) +inM (1) ;

€,




5.4. Tuning 62

MTPsuc = u(2)*inStd(2)+inM(2) ;

dT = p00 + plO*MTPsuc + p01*x3C3 + p20*MTPsuc~2 + pll*xMTPsuc
*S3C3;

C = [(-Evap_temp + 273.15 - dT + 2 -e(1));
(Evap_temp - 273.15 + dT -4 - e(2))];

end

The implementation was successful by approaching the problem this way. As
a last remark, it should be added that in real system this difference or constraint
value could be obtained through an estimator providing single value from mea-
surements coming from multiple evaporators, as it is not possible to acquire steady
state values for the whole range of pressures and temperatures for the real system.

54 Tuning

MPC controller design involve many parameters that strongly affect the perfor-
mance and robustness of the controller [33]. MPC design requires tuning of cost
function weights, setup of rates of change of manipulated variables and defining
control and prediction horizons for optimal performance. This section outlines the
steps taken to tune reference tracking MPC and Economic MPC for energy op-
timization problem for supermarket refrigeration systems. Performance of MPC
was evaluated by selecting different weights of slack variable, rate of change of
manipulated variable and prediction horizons. Effect on MPC performance is de-
picted in the graphical format on the following pages. The best combination of
weights, prediction horizons and rate of change were selected for the final design
for each type of controller.

5.4.1 Temperature reference-tracking MPC

In this section, the effects of weights of slack variable for constraint softening, rate
of change of MV and selection of different horizons are discussed for reference
tracking MPC.
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Constraint softening and tuning of slack variable weight

In the first step, softening of constraints was required to enable the controller to
solve optimization problem faster. When the controller was tested without intro-
ducing slack variables, it led to very slow execution of simulation in the beginning.
This was because at the start the controller starts in the infeasible region and it took
it a long time to come to feasible region in the absence of soft constraints.

After introducing the slack variable, the next step was the selection of weight on
the slack variable for constraint violation. The smaller weight allows the controller
to violate the constraint more while a large weight discourages the controller to
violate the constraint.

Figure 5.6 shows the effect of weight on the slack variable in case of reference
tracking MPC. The prediction horizon was fixed at 12 steps (2 hours) for all the
cases of weights. It can be seen in the figure that the effect of very small and
very large weight on the slack variable is the same in this case. This is because
of the absence of any sudden change in the disturbance (Ambient temperature in
this case) and controller is able to maintain the output very close to the reference
value. However, to depict the effect of slack weight value, a simulation run was
performed with a sudden drop in the value of ambient temperature (which can
happen in reality). It can be seen from the figure 5.7 that small values of weights
allows the controller to drop the cabinet temperature (Ther Air) below minimum
required value i.e. 2 deg C. However, for larger weights on the slack, the controller
maintains the output (Ther Air) above 2 deg C.
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Cost on the rate of suction pressure change

Cost on the rate of change of manipulated variable (MV) is required to prevent
the controller to take aggressive control actions. However, limiting the controller
action is the trade off between performance and aggressiveness. Figures 5.8 and
5.9 show the effect of different values of weights on rate of manipulated variable
(MTPsuc). A smaller weight allows the controller to take more aggressive action
while a large weight prevents it to take aggressive action. Aggressive behaviour
is not desirable since in practice actuators have slew rate and cannot change the
value instantly. On the other hand, imposing a large weight causes the controller
to track the reference value with large delay which is undesirable. It must be noted
that figures 5.8 and 5.9 show effect of different weights on the rate of manipulated
variable in case of non-linear MPC because implementation of weights on the rate
of manipulated variable was not successful in MATLAB for the case of multistage
non-linear MPC. However, the problem was solved using the hard constraint on
the rate of manipulated variable (MTPsuc) and is shown in the figure 5.10.
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Effect of suction pressure rate weight on response
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Figure 5.8: Effect of suction pressure rate weight on response
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Tuning of horizons

An MPC controller find the optimal moves by predicting the output using the
internal plant model and predictions on disturbances. Prediction horizon is the
future control interval that MPC must evaluate by prediction when optimizing the
manipulated variable. As the prediction horizon increases, the computation cost
of MPC also increases. Also, increasing the prediction horizon after certain steps
do not improve the MPC performance while increase the computation cost.

In case of reference tracking MPC, the effect of different prediction horizons
can be seen in figure 5.11. It can be seen that even with the smallest value of
prediction horizon i.e. 2 steps, MPC can accurately track the reference and also
caters for sudden change in disturbance. Also, there is no noticeable difference
between small and large values of perdition horizon in this case. Hence, utilizing
large values of prediction horizon are not needed in this case.
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Figure 5.11: MPC performance with different horizons
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5.4.2 Economic MPC

In this section, tuning of Economic MPC is presented. First the weights on the
slack variables were tuned. Then constrains were set on the rate of manipulated
variable (MTPsuc) and last horizon tuning was done by taking price data for one
day.

Tuning of weights on slack variable

Slack variable is used to soften the constraint on the cabinet temperature bounds.
The bounds are from 2 - 4 degree . For the tuning of slack variable, ambient
temperature profile with temperature range from 15 to 25 C was selected and data
for the price was fixed to a constant value. Figure 5.12 shows the behavior of
cabinet temperature for different values of slack variable weight. A low value of
slack variable weight allows for more constraint violation and it can be seen from
the figure that cabinet temperature reaches 6 degrees. Hence, a higher value of 10°
was selected as the weight of slack variable.
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Constraining rate of change of suction pressure

A hard constraint of £0.5bar was imposed on the rate of suction pressure to avoid
controller aggressive behaviour.

Selecting horizons for load shifting

Selection of proper prediction horizon in economic MPC could lead to significant
cost savings. First a simulation run was performed as benchmark for the ambi-
ent temperature profile as shown in the figure 5.13. The total cost of operation
for one day was calculated using the price data as depicted in the figure. Then
same ambient temperature condition and price data was used to tune MPC pre-
diction horizon. Figure 5.13 shows the suction pressure and cabinet temperature
(Ther Air) for different prediction horizons. Price savings are more significant with
longer prediction horizons. However, computational cost of MPC increases with
large prediction horizon.

5.5 Summary of tuning of MPCs and final formula-
tions

After analysing the effects of constraints softening, weights of slack variables, rate
of change of manipulated variable and prediction horizons in the section 5.3, the
following final formulation were made for Tref and EMPC.

5.5.1 Reference-tracking MPC

General formulation, cost and inequality constraint functions of final Tref MPC are
provided below.

General Formulation

Sample time : 600 seconds

Prediction horizon : 1 hour (6 steps)

State 1 : MT compressor power (MTPcomp)

State 2 : Evaporation temperature (EvapT)
Manipulated variable : MT suction pressure (MTPsuc)
Measured disturbance 1 : Ambient temperature (SC3)
Measured disturbance 2 : Gas cooler pressure (Pgc)
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Figure 5.13: EMPC performance with different horizons
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Parameter : Electricity price (DKK/KWh)

Cost functions

Cost function for first stage :

Hp

J= Z(Tevapref — Tevap)? (5.4)
i=0

Cost function for remaining stages :

Hp
] = Z(Tevapref — Tevap)? +100(e; + e3) (5.5)
i=0

Inequality constraint function

dT = 11.62 — 0.38 MTPsuc + 0.43SC3 + 0.0038 M T Psuc? — 0.0084M T Psuc.SC3

(5.6)
—Tevap +27315—dT+2—e1 >0 (5.7)
Tevap —273.154+dT —4 —e; <0 (5.8)

5.5.2 Economic MPC

General formulation, cost and inequality constraint functions of final EMPC are as
follows:

General Formulation

Sample time : 600 seconds

Prediction horizon : 1 hour (6 steps)

State 1 : MT compressor power (MTPcomp)

State 2 : Evaporation temperature (EvapT)
Manipulated variable : MT suction pressure (MTPsuc)
Measured disturbance 1 : Ambient temperature (SC3)
Measured disturbance 2 : Gas cooler pressure (Pgc)
Parameter : Electricity price (DKK/KWh)
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Cost functions

Cost function for first stage :

Hy
] = Z eppcomp (5.9)
i=0
Cost function for remaining stages :
Hp

i=0

Inequality constraint function

dT = 11.62 — 0.38MTPsuc + 0.435C3 + 0.0038 M T Psuc? — 0.0084MT Psuc.SC3
(5.11)

—Tevap +27315—dT +2—¢; >0 (5.12)

Tevap —273.154+dT —4 —e; <0 (5.13)



Chapter 6

Reliable MPC operation under temper-
ature sensor fault

This chapter verifies the methods and results from [22] for bias compensation on
the fast model and discusses impact of not applying them in case bias is present
on the proposed MPC scheme for energy-cost minimization.

6.1 Bias issue

In order to investigate impact of bias on performance of the developed methods,
bias needed to be generated to be inserted into the simulation model. Fortunately,
authors of [22] also provided methods for constructing realistic bias. Once that
was implemented, its effect on the performance of the MPC schemes was checked.

6.1.1 Bias modelling

The bias consists of 3 terms i.e. term caused by sun itself, term reflecting cloudiness
and night time bias, where the sun component reflects change of sun intensity
over day, cloudiness term accounts for variations in the intensity, due to clouds,
and night bias corresponds to negative bias observed during night hours, each of
them having a random component. Combining all of them leads to a realistic and
unpredictable bias. The reconstruction of these terms is explained in the following
subsection.

Fixed design parameters of the bias terms were taken directly from [22]. How-
ever, there were also some tuning parameters that allowed for design flexibility
depending on the season and location of the supermarket. These included peak
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and spread of the sunlight term. It was tuned such that the term lasts for about 12
hours and its peak is between hours of 12 and 13.

6.1.2 Performance of controllers under fault

To illustrate the effect of the bias on the performance of the controllers, simulations
were run with the same setup as in the runs for evaluating economic performance
of the controllers for ease of comparison.

Example simulation run for EMPC can be seen in figure 6.1. It can be spotted
that it has issue maintaining desired temperature whenever large value of bias
appears, often leading to violation of cabinet temperature lower constraint, as the
MPC schemes perceive the ambient temperature much higher than actual one and
try to unnecessarily provide more cooling to the system that lowers the tempera-
ture.

Nonetheless, EMPC was still more to be more robust to the bias than MPC, as it
has less violations of the constraint. This could be due to the fact that in MPC, the
evaporation temperature reference is also affected by the bias, which always drives
it below the constraint, even when required cabinet temperature is desired to be at
the higher limit. EMPC only experiences this when it decides to lower down the
temperature based on prices, however, the performance is still degraded.

This shows that the bias consistently degrades the performance whenever present
in large quantity in the system. Therefore, it should be compensated for not only
to preserve optimal COP, but also to make the operation of MPC schemes reliable,
such that they do not violate constraints and preserve their performance.

6.2 Implementation and verification of bias compen-
sation

As shown in previous section, there is a need for implementing solution for getting
rid of the bias along with the developed MPC schemes. To do so, procedure from
[22] is replicated and the results are verified to check its applicability to the fast
simulation model.

6.2.1 ANN for bias estimation

The bias compensation consist of 2 steps i.e. creating a residual signal indicating
the amount of bias present in the measurements and a compensator that subtracts
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this bias from the ambient air temperature measurements. To generate the resid-
ual, a feedforward ANN that can determine difference between true value and
bias measurement was used in the original work [22].

The training data were acquired for the network in a test lasting 12 hours in
simulation under ambient air temperature typical for summer nights in order to
get data of length equivalent to 2 nights. The simulation was done for the sys-
tem without MPC in place, to first test if we are able to reproduce the results
for plain system without any modifications that could potentially complicate the
implementation.

Initially the network was trained using same setup as in the original work.
Nevertheless, 2 issues were spotted. One of them was use of suction pressure in
the model. It was expected that if the suction pressure deviates away from the
fixed reference present in the training data, the ANN will not perform well, which
was the case. The solution to this was not using the suction pressure, which did
not affect the accuracy of the model much. Alternatively, the residual generation
model could be train during operation of MPC that adjusts the pressure continu-
ously, however that was not done, because of time limitations.

The second issue was more unexpected, as it turned out later that the bias
compensation does not work well for temperatures below the ones seen in the
training of the ANN. It was resolved by training the network based on autumn
night temperatures, but in real life scenario this could be easily done by retraining
the network once in a while.

In the end, the only difference as compared to the original paper was dropping
out the suction pressure from the model’s inputs. The trained network was not
capable of reconstructing the perturbation signal perfectly (regardless of excluding
suction pressure or not). However, that is not an issue, as it is demonstrated in the
next part of this section that while the bias is being compensated good results can
still be obtained, as the residual stays low, thus allowing for better performance of
the ANN.

6.2.2 Verification of bias compensation on fast model

The only way to truly test if the network estimates the bias correctly was through
its combination with the compensator, as it cannot handle large values of bias.
The compensator in form of integral control was needed to make the residual
generator respond to derivative (which is small, given bias changes slowly) of the
bias present in the estimation of the ambient air temperature rather than to the
remaining bias itself.

Thanks to the integrator, the changes in the bias with respect to time could be
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correctly estimated by the residual generator, due to their small size, while the
compensator could recover the remaining bias in the estimation of the ambient air
temperature through ntegration of the resiidual signal. It should be noted here,
that the input to the network is the estimate of the temperature instead of biased
measurements, as we are interested in rejecting the bias remaining in the estimate.

The main problem within compensator was to tune its gain. As explained by
the authors of the compensation idea, its tuning is a trade-off between rejecting
bias and modelling error, where high gain makes the system less sensitive to bias,
while increasing impact of the modelling error. The opposite is true for low gain,
where less modelling error is experienced, but the system contains more bias [22].
This was in fact true once we attempted to tune the gain of compensator and posed
an issue, as it was observed that even small deviations from the right value of the
gain led to estimate either go unstable (for gains above optimum) or containing
large quantities of bias (for gains below optimum). The optimal value for the gain
was found to be 0.0025.

2 issues should be discussed here. First is that the compensator’s gain was
tuned manually, while to apply it to the real system it might need to be adjusted.
When the gain as initially tuned, the value of UAir was still incorrect one. Inter-
estingly, after that value was changed, the gain had to be retuned despite using
the same network and signals, which indicates a need for automatic adjustment
of the gain, based on the system. Another issue is linked to the first one, as it
considers the sensitivity of the compensator to the selection of gain. Some way
of robustifying compensator to the choice of gain should be implemented, such
that the system still performs for some non-ideal values of the gain, as it might
be not selected exactly, while adjusting it to the system automatically. However,
challenges posed by these issues are considered as a future work.

The compensator was implemented in Simulink, as depicted by figure 6.2. It
includes measurements from high pressure side of the system and input normali-
sation block, to meet the network’s input requirements. The results of 2-days test
of the compensator on the default system that is not controlled by either of MPC
solutions. The effectiveness of the compensation method while either of MPC
solutions is active is documented in results chapter, where comparison of the per-
formance under no bias with the performance of present but compensated bias is
made.
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Chapter 7

Results

In this chapter results of MPC implementation are shown in terms of changes in
overall operational cost, power consumption and maintaining of required cabinet
temperature. As discussed in chapter 5, two types of MPC implementation were
performed to compare the implementation complexity and performance; the first
one being temperature reference MPC (Tref) and the second one being Economic
MPC (EMPC).

The performance of both type of MPC implementation is compared with a
Baseline system implementation for one week of simulation run. Controller for
maintaining the cabinet temperature was not implemented in the fast model pro-
vided by Danfoss. Hence, it was decided to implement cabinet temperature con-
trol by MPC. The nominal temperature value of cabinet temperature is 3 degrees
Celsius, with minimum and maximum range from 2 to 4 degrees Celsius. The
baseline was designed to maintain the nominal temperature range however, Tref
and EMPC were designed to utilize the information from price and ambient tem-
perature predictions to minimize the cost of operation.

7.0.1 Evaluation based on ambient temperature profiles

Energy consumption of supermarket refrigeration systems depend highly on the
ambient air temperature. Hence, it was necessary to simulate the system for differ-
ent ambient temperature profiles and compare the results. Hourly data of ambient
temperature was obtained from [34]. Figures 7.2 and 7.1 show the profiles of
ambient temperature data for hot and moderate climate regions. To analyze the
performance of system for different ambient temperature conditions, three week of
ambient temperature data in the following range was used to run the simulations
and compare results.
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Figure 7.1: Ambient temperature Data (Moderate climate)

* 10to 20 deg C
* 16 to 26 deg C
* 23to35deg C

7.0.2 Comparison of Power, MTPsuc and Ther Air

Figures 7.3, 7.4 and 7.5 show the comparison of power consumption, suction pres-
sure (MTPsuc) and cabinet temperature (Ther Air) for baseline, Tref and EMPC
for 3 different ranges of ambient temperature. Following inferences can be drawn
from the graphs.

* Cabinet temperature is maintained between the limits i.e. 2 to 4 deg C in
all the cases of implementation. This is the primary objective of refrigeration
system.

¢ Behaviour of suction pressure is significantly different in all the 3 implemen-
tations based on price and SC3 data.

* Based on the changes in the MTPsuc, profiles of power consumption are
different for all the 3 implementations.
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7.0.3 Power consumption behaviour in response to electricity price
data

Tref and EMPC were designed to reduce the overall cost of operation for the sys-
tem. A closer view is provided in the figure 7.6 where power data is plotted for
different modes. The first mode is energy saving mode in which power is expen-
sive and goal of MPC is to reduce the power consumption in order to save cost.
The second mode is energy consuming mode, in which there is excess energy in
the grid and goal of MPC is to consume the electricity. The third mode is the
normal operation mode.

Subplot 1 in the figure 7.6 depicts that when the energy is expensive, both Tref
and EMPC save energy by consumping less power. This is achieved by raising
the suction pressure (shown in figures 7.3, 7.4 and 7.5) keeping in view the limits
of cabinet temperature. Similarly in subplot 2, when the electricity price is lower,
Tref and EMPC consume more energy by lowering the suction pressure. In normal
mode behaviour of Tref is the same as baseline however, EMPC try to save energy
even in this mode as well. Hence, when the price is normal, EMPC will still
raise the suction pressure whenever it finds the opportunity keeping the cabinet
temperature within limits. This can be seen in the figures 7.3, 7.4 and 7.5.
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7.1 Cost Savings

Table 7.7 provides a comprehensive summary of energy consumption, total cost of
operation and savings achieved by implementing Tref and EMPC in comparison
with baseline for one week of system operation in differnet ambient temperature
conditions. Bar graphs in the figures 7.8, 7.9 and 7.10 are also providing an illus-
trative view of power consumption, cost of operation and percentage savings.
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Total Ener onsumption Savings
, erey P Total Cost (DKK) g
Ambient (KWh) (DKK/Percentage)
Temperature
(SC3) Tref MPC EMPC

Baseline | Tref MPC| EMPC | Baseline | Tref MPC| EMPC
(DKK) [ (%)|(DKK)| (%)

10to20C 1475.3 1478.5 |1394.4| 4254 396.3 365.7 | 29.1 |6.8] 59.8 | 14.1

16t026 C 3085.6 3087.7 [2911.4] 920.9 862.6 799.6 | 58.3 [6.3|121.3| 13.2

23to35C 6483.8 6527.6 (6164.2| 1832.9 1717.3 |1585.4| 115.6 |6.3(247.5| 13.5

Figure 7.7: Comparison of Baseline, Tref and EMPC
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Figure 7.8: Comparison of Power consumption for differnet ambient temperature conditions
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Comparison of cost of operation for different ambient
temperature conditions
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Figure 7.9: Comparison of cost of operation for different ambient temperature conditions
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7.2 Performance of Tref and EMPC under ambient tem-
perature bias

Issue of bias in measuring ambient temperature and how it could effect the perfor-
mance of the system is discussed in chapter 6. Also the methodology adopted to
compensate the bias issue using Tref and EMPC is discussed. This section discuss
the impact of bias on the power consumption and cost savings.

Figures 7.11, 7.12 and 7.13 show the ambient temperature with/without bias
and after compensation in subplot 1, while power consumption and cabinet tem-
peratures are shown in subplots 2 and 3 respectively for both Tref and EMPC with
bias compensation implementation. It can be observed from the subplots 2 and 3
that power consumption remains around baseline system (without bias fault) and
cabinet temperature is also maintained within limits.

Table 7.14 show the details of total energy consumption, total cost and savings
in the presence of bias fault. It can be observed that significant savings are still
achieved even under the presence of temperature sensor fault.

Figure 7.15 and 7.16 compare the savings percentage of Tref and EMPC with
and without bias for different ambient temperature conditions. It can be seen that
savings are reduced in the presence of bias fault but the system is still able to save
appreciable amount of energy in the presence of fault.
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Figure 7.12: Comparison of Tref MPC and EMPC under bias (Med Temp)
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Figure 7.13: Comparison of Tref MPC and EMPC under bias (Low Temp)
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Total Energy consumption

Total Cost (DKK) Savings (DKK/Percentage)
. (KWh)
Ambient
Temperature Tref MPC EMPC
Baseline | Tref MPC| EMPC | Baseline | Tref MPC | EMPC
(DKK) | (%) | (DKK) | (%)
10t020C 1475.3 1527.8 (1447.4| 425.4 412.6 383.2 | 129 3.0 42.3 9.9
16t026 C 3085.6 3126.5 |2962.4| 920.9 875.2 814.9 | 45.7 5.0 1059 | 11.5
23t035C 6483.8 6509.1 |6178.7| 1832.9 1719.5 [1596.1| 113.4 | 6.2 236.8 | 12.9

Figure 7.14: Comparison of Baseline, Tref and EMPC in presence of Bias
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Figure 7.15: Comparison of Tref Savings (Percentage) with and without bias
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Figure 7.16: Comparison of EMPC Savings (Percentage) with and without bias



Chapter 8

Discussion

With the increase of renewable share in electricity grid, large fluctuations in the
energy prices are expected more common now than ever before. Supermarket
refrigeration systems are energy intensive systems, but energy demand can be
predicted with some degree of uncertainty to few hours ahead. Capitalizing on
this opportunity, this project focused on data driven modelling of supermarket
refrigeration system that could be used with model predictive control (MPC) in
order to save energy consumption.

The project was implemented successfully at the end, however, issues faced
during the implementation and bottlenecks that changed the implementation strat-
egy are presented and discussed in the previous chapters. Finally, the successful
implementation demonstrated considerable amount of savings that was presented
in the result section.

8.1 Discussion of results

Chapter 7 presents the comparisons of results obtained by implementing two dif-
ferent types of MPC configurations. The first one was known as temperature refer-
ence MPC (5.1.5) and second one as economic MPC (5.1.6). Both the configurations
have advantage on one another in some different manner. The former being sim-
pler to implement while on the other hand resulted in less savings (7.1), the later
being computationally expensive but yielded more energy savings. Operational
cost of supermarket refrigeration systems is highly depended on the ambient tem-
perature conditions (2.3), hence, system performance was evaluated and compared
for three weeks of operation for ambient temperature data representing the broad
range of operation i.e. 10 to 35 degree Celsius (3.2.2). The goal was to maintain the
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cabinet temperature within food safety limits i.e. from 2 to 4 degree Celsius while
achieving the savings on the operational cost of the system. This is achieved by
maintaining the right suction pressure at the inlet of compressor based on ambient
temperature conditions. Graphs (7.0.1) present the comparison of Tref, EMPC and
baseline in achieving this cabinet temperature constraint, manipulation of suction
pressure and behaviour of power consumption for different ambient temperature
conditions and electricity price data. Approach to minimize operational cost is
somewhat different for both Tref and EMPC controller (7.0.2).

Significant amount of savings are achieved for both implementation cases (7.1),
however, EMPC leads the savings for all tested ranges of ambient temperature.
Furthermore, low ambient temperature conditions offer more opportunity to save
cost as compared to high ambient temperature conditions (7.1).

System is also equipped with handling temperature sensor bias fault (6.1) and
able to produce considerable amount of savings even for faulty temperature sensor,
however, there is reduction of savings as compared to healthy sensor scenario (7.2).

8.1.1 Cabinet temperature time constant

Fast model provided by Danfoss had some limitations (2.6), one of which is directly
impacted the claim of savings made in the project. The figures would have been
significantly larger, since savings achieved using the pre-cooling was not retained
by fast model due to short time constant. In reality the time constant is much
larger for refrigeration systems. To mitigate the effect of time constant to some
extent, the concept of negative price was utilized with care.

8.2 Utilization of IceTank for further improving the
cost savings

During the initial formulation of project problem, it was argued to integrate Ic-
eTank with MPC to achieve further savings. Unfortunately, due to some con-
straints, the company was unable to provide IceTank model till the completion of
this project and hence it was mutually decided to leave this part for some future
project.
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8.3 MPC methodology

Two different known configurations of MPC were implemented and tested for cost
optimization of supermarket refrigeration systems (5.2). Cost and constraint func-
tions were carefully designed to achieve optimal performance (5.1). Several issues
were faced during the implementation (5.3), especially using the MATLAB toolbox
for MPC implementation and one of the modelling methods was not tested with
MPC due to this limitation. Tuning of both MPC implementations was performed
by using the slack variables for constraint softening, implementation of rate of ma-
nipulated variable, tuning of prediction horizon and setting up of some hard on
the upper and lower bound of manipulated variable (5.4).

8.4 Modelling methodology

The process started with exploring some agile modelling technique like Dynamic
mode decomposition (DMD) to obtain simpler model that could speed up the
computation requirements of MPC (4.1.1), however, less appreciable results in the
start lead to exploring complex modelling methodologies like neural state space
(4.1.2) and Long short term memory neural network (4.1.3) which again resulted
in unsatisfactory results. Eventually, the problem was identified in the data being
used for all of the techniques (4.2), however, much time was already spent on
neural networks until this point and it was decided to continue with these two
modelling methodologies. Finally NSS was selected because of its compatibility
with MPC in MATLAB implementation.

8.4.1 Use of simpler model

If it was not the case with limited time constraint, further exploration of DMD
would have been done. The advantages could include obtaining a simpler model
to use with MPC which would have been more practical to implement in industrial
controllers.

8.5 Perspective and future work

This project has just laid a foundation stone to demonstrate the use of data driven
modelling and model predictive control in achieving significant improvements in
the energy savings for the case of supermarket refrigeration systems. The future
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prospects are very bright in this context and a lot can be achieved in this domain.
With increasing renewable shares in the electrical grid and available forecasts on
the price, supermarket refrigeration systems which offer energy store in terms of
cooling can be utilized to optimize energy performance. Some suggestions are
presented below.

Integration of solar panels can be studied with refrigeration systems using
MPC. Weather forecast data is available on hourly basis and operational cost
can be minimized by selecting the power source appropriately.

IceTank used in supermarket refrigeration systems provide another way of
storing energy. Integration of IceTank with the system and cost savings can
be evaluated.

Excess heat from the condenser can be integrated with district heating and
managed properly using MPC.

Time constant of cabinets can be studied and added in the fast model to
obtain more savings.

Simpler modelling techniques such as DMD can be further explored to opti-
mize the performance of MPC.



Chapter 9

Conclusion

This thesis attempted to improve cost-efficiency of the supermarket refrigeration
systems by using their energy flexibility and variation in energy prices. 2 MPC
schemes were proposed to optimise system’s operation in terms of energy cost: an
evaporation temperature reference-tracking nonlinear MPC and nonlinear EMPC.

In order to implement these control strategies, a prediction model of the sys-
tem’s dynamics was first needed. A new data-driven approach was taken, with fo-
cus on few central signals related to the compressors that result in smaller amount
of signals in the prediction model than in the case where information from all
evaporators and cooled cabinets is used for that goal, which in turn decreases
computational requirement on the hardware implementing the aforementioned
MPC schemes, while maintaining high accuracy of predictions.

To build a data-driven model based on these signals, different methods were
explored. This included DMD and 2 ANN architectures i.e. LSTM and NSS. Out
of these 3 methods, only NSS was successfully implemented for use in MPC. As
the NSS might be too computationally heavy for the industrial control units used
in the supermarkets, it was considered mainly for demonstrating validity of the
applied modelling approach.

The proposed MPC strategies were evaluated both in terms of cost savings and
respecting of the operating constraints on the cabinet temperature that are directly
linked to quality of the stored food. Despite operating closely to the constraints,
which minimised the cost of energy, they were not violated. The cost savings
amounted to 6.8% and 14.1% for the reference-tracking MPC and EMPC respec-
tively.

In addition to this, performance of the controllers under common ambient air
temperature sensor bias fault was studied. Owing to unacceptable degradation of
performance of both controllers by the fault, a method available in the literature
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for compensating for bias was applied. As a result of this action, most of the
savings under fault scenario could be recovered, especially while the ambient air
temperature was high.

We claim that the saving presented in this thesis would have been higher if
it had not been for extremely small time constant of cabinet air temperature that
was implemented in the simulation model of supermarket refrigeration system
used to generate training data for the models and run simulation studies of the
proposed control solutions. Once this would be improved, the information of time
constant of stored food’s temperature could be incorporated into the design of
MPC schemes.

Moreover, there are several issues to be resolved if the developed solutions are
to be used in the real supermarket refrigeration system. This includes handling
of uncertainty in the forecasts in weather and electricity price that the controller’s
performance heavily depends on, computational simplification of the prediction
model, possibly by transitioning from neural models to DMD and some way of
ensuring that the controllers tuning is capable of operating in different supermar-
kets, also the ones having other components for economic optimisation like ice
tank.

By and large, we can state that the outcomes of this thesis uncovered potential
of the proposed methodology for improving economic efficiency of supermarket
refrigeration systems and gave good directions towards necessary improvements
to make it applicable in practice.
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