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Chapter 1

Introduction

In recent years sentiment analysis has gained significant attention due to its
potential applications in various domains such as emotion detection, customer
feedback analysis, political opinions,and social media monitoring. According
to Zhang et al., 2023| Aspect Based Sentiment Analysis (ABSA) is a significant
area of research within the field of fine-grained sentiment analysis that aims to
identify and extract the sentiment of specific aspects or components of a product
or service. For example, in the sentence "The restaurant was expensive, but the
menu was great", there are two aspects that "price" and "food" that are associated
with negative and positive sentiment respectively. The aspects can be defined as
exactly the words present in the document or as a broader category as well and we
will be using the later definition.

deep learning approaches
machine learning approaches
rule-based approaches

] ] ] | >
I I | |

1950s 1980s 1990s 2010s
early days of NLP statistical ~ World Wide recent advances
approaches Web comes in computer hardware
become popular  along enable deep learning

Figure 1.1: History of NLP (Source: Getting started with NLP boolﬂ)

The field of NLP started with rule-based systems and has evolved to
semantically aware models today. NLP was mainly fueled by shift from rule-based
taxonomies in the 1960s to machine learning algorithms in the late 1980s. The early
models were limited in terms of task specificity and language dependence. Since
the introduction of Transformers followed by models like BERT and GPT, they have

Thttps:/ /livebook.manning.com /book/ getting-started-with-natural-language-processing /
chapter-1/
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had big impact on the whole NLP community with their amazing understanding
of various NLP tasks. They can directly perform tasks in zero-shot or few-shot
in-context learning manner and achieve strong performance without the need for
any supervised training. This has sparked a new revolution and growth of interest
in the field of NLP. Through this work we want to understand how we have reached
here by using ABSA as the task of choice. The history is briefly summarized in

Figure [L.1}

@ Amazon-owned @ Anthropic @ Apple @ Chinese ~ Google @ Meta / Facebook @ Microsoft @ OpenAl @ Other

BlenderBot! @ “p o @ @ . ) .
BOTS — pLATO.XL Ghat(Bard* BingChat* ‘3
A BlenderBot3 Ernie Bot 35

billion parameters

GPT-4*
Wu Dao 2.0
-
GLaM
PaLMZ
) Minerva )
_PalM “ Mistralziargs .~
PN 5308
Gopher Exaone
. . aloon 1BDB
PanGu-Alpha
Emie 3.0 Titan SEI“SEC“&'
- 175 Billion . f
- BLOOM
e EmleBet
. Jurassic-1 WebGPT .
GPT-3 (‘) f") OPT-\ML. Claude 21 1758 bn
g o - Fuyu:heavy
LaMDA  FLAN ’ . Y
’ Galactica IDEFICS
O e fo @owis @
@ @ GaPa
xlarge NLLB-200 LiaMatelM LEMEQ @ @ Mistral-$mal
Faleon LLM
GPT-NeoX  AlexaTM
L]
¢ @ M MM
Qo mGPT U0 ¢®+o Doly2.0 Orca2 @@
; GPT2 ¢ Codex e e o 80 @¢ O
L ® ® GPT- ®g © ® Apaca  Sal-7B MGIE
BERT  T5 Megatron-TB WelM Atlas
4
pre-2020 2020 21 22 23 2024 TBC
David McCandless, Tom Evans, Paul Barton source: news reports, LifeArchitect.ai
Information is Beautiful // UPDATED 20th Mar 24 * = parameters undisclosed /f see the data

Figure 1.2: Comparision of recents LLms interms of size (Source: news reportﬂ

Then in recent years, Large Language Models (LLMs) have risen to popularity
and Generative Al has become the buzz word. These models are groing in size
rapidly with GPT models having parameter sizes in Trillion. Recently, however

Zhttps:/ /informationisbeautiful.net/visualizations/ the-rise-of-generative-ai-large-language-models-1lms-like-chatgy
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there also has been a push towards researching capabilities of smaller models as
well. In Figure we can see evolution of LLMs along with their parameter sizes.

Sentiment analysis helps businesses to understand their customers and by
performing the analysis at aspect level analysis businesses gain even deeper
insights. It allows you to analyze the sentiment associated with specific aspects
or features of your product or service, rather than just looking at overall sentiment.
Businesses can understand their strengths and weaknesses. It can help guide
marketing and communication and make those efforts more data driven. Then by
having the analysis over an extended period of time, a business can even monitor
how their policies are impacting customer satisfaction. With these new models
available as services, any business can get access to their power with ease. With
proper pipeline and data cleaning, reviews from several sources can be fed into a
single model. Then having access to a dashboard that shows the results on a single
page means anyone can understand the results easily.

1.1 Objectives

With this work we mainly want to explore how Large Language models can be
utilized for the task of ABSA. Particularly we have set following objectives for the
work :

1. Understand the architecture and concept of Large Language Models

2. Explore the effective of Zero shot learning and few shot learning techniques
for ABSA

3. Prompt engineering and fine tuning to understand the effect a prompt has
on the outputs of language models

4. Experiments with different LLMs (both closed and open source)

1.2 Document Structure

This document uses AAU report template available on Overleaf. The document is
divided into 5 chapters. The chapters are organized as follows :

* Chapter (1] gives a quick summary of the work done. It also provides the
motivation, objectives and contributions of the research.

¢ Chapter [2| provides background knowledge and contextual information
related with the work. It also provides information about several possible
approaches that are taken for ABSA. We explore historical approaches and
models along with concepts related to Large Language Models.


https://www.overleaf.com/latex/templates/aau-report-template/wvfjytzrkwmg

Chapter 1. Introduction

¢ Chapter |3/ describes the datasets used, preprocessing done on the data and
finally implementation of the models. It also describes the training process
and evaluation methods used. It also has inference and finetuning techniques
related with LLMs.

¢ Chapter {4 compares the results of our implemented models with each others
and also with other literature that have been talked about throughout the
research.

e Chapter [f concludes the work and provides the findings in brief. This
chapter also provides the limitations of the work and some suggestions for
future work.



Chapter 2

Background

In recent decades there has been vast amount of text data in forms of reviews
and comments available on the internet. As a result of this ever growing data,
Natural Language Processing has taken a big leap in recent years. Organizations
and businesses are keen to extract valuable insights from customer reviews,
social media comments, and other textual sources. Recent breakthroughs and
data availability has made it easier to understand and analyse public sentiments
and opinions. Aspect-Based Sentiment Analysis (ABSA) and Transformers have
emerged as powerful tools for extracting fine-grained sentiment information from
text data. In this section, we will explore the development of ABSA and use of
Machine Learning for such analysis.

2.1 Natural Language Processing

Natural language refers to text, speech or other ways which we use to communicate
with each other and Natural Language Processing (NLP) is an area of artificial
intelligence (AI) that focuses on the research and application exploring how
computer systems can be used to understand and process the natural language.
Natural Language Processing helps Al models understand and interpret human
language. It has grown to be one of the most powerful field of AL With the vast
availability of data NLP has grown a lot in recent years.

One of its primary uses aspects of NLP is sentiment analysis, where businesses
can gauge public opinion on products and services by analyzing customer reviews
and social media posts. This insight helps in understanding customer satisfaction,
brand reputation, and identifying areas for improvement. Furthermore, NLP is
integral in customer support chatbots, which can provide real-time assistance to
customers, leading to improved customer service and cost reduction. Additionally,
NLP can be employed in a wide range of applications including language
translation, text summarizing, text generation, sentiment analysis and a lot more.
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In early days, NLP tasks were with dictionary matching, grammatical rules
or simple statistical approaches. In recent decades those early approaches were
replaced by early machine learning approaches involving static word embeddings
(Word2Vec and GloVe) which represent word as vectors in a high dimensional
space. These methods captured the semantic and syntactic relationships between
words based on co-occurrence statistics. Then in recent years, NLP has boomed
a lot due to advancements in Deep Learning and some recent models have
outperformed humans in some NLP tasks (Lauriola et al., 2022). Most of these
deep learning models rely on LSTM or Transformers. Transformer based language
models like BERT and GPT use embeddings that are contextual and are generated
based on input sentence or sequence of words. With contextual embeddings,
same word can have a different embedding vector based on the input sequence.
The contextual information captured by these embeddings can help improve the
performance of NLP tasks, such as sentiment analysis.

2.2 Sentiment Analysis

Sentiment Analysis (SA), sometimes also known as opinion mining (OM) is the
computational study of peoples opinions, attitudes and emotions toward an entity
which can represents individuals, events, or topics. While the terms Sentiment
Analysis and Opinion Mining are often used interchangeably, Tsytsarau and
Palpanas (2012) suggest slight differences and stated Opinion Mining extracts and
evaluates people’s opinions, while Sentiment Analysis identifies and analyzes the
sentiment expressed in a text.

As defined by Techtarget (2023), sentiment analysis has emerged as a critical
tool across various industries due to its multifaceted applications. These tools are
indispensable for monitoring and understanding customer sentiments expressed
on social media platforms such as Facebook, Instagram, and Twitter, thereby
bolstering the effectiveness of social media marketing strategies. Furthermore,
they play a central role in evaluating brand awareness, reputation, and popularity,
offering insights that are invaluable in the moment and over time. It is equally
essential for organizations in gauging consumer reactions to new products and
features, facilitating iterative product improvement and refinement. It is also
instrumental in assessing the success of marketing campaigns, identifying specific
target audiences, and conducting comprehensive market research to uncover
emerging trends and competitive insights.

Medhat et al. (2014) describe three primary levels of Sentiment Analysis (SA):
document-level, sentence-level, and aspect-level SA. Document-level SA focuses
on categorizing an entire opinion document as conveying a positive or negative
sentiment, treating the document as a single information unit discussing one
topic. Sentence-level SA, on the other hand, seeks to classify the sentiment
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expressed in individual sentences. It starts by identifying whether a sentence
is subjective or objective, and if it’s subjective, it then determines whether the
sentence conveys a positive or negative opinion. Aspect-level Sentiment Analysis
focuses on categorizing sentiment based on specific aspects of entities. It begins by
identifying these entities and their associated aspects.

Document Level

Text Sentiment
Even though its good seafood, the prices are too high Neutral
Sentence Level
Text Sentence Sentiment
. . . First Positive
Even though its good seafood, the prices are too high .
Second Negative
Aspect Level
Text Aspect Sentiment
Even though its good seafood, the prices are too high fo,Od P°S't'f’e
price Negative

Figure 2.1: An example review at different levels of Sentiment Analysis

As seen in Figure each level gives a more deeper analysis into the
sentiments present in the text and depending on the use-case one might be more
useful than other.

2.3 Aspect Based Sentiment Analysis

Hoang et al. stated on his paper that traditionally sentiment analysis focuses
on determining the overall sentiment expressed in a text without specifying the
subjects or topics under discussion. However, this approach may prove inadequate
when a text simultaneously discusses various topics or entities, each potentially
conveying different sentiments. To address this challenge and provide a more
comprehensive analysis, aspect-based sentiment analysis (ABSA) comes into play.

ABSA is designed to identify and analyze sentiments associated with specific
aspects or entities mentioned in the text, offering a more detailed understanding
of sentiment in context. Hence, ABSA provides a great opportunity to analyse
sentiments (public) over time across different contents present on media. It
was first introduced in SemEval-2014 (Pontiki et al., , which provided a
dataset with annotated reviews about restaurants and laptops. The ABSA task
in SemEval-2014 did not contain full reviews until SemEval-2015 (Pontiki et al.,
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2015), and the dataset for SemEval-2016 (Pontiki et al., 2016) did not change from
2015 except for additional test data.

Often times different authors use the same term aspect and ABSA to describe
different types of analysis. Some authors use aspect to refer a broader category. As
part of this work the terms are defined as :

Aspect refers to category the words present in the input sentence (For
example food, price, ambience, service, etc)

Sentiment is sentiment classification belonging to a particular aspect

Sentiment terms are the words that hold the sentimental value (also called
opinion terms)

ABSA is structured into two primary processing phases: Aspect Extraction
(AE) and Aspect Sentiment Analysis (ASA). Some authors also explore Sentiment
Evolution (SE) as part of their analysis. Nazir et al. (2022) stated in the first
phase, aspects are identified, including explicit and implicit aspects, aspect
terms, entities, and Opinion Target Expressions (OTE). The second phase involves
sentiment polarity classification for predefined aspects, entities, or targets, while
also considering interactions and semantic relationships for enhanced sentiment
accuracy. The third phase is dedicated to understanding the dynamic nature of
people’s sentiment towards various aspects or events over time, influenced by
social characteristics and personal experiences. In this paper we will focus on
aspect extraction and aspect sentiment analysis.

2.3.1 Issues and Challenges

Aspect extraction and classification both come with their own set of issues and
challenges. Nazir et al. (2022) did a comprehensive review of the issues and
challenges. Some of the challenges are :

1. Multi aspect and ambiguous language: In cases with ambiguous language
or multiple aspects in a single sentence, identifying and extracting all the
aspects is very challenging. Models need to understand the context and
sentiment associated with each aspect, which can be complex in the presence
of negations, modifiers, or subtle expressions.

2. Data availability : LLMs require vast amount of data for training and
obtaining labelled data for ABSA is quite difficult. Manually annotating
data with aspect and sentiment labels requires domain expertise and can
be subjective, leading to potential biases.

3. Domain knowledge : ML models trained on one domain may not generalize
well to other domains. This can be solved with large amount of data and
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requires additional labeled data and careful consideration of domain-specific
language and context.

4. Multilingual Challenges : ABSA in multilingual settings adds complexity,
as sentiment expressions and aspects can vary across languages. In our case,
Danish is mixed in the review texts which could be a challenging factor for a
model.

5. Black box models : Using black box models often gives good results
but understanding how and why a model makes specific predictions is
challenging.

With careful approach combined with proper data pre-processing, model
selection and feature engineering, the impact of these issues and challenges can
be minimized.

2.4 Approaches to ABSA

Over the years several methods have been proposed for ABSA like Traditional
methods, Machine learning models, Deep learning models, and Language Models.

2.4.1 Traditional approaches

As noted by Ma et al. (2018), ABSA’s biggest problem lies in effectively
capturing aspect-specific sentiment information from the comment. Although
some traditional methods for target sentiment analysis have shown potential
success, they tend to be resource-intensive due to their heavy reliance on feature
engineering and extensive linguistic resources, as observed in the works of
Kiritchenko et al. (2014) and Wagner et al. (2014). The need for such comprehensive
linguistic resources can pose a challenge, especially when dealing with diverse
domains or industries.

Due to their substantial reliance on feature engineering and large language
resources, traditional ABSA techniques have resource intensity issues. They often
fail to produce similar level of results as more recent approaches while using
more resources. These difficulties may restrict the scalability and flexibility of
conventional techniques, leading to the investigation of different strategies for
more effective and efficient ABSA.

Rule-based | Sentiment | semevall4 restaurant | 77.8%(acc) | Wagner et al. (2014

Model Task Dataset f1 score Cite
)

Table 2.1: Traditional Approaches to ABSA
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2.4.2 Machine Learning based approaches

To perform natural language processing with machine learning algorithms,
language must be mathematically represented, and one way to achieve this is
through word vectors. Different authors used different vectorization techniques
such as Bag of Words, Term Frequency Inverse Document Frequency (TF-IDF)
(Bhoi & Joshi, |2018), word2vec (Wei et al., 2020). TF-IDF is a sparse, count-based
representation, while Word2Vec provides dense, context-based word vectors that
capture semantic meaning. TF-IDF is primarily used for text classification and
information retrieval, while Word2Vec is used for capturing semantic relationships
and word similarities.

Previously Support Vector Machines(SVM) was also used for NLP tasks. SVMs
are a machine learning classification technique which use a function called a kernel
to transform data points. Wagner et al. (2014) trained a four way SVM classifier
to perform Aspect based polarity classification. Through their experiments they
discovered that traditional rule-based approaches outperformed their early ML
approaches in some cases. Those cases were more common when there was a
sentence with rare word with strong polarity. Except that they discovered the
SVM system outperforms the traditional rule based approach. Onwuegbuche et al.
(2019) used SVM classifier for sentiment analysis of Nigerian banks twitter data
and achieved f1 score of 0.7180.

Model Task Dataset score Cite

SVM Joint semevall6 restaurant 0.7303(f1) | Jihan et al. (2017)

SVM Sentiment | Five Nigerian banks twitter data | 0.7180(f1) | Onwuegbuche et al. (2019) |
SVM Sentiment | semevall4 restaurant 81%(acc) | Wagner et al. (2014) N
SVM Sentiment | Macedonian restaurant reviews | 0.84(f1) Najkov (2023)
RandomForest | Sentiment | Macedonian restaurant reviews | 0.78(f1) Najkov (2023)

XGBoost Sentiment | Macedonian restaurant reviews | 0.81(f1) Najkov (2023)

Table 2.2: Machine learning based approaches

2.4.3 Deep learning based approaches

In recent years the early ML approaches for NLP tasks are being replaced
and outperformed by recurrent architectures and deep learning models. Deep
learning techniques have been increasingly applied to Aspect-Based Sentiment
Analysis (ABSA) and have shown significant improvements in the accuracy and
effectiveness of aspect based sentiment analysis. Deep learning approaches use
neural networks (NN) to learn the semantic and syntactic features automatically
and perform well in the related extensive experiment, in contrast to machine
learning approaches that mostly depend on the quality of the created features.
Najkov (2023) saw different models from Decision tress to transformers for
sentiment analysis task. They did sentiment analysis on Macedonian Restaurant
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Reviews and concluded that deep learning models and transformers, outperform
traditional machine learning models like Random Forests and Support Vector
Machines. Zhu et al. (2022) also used deep learning approach for ABSA and were
able to obtain similar results.

Deep neural network (DNN) is more useful for NLP due to their use of (i)
dense word embedding, (ii) the inclusion of multiple hidden layers between the
input and output, and (iii) the presence of output units (Do et al., 2019).

The difference between NN and DNN is that DNN has more hidden layers (at
least two layers theoretically). The main idea of DNN is to regard the output of
the previously hidden layer as the input of the current hidden layer to obtain more
abstract high-level features. In order to avoid gradient disappearance or gradient
explosion, weight initialization in neural network is also an important task.

Convolution Neural Network (CNN) is one of the most successful deep
learning system mainly used for image categorization. But a lot of works have used
CNN for tasks such as question answering, SA, and machine translation. Some
researchers have used CNN for ABSA tasks, and the results have been promising.
It mainly consists of an input layer, a convolution layer, a pooling layer and a
full connection layer. Shu et al. (2019) used a Double Embedding CNN that uses
a domain specific CNN to perform ABSA without adding any manual features.
Noh et al. (2019) used two CNNs to extract positional information and classify
targets. Wang et al. (2021) proposed a Unified Position aware Convolutional Neural
Network (UP-CNN) for ABSA which used the concept of aspect mask to more
efficiently obtain the context information.

The RNN model has two important features compared to the feed-forward
neural network. First, unlike the CNN has different parameters at each layer, the
parameters in RNN are the same in each steps, which then reduces the number of
parameters needed to learn (Zhang et al., 2018).

Memory cell
internal state ( (@) (+) C FC layer with
C., Y ' E' activation function
Outi)ut Elementwise
@ gge operator
Forget Input Input !
gate gate node T
F, | o L | o | C, |tanh| | o | 1 Copy
Hidden state J J
H_
- (N ( —(—‘ Concatenate
|
Input X,

Figure 2.2: An LSTM cell (Source: dlZ.a

1htt—ps: //d2l.ai/chapter_recurrent-modern/lstm.html
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Long Short Term Memory (LSTM) is a type of Recurrent Neural Network
meaning a neural network with chain of several units one after another and
have the ability to process a sequence of inputs like text sentences. To overcome
the vanish gradient problem present in RNN models LSTM was developed and
achieved superior performance (Hochreiter & Schmidhuber, [1997). It introduces a
memory cell that allows the network to selectively forget or remember information
over time. As seen on Figure LSTM has three special gates, Input gate,
Forget gate, and Output gate. Input gate controls what information must be
stored in the cell state and also takes current input data and previous hidden
state as input. Forget gate decides which information from the previous cell
state should be discarded, and Output gate determines the amount of information
to be output from the current cell state. Since LSTM can capture sequence
model, most researchers use LSTM based method in text classification and
sentiment classification tasks, especially in ABSA. Tang et al. (2016) proposed
Target-dependent sentiment classification (TD-LSTM), which use two LSTM
neutral networks and the target is placed in the middle of sentence. Wang
et al. (2016) also proposed new idea with adding aspect embedding in LSTM
(ATAE_LSTM) also includes the attention mechanism. The combination of the
aspect attention and sentiment attention was proposed by Cai and Li (2018) and
called Joint attention LSTM network (JAT-LSTM) and has the highest accuracy
among these models.

Model Task Dataset Score Cite

CNN Category | semevall6 Restaurant | 0.7564(f1) | Shu et al. (2019)
LSTM Category | semevall4 Restaurant | 82%(acc) | Wang et al. (2016) |
TD-LSTM | Category | semevall4 Restaurant | 84%(acc) | Wang et al. (2016) |

Table 2.3: Deep learning based approaches

24.4 Transformer based approaches

Large Language Models (LLMs) are the most recent advancement made in the field
of NLP. These models such as BERT (Devlin et al., 2018), GPT (Brown et al., [2020),
PaLM (Chowdhery et al., 2022), Flan-UL2 (Tay et al., [2023) and LLaMA (Touvron
et al., 2023) are massive in size with hundreds of millions to billions of parameters.
Trained on vast amount of text data, LLMs have the ability to understand and
generate human language. They can perform a wide range of NLP applications
from text classification and sentiment analysis to language translation and text
generation. Their capacity for transfer learning where they are pre-trained on
general language understanding and then fine-tuned for specific tasks makes them
versatile tools for a wide array of language-related tasks.

LLMs are built upon the Transformer architecture which uses the concept of
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attention, specifically self attention mechanism. Attention mechanism allows the
model to weigh the importance of different parts of an input sequence when
processing information. This attention mechanism enables LLMs to capture
complex linguistic dependencies, context, and long-range relationships, making
them highly effective at understanding and generating human language.

We can use different language models for several NLP tasks easily with the help
of packages like transformersﬂ and huggingfaceﬂ Transformers is an open-source
library that was developed to help advance the opensurce machine learning
research community (Wolf et al., 2020). Along with huggingtace portal, the library
enables any users to use state-of-the art Transformer architectures under a unified
APL

Transformer

Transformer is a type of neural network which pays attention to different parts of
input data simultaneously and allows it to understand relationships in a sequence.
It was introduced on the paper "Attention Is All You Need" (Vaswani et al., 2017).
The paper presents a deep learning architecture that leverages the power of self
mechanism. Transformers use an encoder-decoder structure for tasks with varying
input and output lengths. The overall architecture can be seen on Figure It
has become the dominant architecture for natural language processing, surpassing
alternative neural models such as convolutional and recurrent neural networks
in performance for tasks in both natural language understanding and natural
language generation.

The key component of Transformer model is the concept of "attention," which
allows the model to concentrate on different parts of the input sequence when
producing the output sequence. Transformers uses Self-Attention Mechanism,
Multi-Head Attention, Positional Encoding and Encoder-Decoder Architecture.

Self-Attention Mechanism allows the model to weigh the importance of
different words in a sequence when processing a particular word.

Multi-Head Attention capture different aspects of relationships in the input
data

Positional Encoding are added to the input embeddings to provide
information about the positions of words in a sequence as transformer don’t
understand the order of input.

Encoder-Decoder Architecture encode to process the input sequence and a
decode to generate the output sequence

https:/ /huggingface.co/docs/transformers/index
Shttps:/ /huggingface.co/
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Figure 2.3: Transformer model architecture. (Source: Vaswani et al., 2017)

The transformer has proven highly effective in natural language processing
tasks, such as machine translation, text summarization, and language modeling.
It has also been adapted and extended for various other domains beyond NLP.
Language models like BERT and GPT has also used transformers.

Binary Encoder Representation from Transformer (BERT)

The pre-training language model attracted much interest from academia and
industry because it performs well in several NLP applications. BERT is the first
deeply bidirectional and unsupervised language representation model developed
by Google. It was introduced in a research paper titled "BERT: Pre-training of Deep
Bidirectional Transformers for Language Understanding," by Devlin et al. (2018).
It is designed to pre-train deep bidirectional representations from unlabeled text
by jointly conditioning on both left and right context in all layers. BERT uses
a transformer-based architecture, which allows it to take into account both the
context of a given word and the words that come before and after it.

BERT is pre-trained on a large corpus by using the Masked Language Modeling
(MLM) and next-sentence prediction objectives and due to its architecture it
develops an understanding of the language. As seen on Figure other than
the output layers, same architecture are used in both pre-training and fine tuning
procedures. Same pre-trained model parameters are used to initialize models
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Figure 2.4: BERT training and fine-tuning procedure (Source: Figure 1 in Devlin et al., [2018)

for different down-stream tasks. Once trained, the resulting model can then be
fine-tuned on a small labelled dataset for a specific NLP task. Hao et al. (2019)
visualized the loss landscapes and optimization trajectories of the BERT fine-tuning
procedure. Their results indicate fine-tuning BERT tends to generalize better
because of easier optimization compared with training from scratch. They also
demonstrate that fine-tuning procedure is robust to overfitting, even though BERT
is highly over-parameterized for downstream tasks.

BERT has shown to produce good results on NLP tasks (Wang et al,
2018) due to the large amounts of text it has been trained on. Some of the
researchers have explored using BERT in combination with other ML methods.
Mewada and Dewang (2023) proposed synthetic attention in bidirectional encoder
representations from transformers (SA-BERT) with an extreme gradient boosting
(XGBoost) classifier to classify sentiment polarity in the review dataset and the
experimental outcomes show SA-BERT-XGBoost model has better accuracy and
less time overhead in sentiment analysis of reviews than base models.

Generative Pre-trained Transformer (GPT)

GPT is a Transformer based architecture and training process for NLP tasks,
introduced by Radford and Narasimhan (2018). It is trained on vast amounts
of diverse data, enabling it to capture complex patterns and relationships in
language. GPT models follow a two step process involving pre-training and
fine-tuning. Pre-training means it learns from a broad range of text before being
fine-tuned for specific tasks, making it versatile for various applications, including
Aspect-Based Sentiment Analysis (ABSA). This process allows the model use
general understanding of language gained during pre training to excel at tasks
during fine tuning.

In context of ABSA, GPT can be used to get an innovative and promising
approach. Due to the amount of training data and general language
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understanding, GPT can easily learn detailed features and representations from
data, removing the need for manual feature engineering. GPT’s contextual
awareness allows it to obtain the sentiment associated with specific aspects
mentioned in a comment or review.

There has been some work in experimenting with models that integrate
GPT with other simpler ML approaches. Mingzheng et al. (2023) proposed
an aspect-level sentiment analysis model that interates GPT with multi-layer
attention (GPT and Multi-Layer Attention Network, GPT-MAN). Initially, the
model integrates GPT and aspect coding to create a new word vector representation
approach. Then inputs word vector with rich semantic information into the
network featuring a multi-layer attention mechanism, leading to better accuracy
in sentiment analysis. They experiment and optimize the hyperparameters using
of Restaurant, Laptop and Twitter datasets.

Simmering and Huoviala (2023) evaluated the effectiveness of GPT-4 and
GPT-3.5 in zero-shot, few-shot, and fine-tuned scenarios for aspect-based sentiment
analysis (ABSA). They were able to F1 score of 83.8 on the SemEval-2014
Task 4 joint aspect term extraction and polarity classification, outperforming
InstructABSA (Scaria et al., 2023) by 5.7%. InstructABSA was an approach to
ABSA subtask where the model was trained with instruction based prompts. It
used tk-instruct as its base and were able to surpass much larger models.

Recently ChatGPT is being used for a lot of NLP tasks and has drawn
attention of research community as well. Wang et al. (2023) evaluated performance
of ChatGPT on sentiment analysis. They were trying to evaluate ChatGPT’s
understanding of opinions, sentiments, and emotions contained in the text. They
concluded ChatGPT performed well in zero-shot sentiment analysis and was able
to comparable results with fine-tuned BERT and SOTA models trained with labeled
data in respective domains. Their study suggests ChatGPT could be used in other
sentiment analysis sub-tasks to obtain comparable results without any further
fine-tuning as well.

Model Task Dataset Score Cite
BERT based model | Sentiment | Macedonian restaurant reviews | 0.89(f1) | Najkov (2023)

Table 2.4: Transformer Approaches comparision

Sentence transformer (SBERT)

Sentence transformers are a type of machine learning model specifically designed
for natural language processing (NLP) tasks. These models are based on
transformer architectures and are particularly optimized to produce high-quality,
dense vector representations (embeddings) of sentences and text.

In the paper "Sentence-BERT: Sentence Embeddings wusing Siamese
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BERT-Networks" (Reimers & Gurevych, 2019), present Sentence-BERT (SBERT),
which modifies the pretrained BERT network by employing siamese and triplet
network structures to generate semantically meaningful sentence embeddings that
can be compared using cosine similarity. This approach significantly reduces
the time required to find the most similar sentence pairs from 65 hours with
BERT/RoBERTa to approximately 5 seconds with SBERT, while maintaining
BERT’s level of accuracy.

Mistral models

The Mistral model represents a significant advancement in natural language
processing (NLP), building on enhanced transformer architectures to deliver
superior performance and efficiency. By incorporating a sparse attention
mechanism and optimizing computational pathways, Mistral reduces complexity
and improves processing speed. This allows the model to handle longer sequences
and larger datasets effectively. Its advanced contextual understanding capabilities
lead to more accurate and coherent outputs, making it highly effective for tasks
such as machine translation, text summarization, sentiment analysis, and question
answering. The model’s scalability and efficiency improvements position it as a
powerful tool for a wide range of NLP applications, underscoring its contribution
to advancing state-of-the-art language technologies (Jiang et al., [2023).

Mistral also has a variant called Mixtral which is a Mixture of Experts (MoE)
model with 8 experts per MLP, with a total of 45 billion parameters. Mixture of
Experts enable models to be pretrained with far less compute, which means you
can dramatically scale up the model or dataset size with the same compute budget
as a dense model. In particular, a MoE model should achieve the same quality as
its dense counterpart much faster during pretraining (Jiang et al., [2024).

Phi

The Phi-3 model is a 3.8 billion parameter language model introduced by
Microsoft(Abdin et al.,, [2024). It was trained on 3.3 trillion tokens. By
introducing novel mechanisms to refine attention mechanisms and handle
long-range dependencies more effectively, the Phi-3 model enhances contextual
understanding and accuracy. It is designed to be computationally efficient, making
it faster and more scalable without sacrificing performance. This efficiency allows
the Phi-3 model to handle larger datasets and more complex tasks, making
it suitable for a wide range of applications such as machine translation, text
summarization, sentiment analysis, and question answering. Microsoft and the
researchers use SLM (Small Language Model) to descibe phi family of models as
they have smaller number of parameters than the current state of the art language
models.
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2.5 Large Language Models (LLM)

Language models (LMs) are computational systems with the ability to comprehend
and generate human language. LLMs can be broadly categorized into three
groups based on their architectural design. The first group comprises encoder-only
models, like BERT (Devlin et al., 2018) and its variants. These models employ
a pre-training followed by fine-tuning approach for natural language processing
(NLP) tasks, utilizing masked language models as the primary training objective
during pre-training and fine-tuning on annotated downstream datasets. The
second group consists of decoder-only models, such as GPT, (Radford et al., 2018)
which leverage the decoder of an auto-regressive transformer model to predict the
next token in a sequence. These model also follow the pre-training then fine-tuning
paradigm. The third category encompasses encoder-decoder models like T5 (Raffel
et al.,[2023) and its variants.

While classical language models like BERT are efficient on various NLP tasks
and trained on large amounts of un-annotated textual data, they still require a
substantial amount of annotated data to perform well on targeted tasks such as
NER, NLI, and RE. These models also have difficulty generalizing their knowledge
to other languages or domains once adapted to a particular task and context.
Collecting such data for any scenario is then expensive, as it requires highly
qualified annotators and raises privacy concerns.

Recently, LLMs have brought additional performance improvements, especially
in generative tasks. These models are composed of billion of parameters and
trained on gigantic amounts of data, from various natures, domains and languages.

New approaches using these generative LLMs capabilities have aimed to align
them with instructions (Ouyang et al., 2022) giving them greater abilities to handle
multiple NLP tasks in multiple languages in zero- or few-shot learning (Bang et al.,
2023).

2.5.1 Tokenization and Data processing

Tokenization in Large Language Models (LLMs) is a crucial step that involves
breaking down a sequence of text into smaller units called tokens. Tokens can
represent words, subwords, or even characters, depending on the tokenization
method used. Tokenization provides a structured way to break down text into
manageable pieces for the model to process Ghashami (2023).

LLMs are mainly generative models and generate output using the
understanding developed from training data. A lot of these models use a filtered
dataset to reduce the risk of unwanted or unsafe utterances. This prevents filter
out certain personal information and other sensitive data. After cleaning and
pre-processing, the cleaned text data tokenize into smaller units such as words
or subword pieces (e.g., Byte-Pair Encoding or WordPiece).
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2.5.2 Pre-training LLMs

LLMs are trained using huge datasets. LLMs can be taught on datasets larger
than a petabyte. A one-gigabyte document can hold around 180 million words.
A petabyte can store one million gigabytes of data. This dataset includes text
from a variety of sources to guarantee that the model learns a diverse set of
linguistic patterns. For example, Gemma 2B and 7B are trained on 2T and 6T
tokens comprising predominantly English data from web texts, mathematics, and
coding, respectively (google deepmind, 2024). Considering the huge quantity and
scale of LLM models and data, model training requires a significant amount of
processing power. To reduce training time, it is usual to use a model parallelism
feature that divides sections of the model over numerous GPUs.

Additionally, the models also have billions of parameters and require
infrastructure equipped with multiple GPUs to facilitate the training of these large
models. Training GPT-3, a previous-generation model with 175 billion parameters,
would take 288 years to train on one NVIDIA V100 GPU (run:ai, 2023) which itself
is a very powerful server GPU. Typically, LLMs are trained on thousands of GPUs
in parallel. For example, Google used 6,144 TPUv4 chips to distribute training and
develop its PaLM model with 540 billion parameters. For the Gemma 7B model,
Google used 16 pods totaling 4096 TPUvbe (google deepmind, [2024).

2.5.3 Zero-shot and Few-shot Learning

Few-shot learning (FSL) is the challenge of learning novel classes with a tiny
training dataset of one or a few images per category. FSL is closely related to
knowledge transfer where a model, previously trained on large data, is used for
a similar task with fewer training data. The more the transferred knowledge is
accurate, the better FSL will generalise. Zero-shot learning is a machine learning
paradigm where a model is trained to recognize and generalize to classes that
it has never seen during the training phase. Zero-shot learning, like all n-shot
learning, refers not to any specific algorithm or neural network architecture, but
to the nature of the learning problem itself: in ZSL, the model is not trained on
any labeled examples of the unseen classes it is asked to make predictions on
post-training.

2.5.4 Finetuning

Large language models (LLMs) have revolutionized the field of natural language
processing (NLP) but these pre-trained models often lack domain-specific
knowledge and can struggle with tasks requiring specialized understanding.
Fine-tuning allows us to adapt the pre-trained LLMs to specific tasks and domains.
Fine tuning involves adjusting the internal parameters of the LLM based on labeled
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data, allowing it to excel in specific applications like ABSA.

Compared to training an LLM from scratch, fine-tuning significantly reduces
the computational cost and time required, making it a more efficient approach for
quick adaptation to specific tasks. It allows the model to leverage its pre-trained
knowledge base while acquiring task-specific knowledge, leading to improved
performance on the target task. ALso, some customization could be done to the
LLM'’s output to align with the specific language nuances and requirements of the
target domain.

@ Pre- trommg Fine-tuning

Massive dataset

?..,;;-; 'ﬂ|- e?i_ O
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Figure 2.5: An example LLM fine tuning pipeline (Source: deci.ai blodﬂ)

Figure shows a general fine tuning pipeline. If enough resources are
available, fine tuning also can be performed locally with the help of libraries like
Hugging face. It provides greater control and flexibility but has huge resource
requirements. Supervised Fine-Tuning (SFT) and Parameter-Efficient Fine-Tuning
(PEFT) have emerged as most popular approaches to performing fine tuning
locally. If resources are sparse and for quick experiments, using API based
finetuning might be more useful.

In-context learning

An interesting way of utilizing LLMs post-training is with In-context learning (ICL)
approach. Without any gradient update, model learns to address a new task during
inference by receiving a prompt, including task examples. In-context learning was
popularized in the original GPT-3 paper as a way to use language models to learn
tasks given only a few examples (Xie et al., 2022). In-context learning is very useful
if we dont have direct access to the model, for instance, if we are using the model
through an APL

Prompt Engineering

A prompt is a set of instructions provided for a Large Language Model
(LLM), contributing to the customization and refinement of its capabilities. This

4https:/ /deci.ai/blog/ fine-tuning-peft-prompt-engineering-and-rag-which-one-is-right-for-you /
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set of instructions can shape the LLM’s responses and outputs in subsequent
interactions. By establishing specific rules and guidelines for the initial phase
of an LLM conversation, a prompt plays a crucial role in defining the context,
signaling the importance of certain information, and specifying the desired format
and content for the generated output. In particular, a prompt sets the context for
the conversation and tells the LLM what information is important and what the
desired output form and content should be. White et al. (2023)

Prompt engineering is the means by which LLMs are programmed via prompts.
It refers to the process of designing and refining prompts or instructions given
to a language model. Weng, 2023 describes prompt Engineering, also known as
In-Context Prompting, refers to methods for how to communicate with LLM to
steer its behavior for desired outcomes without updating the model weights.

Prompt patterns are essential to effective prompt engineering and the impact of
its methods can exhibit significant variation across different models. This requires
extensive experimentation and reliance on heuristics. Additionally, it falls within
the domain of the prompt engineer to comprehend how to optimize outcomes
for various generative Al models available in the market. In some cases (like
OpenAl's GPT-4) no more training or fine tuning is allowed. In in these cases
prompt engineering can prove to be very useful technique to extract more accurate
and precise information. Formulating prompt for different LLMs requires different
format and just because one prompt resulted better result in one model doesn’t
guarantee better result on another LLM.

Retrieval augmented generation (RAG)

Large language models (LLMs) have made remarkable success in natural
language processing.  Despite these advancements, LLMs face limitations,
particularly in handling specialized queries and generating accurate information,
termed as "hallucinations". Meta Al researchers have introduced a solution
called Retrieval Augmented Generation (RAG) E] to address these challenges.
RAG integrates an information retrieval component with a text generator model,
allowing for efficient fine-tuning and modification of internal knowledge without
retraining the entire model. This approach enhances the model’s capability to
provide precise and relevant responses by incorporating external data retrieval
into the generative process. RAG emerges as a promising method to overcome
LLM limitations, making it more practical for real-world applications. (Gao et al,,
2024)

Prompt tuning

Prompt-tuning is an emerging strategy to adapt large language models (LLM) to
downstream tasks by optimizing prompt parameters from data (Rawat et al., 2023).

Shttps:/ /ai.meta.com/blog/retrieval-augmented-generation-streamlining-the-creation-of-intelligent-natural-language-proces:
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Prompt-tuning allows for easy adaption of large language models (LLMs) to new
tasks by training a small number of prompt parameters. It involves fine-tuning the
prompt parameters to maximize the performance of the LLM on the task. Despite
its effectiveness, one of the major drawback of prompt tuning lies in its lack of
interpret ability as it is very hard to understand the reasoning behind optimal
prompt. Notably, research suggests that prompt tuning can outperform fine-tuning
across various scenarios, including full-data settings, data scarcity settings, and
cross-domain settings.

Prompt tuning starts by feeding the model with a baseline prompt that captures
the essence of the task. Then prompt parameters (Example: Context Window, Max
Tokens, Temperature, etc) are optimized with the help of Bayesian optimization or
gradient-based optimization optimization or other optimization algorithms. Using
this technique in an iterative manner, we can maximize the performance of a LLM.
Prompt-tuning allows a company with limited data to tailor a massive model to a
narrow task. It also eliminates the need to update the models billions (or trillions)
of weights, or parameters. Some researchers had also conclude that that prompt
tuning can outperform finetuning under full-data settings, data scarcity settings,
and cross domain settings. (Wang et al., [2022)

Conventional Finetuning

In-context learning is a valuable and user-friendly method for situations where
direct access to the large language model (LLM) is limited, such as when
interacting with the LLM through an API or user interface.

However, if we have access to the LLM, adapting and finetuning it on a target
task using data from a target domain usually leads to superior results. It provides
greater control and flexibility but has huge resource requirements. There are three
conventional approaches to finetuning outlined in the figure below.

1) FEATURE-BASED APPROACH 2) FINETUNING | 3) FINETUNING I
Labeled training set Labeled training set Labeled training set
Pretrained Pretrained Pretrained
transformer Keep frozen transformer Keep frozen transformer
—— — — Update
/ all layers
Output l l l
embedding
Classifier Update / Update

One or more
fully connected layers

Figure 2.6: The 3 conventional feature-based and finetuning approaches. (Source: Raschka, 2023)

1. Feature based approach: If we have a separate classifier on top of our
transformer model (For example, BERT+CRF architecture), we can use
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feature based fine tuning. It involves freezing the body of transformer and
only task-specific layers or additional classification layers attached to the
pre-trained model.

2. Fine-tuning I: In this approach, just the output layers are updated. Similar to
the feature-based approach, the parameters of the pretrained LLM are kept
frozen. Freezing layers in a neural network model is often done from bottom
to top because the lower layers of the model tend to learn more general and
abstract features that are applicable across different tasks, while the higher
layers learn more task-specific features. By freezing the lower layers and
fine-tuning the higher layers, the pre-trained model aims to downstream NLP
task while preserving the more general features learned during pre-training.

3. Fine-tuning II: In this approach, none of the layers are of pretrained model
are frozen. Updating all the parameters optimizes performance but has much
higher computational cost.

Supervised Fine-Tuning (SFT)

Supervised fine-tuning (SFT) in the context of large language models (LLMs)
involves taking a pre-trained model and further training it on a specific task with
labeled data. This process helps the model specialize in a particular domain or
task by adjusting its parameters based on the provided labeled examples. In SFT,
all of the model parameters are updated to produce outputs that are adapted to
the task.

During the fine-tuning process, the model adjusts its parameters to better
capture the patterns and features relevant to given task based on the provided
labeled examples. This fine-tuning enables the model to specialize in a given task
while retaining the general language understanding capabilities learned during
pre-training.

Supervised fine-tuning (SFT) is often preferred over conventional fine-tuning
as it preserves pre-trained knowledge and allows for faster task adaptation. This
means reduced computational cost and data requirements which are a big factor
when finetuning a LLM.

Parameter-Efficient Fine-Tuning (PEFT)

Parameter-Efficient Fine-Tuning (PEFT) is a technique used to adapt pre-trained
models to specific tasks or domains while minimizing the number of parameters
that need to be updated or fine-tuned. PEFT involves only fune tuning a small
number of model parameters which decreases the computational and storage
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costs. The number of trainable parameters is significantly reduced in PEFT
(Reduced to less than 1%). (NVIDIA, 2024). This approach is particularly valuable
when computational resources are limited or when fine-tuning a large number of
parameters is impractical.

SFT most often leads best possible results but PEFT also can also achieve
nearly the same degree of accuracy with significantly lower computational cost. As
LLMSs continue to grow in size, PEFT is gaining popularity due to its lightweight
requirements on training hardware.

If resources are sparse and for quick experiments, using API based finetuning
or directly using a commercial API might be more useful.

Reinforcement Learning from Human Feedback (RLHF)

Reinforcement learning from human feedback (RLHF) is a machine learning
approach that combines reinforcement learning techniques, such as rewards and
comparisons, with human guidance to train an artificial intelligence (Al) agent.

There are times when human feedback is vital to fine-tune an interactive or
generative Al, such as a chatbot. Using human feedback for generated text can
better optimize the model and make it more efficient, logical and helpful. In RLHF,
human testers and users provide direct feedback to optimize the language model
more accurately than self-training alone.

RLHEF is a challenging concept because it can be involves a multiple-model
training process and different stages of deployment. (Nathan Lambert, 2022)
The process unfolds through multiple stages, initiating with the utilization of a
pretrained LM, such as GPT-3 or GPT-4. This initial model can also be fine-tuned
on additional text or conditions, but does not necessarily need to be. Following
this, a reward model (RM) is crafted to capture human preferences, employing
human annotators to rank generated text outputs and create a standardized
dataset. In the fine-tuning process, the task is framed as a reinforcement learning
(RL) problem. The policy, represented by a language model, takes a prompt and
generates text, with the action space covering the model’s vocabulary. The reward
function combines the preference model with a constraint addressing policy shifts
in this RL-based approach. Optionally, the RLHF process permits iterative updates,
with users ranking outputs against earlier LM versions.



Chapter 3

Implementation

In this chapter, we will discuss how specific models are developed and trained. We
will also talk briefly about the datasets used, pre-processing and training process.
Evaluation and metrics used for comparision are also discussed in this chapter. We
will be using libraries xmltodict, pandas and numpy for reading and processing
the XML data. Then scikit learn, keras, pytorch and transformers were used to
develop and train models. This chapter provides a comprehensive overview of our
methodology and serves as a foundation comparisons and discussions in chapter
4.

3.1 Datasets

The evaluation of the proposed model is conducted on the datasets of
SemEval-2014 Tak 4. SemEval-2014 Task 4 is a widely used benchmark dataset
for ABSA. Its consists four different subtasks: Aspect term extraction, Aspect term
polarity, Aspect category detection and Aspect category polarity.

Aspect Term Extraction is the identification and extraction of specific aspects
or features within a given text that are important for sentiment analysis. The
next subtask, Aspect Term Polarity determines the sentiment polarity associated
with each extracted aspect term, classifying sentiments as positive, negative, or
neutral. Then going to a much broader level, Aspect Category Detection involves
identifying broader categories to which aspect terms belong. It helps us identify
topics of interest present within the text. Finally, Aspect Category Polarity tries to
identify sentiment polarity associated with identified aspect categories, providing
a overall sentiment towards specific topic in the text.

All the subtasks share two domain datasets, which are a restaurant dataset and
a laptop dataset. We used Restaurant dataset for both training and testing. In
the restaurant dataset, there are 5 different aspects: food, service, price, ambience,
anecdotes/miscellaneous. Most of the reviews have single aspect or no aspects at

25
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Total Aspects Polarity
Set

Sentence | None | Single | Multi | Positive | Negative | Neutral | Conflict

Train | 3041 1020 | 1666 | 355 | 1303 (2164) | 549 (805) | 464 (633) | 84 (91)
Test 800 194 | 521 85 | 411 (728) | 142 (196) | 128 (196) | 14 (14)

Note: In columns related to polarity, the values in brackets represent the number of aspects. Other
values represent the number of sentences.

Table 3.1: Number of sentences and aspects in each class in SemEval-14 restaurant Dataset

only and only few contain multi aspect. There are total of 3041 sentences in the
training set and 800 sentences in the test set. There were a lot of reviews without
any sentiment aspects in semEval dataset Restaurant set (1020 sentences in train set
and 194 in test set). The remaining 2021 (3041 - 1020) sentences with 3693 in train
set and 606 (800 - 194) sentences with 1168 in test set. There are more aspects than
sentences as some reviews also have multiple aspect terms. SemEval annotation
guide also defines a “conflict” class which is supposed to be used when an aspect
has both positive and negative sentiment. There were 91 different aspects in 84
sentences which were marked as conflict in train set and 14 aspects in 14 sentences
in test set. A brief summary is presented on Table

<sentence id="270">

<text>From the incredible food, to the warm atmosphere, to the friendly

service, this downtown neighborhood spot doesn’t miss a beat.</text>
<aspectTerms>
<aspectTerm term="food" polarity="positive" from="20" to="24"/>

<aspectTerm term="atmosphere" polarity="positive" from="38" to="48"/>

<aspectTerm term="service" polarity="positive" from="66" to="73"/>
</aspectTerms>
<aspectCategories>
<aspectCategory category="food" polarity="positive"/>
<aspectCategory category="service" polarity="positive"/>
<aspectCategory category="ambience" polarity="positive"/>
</aspectCategories>
</sentence>

An example review from the restaurant training set can be seen above. This
example contains one single aspect which is the case for majority of reviews in
this dataset. Restaurant version of the dataset has aspect term and aspect category
but only category is used in this work. Only the term aspect also refers to aspect
category in this literature.
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3.2 Data Preprocessing

The original data was available in XML format. It is hard to use XML format. The
data was first converted into a dictionary with the help of xmltodidﬂ library. Then
finally converted to pandas dataframe as it makes data processing more easier
and streamlined. Figure shows sample amount of data at several stages of
conversion before any further preprocessing is done.

<sentence id="32894246#870092#0">

<text=Certainly not the best sushi in New York, however, it is always 1
fresh, and the place is very clean, sterile </text> "id": "328942464870052£0",

=aspectTerms= "text": "Certainly not the best sushi in New York, however,
=aspectTerm term="sushi" polarity="conflict" from="23" to="28"/= |::> it is always fresh, and the place is very clean, sterile”
<aspectTerm term="place" polarity="positive” from="79" to="84"/> "aspects” [

<l/aspectTerms= {"aspect™ "food", "polarity": "conflict"},

<aspectCategories= {"aspect™ "ambience", "polarity"- "positive"}
=aspectCategory category="food" polarity="conflict"/= 1
<aspectCategory category="ambience" polarity="positive"/> I

</aspectCategories=
</sentence>

U

text category polarity
0 The bread is top notch as well. [food] [positive]
1 | have to say they have one of the fastest del... [service] [positive]
2 Food is always fresh and hot- ready to eat! [food] [positive]
3 Did | mention that the coffee is OUTSTANDING? [food] [positive]

i

Certainly not the best sushi in New York, howe... [food, ambience] [conflict, positive]
Figure 3.1: Converting XML data to dataframe

After that, the text is converted to lowercase in order to provide consistency
in character representation and newline characters are replaced with spaces.
The text is then tokenized into individual words using nltk tokenize1E| and
only alphabetic tokens are retained, thereby discarding non-alphabetic characters
such as punctuation and numbers. Moreover, common English stopwords that
contribute minimal semantic value, are removed from the tokenized list.

Since conflict refers to cases where even human reviewer found it hard to
classify, and also looking into the figure there is just 5% data belonging
to conflict class. So if the review has conflict polarity, the entire review is
removed. Furthermore anecdotes/miscellaneous class is renamed to other for
easier readability. Additionally, a joint label column is introduced, combining
category and polarity information. This allows us to create a classifier for joint

Thttps:/ /pypi.org /project/xmltodict/
2https: / /www.nltk.org/api/nltk.tokenize.html


https://pypi.org/project/xmltodict/
https://www.nltk.org/api/nltk.tokenize.html
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classification as well. To use the multilabels with developed models, we need to
convert the text label into numerical encodings. The conversion was done with the
scikit-learn MultiLabelBinarizelﬂ An example of data after all the processing can

be seen on Figure

text category
0 staff horrible us [service]

1 completely fair redeeming factor food average [food, other]

2 food uniformly exceptional capable kitchen pro...

3 gabriela personaly greets recommends eat [service]

4 go enjoy say get

Figure 3.3: Sample data with after MultiLabelBinarizer

[food#positive, other#negative;

joint category_labels polarity_labels

[0,0,0,0,1]
[0,1,1,0,0]
[0,1,0,0,0]
[0,0,0,0, 1]

[0,0,1,00]

joint_labels
0,0,0,00,0,0,0,0,0,0,0,1,0,0]

0,0,0,00,1,1,0,0,0,0,0,0,0,0]

[
[
[0,0,0,0,0,1,0,0,0,0,0,0,0,0,0]
[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1]
[

0,0,0,000,0,0,1,0,0,0,0,0,0]

Then, A new column with labels formatted as dictionary was also added. This
was done to make it easier to perform evaluation on Large Language Model.
Ultimately we converted our data to Huggingface datasetsﬂ format which is more
optimized for speed and efficiency while using transformer models. One example

of the format is shown below.

{

’text’: ’bread top notch well’,

’category’: [’food’],

’polarity’: [’positive’],

>joint’: [’food#positive’],
’category_labels’: [0, 1, O, O, O],
’polarity_labels’: [0, 0, 1],

’joint_labels’: [0, O, O, O, O, 1, O, O, O, O, O, O, O, O, O],

3https:/ /scikit-learn.org/stable/modules/ generated / sklearn.preprocessing. MultiLabelBinarizer.

htm]|

“https:/ /huggingface.co/docs/datasets/index


https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.MultiLabelBinarizer.html
https://huggingface.co/docs/datasets/index
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’true_labels’: {
’ambience’: None,
’food’: ’positive’,
’other’: None,
’price’: None,
’service’: None

}

3.3 Task Description

The task of aspect detection and aspect polarity classification can be treated as
a multi-class multi-label classification problem. ABSA can be performed as a
separate classification tasks (Aspect classification + Sentiment classification) or
as joint classification task. We experiment with both approaches for our simpler
models and experimented with only joint classification for complex models.

3.3.1 Separate tasks

The simplest approach is to train two models, one for aspect classification and
other for sentiment classification.

The first model is dedicated to aspect classification, where the goal is to identify
and categorize aspects mentioned in the text. For example, given a product review,
this model aims to identify aspects such as "food", "service", "price", "ambiance"
and "others". The second model is then trained for sentiment classification. The
model simply performs a multilabel classification with three classes, positive,
negative, or neutral.

This separate tasks approach allows for a modular and specialized treatment
of aspect and sentiment prediction. Each model can be trained independently,
potentially using different architectures or hyperparameters that performs best for

the specific task.

3.3.2 Joint task

In the joint task approach, Aspect-Based Sentiment Analysis (ABSA) is treated as
a unified problem and a single model is employed to predict both aspects and
their associated sentiments simultaneously. The model uses the joint label that
has the information of both aspect category and sentiment. The model is also
trained for multi label multi class classification. This approach might lead to poorer
performance as there are a lot more classes and there are less reviews per class.
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But it might be beneficial in cases where the interactions between aspects and
sentiments is important.

Another possible approach for performing the task jointly is to treat is like a
NER problem. This is more useful in cases of aspect term sentiment analysis and
requires some further data processing as each token in the input sequence needs
a label indicating whether it is part of an entity and if so the type of entity (An
example would be BIO labeling scheme where ‘B’ is used to represent beginning
of aspect, ‘I’ is used to represent inside and end on a multi-word aspect and ‘O’
represents everything else that is not an aspect term). Transformer models usually
perform quite well for these sort of token classification task but as we are more
focused on aspect category we will not be exploring it in this work.

3.3.3 Generative predictions

With recent LLMs, predictions can be made with generative responses. One of the
major problems with using generative responses for prediction is hallucinations.
As LLMs tend to hallucinate and add things that are not present in the original
text. This would mean we might end up with cases where the predicted aspects are
different from the aspects we want. It also requires some post processing to extract
predictions from the generated text. Prompt engineering and prompt tuning are
gaining more popularity to further improve and structure generative texts.

As part of this work, we have also experimented with LLMs. We tried to predict
both aspects and polarity at once with LLMs. Some post processing was essential
to convert generated text to proper format (dict) for evaluation.

3.4 Model Selection

We wanted to observe the effectiveness of using simple ML models for the ABSA
but also experiment with more complex and more resource intensive models. We
start with simple SVM based models and eventually experiment with latest large
language models-

3.4.1 Support Vector Machine (SVM)

Support Vector Machine is generally used for both classification and regression
tasks and it works by finding a hyperplane in a high-dimensional space that best
separates data points into different classes. Linear Support Vector Classification
uses a linear kernel function, making it suitable for linearly separable data. Linear
SVMs are computationally efficient and seeks to find a hyperplane that separates
classes in a linear way. The implementation was done with scikit-learn library.
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As SVC is a binary classification algorithm it doesn’t natively support multi
classification.

One approach for using binary classification algorithms for multi class or multi
label problems is to split task into multiple binary classification and fit a model for
each. Two different approaches are One vs Rest and One vs One strategies. One
vs Rest strategy splits the classification task into one binary classification problem
per class and One-vs-One strategy splits the classification task into one binary
classification problem per each pair of classes. As part of this work, One vs Rest
approach is used.

TF-IDF vectorizer

To convert the raw text into vectors TE-TDF vectorizer was used for SVM
model. Term Frequency-Inverse Document Frequency (TF-IDF) Vectorizer takes
into account the importance of words in a document relative to their frequency
across multiple documents in a corpus. It assigns weights to words based
on two main factors: term frequency (TF), which measures how often a word
appears in a document, and inverse document frequency (IDF), which assesses
the rarity of a word across the entire corpus. By combining these two metrics,
the TF-IDF Vectorizer is able to highlight words that are both frequently occurring
in a document and relatively unique to that document. This means if a word
appears frequently in the entire dataset, it is given low importance but if it
appears frequently in a particular document but is rare in dataset, it is given high
importance. After passing the text to vectorizer, we end up with a sparse vector
document that represents the text.

3.4.2 Gradient Boosting

Gradient Boosting is an ensemble learning method that combines the predictions
of multiple weak learners (typically decision trees) to create a strong learner.
Gradient boosting was also explored as it often performs well in practice and
can capture complex relationships in the data. It is less prone to overfitting
and can handle missing data. We had to use One vs Rest strategy for Gradient
Boosting as well. With Gradient boosting and One vs Rest, each weak learner is
dedicated to distinguishing one specific class from the rest of the classes. During
training, the gradient boosting algorithm optimizes the ensemble of weak learners
to collectively address the classification problem. This simplifies the extension of
gradient boosting to handle multiple classes by decomposing the problem into a
set of binary classification sub-problems. We used the same TF-IDF vectorizer as
SVM for gradient boosting as well.
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3.4.3 Long Short-Term Memory(LSTM)

The LSTM architecture is a recurrent neural network (RNN) architecture that
captures and remembers long-term dependencies in sequential input. Unlike
traditional RNNs, LSTMs are equipped with memory cells and a sophisticated
gating mechanism, allowing them to selectively store, read, and erase information
over extended sequences. This allows the models to better understand the context
and this in theory would improve accuracy scores in text based tasks as contextual
information has a great significance.

Tokenizer provided as part of keras library was used for tokenization. Keras
tokenizer by default removes all punctuation. Then the text is converted to
space-separated sequences of words which are then split into lists of tokens. There
were only 6 reviews which had longer than 180 characters, so we decided to set
the max length of tokenizer to 180 and max words to 5000. The tokenizer pads or
truncated the review where necessary.

Layer (type) Output Shape Param #
“embedding 1 (Embedding)  (None, 180, 20) 100000
dropout_1 (Dropout) (None, 18@, 2@) 5]

Istm_1 (LSTM) (Mone, 18@, 30@) 385200
global_max_poolingld_1 (G1 (MNone, 30@) 5]
obalMaxPoolinglD)

dense_1 (Dense) (Mone, 5) 1585
activation_1 (Activation) (Mone, 5) 0]

Total params: 4867@5 (1.86 MB)
Trainable params: 486705 (1.86 MB)
Non-trainable params: @ (2.0@ Byte)

Figure 3.4: Summary of LSTM based model used

The model was implemented as a Sequential model in Keras. Sequential lets
us group a linear stack of layers. The model has a max pooling layer followed by
a dense layer. There is also a dropout layer in the model which makes the model
less prone to overfitting. A summary of model structure can be seen in Figure
There are a total of 486705 trainable parameters in the model. We will be
training the model for 20 epochs with Early stopping and Reduce learning rate on
plateau callbacks. We used Adam as our optimizer with binary crossentropy as
loss metric. The training pipeline also saves the best model which can be loaded
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later on to make sure evaluations are done on the best performing instance.

3.4.4 Bidirectional Encoder Representations from Transformers(BERT)

BERT is an advanced natural language processing (NLP) model developed by
Google and rooted in the transformer-based architecture. Historically, language
models could only read text input sequentially either left-to-right or right-to-left
but couldn’t do both at the same time. BERT is different because it is designed to
read in both directions at once.

For this work, “bert-base-uncased” was used as our base model with a
Linear classifier on top. Transformer natively supports multi-label multi-class
classification meaning it didn’t require any additional processing for the task.
With the help of huggingface trainer, training bert model was very easy and
straightforward. We mostly used the default values of huggingface library for
most of the hyperparameters. The model was trained for 20 epochs with learning
rate set to 1le-5. The best epoch was evaluated with micro f1 score and best one
was loaded at the end for evaluation. We used a batch size of 8 and AdamW as the
optimizer. Bert was also used for tokenization and padding of sequences.

BERT Tokenizer

To tokenize and vectorize the text, we utilized the pre-trained BertTokenizer
from the Transformers library. BERT tokenizer is based on the BERT model and
generates tokens and maps them to corresponding IDs in the BERT vocabulary.
Special tokens are added to the beginning ([CLS]) and end of each input
sequence ([SEP]) to indicate the sequence’s start and end. Special padding token
([PAD]) is also added is any padding is required. BERT tokenizer outputs
input_ids, token_type_ids, attention_mask, and label_ids and can be used with
any transformer models.

WordPiece tokenization it is super cali fra gil istic ex pia | lido cious

Split on whitespaces and

punctuation it is supercalifragilisticexpialidocious

Input Text it is supercalifragilisticexpialidocious

Figure 3.5: Traditional tokenization approach compared with wordpiece tokenization (Source:
Google Researcl”ﬂ)
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BERT employs a unique tokenization method called wordpiece tokenization
which breaks words into subwords to handle words not in the tokenizer’s
vocabulary (Song, [2021). This enhances models generalization capabilities. Unlike
traditional tokenizers that mark out-of-vocabulary words as “unknown” wordpiece
tokenization’s subword approach increases the likelihood of subword components
being present in the vocabulary. We used “longest” padding strategy which pads
the sequences in a batch to be same length as the longest sequence. Figure
shows how a really long word that is not split into tokens with traditional white
space tokenization would be tokenized with wordpiece tokenization.

3.4.5 Sentence transformers (sbert)

Sentence transformer has several pre-trained models which can be further
trained for any downstream tasks. For this work, ”all-MiniLM-L6-V2”|ﬂ and
“all-mpnet- base—v2”|Z] were used as aspect filering and polarity classification
models respectively. They both are all-round models fine tuned for many use-cases
and trained on a large and diverse dataset of over 1 billion training pairs.
all-MiniLM-L6-v2 is based on nreimers/ MiniLM-L6-H384—uncasedE] which is a 6
layer version of microsoft/MiniLM-L12 -H384-uncased created by keeping only
every second layer. Then all-mpnet-base-v2 is based on microsoft/mpnet-bas

To use these sentence transformer models for our experiments, we used setfit
library. SetFit is an efficient and prompt-free framework for few-shot fine-tuning
of Sentence Transformers models (Tunstall et al., 2022). It also has a AbsaModel
class as well which can be instantiated for ABSA training and prediction. We
instantiated it with AbsaModel.from_pretrained() with following parameters:

* Sentence Transformer model to be used for the aspect filtering is passed as
the first argument. (sentence-transformers/all-MiniLM-L6-v2)

* Sentence Transformer model to be used for the polarity classification is the
second argument. If not provided, the same Sentence Transformer model as
the aspect filtering model is also used for the polarity classification model.
(sentence-transformers/all-mpnet-base-v2)

* Spacy model to be used is passed as third argument. Small spacy model
(en_core_web_sm) was used to keep training times lower.

Similar to Transformers, setfit also has a built in trainer which makes training
and evaluation very easy. Setfit specifically also has AbsaTrainer. We trained the

Shttps:/ /blog.research.google/2021/12 /a-fast-wordpiece-tokenization-system.html
®https:/ /huggingface.co/sentence-transformers/all-MiniLM-L6-v2

"https:/ /huggingface.co/sentence-transformers /all-mpnet-base-v2

8https:/ /huggingface.co/nreimers/MiniLM-L6-H384-uncased

https:/ /huggingface.co/microsoft/ mpnet-base
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models for 5 epochs with batch size of 128. To train our sentence transformer
models with setfit, we also had to prepare training and testing set according to their
requirement. The dataset must have "text" (full sentence or text), "span" (aspect),
"label" (sentiment polarity), and "ordinal" (index of occurrence in cases of multi
occurrence).

3.4.6 Mistral and Phi-3

Mistral and Phi-3 both are recent Language Models from Mistral Al and Microsoft
respectively. As part of this work we used “Mistral-7B-Instruct-v0.2” and “Phi-3-
mini-128k-instruct”. They both are instruction fine tuning which means these
models are more aligned to follow instruction provided in form of prompt.

As both these models ware hosted on huggingface, we used huggingface
transformers to experiment with these models. Transformers has
AutoModelForCausalLM which can be used with from_pretrained() method
to instantiated with either phi3 or mistral model. These both models require large
amount of data and resources for training, so we decided to not perform any
further training with these model. Rather than training, we have experimented
with using these models with zero shot and few shot approach. By utilizing
huggingface pipeline, inference with these models was very easy.

Large language models often exceed the capacity of consumer GPUs. If more
resources are available, they can be loaded into multiple GPUs or used through
cloud providers. One effective strategy to manage this is quantization, which
reduces the precision of the model’s weights and activation from higher-precision
formats, such as 32-bit floating-point, to lower-precision formats, like 8-bit integers.
This technique optimizes the model by significantly decreasing its memory
footprint, improving inference speed, and reducing energy consumption, making
it more efficient for deployment on devices with limited resources.

Mistral models have a quantized version which use AWQ quantization
technique. AWQ (Activation-aware Weight Quantization) is a quantization method
that aims to reduce the memory requirements of large language models while
preserving or even improving their performance.
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Model Name | Model Size | Released By

Llama 2 7B July, 2023 Meta
Mistral 7B September, 2023 | Mistral Al
Mixtral 8X7B December, 2023 | Mistral Al
Phi-2 2.7B December, 2023 | Microsoft
Phi-3 mini 3.8B May, 2024 Microsoft
GPT3 175B May, 2020 OpenAl
PaLM?2 540B May, 2023 Google

Table 3.2: Different Large Language Models

There are a lot more models being released everyday. Some of them are openly
and freely available on Huggingface while some are closed behind a paywall. Some
models like Gemini-1.5 and GPT-4 do not even have parameter size as public
information. Table shows some of the recent models along with parameter
size and release Date.

3.5 Model Training

Due to the different in complexity of our models, we couldn’t use same approach
to training all the models. Different model training was also implemented using
different libraries.

For SVM and Gradient Boosting we simply used scikit-learn for training.

For LSTM a training loop implemented in Pytorch was used.

Huggingface trainer was used for BERT model.

Sentence transformer has a built in ABSA trainer which we used to train our
sbert models.

We couldn’t train the large language models as they require much more data and
computing power. But we used them without training which is described further
in next section.

3.6 Inference with LLMs

Training large language models (LLMs) on consumer hardware is not feasible
due to limitations related to computational resources and infrastructure. Modern
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LLMs, with billions to trillions of parameters, demand immense computational
resources. This means we have to rely on techniques such as finetuning, n-shot
classification, prompt engineering and API based access to use LLMs.

messages = [
{"role": "system", "content": "System prompt here"},
{"role": "user", "content": "Prompt 1"},
{"role": "assistant", "content": "Answer to Prompt 1"},
{"role": "user", "content": "Prompt 2"},

# Output to prompt 2 is generated by the model
]

pipe = pipeline("text-generation",
model=model,
tokenizer=tokenizer)

generation_args = {"max_new_tokens": 500,
"return_full_text": False,
"temperature": 0.0,

"do_sample": Falsel

output = pipe(messages, **generation_args)
generated_text = output [0][’generated_text’]

Listing 3.1: Sample code for using huggingface pipeline

In this work, we have used Huggingface pipeline as our main library to utilzie
LLMs. As our dataset was already in huggingface datasets format, it was simply
a matter of defining model and tokenizer and setting huggingface pipeline to
"text-generation". The message follows the template shown in the listing above.

3.6.1 N-shot classification

N shot classification involves providing only N samples of data to the model before
performing the task. In context of an Large Language Model, N samples are passed
as part of the prompt. We used <User> -> <Assistant> -> <User> -> <Assistant>
order to create chain of messages with sample reviews and responses.

We used the same approach to test both zero shot and few shot approaches for
both models. To experiment with zero shot approaches, the input message had to
be formatted with only one prompt with no example outputs.

zero_shot = [{"role": "system", "content": "System prompt here"},
{"role": "user", "content": "Prompt 1"}]

# Message for N shot classification for task with M classes
n_shot = [{"role": "system", "content": "System prompt here"},
{"role": "user", "content": "Example 1 of class 1"},
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{"role": "assistant", "content": '"class 1"}

{"role": "user", "content": "Example N of class M"},
{"role": "assistant", "content": "class M"},
{"role": "user", "content": "Unseen Text"}]

Then for N-shot we needed to add one example of each class to the message
prompt. As we wanted output to be formatted as a dictionary, with aspect as key
and polarity as value, one of the major improvement from N shot was reliable and
consistent output format.

3.6.2 Prompt engineering

Proving instruction to a LLM is a very hit and miss process as same prompt doesn’t
work for multiple tasks. Prompt engineering is simply the process of trying to
find best prompt for the given task. We started with a very simple system prompt
"Perform Aspect based sentiment analysis where aspects are ['food, service, ambience, price,
other’] and sentiments are ['positive, neutral, negative’]”. but this was not enough. We
were getting outputs with long text explaining the answer and thought process.
After experimenting with few prompt styles, we found that asking the model
to be a persona and then asking it to perform task at hand worked the best. We
were only able to perform prompt engineering with phi-3 model as it was the only
model that consistently fitted into our GPU. Some of the prompts we experimented
can be seen below.
"You are a skilled data analyst. Your task is to extract and analyze
sentiments from user reviews and structure the information into a JSON

format. Analyze the provided user reviews and create a JSON summary.
Focus on these key aspects: {aspects} and sentiments: {sentiments}."

"Your task is to analyse and perform aspect based sentiment analysis
on the given restaurant reviews text. The aspects should only be
{aspects} and sentiments should only be {sentiments}. Output should
only contain mentioned aspects and their respective sentiments as a
dictionary. Each aspects should only have one sentiment and not every
aspect is necessarily present. Do not provide any further
explanation."

Listing 3.2: Prompts used as part of experiment

All the prompts used as part of our experiment can be seen in Appendix
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Prompt formats

Different LLMs require different prompt formats. Most of them unified prompt
templates for inference as we have described before in some cases it needed to be
formatted slightly differently. In case of Mistral model, even though we were using
huggingface pipeline for inference, prompt had to be formatted as "<s>[INST]
system_prompt [/INST]</s>[INST]review_text[/INST]” and system prompt included
a sample review and response text.

3.6.3 Finetuning

To use an LLM for custom task, we can use techniques such as Retrieval
Augumented Generation (RAG) or Finetuning. These approaches can help ground
the model better and ultimately reduce hallucinations. Depending on the task
one approach migght be better than the other. Singh, 2024 highlights the generic
differences between two approaches. As shown in Figure RAG approach
is much more suited if there is a knowledge base that needs to be queried for
responses. For our usecase, finetuning is much better as we have a custom dataset
that we can use for training.  Finetuning has lower data and computational

RAG Fine Tuning
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Prompt Engineering i - v
r ‘Smart Retriever
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Figure 3.6: Difference between RAG and Finetuning pipeline

requirements compared to full training, but the model still must be able to fit into
GPU memory. Currently there are several approaches to finetuning LLMs, one of
the easiest approach is to use API based fine tuning. OpenAlI allows finetuning of
their models through their API. We finetuned a GPT-3.5-Turbo model as it was the
fastest and cost effective optiorm

Ohttps:/ /platform.openai.com/docs/guides/ fine-tuning


https://platform.openai.com/docs/guides/fine-tuning

40 Chapter 3. Implementation

Before finetuning, the data had to be prepared. The data needed to converted
to jsonl file with following format:

{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}
{"prompt": "<prompt text>", "completion": "<ideal generated text>"}

Listing 3.3: OpenAl conversational chat format

OpenAl also has a handy guide showing how to estimate the cost of finetuning
by counting Tokens. When we performed the counting on full train dataset, it came
out to be around 3M tokens which was more than our expectations. We decided
to sample the dataset to only 100 examples to get an idea if finetuning would be
beneficial. We trained for 3 epochs with batch size of 1 and used 35,178 training
tokens. Our final train loss was at 0.3575 however at step 200 it was at 0.000. As
openai api allows us to use checkpointed models as well, we will be experimenting
with both final model and model at step 200.

Finetuning with openAl simply involves uploading file to their servers and
then creating a finetuning object. Then the model is automatically finetuned and
stored by OpenAl services. It took about 30 minutes to finetune the model.

To use the finetuned models, we only needed to specify the model name and it
was a similar pipeline to using normal chat completion APL

response = client.chat.completions.create(
model="ft:gpt-3.5-turbo-0125: MODEL_ID",
response_format={ "type": "json_object" 1},
messages=[
{"role": "system", "content": PROMPT},
{"role": "user", "content": REVIEW TEXT},
{"role": "assistant", "content": REVIEW RESPONSE},
{"role": "user", "content": QUERY REVIEW TEXT}
]
)
output = response.choices[0].message.content

Listing 3.4: OpenAl pipeline for using finetuned model

As we had specified the response format as json_object, there were no problems
regarding the formatting of responses. It did however provide an empty json in
cases where the model was not able to generate proper response.

3.7 Evaluation

The performance evaluation of our models is crucial to understand their
effectiveness in ABSA and to compare our research with past papers. There are
several different metrics that could be used for comparison. One of the most used
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metric is f1 score. For multi-label classification f1 score could be either macro or
micro averaged. Macro f1 score treats all classes equally and is useful when class
distribution is balanced. But in our case as there is class imbalance, micro F1 Score
is more useful and it aggregates the contributions of all classes. Other than f1
score, accuracy score is also used as a evaluation metric. Three different types of
accuracy scores are used as part of this work:

1. Binary : It is the simplest way to calculate accuracy and this is calculated by
treating both target and predicted label sequences as simple binary problem

2. Exact Match : The set of labels predicted for a sample must exactly match the
corresponding set of labels in target. Also known as subset accuracy. This
measure shows how many of the predicted labels were fully correct.

3. Overlap : The set of labels predicted for a sample must overlap with the
corresponding set of labels in target. This score not only considers full correct
but also partially correct predictions.

For comparision, fl score is used when available in the relevant research
work. Mainly torcheva]E] and scikit-learn metric#—r_z] library were used for the
implementations of all these metrics. In cases of LLMs, they are also evaluated
by the error rates in output format.

For Large language models, we decided to evaluate them further on text
generation and hallucinations. We decided to only perform minor post processing
to the output, so we can test the models easiness to be integrated into existing
systems. Basic pseudo code of post processing is shown below.
try:

_dict = eval(output)
if not isinstance(_dict, dict):
_dict = {}
except :
_dict = {}

Listing 3.5: Post processing of LLM output

To properly evaluate the LLM responses, we also added following metrics to
our evaluation criteria.

1. Partial Accuracy: Output was generated in desired format and has at least
one correct aspect and sentiment

2. Count of Extra Aspects: Total number of new aspects that are introduced by
the model

Whttps:/ /pytorch.org/ torcheval /stable/ torcheval. metrics.html
Zhttps:/ /scikit-learn.org/stable/modules /model_evaluation.html
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3. Number of Reviews with Extra Aspects: Number of reviews where at least
one extra review was introduced

4. Incorrect response: Total amount of responses which were not generated in
desired format

Since usage cost (resource requirement) is one of the most important factors
while using LLMs, we will also be comparing the different models/approaches
with respective cost associated with their usage. We have only made this
comparison with LLMs as simpler ML models can usually be run on consumer
hardware without any concerns.

3.8 Hardware

Initially we started our experiments on our local PC. It has Nvidia GTX 1650M,
Intel i7 processor and 16GB RAM. We also had access to Google Colab and its
TPU accelerators. We were able to run all our simpler ML Model experiments with
these resources. When it came to LLM experiments, GPU memory on local PC was
not enough and we also ran out of free compute units on Google cloab.

To perform our LLM experiments, we bought Google colab pro with 100
compute units. This gave us access to Google’s L4 and T4 GPUs. We used L4
GPU with batch size of 100 for all of our LLM inference. And then for finetuning
GPT 3.5 turbo, it was done through API. We didn’t have to use our own resources
but had to acquire API access through OpenAl.
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Results & Discussion

This chapter describes the different results obtained. We will also be comparing
the results with other models. We used semeval 14 restaurant test set for making
comparisons. Comparisons to existing research and other author’s work is also
made when relevant. We will discuss our results of various models for category,
sentiment, and joint classification tasks. We had used SVM, gradient boosting,
LSTM, SBERT, Phi3 for category and sentiment polarity task. For the category
classification For , SVM model outperformed Gradient all the models including
phi3. For Sentiment classification SBERT outperformed obtaining 73.23% of
exact match accuracy. For joint classification we explored BERT as well. With
"bert-base-uncased” model for joint classification yielded promising results, with
a micro F1 score of 0.7334, showcasing the potential of more advanced models in
handling complex tasks. Then with LLMs, we found that minor finetuning of GPT
outperforms open-source LLMs.

4.1 Category classification

The first model we implemented was a basic SVM model. We were able to obtain
micro f1 score of 0.8189 without any further fine-tuning or experimentation. The
model was only able to predict 68.49% of multi-labels exactly but the overlap
accuracy score was higher at 82.64%.

Then we also implemented an ensemble learning model, we trained Gradient
boosting model for category classification. It obtained a lower micro fl1 score
(0.7333) than SVM. Similarly the overlap accuracy score (64.35%) and exact match
accuracy score (51.40%) are lower in comparison with SVM. SVM generally
performs better in high-dimensional spaces and can handle complex decisions
which might make them better for text classification tasks. But additional
hyperparameter tuning might create better results.

We started by training LSTM model for 20 epochs without early stopping but
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as seen on Figure that the validation loss starts increasing after 6 epochs.
So, we retrained the model with callbacks and also enabled save best model. We
were able to obtain micro f1 score of 0.7412 which is comparable to our previous
models. We obtained an overlap accuracy score of 76.36% which is lower than
results obtained by Wang et al., 2016/ using LSTM and TD-LSTM. They were able
to achieve accuracy score of 82% with LSTM and 84% with TD-LSTM. Shu et al.,
2019/ used a CNN based model on semeval 16 restaurant dataset and obtained f1
score of 0.7564 which is similar to ours. We finetuned a sentence transformer model
with SetFit (SBERT) achieving an accuracy of 59.73% for aspect classification and
73.23% for polarity classification. These results were lower than anticipated, which
could be attributed to the limited dataset used for training the model.

To facilitate a comparison between our LLM experiments and simpler models,
we also performed same evaluation techniques on LLMs. Extensive experiments
were performed with phi3 including zero shot, n-shot and prompt engineering
techniques. Mistral and GPT models were also explored to some extent.

With phi-3 we were not able to produce any significant predictions with zero
shot approach. Our best result was obtained using a five-shot approach. It
didn’t achieve high exact accuracy but overlap accuracy was slightly better which
is 69.56%. Although the accuracy was low this outcome was expected due to
propensity of LLMs to hallucinate and introduce unexpected text, aspects or
sentiments into the output. Further details on all the experiments are provided
in the next section.

Model exact match accuracy | overlap accuracy | micro f1
SVM 68.49% 82.64% 0.8189
Gradient Boosting | 51.40% 64.35% 0.7333
LSTM 58.34% 76.36% 0.7412
SBERT 59.73% - -

Phi3 (5-shot) 54.61% 69.56% 0.7071

Table 4.1: Results of Category classification in different model

The results of different models that we implemented for category classification
is summarized on table Best value of each metric is highlighted in bold.

4.2 Sentiment classification

For the task of sentiment polarity classification as well, we started with a SVM
model. The results for sentiment polarity was comparable to category classification
results. It was able to obtain a micro f1 score of 0.751 and 73.83% overlap accuracy.
The results were slightly lower than results obtained by Wagner et al., 2014 using
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4.2. Sentiment classification

SVM and lexical rules. They were able to obtain an accuracy score of 85% with
SVM and 77% using rule based approach. There have been other works which use
SVM as well but a lot of them use some other datasets, like Onwuegbuche et al.,
2019|obtained f1 score of 0.71 on five nigerian bank tweet dataset and Najkov, 2023
obtained f1 score of 0.84 on macedonian restaurant reviews. Authors who have
used models of similar complexity to SVM, like Random Forest also have reported
similar and comparable results on sentiment polarity classification tasks.
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Figure 4.1: Accuracy and loss plots of LSTM model for different tasks

Then we tried LSTM model which showed decent performance. Similar to
category classification task, LSTM model loss starts to increase after about 6 epochs
without any callbacks. Figure shows the accuracy and loss values over 20
epochs. Then when retrained with callbacks, we obtained f1 score of 0.7129 and
the model was able to get 64.48% of overlap accuracy. Then we experimented With
sbert and were able to achieve the highest exact match accuracy so far at 73.23%
for polarity classification.

Results from our experiments with LLMs suggest that sentiment classification
is easier than category classification. The performance for category classification
was suboptimal, while sentiment classification yielded better results. Specifically,
the three-shot approach achieved the highest accuracy for sentiment classification,
with Phi-3 reaching 63.81%. The overlap accuracy and micro F1 score for this
approach were 69.69% and 0.7393, respectively. In contrast, the five-shot approach
produced better results for category classification. This indicates that the same
approach does not work uniformly across different tasks in LLMs.

Model exact match accuracy | overlap accuracy | micro f1
SVM 68.62% 73.83% 0.7510
Gradient Boosting | 65.02% 69.69% 0.7075
LSTM 62.61% 64.48% 0.7129
SBERT 73.23% - -

Phi3 (3-shot) 63.81% 69.69% 0.7393

Table 4.2:

Results of Sentiment classification in different model
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The results of different models that we implemented for sentiment polarity is
summarized on table Best value of each metric is highlighted in bold.

4.3 Joint classification

Joint classification is also a multi label multi class classification task. Both SVM
and Gradient boost models were trained for joint classification task as well. They
both were able to achieve decent results. SVM model achieved a micro fl1 score
of 0.6040 and Gradient boost model achieved micro f1 score of 0.5024. The results
were lower than separate tasks which is as expected. With joint classification there
are a lot more labels (number of category classes x number of sentiment polarity
classes) meaning there are less reviews per class. This is most likely the cause of
poorer performance. The overlap accuracy of SVM model was 54.47% but gradient
boosting got a very poor performance with only 38.98% overlap accuracy. This
result and poor performance suggests there is a lot of room for improvement and
highlights the performance of more complex ML models. Jihan et al., 2017|achieved
much better results with SVM on a similar but different dataset. They were able to
achieve f1 score of 0.7303 on semeval 16 restaurant dataset.
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Figure 4.2: Accuracy and loss plot of LSTM model for Joint classification task

We did not see much improvement in performance with more complex models
like LSTM. We only achieved exact match accuracy of 31.64% which was very poor.
Micro f1 score was slightly better at 0.5042. The result could have been improved
with some hyperparamters tuning but we did not delve deeper into LSTM rather
we moved forward to training bert model. Figure we can see the val loss
goes after 12th epoch and accuracy starts to plateau as well. This however was
not problematic for our evaluation as we had load best model and early stopping
callbacks enabled for final training process.

Finally we experimented with using ‘bert-base-uncased” model for joint
classification task. We were expecting the bert model to perform really well as
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Figure 4.3: Accuracy and loss plot of BERT model for Joint classification task

it understands context and language really well. We trained the model for 20
epoches and got a micro f1 score score of 0.7334. The model predicted 61.28% of
labels exactly which is about 20% higher than the second best performing model
SVM and about double that of LSTM. As seen on Figure the validation loss
starts to flatten after 10th epoch but the the training loss was decreasing until the
last epoch. Even with the gap between loss values at the end, the model performed
as per our expectations. There has been some research with using BERT based
models for ABSA as we discussed before. Najkov, 2023/ used a bert model on
macedonian resturant reviews dataset and achieved f1 score of 0.8. As the datasets
are completely different, we cannot make comparisons but the scores are in same
realm. Some more performance can be gained by utilizing a transformer based
model which is more tuned for classification task. Or even using a more larger
model like bert-large or other architectures like deberta could also yield better
result. We didn’t convert the LLM responses to joing classification format for joint
classification evaluation as most of the LLM responses had additional aspects or
were only partially correct.

Model exact match accuracy | overlap accuracy | micro f1
SVM 42.05% 54.47% 0.6040
Gradient Boosting | 27.10% 38.98% 0.5024
LSTM 31.64% 44.19% 0.5042
BERT 61.28% 74.36% 0.7334

Table 4.3: Results of Joint in different model

The results of different models that we implemented for joint classification is
summarized on Best value of each metric is highlighted in bold.
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4.4 N-shot classfication

We only used phi-3-mini for n shot classification as it was a lighter model that
allowed us to perform more experiments with it. We tried using Mistral model
for same experiments as well but non quantized version failed due to memory
limitations and AWQ quantized version estimated time at 15 hours, so we had to
cancel it.

Exact and Partial Accuracy of Phi3 n-shot classification
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Figure 4.4: Exact and Partial Accuracy of Phi3 n-shot classification

As you can see in Figure the graph displays exact and partial accuracy
rates of the Phi3 model across different n-shot classifications (1-shot, 2-shot, 3-shot,
and 5-shot). The exact accuracy (depicted in blue) starts at 26.05% for 1-shot,
drops to 14.55% for 2-shot, and then increases to 28.70% for 3-shot, ultimately
reaching 38.85% for 5-shot. On the other hand, the partial accuracy (depicted in
orange) starts at 34.71% for 1-shot, increases consistently through 38.48% for 2-shot
and 46.04% for 3-shot, and peaks at 61.60% for 5-shot. This indicates that while
exact accuracy fluctuates, partial accuracy improves steadily with the increase in
the number of shots. The Phi3 model performs best in terms of partial accuracy
at the 5-shot classification, achieving its highest rate of 61.60%. The improved
performance at higher shot classifications can be attributed to the model having
more data points to learn from, thus enhancing its ability to generalize and capture
the underlying patterns more effectively.

Model | Extra aspects | Rows with extra aspects | Formatting error rows
1-shot | 1284 510 207

2-shot | 921 479 129

3-shot | 500 337 115

5-shot | 329 266 69

Table 4.4: Phi3 error counts
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As you can see in Table the table presents error statistics for the Phi3 model
across different n-shot classifications. The data reveals a decreasing trend in errors
as the number of shots increases. Specifically, the number of extra aspects drops
from 1,284 in 1-shot to 329 in 5-shot. When performing inference with one shot
approach, there were 1284 new aspects in 510 rows out of 749 rows. This means
in about 70% of cases, there was at least one extra aspect present in predictions.
Even though we specify the possible aspects and sentiments in our prompt, the
model hallucinates and produces these errors. Formatting error rows represent
cases where the output is not formatted correctly which diminish from 207(1-shot)
to 69(5-shot). This suggests that higher n-shot classifications not only enhance
accuracy but also reduce various types of errors in the Phi3 model. The model
performs best at the 5-shot classification, showing the least number of errors. As
the model processes more examples, it refines its predictions and minimizes errors,
resulting in more reliable data processing across all 749 rows.

4.5 Prompting

When testing an zero shot approach on single examples, we noticed a huge impact
of prompts on the model. Using the words “Do not add any further explanation”
usually resulted in a much cleaner output (still not perfect but much cleaner). But
since we were not able to get properly formatted outputs with zero shot, we tried
prompt tuning with one shot classification. The generated response was slightly
different but as we had set Temperature to 0 (recommended on huggingface),
model didn’t provide a varied response. After minor cleanup and post processing
of the response, any impact prompt had on the results was lost. The results were
exactly same as one shot classification.

It might be because we didn’t try prompts that were vastly different but using
a much simpler prompt with less instructions produced garbage result all the time.
We came to conclude that, if model creativity (temperature) is restricted then effects
of prompt can be negated by using n-shot approaches upto a certain point.

4.6 Finetuning

Using finetuned models was straightforward and training process was also smooth.
Figure shows the loss plot for training process an we can observe occasional
spikes in the process. As the loss seems to be lowest at step 200, we have performed
evaluation with base model, fine tuned model at step 200 and final fine tuned
model.

In Figure we can see that loss curve has multiple sharp spikes
throughout the training process. These spikes suggest moments where the
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Figure 4.5: Step Vs loss curve for openai finetuning

model’s performance temporarily degrades, resulting in higher loss values. Such
fluctuations can be attributed to the use of a small batch size (1) and a limited
dataset (100 examples). Small batch sizes are prone to higher variance in gradient
estimation, leading to less stable updates. This can cause the model to experience
periods of poor performance, manifesting as spikes in the loss curve.

The smoothed curve, in contrast, provides a clearer view of the overall trend,
reducing the noise caused by individual data points. It indicates a general
downward trend in the loss values, suggesting that despite the variability, the
model is learning and improving over time.

Small batch size, small dataset size and model sensitivity could be a few reasons
behind such spikes. Using a larger batch size can help stabilize the training process
by averaging out the gradients, leading to more stable updates and reducing the
frequency and magnitude of the spikes. Also increasing the number of training
examples can provide a more robust learning process. A larger and more diverse
dataset can help the model generalize better and reduce overfitting, resulting in a
smoother loss curve.

As seen in Figure the performance of the OpenAl GPT-3.5 Turbo model
improves significantly with fine-tuning. The base model starts with an exact
accuracy of 34.18% and a partial accuracy of 45.65%. After fine-tuning for 200 steps,
the exact accuracy increases to 68.36%, and the partial accuracy rises to 88.46%.
In the final fine-tuned model, the exact accuracy slightly improves to 69.56%,
while the partial accuracy remains stable at 88.50%. This data demonstrates the
effectiveness of fine-tuning in enhancing the model’s performance.
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Exact and Partial Accuracy of openai finetune
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Figure 4.6: Exact and Partial Accuracy of GPT3.5 turbo

Model Extra aspects | Rows with extra aspects | Formatting error rows
base model 43 41 374

finetuned step 200 | 117 113 0

finetuned final 86 83 0

Table 4.5: openai gpt finetuning error counts

Table 4.5/ shows various types of errors for GPT 3.5 finetuning process. The base
model shows a significant number of formatting error rows (374), whereas both
fine-tuned steps exhibit no formatting errors. The number of extra aspects and
rows with extra aspects also increase from the base model to the fine-tuned step
200, indicating an initial learning curve. However, these counts decrease slightly
in the final fine-tuned model, suggesting an optimization and refinement in the
model’s learning process.

The poor performance of the base model can be attributed to its lack of
task-specific training. Without fine-tuning, the model is not specialized and thus
performs inadequately on specific tasks, resulting in lower accuracy and a high
number of formatting errors. The initial fine-tuning phase at step 200 enhances
the models understanding and reduces errors significantly, as the model starts to
adapt to the specific requirements of the task.

To further improve performance, several strategies can be considered.
Increasing the size of the training dataset beyond the 100 data samples used can
provide the model with a broader range of examples to learn from, potentially
enhancing its generalization capabilities. Additionally, implementing a more
extensive fine-tuning process with incremental adjustments and validations can
lead to more refined performance improvements. Exploring advanced fine-tuning
techniques such as learning rate scheduling, data augmentation, and regularization
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methods can also contribute to achieving higher accuracy and reduced error rates.

4.6.1 Cost Estimations

We used Google colab Pro for running LLM experiments. Including all the failed
experiments and minor adjustments we needed about 150 compute units. All of
the reported experiments were ran on L4 GPU which consume approximately 4.82
compute units per hour. It costs 87.32 DKK per 100 compute units which means it
would cost about 4.21 DKK per hour to run experiments on L4 GPU.

Time Comparison for Different Methods
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Figure 4.7: Time comparision for different methods

As we can see in Figure Setfit for ABSA took minimal amount of time in
comparison to phi 3 models. Then with phi-3 One shot approach took the longest
at 37.27 minutes. It decreases for 2 shot and 3 shot but again increases for 5 shot.
This is probably because of model caching as we ran all the experiments from
single notebook.

If we take the L4 GPU cost, it would cost about 1.65 DKK at lowest. The cost
at this scale is very minimal but could increase rapidly when we start using these
products as part of our daily work. We can also compare this cost with OpenAl
API Using OpenAl API for finetuning cost us about 7.08 DKK for finetuning the
models (only 100 examples) and about 3.5 DKK for evaluation (per approach).

OpenAl API might be expensive but if we look at the performance, it also
performs better than phi3. We tried using a larger size model (mistral 7B) but
it crashed due to memory limitations. Depending on the amount of budget and
accuracy needed, either gpt or phi3 could be a useful appropach for ABSA.



Chapter 5

Conclusion

Over the years, research in the field of NLP has grown immensely with the
introduction of transformers. This research is aimed at creating a understanding
and historical approaches for ABSA. The knowledge and findings gained during
this work is going to be immensely useful for the final dissertation work. This
research has also equipped me with knowledge which could also be applied
towards other NLP tasks.

In this thesis, we explored the application of Large Language Models
(LLMs) for Aspect-Based Sentiment Analysis (ABSA). Our investigation started
with traditional machine learning models such as Support Vector Machine
(SVM) and Gradient Boosting, then advancing to more advanced models like
Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from
Transformers (BERT), Sentence-BERT (SBERT), and Phi-3. We evaluated these
models based on their performance in both category classification and sentiment
polarity classification tasks. We also used LLM specific evaluation techniques for
evaluating LLMs.

The models were implemented in scikit learn, keras, pytorch and hugginface
transformers. An evaluation framework was also created so that the models could
be compared with each other and also with past literature.

5.1 Key Findings
Here are some of the key conclusions from this research:

1. In simple classification tasks like category classification and sentiment
polarity, traditional ML models like SVM still outperform or compete modern
LLMs. In our case, SVM performed best on Category classification and sbert
performed best in sentiment polarity.
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. In joint classification tasks also simpler transformer models like BERT

perform comparitive to LLMs.

. LLMs however come with an advantage that they can be used without any

training as well with n-shot approaches.

. If accuracy is important, performing even minor amount of finetuning seems

to have a big impact on performance. This was shown by GPT-3.5 turbo
model as its accuracy increased to 88.5% from 45.65% after finetuning on 100
sample.

. The cost analysis revealed that running experiments on Google’s L4 GPU was

relatively affordable, with fine-tuning costs being minimal compared to the
performance benefits obtained.

. Using open source model is cheaper than paid APIs but come at a cost of

lower performance as well.

. Open source models like Phi-3 do show comparable performance but when

cost of training and maintenance is taken into account, API based approaches
seem to be more beneficial.

. Paid APIs should be used with caution as the prices per token might increase

in future leading to a higher budget and data safety also should be considered
while using these APIs.

5.2 Limitations

Despite the promising results, several limitations were identified in this study:

1. Data Availability: The models were trained and tested on the SemEval-2014

Task 4 dataset, which may not fully represent the diversity of real-world
data. The dataset is also relatively small, limiting the ability to generalize the
results to larger and more varied datasets.

. Resource constrains: Advanced models like Mistral and GPT require

significant computational resources for training and fine-tuning. This was
a barrier for us to perform further experiments. We couldn’t perform any
experiments with Mistral and Mixtral due to this limitation.

. hallucinations: Generative models such as GPT and Phi3 are extremely

prone to hallucinations. This can cause a lot of problems in classification
tasks such as ABSA.
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4. Aspect Ambiguity: In cases where a sentence contains multiple aspects or
ambiguous language, accurately identifying and classifying these aspects
remains challenging for all tested models.

5. Domain Adaptation: Models trained on the restaurant domain may not
perform well in other domains without further fine-tuning and adaptation,
highlighting the need for domain-specific training data.

6. Limited Knowledge: My limited knowledge and past experience with NLP
models and tools might have led to oversights or missed opportunities for
a more detailed understanding. Despite these limitations, we have made
our best efforts to provide valuable insights within the given constraints,
acknowledging the inherent challenges in studying a complex and evolving
field such as ABSA.

5.3 Future Work

Although we have explored various approaches to aspect based sentiment analysis,
there are some more area we can look into. The field of aspect-based sentiment
analysis continues to evolve with the introduction of new models and techniques.
Several strategies can be adopted to further improve model performance. Future
research should focus on conducting analysis with latest papers and techniques in
sentiment analysis and natural language processing.

1. As different models perform best with different prompts, future research
should focus on performing more more extensive prompt engineering at per
model level.

2. Fine tuning open source models might also give them a big boost in
performance similar to GPT. This should be further explored in future along
with experimenting with different parameters for finetuning.

3. Larger batch sizes and data sizes for fine tuning can also be explored in
future.

4. Also comparing phi-3 with other open source models would also be possible
for future work.

The application of LLMs for ABSA shows promising results, particularly
in sentiment classification. Fine-tuning pre-trained LLMs like GPT-3.5 Turbo
significantly enhances their performance, making them viable for specific ABSA
tasks. Future work should focus on optimizing model architectures, expanding
datasets, and exploring advanced fine-tuning techniques to improve the robustness
and accuracy of these models in real-world applications.
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Appendix A

Prompts use for prompt
engineering

Your task is to analyse and perform aspect based sentiment analysis on the
given restaurant reviews text. The aspects should only be ["food",
"service","ambience", "price", "other"] and sentiments should only be
["positive", "neutral","negative"]. Output should only contain mentioned
aspects and their respective sentiments as a dictionary. Each aspects
should only have one sentiment and not every aspect is necessarily
present. Do not provide any further explanation.

Listing A.1: Prompt-1 used for prompt engineering with Phi3

You are a skilled data analyst. Your task is to extract and analyze
sentiments from user reviews and structure the information into a JSON
format. Analyze the provided user reviews and create a JSON summary. Focus
on these key aspects: ["food", "service", "ambience", "price", "other"]
and sentiments: ["positive", "neutral", "negative"].

Listing A.2: Prompt-2 used for prompt engineering with Phi3

Your task is to perform aspect-based sentiment analysis on the following
restaurant review texts. Focus specifically on the aspects: ["food",
"service", "ambience", "price", "other"]. Each aspect should be assigned a
sentiment from the options ["positive", "neutral", "negative"]. Provide
the output in a dictionary format where the keys are the aspects and the
values are the corresponding sentiments. Each aspect should have only one
sentiment, and it’s not necessary for all aspects to be present in every
review. Do not include any further explanation or additional text.

Listing A.3: Prompt-3 used for prompt engineering with Phi3
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