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1 | Introduction
Bluetooth technology is primarily known for its device communication capabilities,
enabling wireless connections between a wide range of devices. Over the years, Blue-
tooth has become widespread, embedded in countless devices from smartphones,
wireless audio devices, computer peripherals to smart home systems. Recent ad-
vancements have extended its functionality to include location services, broadening
its application scope. [1]

Bluetooth technology is now widely used as a device positioning technology to address
the increasing demand for high-accuracy location services. enabling one Bluetooth
device to determine the presence, distance, and direction of another device. This
has made Bluetooth essential in various industries. For instance, powering the rapid
growth of real-time locating systems (RTLS) used for tracking assets and people,
such as locating tools and workers in warehouses or medical devices and patients in
hospitals. Additionally, an increasing number of consumers are attaching Bluetooth
tags to personal items like keys, wallets, and purses. Moreover, Bluetooth technology
has expanded its role in access control systems, allowing smartphones to be used as
secure digital keys that unlock doors and spaces as users approach their cars, homes,
or offices. This technology also facilitates indoor positioning and navigation services,
similar to GPS but tailored for indoor environments like airports, train stations, and
shopping malls. [2] [3]

These advancements have significantly increased the demand for precise and reliable
location services.

1.1 Bluetooth Ranging methods
There are several Bluetooth ranging methods, each with its own advantages and
limitations.[4]

1.1.1 Recieved Signal Strength Indicator RSSI

RSSI is a well-established method for Bluetooth ranging. It relies on the principle
that the amplitude of a radio signal weakens as the distance between transmitter
and receiver increases. This signal attenuation allows for a rough estimation of the
distance between Bluetooth devices. The benefit of RSSI is that it’s a low-cost and
readily available capability present in all Bluetooth devices.

However, signal strength is highly dependent on various factors such as the envi-
ronment, absorption, diffraction, interference, the way the device is held, and its
orientation. Consequently, this results in a low ranging accuracy, typically within
the range of three to five meters. To improve the accuracy of RSSI, multiple beacons
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1.1. Bluetooth Ranging methods 2

can be used along with detailed characterization of the environment. This technique
is known as fingerprinting.

1.1.2 Angle of Arrival (AoA) and Angle of Departure (AoD)

The introduction of Bluetooth core specifications v5.1 brought significant advance-
ments in direction finding by incorporating Angle of Arrival (AoA) and Angle of
Departure (AoD) measurements. These methods enable the estimation of position
by using multiple anchor points and applying trigonometric calculations to determine
the position and distance of a beacon. [5] [6]

AoA is measured on the receiver side, utilizing multiple antennas to capture the
phase shift of the arriving signal between them. This technique allows the receiver
to determine the direction from which the signal is coming. Conversely, AoD involves
the transmitter sending signals from multiple antennas, and the receiver measures
the angle of the outgoing signal. For AoD to work effectively, the receiver must
have detailed knowledge of the transmitters antenna array design, making AoD more
complex and less commonly used than AoA in practical implementations.

Despite their complexities, AoA and AoD can achieve sub-meter accuracy in local-
ization. However, they require beacons to be placed in known locations with mul-
tiple antennas. The accuracy of these methods can be compromised by obstacles,
reflective surfaces, and multipath propagation, which introduce errors in the mea-
surements. To mitigate these challenges, measurements from multiple beacons are
typically collected and processed by a positioning engine. An advanced positioning
engine, equipped with a model of the specific radio environment, can account for
multipath propagation and improve the accuracy of the location estimation.

1.1.3 Channel sounding

Channel sounding is the latest breakthrough in high-accuracy distance measurement.
This technique measures the channel’s response by sending an unmodulated constant
tone signal, while the receiver captures the in-phase and quadrature components of
the signal.

By analyzing these responses across multiple frequency channels, it is possible to
determine the time delays and attenuation effects associated with different signal
paths. This measurement method enables several methods of estimating distance,
such as phase-based ranging (PBR).

The Bluetooth Special Interest Group (SIG) is actively developing channel sounding
techniques to achieve 10 cm ranging accuracy. This advancement will significantly en-
hance applications such as secure access, digital key systems, and proximity services,
providing high-accuracy positioning solutions that expand the potential applications
of Bluetooth technology.
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1.2 This work
This work explores machine learning techniques of utilizing Bluetooth channel sound-
ing measurements for accurate distance estimation, exploring different options of im-
proving ranging performance, model training, channel simulation and dataset gener-
ation.

This work considers the single antenna ranging, with static radio devices in line of
sight conditions.
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2 | Theory
This section introduces the theoretical background about the wireless channel model,
Bluetooth channel sounding, and different algorithms for ranging from channel sound-
ing measurements.

2.1 Wireless channel model

As a wireless signal x(t) propagates through the channel, it experiences large scale
effects such as path loss, shadowing as well as small-scale effects like constructive,
destructive interference of multiple paths the signal takes. The channel’s effects are
typically modeled as the channel response, denoted by h(t). The received signal y(t)
is the result of linear convolution between the transmitted signal x(t) and the channel
response h(t).[7] This is mathematically represented by the following equation:

y(t) = x(t) ∗ h(t) (2.1)

Consider an indoor multipath environment with multiple reflectors, where the sig-
nal can travel through various paths. Each of these N paths experiences different
attenuation ρi and delay τi.

Tx

Rx Channel impulse response

Figure 2.1: Illustration of the multipath components in an indoor environment. Each path i has
an attenuation factor ρi and a delay τi. The channel impulse response is the sum of these delayed
and attenuated components.

The received signal is the superposition of these delayed and attenuated versions of
the original signal. Mathematically, the channel response h(t) for this scenario can
be expressed as[8]:

h(t) =
N∑
i=1

ρi · δ(t− τi) (2.2)

4
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In case of Bluetooth channel sounding, the transmitted signal x(t) is an unmodulated
complex sinusoid transmitted at carrier frequency fk.

x(t) = ej2πf
kt (2.3)

Substituting x(t) and h(t) into equation (2.1) results in:

y(t) = x(t) ∗ h(t) = ej2πf
kt ∗

N∑
i=1

ρi · δ(t− τi) (2.4)

Performing the convolution, we obtain the received signal:

y(t) =

N∑
i=1

ρie
j2πfk(t−τi) =

N∑
i=1

ρie
−j2πfkτiej2πf

kt (2.5)

We can define a complex channel gain ai for each path, which combines the effects of
attenuation ρi experienced by the signal on that path and the phase shift introduced
due to the delay τi:

ai = ρie
−j2πfkτi (2.6)

Substituting ai into the previous equation simplifies the expression for the received
signal:

y(t) =

N∑
i=1

aie
j2πfkt = a · ej2πfkt (2.7)

2.2 Bluetooth Channel sounding
In Bluetooth channel sounding, two radio transceivers participate: the Initiator and
the Reflector. A channel sounding procedure consists of a series of radio opera-
tions known as channel sounding events. Each channel sounding event comprises
subevents, and each subevent includes multiple channel sounding steps.

A channel sounding step involves a series of synchronized tone transmissions between
devices, where the Phase Lock Loops (PLLs) remain in lock. During a channel
sounding step, the initiator transmits an unmodulated, continuous tone signal S at
frequency channel fk to the reflector. This signal propagates through the channel,
and the reflector measures the in-phase and quadrature components of the signal as
Sk
R. (see Figure 2.2).

Sk
R = a · ej2πfkτ (2.8)
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Here, a is the channel coefficient, while τ is the delay. The starting phase of the trans-
mitted signal depends on the initiator’s internal clock phase ϕI , and the reflector’s
measurement is relative to its own clock phase ϕR.

Sk
R = a · ej2πfkτ+ϕI−ϕR (2.9)

Next, the roles of transmitter and receiver reverse: the reflector transmits a contin-
uous tone signal back to the initiator on the same frequency channel K. This signal
propagates through the channel again and is measured at the initiator as Sk

I (see
Figure 2.2).

Sk
I = a · ej2πfkτ+ϕR−ϕI (2.10)

Since the roles are now reversed, the starting phase now depends on the reflector’s
clock phase, and it is measured relative to the initiator’s phase. Taking the product
of Sk

I and Sk
R results in a two-way channel response Sk

TW , which cancels out the clock
phase offsets[9].

Sk
TW = Sk

I · Sk
R = a2 · e−j4πfkτ (2.11)

Following each channel sounding subevent, the devices exchange measurement results
to perform this computation. The channel sounding procedure repeats this process
across all frequency channels, up to 72 channels across the entire frequency band.

Initiator Reflector

Distance: d

Figure 2.2: Illustration of the Bluetooth channel sounding process. The initiator transmits a
continuous tone signal S at frequency channel fk to the reflector, which measures the in-phase and
quadrature components of the signal as Sk

R. The roles then reverse, with the reflector transmitting
the signal back to the initiator, which measures it as Sk

I . This process is repeated across multiple
frequency channels.
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2.3 Ranging algorithms
Channel sounding does not specify which algorithm should be used to calculate dis-
tance estimates from the measurement data. This flexibility allows companies to
tailor their solutions to various use cases, balancing computational complexity with
the required estimation accuracy and the expected radio environments. Examples of
ranging algorithms include simple phase difference calculations, fast Fourier trans-
form (FFT) based methods, and advanced super-resolution algorithms designed to
handle severe multipath scenarios, particularly in indoor environments.

2.3.1 Multi-carrier phase difference(MCPD)

Consider a Line of Sight (LOS) scenario, where the number of propagation paths N
is 1. The received signal y(t) can be described as:

y(t) = ρ · ej2πfk(t−τ) (2.12)

The phase the received signal ϕrx is given by:

ϕrx = ∠y(t) = 2πfkτ (2.13)

Radio signals traveling at the speed of light c cover a distance d, resulting in a delay
τ described as:

τ =
d

c
(2.14)

Substituting τ into the phase equation gives:

ϕa(f
k, d) =

2πfkd

c
(2.15)

In channel sounding, a back-and-forth transmission is performed to cancel out clock
offsets. Consequently, the signal travels the distance twice, resulting in a two-way
phase θk described as:

θk = ∠Sk
TW =

4πfkd

c
(2.16)

Solving for distance yields:

d =
c

4π
· θ

k

fk
(2.17)

However, computing the distance from one phase measurement introduces ambiguity,
as a valid distance solution exists at every wavelength. To resolve this ambiguity,
two carrier frequencies can be used. The distance can be determined by:

d =
c

4π
· θ

k + θk+1

fk + fk+1
(2.18)
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In practice, using only two frequencies results in poor ranging accuracy. Therefore,
multiple frequencies (preferably spanning the entire spectrum) are used to determine
the slope, improving the accuracy of the distance measurement:
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Figure 2.3: Phase diagrams of Bluetooth channel sounding at distances of 5 meters and 10 meters.
The left plots show the wrapped phase as a function of frequency, while the right plot shows the
corresponding unwrapped phase.

Since the measured phase values are constrained between −π and π, a phenomenon
known as phase wrapping occurs when using multiple frequencies. This wrapping
creates a sawtooth-like pattern in the phase response. To address phase wrapping
and obtain an accurate measurement of the phase change across the entire frequency
band, a technique called phase unwrapping is employed. Phase unwrapping essen-
tially removes these jumps and reconstructs the continuous phase behavior. Following
unwrapping, the slope of the resulting unwrapped phase response can be calculated
by applying linear regression. This is illustrated in Figure 2.3.

This slope is then used in the following equation to determine the distance d between
the transmitter and receiver:

d =
c

4π
· slope (2.19)

However in an indoors scenario with multiple propagation paths, the measured sig-
nal is the superimposition of all propagation paths. This causes distortions on the
measurements which negatively effect the slope measurement used to determine the
distance.
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Figure 2.4: Illustration of the distortions caused by multipath to the phase angles and the un-
wrapped phase. The left plot shows the wrapped phase as a function of frequency for signals with
and without multipath. The right plot shows the unwrapped phase for both cases. The multipath
signal contains three components at distances of 10 meters, 12 meters, and 20 meters.

This ranging method is simple to implement, and provides good range estimates
in non complex environments. In environments with many reflecting surfaces, this
method can overestimate the distance.

2.3.2 Inverse Fourier transform (IFFT)

The channel sounding measurements are obtained across multiple frequency chan-
nels, resulting in two-way channel responses skTW in the frequency domain. These
frequency domain measurements can be converted back to the time domain using
an inverse discrete Fourier transform (IDFT), specifically the inverse fast Fourier
transform (IFFT) for computational efficiency.

By transforming the frequency domain measurements back to the time domain, it
becomes possible to resolve the different arriving echoes if the paths are distinguish-
able with sufficient spacing. This conversion process enables the identification of
individual multipath components based on their arrival times.
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Figure 2.5: Inverse Fourier transform of a signal from three components 10,12 and 20 meters.

The peaks in the time domain representation indicate the arrival delays of the signal
components. By identifying the first peak, the line of sight component’s time delay
τLOS can be determined. From the arrival time, distance can be determined as
d = c · τLOS .

Addressing the limitations of the MCPD method, the IFFT method allows for the
separation of different signal paths, making it possible to isolate the line-of-sight
component from multipath reflections.

However, the IFFT method’s ability to distinguish between closely spaced multipath
components is constrained by the resolution of the IFFT. The resolution is deter-
mined by the bandwidth of the measured frequency spectrum and the number of
points used in the IFFT (nfft). Increasing the number of nfft points can improve
resolution but also increases computational complexity. Moreower, IFFT assumes
uniform sampling in the frequency domain. Any gaps or non-uniformities in the
frequency measurements can introduce artifacts and reduce the effectiveness of the
transformation.

2.3.3 Multiple SIgnal Classification (MUSIC)

Similarly to IFFT, MUSIC can decompose the arriving signal into its individual
components, and detecting the first peak gives the delay of the first arrival of the
signal.

The MUSIC algorithm involves several key steps. First, a Hankel matrix is con-
structed from the measurements. From this Hankel matrix, a covariance matrix is
computed, encapsulating the statistical properties of the signals. Eigenvalue decom-
position is then performed on the covariance matrix to separate the signal subspace
from the noise subspace. The eigenvectors corresponding to the largest eigenval-
ues form the signal subspace, while the remaining eigenvectors constitute the noise
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subspace.

To compute the MUSIC pseudospectrum, the array steering vectors are projected
onto the noise subspace. This pseudospectrum can be evaluated at a high resolution,
allowing for the distinction between closely spaced signals. Peaks in the pseudospec-
trum correspond to the delays of arrivals the signals. By identifying the first peak,
the time delay of the line-of-sight component, τLOS , can be determined. The corre-
sponding distance is then calculated as d = c · τLOS .

The MUSIC algorithm offers several advantages, including its ability to distinguish
between closely spaced signal components, providing high-resolution estimates of ar-
rival times. Additionally, by leveraging the orthogonality between the signal and
noise subspaces, MUSIC can effectively separate signal components even in the pres-
ence of noise. However, the algorithm also has limitations. The eigenvalue decompo-
sition step can be computationally intensive, potentially limiting its applicability in
real-time scenarios. Furthermore, the performance of MUSIC depends on the accu-
rate estimation of the number of signal sources, which can be challenging in practical
applications.

2.3.4 Neural Network ranging

Neural networks are a type of machine learning model that can be used as a regressor
to predict continuous variables, such as distance. These networks process input data
through layers of artificial neurons, or "nodes." Each neuron applies a transformation
to its inputs and passes the results to the next layer, with the final layer producing
an output prediction.

Machine learning methods, such as neural networks, utilize data to learn optimal
transformations that minimize prediction errors. The prediction error is calculated
by a loss function, typically mean squared error in the case of regression. During
training, the model adjusts the transformations using a method called backpropa-
gation and an optimization algorithm like gradient descent. This process iteratively
refines the model to improve its accuracy.

In a previous semester project, the effectiveness of a neural network for providing
distance estimates from the phase angles of channel sounding measurements was
demonstrated [10].



3 | Simulation
Recent advancements in simulation technology have made it possible to create highly
accurate channel simulations. These simulations make the generation of training
datasets possible that would otherwise be very expensive and time-consuming to
produce in real life. By leveraging these simulation datasets, it becomes feasible to
create generalized datasets that encompass a wide range of environments and config-
urations, thus enhancing the robustness and applicability of the models developed.

A comprehensive system has been developed to generate datasets, train and bench-
mark different machine learning models, and compare these models to other ranging
methods.

Sionna ray tracer generates channel impulse responses for various environments, then
these channel responses are used for generating Bluetooth channel sounding scans
to form simulation datasets. These simulation datasets are used to conduct machine
learning experiments, and evaluate their performance.

3.1 Sionna ray tracer
Sionna is an open-source software library for physical layer research developed by
NVIDIA. It enables the prototyping of complex communication system architectures
with a native support for machine learning since its implementation is based on
python using TensorFlow.

Sionna implements a number of features such as Forward error correction (FEC),
channel models, MIMO processing, Orthogonal frequency-division multiplexing (OFDM),
and ray tracing. In this work, the ray tracing module is used to create channel im-
pulse responses which is later used to generate the Bluetooth channel sounding scan
specific to an environment[11].

The ray tracing module’s first component is a scene, which contains objects and its
geometry and material. This can be a three dimensional environment exported from
Blender with the Mitsuba Blender plugin installed, and with the help of the Blender-
OSM plugin, the geometries of buildings and real cities can also be imported from
Open Street Map.

The software includes several built-in example scenes, such as the area around the
Frauenkirche in Munich (Figure 3.1), a metallic box, and a simple reflector plane.
Additionally, these scenes can feature transmitters and receivers, each with their own
antenna arrays. The antenna arrays are customizable, with parameters including
the number of rows and columns of the antenna elements, their spacing, position,
orientation, radiation pattern, and polarization.

12



3.1. Sionna ray tracer 13

Figure 3.1: Visualized signal paths between
a transmitter and a receiver in the Munich
example scene built-in to Sionna.

Figure 3.2: Visualized signal paths between
a transmitter and a receiver in a box with
concrete walls, simulating an indoor environ-
ment. The rays are computed up to two
bounces of depth.

After the transmitters and receivers are set up in the scene, the paths between them
can be computed (Figure 3.2). In order to optimize the trade-off between accuracy
and computational complexity, parameters such as the maximum number of bounces
a ray can make between the antennas, or whether an exhaustive ray tracing method
is used, or a Fibonacci approach. After the paths are determined, the radio materials
and their properties are taken into account to compute the channel coefficient ai and
the delay τi for each of the i paths (Illustrated in Figure 3.3).

0 10 20 30 40 50 60 70 80
 [ns]

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

|a
|

Amplitude

0 10 20 30 40 50 60 70 80
 [ns]

3

2

1

0

1

2

3

<
a 

[ra
d]

Angle

Channel impulse response

Figure 3.3: Simulated channel impulse response in a concrete room environment, showing the
multi-path components with their respective delays and attenuations.

3.1.1 Generated datasets

Different datasets are generated in three different environments using this simula-
tion method. These environments include an open field, a concrete box, and a street
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canyon area. Each environment is chosen to represent a variety of real-world condi-
tions that might affect Bluetooth signal propagation differently.

For each environment, a training and testing dataset are created separately. To gen-
erate the training datasets, the antenna positions are randomly generated within a
specified coordinate range to ensure diversity in the training samples. The gener-
ated coordinates are checked to ensure they are not closer than 10 centimeters to
avoid overlapping scenarios that might skew the data. This random placement helps
simulate a wide range of possible real-world conditions and interactions.

For the testing dataset, the setup is slightly different to mimic real-world measure-
ment scenarios more closely. One of the transmitters is fixed at a specific position,
while the other transmitter is placed at predefined distances, such as 1-meter incre-
ments. This configuration aims to replicate the typical process of collecting measure-
ment data in the field, where one device remains stationary, and the other is moved
manually to different positions.

For all the generated datasets, the τ delays and the corresponding a channel coeffi-
cients are saved in a file. These parameters capture the essential characteristics of the
signal propagation in the simulated environments. In the subsequent Bluetooth scan
generation step, these τ delays and a coefficients are used to produce simulated Blue-
tooth channel sounding scans. These scans are created based on the specific channel
parameters of each environment, ensuring that the generated data accurately reflects
the conditions under which the measurements were taken. This process enables the
creation of realistic and diverse datasets for training and evaluating the performance
of various machine learning models and other ranging methods.

Open Field Dataset

The Open Field dataset is designed to simulate an open outdoor environment with
minimal obstacles. This dataset is useful for understanding signal propagation in a
clear line-of-sight scenario. A 30x30 meter flat ground plane is created in Blender,
with the material set to itu_medium_dry_ground for Sionna to interpret its radio
characteristics from the material name. The scene is then exported to a Mitsuba
XML format and imported into Sionna, where transmitter and receiver antennas are
placed.
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Open Field Dataset Properties
Radio Material: Medium dry ground

Size
X -30 : 30m
Y -30 : 30m
Z 0m

Realizations: 3000
Test dataset 1 - 30m (.5m)

Table 3.1: Open Field Dataset Properties

Random coordinate range
X -30 : 30m
Y -30 : 30m
Z 1 : 3m

Table 3.2: Range of random antenna coordi-
nates used in the Open field training dataset.

Concrete Box Dataset

The Concrete Box dataset simulates an indoor environment with significant multi-
path reflections due to the concrete walls. This setting is useful for studying signal be-
havior in enclosed spaces where reflections and obstructions are prevalent. A 10x10x5
meter concrete box is created in Blender, and the material is set to itu_concrete to
accurately represent the radio characteristics. The scene is exported to Mitsuba
XML format and imported into Sionna, where the antenna configurations are set up.

Concrete Box Dataset Properties
Radio Material: itu_concrete

Size
X -5 : 5m
Y -5 : 5m
Z 0 : 5m

Realizations: 10,000
Test dataset 2.5 - 6.5m (.2m)

Table 3.3: Concrete Box Dataset Properties

Random coordinate range
X -4.9 : 4.9m
Y -4.9 : 4.9m
Z 0.1 : 4.9m

Table 3.4: Range of random antenna co-
ordinates used in the Concrete box training
dataset.

Street Canyon Dataset

The Street Canyon dataset represents an urban environment with multiple reflective
surfaces and obstructions typical of a city street. This dataset helps in understanding
signal propagation in an outdoor urban settings. This environment model is offered
by Sionna as an example scene, featuring a ground plane and multiple rectangles
with different materials, resembling buildings.

Street Canyon Dataset Properties
Radio Material: Multiple

Realizations: 3,000
Test dataset 5 - 45m (2m)

Table 3.5: Street Canyon Dataset Proper-
ties

Random coordinate range
X -17 : 31m
Y -36 : 36m
Z 0.1 : 3m

Table 3.6: Range of random antenna co-
ordinates used in the Street canyon training
dataset.
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3.2 Bluetooth scan generator
This component in the software loads the file saved by the Sionna ray tracer to
generate Bluetooth channel sounding scans from the a and tau values describing a
scene in a specific radio environment.

The received signal is a superposition of all individual signal paths. To cancel out
the individual clock offsets, a two-way measurement is performed. Consequently, the
channel sounding measurement is simulated as follows:

skTW =
N∑
i=0

ai · e−j4πcfkτi (3.1)

This is computed across all 79 frequency channels that Bluetooth operates on from
2402 to 2480 MHz. The resulting generated scan is illustrated in Figure 3.4.
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Figure 3.4: The phase angles and amplitudes of a simulated channel sounding scan, generated
from the values in Figure 3.3

While processing real measurement datasets with the linear regression method, a
constant bias of 8 meters was observed. This can be explained by a delay in the
devices radio frontend causing a delay of 8/c ≈ 27ns. To align the generated dataset
with the measurements, this hardware delay is added to the τ values.

In every position, a random phase offset is added in order to encourage the model to
generalize and not overfit to the specific values. This step also functions as a data
augmentation technique, as every impulse response can be used to generate multiple
simulated scans.
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Figure 3.5: Random phase offsets of simulated channel sounding measurements generated from
the same channel response.

This process is applied to all channel response datasets generated by Sionna across all
environments, including both the training and testing sets. The resulting generated
channel sounding scans, along with their corresponding distance labels, are saved in
a file to be used in subsequent steps for training and evaluation.

3.3 Representation experiment for machine learning
In this section the generated datasets are loaded from the files, and used for per-
forming different machine learning experiments.

Different representations of the same data can be more suitable for different tasks.
The simulated measurements used in this project consist of 79 complex numbers.
These complex numbers can be represented in various ways. One representation
involves extracting the angle and magnitude of the complex number, another uses
the imaginary and real parts, and a third discards the magnitudes to calculate an
angle-only representation.

Conventional ranging methods, such as linear regression, only consider phase angles,
while decomposition-based ranging methods like IFFT and MUSIC can utilize the
complex magnitudes to better distinguish between different signal arrivals. Alter-
native representations might include an unwrapped angle or an IFFT-transformed
signal. These representations can be used as inputs for a neural network.

In this experiment, four representations are compared on the simulation dataset
to assess how well they help the model fit the training data and generalize to the
testing dataset. The four tested representations are angle-abs, real-imag, angle-only,
and IFFT-transformed.

The input data for the different representations are normalized to ensure most values
fall within a standard range. For amplitudes, which can only be positive, values are
scaled to fall between 0 and 1. For angles and the real-imaginary representation,
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where negative numbers can occur, values are scaled to fall between -1 and 1. This
normalization is achieved by scaling all values by a predetermined constant.

For all the representations in this experiment, the same neural network architecture
is used, implemented using scikit-learn in python. The input is one representation
flattened to a vector, while the output is the distance prediction. The model’s pa-
rameters can be seen at Table 3.7.

Parameter value
Hidden layer sizes (200,100,50,20,10)

Activation ReLU
Learning rate adaptive

Tolerance 1e-4
N iter no change 1000

Table 3.7: Parameters of the neural network architecture used in the representation experiment.
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Figure 3.6: This figure compares the mean absolute errors (MAE) in meters achieved by neu-
ral networks trained on different representations. The left chart shows the MAE on the training
dataset, while the right chart shows the MAE on the testing dataset. Each column represents a
specific representation (Real-Imag, Angle-Abs, Angle only, IFFT), and the colors within the column
represent the contribution of different datasets (Concrete Box, Open Field, Street Canyon) to the
overall MAE for that representation.

After training, all the representations converged to fit the training dataset to a 14cm
error on average, with the IFFT representation reaching the lowest error of 11cm,
followed by the angle-abs representation at 13cm, the real-imag representation with
15cm, and the angle-only representation with 17.7cm.

For the testing dataset, the average ranging error across the different representations
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is around 1 meter. The IFFT representation again performs the best with the lowest
overall error of 0.97 meters, followed by the Real-Imag representation at 1.06 meters,
the Angle-Abs representation at 1.15 meters, and the Angle-Only representation at
1.16 meters. Analysis of the error contributions reveals that the majority of the
ranging error on the testing dataset comes from the Concrete Box dataset.

From these observations its evident that the IFFT representation achieves the lowers
ranging error on both the training and testing datasets. Performing an inverse Fourier
transform reduces the ranging problem to picking the peak of the first arrival on the
spectrum.

3.4 Comparison to conventional ranging methods
In this section, the performance of the trained neural network is compared to Linear
regression and IFFT ranging. The chosen representation for the neural network
in this analisys is the real-imag representation, since it performed well with simple
preprocessing. Each of these three methods are tested on all of the three simulation
testing datasets. The predictions of these different methods can be seen in Figure
3.7.
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Figure 3.7: Comparison of ranging performance across different methods: Linear Regression (LR),
Inverse Fast Fourier Transform (IFFT), and a Neural Network (NN) with real-imag representation.
The graphs display the performance on three distinct simulation environments: Open Field, Concrete
Box, and Street Canyon. Each graph shows the predicted distance versus the sample number

In the Open Field test, the distance predictions align closely with the actual distances,
indicating high accuracy for all methods in a simple environment with minimal ob-
stacles.

The Concrete Box test introduces more complexity due to reflections from the walls.
Here, the IFFT method outperforms the others by initially successfully distinguish-
ing the line-of-sight component from the other reflections. The neural network is
observed to have a larger bias, while performing better than linear regression.

In the street canyon environment, IFFT ranging performs reliably, with linear re-
gression, and neural network having some deviation in specific distances.
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Figure 3.8: Mean absolute errors of different ranging methods across various environments. The
bar graph shows the contribution of each environment (Concrete Box, Open Field, Street Canyon)
to the overall error for each method.

Figure 3.8 provides a comparison of the mean absolute errors (MAE) for the different
methods across the three environments. The linear regression method shows the
highest overall error of 1.93 m, followed by the neural network with 1.06 m, and
the IFFT ranging achieving the lowest error of 0.67 m. Most of the error originated
from the concrete box dataset, being the most challenging environment with tightly
spaced reflections.



4 | Transfering to real measure-
ments

Simulated data provides a controlled environment for initial testing and training,
but to prove real-world applicability, its crucial to transfer these models to real
measurements.

In this chapter, the measurements taken are introduced, compared to the simulations,
followed by different machine learning experiments.

4.1 Measurement datasets
Measurements were conducted using two developer phones, with one phone serving
as the initiator and the other as the reflector. During the channel sounding process,
a test operator placed one device at various distances while keeping the other fixed.

Each channel sounding subevent measured the entire spectrum, adhering to Blue-
tooth specifications. Therefore, the channels reserved for advertising were excluded
from the measurements. 2402, 2403MHz from the beginning of the spectrum, 2425,
2426, 2427MHz in the first part of the spectrum, causing a gap in the measurements,
and the last channel 2479 MHz.

These frequency gaps necessitate additional considerations when implementing var-
ious ranging algorithms. For instance, MCPD relies on phase unwrapping to de-
termine the slope of the phase-frequency diagram. The presence of frequency gaps
can introduce errors in this unwrapping process. Similarly, decomposition methods
such as IFFT and MUSIC assume uniform frequency sampling, which is not met due
to these gaps. This non-uniform sampling can affect the accuracy and reliability of
these algorithms. On the other hand, when neural networks are used for ranging, it
does not suffer a significant loss in ranging accuracy[12].

Measurements were performed in three distinct environments, each with different
number of reflecting surfaces, posing a different level of difficulty for ranging. Each
measurement is performed with the devices in line of sight.

Open Field Office Outdoor near buildings

Figure 4.1: Measurement environments used for creating channel sounding datasets.
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4.1.1 Open Field

This dataset was collected outdoors in a field with no nearby buildings, so the main
reflecting surface was the ground below the devices, causing minimal interference.
Under these conditions, ranging performance is expected to be close to ideal for all
methods.

Measurements were taken at distances ranging from 1 meter to 30 meters, in 1 meter
increments, totaling 30 different distances. At each distance, measurements were
repeated between 100 and 129 times.

4.1.2 Office

This dataset was collected indoors in an office with reflecting surfaces such as walls
and furniture. These conditions pose a significant challenge to ranging algorithms
due to multiple reflections.

Measurements were taken at distances ranging from 0.2 meters to 6.2 meters, in 0.2
meter increments, totaling 31 different distances. At each distance, measurements
were repeated between 3400 and 11000 times.

During the measurement, the test operator when labelling the data had the option of
clicking ’moving’ on the screen to label the measurements as moving, and when the
device has been placed at a new position, the appropriate distance label was selected
manually. This allowed to save time by performing measurements continuously when
making measurements.

4.1.3 Outdoor near buildings

This dataset was collected outdoors near buildings, where both the ground and
nearby building surfaces influenced the measurements, though from larger distances
compared to the indoor scenario. This dataset serves as an intermediate difficulty
level between the ideal open field environment and the challenging indoor office sce-
nario.

Measurements were taken at distances ranging from 0.2 meters to 6 meters, in 0.2
meter increments, with additional measurements at 8 and 10 meters, totaling 32
different distances. At each distance, measurements were repeated between 1400
and 3800 times.

These measurements were also taken continuously, with the operator labeling the
data as ’moving’ when necessary.
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4.2 Comparing the generated dataset to the measure-
ments

The generated channel sounding dataset and the measurement from an Open field
environment are compared by visual inspection.
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Figure 4.2: Comparison of the generated dataset to the measurements for a distance of 100 cm.
The top row shows the measured phase and amplitude, while the bottom row shows the simulated
phase and amplitude. The phase diagrams align well with the measurements, but the amplitude
values differ in both range and general shape.

On Figure 4.2, the phase angles and the amplitudes are plotted for the resulting scan
at a distance of 100 centimeters. The phase diagram aligns well to the measurements
across all distances of the dataset. The amplitude values however differ both in the
range of values, and also in the general shape. The amplitude in this context is a
dimensionless quantity, proportional to the received power, which decreases as the
distance is increased between the two devices. This amplitude decrease is observable
in the simulation dataset, however on the measurement dataset the amplitude is
observed to fluctuate unrelated to the distance between the two devices as illustrated
on Figure 4.3.



4.3. Training on measurement datasets 24

0 500 1000 1500 2000 2500 3000
Distance [cm]

150000

200000

250000

300000

350000

400000

450000

M
ea

n 
am

pl
itu

de

Amplitude fluctuations on the openfield dataset

Figure 4.3: Amplitude fluctuations in the open field dataset. This figure shows the mean amplitude
values at different distances.

These fluctuations are due to the device’s Automatic Gain Controller (AGC) adjust-
ing the gains to ensure correct reception. However, the measurements in the dataset
are not normalized to cancel out this effect.

4.3 Training on measurement datasets
In this experiment, a neural network model with the same architecture as used in
the representation tests was trained on real measurement datasets. The goal was
to evaluate the model’s performance and its ability to generalize across different
environments.

The three datasets (Open Field, Office, and Outdoor Near Buildings) allow for a
combination of two datasets for training while reserving one for testing. This setup
enables the creation of a training dataset with a mixture of easier and more chal-
lenging examples, which is crucial for robust model training.

Given that the Open Field dataset is considered the least challenging and covers the
widest range of distances, it was included in the training dataset. The Office dataset,
which includes the most challenging examples for ranging among the three datasets,
was also included in the training experiment. This leaves the Outdoor dataset set
aside for testing purposes, serving as a medium-difficulty dataset to evaluate the
model’s generalization capabilities.

Preprocessing

The complex measurements with corresponding distance labels were loaded from a
file. Each channel sounding scan was preprocessed by converting the measurements to
phase angles, then normalizing these angles by dividing by π, resulting in an input
range of -1 to 1 for the model. The distance labels in the measurement dataset,
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originally in centimeters, were divided by 3000 to normalize the distances between 0
and 1, considering the largest measured distance was 30 meters.

Pretraining

Since the amplitudes are not well correlated with the distance, an angle-only rep-
resentation approach is used in this experiment. The model was first pretrained on
the combined dataset of the Office and Open Field measurements. This pretraining
resulted in a mean absolute error (MAE) of 3.39 centimeters, indicating a good fit on
the training dataset. This pretrained model was then tested on the reserved Outdoor
dataset, resulting in a mean absolute error of 174.74 centimeters.

The prediction plot indicates that the model was able to generalize to an unseen
dataset to some extent. However, higher errors were observed at both shorter and
longer distances within the dataset.
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Figure 4.4: Pretraining on Office and Open
Field datasets.

0 500 1000 1500 2000
Sample number

0

2

4

6

8

10

12

14

16

Di
st

an
ce

 [m
]

Pretrained tested on Outdoor

Prediction
Label

Figure 4.5: Pretrained model tested on Out-
door dataset.

Finetuning

To further improve the model’s performance, finetuning was performed by taking
every other distance from the Outdoor dataset and appending these new training
samples to the previous combination of Open Field and Office datasets. This served
as a new finetuning training dataset.

After finetuning, the model was tested again on the still unseen distances from the
Outdoor dataset. The results showed a reduction in the overall prediction error from
174.74 centimeters to 87.23 centimeters.
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Figure 4.6: Test before finetuning on the unseen
part of the Outdoor dataset.
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Figure 4.7: Test finetuned on the unseen part
of the Outdoor dataset.

The finetuning on the dataset, expanded with new distances from the Outdoor
dataset, effectively reduced the overall prediction error on the unseen distances from
143.2 centimeters to 87.23 centimeters.

This improvement demonstrates the model’s ability to generalize better with addi-
tional training data from varied environments. These results suggest that incorporat-
ing diverse training samples can enhance the robustness and accuracy of the ranging
models in real-world applications.

4.4 Transferring from simulation
Training on real datasets demonstrated generalizability between datasets. Since the
measurements are taken in a static environment, repeating the measurement in the
same condition resuls in consistent measurements with little variance. Therefore it is
more valuable to make measurements in smaller distance increments, or alternatively,
measuring in a changing environment with moving reflecting surfaces while keeping
the same distance.

Collecting these measurements is a time-consuming process. However, leveraging
simulation data for pretraining a model can significantly reduce this effort. Depend-
ing on how closely the simulations match the real measurements, the model can be
pretrained on simulated data, then finetuned on real data, or even trained entirely
on simulated data.

When comparing the open field simulation datasets to real measurements, it was
observed that while the phase angles closely matched, the amplitudes in the mea-
surement dataset were inconsistent due to the influence of each device’s gain con-
troller. This lack of normalization makes the amplitude data less useful for distance
estimation and model training.
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Figure 4.8: Phase diagram of 80 measurements in the office dataset with devices placed 200 cm
apart. This figure demonstrates that repeated measurements in a static environment yield consistent
results.

4.4.1 Transfer angle-only representation

This experiment tests a model’s performance trained on the simulation datasets in
the angle-only representation.

Sine the phase angles were possible to simulate to a suitable accuracy, training a
model on angle-only representation can result in a good transfer from simulation to
measurement data.

The simulation training datasets are combined to one dataset for training to provide
the model examples from different scenarios.

Preprocessing

The simulated complex measurements with corresponding distance labels were loaded
from a file. Each channel sounding scan was preprocessed by converting the mea-
surements to phase angles, then normalizing these angles by dividing by π, resulting
in an input range of -1 to 1 for the model. The distance labels in the measurement
dataset, stored in meters, were divided by 30 to normalize the distances in line with
the measurement datasets.

Additionally, the simulations generated measurements for all Bluetooth channels.
However, due to Bluetooth specifications, some channels cannot be used for channel
sounding. These unusable channels were discarded from the simulation dataset before
training.

Training

This data is preprocessed as detailed above. The model is the same architecture as
in the representation experiment.
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Since this training was performed on a simulation dataset, all the real measurement
datasets are unseen to the model, therefore the model’s performance can be assessed
in all measurement datasets.
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Figure 4.9: The trained angle-only model’s fit
on the its training dataset.
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Figure 4.10: Simulation trained angle-only rep-
resentation model tested on openfield measure-
ments.
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Figure 4.11: Simulation trained angle-only rep-
resentation model tested on office measurements.
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Figure 4.12: Simulation trained angle-only rep-
resentation model tested on outdoor measure-
ments.

This training run can be directly compared to the model trained purely on real
measurements since both use the angle-only representation and the outdoor dataset
remains unseen in both cases. Training on limited real measurements resulted in
a mean absolute error of 174.74 cm on the outdoor dataset. In contrast, training
on simulation data resulted in a significantly lower MAE of 37.08 cm on the same
dataset. This comparison demonstrates the effectiveness of simulation training in
improving the model’s generalization to unseen real measurements.
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Angle-only transfer
Dataset MAE (cm)
Train set 20.27
Openfield 36.82

Office 90.52
Outdoor 37.08

Table 4.1: Mean Absolute Error (MAE) in centimeters for the angle-only model on different
datasets.

Finetuning on measurements

A model initially trained on simulation data can be further refined using real mea-
surements to better align with real-world data. Similar to Section 4.3, a combination
of the Open Field and Office measurement datasets can be used as a training dataset,
while the Outdoor dataset is reserved for testing.
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Figure 4.13: Simulation-trained angle-only model further finetuned on the combined Office and
Open Field dataset, tested on the Outdoor dataset.

After only a few iterations of finetuning, the model achieves a very low mean absolute
error (MAE) of 4 cm on the combined training data. However, when tested on
the Outdoor dataset the predictions start to deviate quickly, resulting in an error
exceeding 1 meter similar to the results observed in the measurement-only training
case.

This outcome suggests that while finetuning on a limited set of real measurements can
initially improve performance, it is not sufficient for achieving robust generalization
across different environments. A more extensive and diverse measurement dataset
would be required to train a model exclusively on real measurements or to use for
further finetuning.



4.4. Transferring from simulation 30

It is also important to note that the angle-only representation proved to be the
least effective in the representation experiment on simulation data. Therefore, it is
worth exploring other representations to improve performance. Experimenting with
different representations, such as angle-abs or real-imag, could potentially lead to
better generalization and accuracy in the predictions.

4.4.2 Transfer normalized real-imag representation

The representation experiments demonstrated on simulation data that including am-
plitude information improves performance. The real-imag representation showed
promising performance, with the lowest error after the compute intensive IFFT rep-
resentation.

However, the amplitude measurements in the real dataset being not normalized, is
not a good feature for distance estimation. This experiment tests if transfering the
promisingly performing real-imag representation model to real measurements, by
normalizing the minimum and maximum magnitudes in each scan to fall between
-1 and 1. This removes the information about the absolute signal magnitude, but
preserves the shape of the signal. In frequency selective deep fading scenarios it
could still retain information about lower amplitudes relative to the minimum and
maximum which are normalized to -1 and 1.

Preprocessing

The simulated complex measurements with corresponding distance labels were loaded
from a file. Each channel sounding scan was preprocessed by taking their real and
imaginary components, as visualized in Figure 4.15. The real and imaginary compo-
nents are appended to construct a one dimensional vector, then the resulting vector
is normalized, so all of its values fall between -1 and 1. This served as the input
for the model as depicted in Figure 4.17. The distance labels in the measurement
dataset, stored in meters, were divided by 30 to normalize the distances in line with
the measurement datasets.

Additionally, the simulations generated measurements for all Bluetooth channels.
However, due to Bluetooth specifications, some channels cannot be used for channel
sounding. These unusable channels were discarded from the simulation dataset before
training.



4.4. Transferring from simulation 31

0 10 20 30 40 50 60 70
Frequency channel

0.0015

0.0010

0.0005

0.0000

0.0005

0.0010

0.0015

Real-imag representation

Real part
Imag part

Figure 4.14: Real-imag representation of the
channel sounding scan. The graph shows the real
and imaginary parts of the measurements across
the 79 Bluetooth frequency channels.
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Figure 4.15: Model input after preprocess-
ing. The graph shows the normalized values of
the concatenated real and imaginary components
from the channel sounding scan, scaled between
-1 and 1.

Training

The model is the same architecture as in the representation experiment, with the
normalized real-imag representation described above. The training resulted in a
better fit on the simulation training dataset as compared to the same architecture
trained on the angle-only representation (Table 3.7).

However, when loading and combining all measurement datasets, and applying the
same preprocessing, the model does not provide valid predictions as depicted in
Figure 4.17.
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Figure 4.16: Training predictions of the model
with normalized real-imag representation on the
simulation dataset.
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Figure 4.17: Testing predictions of the model
with normalized real-imag representation on
the real measurement datasets, highlighting the
model’s failure to generalize to the real datasets
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This experiment demonstrated a failure to make the model generalize to a real mea-
surement dataset in a real-imag representation, even when the absolute amplitude
values are cancelled out by the normalization technique.

4.4.3 Combined model

This experiment is meant to leverage a good performing simulation pretrained angle
model, and combine its predictions with an amplitude model trained on measure-
ments for finetuning.

To facilitate the construction of this architecture, this implementation is based on
PyTorch. This also allowed GPU accelerated training, and larger batch sizes, as well
as on-line logging.

Preprocessing

Each channel sounding scan was preprocessed by converting the simulated measure-
ments to phase angles, then normalized these angled by dividing by π, resulting in
an input range of -1 to 1 for the model. The distance labels in the measurement
dataset, stored in meters, were divided by 30 to normalize the distances in line with
the measurement datasets.

Additionally, the simulations generated measurements for all Bluetooth channels.
However, due to Bluetooth specifications, some channels cannot be used for channel
sounding. These unusable channels were discarded from the simulation dataset before
training.

Pretraining

The model is trained on the combination of all simulation training datasets to provide
the model examples from different scenarios. This data is preprocessed as detailed
above.

Parameter Value
Hidden layer sizes (200,100,50,20,10)

Activation ReLU
Learning rate 0.001

Optimizer Adam
Loss function MSE

Figure 4.18: Parameters of the PyTorch im-
plementation of the angle model
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Figure 4.19: Depiction of the angle model
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Figure 4.20: The angle model’s fit on the sim-
ulation training data.
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Figure 4.21: The angle model’s fit on real mea-
surements.

The model achieved a mean absolute error of 25 centimeters on the simulation train-
ing dataset. Note that Scikit-learn implementation achieved a 20.27 cm error on
the same dataset, indicating a better fit than the Pytorch implementation. This is
possibly due to differences like a fixed learning rate, different batch sizes.

On the combined real measurement dataset, The model achieves a 161.2 cm error.
Observable higher deviance is observable on the higher distances, which belong to
the openfield dataset.

Finetuning

The simulation pretrained model is reused. it provides a distance estimate. The
weights of the angle model were not frozen when its put into the combined model.

An amplitude model is constructed to extract useful information for ranging, which is
compressed down to a representation of 10 features. This is done since the amplitude
values themselves are not sufficient to provide a distance estimate, and intermediate
10 feature representation is kept instead.

This 10 features, and the 1 feature being the distance estimate of the angle model is
appended to a 11 feature vector, which serves as an input to a combiner network to
produce a refined distance estimate.

The model could be expanded with additional features, which can be useful to further
refine the distance estimate.

The finetuning is performed on real measurement data, to use the real measurement’s
amplitude information to refine the pretrained angle model’s measurement. Since
these measurements are performed in a static evironment, The dataset was separated
by distance. Half of the available distances are used for the finetuning training, while
the other half of the distances are used for evaluating.
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Parameter Value
Amplitude model layer sizes (200,100,50,20,10)

Combiner layer sizes (50,20,10)
Activation ReLU

Learning rate 0.001
Optimizer Adam

Loss function MSE

Table 4.2: Parameters of the combined model

Angle
model

Amplitude
model

Combiner

Distance
(1 feature)

Additional
features
(optional)

Model

Refined
distance
estimate

Angle

Amplitude

(10 features)

(Pretrained)

Figure 4.22: Architecture of the combined model.

The finetuning resulted in a close fit of 6 cm MAE on the training distances as
illustrated on Figure 4.23, but a 4.9 meter mean absolute error on the validation
distances as illustrated on Figure 4.26
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Figure 4.23: The combined model’s fit on the
training distances.

Figure 4.24: The combined model’s fit on the
validation distances.

This experiment resulted in the inability of the model to generalize better than the
angle-only model. This can be explained by the limited number of training data
available, and the amplitude’s unpredictability.

4.5 Comparison to MUSIC ranging
By using a simulation-trained model, it can be fairly evaluated and compared against
other ranging methods without contaminating the results with the model having seen
the samples during training.

The best performing model is the angle-only model implemented with Scikit-learn.
This model is compared against predictions from the MUSIC algorithm applied to
the current datasets.

Predictions are made for all measurements, including the scans with ’moving’ labels.
This uncertainty in the labels makes it difficult to evaluate ranging errors accurately.
Additionally, there are NaN values in the Office dataset where predictions cannot be
made for certain scans. As a result, visual inspection of the predictions is used as
the primary method of evaluation.
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Figure 4.25: Comparison of MUSIC and angle-
only simulation-trained neural network on the Of-
fice dataset.
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Figure 4.26: Comparison of MUSIC and angle-
only simulation-trained neural network on the
Outdoor dataset.

In Figures 4.22 and 4.23, the predictions of the angle-only simulation-trained neural
network are compared to those of the MUSIC algorithm for the Office and Outdoor
Near Buildings datasets, respectively. The target values represent the ground truth
distances. Both methods show a general trend of increasing as the distance increases,
but differences in prediction accuracy and consistency can be observed. The MUSIC
algorithm tends to have more fluctuation in its predictions, particularly in the Office
environment, which contains more reflecting surfaces and multipath effects.



5 | Discussion
In this work, machine learning techniques were explored to improve range estimation
from Bluetooth channel sounding measurements. using the amplitudes, and explore
machine learning, and data generation options to improve ranging performance

Datasets were generated with the help of Sionna ray-tracer in three different environ-
ments. An open field environment, a concrete box environment imitating an indoor
scenario, and a street canyon environment. For each environment, a training and a
testing set was created separately. The training set is generated with random an-
tenna positions, while the test sets were created at discrete distances imitating a real
measurement. These channel response simulations were used to simulate Bluetooth
channel sounding scans.

This simulation dataset was used for a machine learning experiment, where different
representations of the complex numbers of the simulated scan. The performance
of real-imaginary, angle-abs, angle-only, and IFFT representations using the neural
network models with the same architecture were trained and tested. Each represen-
tation’s fit on the training set, and performance on the testing set was compared.
This resulted in similar fit for all representations of 14 centimeters on average, and
one meter on the testing set in terms of mean absolute error. Most of the error
originating from the challenging concrete box dataset. Overall, IFFT representation
showed the lowest ranging errors, followed by the real-imag, the angle-abs and lastly
the angle-only representation. The IFFT representation was not studied further in
favor of other representations with less demanding preprocessing.

The performance of the real-imag representation was compared to Linear regression
and IFFT on the simulation testing datasets.

Real measurements were carried out in three different environments. an open field,
inside an office, and outdoors near buildings. The amplitudes of the measurements
was observed to fluctuate as the automatic gain controller adjusted the gains. This
made the amplitudes not a good feature for ranging purposes. This left the phase
angles as a reliable feature for ranging.

Training an angle-only representation model on real measurements from the mixed
openfield and the office dataset, was able to generalize to the third, outdoors dataset
to a mean absolute error of 174.74 cm. Further finetuning with half of the available
distances of the outdoor dataset was tried, and was able to reduce errors from 143.2
cm to 87.23 cm on the unseen testing distances.

The next experiment attempted to perform training the angle-only representation
model on the simulation data, and test it on real datasets. This resulted in mean
absolute errors of 36.82 cm on openfield, 90.52cm on office, and 37.08cm on outdoor.
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Further finetuning of this model on the combined dataset of openfield and office
resulted in the same performance as purely measurement training.

Since the angle-only model was the worst performing in the representation experi-
ment, it was tested to train a real-imag representation model with the magnitudes of
the values normalized between -1 and 1 within a full scan. This was meant to cancel
out the effects of the gain controller. The model pretrained on simulation data was
not able to transfer to the real dataset using this representation.

To leverage on a trained angle model, it was tried to combine its prediction with
an amplitude model to extract important information from the amplitude data and
refine the distance estimate. This combined model was attempted to train on half of
all the measurement distances, and validated on the unseen half, but it was unable
to fit to the the unseen distances.

Lastly, the best performing angle-only model was tested against the MUSIC algo-
rithm, resulting in a similar performance.



6 | Conclusion
The study demonstrates that machine learning is applicable in Bluetooth channel
sounding ranging.

Demonstrated using channel simulations for generating training data which could be
too time consuming and costly to perform in real life.

A representation experiment revealed that most majority of the useful information
for ranging lies in the phase angles, however improved performance was observed on
the angle-abs and real-imag representation. The IFFT representation achieved the
best performance, since it transforms the ranging problem to selecting the position
of the signal’s first arrival’s peak.

The real measurements proved insufficient to train a model on to be able to generalize
with good accuracy.

The measurements were performed in a static environment, therefore repeated mea-
surements of the same position resulted in very similar measurements. Data col-
lections for training purposes therefore benefits the most from measuring in smaller
distance increments, diverse environments, or moving reflecting surfaces.

The ability to train a model, and transfer to real measurements validates that the
accuracy of the simulation dataset.

The current iteration of the dataset measurement method does not normalize the
amplitudes according to the gain controller, which negatively impacts performance of
machine learning methods, and conventional methods alike. Implementing amplitude
normalization is expected to improve ranging accuracy, as it was also shown on the
representation experiment.

Comparison with the MUSIC algorithm’s and the best performing simulation trained
angle-only model’s prediction revealed similar ranging errors. The angle-only model
generally follows the trend of the target line more closely, with fewer deviations from
the target than the MUSIC model. Both methods are expected to improve with more
reliable amplitude data.
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