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Nomenclature
Functions

[x]+ Gives zero if x  0 and x if x > 0, where x 2 R.
a⇠ Asymptotically distributed.
d! Convergence in distribution.

Dom(·) Domain of (·)

Ran(·) Range of (·)

Sets

R The extended real line, [�1,1].

Rd The extended d-dimensional plane, R⇥ R⇥ · · ·⇥ R.

A4 B The symmetric difference of two sets, i.e., (A\B) [ (B\A)
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1 | Introduction
How does one measure financial risk? Throughout the years, a lot of different measures have
been used to try and describe the uncertainty of the financial markets. Modeling spread
using variance or standard deviation is a very popular choice, and has been around for a
long time, as Karl Pearson first used the term standard deviation back in 1894 [1]. Another
way of measuring risk, is by looking at potential losses, which has been done by the Value
at Risk (VaR) since the late 1980s. It was further popularized when the Basel II Accord
was published in 2004, as VaR was the preferred approach for measuring market risk [2].
The VaR at a given level, ↵ 2 (0, 1), tells one that there is an ↵ probability of losing VaR
or more on an investment. The drawback of V aR is that it does not give any information
on potential losses beyond the threshold ↵. Therefore, the so-called Conditional Value
at Risk (CVaR) was later introduced. The idea behind CV aR is to model the expected
shortfall of an investment, which is achieved by averaging the losses above the VaR level.
Besides yielding more information than VaR, CVaR is also what is called a coherent risk
measure. A coherent risk has the property that diversification lowers risk.

There are three main ways of estimating VaR, and hence also CVaR: The historical method,
the variance-covariance method, and the Monte Carlo method. The historical method relies
on estimating the VaR based on historical observations. The variance-covariance method
relies on fitting a parametric distribution to the return data, and then forecasting using
time series. The Monte Carlo method relies on simulating from a multivariate distribution,
and then estimating the VaR based on the quantiles of the Monte Carlo simulations. This
method relies on finding a good multivariate distribution for the returns, as the method is
then a valid approach.

There are multiple ways to estimate a multivariate distribution for returns. One way
is to try and fit a multivariate copula to the data. However, as shown by studies of
Sahamkhadam and Stephan, so-called vine copula-based models outperform simple mul-
tivariate copulas [3]. Vines are sequences of trees where each tree is constructed using
bivariate copulas as building blocks. Compared to multivariate copulas, vine copulas yield
the opportunity of choosing different dependence structure between assets, and not only
one single copula family. To be able to estimate a vine-copula model, it is necessary to
specify the marginal distribution of each asset return. There are many ways to model the
marginal distributions. One way is to use a time-series model, like an ARMA-GARCH
model.

1.1 Problem Statement
How can vine copulas be used to model the dependence structure of a high dimensional
portfolio? Furthermore, how can a vine copula with ARMA-GARCH marginals be used to
forecast Value at Risk and Conditional Value at Risk?

1
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2 | Vine Copulas
This chapter is based on [4] and [5].

Modeling the dependence structure of a portfolio consisting of multiple assets requires
a flexible multivariate distribution. Frequently used multivariate distributions such as
multivariate Gaussian- or Student’s t-distributions are restrictive in the sense that they
require that every asset is modeled using the same distribution. A more flexible class
of multivariate distributions is copulas. With copulas, the marginal distribution of each
asset can be selected separately from the joint distribution, thereby giving a more flexible
approach. However, as the number of assets in the portfolio increases, the dependence
structure also becomes more complicated to model. When this is the case, multivariate
copulas, such as elliptical- or Archimedean copulas, are typically too restrictive. Another
approach is to use independent bivariate copulas, called pair copulas, as building blocks
to create a multivariate distribution called an R-vine distribution. The flexibility of this
approach is that each pair can be modeled using a different bivariate copula, which in
theory should capture the dependence structure better compared to using a multivariate
copula.

2.1 Copulas

This section is based on [6] and [7].

Copulas are multivariate distribution functions with uniform marginals. Copulas are used
to model the dependence structure separately from the marginals. By separating the
modeling problem of the dependence structure and marginals, copulas make it possible to
construct a joint distribution from any set of univariate marginals.

Definition 2.1. d-Dimensional Copula
A function C is a d-dimensional copula if it has the following properties:

1. Dom(C) = [0, 1]d.

2. C is grounded, i.e., for every u 2 [0, 1]d

C(u) = 0, (2.1)

if at least one coordinate of u is 0.

3. C is d-increasing, i.e., for every a, b 2 [0, 1]d such that a  b

VC([a, b]) � 0, (2.2)

3
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where VC([a, b]) is the C-volume of the d-box B = [a, b] given by

VC(B) =
X

sign(c)C(c), (2.3)

where c is the vertices of the d-box B given by c = (c1, c2, . . . , cd) and ck is equal
to either ak or bk. The sum is taken over every vertex of B and sign(c) is given
by

sign(c) :=

(
1, if c has an even number of lower bounds,

�1, if c has an odd number of lower bounds.
(2.4)

4. C has one-dimensional marginals Ck such that Ck(u) = C(1, . . . , 1, u, 1, . . . , 1) =
u, for all u 2 [0, 1].

Due to the properties of a d-dimensional copula being grounded and d-increasing, Lemma A.1
shows that it is also nondecreasing. Therefore, it follows from Definition A.2 that a d-
dimensional copula is a d-dimensional distribution function on [0, 1]d with uniform marginals.

Another important property of d-dimensional copulas is that they can be used to construct
a multivariate distribution from any set of univariate marginals, which was first stated by
Sklar.

Theorem 2.2. Sklar’s Theorem
Let F be a d-dimensional distribution function with univariate marginal distribution
functions F1, F2, . . . , Fd. Then, for all (x1, x2, . . . , xd) 2 Rd, there exists a d-dimensional
copula C such that

F (x1, x2, . . . , xd) = C
�
F1(x1), F2(x2), . . . , Fd(xd)

�
. (2.5)

The copula C is unique if F1, F2, . . . , Fd are continuous. Otherwise, C is unique on
Ran(F1) ⇥ Ran(F2) ⇥ · · · ⇥ Ran(Fd). Conversely, if C is a d-dimensional copula and
F1, F2, . . . , Fd are univariate marginal distribution functions, then F is a d-dimensional
distribution function with univariate marginal distributions F1, F2, . . . , Fd.

The proof is omitted. However, a proof can be found in [8].

Theorem 2.2 states that the information contained by the multivariate distribution function
can be extracted by modeling the dependence structure between the variables and the
marginals separately. A copula should therefore be chosen such that it models the observed
dependence structure between the random variables. A way to construct a copula is to

4
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take the quasi-inverse1 of the marginals in (2.5) such that

C(u1, . . . , ud) = F
⇣
F (�1)
1 (u1), . . . , F

(�1)
d

(ud)
⌘
, (2.6)

for all (u1, . . . , ud) 2 [0, 1]d. To construct a copula using (2.6), it is required that the joint
distribution is known. In general, this is not the case when working with data. Another
approach is therefore needed. This approach is to use already-known families of copulas and
select a specific copula based on an information criterion such as the Akaike Information
Criterion(AIC). In this project, two families of parametric copulas will be utilized namely
elliptical copulas and Archimedean copulas. These two families of parametric copulas are
explored in Section A.2. However, the characteristics of each copula are summarized in the
following table.

Table 2.1: Characteristics of Elliptical Copulas and Archimedean Copulas

Tail Structure Tail Dependence
Elliptical

Gaussian Symmetric None
Student’s t Symmetric Both

Archimedean
Gumbel Asymmetric Upper
Survival Gumbel Asymmetric Lower
Rotated Gumbel
(90 and 270 degrees) Asymmetric None

Frank Asymmetric None

2.1.1 A Pair Copula Decomposition of a Multivariate Distribution

This subsection is based on [9].

In this subsection, it will be shown how a multivariate distribution can be constructed
using bivariate distributions as building blocks. It is assumed that all joint-, marginal-,
and conditional distributions are absolutely continuous with corresponding densities such
that the copulas are unique. Given a vector of random variables X = (X1, . . . , Xd), with
joint density function f(x1, . . . , xd), the joint density can be factorized as

f(x1, . . . , xd) = fd(xd) · f(xd�1|xd) · f(xd�2|xd�1, xd) · · · f(x1|x2, . . . , xd). (2.7)

The joint density function can also be derived by using the chain-rule on (2.5)

f(x1, . . . , xd) = c1,...,d
�
F1(x1), . . . , Fd(xd)

�
f1(x1) · · · fd(xd), (2.8)

1The definition of a quasi-inverse is found in Definition A.3.

5
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where the density of a copula is given by

c1,...,d
�
F1(x1), . . . , Fd(xd)

�
=

@C
�
F1(x1), . . . , Fd(xd)

�

@F1(x1)@F2(x2) · · · @Fd(xd)
. (2.9)

Remark that the sub-indices of the copulas, copula densities, and marginals are noted with
the same sub-indices that their input has instead of their actual input, to simplify notation.
For example, cx1,...,xk

is denoted as c1,...,k. The conditional density in the two-dimensional
case is therefore given by

f(x1|x2) = c1,2
�
F1(x1), F2(x2)

�
f1(x1). (2.10)

The decomposition of the joint density is not unique. The non-uniqueness of the decom-
positions will be shown in the three-dimensional case. For f(x1|x2, x3) there exists the
following decompositions

f(x1|x2, x3) = c1,2|3
�
F (x1|x3), F (x2|x3)

�
· f(x1|x3)

= c1,2|3
�
F (x1|x3), F (x2|x3)

�
· c1,3

�
F1(x1), F3(x3)

�
· f1(x1), (2.11)

f(x1|x2, x3) = c1,3|2
�
F (x1|x2), F (x3|x2)

�
· f(x1|x2)

= c1,3|2
�
F (x1|x2), F (x3|x2)

�
· c1,2

�
F1(x1), F2(x2)

�
· f1(x1). (2.12)

where the conditional density of the copula in (2.11) is calculated as

c1,2|3
�
F (x1|x3), F (x2|x3)

�
=

@

@x1@x2
C1,2|3

�
F (x1|x3), F (x2|x3)

�
, (2.13)

and the conditional density of the copula in (2.12) is calculated the same way. In general,
each term on the right side of (2.7) can be decomposed into a bivariate copula times the
conditional marginal

f(xi|xv) = ci,vj |v�j

�
F (xi|xv�j), F (xvj |xv�j)

�
· f(xi|xv�j), (2.14)

where the conditional density of a copula is given by

ci,vj |v�j

�
F (xi|xv�j), F (xvj |xv�j)

�
=

@Ci,vj |v�j

�
F (xi|xv�j), F (xvj |xv�j)

�

@xi@xvj

, (2.15)

and i 2 {1, . . . , d}, v ✓ {1, . . . , d} \ i, vj is an arbitrary element of v and v�j is v without
the j0th element. Furthermore, the conditional distribution function is given by

F (xi|xv) =
@

@F (xvj |xv�j)
Ci,vj |v�j

�
F (xi|xv�j), F (xvj |xv�j)

�
, (2.16)

where Ci,vj |v�j is a bivariate copula function. If v is univariate, then

F (xi|xv) =
@

@F (xv)
Ci,v(F (xi), F (xv)). (2.17)

To obtain F (xi|xv�j) and F (xvj |xv�j) a recursive method is used. This method will be
introduced later in this project. Every valid factorization of the joint distribution can be
represented in a graphical model. This model is called a regular vine tree structure.

6
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2.2 Vines
Vines are graphical models used to store the different pair copula decompositions of a
multivariate distribution. To store the different dependence structures, vines are a sequence
of connected trees where each edge in the prior tree becomes a node in the next, thereby
characterizing the decomposition of a multivariate distribution.

Definition 2.3. R-Vine Tree Sequence
The set of trees V = (T1, . . . , Td�1) is a regular (R-) vine tree sequence on d elements
if

1. T1 is a tree with nodes N1 = {1, . . . , d} and edges E1.

2. For j � 2, Tj is a tree with nodes Nj = Ej�1 and edges Ej.

3. For j � 2 and {a, b} 2 Ej it must hold that #(a \ b) = 1.

The last condition in Definition 2.3, is called the proximity condition, which ensures that
if an edge is connecting a and b in Tj, j � 2, then a and b must have a common node in
Tj�1. The number of different R-vine tree structures is large, as there exists (d!/2) · 2

�
d�2
2

�

different possibilities in the d-dimensional case. As a consequence of the many different
ways an R-vine tree structure can be constructed, a way to store each unique sequence of
trees is needed. To feasibly store an R-vine tree sequence, making inference possible, a
d⇥ d-dimensional upper triangular matrix is constructed.

Definition 2.4. R-Vine Matrix
Let M be an upper triangular matrix with entries mi,j for i  j, where 1  mi,j  d.
Such a matrix is called an R-vine matrix, if

1.
�
m1,i, . . . ,mi,i

 
⇢
�
m1,j, . . . ,mj,j

 
for 1  i < j  d.

2. mi,i /2
�
m1,i�1, . . . ,mi�1,i�1

 
.

3. For i = 3, . . . , d and k = 1, . . . , i� 1 there exist (j, `) with j < i and ` < j so it
holds that

n
mk,i,

�
m1,i, . . . ,mk�1,i

 o
=
n
mj,j,

�
m1,j, . . . ,m`,j

 o
or (2.18)

n
mk,i,

�
m1,i, . . . ,mk�1,i

 o
=
n
m`,j,

�
m1,j, . . . ,m`�1,j,mj,j

 o
. (2.19)

The last condition in Definition 2.4 corresponds to the proximity condition in Definition 2.3,
and hence there is a bijection between R-vine tree structures and R-vine matrices. It is
therefore possible to store the R-vine tree structures in R-vine matrices. An R-vine matrix
makes it possible to store and visualize high dimensions of R-vine tree structures, which is
effective in analysis of the dependence structure and the practical implementation of the

7
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R-vines.

In order to further analyze the properties of different vine structures, some sets regarding
the edges are of interest.

Definition 2.5. Complete Union, Conditioning and Conditioned Sets of an
Edge [5, p.5]
The complete union of an edge, ei 2 Ei, is the set

Uei = {n 2 N1|9ej 2 Ej, j = 1, . . . , i� 1, with n 2 e1 2 e2 2 · · · 2 ei�1 2 ei} ⇢ N1.
(2.20)

For ei = {a, b} 2 Ei, where a, b 2 Ei�1 for i = 1, . . . , d� 1, the conditioning set of ei is

Dei = Ua \ Ub, (2.21)

and the conditioned sets of ei are

Caei = Ua\Dei , Cbei = Ub\Dei , and Cei = Caei [ Cbei = Ua 4 Ub. (2.22)

From the sets in Definition 2.5 an edge can be written as e = (Cae , Cbe |De), where the
conditioned set is prior to "|" and the conditioning set is shown after "|".

Example 2.6.
The purpose of this example is to illustrate an R-vine tree structure, R-vine matrices
and the sets defined in Definition 2.5. An example of an R-vine tree sequence for d = 6,
is illustrated in the following graph.

1 2

5

6 3

4

2,1

5,2

6,2 3,6

4,5

T1

2,1 6,2

5,2

3,6

4,5

6,1|2

5,6|2

3,2|6

4,2|5

T2

6,1|2 3,2|6

5,6|2 4,2|6

3,1|26

5,3|26
4,6|25

T3

5,3|26

3,1|26 4,6|25

5,1|263 4,3|265

T4

5,1|263

4,3|265

4,1|2635

T5

Figure 2.1: Example of an R-vine tree sequence for d = 6.

8
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In Figure 2.1, the complete union for the edge {(2, 1), (6, 2)} from T2 is given as {1, 2, 6}.
The conditioning set for the edge {(6, 1|2), (3, 2|6)} from T3 is given as {2, 6}. The
conditioned set for the edge {(6, 1|2), (3, 2|6)} from T3 is given as {1, 3}.

The R-vine tree structure in Figure 2.1 is not unique in the way that, given T1, it would
be possible to construct other T2 trees, by changing the conditioned and conditioning
sets. For example, combining 5 and 1 by 2 in T1, would give the edge 5, 1|2 in T2,
which is not the case in this example, and hence would have specified another R-vine
tree structure.

When constructing an R-vine matrix corresponding to an R-vine tree sequence, it
is possible to choose between two elements of the conditioned set. Therefore, the
construction of an R-vine matrix is not unique. Examples of associated R-vine matrices
for Figure 2.1 are given by

M1 =

2

66666664

1 1 2 6 2 5
2 1 2 6 2

6 1 3 6
3 1 3

5 1
4

3

77777775

, M2 =

2

66666664

2 2 5 2 6 2
5 2 5 2 6

4 4 5 3
6 4 5

3 4
1

3

77777775

. (2.23)

2.3 R-Vine Copulas
It is possible to utilize the graphical structure of R-vines in the specification of multivariate
distributions. This is achieved by specifying a bivariate copula, Ce, for each edge in the
R-vine tree sequence, and hence adding a stochastic component to the structure.

Definition 2.7. R-vine Copula Specification
Let F = (F1, . . . , Fd) be a vector of continuous marginal invertible distribution func-
tions, V be a d-dimensional R-vine tree structure, and B = {Ce|e 2 Ei for i =
1, . . . , d � 1} be a set of pair copulas. Then the triplet (F,V ,B) is called an R-vine
copula specification.

Given an R-vine copula specification, it is possible to construct an R-vine distribution. Let
F be a joint distribution function of a random vector X = (X1, . . . , Xd). F is then an R-
vine distribution if Ce = CCae ,Cbe |De is the pair copula of XCae and XCbe given XDe = {Xi|i 2
De} for all e = {a, b} 2 Ei for i = 1, . . . , d� 1. In this construction, it is assumed that the
conditional copula, Ce, is independent of the conditioning variable XDe , which is called the
simplifying assumption. The conditioning values still affect the R-vine distribution through

9
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the dependence of the conditioning variables on the conditional distribution functions. It
is also possible to construct a non-simplified version where the pair copulas would depend
on the random vector X [4, p.207]. However, in this project, the focus will be on the
simplified version.

In order to specify the density for an R-vine distribution, let Xj have marginal distribution
Fj and let cCae ,Cbe |De denote the copula density of Ce.

Theorem 2.8. R-Vine Copula Density
Let (F,V ,B) be a d-dimensional R-vine copula specification. Then the density for the
unique distribution F , which realizes the R-vine copula specification, is given as

f(x) =
dY

j=1

fj(xj)
d�1Y

i=1

Y

e2Ei

cCae ,Cbe |De

⇣
FCae |De(xCae |xDe), FCbe |De(xCbe |xDe)

⌘
, (2.24)

where x = (x1, . . . , xd), e = {a, b}, xDe = {xi|i 2 De}, and fj denotes the density of
Fj for j = 1, . . . , d.

The proof is omitted. However, a proof can be found in [10, p. 259-260].

An example of the use of the factorization (2.24), which corresponds with Example 2.6,
can be found in Example B.1.

From Theorem 2.8 the distribution function of XCae and XCbe given XDe = xDe , is given by

FCae ,Cbe |De

⇣
xCae , xCbe |xDe

⌘
= Ce

⇣
FCae (xCae |xDe), FCbe (xCbe |xDe)

⌘
. (2.25)

Therefore, given a triplet (F,V ,B), Theorem 2.8 states that it is possible to specify the
associated R-vine distribution and density, and hence also the associated R-vine copula.

Definition 2.9. R-Vine Copula
An R-vine copula is an R-vine distribution, with uniform marginal distributions on
[0, 1].

The conditional distributions FCae (xCae |xDe) and FCbe (xCbe |xDe) in (2.25) are found recur-
sively using (2.16) . Firstly, (2.16) is rewritten using the notation presented in Defini-
tion 2.5. Therefore, let e = {a, b} = (Cae , Cbe |De) 2 Ei and e0 2 Ei�1 where Cae = Cae0 ,
Cbe0 2 De and De0 = De\Cbe0 . Then the conditional distribution is given as

FCae |De(xCae |xDe) =
@CCe0 |De0

⇣
FCae0 |De0 (xCae0

|xDe0 ), FCbe0 |De0 (xCbe0
|xDe0 )

⌘

@FCbe0 |De0 (xCbe0
|xDe0 )

=: h
⇣
FCae0 |De0 (xCae0

|xDe0 ), FCbe0 |De0 (xCbe0
|xDe0 )

⌘
. (2.26)

10
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FCbe |De(xCbe |xDe) is constructed in a similar way. To construct a method to calculate (2.26)
recursively, the conditional distribution is rewritten using the notation of an R-vine matrix:

Cae0 = Cae = {mk,k}, (2.27)
Cbe0 = {mi�1,k}, (2.28)
Ce0 = Cae0 [ Cbe0 = {mk,k,mi�1,k}, (2.29)
De = {m1,k, . . . ,mi�1,k}, (2.30)

for k = 2, . . . , d and i = 1, . . . , k�1. In the case i = 1 the conditioning set is empty. Addi-
tionally, the pair copula families and corresponding parameters are stored in the matrices
B = (bi,k)k=2,...,d,i=1,...,k�1 and ⇥ = (✓i,k)k=2,...,d,i=1,...,k�1, respectively. Furthermore, the en-
try labels of the R-vine matrix are relabeled, such that the diagonal labels are in ascending
order from 1 to d, to simplify notation. The diagonal is therefore given by mk,k = k for
k = 1, . . . , d. M1 in Example 2.6 would be relabeled as

M1 =

2

66666664

1 1 2 3 2 5
2 1 2 3 2

3 1 4 3
4 1 4

5 1
6

3

77777775

. (2.31)

Let the maximum matrix of M be denoted M = (mi,k)k=1,...,d,i=1,...,k, where
mi,k = max{m1,k, . . . ,mi,k} for all k = 1, . . . , d and i = 1, . . . , k. The element mi,k is,
therefore, the maximum of the k’th column of M from the top down to the i’th element.
For i = k the maximum mk,k is equal to the element in diagonal, i.e., mk,k = mk,k = k for
k = 1, . . . , d.

The conditional distributions in (2.26) is rewritten using the notation for an R-vine copula,
and are given by

g(1)
i,k

= Fmk,k|{m1,k,...,mi�1,k}(xmk,k
|xm1,k

, . . . , xmi�1,k
), (2.32)

g(2)
i,k

= Fmi,k|{m1,k,...,mi�1,k}(xm1,k
|xm1,k

, . . . , xmi�1,k
), (2.33)

for k = 2, . . . , d and i = 1, . . . , k � 1. The conditional distributions are therefore iterating
over the d columns of M and from the top down to the element over the diagonal in each
column. This way of iterating ensures that every edge of the R-vine, with the corresponding
copula type and parameters, is visited once. Both g(1)

i,k
and g(2)

i,k
can be given as either the

first or second argument of the function h(·, ·; bi,k, ✓i,k). Therefore, to store the positioning
of the conditional distributions, two matrices V direct and V indirect are used. The order
g(1)
i,k
, g(2)

i,k
is stored in V direct, which is selected when mi,k = mi,k. The order g(2)

i,k
, g(1)

i,k
is

stored in V indirect, which is selected when mi,k > mi,k. It can be shown by induction that
it is the correct order of g(1)

i,k
and g(2)

i,k
that is chosen, when using V direct and V indirect. The

proof will not be done in this project, but can be found in [5, p.12-14].

11
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To initialize the algorithm the first row of V direct is set to (vdirect1,1 , vdirect1,2 , . . . , vdirect1,d ) =�
F1(x1), F2(x2), . . . , Fd(xd)

�
. The first row of V indirect, (vindirect1,1 , vindirect1,2 , . . . , vindirect1,d ), does

not need to be initialized since V direct is always chosen for i = 1 since m1,k = m1,k for all
k = 1, . . . , d.

Algorithm 1 Conditional Distributions for R-Vine Density
Input R-vine copula specification matrices M,B,⇥, where mk,k = k, k = 1, . . . , d.
Output Density of the R-vine distribution at x = (x1, . . . , xd), for an R-vine copula

specification.
1: Set F = 1.
2: Let V direct = (vdirect

i,k
|k = 1, . . . , d, i = 1, . . . , k).

3: Let V indirect = (vindirect
i,k

|k = 1, . . . , d, i = 1, . . . , k).
4: Set (vdirect1,1 , vdirect1,2 , . . . , vdirect1,d ) =

�
F1(x1), F2(x2), . . . , Fd(xd)

�
.

5: Let M = (mi,k|k = 1, . . . , d, i = 1, . . . , k) where mi,k = max{mi,k, . . . ,md,k}, 8k =
1, . . . , d and i = 1, . . . , k.

6: for k = 2, . . . , d do (Iterating over the columns of M, except the first column)
7: for i = 1, . . . , k � 1 do (Iterating over the rows of M, above the diagonal)
8: Set g(1)

i,k
= vdirect

i,k
.

9: if mi,k = mi,k then
10: Set g(2)

i,k
= vdirect

i,mi,k
.

11: else
12: Set g(2)

i,k
= vindirect

i,mi,k
.

13: end if
14: Set F = F · c

⇣
g(1)
i,k
, g(2)

i,k
|bi,k, ✓i,k

⌘
.

15: Set vdirect
i+1,k = h

⇣
g(1)
i,k
, g(2)

i,k
|bi,k, ✓i,k

⌘
and vindirect

i+1,k = h
⇣
g(2)
i,k
, g(1)

i,k
|bi,k, ✓i,k

⌘
.

16: end for
17: end for

return F

2.3.1 Sampling From an R-Vine Copula Specification

This subsection is based on [11] and [12].

To sample from an R-vine copula specification, Algorithm 1 can be modified using the
inverse probability integral transformation.

Theorem 2.10. The Inverse Transform Method
Let x 2 R, y 2 [0, 1], F (x) be a CDF, and F�1(y) be the inverse function given by

F�1(y) = min{x : F (x) � y}. (2.34)

12
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By defining X = F�1(U), where U has a continuous uniform distribution on [0, 1],
then X follows the distribution F .

The proof can be found in [11, p. 1].

Therefore, to sample from an R-vine copula specification given a sample, u1, . . . , ud, of
i.i.d. unif(0, 1) variables, let

x1 = u1, (2.35)
x2 = F�1

2|1 (u2|x1), (2.36)

x3 = F�1
3|1,2(u3|x1, x2), (2.37)

...
xd = F�1

d|1,2,...,d�1(ud|x1, . . . , xd�1). (2.38)

To calculate each xj for j = 1, . . . , d, the inverse of the h-function in (2.26) is used. Firstly,
the inverse conditional distributions are rewritten using the notation of an R-vine matrix

xj = F�1
j|1,...,j�1(uj|x1, . . . , xj�1) = F�1

mk,k|{m1,k,...,mk�1,k}(xmk,k
|xm1,k

, . . . , xmk�1,k
). (2.39)

To calculate xj, it can be noted that

Fmk,k|{m1,k,...,mk�1,k}(xmk,k
|xm1,k

, . . . , xmk�1,k
) (2.40)

= h
⇣
Fmk,k|m1,k,...,mk�2,k

(xmk,k
|xm1,k

, . . . , xmk�2,k
), g2

k�1,k

⌘
(2.41)

= h

✓
h
⇣
Fmk,k|{m1,k,...,mk�3,k}(xmk,k

|xm1,k
, . . . , xmk�3,k

), g2
k�2,k

⌘
, g2

k�1,k

◆
(2.42)

...

= h

✓
. . . h

⇣
xmk,k

, g21,k

⌘
. . . , g2

k�1,k

◆
. (2.43)

By taking the inverse of the h-functions, xj is given by

xj = h�1
⇣
. . . h�1

�
uj, g

2
k�1

�
. . . , g21,k

⌘
. (2.44)

To incorporate this into the modified algorithm, two for-loops over the rows are used.
The first one updates xj using vdirect and vindirect, which is selected the same way as in
Algorithm 1. In the second loop, vdirect and vindirect are calculated based on the prior
column.

13
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Algorithm 2 Simulation From an R-Vine Copula Specification
Input R-vine copula specification matrices M,B,⇥, where mk,k = k, k = 1, . . . , d.
Output Random observations x = (x1, . . . , xd) from the R-vine copula specification.

1: Let u1, . . . , ud be independent uniform samples.
2: Let V direct = (vdirect

i,k
|k = 1, . . . , d, i = 1, . . . , k).

3: Let V indirect = (vindirect
i,k

|k = 1, . . . , d, i = 1, . . . , k).
4: Set (vdirect1,1 , vdirect1,2 , . . . , vdirect1,d ) = (u1, u2, . . . , ud).
5: Let M = (mi,k|k = 1, . . . , d, i = 1, . . . , k) where mi,k = max{mi,k, . . . ,md,k}, 8k =

1, . . . , d and i = 1, . . . , k.
6: Let x1 = vdirect1,d .
7: for k = 2, . . . , d do (Iterating over the columns of M except the first column)
8: for i = k � 1, . . . , 1 do (Iterating over the rows of M above the diagonal)
9: if mi,k = mi,k then

10: Set g(2)
i,k

= vdirect
i,mi,k

.
11: else
12: Set g(2)

i,k
= vindirect

i,mi,k
.

13: end if
14: Set vdirect1,k = h�1

⇣
vdirect1,k , g(2)

i,k
|bi,k, ✓i,k

⌘

15: end for
16: Let xk = vdirect1,k .
17: for i = 1, . . . , k � 1 do (Iterating over the rows of M above the diagonal.)
18: Set g(1)

i,k
= vdirect

i,k

19: Set vdirect
i+1,k = h

⇣
g(1)
i,k
, g(2)

i,k
|bi,k, ✓i,k

⌘
and vindirect

i+1,k = h
⇣
g(2)
i,k
, g(1)

i,k
|bi,k, ✓i,k

⌘
.

20: end for
21: end for

return (x1, . . . , xd)

2.4 Parameter Estimation of Simplified R-Vine Copulas
Assume that there exists an R-vine copula specification, with an associated density as given
in (2.24), and that the simplifying assumption holds. Given some i.i.d. d-dimensional data
of sample size n, collected in n⇥ d data matrix

u := (u>
1 , . . . , u

>
n
), with uj := (uj,1, . . . , uj,d)

> for j = 1, . . . , n, (2.45)

it is possible to formulate the likelihood for a simplified R-vine copula. Let ✓ = {✓e, e 2 E},
then the likelihood for a simplified R-vine copula is given as

L(✓; u) =
nY

j=1

d�1Y

i=1

Y

e2Ei

cCae ,Cbe |De

⇣
FCae |De(uj,Cae |uj,De), FCbe |De(uj,Cbe |uj,De)

⌘
, (2.46)
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where cCae ,Cbe |De depends on the parameters ✓Cae ,Cbe |De . Furthermore, FCae |De and FCbe |De

are recursively calculated the same way as in Algorithm 1 and therefore they depend on
the parameters used to calculate them.

To calculate the log-likelihood for a simplified R-vine copula, one can use a modified version
of Algorithm 1. To calculate the log-likelihood, Line 1 is changed to L = 0 and Line 14 is

changed to L = L + log

✓
c
⇣
g(1)
i,k
, g(2)

i,k
; bi,k, ✓i,k

⌘◆
. Given multiple observations, vdirect

i+1,k and

vindirect
i+1,k must be calculated for every observation, which is achieved by taking the sum over

every observation in Line 14. The algorithm for calculating the log-likelihood can be found
in Section B.2.

When wanting to estimate the parameter vector using maximum likelihood for a simplified
R-vine copula, where each pair copula only has one parameter, the number of parameters
is d(d � 1)/2. Therefore, it is desirable to find a good starting value, which can be found
using sequential parameter estimation. The sequential estimation method maximizes the
parameters tree-by-tree, and is, therefore, simpler than doing joint maximum likelihood,
where all the parameters are estimated at once.

Definition 2.11. Sequential Estimation in Simplified R-Vine Copulas
Let ✓e be the copula parameters corresponding to e = (Cae , Cbe |De) in tree Ti for
i = 1, . . . , d� 1. Furthermore, let ✓(Ti) denote the copula parameters in tree Ti, with
estimates denoted as ✓̂(Ti). If all copula parameters up to Ti�1 are estimated, let
✓̂(T1,...,i�1) denote the set of those parameters. Then, the sequential estimate of ✓e in
Ti is based on pseudo-observations

u
j,Cae |De;✓̂(T1,...,i�1)

:= FCae |De

⇣
uj,Cae |uj,De ; ✓̂(T1,...,i�1)

⌘
, (2.47)

u
j,Cbe |De;✓̂(T1,...,i�1)

:= FCbe |De

⇣
uj,Cbe |uj,De ; ✓̂(T1,...,i�1)

⌘
, (2.48)

for j = 1, . . . , n. To find the estimate ✓̂e, one must maximize

nY

j=1

cCae ,Cbe |De

⇣
u
j,Cae |De;✓̂(T1,...,i�1)

, u
j,Cbe |De;✓̂(T1,...,i�1)

; ✓e
⌘
. (2.49)

The concept of sequential estimation, as presented in Definition 2.11, is often used as a
starting point for maximum likelihood estimation as stated before. However, it is also
possible to use the result from the sequential estimation as the final estimate for the
parameters.
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2.5 Selecting R-Vine Copulas
The process of estimating and selecting an R-vine copula, can be summed up in three
steps:

1. Selecting the R-vine tree structure in terms of (un)conditioned pairs.

2. Choosing bivariate copulas for all the pairs selected in step 1.

3. Estimating the copula parameter(s) for each pair copula chosen in step 2.

For a small number of dimensions, it would be possible to estimate the parameters for all the
different structures. However, when the number of dimensions increases, the number of pa-
rameters increases quadratically, as stated in Section 2.4, and hence it becomes unfeasible to
estimate all parameters for all outcomes. Therefore, consider a triplet (V ,B(V),⇥(B(V))),
where V denotes an R-vine tree structure, B(V) denotes the set of all d(d� 1)/2 pair cop-
ulas for the edges in V , and ⇥(B(V)) denotes the parameters estimated for all pair copulas
in B(V). Given some data of size n ⇥ d and the specification of an adequate R-vine tree
structure, the next step is to choose copulas CCae ,Cbe |De and estimate parameters. To select
copulas for each edge in all trees, the AIC can be used.

Therefore, consider the set of bivariate copulas and associated parameters for T1 2 V . For
an edge e = {a, b} = (Cae , Cbe |De) 2 T1, the copula data is given as uj,Cae := FCae (xj,Cae )
and uj,Cbe := FCbe (xj,Cbe ) for j = 1, . . . , n. Let Be be the set of possible parametric bivariate
copulas for edge e, and CB be an element in Be, with density cB. Then, for each CB 2 Be

calculate the MLE of ✓B, using the copula data ue := {uj,Cae , uj,Cbe , for j = 1, . . . , n}.
When each copula CB is fit with parameters ✓̂B, calculate the AIC for each element as
follows

AIC(CB, ✓̂B; ue) := �2
nX

j=1

ln(cB(uj,Cae , uj,Cbe ; ✓̂
B) + 2jB, (2.50)

where jB is the dimension of ✓B. The choice of bivariate copula for edge e, is the one which
yields the lowest AIC value.

For Ti, where i � 2, the sequential estimation from Section 2.4 is utilized. For e = {a, b} =
(Cae , Cbe |De) 2 Ti, pseudo-observations from the bivariate copula distribution (UCae , UCbe )
given UDe is available, and they will be denoted as

ûj,Cae |De
:= u

j,Cae |De;✓̂(T1,...,i�1)
and ûj,Cbe |De

:= u
j,Cbe |De;✓̂(T1,...,i�1)

, (2.51)

where j = 1, . . . , n and u
j,Cae |De;✓̂(T1,...,i�1)

and u
j,Cbe |De;✓̂(T1,...,i�1)

are given as (2.47) and
(2.48), respectively. Then, for each e 2 Ti, where i � 2, follow the same procedure as for
T1. Given the choices of pair copulas and associated parameters for all edges in Ti, the
pseudo-observations is defined and used for the selection of copulas for Ti+1. The procedure
is executed until all pair copulas for every edge in all trees are specified.
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As the number of R-vine tree sequences for d variables is d!
2 ·2

�
d�2
2

�
, it is unfeasible to fit all

possibilities of (V ,B(V),⇥(B(V))) when d is large. Therefore, a greedy algorithm, called
Dißmann’s Algorithm, with top-down selection, is chosen for selecting an R-vine copula.
The top-down selection means that one starts with the T1, and sequentially selects all trees
down to Td�1. The first tree can be chosen as an arbitrary spanning tree, however, given
a tree Ti where i 2 {1, . . . , d � 2}, the tree Ti+1 has to obey the proximity condition, as
defined in Definition 2.3. Let w be a weight for the edges, which in this project will either
be the AIC as presented in (2.50), or the absolute empirical Kendall’s tau given in (A.10).

Algorithm 3 Dißmann’s Algorithm
1: Calculate wi,k for all pairs {i, k} where 1  i < k  d.
2: Select the maximum spanning tree:

T1 = argmax
T=(N,E) spanning tree

X

e=(Cae ,Cbe )2E

wCae ,Cbe .

3: for each edge e 2 E1 do
4: Select a copula, CCae ,Cbe with parameter estimates ✓̂Cae ,Cbe .
5: for j = 1, . . . , n do

ûj,Cae = FCae |Cbe (uj,Cae |uj,Cbe ; ✓̂Cae ,Cbe ),

ûj,Cbe = FCbe |Cae (uj,Cbe |uj,Cae ; ✓̂Cae ,Cbe ).

6: end for
7: end for
8: for i = 2, . . . , d� 1 do
9: Determine wCae ,Cbe |De for all possible edges, e = (Cae , Cbe |De), in Ti.

Let EP,i denote the set of edges which satisfy the proximity condition for Ti.
10: Select the maximum spanning tree for the edges in EP,i:

Ti = argmax
T=(N,E) spanning tree with E⇢EP,i

X

e=(Cae ,Cbe |De)2E

wCae ,Cbe |De

11: for each edge e 2 Ei do
12: Select a pair copula CCae ,Cbe |De with parameter estimates ✓̂Cae ,Cbe |De .
13: for j = 1, . . . , n do

ûj,Cae |De = FCae |Cbe[De(uj,Cae |uj,Cbe , uj,De ; ✓̂Cae ,Cbe |De),

ûj,Cbe |De = FCbe |Cae[De(uj,Cbe |uj,Cae , uj,De ; ✓̂Cae ,Cbe |De).

14: end for
15: end for
16: end for

return the sequential model estimate (V̂ , B̂, ⇥̂).
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As Dißmann’s algorithm is a greedy algorithm, it only makes locally optimal selections of
trees. However, as mentioned in [4, p. 162], the performance of the algorithm is in general
good. As for the concept of maximum spanning trees mentioned in Line 2 and Line 10 in
Algorithm 3, it is, as the optimization problems show, a spanning tree where the weights
are maximized. To solve those maximum spanning tree problems, a modification of Prim’s
algorithm is used [13, p.634-635]. As all pair copulas are tested for each edge in each tree,
it can be beneficial to choose a restricted set of copulas, to reduce the complexity of the
estimation. A restricted set of bivariate copulas, presented in Table 2.1, will therefore be
chosen for the application part of the project.

2.6 Goodness-of-Fit

This section is based on [14] and [15].

The purpose of this section is to verify the choice of model using a goodness-of-fit(GOF)
test. The test is based on the Bartlett identity, which is a relation between the Hessian
matrix, , and the expected outer product of the corresponding score function, . Assume
that the copula density is three times continuously differentiable and that the related
expectations exist. Then

(✓) := E

r2

✓
ln
⇣
c✓
�
F1(x1), . . . , Fd(xd)

�⌘�
and,

(✓) := E
"
r✓ ln

⇣
c✓
�
F1(x1), . . . , Fd(xd)

�⌘✓
r✓ ln

⇣
c✓
�
F1(x1), . . . , Fd(xd)

�⌘◆>
#
,

(2.52)

where r✓ is the gradient with respect to ✓ and the expectations are with respect to the
joint distribution F . Under correct model specification, i.e., ✓ = ✓0, where ✓0 denotes the
true parameter vector, the Bartlett identity is given as � (✓0) = (✓0). From the Bartlett
identity, the null hypothesis for the misspecification test is given as

H0 : (✓0) + (✓0) = 0 against H1 : (✓0) + (✓0) 6= 0. (2.53)

To test the hypothesis, estimation of and is required. Therefore, assume that u :=
(u>

1 , . . . , u
>
n
), with uj := (uj,1, . . . , uj,d)> for j = 1, . . . , n, is n i.i.d. d-dimensional samples

of copula data, ✓̂n = ✓̂(u1, . . . , un) is the estimated parameter vector, and U follows an
R-vine copula distribution. Then, define

(✓|U) := r2
✓
l(✓|U) and (✓|U) := r✓l(✓|U)

�
r✓l(✓|U)

�>
, (2.54)

and the sample counterparts

ˆ
j(✓̂n) := (✓̂n|uj) and ˆ

j(✓̂n) := (✓̂n|uj), (2.55)
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where l(✓|U) is the log-likelihood and ˆ
j(✓̂n), ˆ j(✓̂n) 2 Rp⇥p, where p is the length of the

parameter vector. Then, the sample estimates of (✓) and (✓) is given as

¯ (✓̂n) :=
1

n

nX

j=1

ˆ
j(✓̂n) and ¯ (✓̂n) :=

1

n

nX

j=1

ˆ
j(✓̂n), (2.56)

respectively. If all pair copulas are one-parametric, the dimensions of (2.55) are d(d �
1)/2⇥ d(d� 1)/2, and hence p = d(d� 1)/2. The dimension increases if higher parametric
copulas are used and decreases if the independence copula is used. To construct the test
statistic for the null hypothesis given in (2.53), the sum of the lower triangular matrices

and are vectorized, i.e., the columns of the lower triangular matrices are stacked on
top of each other, and is given as

d(✓|U) := vec
�

(✓|U) + (✓|U)
�
. (2.57)

The empirical equivalents are given as

d̂j(✓̂n) := d(✓̂n|uj), (2.58)

d̄(✓̂n) :=
1

n

nX

j=1

d̂j(✓̂n), (2.59)

which is both of dimension p(p + 1)/2. Prior to (2.52), it was assumed that the copula
density is three times continuously differentiable, which makes it possible to define the
expected gradient matrix of d(✓|U) and corresponding estimate, as

rD✓ := E
⇥
r✓k

dl(✓|U)
⇤
l=1,...,p(p+1)/2, k=1,...,p

and (2.60)

[rD✓ :=
1

n

nX

j=1

h
r✓k

d̂j(✓̂n|ut)
i

l=1,...,p(p+1)/2, k=1,...,p
, (2.61)

respectively. Under correct specification it holds that rD✓0 = 0 which means that the
asymptotic covariance matrix given as

V✓0 = E
h�
d(✓0|U)�rD✓ (✓0)

�1r✓l(✓0|U)
�

·
�
d(✓0|U)�rD✓ (✓0)

�1r✓l(✓0|U)
�>i

, (2.62)

is also equal to zero under the correct specification. Therefore, given the asymptotic
covariance matrix and the fact that

p
nd̄(✓̂n)

d! N(0, V✓0) as n ! 1, it is possible to
formulate the GOF test statistic.
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Proposition 2.12.
Under the correct copula specification and suitable regularity conditions2, the test
statistic is given as

Tn := n
⇣
d̄(✓̂n)

⌘>
V̂ �1
✓̂n

d̄(✓̂n), (2.63)

where V̂ �1
✓̂n

is a consistent estimate of V �1
✓0

, and as a result Tn is asymptotically �2
p(p+1)/2

distributed.

The proof is omitted. However, a proof for the general case of the misspecification test
for a multivariate distribution can be found in [16]. Since the MLE for a vine copula is
normally distributed;

p
nI(✓0)1/2

⇣
✓̂n � ✓0

⌘
d! N(0, Ip) as n ! 1, (2.64)

this also holds for the case of vine copulas. In (2.64), I(✓0) denotes the Fisher Information
Matrix.

Given the test statistic in Proposition 2.12, it is possible to construct an ↵-level test.

Corollary 2.13.
Let ↵ 2 (0, 1) and Tn be defined as in (2.63). Then reject H0 : (✓0) + (✓0) = 0 if

T >
⇣
�2
p(p+1)/2

⌘�1

(1� ↵), (2.65)

which is an asymptotic ↵-level test, where (�2
df
)�1(�) denotes the �-quantile of a �2

df

distribution.

The �2-distribution in (2.65) depends solely on p, which is known from the set of copula
families, and not the true parameter. Furthermore, the test is a so-called "blanket test", as
it does not require any strategic choice in terms of for example weight- or kernel-functions
and is therefore applicable for all copula families [17].

2.7 Modeling of Marginals

This section is based on [18] and [19].

In this section, it will be shown how the marginals of the log-returns will be modeled using
an AutoRegressive Moving-Average(ARMA) and Generalized AutoRegressive Conditional

2The regularity conditions needed is assumptions A.1 - A.10 proposed in [16].
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Heteroskedasticity (GARCH) model. The mean equation of a univariate time series de-
scribing the log-returns is given by

rt = E[rt|Ft�1] + "t, (2.66)

where Ft�1 is the information set at time t � 1 and "t is the innovations of the time
series. The conditional mean is modeled using an ARMA(m,n) process, and the conditional
variance of the log-return series is modeled using a GARCH(p, q) model. A GARCH model
is utilized to capture the characteristics of log-returns such as heavy tails, clustering of
volatilities and the leverage effect.

The ARMA(m,n) mean equation is given by

rt = µ+
mX

i=1

�irt�i +
nX

j=1

✓j"t�j + "t. (2.67)

The GARCH(p, q) variance equation is given by

"t = zt�t, (2.68)

�2
t
= ! +

pX

i=1

↵i"
2
t�i

+
qX

j=1

�j�
2
t�j

, (2.69)

where ! > 0, ↵i � 0 for i = 1, . . . , p, �j � 0 for j = 1, . . . , q, and zt ⇠ i.i.d(0, 1). The
distribution of the innovations is selected based on the data. In this project, the distribution
of the innovations are allowed to follow either a standardized Gaussian-, standardized
Student’s t-, or a standardized Normal-Inverse Gaussian(NIG)-distribution. The density
function for an NIG-distribution is given by

f(x;µ,↵, �, �) =
↵�

⇡
exp

⇣
�
p
↵2 � �2 + �(x� µ)

⌘ K1

⇣
↵
p
�2 + (x� µ)2

⌘

p
�2 + (x� µ)2

, (2.70)

where K�(x) = 1
2

R1
0 t��1 exp

�
1
2x(t+ t�1)

�
dt is a modified Bessel function of the third

kind. An NIG-distribution’s advantage over the Gaussian distribution is the ability to
model heavy tails, kurtosis, and jumps, which can occur when working with a price process
of financial assets [20, p. 224]. To select the distribution of the innovations the AIC is
used. The order of the ARMA(m,n)-GARCH(p, q) model is also chosen with AIC. The
fitted model’s residuals, ẑt, are then converted into uniform marginals by using the CDF
corresponding to the selected distribution of the innovations

ût, = Fj(ẑt,j), (2.71)

where ût,j ⇠ U [0, 1]d and j = 1, . . . , d.

21





(Conditional) Value at Risk Aalborg University - 4.111a

3 | (Conditional) Value at Risk
This section is based on [21] and [22].

Two popular risk measures in modern portfolio theory are Value at Risk (V aR) and the
closely related term Conditional Value at Risk (CV aR), which is also called expected
shortfall. Contrary to standard deviation, which models spread, the concern when modeling
V aR and CV aR is potential losses. Therefore, let V (t) denote the value of a portfolio at
time t, and

L[t,t+s] := �(V (t+ s)� V (t)), (3.1)

denote the loss of the portfolio in the time period from t to t + s. As the value V (t + s)
is not observable at time t, it is a random variable. Therefore, L[t,t+s] is also a random
variable, which distribution is called the loss distribution. In order to model V (t), let
f : R+ ⇥ Rd ! R be a measurable function given as

f(t, Pt) = V (t), (3.2)

which is a function of time, t, and the random variable Pt = (Pt,1, . . . , Pt,d), which is the
log-prices of d different assets at time t. Furthermore, let rt := Pt � Pt�1 denote the log-
returns of the d assets from t� 1 to t. Then, it is possible to write the one-step-ahead loss
function as

L[t,t+1] = L := �
�
f(t+ 1, Pt + rt+1)� f(t, Pt)

�
. (3.3)

Since the price, Pt, is known at time t, the distribution of the loss function only depends
on the distribution of the return rt+1. Hence, the conditional loss distribution is defined as

FL|Ft(l) := P
�
`(rt+1)  l|Ft

�
= P

�
L  l|Ft

�
, (3.4)

where Ft is the information up to time t, l 2 R, and ` is the one-step-ahead loss operator
defined as

`(x) := �
�
f(t+ 1, Pt + x)� f(t, Pt)

�
, (3.5)

where x 2 Rd. It is possible to use the conditional loss distribution, (3.4), to measure risk
in terms of potential losses.

Definition 3.1. Value at Risk
Let L be a loss function with loss distribution function FL and ↵ 2 (0, 1). Then the
V aR of a portfolio, at a confidence level ↵, is given as

V aR↵(L) := inf{` 2 R : P(L > `)  1� ↵} = inf{` 2 R : FL(`) � ↵}. (3.6)
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The V aR of a portfolio measures the probability of obtaining a loss greater than or equal
to `, given a specific confidence level ↵. Hence, the V aR of a portfolio can be written as
V aR↵(L) = F�1

L
(↵), which is the ↵-quantile of the loss distribution function. However,

calculating the V aR for a portfolio, doesn’t give any information of the size of the loss,
as V aR only calculates the quantiles, but doesn’t model the tail. Therefore, it could be
beneficial to use a risk measure which models the tail, and hence try to estimate the
expected loss.

Definition 3.2. Conditional Value at Risk
Let L be a loss function with E[|L|] < 1 and loss distribution function FL and ↵ 2
(0, 1). Then the CV aR of a portfolio, at a confidence level ↵, is given as

CV aR↵(L) := E[L|L � V aR↵(L)] =
1

1� ↵

Z 1

↵

V aRu(L)du. (3.7)

Given the possible losses L, the CV aR calculates the average of the V aR for u � ↵, which
is why CV aR is also called expected shortfall. The second equation in (3.7) is due to the
fact that

E[L|L � V aR↵(L)] =
1

1� ↵

Z 1

F
�1
L (↵)

l dFL(l) (3.8)

=
1

1� ↵

Z 1

↵

F�1
L

(u)du (3.9)

=
1

1� ↵

Z 1

↵

V aRu(L)du. (3.10)

The main reason for choosing CV aR as the risk measure, instead of V aR, is the fact
that CV aR is a coherent risk measure, which V aR is not. A coherent risk measure is a
functional, which satisfies the properties: Monotonicity, sub-additivity, positive homogene-
ity, and translation invariance. The properties are explained in Appendix C. The main
motivation for working with coherent risk measures is that diversification reduces the risk.

3.1 Estimation of (C)VaR
As the possible loss L is a latent variable, V aR and CV aR need to be estimated. To
estimate the loss distribution for L = `(rt+1), given only the information, Ft, three
methods can be utilized: Variance-covariance estimation, historical simulation and esti-
mation and Monte Carlo simulation and estimation. In this project, the Monte Carlo
simulation method is utilized to estimate V aR and CV aR. This method is based, as
the name suggests, on Monte Carlo simulations from an estimated model. First step is
therefore to make a model for the returns, given the data rt�n+1, . . . , rt. Then one sam-
ples M independent realizations, rt+1,1, . . . , rt+1,M , and uses the realizations to calculate
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{L̃m = `(rt+1,m) : m = 1, . . . ,M}. The empirical ↵-quantile is then found to calculate
V aR, and the CV aR is calculated as the average of the losses above the ↵-quantile. In
general, the main problem with this method is to find a good multivariate model for the
returns, which in this project is attempted with an R-vine copula.

3.2 Backtesting of VaR and CVaR
This section is based on [23], [24], and [25, p. 442-444].

Backtesting is used to measure the accuracy and thereby the effectiveness of (C)V aR on
historical data. To measure the accuracy of (C)V aR, forecasted values of (C)V aR are
compared to the actual losses.

3.2.1 Backtesting VaR
To determine the validity of the V aR forecasts, it is examined how many times the value
of the loss function L exceeds the V aR forecast, which is called an ↵V aR violation. Let
It(↵) be a binary variable indicating whether an ↵V aR violation has occurred

It(↵) =

(
1 if Lt > V aR↵(Lt)

0 else
. (3.11)

A V aR forecast is said to be valid if and only if the violation process
�
It(↵)

�
T+1tT+O

,
where O 2 N is number of out-of-sample V aR forecasts, satisfies:

1. The probability of a loss function exceeding the V aR forecast must be equal to the
confidence level ↵,

P[It(↵) = 1] = E[It(↵)] = ↵. (3.12)

2. V aR violations are distributed independently over time.

If this is the case, then the V aR violation process is a martingale difference

E[It(↵)|Ft�1] = ↵. (3.13)

Therefore, if the violation process
�
It(↵)

�
T+1tT+O

is said to be valid, then each It(↵)
should follow a Bernoulli distribution independently of each other, which will be tested
with a Dynamic Quantile(DQ) test. A DQ test compares the number of violations of
V aR with the expected number of violations. Furthermore, a DQ test tests for correlation
between the violations of the V aR forecasts. To construct a test statistic for the DQ test,
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the following linear regression model is utilized

Hitt(↵) = �0 +
pX

i=1

�lHitt�i(↵)

+
qX

j=1

ujg
�
Hitt�j(↵), Hitt�j�1(↵), . . . , zt�j, zt�j�1, . . .

�
+ "t, (3.14)

where t 2 {T + p, . . . , T +O}, p � q,

Hitt(↵) = It(↵)� ↵ =

(
1� ↵, if Lt > V aR↵(Lt)

�↵, else
, (3.15)

g(·) is a function of past violations and the variables zt�j from the available information
set Ft�1, and "t is a discrete i.i.d. process with mean zero. g(·) can for example be
the past returns, rt�j, or the forecasted VaR, [V aR↵(Lt�j|t�j�1). In this project g(·) =
[V aR↵(Lt�j|t�j�1) and q = 1, since there will only be done one-day-ahead forecasts. To
test whether the present violations of the V aR is uncorrelated with the past violations, i.e.
�1 = · · · = �p = u1 = 0 and that the expected value of violations is equal to ↵, i.e., �0 = 0,
the null hypothesis is given by

H0 : �0 = �1 = · · · = �p = u1 = 0. (3.16)

The linear regression model in (3.14) can be rewritten in matrix form as

Hitt(↵) =  X + "t, t 2 {T + p, . . . , T +O}, p � 1, (3.17)

where  =
�
�0, �1, . . . , �p, u1

�
is a vector of p+2 parameters and X is a matrix containing

the explanatory variables. The DQ test statistic is then given as

DQ↵ =
 ̂>

OLS
X>X ̂OLS

↵(1� ↵)
a⇠ �2

(p+2), (3.18)

where  ̂OLS is the OLS estimates of  given by

 ̂OLS = (X>X)�1X>dHit↵
a⇠ N

⇣
0,↵(1� ↵)(X>X)�1

⌘
, 3 (3.19)

where dHit↵ =
�
HitT+1(↵), HitT+2(↵), . . . , HitT+O(↵)

�>.

3This result can be found in [26, p. 12]
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3.2.2 Backtesting CVaR

CV aR is backtested with a CV aR regression test. Let \CV aR↵ =
�
CV aR↵(Lt)

�
T+1tT+O

be a process of the CV aR forecasts with confidence level ↵ 2 (0, 1). Furthermore, let
r = (rt)T+1tT+O be the actual portfolio returns. The CV aR regression is then given by

rt = �1 + �2 \CV aR↵,t + uCV aR

t
, t 2 {T + 1, . . . , T +O}, (3.20)

where �1, �2 2 R, \CV aR↵,t is the forecasted CV aR at time t at confidence level ↵, and
CV aR↵(uCV aR

t
|Ft�1) = 0 almost surely. As a consequence of the forecasts, \CV aR↵,t, being

generated by the information set Ft�1 and the condition on the error term, uCV aR

t
, the

conditional CV aR of rt is given by

CV aR↵(rt|Ft�1) = �1 + �2 \CV aR↵,t, t 2 {T + 1, . . . , T +O}. (3.21)

If the CV aR is correctly specified then it must hold that \CV aR↵,t = CV aR↵(rt|Ft�1)
almost surely. The null- and alternative hypothesis are therefore given by

H0 : (�1, �2) = (0, 1) against H1 : (�1, �2) 6= (0, 1). (3.22)

It is however noted by [25, p. 443] that estimating �1 and �2 in (3.20) using generalized
method of moments or maximum likelihood estimation is infeasible. To overcome this
problem, it can be utilized that (3.20) is an example of a CV aR regression on the form
rt = W>

t
� + uCV aR

t
, where Wt is a vector containing the covariates. The estimation of the

parameters is then done using a joint regression technique on

rt = V >
t
� + uV aR

t
and rt = W>

t
� + uCV aR

t
, t 2 {T + 1, . . . , T +O}, (3.23)

where Vt and Wt are covariate vectors, V aR↵(uV aR

t
|Ft�1) = 0 and CV aR↵(uCV aR

t
|Ft�1) =

0 almost surely. By using a joint regression model, it is feasible to estimate the parameters
(�, �). The backtest for CV aR used in this project is the Strict CV aR Backtest where
Vt = Wt = (1, \CV aR↵,t) and the regression system is given by

rt = �1 + �2
\CV aR↵,t + uV aR

t
and rt = �1 + �2 \CV aR↵,t + uCV aR

t
, (3.24)

for t 2 {T + 1, . . . , T +O}. The null- and alternative hypothesis are given as

H0 : (�1, �2) = (0, 1) against H1 : (�1, �2) 6= (0, 1). (3.25)

The null hypothesis is tested with a Wald-type test statistic

WCV aR = O(�̂ � (0, 1))⌦̂�1
�
(�̂ � (0, 1))>, (3.26)

where ⌦̂� is the covariance of �.
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4 | Application
The purpose of this chapter is to evaluate the performance of the (C)V aR forecasts, pro-
duced by an R-vine copula model, on three different portfolios consisting of assets from
three different sectors within the S&P 500. Before evaluating the performance of the
(C)V aR forecasts, an analysis of the dependence structure in each sector will be conducted.
The accuracy of the (C)V aR forecasts will be evaluated using the theory presented in Sec-
tion 3.2 on an equally-weighted portfolio. Lastly, the CV aR models will be used to create
a portfolio allocation strategy.

4.1 Data Introduction

The data used to construct and evaluate (C)V aR risk forecasts, utilizing the methods
presented in Chapter 2 and Chapter 3, will in this section be introduced. To test different
dependence structures and compare risk levels in different market sectors, the analysis
will be made on three different sectors. The three sectors are finance, healthcare, and
technology. Additionally, the companies in each sector must be traded in the S&P 500
to be considered. The R-package used to obtain sector information and the asset prices is
Quantmod [27].

Sector: Finance Healthcare Technology
Number of companies: 61 60 71

The asset price for each asset in each sector in a one-day sampling interval from 03/01/2007�
14/02/2024 is obtained using the data API available at Polygon [28]. A data filtration pro-
cedure is applied to each sector separately. In each sector, the timestamps that correspond
to a weekend or a holiday are filtered out. Next, the latest publicly traded company is
found in each sector, and the first observation in each sector is set to the day this company
went public. The data for each sector is then split into training- and test data. The length
of the training data is chosen to be 75 percent of the filtered data.

Table 4.1: The partition of the filtered data into training- and test data for each sector.

Finance Healthcare Technology

Training data 07/07/2015-
15/12/2021

01/08/2014-
23/09/2021

06/07/2016-
17/03/2022

Test data 16/12/2021-
13/02/2024

24/09/2021-
13/02/2024

18/03/2022-
13/02/2024

To study the price development of each sector, an equally-weighted portfolio is constructed.
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Figure 4.1: The price of an equally-weighted portfolio for each sector. The vertical lines
shows where the training period ends for each sector.

From Figure 4.1 it can be inferred that each sector in the observed period in general has
experienced a price hike. It can also be observed that each sector is influenced by the same
market factors as they have the same price fluctuation tendencies and follow the same
trends. It can also be observed that the behavior in each sector changes when the training
period ends, which may be due to the conflict between Russia and Ukraine. To describe
the behavior of each sector the joint distribution of each sector is constructed using an
R-vine copula. However, to use an R-vine copula, a tailored marginal distribution for each
asset in each sector must be constructed. The characteristics of each asset are therefore
analyzed. In this section, the characteristics will only be shown for the first five listed
assets in each sector, however, the characteristics for every asset in each sector can be
found in the attached zip-file.

Table 4.2: Statistics for log-returns in the financial sector. For the three test-statistics, Aug-
mented Dickey–Fuller(ADF) test, Jarque-Bera(JB) test, and Ljung-box(LB) test, where
the lag is set to 3, it is the p-values that are given.

Mean Median Min Max SD Skew Kurt ADF JB LB(3)

JPM 0.000448 0.000302 -0.162 0.166 0.0177 -0.0467 13.3 0.01 0 1.93 · 10�8

V 0.000638 0.00145 -0.146 0.13 0.0159 -0.0757 9.57 0.01 0 4.69 · 10�7

MA 0.000725 0.00137 -0.136 0.154 0.0176 -0.00186 8.86 0.01 0 0.00802
BAC 0.000317 0.000305 -0.167 0.164 0.0203 -0.0453 9.4 0.01 0 0.00365
WFC �6.63 · 10�5 0 -0.173 0.136 0.0204 -0.308 8.77 0.01 0 8.76 · 10�7
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Table 4.3: Statistics for log-returns in the healthcare sector. For the three test-statistics,
Augmented Dickey–Fuller(ADF) test, Jarque-Bera(JB) test, and Ljung-box(LB) test,
where the lag is set to 3, it is the p-values that are given.

Mean Median Min Max SD Skew Kurt ADF JB LB(3)

LLY 0.00104 0.000963 -0.111 0.146 0.017 0.749 10.9 0.01 0 0.000761
UNH 0.000775 0.000954 -0.19 0.12 0.0162 -0.403 14.5 0.01 0 1.97 · 10�12

JNJ 0.000187 0.000275 -0.106 0.0769 0.0115 -0.389 9.72 0.01 0 0.000203
ABBV 0.000349 0.000396 -0.104 0.099 0.0136 -0.0696 6.91 0.01 0 0.00102
MRK 5 · 10�4 0.00113 -0.177 0.129 0.0171 -0.947 12.7 0.01 0 0.799

Table 4.4: Statistics for log-returns in the technology sector. For the three test-statistics,
Augmented Dickey–Fuller(ADF) test, Jarque-Bera(JB) test, and Ljung-box(LB) test,
where the lag is set to 3, it is the p-values that are given.

Mean Median Min Max SD Skew Kurt ADF JB LB(3)

MSFT 0.00108 0.00104 -0.159 0.133 0.0175 -0.214 8.02 0.01 0 4.51 · 10�13

AAPL 0.00108 0.000942 -0.138 0.113 0.0185 -0.216 5.84 0.01 0 0.00291
NVDA 0.00214 0.00282 -0.208 0.261 0.0313 0.122 6.98 0.01 0 0.0149
GOOGL 0.000732 0.00109 -0.124 0.0919 0.0182 -0.318 4.73 0.01 0 0.0256
GOOG 0.000742 0.00106 -0.118 0.0994 0.0181 -0.296 4.81 0.01 0 0.0303

An Augmented Dickey–Fuller(ADF) test is carried out to test whether the log-returns are
stationary. From Table 4.2, Table 4.3, and Table 4.4 it can be inferred that it can’t be
rejected that the log-returns for each asset is stationary. The log-returns will therefore
not be transformed in this project. To test for autocorrelation in the log-returns a Ljung-
box(LB) test is used. The number of lags being tested is set to three, since it will be the
maximum order for both the ARMA and the GARCH part. In the tables above, there is
one asset, MRK, where it can be rejected that there is autocorrelation in the log-returns
when the number of lags being tested is three. However, most of the assets’ log-returns
exhibit serial correlation. It will therefore later be examined whether the ARMA-GARCH
models are able to eliminate the presence of serial correlation.

It is also tested whether the log-returns for each asset have the same skewness and kurtosis
as the Gaussian distribution, thus indicating whether the log-returns follow a Gaussian
distribution. The test is a Jarque-Bera(JB) test where the null hypothesis is that the
skewness and kurtosis are equal to the Gaussian distribution. The null hypothesis is
rejected for every asset thus indicating that the log-returns are not normally distributed.
It will therefore be tested whether a standardized Student’s t-distribution or a standardized
NIG-distribution of the innovations of the ARMA-GARCH models gives a lower AIC value,
compared to the standardized Gaussian distribution.
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4.2 Fitting Marginal Distributions
As presented in Section 2.7 the modeling of the marginal distribution of each asset is
done with an ARMA(m,n)-GARCH(p, q) model. This is achieved using the function
ugarchfit() from the R-package rugarch [29]. The order of both the ARMA and GARCH
parts are restricted to m,n, p, q 2 {0, 1, 2, 3}. To select the order, the AIC is utilized. Nor-
mally, one would choose the model with the lowest AIC. However, as the observed AIC
values lie very close to each other, an additional selection criterion is implemented.

1. Calculate the AIC for each combination of orders for the ARMA- and GARCH part.

2. Find the smallest AIC value.

3. Check if there are other models with an AIC value within a one percent difference of
the smallest AIC value. If this is not the case choose this model.

4. Among the constructed models within one percent of the smallest AIC value, select
the model based on the following criteria

(a) For each model find the highest order among the ARMA and GARCH orders.
Only keep the models which have the lowest highest order among the models, i.e.,
between three models ARMA(1, 1)-GARCH(1, 1), ARMA(0, 0)-GARCH(0, 1),
ARMA(1, 2)-GARCH(1, 1), the last model is discarded since the highest order
for that model is two and the two other models have the same highest order of
one.

(b) Lastly, take the sum of the orders of each model, i.e., for an ARMA(1, 1)-
GARCH(1, 1) the sum would be four. Select the model with the lowest sum of
the orders.

The procedure is applied to every asset and yields the following result for the first five
listed assets of the financial sector.
Table 4.5: Selected marginal distribution and parameters for the first five listed assets in
the financial sector.

Parameters
Value

(Standard Error)

Stock Model Distribution L AIC µ AR MA ! ↵ �

- - 0.166
(0.0365)

0.786
(0.0453)

- - - -
- - - -JPM ARMA(0, 0)

GARCH(1, 1)
NIG -1920 2.37 0.0148

(0.018)
- -

1.4 · 10�5

(4.6 · 10�6)
- -
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Table 4.5: Selected marginal distribution and parameters for the first five listed assets in
the financial sector (continued).

Parameters
Value

(Standard Error)

Stock Model Distribution L AIC µ AR MA ! ↵ �

- - 0.154
(0.0323)

0.821
(0.0357)

- - - -
- - - -V ARMA(0, 0)

GARCH(1, 1)
NIG -1940 2.39 0.0198

(0.0172)
- -

7.37 · 10�6

(2.6 · 10�6)
- -

- - 0.167
(0.0318)

0.814
(0.0329)

- - - -
- - - -MA ARMA(0, 0)

GARCH(1, 1)
NIG -1940 2.39 0.0247

(0.017)
- -

8.35 · 10�6

(2.73 · 10�6)
- -

- - 0.124
(0.0268)

0.836
(0.0348)

- - - -
- - - -BAC ARMA(0, 0)

GARCH(1, 1)
STD -2000 2.47 0.0336

(0.0176)
- -

1.64 · 10�5

(5.54 · 10�6)
- -

- - 0.135
(0.0289)

0.851
(0.0305)

- - - -
- - - -WFC ARMA(0, 0)

GARCH(1, 1)
STD -1900 2.35 0.013

(0.0158)
- -

8.78 · 10�6

(3.18 · 10�6)
- -

The results for every asset in every sector can be found in the attached zip-file. For the rest
of the dependence structure analysis, the results will only be shown for the financial sector
and the results for the other two sectors can be found in Appendix D and the attached
zip-file.

From Table 4.5 it can be inferred that the selected order for each asset is m = n = 0 and
p = q = 1. This is the case for every asset in the financial sector. The only parameter
that is estimated using an ARMA model is therefore the intercept µ. The mean of log-
returns is therefore fixed. This may be the reason behind the relatively high standard error
of the µ estimates. The distribution that is selected the most for the innovations is the
standardized NIG distribution. The standardized Gaussian distribution is not chosen for
any of the assets, which corresponds with the results from the Jarque-Bera tests.

The fitted models’ residuals are converted into uniform marginals by applying (2.71). It
can be tested whether the residuals are a random sample from the chosen distribution of the
innovations, with the parameters estimated for the ARMA-GARCH model, by performing
an Anderson-Darling test.
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Figure 4.2: The p-values from an Anderson-Darling test performed on the residuals of
the ARMA-GARCH models in the financial sector, with the respective distribution of the
innovations shown in the parentheses.

The Anderson-Darling test indicates that it cannot be rejected that each asset’s residuals
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are sampled from their respective chosen distribution. To further test the choice of distri-
bution of the residuals, a QQ-plot is constructed for the two stocks with the lowest p-value
and the two stocks with the highest p-value for each selected distribution.

Figure 4.3: QQ-plots for the assets with tickers AXP, ALL, GB, and GS. The first column
contains the assets with the highest p-value and the second column contains the assets
with the lowest p-value for each distribution.

From Figure 4.3 it can be inferred that both the standardized Student’s t-distribution and
the standardized NIG distribution are able to capture the characteristics of the residuals.
For the two assets with the lowest p-value from the Anderson-Darling test, the QQ-plots
imply that the selected distribution is not able to capture the heavy tails of the residuals
as well as for the two assets with the highest p-values.

Lastly, it will be investigated whether the fitted models are able to eliminate the serial
correlation observed in the log-returns.
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Table 4.6: Ljung-Box test on residuals(R) and squared residuals(R2) from the fitted models
from the financial sector, for lag = 1, 2, 3.

Ljung-Box Test, R Ljung-Box Test, R2

Stock Lag 1 2 3 1 2 3

Statistic 0.0352 2.68 3.2 0.576 0.576 0.951JPM
p-value 0.851 0.262 0.362 0.448 0.75 0.813

Statistic 4.36 4.64 6.59 0.0158 0.0581 0.373V
p-value 0.0369 0.0983 0.086 0.9 0.971 0.946

Statistic 2.61 2.63 3.44 0.0171 0.564 0.589MA
p-value 0.106 0.269 0.328 0.896 0.754 0.899

Statistic 1.42 3.99 4 0.858 1.09 1.14BAC
p-value 0.234 0.136 0.261 0.354 0.58 0.768

Statistic 1.36 2.87 4.64 3.46 3.62 3.72WFC
p-value 0.243 0.238 0.2 0.0627 0.163 0.294

From Table 4.6 it can be inferred that the null hypothesis of the Ljung-Box test is not
rejected for lag = 1, 2, 3 for the standardized residuals except for V with lag = 1, which
implies that there is no autocorrelation between the residuals. For the squared standardized
residuals, the null hypothesis is not rejected for every asset, which implies that there is no
presence of autoregressive conditional heteroskedasticity in the residuals.

4.3 Fitting Vine Copulas
To fit an R-vine copula, the fitted models’ residuals are converted to uniform marginals
using (2.71). The uniform marginals for the first five listed assets in the financial sector
are transformed to pseudo copula data to show the pairwise dependence structure between
the five assets. The pseudo copula data is created by setting

uj = (uj,1, . . . , uj,5) =
⇣
F̂1(xj,1), . . . , F̂5(xj,5)

⌘
, j = 1, . . . , n, (4.1)

where n 2 N is the number of observations.
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Figure 4.4: Pseudo copula data using marginals from the fitted models. The lower triangle
contains empirical normalized contour plots. The upper triangle contains pair scatter
plot of copula data and empirical Kendall’s tau. Lastly, the diagonal contains marginal
histograms of copula data.

The lower triangle of Figure 4.4 indicates that there is tail dependence between the assets.
From the plots, it is hard to conclude whether the dependence structure is asymmetric
or symmetric. The diagonal of Figure 4.4 shows that the marginals are approximately
uniform. In the upper triangle of Figure 4.4 the empirical Kendall’s tau is given. To
select an appropriate R-vine copula one of the selection criteria that will be utilized is the
empirical Kendall’s tau.

To fit an R-vine copula to the uniform marginals, the function RVineStructureSelect

from the R-package VineCopula is used [30]. Additionally, to simulate samples from the
fitted R-vine copula the function RVineSim from the same R-package VineCopula is used.
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Figure 4.5: The first R-vine tree fitted on the marginals from the financial sector. The
values on the edges are the empirical Kendall’s tau.

The first tree of the R-vine tree sequence is plotted in Figure 4.5. The weight for each
edge is in this case chosen to be the empirical Kendall’s tau. It can be inferred that the
selected pairs are also the expected pairs from the empirical Kendall’s tau in Figure 4.4.
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Table 4.7: The number of times each bivariate copula is selected in each tree, where ⇧
denotes the bivariate independence copula.

Tree ⇧ N t G F G 180 G 90 G 270

1 0 0 59 0 0 1 0 0
2 0 0 40 0 19 0 0 0
3 0 1 20 1 34 2 0 0
4 2 0 18 0 35 2 0 0
5 3 3 22 2 24 2 0 0

6 9 2 18 2 14 9 1 0
7 11 3 10 3 26 0 0 1
8 18 2 12 6 11 1 0 3
9 17 6 9 3 15 0 2 0
10 15 3 11 2 14 2 2 2
...

...
...

...
...

...
...

...
...

46 10 2 1 0 1 0 1 0
47 7 1 1 0 3 1 1 0
48 8 1 0 0 3 1 0 0
49 7 0 0 0 2 1 2 0
50 8 0 0 1 1 0 0 1

51 4 1 2 0 1 2 0 0
52 6 0 1 0 0 1 0 1
53 4 0 1 1 1 1 0 0
54 6 0 0 0 1 0 0 0
55 4 1 0 0 0 0 1 0

56 4 0 0 1 0 0 0 0
57 4 0 0 0 0 0 0 0
58 3 0 0 0 0 0 0 0
59 1 1 0 0 0 0 0 0
60 0 0 0 0 1 0 0 0

From Table 4.7 it can be inferred that in the first tree, the only two selected bivariate
copulas are the bivariate Student’s t-copula and the rotated 180 degrees Gumbel copula.
The characteristics of the bivariate Student’s t-copula is a symmetric heavy tail structure
and the characteristics of the bivariate rotated 180 Gumbel is an asymmetric tail structure
with a lower tail dependence. From tree three to tree six the bivariate Frank copula and the
bivariate Student’s t-copula are the most used pair copulas. The bivariate Frank copula’s
characteristics are tail asymmetry and no tail dependence. For higher-order trees, the
dependence strength in the bivariate copulas decreases, which can explain the transition
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from the bivariate Student’s t-copula to copulas with no tail dependence, i.e., the bivariate
independence copula, the bivariate Gaussian copula, the bivariate Frank copula, and the
bivariate rotated 90 and 270 Gumbel copula.

4.3.1 Model Comparison

The R-vine copulas that will be compared in this section, are R-vine copulas constructed
with sequential estimation and R-vine copulas estimated with maximum log-likelihood
using the sequential estimates as starting values. The maximum number of iteration steps
in the maximum log-likelihood is set to 20 to make it computationally feasible. It is
therefore not given, that the maximum log-likelihood converges. Furthermore, two different
weights in Algorithm 3 will be tested, namely AIC and Kendall’s tau. The different R-vine
copula models are compared to a multivariate Gaussian copula and a multivariate Student’s
t-copula. To construct these two multivariate copulas, their bivariate counterparts are
used as building blocks in an R-vine copula. The R-vine copulas constructed this way,
is equivalent to a multivariate Gaussian copula and a multivariate Student’s t-copula,
respectively [31, p. 5-6].

The different R-vine copula models are compared on the number of parameters(par), log-
likelihood(loglike), AIC, BIC, and the goodness-of-fit test(GOF test) presented in Sec-
tion 2.6. To apply the GOF test, the vector d(✓|U) must be estimated. The vector d(✓|U)
has dimension p(p + 1)/2, where p = d(d � 1)/2, making the GOF test computationally
infeasible for a portfolio consisting of 61, 60, and 71 assets, respectively. The GOF test is
therefore used on portfolios consisting of the first 5, 10, and 20 listed assets in the financial
sector to test how the GOF test reacts to an increase in the dimension of a portfolio.

Table 4.8: Fitted models on the first 5 listed assets in the financial sector, number of
parameters, estimated log-likelihood, AIC, BIC, and GOF test.

Model par loglike AIC BIC GOF test
(p-value)

R-vine AIC seq 16 3742.065 -7452.129 -7365.847 0.986
R-vine AIC seq mle 16 3742.268 -7452.536 -7366.254 0.988
R-vine tau seq 16 3739.560 -7447.119 -7360.837 0.975
R-vine tau seq mle 16 3742.228 -7452.457 -7366.174 0.989
Gaussian seq 10 3428.217 -6836.434 -6782.508 0.000
Gaussian seq mle 10 3428.217 -6836.435 -6782.508 0.000
Student’s t seq 20 3736.766 -7433.532 -7325.679 1.000
Student’s t seq mle 20 3737.018 -7434.035 -7326.182 1.000
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Table 4.9: Fitted models on the first 10 listed assets in the financial sector, number of
parameters, estimated log-likelihood, AIC, BIC, and GOF test.

Model par loglike AIC BIC GOF test
(p-value)

R-vine AIC seq 65 8201.244 -16272.49 -15921.97 1.000
R-vine AIC seq mle 65 8202.495 -16274.99 -15924.47 1.000
R-vine tau seq 58 8184.734 -16253.47 -15940.69 1.000
R-vine tau seq mle 58 8187.357 -16258.71 -15945.94 1.000
Gaussian seq 45 7538.926 -14987.85 -14745.18 0.574
Gaussian seq mle 45 7538.928 -14987.86 -14745.19 0.576
Student’s t seq 90 8172.539 -16165.08 -15679.74 1.000
Student’s t seq mle 90 8175.472 -16170.94 -15685.61 1.000

Table 4.10: Fitted models on the first 20 listed assets in the financial sector, number of
parameters, estimated log-likelihood, AIC, BIC, and GOF test.

Model par loglike AIC BIC GOF test
(p-value)

R-vine AIC seq 224 15381.02 -30314.04 -29106.08 1.000
R-vine AIC seq mle 224 15386.80 -30325.60 -29117.65 1.000
R-vine tau seq 196 15309.97 -30227.93 -29170.97 1.000
R-vine tau seq mle 196 15320.87 -30249.75 -29192.79 1.000
Gaussian seq 190 14073.92 -27767.85 -26743.24 1.000
Gaussian seq mle 190 14073.95 -27767.89 -26743.29 1.000

Student’s t seq 380 15224.86 -29689.73 -27640.52 Too many parameters
to be estimated

Student’s t seq mle 380 15242.68 -29725.36 -27676.16 Too many parameters
to be estimated

The worst-performing model is the multivariate Gaussian copula. The null hypothesis for
the GOF test for the multivariate Gaussian copula is rejected for 5 assets, accepted for
10 assets, and gives the same p-value for 20 assets as the other models. However, the
relative difference in both AIC and BIC between the multivariate Gaussian copula and the
other models is consistent in the three scenarios, indicating that the multivariate Gaussian
copula fits the data worse compared to the other models. The multivariate Student’s t-
copula gives either a higher or the same p-value in the GOF test compared to the other
models. However, the multivariate Student’s t-copulas don’t achieve the lowest AIC- or
BIC values or the highest log-likelihood. Comparing Kendall’s tau to the AIC approach,
the R-vine copulas using AIC gives a higher log-likelihood and a lower AIC. However, the
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R-vine copulas using Kendall’s tau give a lower BIC value. Using sequential estimation
together with maximum log-likelihood improves every model on every benchmark. The
difference between using only sequential estimation and maximum log-likelihood is however
insignificant, especially considering the computational time it takes to estimate the R-vine
copula using maximum log-likelihood.

Additionally, since it is not possible to perform the GOF test on the entire financial sector
portfolio, the GOF test is applied to every bivariate copula in the R-vine copula using
the AIC as selection criteria. Firstly, to establish a baseline, the GOF test is performed
on the bivariate copulas in the R-vine copula AIC seq, constructed for the first 20 listed
assets. The results for first 5 and 10 listed assets in the financial sector can be found in
Section D.2.

Figure 4.6: GOF test on the bivariate copulas in the R-vine copula AIC seq for the first
20 listed assets in the financial sector.

Even though the p-value for the GOF test for the R-vine AIC seq is 1 in Table 4.10, it is
not the case that the null hypothesis is not rejected for every bivariate copula. It also must
be noted that for the independence copula, the GOF test is not able to give a p-value. For
example, the bivariate copula in the 19th tree in Figure 4.6 is the bivariate independence
copula and is therefore not present in the plot.
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Figure 4.7: GOF test on the bivariate copulas in the R-vine copula AIC seq for every asset
in the financial sector.

From Figure 4.7 it can be inferred that the null hypothesis of the GOF test is rejected for
approximately 23 percent of the non-independence bivariate copulas. The null hypothesis
is not only rejected for the bivariate copulas in the higher order trees where the dependence
between the conditional marginals is diminishing, but also for the bivariate copulas in the
lower order trees. Comparing Figure 4.7 with Figure 4.6 the overall distributions of p-
values are similar, indicating that a GOF test on the R-vine copula AIC seq would not
have rejected the null hypothesis. The GOF test is also performed on the bivariate copulas
used to create the multivariate Gaussian copula. The results can be found in Section D.2.
In Table 4.8, the null hypothesis of the GOF test is rejected for the first 5 assets in the
financial sector for the multivariate Gaussian copula. The null hypothesis is rejected for
80% of the bivariate copulas in the multivariate Gaussian copula for the first 5 assets, confer
Figure D.3. Comparing the multivariate Gaussian copula with the R-vine copula AIC, the
rejection rate is significantly higher for the bivariate copulas in the multivariate Gaussian
copula compared to bivariate copulas in the R-vine copula AIC which is consistent with
the results in Table 4.8, Table 4.9, and Table 4.10.

Based on the results from the log-likelihood, AIC, BIC, and GOF test, the R-vine copula
AIC seq will be used in the rest of the application part of this project.
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4.4 Out-of-Sample Risk Forecasting

The performance of one-day-ahead (C)V aR forecasts using the R-vine copulas fitted in
Section 4.3, will in this section be evaluated using the tests presented in Section 3.2. To
obtain one-day-ahead (C)V aR forecasts the following procedure is used.

1. Sample data and calculate standardized daily returns.

2. Fit ARMA-GARCH models for the residuals. The ARMA-GARCH models are refit-
ted every timestep using a one-step rolling window procedure. The order is however
kept fixed. The one-step rolling window procedure removes the first observation in
the dataset and adds the observation observed at t, thus keeping the length of the
dataset the same throughout the procedure.

3. Obtain uniform marginals from the cumulative marginal distribution function i.e.
ût,j = Ft,j(ẑt,j) for t = T + 1, . . . , T + O and j = 1, . . . , d, where O is the number of
out-of-sample forecasts.

4. Fit an R-vine copula model using Dißmans algorithm. The R-vine copula is refitted
every 21 trading day.

5. Simulate M uniform random samples from the R-vine copula fitted in step 4.

6. Transform the M samples using the inverse marginal distribution for each asset and
get the standardized residuals.

7. Use the standardized residuals to compute the return forecasts.

r̂t,j = µ̂t,j + �̂t,jF
�1
t,j

(residualt,j), t = T + 1, . . . , T +O, j = 1, . . . d, (4.2)

where µ̂ and �̂ is the forecasted mean and volatility from the ARMA-GARCH model,
respectively.

8. Based on the return forecasts, calculate equally-weighted portfolios.

r̂t,m =
1

d

dX

j=1

r̂t,j,m, t = T + 1, . . . , T +O, m = 1, . . . ,M. (4.3)

9. Estimate the ↵-quantile for the daily portfolio (C)V aR based on the daily distribu-
tions of the simulated portfolio returns

V aR↵(�r̂t) = F�1
�r̂t

(↵), (4.4)
CV aR↵(�r̂t) = mean

�
�r̂t,m > V aR↵(�r̂t)

�
. (4.5)

The number of Monte Carlo simulations is set to M = 10.000. The procedure has also
been tested for M = 5.000 and M = 20.000. However, when considering the trade-off
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between precision and computational time, M = 10.000 was chosen. The V aR forecast
procedure is applied to every sector for ↵ = 0.025, 0.05, and 0.10. First, the V aR forecasts
are compared between the sectors for ↵ = 0.05, and afterward, the performance of the
V aR forecasts for each sector will be evaluated.

Figure 4.8: Comparison between the 95% quantile V aR forecasts for each sector.

From Figure 4.8 it can be inferred that the V aR forecasts for the technology sector is
generally higher than the two other sectors. Furthermore, comparing the V aR forecasts
for the financial and the healthcare sectors, the financial sector has greater fluctuations
but also has the most periods with the lowest V aR.
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Figure 4.9: V aR forecasts for an equally-weighted portfolio consisting of the assets in the
financial sector. The red dots are the actual losses for the equally-weighted portfolio.

Figure 4.10: V aR forecasts for an equally-weighted portfolio consisting of the assets in the
healthcare sector. The red dots are the actual losses for the equally-weighted portfolio.

46



Application Aalborg University - 4.111a

Figure 4.11: V aR forecasts for an equally-weighted portfolio consisting of the assets in the
technology sector. The red dots are the actual losses for the equally-weighted portfolio.

In theory, the loss should exceed the VaR forecasts 2.5%, 5%, and 10% of the total obser-
vations in the out-of-sample period. From Figure 4.9, Figure 4.10, and Figure 4.11 it can
be difficult to conclude whether this is the case for all three ↵-levels. However, it can for
all three sectors be noted that many observations are on the edge of being counted as an
↵V aR violation.

Table 4.11: Observed ↵V aR violations compared to the expected number of ↵V aR viola-
tions, and the ratio between observed ↵V aR violations and the total number of observations
for each tested ↵-level in each sector.

Sector ↵-level Observed violations Expected violations Mean violations

0.025 3 13.550 0.006
0.05 13 27.100 0.024Financial
0.10 55 54.200 0.101

0.025 3 15.000 0.005
0.05 5 30.000 0.008Healthcare
0.10 31 60.000 0.052

0.025 2 11.975 0.004
0.05 8 23.950 0.017Technology
0.10 33 47.900 0.069
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From Table 4.11 it can be noted that the only case where the number of observed V aR
violations is equal to the expected number of V aR violations is in the financial sector for
↵ = 0.10. In every other case, the V aR forecasts are too conservative. To validate the
performance of the V aR forecasts, the DQ test presented in Section 3.2 is used.

Table 4.12: DQ test performed on the three sectors for ↵ = 0.025, 0.05, and 0.10 and lag
p = 4 in each sector.

Sector DQ 2.5% VaR
p-value

DQ 5% VaR
p-value

DQ 10% VaR
p-value

Financial 0.00110 0.00226 0.000736
Healthcare 0.0954 0.000316 0.0000256
Technology 0.260 0.000729 0.00228

For the financial sector, the null hypothesis of the DQ test is rejected for every ↵-level.
Even though the observed 0.10V aR violations are equal to the expected 0.10V aR violations
the null hypothesis is rejected, which may imply that the V aR violations are correlated
for lag p = 4. For the financial sector it is therefore tested what impact the choice of lag
in the DQ test has on the null hypothesis.

Figure 4.12: The DQ test performed on the V aR forecasts for the financial sector for
different lags.
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The null hypothesis for the DQ test is not rejected for lag greater than 11 for ↵ = 0.025.
The consequence of a higher choice of lag is that as the number of parameters in the linear
regression model, (3.14), increases, the parameter values get closer to zero making it more
likely that the null hypothesis is not rejected. Regardless, the null hypothesis for ↵ = 0.10
is only not rejected for lag p = 32, 35, 36, 37, 38, 39, and rejected again after p = 40 implying
that the [V aR0.10 is not a valid risk measure.

For the healthcare and technology sectors, the null hypothesis is not rejected for ↵ = 0.025.
However, this is not the case for ↵ = 0.05 and 0.10. The overall performance of the V aR
forecasts is therefore not good. As mentioned earlier many observations are close to being
an ↵V aR violation. It will therefore be tested whether modeling the marginals with an
ARMA(1, 1)-GARCH(1, 1) model yields a better result.

Table 4.13: Observed ↵V aR violations compared to the expected number of ↵V aR vio-
lations, and the ratio between observed ↵V aR violations and the total number of obser-
vations for each tested ↵-level in each sector, where the marginals are modeled using an
ARMA(1, 1)-GARCH(1, 1).

Sector ↵-level Observed violations Expected violations Mean violations

0.025 6 13.550 0.011
0.05 19 27.100 0.035Financial
0.10 60 54.200 0.111

0.025 3 15.000 0.005
0.05 5 30.000 0.008Healthcare
0.10 35 60.000 0.058

0.025 2 11.975 0.004
0.05 13 23.950 0.027Technology
0.10 38 47.900 0.079

Modeling every marginal with an ARMA(1, 1)-GARCH(1, 1) has increased the overall num-
ber of ↵V aR violations. This is especially the case for ↵ = 0.10 where many observations
are on the edge of being a 0.10V aR violation in Figure 4.9, Figure 4.10, and Figure 4.11.
However, it must be noted that the two different approaches to selecting the marginals
give very similar V aR forecasts. To illustrate how close the V aR-forecasts for the two
approaches are to each other, the mean square error(MSE) given by,

MSE↵ =
1

O

T+OX

t=T+1

✓
V aR↵

⇣
�r̂ approach 1

t

⌘
� V aR↵

⇣
�r̂ approach 2

t

⌘◆2

, (4.6)

is calculated.
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Table 4.14: The MSE between the V aR forecasts using the approach introduced at
the beginning of this section and V aR forecasts where every marginal is modeled using
ARMA(1, 1)-GARCH(1, 1) for each sector.

Sector 2.5% 5% 10%

Financial 1.12 · 10�6 7.28 · 10�7 5.21 · 10�7

Healthcare 1.23 · 10�6 6.23 · 10�7 3.84 · 10�7

Technology 1.62 · 10�6 1.11 · 10�6 7.65 · 10�7

From Table 4.14 it can be inferred that the difference between the two approaches is
almost negligible. However, the small difference between the two approaches results in
increasements in the p-values for the DQ test for every ↵-level across the three sectors.

Table 4.15: DQ test, where the marginals are modeled using an ARMA(1, 1)-GARCH(1, 1)
model, performed on the three sectors for ↵ = 0.025, 0.05, and 0.10 and lag p = 4.

Sector DQ 2.5% VaR
p-value

DQ 5% VaR
p-value

DQ 10% VaR
p-value

Financial 0.0000551 0.00258 0.0959
Healthcare 0.109 0.000609 0.00368
Technology 0.288 0.0167 0.437

The null hypothesis of the DQ test is no longer rejected for ↵ = 0.10 for both the financial
and technology sectors. Only modeling the marginals with an ARMA(1, 1)-GARCH(1, 1)
model therefore gives a better result in the examined time period.

The validity of the CV aR forecasts is also examined using the test presented in Subsec-
tion 3.2.2. The V aR forecasts for each sector is too conservative in their estimates of V aR.
The CV aR forecasts are also too conservative.
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Figure 4.13: CV aR forecasts for an equally-weighted portfolio consisting of the assets in
the financial sector. The red dots are the actual losses for the equally-weighted portfolio.

Table 4.16: Strict CV aR backtest performed on the three sectors for ↵ =
0.025, 0.05, and 0.10.

Sector 2.5% CVaR
p-value

5% CVaR
p-value

10% CVaR
p-value

Financial 0 0 1 · 10�7

Healthcare 0 0 0
Technology 0 0 0

From Table 4.16, it can be concluded that the null hypothesis of the strict CV aR backtest is
rejected in every sector and for any ↵-level. The ARMA-GARCH R-vine copula approach
is therefore not able to produce a valid CV aR forecast. This is also the case when the
marginals are modeled using only ARMA(1, 1)-GARCH(1, 1), confer Table 4.17. For the
two approaches, the V aR forecasts are similar, and hence, it is to be expected that their
CV aR forecasts perform similar.
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Table 4.17: Strict CV aR backtest, where the marginals are modeled using an ARMA(1, 1)-
GARCH(1, 1) model, performed on the three sectors for ↵ = 0.025, 0.05, and 0.10.

Sector 2.5% CVaR
p-value

5% CVaR
p-value

10% CVaR
p-value

Financial 0 0 0
Healthcare 0 0 0
Technology 0 0 0

As inferred from Figure 4.1 the price tendencies change over time, which might influence
the model’s performance. Therefore, it is tested in Appendix E for the financial sector,
whether fitting and testing the model on a time period with the same tendencies yields a
better result. The results from the ratio between observed- and expected violations and
the backtests strongly imply that the model performs better in the shorted period.

4.5 Mean-CVaR Portfolio Allocation
The purpose of this section is to formulate a mean-CV aR portfolio allocation problem and
execute the strategy on the presented data. Let wt be the weight vector at time t, and
consider the auxiliary variable ⌫t,m =

⇥
�w>

t
rt,m � V aR↵

⇤+, which are the losses greater
than V aR↵, for a given ↵-level. Then, as proposed in [32], it is possible to formulate a
convex linear programming problem to solve the mean-CV aR minimization problem:

min
w,V aR,⌫

V aR↵ +
1

M(1� ↵)

MX

m=1

⌫t,m, (4.7)

subject to w>
t
rt,m + V aR↵ + ⌫t,m � 0, 8m 2 {1, . . . ,M}, (4.8)

w>
t
1 = 1, (4.9)

0  wt,i  1, for i = 1, . . . , d, (4.10)
w>

t
rt � µ, (4.11)

where d is the number of assets in the portfolio and µ is a predetermined return level.
If the goal is to simply minimize the CV aR for a portfolio, the last constraint, (4.11), is
omitted.

The mean-CVaR problem will be executed for each of the sectors, which are then compared.
The problem will be solved using the minCVaR-function from the NMOF package in R [33].
The analysis will be done for an ↵-level of 0.05, and the predetermined return level will be
set at 0.001. The accumulated return of the portfolio will be compared to the accumulated
return for an equally-weighted portfolio, and the amount of assets which outperforms the
strategy in terms of return will be investigated as well. Furthermore, the VaR and CVaR
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for the portfolios will be calculated based on the historical quantiles, which again will be
compared to an equally-weighted portfolio. The analysis is done using the forecasts from
Section 4.4.

Figure 4.14: Accumulated portfolio returns for the mean-CV aR portfolio (blue) and
equally-weighted portfolio (red) for the financial sector.

From Figure 4.14 it can be concluded, that the mean-CV aR portfolio outperforms the
equally-weighted portfolio in terms of return for the financial sector. The return for the
mean-CV aR portfolio strategy is 0.155 and the return for the equally-weighted portfolio
is -0.00525.

Figure 4.15: Accumulated portfolio returns for the mean-CV aR portfolio (blue) and
equally-weighted portfolio (red) for the healthcare sector.

From Figure 4.15 it can be concluded, that the mean-CV aR portfolio outperforms the
equally-weighted portfolio in terms of return for the healthcare sector. The return for the
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mean-CV aR portfolio strategy is 0.0725 and the return for the equally-weighted portfolio
is -0.00900.

Figure 4.16: Accumulated portfolio returns for the mean-CV aR portfolio (blue) and
equally-weighted portfolio (red) for the technology sector.

From Figure 4.15 it can be concluded, that the mean-CV aR portfolio outperforms the
equally-weighted portfolio in terms of return for the technology sector. The return for the
mean-CV aR portfolio strategy is 0.247 and the return for the equally-weighted portfolio
is 0.0257. For all three sectors, the mean-CV aR strategy performs better in the last half
of the trading period, compared to the first half. These performances fit well with the
price-plots in Figure 4.1, as the prices for all three sectors decline in the first period of the
test dataset.

The returns for each of the three portfolios are also compared to buy-and-hold strategies
in each individual asset. The outperforming assets (in terms of return) in each sector and
their respective return are given in Table 4.18.

54



Application Aalborg University - 4.111a

Table 4.18: Tickers and returns for the outperforming assets in each sector.

Financial Healthcare Technology
Ticker Return Ticker Return Ticker Return

V 0.262 LLY 1.163 MSFT 0.319
MA 0.285 UNH 0.236 NVDA 1.069
AXP 0.257 MRK 0.541 AVGO 0.731
PGR 0.581 ABBV 0.479 AMD 0.429
CB 0.241 AMGN 0.301 CRM 0.290
AJG 0.344 ISRG 0.0842 ADBE 0.303
AIG 0.254 SYK 0.207 ORCL 0.344
TRV 0.310 VRTX 0.810 INTU 0.298
AFL 0.308 REGN 0.375 IBM 0.362
AMP 0.268 BSX 0.367 AMAT 0.312
ALL 0.334 CI 0.511 NOW 0.312

ACGL 0.649 MCK 0.913 LRCX 0.528
HIG 0.287 HCA 0.176 KLAC 0.598
RJF 0.162 CNC 0.203 PANW 0.672

CBOE 0.355 CAH 0.709 SNPS 0.590
BRO 0.173 AXON 0.403 CDNS 0.652
WRB 0.397 MOH 0.333 ANET 0.745

L 0.246 UHS 0.106 APH 0.306
MSI 0.324
IT 0.431
ON 0.257

MPWR 0.456
CDW 0.297
FTV 0.302
FICO 0.972
PTC 0.474

HUBB 0.628
JBL 0.803

FSLR 0.667

The number of outperforming assets is 18, 18, and 29 for financial, healthcare, and technol-
ogy, respectively. As the number of total assets in each sector is 61, 60, and 71 for financial,
healthcare, and technology, respectively, the number of outperforming assets in each sector
is less than a third for financial and healthcare, and less than half for technology.

Besides comparing the strategies on return alone, the V aR and CV aR are calculated
for both mean-CV aR strategies and equally-weighted portfolios. This is done by finding
quantiles of the observed returns from the forecasted period.
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Table 4.19: V aR and CV aR for the mean-CV aR strategy for the three sectors, calculated
on historical observations with ↵ = 0.05, compared to equally-weighted portfolios for the
three sectors.

Financial Healthcare Technology
VaR 0.0187 0.0187 0.0252

CVaR 0.0282 0.0252 0.0333
VaR Equal Weight 0.00257 0.00182 0.00349

CVaR Equal Weight 0.00352 0.00248 0.00516

The results in Table 4.19 show that the V aR and CV aR for the mean-CV aR portfolio
strategy are around 10 times higher than the equally-weighted portfolio for financial and
healthcare, and around seven times higher for technology. This corresponds with the plots
of the accumulated portfolios in Figure 4.14, Figure 4.15, and Figure 4.16, as the values
throughout the period for the mean-CV aR portfolios fluctuates more than the equally-
weighted portfolios. Furthermore, the result of a higher (C)V aR also aligns well with the
fact that our (C)V aR forecasts are not good, and hence, the minimization problem uses
bad estimates.

The strategy has also been tested with different levels of µ, which is shown in Figure F.1.
The strategy is executed on the assets in the financial sector, with three different levels
of return: µ = 0, 0.001 and 0.005. The strategy performs best, in terms of return, for
µ = 0.001, which is also the one chosen in this project. When µ gets too high, the strategy
is not able to reach the given level of return, which results in a worse performance - both
in terms of return and CV aR.
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5 | Discussion
In the construction of the R-vine copula the simplifying assumption was made, to make
inference possible for high dimensions. In [34], it is tested whether the assumption is useful
or might be too simplistic. It is concluded that even though the actual model is far away
from the simplified model, it still yields a rather good approximation.

The choices of selection criteria for fitting the R-vine copula using Dißmann’s algorithm
have in this project been the AIC and empirical Kendall’s tau. The AIC is chosen based on
the result mentioned in [4, p. 157], where Czado refers to the AIC selection approach being
superior to three other approaches based on a large-scale Monte Carlo study. The other
three approaches are: Choosing the highest p-value based on the Cramér-von-Mises test,
the smallest distance between Kendall’s tau and tail dependence, and the best bivariate
copula based on a Vuong test, which is explained further in [4, chap. 9]. The empirical
Kendall’s tau approach was also tested since it is more computationally feasible compared
to the other approaches [35, p. 19]. Another choice of selection criterion could have yielded
better results.

The choice of estimation method is, as mentioned above, a frequentist approach in terms of
Dißmann’s algorithm. Another approach is a Bayesian model selection approach, which is
discussed in [36]. In this paper, Czado and Gruber tests a Bayesian model selection against
Dißmann’s algorithm. They conclude that the Bayesian selection approach is superior in
model selection, and that the results in terms of risk forecasting and investment decisions
are superior as well. Using the Bayesian approach in this project, could therefore have
yielded better results, based on the conclusion from Czado and Gruber.

In this project the marginals are modeled using an ARMA-GARCH model. The innova-
tions have the possibility to follow either a standardized Gaussian-, standardized Student’s
t-, or standardized NIG distribution. Compared to only using the standardized Gaussian
distribution, the standardized Student’s t- and the standardized NIG distribution makes it
possible to model heavy tails and skewness, which are the characteristics of asset returns.
Based on the Anderson-Darling tests made in Section 4.2, the fits for the marginals yield
good results, as the fitted distributions are accepted for all assets. Including more distri-
butions for the innovations, could have resulted in better fits. It was tested in Section 4.4
whether an ARMA(1, 1)-GARCH(1, 1) model performed better than the one chosen by the
selection approach in Section 4.2. The ARMA(1, 1)-GARCH(1, 1) yielded a better result
in the DQ test. Therefore, it would be reasonable to try other methods to model the
marginals, as it was possible to achieve better results by simply changing the order of the
ARMA-GARCH model.

To determine whether the V aR forecasts in this project were valid, the DQ test was used.
In Figure 4.12 it can be observed that the choice of lag has a big impact on whether the
null hypothesis was rejected or not rejected. In [23] the power of the DQ test is examined.
The paper found out that the larger the number of forecasts, based upon parameters with
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estimation error, the more the backtest will wrongly reject the null hypothesis. Addition-
ally, the paper concluded that the DQ test exhibits low power in their application. This
is in line with the results in this project where a different model for marginals changes the
results from the DQ test even though the difference in the V aR forecasts was negligible.

The amount of assets chosen in this project is 60, 61, and 71 for the sectors, respectively.
The results for those amounts of assets were not satisfying. A GOF test was performed on
a portfolio consisting of 5, 10, and 20 assets in the financial sector. The null hypothesis
of the GOF test was not rejected for these amounts of assets, indicating that the R-vine
copula is capable of modeling the joint distribution for a portfolio consisting of less than
20 assets. Applying the (C)V aR procedure in a portfolio consisting of fewer assets could
therefore have led to better results. For example, a similar study has achieved good results
with a portfolio consisting of 10 assets [37].

From Figure 4.1, it can be inferred that the data does not follow the same trend throughout
the whole period. When COVID-19 arrived at the start of 2020, there was a big down-
ward spike in all sectors, followed by a steep upward trend, especially for healthcare and
technology. Then the conflict between Russia and Ukraine started in 2022, which resulted
in a drop in all sectors. The change in trends might have influenced the model. Therefore,
it was also tested in Appendix E whether a period with similar tendencies in both the
training and testing data would perform better in the financial sector. From Appendix E
it can be inferred that this is the case, since the results from the ratio between observed-
and expected violations and the backtests strongly imply that the model performs better
in the shorted period.
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6 | Conclusion
The purpose of this project was to explore the capabilities of an R-vine copula, where
the marginals were modeled using an ARMA-GARCH model, to forecast the risk of a
portfolio. The risk measures chosen to model the risk of a portfolio were V aR and CV aR.
The (C)V aR were forecasted and validated on three portfolios, consisting of data from
different sectors from the S&P 500.

In Chapter 2, theory regarding copulas, including Sklar’s Theorem and different copula
families were introduced. Then the pair copula construction of a multivariate distribution
was proposed, which gave the opportunity to construct a multivariate distribution based
on bivariate copulas, so-called pair copulas. To graphically construct the multivariate
distribution using pair copulas, vines were introduced. Vines are sequences of trees, which,
with the pair copulas as edges, constructs R-vine copulas. The estimation of an R-vine
copula can be achieved using sequential estimation, and an algorithm for selecting an R-
vine copula was proposed. Dißmann’s algorithm is a greedy algorithm, which sequentially
chooses the best tree in the R-vine tree sequence. The selection is based on a weight, which
in this project was either the AIC or the absolute empirical Kendall’s tau. To test the fit
of the model, a GOF test, which is based on the Bartlett identity, was shown. Lastly,
theory regarding modeling of the marginals was presented. The ARMA-GARCH model
for modeling time series data was used, and three different possibilities for distributions of
the innovations were chosen: the standardized Gaussian-, the standardized Student’s t-,
and the standardized NIG distribution.

In Chapter 3, theory regarding risk measures was introduced. V aR and CV aR were
defined, and properties were discussed. Estimation using the Monte Carlo approach was
chosen for the risk measures, and backtests of V aR and CV aR were introduced. For V aR,
the Dynamic Quantile test was chosen and for CV aR, a strict CV aR regression test was
chosen.

In Chapter 4, the application part of this project was presented. Assets from S&P 500
were spread into 3 sectors; finance with 61 assets, healthcare with 60 assets, and technology
with 71 assets. The log-returns for each asset were characterized and examined to fit an
ARMA-GARCH model. The fits of the marginals were tested using the Anderson-Darling
and Ljung-Box tests. The tests implied that all marginal models fitted the data well. The
analysis therefore proceeded to fit an R-vine copulas for each sector. The estimation and
selection were done with Dißman’s algorithm, where the AIC and the absolute empirical
Kendall’s tau were chosen as the weights, and eight different bivariate copulas were chosen
for possible pair copulas. The last part of the in-sample analysis was a goodness of fit test
and model comparison. The comparison showed that the R-vine copulas - both using the
AIC and absolute empirical Kendall’s tau - yielded better AIC and BIC values compared
to multivariate Gaussian- and Student’s t-copulas.

Lastly, the performance of the models was validated with out-of-sample risk forecasting.
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The (C)VaR forecasts were investigated for three different ↵-levels, namely: 0.025, 0.05,
and 0.10. In every sector, the VaR forecasts were all conservative, as the number of observed
violations did not reach the number of expected violations. The Dynamic Quantile test was
only not rejected for ↵ = 0.025 for technology and healthcare. To test whether the choice
of lags of the ARMA-GARCH models made a difference, an ARMA(1, 1)-GARCH(1, 1)
model was fitted for all marginals, which improved the results of the Dynamic Quantile
test. The CVaR backtest yielded p-values of zero for all ↵-levels for all sectors, which
inferred that the models were not good at forecasting CV aR. A mean-CV aR portfolio
strategy was constructed for all three sectors and compared to equally-weighted portfolios.
For all sectors, the mean-CV aR portfolio performed better in terms of return, but gave
larger VaR and CV aR values, than the equally-weighted portfolios.
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A | Supporting Theory for Copulas
This chapter is based on [6] and [7].

The following lemma and definition are used to infer that a multivariate copula is a mul-
tivariate distribution function.

Lemma A.1.
Let S1, S2, . . . , Sd be nonempty subsets of R and let H be a grounded and d-increasing
function with domain S1 ⇥S2 ⇥ · · ·⇥Sd. Then H is non-decreasing in each argument,
meaning that if (t1, . . . , tk�1, x, tk+1, . . . , td), (t1, . . . , tk�1, y, tk+1, . . . , td) 2 dom(H) and
x < y then

H(t1, . . . , tk�1, x, tk+1, . . . , td)  H(t1, . . . , tk�1, y, tk+1, . . . , td). (A.1)

Definition A.2. d-Dimensional Distribution Function
A function H with dom(H) = Rd is a d-dimensional distribution function if

1. H is d-increasing.

2. H(t) = 0 for all t 2 Rd where tk = �1 for at least one k and H(1,1, . . . ,1) =
1.

Definition A.3. Quasi-Inverse[6, p. 21]
Let F be a distribution function. The quasi-inverse of a distribution function F is any
function F (�1) with domain [0, 1] such that

1. If t 2 ran(F ) then

F (F (�1)(t)) = t, 8t 2 ran(F ). (A.2)

2. If t /2 ran(F ) then

F (�1)(t) = inf{x|F (x) � t} = sup{x|F (x)  t}. (A.3)

If F is strictly increasing, then quasi-inverse is the same as the normal inverse.

A.1 Dependence Measure

This section is based on [4, chap. 2] and [6, chap. 5].
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Two different measures of dependence are defined to investigate how copulas can be used
to model the dependence structure between random variables.

A.1.1 Kendall’s Tau

Kendall’s tau measures the dependence between random variables by utilizing the principle
of concordance. A pair of random variables are concordant if large values of one of the
variables are associated with large values of the other variable and small values of one
of the variables are associated with small values of the other variable. The opposite is
discordant where small values of one of the variables are associated with large values of
the other variable. Kendall’s tau is defined as the probability of concordance minus the
probability of discordance between two random variables X and Y .

Definition A.4. Kendall’s Tau
Let X and Y be continuous random variables. Kendall’s tau between X and Y is then
defined as

⌧(X, Y ) := P
�
(X1 �X2)(Y1 � Y2) > 0

�
� P

�
(X1 �X2)(Y1 � Y2) < 0

�
, (A.4)

where (X1, Y1) and (X2, Y2) are i.i.d. copies of (X, Y ).

The range of Kendall’s tau is [�1, 1] since it is defined as the difference between two
probabilities. Additionally, Kendall’s tau can be expressed only in terms of a copula. The
measure does therefore not depend on the marginal distributions.

Theorem A.5.
Let (X1, Y1) and (X2, Y2) be continuous i.i.d. variables. Kendall’s tau is then given by

⌧ = 4

Z 1

0

Z 1

0

C(u, v)
@2

@u@v
C(u, v)dudv � 1. (A.5)

The proof is omitted. However, the proof can be found in [4, p.32].

To select an R-vine copula specification a sequential method based on Kendall’s tau is
utilized. The sequential method is based on data. An empirical version of Kendall’s tau is
therefore introduced. Kendall’s tau given in (A.4) can be rewritten as

⌧ = P((X1 �X2)(Y1 � Y2) > 0)� P((X1 �X2)(Y1 � Y2) < 0) (A.6)
= E

⇥
(X1�X2)(Y1�Y2)>0 � (X1�X2)(Y1�Y2)<0

⇤
(A.7)

= E
h
sign

�
(X1 �X2)(Y1 � Y2)

�i
, (A.8)
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where

sign(x) =

8
>><

>>:

1 if x > 0,

�1 if x < 0,

0 else.
(A.9)

Given independent samples (X1, Y1), (X2, Y2), . . . , (Xd, Yd), the empirical Kendall’s tau is
given by

⌧̂n :=
# of concordant pairs � # of discordant pairs

# of all pairs

=

✓
n

2

◆�1 X

1i<jn

sign
�
(Xi �Xj)(Yi � Yj)

�
. (A.10)

A.1.2 Tail Dependence

This subsection is based on [6, s.214].

Another measure of dependence is tail dependence. Tail dependence is given by the prob-
ability of joint occurrence of extremely small or large values.

Definition A.6. Tail dependence
Let X and Y be continuous random variables with marginal distribution functions F
and G, respectively. Furthermore, let C be the copula of X and Y . The upper- and
lower tail dependence coefficients are then defined as

�U := lim
q"1

P
✓
Y > G�1(q)

���X > F�1(q)

◆
= lim

q"1

1� 2q + C(q, q)

1� q
and (A.11)

�L := lim
q#0

P
✓
Y  G�1(q)

���X  F�1(q)

◆
= lim

q#0

C(q, q)

q
, (A.12)

respectively, if the limits exists.

If �L 2 (0, 1], then C has lower tail dependence and conversely if �L = 0, then C has no
tail dependence. This is also the case for �U and upper tail dependence.

A.2 Copula Families

This section is based on [6] and [38].

There exist many different families of copulas. In this project copulas that model elliptical
distributions and Archimedean copulas will be used. Both families, given that the data
is perfectly positive correlated or perfectly negative correlated, are equal to the Fréchet-
Hoeffding lower- and upper bound, respectively.
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Theorem A.7. Fréchet-Hoeffding Bounds
Let C be a d-dimensional copula. Then for every u 2 dom(C) it holds that

W d(u)  C(u)  Md, (A.13)

where Fréchet-Hoeffding lower- and upper bound is given by

W d(u) = max(u1 + u2 + · · ·+ ud � d+ 1, 0), (A.14)
Md(u) = min(u1, u2, . . . , ud). (A.15)

W d(u) is only a copula for d = 2 and Md is a copula for all d � 2.

Although W d(u) is only a copula for d = 2, it is possible for d � 3 to find a d-dimensional
copula C, such that C(u) = W d(u) for any u 2 [0, 1]d.

Another case of extreme dependence is when the individual variables in the data are in-
dependent. If this is the case, the data can then be modeled using the independence
copula.

Definition A.8. Independence Copula
Let ⇧ : [0, 1]d ! [0, 1] be a d-dimensional copula. ⇧ is then the independence copula if

⇧(u1, u2, . . . , ud) = u1 · u2 · · · ud (A.16)

A.2.1 Elliptical Copulas

In this project, two elliptical copulas will be explored, namely the Gaussian copula and
the Student’s t-copula.

Definition A.9. Multivariate Gaussian Copula
Let the matrix P 2 Rd⇥d be symmetric and positive definite with diag(P ) = 1 and
�P be a standard d-dimensional Gaussian distribution with correlation matrix P . The
d-dimensional Gaussian copula is then defined as

C(u1, u2, . . . , ud;P ) = �P

�
��1(u1),�

�1(u2), . . . ,�
�1(ud)

�
, (A.17)

and the density is given by

c(u1, u2, . . . , ud;P ) =
1

|P | 12
exp

✓
�1

2
m>(P�1 � Id)m

◆
(A.18)

where the n’th entry of the vector m is mn = ��1(un).
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The Gaussian copula is equal to the Fréchet-Hoeffding upper bound if every entry in the
correlation matrix P converges towards 1. Fréchet-Hoeffding lower bound is only a copula
for d = 2. In the bivariate case, the Gaussian copula converges towards the Fréchet-
Hoeffding lower bound if the pair-wise correlation converges towards �1. Lastly, if the
correlation matrix is equal to the identity matrix, then the Gaussian copula is equal to the
independence copula.

In the bivariate case let ⇢ be the off-diagonal of the correlation matrix P . The upper- and
lower-tail dependence of bivariate Gaussian copula is then given by

�L = �U =

(
1 if ⇢ = 1,

0 if ⇢ 2 (�1, 1)
. (A.19)

Kendall’s tau can also be derived for the bivariate Gaussian copula and is given by

⌧Ga

⇢
=

2

⇡
arcsin(⇢). (A.20)

Definition A.10. Multivariate Student’s t-Copula
Let the matrix P 2 Rd⇥d be symmetric and positive definite with diag(P ) = 1 and TP,⌫

be the standardized multivariate Student’s t-distribution with ⌫ degrees of freedom and
correlation matrix P . The d-dimensional Student’s t-copula is then defined as

C(u1, u2, . . . , ud) = TP,⌫

�
T�1
⌫

(u1), T
�1
⌫

(u2), . . . , T
�1
⌫

(ud)
�
, (A.21)

where T�1
⌫

denotes the inverse of the univariate Student’s t-distribution. The density
of (A.21) is given as

c(u1, u2, . . . , ud) = |P |�
1
2
�(⌫+d

2 )
�
�(⌫2 )

�d �
1 + 1

⌫
m>P�1m

�� ⌫+d
2

⇣
�(⌫+d

2 )
⌘d

�(⌫2 )
Q

d

n=1

⇣
1 + m2

n
⌫

⌘� ⌫+1
2

, (A.22)

where the n’th entry of the vector m is mn = T�1
⌫

(un).

In the bivariate case let ⇢ be the off-diagonal of the correlation matrix P . The upper- and
lower-tail dependence of bivariate Student’s t-copula is then given by

�U = �L = 2T⌫+1

0

@�

s
(⌫ + 1)(1� ⇢)

1 + ⇢

1

A , (A.23)

where T⌫+1 is the cumulative distribution function of the Student’s t-distribution with
⌫ + 1 degrees of freedom. For both the Student’s t-copula and the Gaussian copula, the
upper- and lower tail dependence coincide, which is the case for all elliptical and symmetric
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distributions. Furthermore, if ⌫ ! 1 then �U = �L ! 0 which is due to the Student’s
t-distribution converging towards the Gaussian distribution for ⌫ ! 1.

Kendall’s tau is the same for all elliptical distributions [39]. Kendall’s tau is, therefore, for
the bivariate Student’s t-copula, given as

⌧ t
P
=

2

⇡
arcsin(⇢). (A.24)

A.2.2 Archimedean Copulas

Definition A.11. Archimedean copula
Let � : [0, 1] ! [0,1] be a continuous, convex and strictly decreasing function such
that �(1) = 0 and �(0) = 1. The Archimedean copula is then defined as

C(u1, u2, . . . , ud) = ��1
�
�(u1) + �(u2) + · · ·+ �(ud)

�
. (A.25)

Archemidean copulas are by construction symmetric since any permutation of u1, . . . , ud

results in the same value of the copula. Archemidean copulas are also associative meaning
that C(C(u, v), w) = C(u, C(v, w)) for all u, v, w 2 [0, 1]. Lastly, for any constant c > 0,
c� is also a generator of C.

There exist many different types of Archimedean copulas. The Archimedean copulas that
are used in the construction of the R-vine copulas are Gumbel, Gumbel rotated 180 degrees
(survival Gumbel), Gumbel rotated 270 or 90 degrees, and Frank Copula. A rotated copula
is created in the following way for the bivariate case

u1 = F1(x1), 1� u2 = F2(x2), rotated 90 degrees (A.26)
1� u1 = F1(x1), u2 = F2(x2), rotated 270 degrees (A.27)

1� u1 = F1(x1), 1� u2 = F2(x2), rotated 180 degrees. (A.28)

Table A.1: Archimedean Copulas in the Bivariate Case

Copula '(u|✓) C(u, v; ✓) ✓ 2

Gumbel (� ln(u))✓ � exp

✓
�
�
(� ln(u)✓ + (� ln(v)✓

� 1
✓

◆
[1,1)

Survival Gumbel ln(1� ✓ ln(u)) uv exp(�✓ ln(u) ln(v)) (0, 1]

Frank � ln
⇣

e�✓u�1
e�✓�1

⌘
�✓�1 ln

⇣
1 + (e�u�✓�1)(e�v�✓�1)

e�✓�1

⌘
(�1,1)\{0}

The tail dependence and Kendall’s tau for the chosen Archimedean copulas are given in
the following table.
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Table A.2: Tail Dependence and Kendall’s Tau for the Presented Archimedean Copulas.

Copula �L �U ⌧

Gumbel 0 2� 21/✓ 1� 1
✓

Survival Gumbel 2� 21/✓ 0 1� 1
✓

Frank 0 0 1 + 4
✓

⇣R
✓

0
u

eu�1du� 1
⌘

Gumbel(90 degrees) 0 0 �1� 1
✓

Gumbel(270 degrees) 0 0 �1� 1
✓
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B | Vine Copula
This section is based on [6, s.46].

B.1 Factorization of a Multivariate Distribution
Elaborating on Example 2.6, a decomposition of a multivariate distribution for d = 6 will
be shown using the methods presented in this section and Subsection 2.1.1.

Example B.1.
Assume that a six-dimensional density f(x1, x2, . . . , x6) is decomposed in the following
way using the factorization given in (2.7)

f(x1, x2, . . . , x6) =f1(x1)f2|1(x2|x1)f6|1,2(x6|x1, x2)f3|1,2,6(x3|x1, x2, x3)

· f5|1,2,3,6,3(x5|x1, x2, x6, x3)f4|1,2,6,3,5(x4|x1, x2, x6, x3, x5). (B.1)

The conditional densities can be rewritten using (2.14)

f2|1(x2|x1) = c2,1(F1(x1), F2(x2))f2(x2), (B.2)
f6|1,2(x6|x1, x2) = c6,1|2(F6|2(x6|x2), F1|2(x1|x2))f6|2(x6|x2), (B.3)

f3|1,2,6(x3|x1, x2, x6) = c3,1|2,6(F3|2,6(x3|x2, x6), F1|2,3(x1|x2, x3))f3|2,6(x3|x2, x6),
(B.4)

f5|1,2,6,3(x5|x1, x2, x6, x3) = c5,1|2,6,3(F5|2,6,3(x5|x2, x6, x3), F1|2,6,3(x1|x2, x6, x3))

· f5|2,6,3(x5|x2, x6, x3), (B.5)
f4|1,2,6,3,5(x4|x1, x2, x6, x3, x5) = c4,1|2,6,3,5(F4|2,6,3,5(x4|x2, x6, x3, x5), F1|2,6,3,5(x1|x2, x6, x3, x5))

· f4|2,6,3,5(x4|x2, x6, x3, x5). (B.6)

The conditional densities above are also rewritten using (2.14)

f6|2(x6, x2) = c6,2(F6(x6), F2(x2))f6(x6), (B.7)
f3|2,6(x3|x2, x6) = c3,2|6(F3|6(x3|x6), F2|6(x2|x6))f3|6(x3|x6), (B.8)

f5|2,6,3(x5|x2, x6, x3) = c5,3|2,6(F5|2,6(x5|x2, x6), F3|2,6(x3|x2, x6))f5|2,6(x5|x2, x6),
(B.9)

f4|2,6,3,5(x4|x2, x6, x3, x5) = c4,3|2,6,5(F4|2,5(x4|x2, x6, x5), F3|2,6,5(x3|x2, x6, x5))

· f4|2,6,5(x4|x2, x6, x5). (B.10)

Again can the conditional densities be rewritten

f3|6(x3|x6) = c3,6(F3(x3), F6(x6))f3(x3), (B.11)
f5|2,6(x5|x2, x6) = c5,6|2(F5|2(x5|x2), F6|2(x6|x2))f5|2(x5|x2), (B.12)

f4|2,6,5(x4|x2, x6, x5) = c4,6|2,5(F4|2,5(x4|x2, x5), F6|2,5(x6|x2, x5))f4|2,5(x4|x2, x5), (B.13)
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and the conditional densities here can be rewritten as

f5|2(x5, x2) = c5,2(F5(x5), F2(x2))f5(x5), (B.14)
f4|2,5(x4|x2, x5) = c4,2|5(F4|5(x4|x5), F2|5(x2|x5))f4|5(x4|x5). (B.15)

The last conditional density is rewritten as

f4|5(x4|x5) = c4,5(F4(x4), F5(x5))f4(x4), (B.16)

whereby the joint density is given as

f(x1, x2, . . . , x6) =
6Y

j=1

fj(xj)

· c2,1(F1(x1), F2(x2)) · c6,2(F6(x6), F2(x2))

· c3,6(F3(x3), F6(x6)) · c5,2(F5(x5), F2(x2))

· c4,5(F4(x4), F5(x5))

· c6,1|2(F6|2(x6|x2), F1|2(x1|x2))

· c3,2|6(F3|6(x3|x6), F2|6(x2|x6))

· c5,6|2(F5|2(x5|x2), F6|2(x6|x2))

· c4,2|5(F4|5(x4|x5), F2|5(x2, x5))

· c3,1|2,6(F3|2,6(x3|x2, x6), F1|2,3(x1|x2, x3))

· c5,3|2,6(F5|2,6(x5|x2, x6), F3|2,6(x3|x2, x6))

· c4,6|2,5(F4|2,5(x4|x2, x5), F6|2,5(x6|x2, x5))

· c5,1|2,6,3(F5|2,6,3(x5|x2, x6, x3), F1|2,6,3(x1|x2, x6, x3))

· c4,3|2,6,5(F4|2,5(x4|x2, x6, x5), F3|2,6,5(x3|x2, x6, x5))

· c4,1|2,6,3,5(F4|2,6,3,5(x4|x2, x6, x3, x5), F1|2,6,3,5(x1|x2, x6, x3, x5)),
(B.17)

which corresponds with (2.24). Furthermore, it is also possible to specify the matrices
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B and ⇥, which follows the structure of (2.31):

B =

2

66666664

� C2,m1,2 C3,m1,3 C4,m1,4 C5,m1,5 C6,m1,6

� C3,m2,3|m1,3 C4,m2,4|m1,4 C5,m2,5|m1,5 C6,m2,6|m1,6

� C4,m3,4|m2,4,m1,4 C5,m3,5|m2,5,m1,5 C6,m3,6|m2,6,m1,6

� C5,m4,5|m3,5,m2,5,m1,5 C6,m4,6|m3,6,m2,6,m1,6

� C6,m5,6|m4,6,m3,6,m2,6,m1,6

�

3

77777775

(B.18)

=

2

66666664

� C2,1 C3,2 C4,3 C5,2 C6,5

� C3,1|2 C4,2|3 C5,3|2 C6,2|5
� C4,1|2,3 C5,4|3,2 C6,3|2,5

� C5,1|4,3,2 C6,4|3,2,5
� C6,1|4,3,2,5

�

3

77777775

, (B.19)

and

⇥ =

2

66666664

� ✓2,m1,2 ✓3,m1,3 ✓4,m1,4 ✓5,m1,5 ✓6,m1,6

� ✓3,m2,3|m1,3 ✓4,m2,4|m1,4 ✓5,m2,5|m1,5 ✓6,m2,6|m1,6

� ✓4,m3,4|m2,4,m1,4 ✓5,m3,5|m2,5,m1,5 ✓6,m3,6|m2,6,m1,6

� ✓5,m4,5|m3,5,m2,5,m1,5 ✓6,m4,6|m3,6,m2,6,m1,6

� ✓6,m5,6|m4,6,m3,6,m2,6,m1,6

�

3

77777775

(B.20)

=

2

66666664

� ✓2,1 ✓3,2 ✓4,3 ✓5,2 ✓6,5
� ✓3,1|2 ✓4,2|3 ✓5,3|2 ✓6,2|5

� ✓4,1|2,3 ✓5,4|3,2 ✓6,3|2,5
� ✓5,1|4,3,2 ✓6,4|3,2,5

� ✓6,1|4,3,2,5
�

3

77777775

. (B.21)
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B.2 Log-Likelihood Algorithm
To calculate the log-likelihood of an R-vine copula the following algorithm is used.

Algorithm 4 Log-Likelihood for an R-Vine
Input R-vine copula specification matrices M,B,⇥, where mk,k = k, k = 1, . . . , d.
Output Density of the R-vine distribution at x = (x1, . . . , xd), for an R-vine copula

specification.
1: Set L = 0.
2: Let V direct = (vdirect

i,k
|k = 1, . . . , d, i = 1, . . . , k).

3: Let V indirect = (vindirect
i,k

|k = 1, . . . , d, i = 1, . . . , k).
4: Set (vdirect1,1 , vdirect1,2 , . . . , vdirect1,d ) = (F1(x1), F2(x2), . . . , Fd(xd)).
5: Let M = (mi,k|k = 1, . . . , d, i = 1, . . . , k) where mi,k = max{mi,k, . . . ,md,k}, 8k =

1, . . . , d and i = 1, . . . , k.
6: for k = 2, . . . , d do (Iterating over the columns of M except the first column)
7: for i = 1, . . . , k � 1 do (Iterating over the rows of M above the diagonal)
8: Set g(1)

i,k
= vdirect

i,k
.

9: if mi,k = mi,k then
10: Set g(2)

i,k
= vdirect

i,mi,k
.

11: else
12: Set g(2)

i,k
= vindirect

i,mi,k
.

13: end if
14: Set L = L+ log

✓
c
⇣
g(1)
i,k
, g(2)

i,k
; bi,k, ✓i,k

⌘◆

15: Set vdirect
i+1,k = h

⇣
g(1)
i,k
, g(2)

i,k
|bi,k, ✓i,k

⌘
and vindirect

i+1,k = h
⇣
g(2)
i,k
, g(1)

i,k
|bi,k, ✓i,k

⌘
.

16: end for
17: end for

return L
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C | Coherent Risk Measures
This section is based on [21, p. 239-240].

Let (⌦,F ,P) be a probability space, � a time horizon, and L0(⌦,F ,P) the set of all
random variables on (⌦,F ) which are almost surely finite. Financial risks, which in this
case is portfolio losses over the time horizon �, are then represented as a set of random
variables M ⇢ L0(⌦,F ,P), which is a convex cone, i.e., L1, L2 2 M =) L1 + L2 2 M
and �L1 2 M, 8� > 0. A risk measure ⇢ : M ! R, is called a coherent risk measure, if it
satisfies the following axioms:

1. Translation invariance; For all L 2 M and every l 2 R it holds that ⇢(L + l) =
⇢(L) + l.

2. Subadditivity; For all L1, L2 2 M it holds that ⇢(L1 + L2)  ⇢(L1) + ⇢(L2).

3. Positive homogeneity; For all L 2 M and every � > 0 it holds that ⇢(�L) = �⇢(L).

4. Monotonicity; For L1, L2 2 M such that almost surely L1  L2 it holds that
⇢(L1)  ⇢(L2).
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D | Results Supporting the Application
Part of the Project

In this appendix results supporting the application part of this project will be shown.
However, the characteristics of the log-returns and the fit of the marginals for every asset
are not included and can be found in the attached zip file. The results are shown separately
for each sector.

D.1 Financial Sector

D.1.1 Fitting Vine Copulas

Table D.1: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula.

Tree ⇧ N t G F G 180 G 90 G 270

1 0 0 59 0 0 1 0 0
2 0 0 40 0 19 0 0 0
3 0 1 20 1 34 2 0 0
4 2 0 18 0 35 2 0 0
5 3 3 22 2 24 2 0 0

6 9 2 18 2 14 9 1 0
7 11 3 10 3 26 0 0 1
8 18 2 12 6 11 1 0 3
9 17 6 9 3 15 0 2 0
10 15 3 11 2 14 2 2 2

11 16 3 9 3 15 2 2 0
12 21 7 10 2 3 2 4 0
13 17 3 11 3 10 1 1 2
14 18 3 9 2 8 2 3 2
15 17 3 5 6 11 3 0 1

16 17 7 3 3 7 4 2 2
17 17 5 3 2 13 4 0 0
18 21 2 3 2 9 2 2 2
19 21 3 4 3 6 1 2 2
20 15 7 4 1 11 2 0 1

21 20 4 2 3 3 4 3 1
22 22 4 2 1 5 1 2 2
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Table D.1: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula (continued).

Tree ⇧ N t G F G 180 G 90 G 270

23 17 0 3 5 9 3 1 0
24 17 3 0 1 12 0 1 3
25 18 1 3 1 7 2 0 4

26 18 3 3 3 7 0 1 0
27 16 3 4 3 3 1 1 3
28 19 2 3 2 5 0 1 1
29 16 2 3 1 6 1 1 2
30 18 3 3 2 4 0 1 0

31 14 2 2 1 4 1 4 2
32 16 1 0 1 5 2 2 2
33 18 1 3 2 3 0 1 0
34 11 2 1 0 8 4 1 0
35 13 4 0 0 7 2 0 0

36 10 1 1 1 6 4 1 1
37 12 2 0 0 5 4 0 1
38 9 4 5 0 5 0 0 0
39 13 1 2 1 4 0 1 0
40 12 1 1 1 4 1 1 0

41 11 4 2 0 1 1 1 0
42 10 0 0 3 2 2 0 2
43 9 1 2 1 2 0 3 0
44 11 0 1 0 3 2 0 0
45 11 2 0 0 1 1 0 1

46 10 2 1 0 1 0 1 0
47 7 1 1 0 3 1 1 0
48 8 1 0 0 3 1 0 0
49 7 0 0 0 2 1 2 0
50 8 0 0 1 1 0 0 1

51 4 1 2 0 1 2 0 0
52 6 0 1 0 0 1 0 1
53 4 0 1 1 1 1 0 0
54 6 0 0 0 1 0 0 0
55 4 1 0 0 0 0 1 0

56 4 0 0 1 0 0 0 0
57 4 0 0 0 0 0 0 0
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Table D.1: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula (continued).

Tree ⇧ N t G F G 180 G 90 G 270

58 3 0 0 0 0 0 0 0
59 1 1 0 0 0 0 0 0
60 0 0 0 0 1 0 0 0

D.2 Goodness-of-Fit
The GOF test is carried out on the financial sector for the first 5 and 10 listed assets. Ad-
ditionally, the GOF test is also made on each bivariate copula in the multivariate Gaussian
copula to compare with the results from the R-vine AIC seq.

Figure D.1: GOF test on the bivariate copulas in the R-vine copula AIC seq for the first
5 listed assets in the financial sector.
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Figure D.2: GOF test on the bivariate copulas in the R-vine copula AIC seq for the first
10 listed assets in the financial sector.

Figure D.3: GOF test on the bivariate copulas in the Gaussian seq for the first 5 listed
assets in the financial sector.
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Figure D.4: GOF test on the bivariate copulas in the Gaussian seq for the first 10 listed
assets in the financial sector.

Figure D.5: GOF test on the bivariate copulas in the Gaussian seq for the first 20 listed
assets in the financial sector.
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Figure D.6: GOF test on the bivariate copulas in the Gaussian seq for every asset in the
financial sector.

D.3 Healthcare Sector
This section contains supporting results for the healthcare sector.

D.3.1 Fitting Marginal Distribution

Table D.2: Selected marginal distribution and parameters for each asset in the healthcare
sector.

Parameters
Value

(Standard Error)

Stock Model Distribution L AIC µ AR MA ! ↵ �

- - 0.113
(0.027)

0.85
(0.0334)

- - - -
- - - -LLY ARMA(0, 0)

GARCH(1, 1)
STD -2150 2.4 -0.00757

(0.0156)
- -

1.35 · 10�5

(4.6 · 10�6)
- -
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Table D.2: Selected marginal distribution and parameters for each asset in the healthcare
sector (continued).

Parameters
Value

(Standard Error)

Stock Model Distribution L AIC µ AR MA ! ↵ �

- - 0.0933
(0.0186)

0.892
(0.0205)

- - - -
- - - -UNH ARMA(0, 0)

GARCH(1, 1)
STD -2200 2.45 0.0116

(0.016)
- -

5.18 · 10�6

(1.97 · 10�6)
- -

- - 0.118
(0.0226)

0.827
(0.0296)

- - - -
- - - -JNJ ARMA(0, 0)

GARCH(1, 1)
STD -2220 2.47 0.0398

(0.0168)
- -

7.06 · 10�6

(1.89 · 10�6)
- -

- - 0.132
(0.031)

0.798
(0.0448)

- - - -
- - - -ABBV ARMA(0, 0)

GARCH(1, 1)
STD -2290 2.55 0.00311

(0.0176)
- -

1.34e-05
(4.19 · 10�6)

- -

- - 0.15
(0.0358)

0.81
(0.0431)

- - - -
- - - -MRK ARMA(0, 0)

GARCH(1, 1)
STD -2320 2.59 0.0231

(0.0171)
- -

1.76 · 10�5

(6.2 · 10�6)
- -

It is tested whether the residuals are a random sample from the chosen distribution of the
innovations, with the parameters estimated for the ARMA-GARCH model, by performing
an Anderson-Darling test.
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Figure D.7: The p-values from an Anderson-Darling test performed on the residuals of an
ARMA(m,n)-GARCH(p, q)-model in the healthcare sector, with the respective distribution
of the innovations shown in the parentheses.
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As for the financial sector, based on the Anderson-Darling test, all marginals can’t be
rejected for the healthcare sector, confer Figure D.7.

Table D.3: Ljung-Box test on residuals(R) and squared residuals(R2) from fitted models
on healthcare data, for lag = 1, 2, 3.

Ljung-Box Test, R Ljung-Box Test, R2

Stock Lag 1 2 3 1 2 3

Statistic 2.57 3.39 4.01 0.314 0.516 0.829LLY p-value 0.109 0.184 0.26 0.575 0.773 0.842

Statistic 0.238 0.325 1.62 0.475 1.26 1.9UNH p-value 0.625 0.85 0.654 0.49 0.533 0.593

Statistic 1.58 1.81 1.96 0.226 0.434 0.437JNJ p-value 0.209 0.405 0.58 0.634 0.805 0.932

Statistic 0.187 0.662 0.775 0.000124 0.00713 0.201ABBV p-value 0.665 0.718 0.855 0.991 0.996 0.977

Statistic 0.379 0.588 0.654 0.0928 0.167 0.209MRK p-value 0.538 0.745 0.884 0.761 0.92 0.976
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D.3.2 Fitting Vine Copulas

Figure D.8: Pseudo copula data using marginals from the fitted models. The lower
triangle: empirical normalized contour plots, upper triangle: pair scatter plot of copula
data and empirical Kendall’s tau and diagonal: marginal histograms of copula data.

Table D.4: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula.

Tree ⇧ N t G F G 180 G 90 G 270

1 0 0 52 0 4 3 0 0
2 0 0 20 0 38 0 0 0
3 0 0 11 0 44 2 0 0
4 1 1 14 0 38 2 0 0
5 1 1 16 2 32 3 0 0

6 5 1 12 2 29 5 0 0
7 9 1 12 7 20 4 0 0
8 9 4 10 2 23 2 2 0
9 19 5 8 2 14 2 1 0
10 17 2 6 4 16 5 0 0

11 16 1 6 3 15 5 2 1
12 10 4 6 4 18 2 1 3
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Table D.4: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula (continued).

Tree ⇧ N t G F G 180 G 90 G 270

13 15 7 5 5 9 3 0 3
14 13 7 13 0 11 2 0 0
15 13 5 10 3 8 2 2 2

16 17 10 3 1 9 1 2 1
17 18 4 4 2 13 1 1 0
18 19 1 5 1 10 3 2 1
19 13 3 5 3 9 5 2 1
20 15 5 4 1 11 1 1 2

21 19 3 7 2 3 2 2 1
22 16 5 3 2 7 2 2 1
23 15 6 2 3 6 2 2 1
24 13 5 4 2 7 3 1 1
25 17 0 0 5 9 4 0 0

26 13 3 3 4 6 3 1 1
27 13 0 3 4 7 3 3 0
28 15 2 4 2 7 2 0 0
29 12 3 2 1 7 2 2 2
30 14 2 1 1 7 1 2 2

31 11 1 0 3 9 2 1 2
32 13 4 3 0 5 0 1 2
33 14 2 2 2 4 1 1 1
34 13 3 3 0 2 3 2 0
35 19 1 2 1 1 1 0 0

36 7 5 3 1 4 1 3 0
37 8 3 3 2 6 0 0 1
38 13 0 5 0 2 2 0 0
39 12 1 2 2 3 1 0 0
40 9 2 2 1 4 1 1 0

41 14 1 0 0 4 0 0 0
42 5 3 2 0 4 0 2 2
43 8 2 0 1 1 3 1 1
44 7 2 1 2 0 2 2 0
45 10 0 2 2 1 0 0 0

46 10 0 0 0 3 0 1 0
47 8 2 1 0 2 0 0 0
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Table D.4: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula (continued).

Tree ⇧ N t G F G 180 G 90 G 270

48 5 0 3 0 3 0 0 1
49 6 1 0 0 2 1 0 1
50 3 2 0 0 4 0 1 0

51 2 1 0 1 5 0 0 0
52 1 1 1 1 2 0 1 1
53 3 0 1 1 1 1 0 0
54 3 2 0 0 1 0 0 0
55 1 0 0 1 1 1 0 1

56 0 1 0 0 2 0 1 0
57 1 1 0 1 0 0 0 0
58 2 0 0 0 0 0 0 0
59 0 0 0 0 0 0 1 0

D.3.3 Goodness-of-Fit

Table D.5: Fitted models on Fitted models on the first 5 assets in the healthcare sector,
number of parameters, Estimated log-likelihood, AIC and BIC for the fitted models.

Model par loglike AIC BIC White test (p-value)

R-vine AIC seq 17 1384.233 -2734.466 -2641.051 0.119
R-vine AIC seq mle 17 1385.408 -2736.817 -2643.402 0.173

R-vine tau seq 16 1380.696 -2729.392 -2641.472 0.0217
R-vine tau seq mle 16 1383.344 -2734.688 -2646.768 0.0300

Gaussian seq 10 1235.433 -2450.865 -2395.916 0.0000795

Gaussian seq mle 10 1235.433 -2450.866 -2395.916 0.0000802
Student’s t seq 20 1377.817 -2715.633 -2605.733 0.642

Student’s t seq mle 20 1379.554 -2719.108 -2609.208 0.741
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Table D.6: Fitted models on Fitted models on the first 10 assets in the healthcare sector,
number of parameters, Estimated log-likelihood, AIC and BIC for the fitted models.

Model par loglike AIC BIC White test (p-value)

R-vine AIC seq 61 4634.725 -9147.450 -8812.256 1.000
R-vine AIC seq mle 61 4637.003 -9152.006 -8816.812 1.000

R-vine tau seq 54 4615.871 -9123.742 -8827.013 1.000
R-vine tau seq mle 54 4620.237 -9132.473 -8835.744 1.000

Gaussian seq 45 4189.245 -8288.491 -8041.217 0.961

Gaussian seq mle 45 4189.246 -8288.492 -8041.218 0.962
Student’s t seq 90 4594.452 -9008.904 -8514.355 1.000

Student’s t seq mle 90 4597.936 -9015.872 -8521.323 1.000

Table D.7: Fitted models on Fitted models on the first 20 assets in the healthcare sector,
number of parameters, Estimated log-likelihood, AIC and BIC for the fitted models.

Model par loglike AIC BIC White test (p-value)

R-vine AIC seq 211 10567.058 -20712.12 -19552.67 1
R-vine AIC seq mle 211 10572.724 -20723.45 -19564.01 1

R-vine tau seq 186 10507.087 -20642.17 -19620.11 1
R-vine tau seq mle 186 10519.046 -20666.09 -19644.02 1

Gaussian seq 190 9487.053 -18594.11 -17550.06 1

Gaussian seq mle 190 9487.056 -18594.11 -17550.07 1
Student’s t seq 380 10391.356 -20022.71 -17934.62 1

Student’s t seq mle 380 10412.944 -20065.89 -17977.79 1
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D.3.4 Out-of-Sample CVaR Forecast

Figure D.9: Out-of-sample CVaR forecast for an equally-weighted portfolio consisting of
the assets in the healthcare sector.

D.4 Technology Sector
This section contains supporting results for the technology sector.

D.4.1 Fitting Marginal Distribution

Table D.8: Selected marginal distribution and parameters for each asset in the technology
sector.

Parameters
Value

(Standard Error)

Stock Model Distribution L AIC µ AR MA ! ↵ �

- -0.121
(0.0275)

0.155
(0.031)

0.824
(0.0326)

- - - -
- - - -MSFT ARMA(0, 1)

GARCH(1, 1)
NIG -1660 2.32 0.0147

(0.0158)
- -

7.7 · 10�6

(2.63 · 10�6)
- -
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Table D.8: Selected marginal distribution and parameters for each asset in the technology
sector (continued).

Parameters
Value

(Standard Error)

Stock Model Distribution L AIC µ AR MA ! ↵ �

- - 0.163
(0.0337)

0.823
(0.0323)

- - - -
- - - -AAPL ARMA(0, 0)

GARCH(1, 1)
STD -1780 2.48 0.033

(0.0179)
- -

1.2 · 10�5

(4.09 · 10�6)
- -

- - 0.161
(0.0389)

0.783
(0.0508)

- - - -
- - - -NVDA ARMA(0, 0)

GARCH(1, 1)
STD -1780 2.49 0.0216

(0.0186)
- -

6.35 · 10�5

(2.23 · 10�5)
- -

- - 0.0949
(0.0209)

0.891
(0.0235)

- - - -
- - - -GOOGL ARMA(0, 0)

GARCH(1, 1)
NIG -1670 2.34 0.019

(0.0192)
- -

5.79 · 10�6

(2.52 · 10�6)
- -

- - 0.1
(0.0217)

0.886
(0.0239)

- - - -
- - - -GOOG ARMA(0, 0)

GARCH(1, 1)
NIG -1660 2.32 0.0203

(0.019)
- -

6.04 · 10�6

(2.52 · 10�6)
- -

Table D.9: Ljung-Box test on residuals(R) and squared residuals(R2) from the fitted models
from the technology data for lag = 1, 2, 3.

Ljung-Box Test, R Ljung-Box Test, R2

Stock Lag 1 2 3 1 2 3

Statistic 0.425 0.817 0.848 0.0497 0.264 0.499MSFT p-value 0.514 0.665 0.838 0.824 0.876 0.919

Statistic 3.5e-05 0.937 3.39 1.3 1.51 2.1AAPL p-value 0.995 0.626 0.335 0.254 0.471 0.553

Statistic 2.36 2.37 2.48 0.11 0.439 0.898NVDA p-value 0.124 0.306 0.479 0.74 0.803 0.826

Statistic 0.000651 0.307 1.3 2.87e-09 0.429 0.429GOOGL p-value 0.98 0.858 0.729 1 0.807 0.934

Statistic 0.0163 0.228 1.68 0.0248 0.412 0.452GOOG p-value 0.898 0.892 0.642 0.875 0.814 0.929
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It is tested whether the residuals are a random sample from the chosen distribution of the
innovations, with the parameters estimated for the ARMA-GARCH model, by performing
an Anderson-Darling test.

94



Results Supporting the Application Part of the Project Aalborg University - 4.111a

Figure D.10: The p-values from an Anderson-Darling test performed on the residuals of
an ARMA(m,n)-GARCH(p, q)-model in the technology sector, with the respective distri-
bution of the innovations shown in the parentheses.
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The Anderson-Darling test indicates that it cannot be rejected that each asset’s residuals
are sampled from their respective chosen distribution.

D.4.2 Fitting Vine Copulas

Figure D.11: Pseudo copula data using marginals from the fitted models. The lower
triangle: empirical normalized contour plots, upper triangle: pair scatter plot of copula
data and empirical Kendall’s tau and diagonal: marginal histograms of copula data.

Table D.10: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula.

Tree ⇧ N t G F G 180 G 90 G 270

1 0 0 55 0 2 13 0 0
2 0 1 23 1 42 2 0 0
3 0 1 9 2 51 5 0 0
4 2 2 9 5 45 4 0 0
5 2 4 13 1 42 3 1 0

6 11 3 11 0 32 5 1 2
7 11 4 12 3 30 4 0 0
8 13 6 10 3 29 2 0 0
9 19 7 5 3 18 6 0 4
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Table D.10: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula (continued).

Tree ⇧ N t G F G 180 G 90 G 270

10 16 11 8 4 15 5 1 1

11 21 6 7 4 17 4 1 0
12 19 2 12 5 15 1 4 1
13 25 7 8 3 9 2 2 2
14 18 9 7 1 18 2 0 2
15 20 4 6 3 18 3 1 1

16 22 5 8 1 12 3 4 0
17 26 6 6 3 9 1 3 0
18 27 3 3 3 9 3 2 3
19 19 10 9 3 4 2 3 2
20 19 8 4 4 13 1 1 1

21 25 3 5 0 13 1 2 1
22 26 4 5 1 11 1 0 1
23 18 7 1 3 15 2 1 1
24 17 4 6 5 11 1 0 3
25 15 7 3 3 14 3 1 0

26 21 4 4 1 9 3 3 0
27 24 2 1 1 10 2 2 2
28 21 1 4 2 9 3 2 1
29 20 3 7 5 4 2 1 0
30 20 3 2 1 11 4 0 0

31 17 5 3 2 12 0 0 1
32 17 6 3 0 6 6 0 1
33 18 5 2 3 7 2 0 1
34 16 3 4 2 11 1 0 0
35 17 6 1 2 4 3 3 0

36 19 3 5 2 4 0 0 2
37 19 2 2 4 5 0 1 1
38 14 2 0 3 8 1 2 3
39 15 5 1 2 7 0 0 2
40 12 5 2 1 6 3 1 1

41 13 1 4 2 9 1 0 0
42 14 2 4 3 3 1 2 0
43 16 0 1 2 4 3 0 2
44 16 2 0 1 5 2 0 1
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Table D.10: The number of times each bivariate copula is selected in each tree, where ⇧
notes the bivariate independence copula (continued).

Tree ⇧ N t G F G 180 G 90 G 270

45 12 2 2 2 8 0 0 0

46 8 2 2 3 7 2 0 1
47 12 1 1 2 6 1 0 1
48 12 2 2 2 5 0 0 0
49 13 3 1 0 3 0 0 2
50 9 4 1 1 4 0 2 0

51 11 4 0 1 3 0 0 1
52 10 0 2 1 5 1 0 0
53 8 4 0 1 5 0 0 0
54 9 0 2 0 3 2 0 1
55 8 2 1 0 2 0 3 0

56 6 2 1 0 4 0 1 1
57 10 2 0 1 1 0 0 0
58 8 1 1 1 2 0 0 0
59 2 1 3 1 4 0 0 1
60 4 2 3 0 1 1 0 0

61 7 0 1 0 1 0 1 0
62 5 1 0 1 1 0 0 1
63 5 0 1 0 0 1 0 1
64 5 0 1 0 1 0 0 0
65 4 0 1 0 0 0 1 0

66 2 1 0 0 1 0 1 0
67 2 1 1 0 0 0 0 0
68 2 1 0 0 0 0 0 0
69 2 0 0 0 0 0 0 0
70 1 0 0 0 0 0 0 0
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D.4.3 Goodness-of-Fit

Table D.11: Fitted models on he first 5 assets in the technology sector, number of param-
eters, Estimated log-likelihood, AIC and BIC for the fitted models and GOF test

Model par loglike AIC BIC White test (p-value)

R-vine AIC seq 13 4432.921 -8839.841 -8771.345 0.943
R-vine AIC seq mle 13 4431.709 -8837.418 -8768.922 0.887

R-vine tau seq 13 4430.336 -8834.673 -8766.177 0.913
R-vine tau seq mle 13 4431.665 -8837.329 -8768.833 0.884

Gaussian seq 10 3976.458 -7932.916 -7880.227 1.000

Gaussian seq mle 10 3976.459 -7932.917 -7880.228 1.000
Student’s t seq 20 4404.905 -8769.809 -8664.431 1.000

Student’s t seq mle 20 4404.031 -8768.062 -8662.683 1.000

Table D.12: Fitted models on he first 10 assets in the technology sector, number of param-
eters, Estimated log-likelihood, AIC and BIC for the fitted models and GOF test

Model par loglike AIC BIC White test (p-value)

R-vine AIC seq 50 7017.151 -13934.30 -13670.86 1
R-vine AIC seq mle 50 7016.548 -13933.10 -13669.65 1

R-vine tau seq 46 6996.956 -13901.91 -13659.54 1
R-vine tau seq mle 46 7001.269 -13910.54 -13668.17 1

Gaussian seq 45 6349.087 -12608.17 -12371.07 1

Gaussian seq mle 45 6349.088 -12608.18 -12371.07 1
Student’s t seq 90 6946.603 -13713.21 -13239.00 1

Student’s t seq mle 90 6951.437 -13722.87 -13248.67 1
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Table D.13: Fitted models on he first 20 assets in the technology sector, number of param-
eters, Estimated log-likelihood, AIC and BIC for the fitted models and GOF test

Model par loglike AIC BIC White test (p-value)

R-vine AIC seq 187 13232.27 -26090.54 -25105.25 1
R-vine AIC seq mle 187 13232.99 -26091.98 -25106.69 1

R-vine tau seq 159 13158.11 -25998.22 -25160.46 1
R-vine tau seq mle 159 13166.07 -26014.13 -25176.37 1

Gaussian seq 190 11981.90 -23583.79 -22582.70 1

Gaussian seq mle 190 11981.90 -23583.79 -22582.70 1
Student’s t seq 380 13054.47 -25348.93 -23346.74 1

Student’s t seq mle 380 13073.83 -25387.65 -23385.46 1

D.4.4 Out-of-Sample CVaR Forecast

Figure D.12: Out-of-sample CVaR forecast for an equally-weighted portfolio consisting of
the assets in the technology sector.
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E | Shorted Period (C)VaR Forecasts
In this appendix, the performance of the (C)V aR forecasts is evaluated on a shorter time
period, for the financial sector, due to observed changes in tendencies in the price move-
ments of in Figure 4.1. The new period goes from 07/07/2015 to 02/01/2020, the train-
ing/test split is 75/25, and the procedure from Section 4.4 is used on the data.

Figure E.1: V aR forecasts for an equally-weighted portfolio consisting of the assets in the
financial sector from 14/11/2018 to 02/01/2020. The red dots are the actual losses for the
equally-weighted portfolio.

Table E.1: Observed ↵V aR violations compared to the expected number of ↵V aR viola-
tions, and the ratio between observed ↵V aR violations and the total number of observations
for each tested ↵-level in each sector from 14/11/2018 to 02/01/2020.

Sector ↵-level Observed violations Expected violations Mean violations

0.025 7 7.075 0.025
0.05 11 14.150 0.039Financial
0.10 21 28.300 0.074

From Figure E.1 and Table E.1, it can be inferred that the model performs better in general
in terms of observed and expected violations, than the model for the whole period. The

101



Shorted Period (C)VaR Forecasts Aalborg University - 4.111a

ratio for ↵ = 0.10 is a bit lower, however, for ↵ = 0.025 and 0.05 the ratio is significantly
better than in Table 4.11. To further evaluate the performance on the shorted period, the
DQ test is performed as well.

Table E.2: DQ test performed on the financial sector for the shorted period for ↵ =
0.025, 0.05, and 0.10 and lag p = 4.

Sector DQ 2.5% VaR
p-value

DQ 5% VaR
p-value

DQ 10% VaR
p-value

Financial 0.916 0.363 0.496

From Table E.2, it can be inferred that the results from the DQ test on the shorted period
are significantly better than for the whole period, Table 4.12. The p-values are all above
0.05, compared to all being below for the whole period.

The validity of the CV aR forecasts on the shorted period, will be performed in the same
manner as for the whole period.

Figure E.2: CV aR forecasts for an equally-weighted portfolio consisting of the assets in
the financial sector from 14/11/2018 to 02/01/2020. The red dots are the actual losses for
the equally-weighted portfolio.
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Table E.3: Strict CV aR backtest performed on the financial sector for ↵ =
0.025, 0.05, and 0.10.

Sector 2.5% CVaR
p-value

5% CVaR
p-value

DQ 10% CVaR
p-value

Financial 0.746 0.504 0.212

The strict CV aR backtest on the shorted period infers that the CV aR forecast are signif-
icantly better for the shorted period than for the whole period. The p-values are all above
0.05, whereas the p-values were all zero for the whole period. Therefore, Table E.3, further
confirms that the model performs better on the shorted period, where the tendencies of
the price movements are more similar.
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F | Mean-CVaR with Different Returns

Figure F.1: Accumulated portfolio returns for the mean-CV aR portfolio, with µ = 0.001
(blue), µ = 0 (green), and µ = 0.005 (yellow), and equally-weighted portfolio (red) for the
financial sector.
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